Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika
2004-03-01
The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.
Tracking Control and System Development for Laser-Driven Micro-Vehicles
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Hoshino, Kentaro; Hara, Shinji; Shiokata, Daisuke; Yabe, Takashi
The purpose of this paper is to design a control system for an integrated laser propulsion/tracking system to achieve continuous motion and control of laser-driven micro-vehicles. Laser propulsion is significant in achieving miniature and light micro-vehicles. A laser-driven micro-airplane has been studied using a paper airplane and YAG laser, resulting in successful gliding of the airplane. High-performance laser tracking control is required to achieve continuous flight. This paper presents a control design strategy based on the generalized Kalman-Yakubovic-Popov lemma to achieve this requirement. Experiments have been carried out to evaluate the performance of the integrated laser propulsion/tracking system.
Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George J.; Gilland, James H.
The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential formore » spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogino, Yousuke; Ohnishi, Naofumi
A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperaturemore » range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.« less
Brief review on pulse laser propulsion
NASA Astrophysics Data System (ADS)
Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun
2018-03-01
Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.
An advanced optical system for laser ablation propulsion in space
NASA Astrophysics Data System (ADS)
Bergstue, Grant; Fork, Richard; Reardon, Patrick
2014-03-01
We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space-based missions.
Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.
2011-11-01
Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.
Field resonance propulsion concept
NASA Technical Reports Server (NTRS)
Holt, A. C.
1979-01-01
A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.
Space-based laser-powered orbital transfer vehicle (Project SLICK)
NASA Technical Reports Server (NTRS)
1988-01-01
A conceptual design study of a laser-powered orbital transfer vehicle (LOTV) is presented. The LOTV, nicknamed SLICK (Space Laser Interorbital Cargo Kite), will be utilized for the transfer of 16000 kg of cargo between Low Earth Orbit (LEO) and either Geosynchronous Earth Orbit (GEO) or Low Lunar Orbit (LLO). This design concentrates primarily on the LEO/GEO scenario, which will have typical LEO-to-GEO trip time of 6 days and two return versions. One version uses an all propulsive return while the other utilizes a ballute aerobrake for the return trip. Furthermore, three return cargo options of 16000 kg, 5000 kg (standard option), and 1600 kg are considered for this scenario. The LEO/LLO scenario uses only a standard, aerobraked version. The basic concept behind the LOTV is that the power for the propulsion system is supplied by a source separate from the LOTV itself. For the LEO/GEO scenario the LOTV utilizes a direct solar-pumped iodide laser and possibly two relay stations, all orbiting at an altitude of one Earth radius and zero inclination. An additional nuclear-powered laser is placed on the Moon for the LEO/LLO scenario. The propulsion system of the LOTV consists of a single engine fueled with liquid hydrogen. The laser beam is captured and directed by a four mirror optical system through a window in the thrust chamber of the engine. There, seven plasmas are created to convert the laser beam energy into thermal energy at an efficiency of at least 50 percent. For the LEO/LLO scenario the laser propulsion is supplemented by LH2/LOX chemical thrusters.
Market Driven Space Exploration
NASA Astrophysics Data System (ADS)
Gavert, Raymond B.
2004-02-01
Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.
Beamed Energy Propulsion: Research Status And Needs--Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkan, Mitat
One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.« less
Beamed Energy Propulsion: Research Status And Needs--Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkan, Mitat
One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.« less
Deuterium microbomb rocket propulsion
NASA Astrophysics Data System (ADS)
Winterberg, F.
2010-01-01
Large scale manned space flight within the solar system is still confronted with the solution of two problems: (1) A propulsion system to transport large payloads with short transit times between different planetary orbits. (2) A cost effective lifting of large payloads into earth orbit. For the solution of the first problem a deuterium fusion bomb propulsion system is proposed where a thermonuclear detonation wave is ignited in a small cylindrical assembly of deuterium with a gigavolt-multimegaampere proton beam, drawn from the magnetically insulated spacecraft acting in the ultrahigh vacuum of space as a gigavolt capacitor. For the solution of the second problem, the ignition is done by argon ion lasers driven by high explosives, with the lasers destroyed in the fusion explosion and becoming part of the exhaust.
Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.
Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang
2015-01-11
The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-Wey; Yu, Nan
2017-04-01
Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. The complexity of required laser system and the size of vacuum chamber driven by optical access requirement limit the applicability of such technology in size, weight, and power (SWaP) challenging environments, such as in space. For instance, a typical physics package of AI includes six viewports for laser cooling and trapping, two for AI beams, and two more for detection and a vacuum pump. Similarly, a typical laser system for an AI includes two lasers for cooling and repumping, and two for Raman transitions as AI beam splitters. In this presentation, we report our efforts in developing a miniaturized atomic accelerometer for planetary exploration. We will describe a physics package configuration having minimum optical access (thus small volume), and a laser and optics system utilizing a single laser for the sensor operation. Preliminary results on acceleration sensitivity will be discussed. We will also illustrate a path for further packaging and integration based on the demonstrated concepts. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.
Comparisons of selected laser beam power missions to conventionally powered missions
NASA Technical Reports Server (NTRS)
Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.
1993-01-01
Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.
NASA Astrophysics Data System (ADS)
House, Christopher; Armstrong, Jenelle; Burkhardt, John; Firebaugh, Samara
2014-06-01
With the end goal of medical applications such as non-invasive surgery and targeted drug delivery, an acoustically driven resonant structure is proposed for microrobotic propulsion. At the proposed scale, the low Reynolds number environment requires non-reciprocal motion from the robotic structure for propulsion; thus, a "flapper" with multiple, flexible joints, has been designed to produce excitation modes that involve the necessary flagella-like bending for non-reciprocal motion. The key design aspect of the flapper structure involves a very thin joint that allows bending in one (vertical) direction, but not the opposing direction. This allows for the second mass and joint to bend in a manner similar to a dolphin's "kick" at the bottom of their stroke, resulting in forward thrust. A 130 mm x 50 mm x 0.2 mm prototype of a swimming robot that utilizes the flapper was fabricated out of acrylic using a laser cutter. The robot was tested in water and in a water-glycerine solution designed to mimic microscale fluid conditions. The robot exhibited forward propulsion when excited by an underwater speaker at its resonance mode, with velocities up to 2.5 mm/s. The robot also displayed frequency selectivity, leading to the possibility of exploring a steering mechanism with alternatively tuned flappers. Additional tests were conducted with a robot at a reduced size scale.
Laser diagnostics for NTP fuel corrosion studies
NASA Technical Reports Server (NTRS)
Wantuck, Paul J.; Butt, D. P.; Sappey, A. D.
1993-01-01
Viewgraphs and explanations on laser diagnostics for nuclear thermal propulsion (NTP) fuel corrosion studies are presented. Topics covered include: NTP fuels; U-Zr-C system corrosion products; planar laser-induced fluorescence (PLIF); utilization of PLIF for corrosion product characterization of nuclear thermal rocket fuel elements under test; ZrC emission spectrum; and PLIF imaging of ZrC plume.
NASA Technical Reports Server (NTRS)
Jones, W. S.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.
NASA Technical Reports Server (NTRS)
Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas
1991-01-01
In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.
Comparison of electrically driven lasers for space power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.
1988-01-01
High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.
ERIC Educational Resources Information Center
Liou, Wei-Kai; Chang, Chun-Yen
2014-01-01
This study proposes an innovation Laser-Driven Interactive System (LaDIS), utilizing general IWBs (Interactive Whiteboard) didactics, to support student learning for rural and developing regions. LaDIS is a system made to support traditional classroom practices between an instructor and a group of students. This invention effectively transforms a…
A study of the mechanism of metal deposition by the laser-induced forward transfer process
NASA Astrophysics Data System (ADS)
Adrian, F. J.; Bohandy, J.; Kim, B. F.; Jette, A. N.; Thompson, P.
1987-10-01
The mechanism of the laser-induced forward transfer (LIFT) technique for transferring metal features from a film to a substrate is examined by using the one-dimensional thermal diffusion equation with a moving solid-melt boundary to model the heating, melting, and vaporization of the metal film by the laser. For typical LIFT conditions the calculations show that the back of the film (i.e., the part exposed to the laser) will reach the boiling point before the film melts through, which supports the qualitative picture that the LIFT process involves vapor-driven propulsion of metal from the film onto the target.
A high velocity impact experiment of micro-scale ice particles using laser-driven system
NASA Astrophysics Data System (ADS)
Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.
2014-11-01
A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.; Hora, H.; Badziak, J.
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authorsmore » showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B{sup 11} have been discussed for such applications before, but prior designs face formidable physics/technology issues, largely overcome with the present approach.« less
NASA Astrophysics Data System (ADS)
Wantuck, P. J.; Butt, D. P.; Sappey, A. D.
Understanding the corrosion behavior of nuclear fuel materials, such as refractory carbides, in a high temperature hydrogen environment is critical for several proposed nuclear thermal propulsion (NTP) concepts. Monitoring the fuel corrosion products is important not only for understanding corrosion characteristics, but to assess the performance of an actual, operating nuclear propulsion system as well. In this paper, we describe an experimental study initiated to develop, test, and subsequently utilize non-intrusive, laser-based diagnostics to characterize the gaseous product species which are expected to evolve during the exposure of representative fuel samples to hydrogen. Laser ablation is used to produce high temperature, vapor plumes from solid solution, uranium-free, zirconium carbide (ZrC) forms for probing by other laser diagnostic methods, predominantly laser-induced fluorescence (LIF). We discuss the laser ablation technique, results of plume emission measurements, as well as the use of planar LIF to image both the ZrC plumes and actual NTP fuel corrosion constituents.
Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy
Fu, Xuewen; Chen, Bin; Tang, Jau; Zewail, Ahmed H.
2017-01-01
Dynamics of active or propulsive Brownian particles in nonequilibrium status have recently attracted great interest in many fields including artificial micro/nanoscopic motors and biological entities. Understanding of their dynamics can provide insight into the statistical properties of physical and biological systems far from equilibrium. We report the translational dynamics of photon-activated gold nanoparticles (NPs) in water imaged by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. Under excitation of femtosecond laser pulses, we observed that those NPs exhibit superfast diffusive translation with a diffusion constant four to five orders of magnitude greater than that in the absence of laser excitation. The measured diffusion constant follows a power-law dependence on the laser fluence and a linear increase with the laser repetition rate, respectively. This superfast diffusion of the NPs is induced by a strong random driving force arising from the photoinduced steam nanobubbles (NBs) near the NP surface. In contrast, the NPs exhibit a superfast ballistic translation at a short time scale down to nanoseconds. Combining with a physical model simulation, this study reveals a photoinduced NB propulsion mechanism for propulsive motion, providing physical insights into better design of light-activated artificial micro/nanomotors. The liquid-cell 4D-EM also provides the potential of studying other numerical dynamical behaviors in their native environments. PMID:28875170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, Willy L.
First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient andmore » specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.« less
Experimental studies of characteristic combustion-driven flows for CFD validation
NASA Technical Reports Server (NTRS)
Santoro, R. J.; Moser, M.; Anderson, W.; Pal, S.; Ryan, H.; Merkle, C. L.
1992-01-01
A series of rocket-related studies intended to develop a suitable data base for validation of Computational Fluid Dynamics (CFD) models of characteristic combustion-driven flows was undertaken at the Propulsion Engineering Research Center at Penn State. Included are studies of coaxial and impinging jet injectors as well as chamber wall heat transfer effects. The objective of these studies is to provide fundamental understanding and benchmark quality data for phenomena important to rocket combustion under well-characterized conditions. Diagnostic techniques utilized in these studies emphasize determinations of velocity, temperature, spray and droplet characteristics, and combustion zone distribution. Since laser diagnostic approaches are favored, the development of an optically accessible rocket chamber has been a high priority in the initial phase of the project. During the design phase for this chamber, the advice and input of the CFD modeling community were actively sought through presentations and written surveys. Based on this procedure, a suitable uni-element rocket chamber was fabricated and is presently under preliminary testing. Results of these tests, as well as the survey findings leading to the chamber design, were presented.
Micro-gun based on laser pulse propulsion.
Yu, Haichao; Li, Hanyang; Cui, Lugui; Liu, Shuangqiang; Yang, Jun
2017-11-24
This paper proposes a novel "micro-gun" structure for laser pulse propulsion. The "micro-bullets" (glass microspheres) are irradiated by a laser pulse with a 10 ns duration in a dynamic process. Experimental parameters such as the microsphere diameter and the laser pulse energy are varied to investigate their influence on laser pulse propulsion. The energy field and spatial intensity distribution in the capillary tube were simulated using a three-dimensional finite-difference time-domain method. The experimental results demonstrate that the propulsion efficiency is dependent on the laser pulse energy and the microsphere size. The propulsion modes and sources of the propelling force were confirmed through direct observation and theoretical calculation. Waves also generated by light-pressure and thermal expansions assisted the propulsion.
Laser Propulsion Standardization Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter
It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation.more » Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.« less
NASA Astrophysics Data System (ADS)
Stanic, M.; Cassibry, J. T.; Adams, R. B.
2013-05-01
Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.
A Review of Laser Ablation Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phipps, Claude; Bohn, Willy; Lippert, Thomas
Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser thatmore » is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.« less
IPMC-driven thrust generation: a new conceptual design (Conference Presentation)
NASA Astrophysics Data System (ADS)
Olsen, Zakai; Kim, Kwang Jin
2017-04-01
Ionic Polymer-Metal Composites (IPMC) are highly functional actuators that find many uses in the field of soft robotics due to their low actuation voltage and ability to operate in aquatic environments. The actuation of an IPMC relies on the swelling of the negatively charged side when a potential is applied, due to the free-moving cations and water molecules migrating to that half. While this bending type actuation can be utilized to perform many tasks, it is ill suited for the primary propulsion mechanism in certain soft robotic applications. Here, a new conceptual design is presented which utilizes the bending of IPMC materials to achieve complex actuation motion in an attempt to generate a non-zero net thrust for propulsion of soft robots. The design capitalizes on advances in the manufacturing processes of electroactive polymer materials, which now allow for more complex shapes and thus new and unique modes of actuation. By utilizing the consistent bending deformation of IPMC actuators, in conjunction with carefully considered geometry, an IPMC driven body may serve as a primary mode of propulsion through a positive net thrust generation. This work consists of the initial feasibility study, concept testing, and optimization for such an actuator through computer modeling and simulation. COMSOL will be used for the finite element analysis to design the most efficient and optimized design for a positive net thrust generation. Such an IPMC design may find a great deal of applications, and the potential of future integration into other soft robotic systems is considered.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.
2002-01-01
Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.
46 CFR 11.901 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...
46 CFR 11.901 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...
46 CFR 11.901 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...
In vitro investigations of propulsion during laser lithotripsy using video tracking.
Eisel, Maximilian; Ströbl, Stephan; Pongratz, Thomas; Strittmatter, Frank; Sroka, Ronald
2018-04-01
Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s -1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s -1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s -1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Laser power beaming: an emerging technology for power transmission and propulsion in space
NASA Astrophysics Data System (ADS)
Bennett, Harold E.
1997-05-01
A ground based laser beam transmitted to space can be used as an electric utility for satellites. It can significantly increase the electric power available to operate a satellite or to transport it from low earth orbit (LEO) to mid earth or geosynchronous orbits. The increase in electrical power compared to that obtainable from the sun is as much as 1000% for the same size solar panels. An increase in satellite electric power is needed to meet the increasing demands for power caused by the advent of 'direct to home TV,' for increased telecommunications, or for other demands made by the burgeoning 'space highway.' Monetary savings as compared to putting up multiple satellites in the same 'slot' can be over half a billion dollars. To obtain propulsion, the laser power can be beamed through the atmosphere to an 'orbit transfer vehicle' (OTV) satellite which travels back and forth between LEO and higher earth orbits. The OTV will transport the satellite into orbit as does a rocket but does not require the heavy fuel load needed if rocket propulsion is used. Monetary savings of 300% or more in launch costs are predicted. Key elements in the proposed concept are a 100 to 200 kW free- electron laser operating at 0.84 m in the photographic infrared region of the spectrum and a novel adaptive optic telescope.
Numerical Investigation of Laser Propulsion for Transport in Water Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Bing; Li Beibei; Zhang Hongchao
Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. Themore » numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.« less
Advanced space power and propulsion based on lasers
NASA Astrophysics Data System (ADS)
Roth, M.; Logan, B. G.
2015-10-01
One of the key components for future space exploration, manned or unmanned, is the availability of propulsion systems beyond the state of the art. The rapid development in conventional propulsion systems since the middle of the 20th century has already reached the limits of chemical propulsion technology. To enhance mission radius, shorten the transit time and also extend the lifetime of a spacecraft more efficient, but still powerful propulsion system must be developed. Apart from the propulsion system a major weight contribution arises from the required energy source. Envisioning rapid development of future high average power laser systems and especially the ICAN project we review the prospect of advanced space propulsion based on laser systems.
Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be.
Ghosh, Arijit; Paria, Debadrita; Rangarajan, Govindan; Ghosh, Ambarish
2014-01-02
Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.
Structural optimization of the Halbach array PM rim thrust motor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.
2012-06-01
driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration
Laser Propulsion—Is it another myth or a real potential?
NASA Astrophysics Data System (ADS)
Cook, Joung R.
2008-04-01
This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.
Review Of Laser Lightcraft Propulsion System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Eric W.; Mead, Franklin B. Jr
Laser-powered 'Lightcraft' systems that deliver nano-satellites to LEO have been studied for the Air Force Research Laboratory (AFRL). The study was built on the extensive Lightcraft laser propulsion technology already developed by theoretical and experimental work by the AFRL's Propulsion Directorate at Edwards AFB, CA. Here we review the history and engineering-physics of the laser Lightcraft system and its propulsive performance. We will also review the effectiveness and cost of a Lightcraft vehicle powered by a high-energy laser beam. One result of this study is the significant influence of laser wavelength on the power lost during laser beam propagation throughmore » Earth's atmosphere and in space. It was discovered that energy and power losses in the laser beam are extremely sensitive to wavelength for Earth-To-Orbit missions, and this significantly affects the amount of mass that can be placed into orbit for a given maximum amount of radiated power from a ground-based laser.« less
High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions
NASA Technical Reports Server (NTRS)
Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew
2011-01-01
High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.
Experimental investigation of a unique airbreathing pulsed laser propulsion concept
NASA Technical Reports Server (NTRS)
Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.
1991-01-01
Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.
Fuel Effective Photonic Propulsion
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Srivarshini, S.
2017-09-01
With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.
Laser Propulsion for LOTV Space Missions
NASA Astrophysics Data System (ADS)
Rezunkov, Yuri A.
2004-03-01
Advanced Space Propulsion-Investigation Committee (ASPIC) of the Japan Society for Aeronautics and Space Sciences (JSASS) selected the Laser Orbital Transfer Vehicle (LOTV) project for development of non-chemical space propulsion systems that have a capability to sustain expanded human space activities in the 21st century. This talk is presenting an analysis of the laser propulsion researches made within the frames of the ISTC Project 1801 as applied to the LOTV Project. The study includes the development of techniques for low-thrust maneuvers of the spacecraft to achieve geostationary orbits.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
NASA Technical Reports Server (NTRS)
Forward, R. L.
1975-01-01
Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.
Measurement Issues In Pulsed Laser Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert
Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studiedmore » by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.« less
NASA Astrophysics Data System (ADS)
Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki
2017-12-01
High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.
Kelly, B. G.; Loether, A.; Unruh, K. M.; ...
2017-02-01
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B. G.; Loether, A.; Unruh, K. M.
An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less
NASA Technical Reports Server (NTRS)
Papailiou, D. D. (Editor)
1975-01-01
Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.
NASA Technical Reports Server (NTRS)
Gwaltney, D. A.
2002-01-01
A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.
NASA Astrophysics Data System (ADS)
Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.
2008-05-01
A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"
NASA Astrophysics Data System (ADS)
Spearrin, R. M.; Goldenstein, C. S.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-07-01
A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4-5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene-air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.
Starship Sails Propelled by Cost-Optimized Directed Energy
NASA Astrophysics Data System (ADS)
Benford, J.
Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.
NASA Technical Reports Server (NTRS)
Shoji, James M.
1992-01-01
Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.
Survey Of CO{sub 2} Laser Ablation Propulsion With Polyoxymethylene Propellant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Sasoh, Akihiro
Polyoxymethylene (POM) has been widely studied as a laser propulsion propellant paired to CO{sub 2} laser radiation. POM is a good test case for studying ablation properties of polymer materials, and within limits, for study of general trends in laser ablation-induced impulse. Despite many studies, there is no general understanding of POM ablation that takes into account the ambient pressure, spot area, fluence, and effects from confinement and combustion. This paper reviews and synthesizes CO{sub 2} laser ablation propulsion research using POM targets. Necessary directions for future study are indicated to address incomplete regions of the various parameter spaces. Literaturemore » data is compared in terms of propulsion parameters such as momentum coupling coefficient and specific impulse, within a range of fluences from about 1-500 J/cm{sup 2}, ambient pressures from about 10{sup -2}-10{sup 5} Pa, and laser spot areas from about 0.01-10 cm{sup 2}.« less
Laser induced extraplanar propulsion for three-dimensional microfabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birnbaum, A. J.; Pique, A.
The laser induced extraplanar propulsion process is presented for the creation of controllable three-dimensional deformation of on-substrate components. It is demonstrated that the process is compatible with transparent substrates and ductile materials and is highly controllable in terms of the desired deformation via the adjustment of incident laser energy density. Copper films with thicknesses varying from 0.1-1 {mu}m are deformed over bending angles ranging from 0 deg. - 180 deg. A 355 nm laser at fluences ranging from 10-40 mJ/cm{sup 2} is used in conjunction with an indium-tin-oxide propulsion layer to demonstrate the process. Characterization is performed via electron andmore » laser confocal microscopy.« less
On the Mysterious Propulsion of Synechococcus
Ehlers, Kurt; Oster, George
2012-01-01
We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus. PMID:22567124
Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2
NASA Technical Reports Server (NTRS)
Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason
2011-01-01
The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.
Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO{sub 2} lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 {mu}s); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnosticsmore » tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.« less
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV; Johnson, Les; Thomas, Herbert D.
2016-01-01
This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.
Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team
NASA Technical Reports Server (NTRS)
Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)
2002-01-01
This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.
CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya
The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms ofmore » the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.« less
Aerospace Laser Ignition/Ablation Variable High Precision Thruster
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)
2015-01-01
A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.
Performance analysis of a laser propelled interorbital tansfer vehicle
NASA Technical Reports Server (NTRS)
Minovitch, M. A.
1976-01-01
Performance capabilities of a laser-propelled interorbital transfer vehicle receiving propulsive power from one ground-based transmitter was investigated. The laser transmits propulsive energy to the vehicle during successive station fly-overs. By applying a series of these propulsive maneuvers, large payloads can be economically transferred between low earth orbits and synchronous orbits. Operations involving the injection of large payloads onto escape trajectories are also studied. The duration of each successive engine burn must be carefully timed so that the vehicle reappears over the laser station to receive additional propulsive power within the shortest possible time. The analytical solution for determining these time intervals is presented, as is a solution to the problem of determining maximum injection payloads. Parameteric computer analysis based on these optimization studies is presented. The results show that relatively low beam powers, on the order of 50 MW to 60 MW, produce significant performance capabilities.
Propulsive Forces of a Biomimetic Undulating Fin
NASA Astrophysics Data System (ADS)
Kalumuck, Kenneth; Brandt, Alan; Armand, Mehran
2007-11-01
Understanding gained from much recent work on force production mechanisms of aquatic organisms holds great promise for improved undersea vehicle propulsion and maneuvering. One class of fish locomotion is that of the median fin utilized by animals such as squid, cuttlefish, knifefish, and seahorse. It is characterized by undulatory motion that creates traveling waves along the fin. Results of experiments conducted on a submerged mechanical underwater undulating fin test bed are presented. The 0.5 m long fin is mounted to a cylindrical body and consists of a flexible skin attached to ribs driven by an adjustable cam mechanism and variable speed motor that enables changing the characteristics of the undulating wave(s). Forces produced were measured in a captive mode under quiescent conditions as well in the presence of an ambient current. Propulsive forces are characterized as a function of the fin width, oscillation frequency, amplitude, and wavelength. Free swimming experiments were also conducted to determine the point of self propulsion. Flow field structure visualization using dye tracers is presented for selected cases. Estimates of performance and applications for use with larger scale vehicles are discussed.
NASA Astrophysics Data System (ADS)
Grachev, Gennadii N.; Tishchenko, V. N.; Apollonov, V. V.; Gulidov, A. I.; Smirnov, A. L.; Sobolev, A. V.; Zimin, M. I.
2007-07-01
An optical pulsating discharge produced by repetitively pulses laser radiation (with a pulse repetition rate of up to 100 kHz) is studied in a cylindrical tube simulating the reflector of a laser engine. The pressure of shock waves and the propulsion produced by them are measured. The discharge produced the stationary propulsion ~1 N kW-1.
Laser Space Propulsion Overview (Postprint)
2006-09-01
meet with currently fielded thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a...with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber laser amplifiers to...advantage of extremely lightweight diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust
Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, C. William
The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy throughmore » heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.« less
Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory
NASA Astrophysics Data System (ADS)
Larson, C. William
2008-04-01
The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO{sub 2} gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method,more » TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.« less
Laser propulsion to earth orbit. Has its time come?
NASA Technical Reports Server (NTRS)
Kantrowitz, Arthur
1989-01-01
Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.
Distributed Propulsion Vehicles
NASA Technical Reports Server (NTRS)
Kim, Hyun Dae
2010-01-01
Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xinghua; Cai Jian; Li Long
Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} andmore » 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.« less
Beamed energy for space craft propulsion - Conceptual status and development potential
NASA Technical Reports Server (NTRS)
Sercel, Joel C.; Frisbee, Robert H.
1987-01-01
This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.
Unique capabilities for ICF and HEDP research with the KrF laser
NASA Astrophysics Data System (ADS)
Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew
2014-10-01
The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.
Laser propulsion for orbit transfer - Laser technology issues
NASA Technical Reports Server (NTRS)
Horvath, J. C.; Frisbee, R. H.
1985-01-01
Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2015-03-13
Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less
Mid-Infrared Laser Absorption Diagnostics for Combustion and Propulsion Applications
2010-12-01
Combustion and Propulsion Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-07-1-0844 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew A...Institute Mechancial, Aerospace, and Nuclear Engineering Dept Troy NY 12180-3590 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING...absorption sensors based on quantum cascade laser (QCL) technology for combustion and propulsion applications. To demonstrate the potential of mid-IR QCL
Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion
2005-07-13
shielding. λ D-3He eliminates the need for a complicated tritium-breeding blanked and tritium-processing system. 4 - MAGNETIC FUSION ENERGY (MFE...resulting specific powers. 5 - INERTIAL FUSION ENERGY (IFE) The possibility of igniting thermonuclear micro-explosions with pulsed laser beams was... fusion energy to antimatter rest mass energy, β, of 1.6 × 107. However, energy utilization is also lower due to the isotropic expansion process (ηe ~ 15
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.
2013-02-01
The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.
A Tool for Automatic Verification of Real-Time Expert Systems
NASA Technical Reports Server (NTRS)
Traylor, B.; Schwuttke, U.; Quan, A.
1994-01-01
The creation of an automated, user-driven tool for expert system development, validation, and verification is curretly onoging at NASA's Jet Propulsion Laboratory. In the new age of faster, better, cheaper missions, there is an increased willingness to utilize embedded expert systems for encapsulating and preserving mission expertise in systems which combine conventional algorithmic processing and artifical intelligence. The once-questioned role of automation in spacecraft monitoring is now becoming one of increasing importance.
Numerical models analysis of energy conversion process in air-breathing laser propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Yanji; Song Junling; Cui Cunyan
Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.
Hypersonic Inlet for a Laser Powered Propulsion System
NASA Astrophysics Data System (ADS)
Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave
2011-11-01
Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.
A nanojet: propulsion of a molecular machine by an asymmetric distribution of reaction--products
NASA Astrophysics Data System (ADS)
Liverpool, Tanniemola; Golestanian, Ramin; Ajdari, Armand
2006-03-01
A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. Motion of the device is driven by an asymmetric distribution of reaction products. We calculate the propulsive velocity of the device as well as the scale of the velocity fluctuations. We also consider the effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction.
Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products
NASA Astrophysics Data System (ADS)
Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand
2005-06-01
A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.
Propulsion of a molecular machine by asymmetric distribution of reaction products.
Golestanian, Ramin; Liverpool, Tanniemola B; Ajdari, Armand
2005-06-10
A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.
Numerical Analysis of Laser Repetition Rate and Pulse Numbers in Multi-pulsed Laser Propulsion
NASA Astrophysics Data System (ADS)
Song, Junling; Hong, Yanji; Wen, Ming; Li, Qian
2011-11-01
A flat-roofed parabolic nozzle is adopted to study the multi-pulse laser propulsion performance. The multi-pulse impulse coupling coefficient decreases when the laser repetition rate increases in the range of 10 to 400 Hz. The details of the evolution process of the inner and outer flow fields are simulated. The results indicate that the air exhaust and refill processes influence multi-pulse propulsion performance directly. By comparing the initial and multi-pulse flow fields, the air in the nozzle is found to be partially recovered. An uneven low-density distribution and the mass loss result in a decrease in Cm when the pulse number increases. Moreover, breathing in air to the nozzle for multi-pulse when the focal position is near the exit is beneficial.
Directions in propulsion control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1990-01-01
Discussed here is research at NASA Lewis in the area of propulsion controls as driven by trends in advanced aircraft. The objective of the Lewis program is to develop the technology for advanced reliable propulsion control systems and to integrate the propulsion control with the flight control for optimal full-system control.
Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.
The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less
Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2015-06-24
The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less
NASA Astrophysics Data System (ADS)
Rhodes, B. L.; Ronney, P. D.; DeSain, J. D.
2018-01-01
The absorption spectra of vapors of concentrated hydrogen peroxide/water mixtures (without a carrier gas) were characterized at wavelengths from 1390 to 1470 nm utilizing a near-infrared diode laser. Low pressures were employed to examine these spectral features near the Doppler-broadened limit. An advantageous portion of the spectra near 1420 nm containing several distinct H2O2 peaks and one well-known H2O peak (for calibration) was identified and the cross-sections of these peaks determined. These cross section values can be employed to measure vapor-phase concentrations of H2O2 in propulsion, atmospheric chemistry, and sterilization applications.
Tailoring Laser Propulsion for Future Applications in Space
NASA Astrophysics Data System (ADS)
Eckel, Hans-Albert; Scharring, Stefan
2010-10-01
Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites. First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.
Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
For developing laser propulsion, it is very important to analyze the mechanism of Laser-Supported Detonation (LSD), because it can generate high pressure and high temperature to be used by laser propulsion can be categorized as one type of hypersonic reacting flows, where exothermicity is supplied not by chemical reaction but by radiation absorption. I have numerically simulated the 1-D and Quasi-1-D LSD waves propagating through an inert gas, which absorbs CO2 gasdynamic laser, using a 2-temperature model. Calculated results show the fundamental properties of the non-equilibrium LSD Waves.
2012-07-02
from complex user interactions due to the use of liquid lasing medium with finite lifetime. Solid state lasers such as titanium sapphire (Ti:Sapphire...transitions for laser -induced fluorescence of an accelerated atomic iodine singly charged ion (I+). While the second spectrum of iodine has been analyzed...diagnostics tools, such as laser -induced fluorescence (LIF), to examine the plasma acceleration within an electro-static plasma propulsion thruster. While
Laser Space Propulsion Overview (Preprint)
2006-08-22
thruster technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power...achieved Isp = 3660s with Cm = 56µN/W and ηAB = 100%. These two units will be combined in a single device using low-mass diode-pumped glass fiber...diode-pumped glass fiber lasers onboard the spacecraft to provide thrust with variable Isp and unmatched thrust efficiency deriving from exothermic
Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility.
Peng, Zhiwei; Elfring, Gwynn J; Pak, On Shun
2017-03-22
At low Reynolds numbers the locomotive capability of a body can be dramatically hindered by the absence of inertia. In this work, we show how propulsive performance in this regime can be significantly enhanced by employing spatially varying flexibility. As a prototypical example, we consider the propulsive thrust generated by a filament periodically driven at one end. The rigid case leads to zero propulsion, as so constrained by Purcell's scallop theorem, while for uniform filaments there exists a bending stiffness maximizing the propulsive force at a given frequency; here we demonstrate explicitly how considerable further improvement can be achieved by simply varying the stiffness along the filament. The optimal flexibility distribution is strongly configuration-dependent: while increasing the flexibility towards the tail-end enhances the propulsion of a clamped filament, for a hinged filament decreasing the flexibility towards the tail-end is instead favorable. The results reveal new design principles for maximizing propulsion at low Reynolds numbers, potentially useful for developing synthetic micro-swimmers requiring large propulsive force for various biomedical applications.
Stahl, D.B.; Paisley, D.L.
1994-04-12
A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.
Tailoring Laser Propulsion for Future Applications in Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckel, Hans-Albert; Scharring, Stefan
Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic andmore » sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.« less
Active space debris removal by using laser propulsion
NASA Astrophysics Data System (ADS)
Rezunkov, Yu. A.
2013-03-01
At present, a few projects on the space debris removal by using highpower lasers are developed. One of the established projects is the ORION proposed by Claude Phipps from Photonics Associates Company and supported by NASA (USA) [1]. But the technical feasibility of the concept is limited by sizes of the debris objects (from 1 to 10 cm) because of a small thrust impulse generated at the laser ablation of the debris materials. At the same time, the removal of rocket upper stages and satellites, which have reached the end of their lives, has been carried out only in a very small number of cases and most of them remain on the Low Earth Orbits (LEO). To reduce the amount of these large-size objects, designing of space systems allowing deorbiting upper rocket stages and removing large-size satellite remnants from economically and scientifically useful orbits to disposal ones is considered. The suggested system is based on high-power laser propulsion. Laser-Orbital Transfer Vehicle (LOTV) with the developed aerospace laser propulsion engine is considered as applied to the problem of mitigation of man-made large-size space debris in LEO.
Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)
NASA Astrophysics Data System (ADS)
Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.
2000-08-01
Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.
Pioneers of laser propulsion: Saenger, Marx, Moeckel, and Kantrowitz
NASA Astrophysics Data System (ADS)
Michaelis, Max M.; Hey, John D.
2002-09-01
The strength of empires and civilizations has often depended on novel forms of transportation: the Viking long boat, the Roman road, Iberian galleons, French and British steam ships, Indian trains, the car of the early twentieth century, the plane of the middle and the rocket of late. But Space has now come up against a barrier: the enormous and barely affordable expense of putting things into orbit and the unaffordable energy required to travel to the stars. The recent advent of very energetic lasers may reduce the cost. The pioneering ideas of the mid sixties appear less fanciful. Laser space propulsion is about to become such an important topic that its scientific origin and engineering roots need to be investigated. This is by no means an exhaustive survey. We review here the laser propulsion work of four eminent experts: Eugen Saenger, George Marx, Wolfgang Moeckel and Arthur Kantrowitz.
Plug nozzles: The ultimate customer driven propulsion system
NASA Technical Reports Server (NTRS)
Aukerman, Carl A.
1991-01-01
This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.
NASA Technical Reports Server (NTRS)
Aukerman, Carl A.
1991-01-01
This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in the study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.
Q4 Titanium 6-4 Material Properties Development
NASA Technical Reports Server (NTRS)
Cooper, Kenneth; Nettles, Mindy
2015-01-01
This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.
RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. D. Jerred; T. M. Howe; S. D. Howe
It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.« less
NASA Tech Briefs, November 2008
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Digital Phase Meter for a Laser Heterodyne Interferometer; Vision System Measures Motions of Robot and External Objects; Advanced Precipitation Radar Antenna to Measure Rainfall From Space; Wide-Band Radar for Measuring Thickness of Sea Ice; Vertical Isolation for Photodiodes in CMOS Imagers; Wide-Band Microwave Receivers Using Photonic Processing; L-Band Transmit/Receive Module for Phase-Stable Array Antennas; Microwave Power Combiner/Switch Utilizing a Faraday Rotator; Compact Low-Loss Planar Magic-T; Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines; Quasi-Optical Transmission Line for 94-GHz Radar; Next Generation Flight Controller Trainer System; Converting from DDOR SASF to APF; Converting from CVF to AAF; Documenting AUTOGEN and APGEN Model Files; Sequence History Update Tool; Extraction and Analysis of Display Data; MRO DKF Post-Processing Tool; Rig Diagnostic Tools; MRO Sequence Checking Tool; Science Activity Planner for the MER Mission; UAVSAR Flight-Planning System; Templates for Deposition of Microscopic Pointed Structures; Adjustable Membrane Mirrors Incorporating G-Elastomers; Hall-Effect Thruster Utilizing Bismuth as Propellant; High-Temperature Crystal-Growth Cartridge Tubes Made by VPS; Quench Crucibles Reinforced with Metal; Deep-Sea Hydrothermal-Vent Sampler; Mars Rocket Propulsion System; Two-Stage Passive Vibration Isolator; Improved Thermal Design of a Compression Mold; Enhanced Pseudo-Waypoint Guidance for Spacecraft Maneuvers; Altimetry Using GPS-Reflection/Occultation Interferometry; Thermally Driven Josephson Effect; Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer; Gold Nanoparticle Labels Amplify Ellipsometric Signals; Phase Matching of Diverse Modes in a WGM Resonator; WGM Resonators for Terahertz-to-Optical Frequency Conversion; Determining Concentration of Nanoparticles from Ellipsometry; Microwave-to-Optical Conversion in WGM Resonators; Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser; Low-Resolution Raman-Spectroscopy Combustion Thermometry; Temperature Sensors Based on WGM Optical Resonators; Varying the Divergence of Multiple Parallel Laser Beams; Efficient Algorithm for Rectangular Spiral Search; Algorithm-Based Fault Tolerance Integrated with Replication; Targeting and Localization for Mars Rover Operations; Terrain-Adaptive Navigation Architecture; Self-Adjusting Hash Tables for Embedded Flight Applications; Schema for Spacecraft-Command Dictionary; Combined GMSK Communications and PN Ranging; System-Level Integration of Mass Memory; Network-Attached Solid-State Recorder Architecture; Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme; An Efficient Reachability Analysis Algorithm.
Ground-to-orbit laser propulsion: Advanced applications
NASA Technical Reports Server (NTRS)
Kare, Jordin T.
1990-01-01
Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.
Advanced space propulsion concepts
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1993-01-01
The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minucci, M. A. S.
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat fluxmore » measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.« less
NASA Astrophysics Data System (ADS)
Minucci, M. A. S.
2008-04-01
Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.
46 CFR 127.110 - Plans and specifications required for new construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (v) Fluid-driven power and control systems. (vi) Through-hull penetrations and shell connections...) Steering and steering-control systems. (4) Propulsion and propulsion-control systems. (5) Piping diagrams... personnel in the control and observation of the propulsion systems and machinery spaces, or to reduce the...
Earth-to-Orbit Rocket Propulsion
NASA Technical Reports Server (NTRS)
Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III
2003-01-01
The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.
Compact beam transport system for free-electron lasers driven by a laser plasma accelerator
Liu, Tao; Zhang, Tong; Wang, Dong; ...
2017-02-01
Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU)more » is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. As a result, theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.« less
Space-based laser-powered orbital transfer vehicle (Project SLICK)
NASA Technical Reports Server (NTRS)
1988-01-01
The project SLICK (Space Laser Interorbital Cargo Kite) involves conceptual designs of reusable space-based laser-powered orbital transfer vehicle (LOTV) for ferrying 16,000 kg cargo primarily between low Earth orbit (LEO) and geosynchronous earth orbit (GEO). The power of LOTV is beamed by a single 32-MW solar-pumped iodide laser orbiting the Earth at an altitude of one Earth radius. The laser engine selected for the LOTV is based on a continuous-wave, steady-state propulsion scheme and uses an array of seven discrete plasmas in a flow of hydrogen propellant. Both all-propulsive and aerobraked LOTV configurations were analyzed and developed. The all-propulsive vehicle uses a rigid 11.5-m aperture primary mirror and its engine produces a thrust of 2000 N at a specific impulse of 1500 sec. For the LEO-to-GEO trip, the payload ratio, m(sub payload/m(sub propellant)+m(sub dry vehicle) = 1.19 and the trip time is about 6 days. The aerobraked version uses a lightweight, retractable wrapped-rib primary mirror which is folded for aerobraking and a 20-m-diameter inflatable-ballute aeroshield which is jettisoned after aeromaneuver. Lifecycle cost analysis shows that the aerobraked configuration may have an economic advantage over the all-propulsive configuration as long as the cost of launching the propellant to LEO is higher than about $500/kg in current dollars.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.
Additively Manufactured Main Fuel Valve Housing
NASA Technical Reports Server (NTRS)
Eddleman, David; Richard, Jim
2015-01-01
Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.
2015-05-01
A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.
Double Blind Test For Bio-Stimulation Effects On Pain Relief By Diode Laser
NASA Astrophysics Data System (ADS)
Saeki, Norio; Sembokuya, Iwajiro; Arakawa, Kazuo; Fujimasa, Iwao; Mabuchi, Kunihiko; Abe, Yuusuke; Atsumi, Kazuhiko
1989-09-01
The bio-stimulation effect of semiconductor laser on therapeutic pain relief was investigated by conducting a double blind test performed on more than one hundred patient subjects suffering from various neualgia. A compact laser therapeutic equipment with two laser probes each having 60 mW power was developed and utilized for the experiment. Each probe was driven by either the active or the dummy source selected randomly, and its results were stored in the memory for statistical processing. The therapeutic treatments including active and dummy treatments were performed on 102 subjects. The pain relief effects were confirmed for 85.5% of the subjects.
High temperature measurement of water vapor absorption
NASA Technical Reports Server (NTRS)
Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard
1985-01-01
An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2017-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2016-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.
The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative
NASA Astrophysics Data System (ADS)
Coomes, Edmund P.; Dagle, Jeffery E.
1991-01-01
The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.
Low Cost Upper Stage-Class Propulsion (LCUSP)
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process can be sped up and improved with fewer errors to be accomplished in weeks instead of months.
Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation
NASA Technical Reports Server (NTRS)
Park, Sang-Young; Mazanek, Daniel D.
2005-01-01
This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is likely needed for the propulsion system as well. The spacecraft would station-keep with the object at a small standoff distance while the laser ablation is performed.
A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.
2000-01-01
We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.
A Review of Past Insights by Robert Forward and Current Advanced Propulsion Activities
NASA Technical Reports Server (NTRS)
Robertson, Tony; Norley, G. D.
2003-01-01
A review of various technologies discussed by Dr. Robert Forward is done as a tribute to Dr. Forward, and is based on selections from his writings. These speculations and predictions by Dr. Forward are used as a basis for discussing expected propulsion technology work over the next twenty years. Among the technologies to be discussed are antimatter propulsion, space elevators and tethers, and laser propulsion.
Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser
NASA Astrophysics Data System (ADS)
Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro
2011-09-01
To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.
Air Force Science and Technology Plan
2011-01-01
charged particles and guide high- power microwaves and radiofrequency waves in the air • Bioenergy – developing renewable biosolar hydrogen...Aeronautical sciences, control sciences, structures and integration Directed Energy High- power microwaves , lasers, beam control, space situational...Propulsion Turbine and rocket engines, advanced propulsion systems , system -level thermal management, and propulsion fuels and propellants Sensors Air
2002-07-01
Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)
1984-01-01
A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.
Fabrication of Flex Joint Utilizing Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Eddleman, David; Richard, Jim
2015-01-01
The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.
Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers
NASA Technical Reports Server (NTRS)
Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.
2012-01-01
In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.
NASA Astrophysics Data System (ADS)
Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie
2014-11-01
Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.
Non-intrusive Shock Measurements Using Laser Doppler Vibrometers
NASA Technical Reports Server (NTRS)
Statham, Shannon M.; Kolaini, Ali R.
2012-01-01
Stud mount accelerometers are widely used by the aerospace industry to measure shock environments during hardware qualification. The commonly used contact-based sensors, however, interfere with the shock waves and distort the acquired signature, which is a concern not actively discussed in the community. To alleviate these interference issues, engineers at the Jet Propulsion Laboratory are investigating the use of non-intrusive sensors, specifically Laser Doppler Vibrometers, as alternatives to the stud mounted accelerometers. This paper will describe shock simulation tests completed at the Jet Propulsion Laboratory, compare the measurements from stud mounted accelerometers and Laser Doppler Vibrometers, and discuss the advantages and disadvantages of introducing Laser Doppler Vibrometers as alternative sensors for measuring shock environments.
Propulsion Research and Technology: Overview
NASA Technical Reports Server (NTRS)
Cole, John; Schmidt, George
1999-01-01
Propulsion is unique in being the main delimiter on how far and how fast one can travel in space. It is the lack of truly economical high-performance propulsion systems that continues to limit and restrict the extent of human endeavors in space. Therefore the goal of propulsion research is to conceive and investigate new, revolutionary propulsion concepts. This presentation reviews the development of new propulsion concepts. Some of these concepts are: (1) Rocket-based Combined Cycle (RBCC) propulsion, (2) Alternative combined Cycle engines suc2 as the methanol ramjet , and the liquid air cycle engines, (3) Laser propulsion, (4) Maglifter, (5) pulse detonation engines, (6) solar thermal propulsion, (7) multipurpose hydrogen test bed (MHTB) and other low-G cryogenic fluids, (8) Electric propulsion, (9) nuclear propulsion, (10) Fusion Propulsion, and (11) Antimatter technology. The efforts of the NASA centers in this research is also spotlighted.
Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse
NASA Astrophysics Data System (ADS)
Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan
2011-11-01
A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.
Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation
NASA Technical Reports Server (NTRS)
Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.
Fluid-driven reciprocating apparatus and valving for controlling same
Whitehead, John C.; Toews, Hans G.
1993-01-01
A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.
Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng
2017-02-08
Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.
Solar lens mission concept for interstellar exploration
NASA Astrophysics Data System (ADS)
Brashears, Travis; Lubin, Philip; Turyshev, Slava; Shao, Michael; Zhang, Qicheng
2015-09-01
The long standing approach to space travel has been to incorporate massive on-board electronics, probes and propellants to achieve space exploration. This approach has led to many great achievements in science, but will never help to explore the interstellar medium. Fortunately, a paradigm shift is upon us in how a spacecraft is constructed and propelled. This paper describes a mission concept to get to our Sun's Gravity Lens at 550AU in less than 10 years. It will be done by using DE-STAR, a scalable solar-powered phased-array laser in Earth Orbit, as a directed energy photon drive of low-mass wafersats. [1] [2] [3] [4] [5] With recent technologies a complete mission can be placed on a wafer including, power from an embedded radio nuclear thermal generator (RTG), PV, laser communications, imaging, photon thrusters for attitude control and other sensors. As one example, a futuristic 200 MW laser array consisting of 1 - 10 kw meter scale sub elements with a 100m baseline can propel a 10 gram wafer scale spacecraft with a 3m laser sail to 60AU/Year. Directed energy propulsion of low-mass spacecraft gives us an opportunity to capture images of Alpha Centauri and its planets, detailed imaging of the cosmic microwave background, set up interstellar communications by using gravity lenses around nearby stars to boost signals from interstellar probes, and much more. This system offers a very large range of missions allowing hundreds of wafer scale payload launches per day to reach this cosmological data reservoir. Directed Energy Propulsion is the only current technology that can provide a near-term path to utilize our Sun's Gravity Lens.
Analytical study of laser-supported combustion waves in hydrogen
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.
1978-01-01
Laser supported combustion (LSC) waves are an important ingredient in the fluid mechanics of CW laser propulsion using a hydrogen propellant and 10.6 micron lasers. Therefore, a computer model has been constructed to solve the one-dimensional energy equation with constant pressure and area. Physical processes considered include convection, conduction, absorption of laser energy, radiation energy loss, and accurate properties of equilibrium hydrogen. Calculations for 1, 3, 10 and 30 atm were made for intensities of 10 to the 4th to 10 to the 6th W/sq cm, which gave temperature profiles, wave speed, etc. To pursue the propulsion application, a second computer model was developed to describe the acceleration of the gas emerging from the LSC wave into a variable-pressure, converging streamtube, still including all the above-mentioned physical processes. The results show very high temperatures in LSC waves which absorb all the laser energy, and high radiative losses.
NASA Technical Reports Server (NTRS)
Hofer, O. C.
1982-01-01
Closed cycle, CW waveform and short wavelength laser devices are desirable characteristics for laser propulsion. The choice of specific wavelengths for hydrogen fuel affects the operational conditions under which a laser supported absorption (LSA) wave is initiated and maintained. The mechanisms of initiating and maintaining LSA waves depend on the wavelength of the laser. Consequently, the shape and size of the hot core plasma is also dependent on wavelength and pressure. Detailed modeling of these mechanisms must be performed before their actual significance can be ascertained. Inverse bremsstrahlung absorption mechanism is the dominant mechanism for coupling energy into the plasma, but other mechanisms which are wavelength dependent can dictate the LSA wave plasma initiation and maintenance conditions. Multiphoton mechanisms become important at visible or shorter wavelengths. These are important mechanisms in creating the initial H2 gas breakdown and supplying the precursor electrons required to sustain the plasma.
NASA Astrophysics Data System (ADS)
Cheng, Fuqiang; Hong, Yanji; Li, Qian; Wen, Ming
2011-11-01
Laser thrusters with a single nozzle, e.g. parabolic or conical, failed to constrict the flow field of high pressure effectively, resulting in poor propulsive performance. Under the condition of air-breathing mode, parabolic thruster models with an elongate cylinder nozzle were studied numerically by building a physical computation model. Initially, to verify the computation model, the influence of cylinder length on the momentum coupling coefficient was computed and compared with the experiments, which shows a good congruence. A model of diameter 20 mm and cylindrical length 80 mm obtains about 627.7 N/MW at single pulse energy density 1.5 J/cm2. Then, the influence of expanding angle of the parabolic nozzle on propulsion performance was gained for different laser pulse energies, and the evolution process of the flow field was analyzed. The results show: as the expanding angel increases, the momentum coupling coefficient increases remarkably at first and descends relative slowly after reaching a peak value; moreover, the peak positions stay constant around 33° with little variation when laser energy differs.
NASA Astrophysics Data System (ADS)
Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2012-10-01
Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.
Quenching of I(2P 1/2) by O 3 and O( 3P)
NASA Astrophysics Data System (ADS)
Azyazov, V. N.; Antonov, I. O.; Ruffner, S.; Heaven, M. C.
2006-02-01
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P 1/2) by O atoms and O 3 may impact the efficiency of discharge driven iodine lasers. In the present study we have measured the rate constants for quenching of I(2P 1/2) by O( 3P) atoms and O 3 using pulsed laser photolysis techniques. The rate constant for quenching by O 3, 1.8x10 -12 cm 3 s -1, was found to be a factor of five smaller than the literature value. The rate constant for quenching by O( 3P) was 1.2x10 -11 cm 3 s -1. This was six times larger than a previously reported upper bound, but consistent with estimates obtained by modeling the kinetics of discharge-driven laser systems.
NASA Astrophysics Data System (ADS)
Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.
2008-05-01
Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.
Space propulsion systems. Present performance limits and application and development trends
NASA Technical Reports Server (NTRS)
Buehler, R. D.; Lo, R. E.
1981-01-01
Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.
Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min
2017-01-01
The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.
1984-02-01
MA 0900 28 HIGH TEMPERATURE MOLECULAR ABSORBERS FOR CW LASER PROPULSION. David 0 Rosen, David 0 Ham , and Lauren M Cowles, Physical Sciences Inc...been put into the dcvulopmunt of* computer codes uo wodel various aspects of rocket propellant behavior such a cobustion :..echawica and DSDT. However...Differential Scanning Calorimeter, and (2) thermal diffusivit- using U laser flash apparatus. All measurements are madc under digital computer contro
Recent developments in laser-driven and hollow-core fiber optic gyroscopes
NASA Astrophysics Data System (ADS)
Digonnet, M. J. F.; Chamoun, J. N.
2016-05-01
Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.
Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam
NASA Astrophysics Data System (ADS)
Jiang, Hong-Ren; Yoshinaga, Natsuhiko; Sano, Masaki
2010-12-01
We study self-propulsion of a half-metal coated colloidal particle under laser irradiation. The motion is caused by self-thermophoresis: i.e., absorption of a laser at the metal-coated side of the particle creates local temperature gradient which in turn drives the particle by thermophoresis. To clarify the mechanism, temperature distribution and a thermal slip flow field around a microscale Janus particle are measured for the first time. With measured temperature drop across the particle, the speed of self-propulsion is corroborated with the prediction based on accessible parameters. As an application for driving a micromachine, a microrotor is demonstrated.
Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.
2017-10-01
As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.
NASA Technical Reports Server (NTRS)
Zola, C. L.; Fishbach, L. H.; Allen, J. L.
1978-01-01
Two V/STOL propulsion concepts were evaluated in a common aircraft configuration. One propulsion system consists of cross coupled turboshaft engines driving variable pitch fans. The other system is a gas coupled combination of turbojet gas generators and tip turbine fixed pitch fans. Evaluations were made of endurance at low altitude, low speed loiter with equal takeoff fuel loads. Effects of propulsion system sizing, bypass ratio, and aircraft wing planform parameters were investigated and compared. Shaft driven propulsion systems appear to result in better overall performance, although at higher installed weight, than gas systems.
Earth to Orbit Beamed Energy Experiment
NASA Technical Reports Server (NTRS)
Johnson, Les; Montgomery, Edward E.
2017-01-01
As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng
2014-05-01
In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.
Experimental Investigation of Airbreathing Laser Propulsion Engines: CO2TEA vs. EDL
NASA Astrophysics Data System (ADS)
Mori, Koichi; Sasoh, Akihiro; Myrabo, Leik N.
2005-04-01
Single pulse laboratory experiments were carried out with a high-power CO2 Transversely-Exited Atmospheric (TEA) laser using parabolic laser propulsion (LP) engines of historic interest: 1) an original Pirri/ AERL bell engine, and 2) a scaled-up 11-cm diameter version with identical geometry. The objective was to quantify the effects of pulse duration upon the impulse coupling coefficient performance — with pulse energy as the parametric variable. Performance data from the TEA laser are contrasted with former results derived from AVCO Everett Research Laboratory and PLVTS CO2 electron discharge lasers (EDL). The `short-pulse' 2-microsecond TEA laser tests generated results that were distinctively different from that of the `long-pulse' EDL sources. The TC-300 TEA laser employed an unstable resonator to deliver up to 380 joules, and the square output beam measured 15-cm on a side, with a hollow 8-cm center. A standard ballistic pendulum was employed to measure the performance.
1996-12-01
151 B. PROPULSION PLANT SELECTION....................................................................... 152 ix C. PROPULSION PLANT LAYOUT...155 D. ELECTRICAL PLANT SELECTION...designed into the hull and power plant and once finalized is only a function of how many miles the ship is to be driven. Decision trade- offs are to
Light-induced propulsion of a giant liposome driven by peptide nanofibre growth.
Inaba, Hiroshi; Uemura, Akihito; Morishita, Kazushi; Kohiki, Taiki; Shigenaga, Akira; Otaka, Akira; Matsuura, Kazunori
2018-04-19
Light-driven nano/micromotors are attracting much attention, not only as molecular devices but also as components of bioinspired robots. In nature, several pathogens such as Listeria use actin polymerisation machinery for their propulsion. Despite the development of various motors, it remains challenging to mimic natural systems to create artificial motors propelled by fibre formation. Herein, we report the propulsion of giant liposomes driven by light-induced peptide nanofibre growth on their surface. Peptide-DNA conjugates connected by a photocleavage unit were asymmetrically introduced onto phase-separated giant liposomes. Ultraviolet (UV) light irradiation cleaved the conjugates and released peptide units, which self-assembled into nanofibres, driving the translational movement of the liposomes. The velocity of the liposomes reflected the rates of the photocleavage reaction and subsequent fibre formation of the peptide-DNA conjugates. These results showed that chemical design of the light-induced peptide nanofibre formation is a useful approach to fabricating bioinspired motors with controllable motility.
Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.
2014-05-15
The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilitiesmore » is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.« less
NASA Technical Reports Server (NTRS)
Knaub, D.; Yerazunis, S. W.
1978-01-01
Vertical wheel loads, wheel speeds, and torque relationships are considered in the design of a propulsion system capable of responding to steering, slope climbing, and irregular local terrains. The system developed is applied to the RPI Mars roving vehicle. The mechanical system required to implement the elevation laser scanning/multidetector principle was the design and construction of a mechanical system for implementing the elevation scanning/multidetector principle is also discussed.
Second Beamed Space-Power Workshop
NASA Technical Reports Server (NTRS)
Deyoung, Russell J. (Editor)
1989-01-01
Potential missions for microwave and laser power beaming in space are discussed. Power beaming options, millimeter wave technology, laser technology, lunar bases, spacecraft propulsion, and near-Earth applications are covered.
POwer WithOut Wire (POWOW): A SEP Concept for Space Exploration
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.; ONeill, Mark
2000-01-01
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 demonstrated electric propulsion as a primary propulsion source for a spacecraft. The POwer WithOut Wires (POWOW) concept has been developed as a solar electric propelled spacecraft that would travel to Mars, for example, enter selenosynchronous orbit and then use lasers to beam power to surface installations. This concept has been developed with industrial expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The paper will present the latest version of the spacecraft, the technologies involved, possible missions and trip times to Mars and laser beaming options. The POWOW spacecraft is a general purpose solar electric propulsion system that includes technologies that are directly applicable to commercial and government spacecraft with power levels ranging from 4 kW in Low Earth Orbits (LEO) to about 1 MW. The system is modular and expandable. Learning curve costing methodologies are used to demonstrate cost effectiveness of a modular system.
Mars Mission Concepts: SAR and Solar Electric Propulsion
NASA Astrophysics Data System (ADS)
Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.
2012-12-01
Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (<10 m depth) subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes (in particular, the identification of accessible ice deposits and quantification of Martian regolith properties). Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.
Evolution of MPCV Service Module Propulsion and GNC Interface Requirements
NASA Technical Reports Server (NTRS)
Hickman, Heather K.; Dickens, Kevin W.; Madsen, Jennifer M.; Gutkowski, Jeffrey P.; Ierardo, Nicola; Jaeger, Markus; Lux, Johannes; Freundenberger, John L.; Paisley, Jonathan
2014-01-01
The Orion Multi-Purpose Crew Vehicle Service Module Propulsion Subsystem provides propulsion for the integrated Crew and Service Module. Updates in the exploration architecture between Constellation and MPCV as well as NASA's partnership with the European Space Agency have resulted in design changes to the SM Propulsion Subsystem and updates to the Propulsion interface requirements with Guidance Navigation and Control. This paper focuses on the Propulsion and GNC interface requirement updates between the Constellation Service Module and the European Service Module and how the requirement updates were driven or supported by architecture updates and the desired use of hardware with heritage to United States and European spacecraft for the Exploration Missions, EM-1 and EM-2.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
Antimatter Driven P-B11 Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Kammash, Terry; Martin, James; Godfroy, Thomas
2002-01-01
One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.
Investigation of beamed-energy ERH thruster performance
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Strayer, T. Darton; Bossard, John A.; Richard, Jacques C.; Gallimore, Alec D.
1986-01-01
The objective of this study was to determine the performance of an External Radiation Heated (ERH) thruster. In this thruster, high intensity laser energy is focused to ignite either a Laser Supported Combustion (LSC) wave or a Laser Supported Detonation (LSD) wave. Thrust is generated as the LSC or LSD wave propagates over the thruster's surface, or in the proposed thruster configuration, the vehicle afterbody. Thrust models for the LSC and LSD waves were developed and simulated on a computer. Performance parameters investigated include the effect of laser intensity, flight Mach number, and altitude on mean-thrust and coupling coefficient of the ERH thruster. Results from these models suggest that the ERH thruster using LSC/LSD wave ignition could provide propulsion performance considerably greater than any propulsion system currently available.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
1990-01-01
The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.
Laser Photonic Propulsion Force for Station-Keeping Applications
NASA Technical Reports Server (NTRS)
Perez, Andres Dono; Yang, Fan Yang; Foster, Cyrus; Faber, Nicolas; Jonsson, Jonas; Stupl, Jan
2014-01-01
Small satellites, e.g. cubesats, do not tend to incorporate propulsion subsystems that can compensate for perturbation forces, which causes orbital decay. Cubesats are especially susceptible to the phenomenon of orbital decay, which limits their potential performance, since these effects are more noticeable in Low Earth Orbit (LEO). We postulate that a network of ground-based lasers could extend the operational lifetimes of these satellites by applying a photonic force onto their surfaces. This boosting force would help to counteract the degrading force, which is mainly produced by the drag of the atmosphere. This solution may present an advantage for low cost missions, in that it would enable longer mission durations without the need to incorporate a propulsion system, which comprises a large part of the mass budget and the power constraints of a satellite. This poster presents an analysis of the trade space for both the required network of laser ground stations and the satellite orbits. The analysis is based on simulations of the orbital decay of model satellites.
A NASA high-power space-based laser research and applications program
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.
1983-01-01
Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.
Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets.
Wu, Zhiguang; Si, Tieyan; Gao, Wei; Lin, Xiankun; Wang, Joseph; He, Qiang
2016-02-03
A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays -efficient NIR light-triggered propulsion in -biofluids and thus holds considerable promise for various potential biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.
Comparing handrim biomechanics for treadmill and overground wheelchair propulsion
Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark
2010-01-01
Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332
"Corkscrew" vs. "tank-treading" propulsion of spirochetes.
NASA Astrophysics Data System (ADS)
Leshansky, Alexander; Kenneth, Oded
2010-11-01
We consider the potential mechanism of spirochete propulsion driven by twirling of the outer cell surface coupled to counter-rotation of the helical body. We construct a proper slender body theory and use particle-based numerical approach allowing for modeling of locomotion in heterogeneous viscous environment. Depending on the helical pitch angle, two distinct propulsion gaits are identified: corkscrew-like locomotion, similar to propulsion powered by rotating helical flagellum, and surface tank-treading mode relying on hydrodynamic self-interaction of curved helical coils. The latter mechanism is closely related to the considered earlier propulsion of Purcell's toroidal swimmer (Kenneth and Leshansky, Phys. Fluids 20, 063104, 2008). Significant augmentation of corkscrew propulsion gait in heterogeneous viscous medium anticipated from the numerical model is in accord with experimental observations of enhanced spirochete propulsion in polymer gels.
A Noise and Emissions Assessment of the N3-X Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Haller, William J.
2014-01-01
Analytical predictions of certification noise and exhaust emissions for NASA's N3-X - a notional, hybrid wingbody airplane - are presented in this paper. The N3-X is a 300-passenger concept transport propelled by an array of fans distributed spanwise near the trailing edge of the wingbody. These fans are driven by electric motors deriving power from twin generators driven by turboshaft engines. Turboelectric distributed hybrid propulsion has the potential to dramatically increase the propulsive efficiency of aircraft. The noise and exhaust emission estimates presented here are generated using NASA's conceptual design systems analysis tools with several key modifications to accommodate this unconventional architecture. These tools predict certification noise and the emissions of oxides of nitrogen by leveraging data generated from a recent analysis of the N3-X propulsion system.
Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments
NASA Astrophysics Data System (ADS)
Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun
2018-02-01
Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.
NASA Astrophysics Data System (ADS)
Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas
1999-01-01
Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1-10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts, it is shown that it is possible to scale up the systems to prevent these catastrophic collisions given sufficient early warning.
Analysis of the Laser Propelled Lightcraft Vehicle
NASA Technical Reports Server (NTRS)
Feikema, Douglas
2000-01-01
Advanced propulsion research and technology require launch and space flight technologies, which can drastically reduce mission costs. Laser propulsion is a concept in which energy of a thrust producing reaction mass is supplied via beamed energy from an off-board power source. A variety of laser/beamed energy concepts were theoretically and experimentally investigated since the early 1970's. During the 1980's the Strategic Defense Initiative (SDI) research lead to the invention of the Laser Lightcraft concept. Based upon the Laser Lightcraft concept, the U.S. Air Force and NASA have jointly set out to develop technologies required for launching small payloads into Low Earth Orbit (LEO) for a cost of $1.0M or $1000/lb to $ 100/lb. The near term objectives are to demonstrate technologies and capabilities essential for a future earth to orbit launch capability. Laser propulsion offers the advantages of both high thrust and good specific impulse, I(sub sp), in excess of 1000 s. Other advantages are the simplicity and reliability of the engine because of few moving parts, simpler propellant feed system, and high specific impulse. Major limitations of this approach are the laser power available, absorption and distortion of the pulsed laser beam through the atmosphere, and coupling laser power into thrust throughout the flight envelope, The objective of this paper is to assist efforts towards optimizing the performance of the laser engine. In order to accomplish this goal (1) defocusing of the primary optic was investigated using optical ray tracing and (2), time dependent calculations were conducted of the optically induced blast wave to predict pressure and temperature in the vicinity of the cowl. Defocusing of the primary parabolic reflector causes blurring and reduction in the intensity of the laser ignition site on the cowl. However, because of the caustic effect of ray-tracing optics the laser radiation still forms a well-defined ignition line on the cowl. The blast wave calculations show reasonable agreement with previously published calculations and recent detailed CFD computations.
Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos III Laser: Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrabo, L. N.; Lyons, P. W.; Jones, R. A.
This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt PHAROS III neodymium-glass pulsed laser. Six different experimental setups were tested using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The first campaign investigated impulse generation with the beam oriented almost normal to the target surface, with energies ranging from 23 to 376 J, and pulses of 5 to 30 ns FWHM. Air breakdown/ plasma dynamics were diagnosed with GOI camerasmore » and color photography. Laser generated impulse was quantified with both vertical pendulums and piezoelectric pressure transducers using the standard performance metric, C{sub M}--the momentum coupling coefficient. Part 1 of this 2-part paper covers Campaign no. 1 results including laser plasma diagnostics, pressure gage and vertical pendulum data.« less
Space propulsion technology overview
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.
1979-01-01
Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.
Small, Low Cost, Launch Capability Development
NASA Technical Reports Server (NTRS)
Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.
NASA Astrophysics Data System (ADS)
Deng, Haixiao; Zhang, Meng; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang
2014-12-01
Removal of the undesired time-energy correlations in the electron beam is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it has been theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons themselves in a corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as a beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ˜10 000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by 50% was observed, in good agreement with the theoretical expectations.
7. INTERIOR VIEW, SHOWING LASER LABORATORY. WrightPatterson Air Force ...
7. INTERIOR VIEW, SHOWING LASER LABORATORY. - Wright-Patterson Air Force Base, Area B, Building 71A, Propulsion Research Laboratory, Seventh Street between D & G Streets, Dayton, Montgomery County, OH
A Treadmill to Localize, Exercise, and Measure the Propulsive Power of Nematodes
NASA Astrophysics Data System (ADS)
Yuan, Jinzhou; Chuan, Han-Sheng; Gnatt, Michael; Raizen, David; Bau, Haim
2011-11-01
The nematodes C. elegans is often used as model biological system to study the genetic basis of behavior, disease-progression, and aging, as well as to develop new therapies and screen drugs. On occasion, it is desirable to quantify the nematode's muscle power. Here, we present a kind of nematode treadmill. The device consists of a tapered conduit filled with aqueous solution. The conduit is subjected to a DC electric field and to pressure-driven flow directed from the narrow end. The nematode is inserted at the conduit's wide end. Directed by the electric field (through electrotaxis), the nematode swims deliberately upstream toward the negative pole. As the conduit narrows, the average fluid velocity and the drag force on the nematode increase. Eventually, the nematode arrives at an equilibrium position, at which its propulsive power balances the viscous drag force. The nematode's propulsive power is estimated with direct numerical simulations of the flow field around the nematode. The calculations utilize the experimentally imaged gait as a boundary condition. The device is useful to retain the nematode at a nearly fixed position for prolonged observations under a microscope, to keep the nematode exercising, and to estimate the nematode's power based on the conduit's width at the equilibrium position.
University of Tennessee Center for Space Transportation and Applied Research (CSTAR)
NASA Astrophysics Data System (ADS)
1995-10-01
The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.
University of Tennessee Center for Space Transportation and Applied Research (CSTAR)
NASA Technical Reports Server (NTRS)
1995-01-01
The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
Power-law scaling of plasma pressure on laser-ablated tin microdroplets
NASA Astrophysics Data System (ADS)
Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.
2018-01-01
The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse energy and observe a near-perfect power law dependence. Simulations performed with the RALEF-2D radiation-hydrodynamic code are shown to be in good agreement with the power law above a specific threshold energy. The simulations highlight the importance of radiative losses which significantly modify the power of the pressure scaling. Having found a good agreement between the experiment and the simulations, we investigate the analytic origins of the obtained power law and conclude that none of the available analytic theories is directly applicable for explaining our power exponent.
2011-01-01
ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component
NASA Astrophysics Data System (ADS)
Kremer, Matthias P.; Tortschanoff, Andreas
2014-03-01
One key challenge in the field of microfluidics and lab-on-a-chip experiments for biological or chemical applications is the remote manipulation of fluids, droplets and particles. These can be volume elements of reactants, particles coated with markers, cells or many others. Light-driven microfluidics is one way of accomplishing this challenge. In our work, we manipulated micrometre sized polystyrene beads in a microfluidic environment by inducing thermal flows. Therefore, the beads were held statically in an unstructured microfluidic chamber, containing a dyed watery solution. Inside this chamber, the beads were moved along arbitrary trajectories on a micrometre scale. The experiments were performed, using a MOEMS (micro-opto-electro-mechanical-systems)-based laser scanner with a variable focal length. This scanner system is integrated in a compact device, which is flexibly applicable to various microscope setups. The device utilizes a novel approach for varying the focal length, using an electrically tunable lens. A quasi statically driven MOEMS mirror is used for beam steering. The combination of a tunable lens and a dual axis micromirror makes the device very compact and robust and is capable of positioning the laser focus at any arbitrary location within a three dimensional working space. Hence, the developed device constitutes a valuable extension to manually executed microfluidic lab-on-chip experiments.
Propulsion by passive filaments and active flagella near boundaries.
Evans, Arthur A; Lauga, Eric
2010-10-01
Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.
Albert, F.; Lemos, N.; Shaw, J. L.; ...
2017-03-31
We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ~ 5 × 1 0 18 W / cm 2 are focused into plasmas with electron densities of ~ 1 × 1 0 19 cm - 3 , they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10–20 keV, and 2D particle-in-cell simulations were used to modelmore » the acceleration and radiation of the electrons in our experimental conditions« less
NASA Technical Reports Server (NTRS)
Conway, Edmund J.
1992-01-01
An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.
Electric-hybrid-vehicle simulation
NASA Astrophysics Data System (ADS)
Pasma, D. C.
The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.
Laser Opto-Electronic Correlator for Robotic Vision Automated Pattern Recognition
NASA Technical Reports Server (NTRS)
Marzwell, Neville
1995-01-01
A compact laser opto-electronic correlator for pattern recognition has been designed, fabricated, and tested. Specifically it is a translation sensitivity adjustable compact optical correlator (TSACOC) utilizing convergent laser beams for the holographic filter. Its properties and performance, including the location of the correlation peak and the effects of lateral and longitudinal displacements for both filters and input images, are systematically analyzed based on the nonparaxial approximation for the reference beam. The theoretical analyses have been verified in experiments. In applying the TSACOC to important practical problems including fingerprint identification, we have found that the tolerance of the system to the input lateral displacement can be conveniently increased by changing a geometric factor of the system. The system can be compactly packaged using the miniature laser diode sources and can be used in space by the National Aeronautics and Space Administration (NASA) and ground commercial applications which include robotic vision, and industrial inspection of automated quality control operations. The personnel of Standard International will work closely with the Jet Propulsion Laboratory (JPL) to transfer the technology to the commercial market. Prototype systems will be fabricated to test the market and perfect the product. Large production will follow after successful results are achieved.
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
NASA Astrophysics Data System (ADS)
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
Space propulsion technology overview
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.
1979-01-01
This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.
A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Cupples, Michael; Coverstone, Vicki
2003-01-01
Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with one self-priming power-driven fire pump capable of delivering a single stream of water from the..., the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power independent of the engine. (e...
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion
NASA Technical Reports Server (NTRS)
Fiehler, Douglas I.; Oleson, Steven R.
2004-01-01
In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.
An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Follen, Gregory J.
2003-01-01
Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).
NASA Astrophysics Data System (ADS)
Motohiro, Tomoyoshi; Takeda, Yasuhiko; Ito, Hiroshi; Hasegawa, Kazuo; Ikesue, Akio; Ichikawa, Tadashi; Higuchi, Kazuo; Ichiki, Akihisa; Mizuno, Shintaro; Ito, Tadashi; Yamada, Noboru; Nath Luitel, Hom; Kajino, Tsutomu; Terazawa, Hidetaka; Takimoto, Satoshi; Watanabe, Kemmei
2017-08-01
We have developed a compact solar-pumped laser (µSPL) employing an off-axis parabolic mirror with an aperture of 76.2 mm diameter and an yttrium aluminum garnet (YAG) ceramic rod of φ1 mm × 10 mm doped with 1% Nd and 0.1% Cr as a laser medium. The laser oscillation wavelength of 1.06 µm, just below the optical absorption edge of Si cells, is suitable for photoelectric conversion with minimal thermal loss. The concept of laser beam power feeding to an electric vehicle equipped with a photovoltaic panel on the roof was proposed by Ueda in 2010, in which the electricity generated by solar panels over the road is utilized to drive a semiconductor laser located on each traffic signal along the road. By substituting this solar-electricity-driven semiconductor laser with a solar-pumped laser, the energy loss of over 50% in converting the solar electricity to a laser beam can be eliminated. The overall feasibility of this system in an urban area such as Tokyo was investigated.
Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C
2008-02-01
We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.
Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.
This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less
ERIC Educational Resources Information Center
Gibson, A. F.
1980-01-01
Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)
Plasma Instabilities and Transport in the MPD Thruster
1993-06-01
driven plasma accelera- tion vesrus current-deiven energy dissipation Part III: anomalous trasnport . In 2 8’A Joint Propulsion Conference, Nashville... trasnport In the March/April Bi- monthly Progress Report of the Electric Propulsion and Plasma Dynamics Laboratory. Technical Report MAE 1776.36, EPPDyL, Princeton Univer- sity, 1992. 0 0
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers.
Khalil, Islam S M; Tabak, Ahmet Fatih; Hamed, Youssef; Mitwally, Mohamed E; Tawakol, Mohamed; Klingner, Anke; Sitti, Metin
2018-02-01
Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two-tailed microrobot capable of reversing its swimming direction without making a U-turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.
Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion
NASA Astrophysics Data System (ADS)
Beckwith, A.
2010-12-01
Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?
First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems
NASA Astrophysics Data System (ADS)
Göksel, B.; Mashek, I. Ch
2017-04-01
A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.
A novel laser ranging system for measurement of ground-to-satellite distances
NASA Technical Reports Server (NTRS)
Golden, K. E.; Kind, D. E.; Leonard, S. L.; Ward, R. C.
1973-01-01
A technique was developed for improving the precision of laser ranging measurements of ground-to-satellite distances. The method employs a mode-locked laser transmitter and utilizes an image converter tube equipped with deflection plates in measuring the time of flight of the laser pulse to a distant retroreflector and back. Samples of the outgoing and returning light pulses are focussed on the photocathode of the image converter tube, whose deflection plates are driven by a high-voltage 120 MHz sine wave derived from a very stable oscillator. From the relative positions of the images produced at the output phosphor by the two light pulses, it is possible to make a precise determination of the fractional amount by which the time of flight exceeds some large integral multiple of the period of the deflection sinusoid.
Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion
NASA Technical Reports Server (NTRS)
Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael
2013-01-01
In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and safety issues. This paper presents some of the features and issues associated with the turboelectric distributed propulsion system and summarizes the recent study results, including the high electric power distribution, in the analysis of the N3-X vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.
2016-07-15
Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulsesmore » at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.« less
West, Michael D; Charles, Christine; Boswell, Rod W
2009-05-01
A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.
Huang, Wenyu; Qian, Wei; El-Sayed, Mostafa A
2006-10-18
Femtosecond laser irradiation of assembled nanoprisms on a quartz substrate at their strong absorbing surface plasmon resonance frequency causes their propulsion from the substrate. SEM and AFM show that the particles fly while keeping their prismatic shape, but they decrease in size by an amount that can be calculated assuming atomic sublimation. Several mechanisms are mentioned, but the sublimation mechanism, which rapidly builds up pressure under the particle and propels it away from substrate, is discussed in detail. From the kinetic energy given to the flying nanoparticle, an initial velocity of approximately 160 m/s ( approximately 360 miles/h) is calculated. The dependence of the observed flying mechanism on the rate of energy deposition (i.e., with nanosecond vs femtosecond laser pulses) is discussed.
Laser ablation with applied magnetic field for electric propulsion
NASA Astrophysics Data System (ADS)
Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc
2012-10-01
Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
HAN-Based Monopropellant Propulsion System with Applications
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Oleson, Steven R.
1997-01-01
NASA is developing a new monopropellant propulsion system for small, cost-driven spacecraft with AV requirements in the range of 10-150 m/sec. This system is based on a hydroxylammonium nitrate (HAN)/water/fuel monopropellant blend which is extremely dense, environmentally benign, and promises good performance and simplicity. State-of-art (SOA) small spacecraft typically employ either hydrazine or high pressure stored gas. Herein, a 'typical' small satellite bus is used to illustrate how a HAN-based monopropellant propulsion system fulfills small satellite propulsion requirements by providing mass and/or volume savings of SOA hydrazine monopropellants with the cost benefits of a stored nitrogen gas.
Electric propulsion: Experimental research
NASA Technical Reports Server (NTRS)
Ruyten, W. M.; Friedly, V. J.; Keefer, D.
1992-01-01
This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio
2011-01-01
The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary layer ingestion (BLI) to reduce inlet drag on the propulsion system, and reduces the wake drag of the vehicle.
Neutron Source from Laser Plasma Acceleration
NASA Astrophysics Data System (ADS)
Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn
2016-10-01
Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.
Earth-to-Orbit Beamed Energy eXperiment (EBEX)
NASA Technical Reports Server (NTRS)
Johnson, Les; Montgomery, Edward E.
2017-01-01
As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are 1) large area, low mass spacecraft and 2) efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. A more detailed investigation of accessing LightSail-2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, it is a first step toward that goal.
Effect of Sidewall Configurations on Hypersonic Intake Performance
NASA Astrophysics Data System (ADS)
Kim, Seihwan; Park, Ji Hyun; Jeung, In-Seuck; Lee, Hyoung Jin
For reusable space launchers and hypersonic flight vehicles, use of an air-breathing propulsion system with supersonic combustion is the most promising option in terms of cost effectiveness. At this point, only the scramjet propulsion system provides a real alternative to expensive rocket driven systems, which currently are the only way to reach a hypersonics speeds.
Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid
NASA Astrophysics Data System (ADS)
Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.
2016-10-01
We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
A review of research in low earth orbit propellant collection
NASA Astrophysics Data System (ADS)
Singh, Lake A.; Walker, Mitchell L. R.
2015-05-01
This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.
The ram accelerator - A chemically driven mass launcher
NASA Technical Reports Server (NTRS)
Kaloupis, P.; Bruckner, A. P.
1988-01-01
The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.
Advanced NSTS propulsion system verification study
NASA Technical Reports Server (NTRS)
Wood, Charles
1989-01-01
The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.
Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.
1998-01-01
The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.
Low Power Ground-Based Laser Illumination for Electric Propulsion Applications
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.; Oleson, Steven R.
1994-01-01
A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.
Bio-inspired magnetic swimming microrobots for biomedical applications.
Peyer, Kathrin E; Zhang, Li; Nelson, Bradley J
2013-02-21
Microrobots have been proposed for future biomedical applications in which they are able to navigate in viscous fluidic environments. Nature has inspired numerous microrobotic locomotion designs, which are suitable for propulsion generation at low Reynolds numbers. This article reviews the various swimming methods with particular focus on helical propulsion inspired by E. coli bacteria. There are various magnetic actuation methods for biomimetic and non-biomimetic microrobots, such as rotating fields, oscillating fields, or field gradients. They can be categorized into force-driven or torque-driven actuation methods. Both approaches are reviewed and a previous publication has shown that torque-driven actuation scales better to the micro- and nano-scale than force-driven actuation. Finally, the implementation of swarm or multi-agent control is discussed. The use of multiple microrobots may be beneficial for in vivo as well as in vitro applications. Thus, the frequency-dependent behavior of helical microrobots is discussed and preliminary experimental results are presented showing the decoupling of an individual agent within a group of three microrobots.
Gao, Wei; Pei, Allen; Wang, Joseph
2012-09-25
We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.
Development of ultrasonic electrostatic microjets for distributed propulsion and microflight
NASA Astrophysics Data System (ADS)
Amirparviz, Babak
This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.
Design Study for the Asteroid Redirect Vehicle (ARV) Composite Primary Bulkhead
NASA Technical Reports Server (NTRS)
Cressman, Thomas O.; Paddock, David A.
2017-01-01
A design study was undertaken of a carbon fiber primary bulkhead for a large solar electric propulsion (SEP) spacecraft. The bulkhead design, supporting up to 16 t of xenon propellant, progressed from one consisting of many simple parts with many complex joints, to one consisting of a few complex parts with a few simple joints. The unique capabilities of composites led to a topology that transitioned loads from bending to in-plane tension and shear, with low part count. This significantly improved bulkhead manufacturability, cost, and mass. The stiffness-driven structure utilized high-modulus M55J fiber unidirectional prepregs. A full-scale engineering demonstration unit (EDU) of the concept was used to demonstrate manufacturability of the concept. Actual labor data was obtained, which could be extrapolated to a full bulkhead. The effort demonstrated the practicality of using high-modulus fiber (HMF) composites for unique shape topologies that minimize mass and cost. The lessons are applicable to primary and secondary aerospace structures that are stiffness driven.
Radiobiological study by using laser-driven proton beams
NASA Astrophysics Data System (ADS)
Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.
2009-07-01
Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.
Air Force Research Laboratory Technology Milestones 2007
2007-01-01
Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly
Interaction of laser beams with magnetized substance in a strong magnetic field
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.
2018-03-01
Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.
Long-period comet impact risk mitigation with Earth-based laser arrays
NASA Astrophysics Data System (ADS)
Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.
2017-09-01
Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.
Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrabo, L. N.; Lyons, P. W.; Jones, R. A.
This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measuredmore » with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.« less
Model Test of the Aerospace Laser Propulsion Engine
NASA Astrophysics Data System (ADS)
Ageichik, Alexander A.; Egorov, Maxim S.; Ostapenko, Svetlana V.; Rezunkov, Yuri A.; Safronov, Alexander L.; Stepanov, Vladimir V.
2005-04-01
One of the main results of the experimental and theoretical investigations made under the ISTC Project ♯ 1801 is the original design of Aerospace Laser Propulsion Engine (ASLPE) developed. The designed characteristics of the ASLPE flight model are experimentally approved, including the test experiments with a solid propellant. The obtained momentum coupling coefficient is rather high and comparable one with respect to the coefficient obtained by other researchers. Moreover, it is experimentally demonstrated that the thrust characteristics of the ASLPE flight model does not depend on angular aberrations of the beam coming onto the beam concentrator of the model with the incident angle of 0.01 radian. The experiments also demonstrated that successful launching of the vehicle with the ASLPE under the laser characteristics is possible also if the vehicle mass will be decreased and the thermal blooming effect will be eliminated.
Laser detonator development for test-firing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, A. C.; Thomas, K. A.; Kennedy, J. E.
2004-01-01
Los Alamos National Laboratory has historically fielded two types of electro-explosive detonators. The exploding-bridgewire detonator (EBW) has an exploding wire as the initiating element, a low-density transfer charge and a high-density output pellet. The slapper detonator, or exploding-foil initiator (EFI), utilizes an exploding foil to drive a flying plate element into a high-density output pellet. The last twenty years has seen various research and development activities from many laboratories and manufacturing facilities around the world to develop laser-driven analogs of these devices, but to our knowledge none of those is in general use. Los Alamos is currently committed to designmore » and manufacture a laser analog to the long-standing, generic, general-purpose SE-1 EBW detonator, which is intended to provide increased safety in large-scale test-firing operations. This paper will discuss the major design parameters of this laser detonator and present some preliminary testing results.« less
Demonstration of a Wingless Electromagnetic Air Vehicle
2011-12-20
moving parts and assures near instantaneous response time. For the first time, the aircraft structure, propulsion, energy production and storage, and...of an electromagnetically driven wingless aircraft * with no moving component that will be able to self- lift, hover and fly reliably especially...8217&)?$@&;! First successful lift-off using plasma propulsion. Main Achievement Aerogel actuators are thus far the lightest plasma actuators with minimum
Self-propulsion of a metallic superoleophobic micro-boat.
Musin, Albina; Grynyov, Roman; Frenkel, Mark; Bormashenko, Edward
2016-10-01
The self-propulsion of a heavy, superoleophobic, metallic micro-boat carrying a droplet of various aqueous alcohol solutions as a fuel tank is reported. The micro-boat is driven by the solutocapillary Marangoni flow. The jump in the surface tension owing to the condensation of alcohols on the water surface was established experimentally. Maximal velocities of the self-propulsion were registered as high as 0.05m/s. The maximal velocity of the center mass of the boat correlates with the maximal change in the surface tension, due to the condensation of alcohols. The mechanism of the self-locomotion is discussed. The phenomenological dynamic model describing the self-propulsion is reported. Copyright © 2016 Elsevier Inc. All rights reserved.
2010-08-31
The physics and operating principles for TEA C02 lasers can be found in several useful references (Patel, 1968; Siegman , 1986; Svelto, 1998 and...AND SUBTITLE 5a. CONTRACT NUMBER F A9550-05-1-0392 "Basic Research Investigations into Multimode Laser and 5b. GRANT NUMBER EM Launchers for...pulsed airbreathing/rocket laser propulsion. investigates the physics of laser energy deposition into stationary and hypersonic working fluids
Analytical study of laser supported combustion waves in hydrogen
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.
1977-01-01
A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.
Advanced beamed-energy and field propulsion concepts
NASA Technical Reports Server (NTRS)
Myrabo, L. N.
1983-01-01
Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.
Ion propulsion for communications satellites
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1984-01-01
In a recent study of potential applications for electric propulsion, it was determined that ion propulsion can provide North-South stationkeeping (NSSK) for communication satellites in geosynchronous orbit with appreciably less mass than chemical propulsion. While this finding is not new, the margin of benefit over advanced chemical propulsion technology depends strongly on the ion propulsion system specifications. Full advantage must be taken of the under-utilized stored energy available from the communication satellite's batteries. This paper describes a methodology for evaluating the benefits obtained in using ion propulsion for NSSK, both in terms of the mass reduction and its economic value.
Upper stages utilizing electric propulsion
NASA Technical Reports Server (NTRS)
Byers, D. C.
1980-01-01
The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.
Small Business Innovations (MISER)
NASA Technical Reports Server (NTRS)
1991-01-01
Lightwave Electronics Corporation, Mountain View, CA, developed the Series 120 and 122 non-planner diode pumped ring lasers based on a low noise ring laser with voltage tuning that they delivered to Jet Propulsion Laboratory under a Small Business Innovation Research (SBIR) contract. The voltage tuning feature allows "phase-locking" the lasers, making them "electronic," similar to radio and microwave electronic oscillators. The Series 120 and 122 can be applied to fiber sensing, coherent communications and laser radar.
Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.
Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco
2004-04-01
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.
In-Space Propulsion: Connectivity to In-Space Fabrication and Repair
NASA Technical Reports Server (NTRS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
2005-01-01
The connectivity between new in-space propulsion technologies and the ultimate development of an in-space fabrication and repair infrastructure are described in this Technical Memorandum. A number of advanced in-space propulsion technologies are being developed by NASA, many of which are directly relevant to the establishment of such an in-space infrastructure. These include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers, and solar photon sails. Other, further-term technologies have also been studied to assess their utility to the development of such an infrastructure.
NASA Astrophysics Data System (ADS)
Widmann, Klaus; Benjamin, Russ; May, Mark; Thorn, Daniel; Colvin, Jeff; Barrios, Maria; Kemp, G. Elijah; Fournier, Kevin; Blue, Brent
2016-10-01
In our on-going x-ray source development campaign at the National Ignition Facility, we have recently extended the energy range of our laser-driven cavity sources to the 20 keV range by utilizing molybdenum-lined and silver-lined cavity targets. Using a variety of spectroscopic and power diagnostics we determined that almost 1% of the nearly 1 MJ total laser energy used for heating the cavity target was converted to Mo K-shell x rays using our standard cavity design. The same laser drive for silver-lined cavities yielded about 0.4% conversion efficiency for the Ag K-shell emission. Comparison with HYDRA simulations are used to further optimize the x-rays conversion efficiency. The simulations indicate that minor changes in the aspect ratio of the cavity and the layer thickness may double the radiative power of the K-shell emission. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
NASA Technical Reports Server (NTRS)
Karns, James
1993-01-01
The objective of this study was to establish the initial quantitative reliability bounds for nuclear electric propulsion systems in a manned Mars mission required to ensure crew safety and mission success. Finding the reliability bounds involves balancing top-down (mission driven) requirements and bottom-up (technology driven) capabilities. In seeking this balance we hope to accomplish the following: (1) provide design insights into the achievability of the baseline design in terms of reliability requirements, given the existing technology base; (2) suggest alternative design approaches which might enhance reliability and crew safety; and (3) indicate what technology areas require significant research and development to achieve the reliability objectives.
Prospective of Photon Propulsion for Interstellar Flight
NASA Astrophysics Data System (ADS)
Bae, Young K.
Mastering photon propulsion is proposed to be the key to overcoming the limit of the current propulsion technology based on conventional rocketry and potentially opening a new space era. A perspective on photon propulsion is presented here to elucidate that interstellar manned roundtrip flight could be achievable in a century within a frame of exiting scientific principles, once the required existing technologies are further developed. It is shown that the developmental pathway towards the interstellar flight demands not only technological breakthroughs, but consistent long-term world-scale economic interest and investment. Such interest and investment will result from positive financial returns from routine interstellar commutes that can transport highly valuable commodities in a profitable manner. The Photonic Railway, a permanent energy-efficient transportation structure based on the Beamed-Laser Propulsion (BLP) by Forward and the Photonic Laser Thruster (PLT) by the author, is proposed to enable such routine interstellar commutes via Spacetrains. A four-phased evolutionary developmental pathway towards the Interstellar Photonic Railway is proposed. Each phase poses evolutionary, yet daunting, technological and financial challenges that need to be overcome within each time frame of 20 _ 30 years, and is projected to generate multitudes of applications that would lead to sustainable reinvestment into its development. If successfully developed, the Photonic Railway would bring about a quantum leap in the human economic and social interests in space from explorations to terraforming, mining, colonization, and permanent habitation in exoplanets.
Discharge-pumped cw gas lasers utilizing 'dressed-atom' gain media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, P.P.; Glownia, J.H.; Hodgson, R.T.
The possibility of realizing an efficient gaseous laser-beam-generating medium that utilizes {lambda}-type coherently phased (i.e., 'dressed') atoms for the active laser species, but that does not inherently require the use of external laser beams for pumping, is explored. Specifically, it is investigated if multiphoton stimulated hyper-Raman scattering (SHRS) processes driven by fluorescence radiation generated in a continuous electrical discharge present within the vapor-containing cell could produce continuous-wave (cw) optical gain at the {lambda}-atom resonance frequencies {omega}{sub o} and {omega}{sub o}{sup '}. It is deduced that such gain could result from n-photon (n{>=}4) SHRS processes only if absorption of fluorescence pumpmore » light occurs in the first three transitions of the n-photon sequence representing the process unit step. Estimates of the amount of optical gain that could be produced in such a system indicate that it should be sufficient to allow multiwatt cw laser operation to occur on one set of {lambda} transitions connecting levels in a 'double-{lambda}' structure, with the pump light being discharge-produced fluorescence centered about the transitions of the other {lambda} pair. However, to initiate operation of such a device would require injection into the laser optical cavity of intense 'starter' laser pulses at both lasing frequencies. What should be an optimal experimental configuration for determining feasibility of the proposed laser device is described. In the suggested configuration, Cs-atom 6S{sub 1/2}-6P{sub 1/2} transitions form the double-{lambda} structure.« less
Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.
Nakajima, Kazuhisa
2015-01-01
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.
NASA Astrophysics Data System (ADS)
Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong
2018-02-01
Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.
Measurements of neutral and ion velocity distribution functions in a Hall thruster
NASA Astrophysics Data System (ADS)
Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny
2015-11-01
Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.
Optically Driven Q-Switches For Lasers
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1994-01-01
Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.
DDT Characteristics of Laser Driven Exploding Bridgewire Detonators
NASA Astrophysics Data System (ADS)
Welle, Eric
2005-07-01
The initiation and performance characteristics of Laser Exploding Bridgewire (LEBW) detonators loaded with CL-20, CP and BNCP were examined. LEBW devices, in name, as well as in function, exhibit similarities to their electrically driven counterparts with the exception that the means for energy deposition into the driving metal media results from photon absorption instead of electrical joule heating. CP and BNCP were chosen due to their well-known propensity to rapidly undergo a deflagration-to-detonation transition (DDT) and CL-20 was chosen to explore its utility as a DDT explosive. The explosive loading within the LEBW detonators were similar in nature to traditional EBW devices with regard to %TMD loading of the initial increment as well as quantity of energetic materials. Comparisons of the energy fluences required for initiation of the explosives will be discussed. Additionally, streak camera measurements will be reviewed that were conducted at what would be considered ``hard-fire'' fluence levels as well as conditions closer to the mean firing fluence levels of initiation.
Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.
Bailly-Grandvaux, M; Santos, J J; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J-L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marquès, J-R; Morace, A; Nicolaï, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z
2018-01-09
Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor.
Xuan, Mingjun; Mestre, Rafael; Gao, Changyong; Zhou, Chang; He, Qiang; Sánchez, Samuel
2018-06-04
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light-driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft-template-based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light-driven jet propulsion. This NIR light-powered CNB motor exhibits fuel-free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boiler and Pressure Balls Monopropellant Thermal Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2009-01-01
The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery
Analysis of System Margins on Missions Utilizing Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Oh, David Y.; Landau, Damon; Randolph, Thomas; Timmerman, Paul; Chase, James; Sims, Jon; Kowalkowski, Theresa
2008-01-01
NASA's Jet Propulsion Laboratory has conducted a study focused on the analysis of appropriate margins for deep space missions using solar electric propulsion (SEP). The purpose of this study is to understand the links between disparate system margins (power, mass, thermal, etc.) and their impact on overall mission performance and robustness. It is determined that the various sources of uncertainty and risk associated with electric propulsion mission design can be summarized into three relatively independent parameters 1) EP Power Margin, 2) Propellant Margin and 3) Duty Cycle Margin. The overall relationship between these parameters and other major sources of uncertainty is presented. A detailed trajectory analysis is conducted to examine the impact that various assumptions related to power, duty cycle, destination, and thruster performance including missed thrust periods have on overall performance. Recommendations are presented for system margins for deep space missions utilizing solar electric propulsion.
Proposal of laser-driven automobile
NASA Astrophysics Data System (ADS)
Yabe, Takashi; Oozono, Hirokazu; Taniguchi, Kazumoto; Ohkubo, Tomomasa; Miyazaki, Sho; Uchida, Shigeaki; Baasandash, Choijil
2004-09-01
We propose an automobile driven by piston motion, which is driven by water-laser coupling. The automobile can load a solar-pumped fiber laser or can be driven by ground-based lasers. The vehicle is much useful for the use in other planet in which usual combustion engine cannot be used. The piston is in a closed system and then the water will not be exhausted into vacuum. In the preliminary experiment, we succeeded to drive the cylindrical piston of 0.2g (6mm in diameter) on top of water placed inside the acrylic pipe of 8 mm in inner diameter and the laser is incident from the bottom and focused onto the upper part of water by the lens (f=8mm) attached to the bottom edge.
NASA Technical Reports Server (NTRS)
Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.
2003-01-01
The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.
NASA Astrophysics Data System (ADS)
Lin, Jun; Pakhomov, Andrew V.
2005-04-01
This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.
NASA Technical Reports Server (NTRS)
Ehrlich, Michael J.
1998-01-01
The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.
Liquid-metal-fed Pulsed Plasma Thrusters for In-space Propulsion
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.
2004-01-01
Liquid metal propellants may provide a path toward more reliable and efficient pulsed plasma thrusters (PPTs). Conceptual thruster designs which eliminate the need for high current switches and propellant metering valves are described. Propellant loading techniques are suggested that show promise to increase thruster propellant utilization, dynamic, and electrical efficiency. Calibration results from a compact, electromagnetically-pumped propellant feed system are presented. Results for lithium and gallium propellants show capability to meter propellant at flow rates up to 10 +/- 0.1 mg/s. Experiments investigating the initiation of arc discharges using liquid metal droplets are presented. High speed photography and laser interferometry provide spatially and temporally resolved information on the decomposition of liquid metal droplets , and the evolution of the accelerating current channel.
The Economics of Advanced In-Space Propulsion
NASA Technical Reports Server (NTRS)
Bangalore, Manju; Dankanich, John
2016-01-01
The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.
Propulsion mechanisms for Leidenfrost solids on ratchets.
Baier, Tobias; Dupeux, Guillaume; Herbert, Stefan; Hardt, Steffen; Quéré, David
2013-02-01
We propose a model for the propulsion of Leidenfrost solids on ratchets based on viscous drag due to the flow of evaporating vapor. The model assumes pressure-driven flow described by the Navier-Stokes equations and is mainly studied in lubrication approximation. A scaling expression is derived for the dependence of the propulsive force on geometric parameters of the ratchet surface and properties of the sublimating solid. We show that the model results as well as the scaling law compare favorably with experiments and are able to reproduce the experimentally observed scaling with the size of the solid.
A measuring stand for a ducted fan aircraft propulsion unit
NASA Astrophysics Data System (ADS)
Hlaváček, David
2014-03-01
The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.
X-ray line polarization spectroscopy of Li-like satellite line spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherrill, Manolo Edgar; Abdallah, Joseph; Zhang, Honglin
2008-01-01
We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of plasma anisotropy due to anisotropy in the electron distribution function. We also discuss the utility and limitations of ur current theoretical approach and point out possible future improvements and directions.
Laser-driven electron beam and radiation sources for basic, medical and industrial sciences
NAKAJIMA, Kazuhisa
2015-01-01
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737
Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao
2015-09-24
Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL 'opens' to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Zheng, Mingbin; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao
2015-09-01
Smart nanoparticles (NPs) that respond to external and internal stimulations have been developing to achieve optimal drug release in tumour. However, applying these smart NPs to attain high antitumour performance is hampered by limited drug carriers and inefficient spatiotemporal control. Here we report a noninvasive NIR-driven, temperature-sensitive DI-TSL (DOX/ICG-loaded temperature sensitive liposomes) co-encapsulating doxorubicin (DOX) and indocyanine green (ICG). This theranostic system applies thermo-responsive lipid to controllably release drug, utilizes the fluorescence (FL) of DOX/ICG to real-time trace the distribution of NPs, and employs DOX/ICG to treat cancer by chemo/photothermal therapy. DI-TSL exhibits uniform size distribution, excellent FL/size stability, enhanced response to NIR-laser, and 3 times increased drug release through laser irradiation. After endocytosis by MCF-7 breast adenocarcinoma cells, DI-TSL in cellular endosomes can cause hyperthermia through laser irradiation, then endosomes are disrupted and DI-TSL ‘opens’ to release DOX simultaneously for increased cytotoxicity. Furthermore, DI-TSL shows laser-controlled release of DOX in tumour, enhanced ICG and DOX retention by 7 times and 4 times compared with free drugs. Thermo-sensitive DI-TSL manifests high efficiency to promote cell apoptosis, and completely eradicate tumour without side-effect. DI-TSL may provide a smart strategy to release drugs on demand for combinatorial cancer therapy.
Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection
NASA Astrophysics Data System (ADS)
Pang, Bin
Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.
NASA Technical Reports Server (NTRS)
Wu, Janet P.
2003-01-01
Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.
Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser
NASA Astrophysics Data System (ADS)
Jing, QI; Siqi, ZHANG; Tian, LIANG; Ke, XIAO; Weichong, TANG; Zhiyuan, ZHENG
2018-03-01
The ablation characteristics of carbon-doped glycerol were investigated in laser plasma propulsion using a pulse laser with 10 ns pulse width and 1064 nm wavelength. The results showed that with the incident laser intensity increasing, the target momentum decreased. Results still indicated that the strong plasma shielded the consumption loss and resulted in a low coupling coefficient. Furthermore, the carbon-doping gave rise to variations in the laser focal position and laser intensity, which in turn reduced the glycerol splashing. Based on the glycerol viscosity and the carbon doping, a high specific impulse is anticipated.
Measuring Energy Scaling of Laser Driven Magnetic Fields
NASA Astrophysics Data System (ADS)
Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John
2016-10-01
Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.
This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electronmore » bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.« less
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
NASA Astrophysics Data System (ADS)
Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Winske, D.; Gekelman, W.; Niemann, C.
2015-11-01
Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria.
Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2013-03-01
To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p < 0.01). Push time was reduced while push angle increased. The method to impose power only showed slight differences in the timing variables, however not in the force variables. Researchers and clinicians must be aware of testing and evaluation conditions that may differently affect propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher a.; Solano, Paul A.; Thompson, William K.; Vrnak, Daniel R.
2006-01-01
The NASA John H. Glenn Research Center has developed a revolutionary 32 in. diameter Levitated Ducted Fan (LDF) conceptual design. The objective of this work is to develop a viable non-contact propulsion system utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels, and mitigate many of the concerns and limitations encountered in conventional aircraft propulsors. The physical layout consists of a ducted fan drum rotor with blades attached at the outer diameter and supported by a stress tuner ring at the inner diameter. The rotor is contained within a stator. This concept exploits the unique physical dimensions and large available surface area to optimize a custom, integrated, electromagnetic system that provides both the levitation and propulsion functions. The rotor is driven by modulated electromagnetic fields between the rotor and the stator. When set in motion, the time varying magnetic fields interact with passive coils in the stator assembly to produce repulsive forces between the stator and the rotor providing magnetic suspension. LDF can provide significant improvements in aviation efficiency, reliability, and safety, and has potential application in ultra-efficient motors, computers, and space power systems.
A pulse-compression-ring circuit for high-efficiency electric propulsion.
Owens, Thomas L
2008-03-01
A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.
Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface.
Meng, Fanchen; Hao, Wei; Yu, Shengtao; Feng, Rui; Liu, Yanming; Yu, Fan; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2017-09-13
This paper explores a new propulsion mechanism that is based on the ejection of hot vapor jet to propel the motor at the liquid/air interface. For conventional photothermal motors, which mostly are driven by Marangoni effect, it is challenging to propel those motors at the surfaces of liquids with low surface tension due to the reduced Marangoni effect. With this new vapor-enabled propulsion mechanism, the motors can move rapidly at the liquid/air interface of liquids with a broad range of surface tensions. A design that can accumulate the hot vapor is further demonstrated to enhance both the propulsion force as well as the applicable range of liquids for such motors. This new propulsion mechanism will help open up new opportunities for the photothermal motors with desired motion controls at a wide range of liquid/air interfaces where hot vapor can be generated.
Overview and future direction for blackbody solar-pumped lasers
NASA Technical Reports Server (NTRS)
Deyoung, R. J.
1988-01-01
A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.
NASA Technical Reports Server (NTRS)
Gonzalez, Dora E.; Karr, Gerald R.
1990-01-01
The purpose of this paper is to review the status of knowledge of the basic concepts needed to establish design parameters for effective magnetic insulation. The objective is to estimate the effectiveness of the magnetic field in insulating the plasma, to calculate the magnitude of the magnetic field necessary to reduce the heat transfer to the walls sufficiently enough to demonstrate the potential of magnetically driven plasma rockets.
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
Laser-driven ion acceleration: methods, challenges and prospects
NASA Astrophysics Data System (ADS)
Badziak, J.
2018-01-01
The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.
Assessment of MCRM Boost Assist from Orbit for Deep Space Missions
NASA Technical Reports Server (NTRS)
2000-01-01
Report provides results of analysis for the beamed energy driven MHD Chemical Rocket Motor (MCRM) for application to boost from orbit to escape for deep space and interplanetary missions. Parametric analyses were performed in the mission to determine operating regime for which the MCRM provides significant propulsion performance enhancement. Analysis of the MHD accelerator was performed numerical computational methods to determine design and operational features necessary to achieve Isp on the order of 2,000 to 3,000 seconds. Algorithms were developed to scale weights for the accelerator and power supply. Significant improvement in propulsion system performance can be achieved with the beamed energy driven MCRM. The limiting factor on achievable vehicle acceleration is the specific power of the rectenna.
Evaluation of laser-driven ion energies for fusion fast-ignition research
NASA Astrophysics Data System (ADS)
Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.
2017-10-01
We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.
Propulsion simulation for magnetically suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.
1990-01-01
The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.
Placinta, Mike; Shen, Meng-Chieh; Achermann, Marc; Karlstrom, Rolf O
2009-12-30
Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 mum targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.
An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plettner, T.; Byer, R.L.; Smith, T.I.
2006-02-17
We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less
NASA Technical Reports Server (NTRS)
Chigier, N.; Mao, C.-P.
1984-01-01
It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.
NASA Astrophysics Data System (ADS)
Salvador, Israel Irone
The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models (98 to 161 mm in diameter), probably due to the more efficient delivery of laser-induced blast wave energy across the 2D model's larger impulse surface area. Next, the hypersonic campaign was carried out, subjecting the 2D model to nominal Mach numbers ranging from 6 to 10. Again, time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. These visualizations of inlet and absorption chamber flowfields, enabled the qualitative analysis of important phenomena impacting laser-propelled hypersonic airbreathing flight. The laser-induced breakdown took an elongated vertically-oriented geometry, occurring off-surface and across the inlet's mid-channel---quite different from the static case in which the energy was deposited very near the shroud under-surface. The shroud under-surface pressure data indicated laser-induced increases of 0.7-0.9 bar with laser pulse energies of ˜170 J, off-shroud induced breakdown condition, and Mach number of 7. The results of this research corroborate the feasibility of laser powered, airbreathing flight with infinite specific impulse (Isp=infinity): i.e., without the need for propellant injection at the laser focus. Additionally, it is shown that further reductions in inlet air working fluid velocity---with attendant increases in static pressure and density---is necessary to generate higher absorption chamber pressure and engine impulse. Finally, building on lessons learned from the present work, the future research plan is laid out for: a) the present 2D model with full inlet forebody, exploring higher laser pulse energies and multi-pulse phenomena; b) a smaller, redesigned 2D model; c) a 254 mm diameter axisymmetric Lightcraft model; and, d) a laser-electromagnetic accelerator model, designed around a 2-Tesla pulsed electromagnet contracted under the present program.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... Propulsion as a Capital Maintenance Expense AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice... for the propulsion of electrical vehicles, as a capital maintenance item for grants made in FY 2012... utility costs for the propulsion of electrical vehicles, as a capital maintenance item for grants made in...
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1991-01-01
A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.
1984-08-01
transmissometer experiment. In these measure - ments, simple transmission measurements of laser radiation through a diameter of the plume are made. With...Air Force Rocket Propulsion Laboratory4{AFRPL). In one experiment, simple laser transmission measurements are made over a full diameter line of sight...consist of measure - ments of the polarization of laser radiation which has been scattered by plume particulates. The analysis is presented in Section
Near Earth Architectural Options for a Future Deep Space Optical Communications Network
NASA Technical Reports Server (NTRS)
Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.
2004-01-01
In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.
Janus droplet as a catalytic micromotor
NASA Astrophysics Data System (ADS)
Shklyaev, Sergey
2015-06-01
Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.
US Army TARDEC Ground Vehicle Mobility: Dynamics Modeling, Simluation, and Research
2011-10-24
DRIVEN. WARFIGHTER FOCUSED. For official use only Stair Climbing of a Small Robot Robotic Vehicle Step Climbing UNCLASSIFIED For official use only...NOTES NASA Jet Propulsion Laboratory, mobility, and robotics section. Briefing to the jet propulsion lab. 14. ABSTRACT N/A 15. SUBJECT TERMS 16...JLTV GCV M2 M915 ASV FTTS HMMWV Platforms Supported APDSmall Robot UNCLASSIFIED For official use only Mobility Events • Vehicle stability • Ride
Laser-driven flyer application in thin film dissimilar materials welding and spalling
NASA Astrophysics Data System (ADS)
Wang, Huimin; Wang, Yuliang
2017-10-01
This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.
NASA Astrophysics Data System (ADS)
Yang, Xiaoling; Miley, George; Flippo, Kirk; Hora, Heinrich; Gaillard, Sandrine; Offermann, Dustin
2012-10-01
We proposed to utilize a new ``Deuterium Cluster'' type structure for the laser interaction foil to generate an energetic deuteron beam as the fast igniter to ignite inertial confinement fusion fuel capsule. The benefit of deuteron beam driven fast ignition is that its deposition in the target fuel will not only provide heating but also fuse with fuel as they slow down in the target. The preliminary results from recent laser-deuteron acceleration experiment at LANL were encouraging. Also, in most recent calculations, we found that a 12.73% extra energy gain from deuteron beam-target fusion could be achieved when quasi-Maxwellian deuteron beam was assumed, and when a ρrb = 4.5 g/cm2 was considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. These results provide some insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. If the physics works as anticipated, this novel type of interaction foil can efficiently generate energetic deuterons during intense laser pulses. The massive yield of deuterons should turn out to be the most efficient way of igniting the DT fuel, making the dream of near-term commercialization of FI fusion more achievable.
Development of large-aperture electro-optical switch for high power laser at CAEP
NASA Astrophysics Data System (ADS)
Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing
2015-02-01
Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.
A novel type of rim thrust motor with Halbach array permanent magnet rotor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) is a new type of marine electric thruster proposed in recent years. In this paper, the author proposed a new type of permanent magnet synchronous rim thrust motor (RTM). The motor uses a Halbach array permanent magnet rotor, which can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the electromagnetic properties of the motor were measured and compared with that of the ordinary magnetic pole motor through numerical analysis. The results show that at the same power, the new motor can significantly reduce the thickness of the rotor's permanent magnet and yoke core, and has obvious advantages in power density, moment of inertia, dynamic performance, and cost.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.
1992-01-01
Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.
Space-based laser-driven MHD generator: Feasibility study
NASA Technical Reports Server (NTRS)
Choi, S. H.
1986-01-01
The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.
Applications of Ultra-Intense, Short Laser Pulses
NASA Astrophysics Data System (ADS)
Ledingham, Ken W. D.
The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.
Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery
NASA Astrophysics Data System (ADS)
Jang, Hun-jae; Hur, Eugene; Kim, Yoonkwan; Lee, Seol-Hoon; Kang, Nae G.; Yoh, Jack J.
2014-11-01
A breakthrough in the efficient transdermal delivery of drug via the laser-driven microjet is reported. A single source of laser beam is split into two: one beam ablates a targeted spot on a skin and another beam drives the injector for fast microjet ejection into a preablated spot. This combined ablation and microjet injection scheme using a beam splitter utilizes 1∶4 laser energy sharing between generation of the microhole via ablation and the microjet which is generated using the Er:YAG laser beam at a 2940-nm wavelength and 150-μs pulse duration. A careful analysis of the injection mechanism is carried out by studying the response of the elastic membrane that separates a driving water unit for bubble expansion from a drug unit for a microjet ejection. The efficiency of the present delivery scheme is evaluated by the abdominal porcine skin test using the fluorescein isothiocyanate staining and the confocal microscopy for quantitative delivery confirmation. The depth of penetration and the injected volume of the drug are also confirmed by polyacrylamide gel tests.
Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery.
Jang, Hun-Jae; Hur, Eugene; Kim, Yoonkwan; Lee, Seol-Hoon; Kang, Nae G; Yoh, Jack J
2014-11-01
A breakthrough in the efficient transdermal delivery of drug via the laser-driven microjet is reported. A single source of laser beam is split into two: one beam ablates a targeted spot on a skin and another beam drives the injector for fast microjet ejection into a preablated spot. This combined ablation and microjet injection scheme using a beam splitter utilizes laser energy sharing between generation of the microhole via ablation and the microjet which is generated using the Er:YAG laser beam at a 2940-nm wavelength and pulse duration. A careful analysis of the injection mechanism is carried out by studying the response of the elastic membrane that separates a driving water unit for bubble expansion from a drug unit for a microjet ejection. The efficiency of the present delivery scheme is evaluated by the abdominal porcine skin test using the fluorescein isothiocyanate staining and the confocal microscopy for quantitative delivery confirmation. The depth of penetration and the injected volume of the drug are also confirmed by polyacrylamide gel tests.
Bang, W.; Albright, B. J.; Bradley, P. A.; ...
2015-12-01
In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less
NASA Astrophysics Data System (ADS)
Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.
2015-12-01
In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.
2004-04-15
The Boussard Interstellar Ramjet engine concept uses interstellar hydrogen scooped up from its environment as the spacecraft passes by to provide propellant mass. The hydrogen is then ionized and then collected by an electromagentic field. In this image, an onboard laser is uded to heat the plasma, and the laser or electron beam is used to trigger fusion pulses thereby creating propulsion.
Damping-free collective oscillations of a driven two-component Bose gas in optical lattices
NASA Astrophysics Data System (ADS)
Shchedrin, Gavriil; Jaschke, Daniel; Carr, Lincoln D.
2018-04-01
We explore the quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest-lying modes in a driven condensate are characterized by zero group velocity and nonzero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-induced gap remain undamped, while above the gap they are characterized by a significantly suppressed Landau damping rate.
Universal feature in optical control of a p -wave Feshbach resonance
NASA Astrophysics Data System (ADS)
Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing
2018-01-01
We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.
Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)
NASA Technical Reports Server (NTRS)
Ellis, Rod
2000-01-01
The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.
A system level model for preliminary design of a space propulsion solid rocket motor
NASA Astrophysics Data System (ADS)
Schumacher, Daniel M.
Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.
Enabling lunar and space missions by laser power transmission
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.
1992-01-01
Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.
Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings
NASA Technical Reports Server (NTRS)
1993-01-01
This Fifth Annual Technical Symposium, sponsored by the UT-Calspan Center for Space Transportation and Applied Research (CSTAR), is organized to provide an overview of the technical accomplishments of the Center's five Research and Technology focus areas during the past year. These areas include chemical propulsion, electric propulsion, commerical space transportation, computational methods, and laser materials processing. Papers in the area of artificial intelligence/expert systems are also presented.
Code of Federal Regulations, 2014 CFR
2014-07-01
... matter of any kind or description, including, but not limited to, dredged material, solid waste... discharge of effluent incidental to the propulsion of, or operation of motor-driven equipment on, vessels...
Code of Federal Regulations, 2012 CFR
2012-07-01
... matter of any kind or description, including, but not limited to, dredged material, solid waste... discharge of effluent incidental to the propulsion of, or operation of motor-driven equipment on, vessels...
Parabolic lithium mirror for a laser-driven hot plasma producing device
Baird, James K.
1979-06-19
A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.
Laser-driven ion acceleration at BELLA
NASA Astrophysics Data System (ADS)
Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim
2017-10-01
BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Space station propulsion-ECLSS interaction study
NASA Technical Reports Server (NTRS)
Brennan, Scott M.
1986-01-01
The benefits of the utilization of effluents of the Space Station Environmental Control and Life Support (ECLS) system are examined. Various ECLSS-propulsion system interaction options are evaluated and compared on the basis of weight, volume, and power requirements. Annual propulsive impulse to maintain station altitude during a complete solar cycle of eleven years and the effect on station resupply are considered.
Antiproton catalyzed microfission/fusion propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman
1994-01-01
Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.
A review of electric propulsion systems and mission applications
NASA Technical Reports Server (NTRS)
Vondra, R.; Nock, K.; Jones, R.
1984-01-01
The satisfaction of growing demands for access to space resources will require new developments related to advanced propulsion and power technologies. A key technology in this context is concerned with the utilization of electric propulsion. A brief review of the current state of development of electric propulsion systems on an international basis is provided, taking into account advances in the USSR, the U.S., Japan, West Germany, China and Brazil. The present investigation, however, is mainly concerned with the U.S. program. The three basic types of electric thrusters are considered along with the intrinsic differences between chemical and electric propulsion, the resistojet, the augmented hydrazine thruster, the arcjet, the ion auxiliary propulsion system flight test, the pulsed plasma thruster, magnetoplasmadynamic propulsion, a pulsed inductive thruster, and rail accelerators. Attention is also given to the applications of electric propulsion.
Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles
NASA Astrophysics Data System (ADS)
Langener, Tobias; Myrabo, Leik; Rusak, Zvi
2010-05-01
Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.
NASA Astrophysics Data System (ADS)
Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.
2017-07-01
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J
2017-07-07
Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Zaller, Michelle M.; Hicks, Yolanda R.; Anderson, Robert C.
1999-01-01
The next generation of was turbine combustors for aerospace applications will be required to meet increasingly stringent constraints on fuel efficiency, noise abatement, and emissions. The power plants being designed to meet these constraints will operate at extreme conditions of temperature and pressure, thereby generating unique challenges to the previously employed diagnostic methodologies. Current efforts at NASA Glenn Research Center (GRC) utilize optically accessible, high pressure flametubes and sector combustor rigs to probe, via advanced nonintrusive laser techniques, the complex flowfields encountered in advanced combustor designs. The fuel-air mixing process is of particular concern for lowering NO(x) emissions generated in lean, premixed engine concepts. Using planar laser-induced fluorescence (PLIF) we have obtained real-time, detailed imaging of the fuel spray distribution for a number of fuel injector over a wide range of operational conditions that closely match those expected in the proposed propulsion systems. Using a novel combination of planar imaging, of fuel fluorescence and computational analysis that allows an examination of the flowfield from any perspective, we have produced spatially and temporally resolved fuel-air distribution maps. These maps provide detailed insight into the fuel injection at actual conditions never before possible, thereby greatly enhancing the evaluation of fuel injector performance and combustion phenomena.
NASA Astrophysics Data System (ADS)
Locke, Randy J.; Zaller, Michelle M.; Hicks, Yolanda R.; Anderson, Robert C.
1999-10-01
The next generation of ga turbine combustors for aerospace applications will be required to meet increasingly stringent constraints on fuel efficiency, noise abatement, and emissions. The power plants being designed to meet these constraints will operate at extreme conditions of temperature and pressure, thereby generating unique challenges to the previously employed diagnostic methodologies. Current efforts at NASA Glenn Research Center GRC utilize optically accessible, high-pressure flametubes and sector combustor rigs to probe, via advanced nonintrusive laser techniques, the complex flowfields encountered in advanced combustor designs. The fuel-air mixing process is of particular concern for lowering NOx emissions generated in lean, premixed engine concepts. Using planar laser-induced fluorescence we have obtained real- time, detailed imaging of the fuel spray distribution for a number of fuel injectors over a wide range of operational conditions that closely match those expected in the proposed propulsion systems. Using a novel combination of planar imaging of fuel fluorescence and computational analysis that allows an examination of the flowfield from any perspective, we have produced spatially and temporally resolved fuel-air distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions never before possible, thereby greatly enhancing the evaluation of fuel injector performance and combustion phenomena.
NASA Astrophysics Data System (ADS)
Hess, M. R.; Petrovic, V.; Kuester, F.
2017-08-01
Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.
A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; /KIPAC, Menlo Park /Taiwan, Natl. Taiwan U.; Chang, Feng-Yin
2011-09-12
We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excitesmore » the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.« less
Laser-Powered Thrusters for High Efficiency Variable Specific Impulse Missions (Preprint)
2007-04-10
technology. However, a laser-ablation propulsion engine using a set of diode-pumped glass fiber amplifiers with a total of 350-W optical power can...in a single device using low-mass diode-pumped glass fiber laser amplifiers to operate in either long- or short-pulse regimes at will. Adequate fiber...pulsewidth glass fiber oscillator-amplifiers, rather than the diodes used in the µ LPT, to achieve Table 2. Demonstrated technology basis Ablation Fuel Gold
Debris-free soft x-ray source with gas-puff target
NASA Astrophysics Data System (ADS)
Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan
2001-12-01
We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.
Lasche, G.P.
1983-09-29
The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.
NASA Technical Reports Server (NTRS)
Buckingham, Edgar
1924-01-01
This report is a description of a method of propelling airplanes by the reaction of jet propulsion. Air is compressed and mixed with fuel in a combustion chamber, where the mixture burns at constant pressure. The combustion products issue through a nozzle, and the reaction of that of the motor-driven air screw. The computations are outlined and the results given by tables and curves. The relative fuel consumption and weight of machinery for the jet, decrease as the flying speed increases; but at 250 miles per hour the jet would still take about four times as much fuel per thrust horsepower-hour as the air screw, and the power plant would be heavier and much more complicated. Propulsion by the reaction of a simple jet can not compete with air screw propulsion at such flying speeds as are now in prospect.
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve
2012-10-01
Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.
Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.
Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V
2014-01-01
To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.
Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model
NASA Technical Reports Server (NTRS)
Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.
2017-01-01
Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.
Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph
2018-07-02
Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
Application of dual-fuel propulsion to a single stage AMLS vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1993-01-01
As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2006-01-01
The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.
First staging of two laser accelerators.
Kimura, W D; van Steenbergen, A; Babzien, M; Ben-Zvi, I; Campbell, L P; Cline, D B; Dilley, C E; Gallardo, J C; Gottschalk, S C; He, P; Kusche, K P; Liu, Y; Pantell, R H; Pogorelsky, I V; Quimby, D C; Skaritka, J; Steinhauer, L C; Yakimenko, V
2001-04-30
Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.
Effect of pulse profile and chirp on a laser wakefield generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xiaomei; Shen Baifei; Ji Liangliang
2012-05-15
A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influencemore » of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.« less
Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.
2018-04-01
We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.
Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser
NASA Astrophysics Data System (ADS)
Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.
2017-12-01
A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.
Mission Analysis for Multiple Rendezvous of Near-Earth Asteroids Using Earth Gravity Assist
2010-03-01
devices. Finding solutions with this approach leads to a quicker timeline for possible missions since one does not have to wait for the propulsion...in this research. The discussion focuses on their approach to the problem and the applicability to this research. The headings are the titles of... approach the problem utilizing conventional impulsive thrust propulsion systems and utilize data presented from the JPL website for locating the
NASA Astrophysics Data System (ADS)
Doerr, S. E.
1984-06-01
Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.
Laboratory Measurements of Cometary Photochemical Phenomena.
1981-12-04
PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described
Project LOCOST: Laser or Chemical Hybrid Orbital Space Transport
NASA Technical Reports Server (NTRS)
Dixon, Alan; Kost, Alicia; Lampshire, Gregory; Larsen, Rob; Monahan, Bob; Wright, Geoff
1990-01-01
A potential mission in the late 1990s is the servicing of spacecraft assets located in GEO. The Geosynchronous Operations Support Center (GeoShack) will be supported by a space transfer vehicle based at the Space Station (SS). The vehicle will transport cargo between the SS and the GeoShack. A proposed unmanned, laser or chemical hybrid orbital space transfer vehicle (LOCOST) can be used to efficiently transfer cargo between the two orbits. A preliminary design shows that an unmanned, laser/chemical hybrid vehicle results in the fuel savings needed while still providing fast trip times. The LOCOST vehicle receives a 12 MW laser beam from one Earth orbiting, solar pumped, iodide Laser Power Station (LPS). Two Energy Relay Units (ERU) provide laser beam support during periods of line-of-sight blockage by the Earth. The baseline mission specifies a 13 day round trip transfer time. The ship's configuration consist of an optical train, one hydrogen laser engine, two chemical engines, a 18 m by 29 m box truss, a mission-flexible payload module, and propellant tanks. Overall vehicle dry mass is 8,000 kg. Outbound cargo mass is 20,000 kg, and inbound cargo mass is 6,000 kg. The baseline mission needs 93,000 kg of propellants to complete the scenario. Fully fueled, outbound mission mass is 121,000 kg. A regeneratively cooled, single plasma, laser engine design producing a maximum of 768 N of thrust is utilized along with two traditional chemical engines. The payload module is designed to hold 40,000 kg of cargo, though the baseline mission specifies less. A proposed design of a laser/chemical hybrid vehicle provides a trip time and propellant efficient means to transport cargo from the SS to a GeoShack. Its unique, hybrid propulsion system provides safety through redundancy, allows baseline missions to be efficiently executed, while still allowing for the possibility of larger cargo transfers.
Affordable Development of a Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Laser Powered Launch Vehicle Performance Analyses
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)
2001-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.
Solar Electric Propulsion for Mars Exploration
NASA Technical Reports Server (NTRS)
Hack, Kurt J.
1998-01-01
Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho
2012-02-01
Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.
Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions
NASA Technical Reports Server (NTRS)
Cupples, Michael; Green, Shaun; Coverstone, Victoria
2003-01-01
Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.
Nagasaka, Yuriko; Tanaka, Shinpei; Nehira, Tatsuo; Amimoto, Tomoko
2017-09-27
It is well known that oil droplets in or on water exhibit spontaneous movement induced by surfactants, and this self-propulsion is regarded as an important factor in droplet-based models for a living cell. We report here an oil-droplet system spontaneously producing amino acid-based surfactants, which are then utilized for the droplets' self-propulsion. Thus this system is an active system capable of producing the fuel for the propulsion by itself, which can be used as a conceptual model for cell metabolism.
Large-payload earth-orbit transportation with electric propulsion
NASA Technical Reports Server (NTRS)
Stearns, J. W.
1976-01-01
Economical unmanned earth orbit transportation for large payloads is evaluated. The high exhaust velocity achievable with electric propulsion is attractive because it minimizes the propellant that must be carried to low earth orbit. Propellant transport is a principal cost item. Electric propulsion subsystems utilizing advanced ion thrusters are compared to magnetoplasmadynamic (MPD) thrust subsystems. For very large payloads, a large lift vehicle is needed to low earth orbit, and argon propellant is required for electric propulsion. Under these circumstances, the MPD thruster is shown to be desirable over the ion thruster for earth orbit transportation.
Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam
2004-01-01
Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froning, H. David Jr
Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathingmore » craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.« less
Magnetic Flux Compression Concept for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri
2000-01-01
The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.
Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA
NASA Technical Reports Server (NTRS)
Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared
2017-01-01
NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA’s Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA’s of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Society’s Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.
Experimental demonstration of a compact epithermal neutron source based on a high power laser
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.
2017-07-01
Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.
NASA Astrophysics Data System (ADS)
Trinh, H. P.
2012-06-01
Utilization of new cold hypergolic propellants and leverage Missile Defense Agency technology for propulsion systems on Mars explorations will provide an increase of science payload and have significant payoffs and benefits for NASA missions.
Underwater cargo vessel utilizing variable buoyancy system for gliding propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Z.K.; Seireg, A.
1982-09-01
This study deals with investigating the feasibility of an underwater glider capable of carrying cargo for long distances by alternately employing gravity and buoyancy forces for forward propulsion. The parameters controlling the vessel design, stability and control are investigated.
Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W
2016-02-01
This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.
Shape dependent phoretic propulsion of slender active particles
NASA Astrophysics Data System (ADS)
Ibrahim, Y.; Golestanian, R.; Liverpool, T. B.
2018-03-01
We theoretically study the self-propulsion of a thin (slender) colloid driven by asymmetric chemical reactions on its surface at vanishing Reynolds number. Using the method of matched asymptotic expansions, we obtain the colloid self-propulsion velocity as a function of its shape and surface physicochemical properties. The mechanics of self-phoresis for rod-like swimmers has a richer spectrum of behaviors than spherical swimmers due to the presence of two small length scales, the slenderness of the rod and the width of the slip layer. This leads to subtleties in taking the limit of vanishing slenderness. As a result, even for very thin rods, the distribution of curvature along the surface of the swimmer, namely, its shape, plays a surprising role in determining the efficiency of propulsion. We find that thin cylindrical self-phoretic swimmers with blunt ends move faster than thin prolate spheroid shaped swimmers with the same aspect ratio.
NASA Astrophysics Data System (ADS)
Badziak, J.; Kucharik, M.; Liska, R.
2018-02-01
The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.
The NASA high power carbon dioxide laser: A versatile tool for laser applications
NASA Technical Reports Server (NTRS)
Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.
1976-01-01
A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.
A subscale facility for liquid rocket propulsion diagnostics at Stennis Space Center
NASA Technical Reports Server (NTRS)
Raines, N. G.; Bircher, F. E.; Chenevert, D. J.
1991-01-01
The Diagnostics Testbed Facility (DTF) at NASA's John C. Stennis Space Center in Mississippi was designed to provide a testbed for the development of rocket engine exhaust plume diagnostics instrumentation. A 1200-lb thrust liquid oxygen/gaseous hydrogen thruster is used as the plume source for experimentation and instrument development. Theoretical comparative studies have been performed with aerothermodynamic codes to ensure that the DTF thruster (DTFT) has been optimized to produce a plume with pressure and temperature conditions as much like the plume of the Space Shuttle Main Engine as possible. Operation of the DTFT is controlled by an icon-driven software program using a series of soft switches. Data acquisition is performed using the same software program. A number of plume diagnostics experiments have utilized the unique capabilities of the DTF.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2000-01-01
NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.
Laser-driven plasma photonic crystals for high-power lasers
NASA Astrophysics Data System (ADS)
Lehmann, G.; Spatschek, K. H.
2017-05-01
Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.
NASA Astrophysics Data System (ADS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.; Gatti, Raymond C.; Peters, Micheal B.
1994-07-01
In this paper, we strive to achieve three goals: (1) to describe a continuous-thrusting space-fusion-propulsion engine called the Mirror Fusion Propulsion System (MFPS), (2) to describe MFPS' ability to accomplish two candidate outer-solar-system (OSS) missions using various levels of advanced technology identified in the laboratory, and (3) to describe some interesting safety features of MFPS that include continuous mission-abort capability, magnetic-field-shielding against solar particle events (SPE), and performance of in-orbit characterization of the target body's natural resources (prior to human landings) using fusion-neutrons, x-rays, and possibly the neutralized thrust beam. The first OSS mission discussed is a mission to the Saturnian system, primarily exploration and resource- characterization driven, with emphasis on minimizing the Earth-to-Saturn and return-trip flight times. The other OSS mission discussed is an economically-driven mission to Uranus, stopping first to perform in-orbit resource characterization of the major moons of Uranus prior to human landing, and then returning to earth with a payload consisting of 3He (removed from the Uranian atmosphere or extracted from the Uranian moons) to be used in a future earth-based fusion-power industry.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. The NASA Aeronautics Research Mission Directorate has identified a suite of investments to meet long term research demands beyond the purview of commercial investment. Electrification of aviation propulsion through turboelectric or hybrid electric propulsion is one of many exciting research areas which has the potential to revolutionize the aviation industry. This paper will provide an overview of the turboelectric and hybrid electric technologies being developed under NASAs Advanced Air Transportation Technology (AATT) Project, and how these technologies can impact vehicle design. An overview will be presented of vehicle system studies and the electric drive system assumptions for successful turboelectric and hybrid electric propulsion in single aisle size commercial aircraft. Key performance parameters for electric drive system technologies will be reviewed, and the technical investment made in materials, electric machines, power electronics, and integrated power systems will be discussed. Finally, power components for a single aisle turboelectric aircraft with an electrically driven tail cone thruster and a hybrid electric nine passenger aircraft with a range extender will be parametrically sized.
Picosecond time scale dynamics of short pulse laser-driven shocks in tin
NASA Astrophysics Data System (ADS)
Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.
2009-05-01
The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.
NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy
NASA Technical Reports Server (NTRS)
Gradl, Paul; Protz, Chris
2017-01-01
The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.
NASA Technical Reports Server (NTRS)
Cohen, W.
1973-01-01
After a review of the work of the late-Fifties on free radicals for propulsion, it is concluded that atomic hydrogen would provide a potentially large increase in specific impulse. Work conducted to find an approach for isolating atomic hydrogen is considered. Other possibilities for obtaining propellants of greatly increased capability might be connected with the technology for the generation of activated states of gases, metallic hydrogen, fuels obtained from other planets, and laser transfer of energy.
Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph
2014-11-25
Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.
NASA Astrophysics Data System (ADS)
Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David
2006-01-01
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.
2006-01-20
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q =more » 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.« less
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
NASA Astrophysics Data System (ADS)
Ullah, Rahat; Liu, Bo; Zhang, Qi; Saad Khan, Muhammad; Ahmad, Ibrar; Ali, Amjad; Khan, Razaullah; Tian, Qinghua; Yan, Cheng; Xin, Xiangjun
2016-09-01
An architecture for flattened and broad spectrum multicarriers is presented by generating 60 comb lines from pulsed laser driven by user-defined bit stream in cascade with three modulators. The proposed scheme is a cost-effective architecture for optical line terminal (OLT) in wavelength division multiplexed passive optical network (WDM-PON) system. The optical frequency comb generator consists of a pulsed laser in cascade with a phase modulator and two Mach-Zehnder modulators driven by an RF source incorporating no phase shifter, filter, or electrical amplifier. Optical frequency comb generation is deployed in the simulation environment at OLT in WDM-PON system supports 1.2-Tbps data rate. With 10-GHz frequency spacing, each frequency tone carries data signal of 20 Gbps-based differential quadrature phase shift keying (DQPSK) in downlink transmission. We adopt DQPSK-based modulation technique in the downlink transmission because it supports 2 bits per symbol, which increases the data rate in WDM-PON system. Furthermore, DQPSK format is tolerant to different types of dispersions and has a high spectral efficiency with less complex configurations. Part of the downlink power is utilized in the uplink transmission; the uplink transmission is based on intensity modulated on-off keying. Minimum power penalties have been observed with excellent eye diagrams and other transmission performances at specified bit error rates.
Density gradient free electron collisionally excited x-ray laser
Campbell, E.M.; Rosen, M.D.
1984-11-29
An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.
2015-12-01
Verification Tool for Laser Environmental Effects Definition and Reference (LEEDR) Development ................................... 45 3.5 Gap Filling with NWP... effective cloud cover for all cloud layers within the AIRS field-of-view. ......................................... 59 Figure 37. Average wind...IR Infrared JPL Jet Propulsion Lab LEEDR Laser Environmental Effects Definition and Reference LIDAR Light Detection and Ranging MODIS Moderate
Optimization of torque on an optically driven micromotor by manipulation of the index of refraction
NASA Astrophysics Data System (ADS)
Wing, Frank M., III; Mahajan, Satish; Collett, Walter
2004-12-01
Since the 1970"s, the focused laser beam has become a familiar tool to manipulate neutral, dielectric micro-objects. A number of authors, including Higurashi and Gauthier, have described the effects of radiation pressure from laser light on microrotors. Collett, et al. developed a wave, rather than a ray optic, approach in the calculation of such forces on a microrotor for the first time. This paper describes a modification to the design of a laser driven, radiation pressure microrotor, intended to improve the optically generated torque. Employing the wave approach, the electric and magnetic fields in the vicinity of the rotor are calculated using the finite difference time domain (FDTD) method, which takes into account the wave nature of the incident light. Forces are calculated from the application of Maxwell"s stress tensor over the surfaces of the rotor. Results indicate a significant increase in torque when the index of refraction of the microrotor is changed from a single value to an inhomogeneous profile. The optical fiber industry has successfully employed a variation in the index of refraction across the cross section of a fiber for the purpose of increasing the efficiency of light transmission. Therefore, it is hoped that various fabrication methods can be utilized for causing desired changes in the index of refraction of an optically driven microrotor. Various profiles of the index of refraction inside a microrotor are considered for optimization of torque. Simulation methodology and results of torque on a microrotor for various profiles of the index of refraction are presented. Guidelines for improvised fabrication of efficient microrotors may then be obtained from these profiles.
NASA Astrophysics Data System (ADS)
Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.
2018-06-01
We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.
Advanced Solar-propelled Cargo Spacecraft for Mars Missions
NASA Technical Reports Server (NTRS)
Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie
1989-01-01
Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).
Lasant Materials for Blackbody-Pumped Lasers
NASA Technical Reports Server (NTRS)
Deyoung, R. J. (Editor); Chen, K. Y. (Editor)
1985-01-01
Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.
NASA Technical Reports Server (NTRS)
1988-01-01
The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.
Laser acceleration of quasi-monoenergetic MeV ion beams.
Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C
2006-01-26
Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.
Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si
NASA Astrophysics Data System (ADS)
Sun, Yi; Zhou, Kun; Sun, Qian; Liu, Jianping; Feng, Meixin; Li, Zengcheng; Zhou, Yu; Zhang, Liqun; Li, Deyao; Zhang, Shuming; Ikeda, Masao; Liu, Sheng; Yang, Hui
2016-09-01
Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si. Here, we report the demonstration of a blue-violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm-2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue-violet InGaN-based laser on Si.
A propulsion-mass tensor coupling in relativistic rocket motion
NASA Astrophysics Data System (ADS)
Brito, Hector Hugo
1998-01-01
Following earlier speculations about antigravity machines and works on the relativistic dynamics of constant and variable rest mass point particles, a mass tensor is found in connection with the closed system consisting of the rocket driven spaceship and its propellant mass, provided a ``solidification'' point other than the system center of mass is considered. Therefore, the mass tensor form depends on whether the system is open or closed, and upon where the ``solidification'' point is located. An alternative propulsion principle is subsequently derived from the tensor mass approach. The new principle, the covariant equivalent of Newton's Third Law for the physical interpretation of the relativistic rocket motion, reads: A spaceship undergoes a propulsion effect when the whole system mass 4-ellipsoid warps.
It may be Possible to Use a Neutron Beam as Propulsion for Spacecraft
NASA Astrophysics Data System (ADS)
Kriske, Richard M.
2016-01-01
It may be possible to keep Xenon 135 in a Superpositioned state with Xe-136 and Cs 135, the two decay products of Xenon 135. This may be done using a Gamma Ray or an X-ray Laser. At first glance it has the look and feel of yet another Noble Gas Laser. The difference is that it uses Neutron states within the Nucleus. The Neutrons would be emitted with a modulated Gamma or X-ray photon. In essence it may be possible to have a totally new type of Laser---This author calls them "Matter Lasers", where a lower energy photon with fewer Quantum Numbers would be used with a Noble Gas to produce a particle beam with higher energy and more Quantum Numbers. It may be possible to replace cumbersome particle accelerators with this type of Laser, to make mass from energy, via a Neutron Gas. This would be a great technological advance in Rocket Propulsion as well; low mass photon to high mass particle, such as a Higgs particle or a Top Quark. The Xenon 135, could come from a Fission Reactor within the Space Craft, as it is a reactor poison. The workings of an X-ray laser is already known and table top versions of it have been developed. Gamma Ray lasers are already in use and have been tested. A Laser would have a columnated beam with a very precise direction, unlike just a Neutron source which would go in all directions. Of course this beam could be used as a spectroscopic tool as well, in order to determine the composition of the matter that the spacecraft encounters. The spectroscopic tool could look for "Dark Matter" and other exotic types of matter that may occur in outerspace. The spacecraft could potentially reach "near speed of light velocities" in a fairly short time, since the Laser would be firing off massive particles, with great momentum. Lastly the precise Neutron beam could be used as a very powerful weapon or as a way of clearing space debri, since it could "force Nuclear Reactions" onto the object being fired upon, making it the ultimate space weapon, and Propulsion device in one package, using existing technologies, devices and theories. With this theory, it is now just an Engineering Problem, to make it work, and a great deal of funding. The benifits would be so enormous that this should be given priority.
Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Roth, Markus
2015-05-01
An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve
2015-01-01
HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.
NASA Astrophysics Data System (ADS)
Fernandez, Juan C.
2016-10-01
Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.
Options For Development of Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.
Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute
NASA Astrophysics Data System (ADS)
Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir
2003-05-01
Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.
Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca
2016-09-01
Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.
Development of a Work Control System for Propulsion Testing at NASA Stennis
NASA Technical Reports Server (NTRS)
Messer, Elizabeth A.
2005-01-01
In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.
Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
NASA Astrophysics Data System (ADS)
ten Hagen, Borge; Wittkowski, Raphael; Takagi, Daisuke; Kümmel, Felix; Bechinger, Clemens; Löwen, Hartmut
2015-05-01
The self-propulsion of artificial and biological microswimmers (or active colloidal particles) has often been modelled by using a force and a torque entering into the overdamped equations for the Brownian motion of passive particles. This seemingly contradicts the fact that a swimmer is force-free and torque-free, i.e. that the net force and torque on the particle vanish. Using different models for mechanical and diffusiophoretic self-propulsion, we demonstrate here that the equations of motion of microswimmers can be mapped onto those of passive particles with the shape-dependent grand resistance matrix and formally external effective forces and torques. This is consistent with experimental findings on the circular motion of artificial asymmetric microswimmers driven by self-diffusiophoresis. The concept of effective self-propulsion forces and torques significantly facilitates the understanding of the swimming paths, e.g. for a microswimmer under gravity. However, this concept has its limitations when the self-propulsion mechanism of a swimmer is disturbed either by another particle in its close vicinity or by interactions with obstacles, such as a wall.
ProSEDS Telemetry System Utilization of GPS Position Data for Transmitter Cycling
NASA Technical Reports Server (NTRS)
Kennedy, Paul; Sims, Herb
2000-01-01
NASA Marshall Space Flight Center will launch the Propulsive Small Expendable Deployer System (ProSEDS) space experiment in late 2000. ProSEDS will demonstrate the use of an electrodynamic tether propulsion system and will utilize a conducting wire tether to generate limited spacecraft power. This paper will provide an overview of the ProSEDS mission and will discuss the design, development and test of the spacecraft telemetry system which utilizes a custom designed GPS subsystem to determine spacecraft position relative to ground station location and to control transmitter on/off cycling based on spacecraft state vector and ground station visibility.
Propulsive efficiency of the underwater dolphin kick in humans.
von Loebbecke, Alfred; Mittal, Rajat; Fish, Frank; Mark, Russell
2009-05-01
Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer's propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.
NASA Astrophysics Data System (ADS)
Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano
2018-02-01
We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm-1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1991-01-01
A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.
Laser-driven acceleration of electrons in a partially ionized plasma channel.
Rowlands-Rees, T P; Kamperidis, C; Kneip, S; Gonsalves, A J; Mangles, S P D; Gallacher, J G; Brunetti, E; Ibbotson, T; Murphy, C D; Foster, P S; Streeter, M J V; Budde, F; Norreys, P A; Jaroszynski, D A; Krushelnick, K; Najmudin, Z; Hooker, S M
2008-03-14
The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.
Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase.
Yu, Hua; Jo, Kyubong; Kounovsky, Kristy L; de Pablo, Juan J; Schwartz, David C
2009-04-29
Living cells sense extracellular signals and direct their movements in response to stimuli in environment. Such autonomous movement allows these machines to sample chemical change over a distance, leading to chemotaxis. Synthetic catalytic rods have been reported to chemotax toward hydrogen peroxide fuel. Nevertheless individualized autonomous control of movement of a population of biomolecules under physiological conditions has not been demonstrated. Here we show the first experimental evidence that a molecular complex consisting of a DNA template and associating RNA polymerases (RNAPs) displays chemokinetic motion driven by transcription substrates nucleoside triphosphates (NTPs). Furthermore this molecular complex exhibits a biased migration into a concentration gradient of NTPs, resembling chemotaxis. We describe this behavior as "Molecular Propulsion", in which RNAP transcriptional actions deform DNA template conformation engendering measurable enhancement of motility. Our results provide new opportunities for designing and directing nanomachines by imposing external triggers within an experimental system.
Design and characterization of a novel power over fiber system integrating a high power diode laser
NASA Astrophysics Data System (ADS)
Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry
2017-02-01
High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.
Density gradient free electron collisionally excited X-ray laser
Campbell, Edward M.; Rosen, Mordecai D.
1989-01-01
An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.
Review of laser-driven ion sources and their applications.
Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S
2012-05-01
For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.
Experimental Investigations on Beamed Energy Aerospace Propulsion
2012-01-01
the aluminum ―igniter‖ material greatly lowers the incident laser intensity and fluence required to trigger the optical air breakdown 7 . The geometry...sequence following laser-induced air -breakdown was lost. The pressure distribution across the under-surface of the shroud is displayed in Fig. 24, along...photograph of bifurcated air -breakdown geometry across inlet gap, and secondary breakdown on shroud under-surface. 37 Fig. 29 Run#21 – Measured
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.
2005-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.
2006-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
Quenching of I(2P1/2) by O3 and O(3P).
Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C
2007-04-26
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.
Effect of the Thruster Configurations on a Laser Ignition Microthruster
NASA Astrophysics Data System (ADS)
Koizumi, Hiroyuki; Hamasaki, Kyoichi; Kondo, Ryo; Okada, Keisuke; Nakano, Masakatsu; Arakawa, Yoshihiro
Research and development of small spacecraft have advanced extensively throughout the world and propulsion devices suitable for the small spacecraft, microthruster, is eagerly anticipated. The authors proposed a microthruster using 1—10-mm-size solid propellant. Small pellets of solid propellant are installed in small combustion chambers and ignited by the irradiation of diode laser beam. This thruster is referred as to a laser ignition microthruster. Solid propellant enables large thrust capability and compact propulsion system. To date theories of a solid-propellant rocket have been well established. However, those theories are for a large-size solid propellant and there are a few theories and experiments for a micro-solid rocket of 1—10mm class. This causes the difficulty of the optimum design of a micro-solid rocket. In this study, we have experimentally investigated the effect of thruster configurations on a laser ignition microthruster. The examined parameters are aperture ratio of the nozzle, length of the combustion chamber, area of the nozzle throat, and divergence angle of the nozzle. Specific impulse dependences on those parameters were evaluated. It was found that large fraction of the uncombusted propellant was the main cause of the degrading performance. Decreasing the orifice diameter in the nozzle with a constant open aperture ratio was an effective method to improve this degradation.
NASA Technical Reports Server (NTRS)
Messitt, Don G.; Myrabo, Leik N.
1991-01-01
Rensselaer Polytechnic Institute has been developing a transatmospheric 'Lightcraft' technology which uses beamed laser energy to propel advanced shuttle craft to orbit. In the past several years, Rensselaer students have analyzed the unique combined-cycle Lightcraft engine, designed a small unmanned Lightcraft Technology Demonstrator, and conceptualized larger manned Lightcraft - to name just a few of the interrelated design projects. The 1990-91 class carried out preliminary and detailed design efforts for a one-person 'Mercury' Lightcraft, using computer-aided design and finite-element structural modeling techniques. In addition, they began construction of a 2.6 m-diameter, full-scale engineering prototype mockup. The mockup will be equipped with three robotic legs that 'kneel' for passenger entry and exit. More importantly, the articulated tripod gear is crucial for accurately pointing at, and tracking the laser relay mirrors, a maneuver that must be performed just prior to liftoff. Also accomplished were further design improvements on a 6-inch-diameter Lightcraft model (for testing in RPI's hypersonic tunnel), and new laser propulsion experiments. The resultant experimental data will be used to calibrate Computational Fluid Dynamic (CFD) codes and analytical laser propulsion models that can simulate vehicle/engine flight conditions along a transatmospheric boost trajectory. These efforts will enable the prediction of distributed aerodynamic and thruster loads over the entire full-scale spacecraft.
Radiochromic film diagnostics for laser-driven ion beams
NASA Astrophysics Data System (ADS)
Kaufman, J.; Margarone, Daniele; Candiano, Giacomo; Kim, I. Jong; Jeong, Tae Moon; Pšikal, Jan; Romano, F.; Cirrone, P.; Scuderi, V.; Korn, Georg
2015-05-01
Radiochromic film (RCF) based multichannel diagnostics utilizes the concept of a stack detector comprised of alternating layers of RCFs and shielding aluminium layers. An algorithm based on SRIM simulations is used to correct the accumulated dose. Among the standard information that can be obtained is the maximum ion energy and to some extend the beam energy spectrum. The main area where this detector shines though is the geometrical characterization of the beam. Whereas other detectors such as Thomson parabola spectrometer or Faraday cups detect only a fraction of the outburst cone, the RCF stack placed right behind the target absorbs the whole beam. A complete 2D and to some extend 3D imprint of the ion beam allows us to determine parameters such as divergence or beam center shift with respect to the target normal. The obvious drawback of such diagnostics is its invasive character. But considering that only a few successful shots (2-3) are needed per one kind of target to perform the analysis, the drawbacks are acceptable. In this work, we present results obtained with the RCF diagnostics using both conventional accelerators and laser-driven ion beams during 2 experimental campaigns.
NASA Technical Reports Server (NTRS)
Deckert, W. H.; Rolls, L. S.
1974-01-01
An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.
Experimental Investigation for 100-Joule-class TEA CO2 Laser and Gas Interaction
NASA Astrophysics Data System (ADS)
Dou, Zhiguo; Yao, Honglin; Wang, Jun; Wen, Ming; Wang, Peng; Yang, Jan; Li, Chong
2006-05-01
Impulse coupling coefficient Cm is one of the most important performance parameters in laser propulsion. Cm is the impulse increment of lightcraft that per joule laser beam energy acts on. The TEA CO2 laser, whose single pulse energy is 100-Joule-class and wavelength is 10.6μm, is adopted by experimental research. In experimental environment cabin, the parabolic lightcraft is fixed on impact pendulum. Using Air, N2, He, CO2, N2-He and N2-CO2, different Cm is obtained. Experimental results indicate that Cm of the mixed gas is improved through changing gas component ratio.
Detection of gaseous oxygen using temperature tuned laser diodes
NASA Technical Reports Server (NTRS)
Fox, Curtis W.; Disimile, Peter J.
1990-01-01
The development of an optical differential absorption technique using laser diodes is discussed. The technique is being developed as a solution to overcome the difficulties imposed by conventional liquid rocket propulsion system leak detection such as damage to the engine, cumbersome equipment, and excessive amounts of time. The detection of O2 at atmospheric pressure and temperature using laser diodes is demonstrated. Also, it is shown that, by temperature tuning the laser diode, the wavelength was shifted to a level where the oxygen absorption peaks are found. The levels of transmission determined via experimental means and those calculated from spectral data are found to be in close agreement.
NASA-NIAC 2001 Phase I Research Grant on Aneutronic Fusion Spacecraft Architecture
NASA Technical Reports Server (NTRS)
Tarditi, Alfonso G. (Principal Investigator); Scott, John H.; Miley, George H.
2012-01-01
This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities.
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2012-01-01
Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.
A Study on the Propulsive Mechanism of a Double Jointed Fish Robot Utilizing Self-Excitation Control
NASA Astrophysics Data System (ADS)
Nakashima, Motomu; Ohgishi, Norifumi; Ono, Kyosuke
This paper describes a numerical and experimental study of a double jointed fish robot utilizing self-excitation control. The fish robot is composed of a streamlined body and a rectangular caudal fin. The body length is 280mm and it has a DC motor to actuate its first joint and a potentiometer to detect the angle of its second joint. The signal from the potentiometer is fed back into the DC motor, so that the system can be self-excited. In order to obtain a stable oscillation and a resultant stable propulsion, a torque limiter circuit is employed. From the experiment, it has been found that the robot can stably propel using this control and the maximum propulsive speed is 0.42m/s.
Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...
2016-06-02
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.; Howell, Joe (Technical Monitor)
2002-01-01
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. There it would enter areosynchronous orbit (Mars GEO equivalent) and beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The present baseline spacecraft design providing 898 kW using technologies expected to be available in 2003 will be described. Areal power densities approaching 350 W/sq m at 80 C operating temperatures and wing level specific powers of over 350 W/kg are projected. Details of trip times and payloads to Mars are presented. Electric propulsion options include Hall, MPD, and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. Because the design is modular, learning curve methodology has been applied to determine expected cost reductions and is included.
Space Station propulsion electrolysis system - 'A technology challenge'
NASA Technical Reports Server (NTRS)
Le, Michael
1989-01-01
The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
Effects of Gravity-Assist Timing on Outer-Planet Missions Using Solar-Electric Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Cupples, Michael
2004-01-01
Missions to the outer planets for spacecraft with a solar-electric propulsion system (SEPS) and that utilize a single Venus gravity assist are investigated. The trajectories maximize the delivered mass to the target planet for a range of flight times. A comparison of the trajectory characteristics (delivered mass, launch energy and onboard propulsive energy) is made for various Venus gravity assist opportunities. Methods to estimate the delivered mass to the outer planets are developed.
Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.
2012-12-15
An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less
A Strategic Roadmap to Centauri
NASA Technical Reports Server (NTRS)
Johnson, Les; Harris, David; Trausch, Ann; Matloff, Gregory L.; Taylor, Travis; Cutting, Kathleen
2005-01-01
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala.. Technologies under study by ISP include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space-science and exploration missions. Historically, human frontiers have expanded as people have learned to live off the land in new environments and to exploit local resorces. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail f or the nearest stars.
A Strategic Roadmap to Centauri
NASA Astrophysics Data System (ADS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Technologies under study by ISP include aerocapture, advanced solar- electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space- science and exploration missions. Historically, human frontiers have expanded as people have learned to “live-off-the-land” in new environments and to exploit local resources. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail for the nearest stars.
NASA's hypersonic propulsion program: History and direction
NASA Technical Reports Server (NTRS)
Wander, Steve
1992-01-01
Research into hypersonic propulsion; i.e., supersonic combustion, was seriously initiated at the Langley Research Center in the 1960's with the Hypersonic Research Engine (HRE) project. This project was designed to demonstrate supersonic combustion within the context of an engine module consisting of an inlet, combustor, and nozzle. In addition, the HRE utilized both subsonic and supersonic combustion (dual-mode) to demonstrate smooth operation over a Mach 4 to 7 speed range. The propulsion program thus concentrated on fundamental supersonic combustion studies and free jet propulsion tests for the three dimensional fixed geometry engine design to demonstrate inlet and combustor integration and installed performance potential. The developmental history of the program is presented. Additionally, the HRE program's effect on the current state of hypersonic propulsion is discussed.
Laser-driven proton and deuteron acceleration from a pure solid-density H2/D2 cryogenic jet
NASA Astrophysics Data System (ADS)
Kim, Jongjin; Gauthier, Maxence; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Goyon, Clement; Williams, Jackson; Kerr, Shaun; Ruby, John; Propp, Adrienne; Ramakrishna, Bhuvanesh; Pak, Art; Hazi, Andy; Glenzer, Siegfried; Roedel, Christian
2015-11-01
Laser-driven proton acceleration has become of tremendous interest for the fundamental science and the potential applications in tumor therapy and proton radiography. We have developed a cryogenic liquid hydrogen jet, which can deliver a self-replenishing target of pure solid-density hydrogen or deuterium. This allows for a target compatible with high-repetition-rate experiments and results in a pure hydrogen plasma, facilitating comparison with simulations. A new modification has allowed for the formation of jets with rectangular profiles, facilitating comparison with foil targets. This jet was installed at the Titan laser and driven by laser pulses of 40-60 J of 527 nm laser light in 1 ps. The resulting proton and deuteron spectra were measured in multiple directions with Thomson parabola spectrometers and RCF stacks. The spectral and angular information suggest contribution from both the TNSA and RPA acceleration mechanisms.
Guided post-acceleration of laser-driven ions by a miniature modular structure
Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco
2016-01-01
All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200
Enhanced proton acceleration in an applied longitudinal magnetic field
Arefiev, A.; Toncian, T.; Fiksel, G.
2016-10-31
Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less
Enhanced proton acceleration in an applied longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arefiev, A.; Toncian, T.; Fiksel, G.
Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Atonison, Mark A. (Editor); Chen, Sammy G. (Editor); Decusatis, Casimer (Editor); Kusche, Karl P. (Editor); Minucci, Marco A. (Editor); Moder, Jeffrey P. (Editor); Morales, Ciro (Editor); Nelson, Caroline V. (Editor); Richard, Jacques C. (Editor)
1989-01-01
The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems.
A bibliography of electrothermal thruster technology, 1984
NASA Technical Reports Server (NTRS)
Sovey, J. S.; Hardy, T. L.; Englehart, M.
1986-01-01
Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.
ERIC Educational Resources Information Center
Craig, Doug
1990-01-01
The development of a spaceflight simulation program as part of a research and development course is described. Topics such as space exploration, design, propulsion, aerodynamics of space craft, robotics, communication, construction, medicine, lasers, hydroponics, geology, chemistry, and space physiology are emphasized. (KR)
Specific Impulse Definition for Ablative Laser Propulsion
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2004-01-01
The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.
Atmospheric Science Data Center
2013-04-16
... million years ago as a result of the collision between the Indian and Eurasian plates, driven by tectonic processes. They continue to grow ... 14, 2000) Blocks 65-75 MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...
An antiproton driver for ICF propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance
1993-01-01
Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.
A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems
NASA Technical Reports Server (NTRS)
Thollot, P. A.; Musial, N. T.
1980-01-01
The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.
An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Lytle, John K. (Technical Monitor)
2002-01-01
Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
NASA/USRA advanced space design program: The laser powered interorbital vehicle
NASA Technical Reports Server (NTRS)
1989-01-01
A preliminary design is presented for a low-thrust Laser Powered Interorbital Vehicle (LPIV) intended for cargo transportation between an earth space station and a lunar base. The LPIV receives its power from two iodide laser stations, one orbiting the earth and the other located on the surface of the moon. The selected mission utilizes a spiral trajectory, characteristic of a low-thrust spacecraft, requiring 8 days for a lunar rendezvous and an additional 9 days for return. The ship's configuration consists primarily of an optical train, two hydrogen plasma engines, a 37.1 m box beam truss, a payload module, and fuel tanks. The total mass of the vehicle fully loaded is 63300 kg. A single plasma, regeneratively cooled engine design is incorporated into the two 500 N engines. These are connected to the spacecraft by turntables which allow the vehicle to thrust tangentially to the flight path. Proper collection and transmission of the laser beam to the thrust chambers is provided through the optical train. This system consists of the 23 m diameter primary mirror, a convex parabolic secondary mirror, a beam splitter and two concave parabolic tertiary mirrors. The payload bay is capable of carrying 18000 kg of cargo. The module is located opposite the primary mirror on the main truss. Fuel tanks carrying a maximum of 35000 kg of liquid hydrogen are fastened to tracks which allow the tanks to be moved perpendicular to the main truss. This capability is required to prevent the center of mass from moving out of the thrust vector line. The laser beam is located and tracked by means of an acquisition, pointing and tracking system which can be locked onto the space-based laser station. Correct orientation of the spacecraft with the laser beam is maintained by control moment gyros and reaction control rockets. Additionally an aerobrake configuration was designed to provide the option of using the atmospheric drag in place of propulsion for a return trajectory.
Optical probing of high intensity laser interaction with micron-sized cryogenic hydrogen jets
NASA Astrophysics Data System (ADS)
Ziegler, Tim; Rehwald, Martin; Obst, Lieselotte; Bernert, Constantin; Brack, Florian-Emanuel; Curry, Chandra B.; Gauthier, Maxence; Glenzer, Siegfried H.; Göde, Sebastian; Kazak, Lev; Kraft, Stephan D.; Kuntzsch, Michael; Loeser, Markus; Metzkes-Ng, Josefine; Rödel, Christian; Schlenvoigt, Hans-Peter; Schramm, Ulrich; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Zeil, Karl
2018-07-01
Probing the rapid dynamics of plasma evolution in laser-driven plasma interactions provides deeper understanding of experiments in the context of laser-driven ion acceleration and facilitates the interplay with complementing numerical investigations. Besides the microscopic scales involved, strong plasma (self-)emission, predominantly around the harmonics of the driver laser, often complicates the data analysis. We present the concept and the implementation of a stand-alone probe laser system that is temporally synchronized to the driver laser, providing probing wavelengths beyond the harmonics of the driver laser. The capability of this system is shown during a full-scale laser proton acceleration experiment using renewable cryogenic hydrogen jet targets. For further improvements, we studied the influence of probe color, observation angle of the probe and temporal contrast of the driver laser on the probe image quality.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
NASA Astrophysics Data System (ADS)
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
2009-11-06
Hydrogen azide is well-known as an endothermic explosion gas for a long time, but there is a lack of understanding about the detailed kinetics of its...Martin, K.K. Kuo, R. Houim, and M. Degges Lidar Detection of Explosives Vapors Using Excimer Laser (Log #127) S. Bobrovnikov, E. Gorlov, G...Agents for High Energy Propellants (Log #190) B.M. Kosowski, J. Consaga, and A. Condo Formulation & Development of an Explosive that Allows
Controlling laser driven protons acceleration using a deformable mirror at a high repetition rate
NASA Astrophysics Data System (ADS)
Noaman-ul-Haq, M.; Sokollik, T.; Ahmed, H.; Braenzel, J.; Ehrentraut, L.; Mirzaie, M.; Yu, L.-L.; Sheng, Z. M.; Chen, L. M.; Schnürer, M.; Zhang, J.
2018-03-01
We present results from a proof-of-principle experiment to optimize laser driven protons acceleration by directly feeding back its spectral information to a deformable mirror (DM) controlled by evolutionary algorithms (EAs). By irradiating a stable high-repetition rate tape driven target with ultra-intense pulses of intensities ∼1020 W/ cm2, we optimize the maximum energy of the accelerated protons with a stability of less than ∼5% fluctuations near optimum value. Moreover, due to spatio-temporal development of the sheath field, modulations in the spectrum are also observed. Particularly, a prominent narrow peak is observed with a spread of ∼15% (FWHM) at low energy part of the spectrum. These results are helpful to develop high repetition rate optimization techniques required for laser-driven ion accelerators.
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Bruno, Cy
2012-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy
2013-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed.
Control over high peak-power laser light and laser-driven X-rays
NASA Astrophysics Data System (ADS)
Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald
2018-04-01
An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.
A nuclear driven metallic vapor MHD coupled with MPD thrusters
NASA Technical Reports Server (NTRS)
Anghaie, Samim; Kumar, Ratan
1991-01-01
Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.
Electromagnetic interference of power conditioners for solar electric propulsion
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.; Macie, T. W.
1973-01-01
Electrical, multikilowatt power conditioning (PC) equipment needed on board a spacecraft utilizing solar electric propulsion creates an electromagnetic environment that is potentially deterimental to the science, navigation, and radio communication hardware. Within the scope of the solar electric propulsion system technology program, three lightweight, 2.5-kW PCs were evaluated in terms of their electromagnetic characteristics. It was found that the levels of radiated and conducted interference exceeded the levels anticipated for a solar electric propulsion mission. These noise emissions, however, were the result of deficient interference design in these models, rather than a basic inability to control interference in this type of PC.
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
Pulsed Magnetic Field Driven Gas Core Reactors for Space Power & Propulsion Applications
NASA Technical Reports Server (NTRS)
Anghaie, Samim; Smith, Blair; Knight, Travis; Butler, Carey
2003-01-01
The present results indicated that: 1. A pulsed magnetic driven fission power concept, PMD-GCR is developed for closed (NER) and semi-open (NTR) operations. 2. In power mode, power is generated at alpha less than 1 for power levels of hundreds of KW or higher 3. IN semi open NTR mode, PMD-GCR generates thrust at I(sub sp) approx. 5,000 s and jet power approx. 5KW/Kg. 4. PMD-GCR is highly subcritical and is actively driven to critically. 5. Parallel path with fusion R&D needs in many areas including magnet and plasma.
Nuclear systems for space power and propulsion
NASA Technical Reports Server (NTRS)
Klein, M.
1971-01-01
As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.
NASA Astrophysics Data System (ADS)
Blacic, J. D.; Dreesen, D.; Mockler, T.
2000-01-01
There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.
Dynamic self-organization of side-propelling colloidal rods: experiments and simulations.
Vutukuri, Hanumantha Rao; Preisler, Zdeněk; Besseling, Thijs H; van Blaaderen, Alfons; Dijkstra, Marjolein; Huck, Wilhelm T S
2016-12-06
In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H 2 O 2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.
The Case of Nuclear Propulsion
NASA Technical Reports Server (NTRS)
Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.
Electric Propulsion Options for a Magnetospheric Mapping Mission
NASA Technical Reports Server (NTRS)
Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John
1998-01-01
The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.
2008-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.
Development of unified propulsion system for geostationary satellite
NASA Astrophysics Data System (ADS)
Murayama, S.; Kobayashi, H.; Masuda, I.; Kameishi, M.; Miyoshi, K.; Takahashi, M.
Japan's first Liquid Apogee Propulsion System (LAPS) has been developed for ETS-VI (Engineering Test Satellite - VI) 2-ton class geostationary satellite. The next largest (2-ton class) geostationary satellite, COMETS (Communication and Broadcasting Engineering Test Satellite), requires a more compact apogee propulsion system in order to increase the space for mission instruments. The study for such a propulsion system concluded with a Unified Propulsion System (UPS), which uses a common N2H4 propellant tank for both bipropellant apogee engines and monopropellant Reaction Control System (RCS) thrusters. This type of propulsion system has several significant advantages compared with popular nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) bipropellant satellite propulsion systems: The NTO/N2H4 apogee engine has a high specific impulse, and N2H4 thrusters have high reliability. Residual of N2H4 caused by propellant utilization of apogee engine firing (AEF) can be consumed by N2H4 monopropellant thrusters; that means a considerably prolonged satellite life.
Liquid Oxygen/Liquid Methane Integrated Power and Propulsion
NASA Technical Reports Server (NTRS)
Banker, Brian; Ryan, Abigail
2016-01-01
The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing previously wasted mass. Such is the case for human and robotic planetary landers. Although many potential benefits through integrated power & propulsion exist, integrated operations have yet to be successfully demonstrated and many challenges have already been identified the most obvious of which is the large temperature gradient. SOFC chemistry is exothermic with operating temperatures in excess of 1,000 K; however, any shared commodities will be undoubtedly stored at cryogenic temperatures (90-112 K) for mass efficiency reasons. Spacecraft packaging will drive these two subsystems in close proximity thus heat leak into the commodity tankage must be minimized and/or mitigated. Furthermore, commodities must be gasified prior to consumption by the SOFC. Excess heat generated by the SOFC could be used to perform this phase change; however, this has yet to be demonstrated. A further identified challenge is the ability of the SOFC to handle the sudden power spikes created by the propulsion system. A power accumulator (battery) will likely be necessary to handle these sudden demands while the SOFC thermally adjusts. JSC's current SOFC test system consists of a 1 kW fuel cell designed by Delphi. The fuel cell is currently undergoing characterization testing at the NASA JSC Energy Systems Test Area (ESTA) after which a Steam Methane Reformer (SMR) will be integrated and the combined system tested in closed-loop. The propulsion brassboard is approximately the size of what could be flown on a sounding rocket. It consists of one 100 lbf thrust "main" engine developed for NASA by Aerojet and two 10 lbf thrusters to simulate a reaction control system developed at NASA JSC. This system is also under development and initial testing at ESTA. After initial testing, combined testing will occur which will provide data on the fuel cell's ability to sufficiently handle the power spikes created by the propulsion system. These two systems will also be modeled using General-Use Nodal Network Solver (GUNNS) software. Once anchored with test data, this model will be used to extrapolate onto other firing profiles and used to size the power accumulator.
Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO2-Au Janus Micromotors
NASA Astrophysics Data System (ADS)
Wu, Yefei; Dong, Renfeng; Zhang, Qilu; Ren, Biye
2017-07-01
Light-driven synthetic micro-/nanomotors have attracted considerable attention in recent years due to their unique performances and potential applications. We herein demonstrate the dye-enhanced self-electrophoretic propulsion of light-driven TiO2-Au Janus micromotors in aqueous dye solutions. Compared to the velocities of these micromotors in pure water, 1.7, 1.5, and 1.4 times accelerated motions were observed for them in aqueous solutions of methyl blue (10-5 g L-1), cresol red (10-4 g L-1), and methyl orange (10-4 g L-1), respectively. We determined that the micromotor speed changes depending on the type of dyes, due to variations in their photodegradation rates. In addition, following the deposition of a paramagnetic Ni layer between the Au and TiO2 layers, the micromotor can be precisely navigated under an external magnetic field. Such magnetic micromotors not only facilitate the recycling of micromotors, but also allow reusability in the context of dye detection and degradation. In general, such photocatalytic micro-/nanomotors provide considerable potential for the rapid detection and "on-the-fly" degradation of dye pollutants in aqueous environments.
Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.
Advanced supersonic propulsion study. [with emphasis on noise level reduction
NASA Technical Reports Server (NTRS)
Sabatella, J. A. (Editor)
1974-01-01
A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.
NASA Astrophysics Data System (ADS)
Kemp, G. Elijah; Mariscal, D. A.; Williams, G. J.; Blue, B. E.; Colvin, J. D.; Fears, T. M.; Kerr, S. M.; May, M. J.; Moody, J. D.; Strozzi, D. J.; Lefevre, H. J.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Gautier, D. C.; Montgomery, D. S.
2017-10-01
We present experimental and simulation results from a study of thermal transport inhibition in laser-driven, mid-Z, non-equilibrium plasmas in the presence external magnetic fields. The experiments were performed at the Jupiter Laser Facility at LLNL, where x-ray spectroscopy, proton radiography, and Brillouin backscatter data were simultaneously acquired from sub-critical-density, Ti-doped silica aerogel foams driven by a 2 ω laser at 5 ×1014 W /cm2 . External B-field strengths up to 20 T (aligned antiparallel to the laser propagation axis) were provided by a capacitor-bank-driven Helmholtz coil. Pre-shot simulations with
Weibel instability mediated collisionless shocks using intense laser-driven plasmas
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall
2017-10-01
The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.
Weibel instability mediated collisionless shocks using intense laser-driven plasmas
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team
2016-10-01
The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.
Electrical power systems for Mars
NASA Technical Reports Server (NTRS)
Giudici, Robert J.
1986-01-01
Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.
Electrical power systems for Mars
NASA Astrophysics Data System (ADS)
Giudici, Robert J.
1986-05-01
Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.
Mission and space vehicle sizing data for a chemical propulsion/aerobraking option
NASA Technical Reports Server (NTRS)
Butler, John; Brothers, Bobby
1986-01-01
Sizing data is presented for various combinations of Mars missions and chemical-propulsion/aerobraking vehicles. Data is compared for vehicles utilizing opposition (2-year mission) and conjunction (3-year mission) trajectories for 1999 and 2001 opportunities, for various sizes of vehicles. Payload capabilities for manned and unmanned missions vehicles and for propulsive-braking and aerobraking cases are shown. The effect of scaling up a reference vehicle is compared to the case of utilizing two identical vehicles, for growth in payload capability. The rate of cumulative build up of weight on the surface of Mars is examined for various mission/vehicle combinations, and is compared to the landed-weight requirements for sortie missions, moving-base missions, and fixed-base missions. Also, the required buildup of weight in low Earth orbit (LEO) for various mission/vehicle combinations is presented and discussed.
Nuclear Energy for Space Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2010-01-01
Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, K. P.; Wu, Z.; Cowan, B. M.
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.
Park, Hanbit; Reddy, D Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Kim, Tae Kyu
2017-09-21
It is imperative to suppress the rate of recombination of photogenerated carriers to improve the semiconductor-catalyzed solar-driven production of hydrogen. To this end, photocatalysts comprising active sunlight-harvesting photo-absorbers and stable metal co-catalysts have attracted significant attention. However, the size, clean surface, and highly dispersed nature of the metal co-catalysts are crucial factors affecting catalyst performance and reaction rate. Nevertheless, most of the available metal nanocrystals have been synthesized by complex procedures using harmful organic templates and stabilizers, affording high-purity compounds with difficulty and high cost. To overcome these problems, in this study, the pulsed laser ablation in liquid approach was utilized to generate palladium and bimetallic palladium-platinum nanoparticles with an average size and distribution by adjusting the laser wavelength and fluence. A high rate of evolution of hydrogen of 130.33 mmol g -1 h -1 was obtained by using the optimized CdS-PdPt catalyst under simulated sunlight irradiation. This value is 51.31 times greater than that observed for bare CdS nanostructures. Furthermore, the amount of hydrogen evolved was significantly better than that obtained by using several other noble-metal co-catalysts deposited on CdS. This proposed strategy is thought to open new avenues for the design of advanced photocatalytic materials for efficient solar-driven production of hydrogen. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Background Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Methods Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Results Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC’s (>0.9). Conclusions A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high comparability of the measurement-wheels for the different propulsion parameters. Data from both wheels seem suitable to be used together or interchangeably in experiments on motor control and wheelchair propulsion performance. A high variability in forces and timing between the left and right side were found during the execution of this bimanual task, reflecting the human motor control process. PMID:23360756
Vegter, Riemer J K; Lamoth, Claudine J; de Groot, Sonja; Veeger, Dirkjan H E J; van der Woude, Lucas H V
2013-01-29
Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC's (>0.9). A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high comparability of the measurement-wheels for the different propulsion parameters. Data from both wheels seem suitable to be used together or interchangeably in experiments on motor control and wheelchair propulsion performance. A high variability in forces and timing between the left and right side were found during the execution of this bimanual task, reflecting the human motor control process.
Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, G., E-mail: gilgueng.hwang@lpn.cnrs.fr; Decanini, D.; Leroy, L.
Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whosemore » magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.« less
Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.
2016-02-23
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.