Science.gov

Sample records for prospects gene therapy

  1. Advancement and prospects of tumor gene therapy.

    PubMed

    Zhang, Chao; Wang, Qing-Tao; Liu, He; Zhang, Zhen-Zhu; Huang, Wen-Lin

    2011-03-01

    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucleotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  2. Gene therapy for obesity: progress and prospects.

    PubMed

    Gao, Mingming; Liu, Dexi

    2014-06-01

    Advances in understanding the molecular basis of obesity and obesity-associated diseases have made gene therapy a vital approach in coping with this world-wide epidemic. Gene therapy for obesity aims to increase or decrease gene product in favor of lipolysis and energy expenditure, leading toward fat reduction and loss of body weight. It involves successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain energy homeostasis. Here we summarize progress made in recent years in identifying genes responsible for obesity and present examples where the gene therapy approach has been applied to treating or preventing obesity. Discussion on advantages and limitations of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of obesity and obesity-associated diseases.

  3. Prospectives for gene therapy of retinal degenerations.

    PubMed

    Thumann, Gabriele

    2012-08-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  4. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  5. Gene therapy prospects--intranasal delivery of therapeutic genes.

    PubMed

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  6. Prospects and limitations of T cell receptor gene therapy.

    PubMed

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A; Schumacher, Ton N M

    2011-08-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining molecule in T cell function, adoptive transfer of TCR genes into patient T cells may be used as an alternative approach for the transfer of tumor-specific T cell immunity. On theoretical grounds, TCR gene therapy has two substantial advantages over conventional cellular transfer. First, it circumvents the demanding process of in vitro generation of large numbers of specific immune cells. Second, it allows the use of a set of particularly effective TCR genes in large patient groups. Conversely, TCR gene therapy may be associated with a number of specific problems that are not confronted during classical cellular therapy. Here we review our current understanding of the potential and possible problems of TCR gene therapy, as based on in vitro experiments, mouse model systems and phase I clinical trials. Furthermore, we discuss the prospects of widespread clinical application of this gene therapy approach for the treatment of human cancer.

  7. Gene therapies development: slow progress and promising prospect

    PubMed Central

    Hanna, Eve; Rémuzat, Cécile; Auquier, Pascal; Toumi, Mondher

    2017-01-01

    ABSTRACT Background: In 1989, the concept of human gene therapies has emerged with the first approved human gene therapy trial of Rosenberg et al. Gene therapies are considered as promising therapies applicable to a broad range of diseases. Objective: The objective of this study was to review the descriptive data on gene therapy clinical trials conducted worldwide between 1989 and 2015, and to discuss potential success rates of these trials over time and anticipated market launch in the upcoming years. Methods: A publicly available database, ‘Gene Therapy Clinical Trials Worldwide’, was used to extract descriptive data on gene therapy clinical trials: (1) number of trials per year between 1989 and 2015; (2) countries; (3) diseases targeted by gene therapies; (4) vectors used for gene delivery; (5) trials status; (6) phases of development. Results: Between 1989 and 2015, 2,335 gene therapy clinical trials have been completed, were ongoing or approved (but not started) worldwide. The number of clinical trials did not increase steadily over time; it reached its highest peak in 2015 (163 trials). Almost 95% of the trials were in early phases of development and 72% were ongoing. The United States undertook 67% of gene therapy clinical trials. The majority of gene therapies clinical trials identified targeted cancer diseases. Conclusion: The first gene therapy was approved in the European Union in 2012, after two decades of dashed expectations. This approval boosted the investment in developing gene therapies. Regulators are creating a specific path for rapid access of those new therapies, providing hope for manufacturers, healthcare professionals, and patients. However, payers are increasingly scrutinizing the additional benefits of the new therapies. Major steps forward are expected in the field of gene therapies in the future. PMID:28265348

  8. Retinal Gene Therapy: Current Progress and Future Prospects

    PubMed Central

    Ku, Cristy A.; Pennesi, Mark E.

    2015-01-01

    Clinical trials treating inherited retinal dystrophy caused by RPE65 mutations had put retinal gene therapy at the forefront of gene therapy. Both successes and limitations in these clinical trials have fueled developments in gene vectors, which continue to further advance the field. These novel gene vectors aim to more safely and efficiently transduce retinal cells, expand the gene packaging capacity of AAV, and utilize new strategies to correct the varying mechanisms of dysfunction found with inherited retinal dystrophies. With recent clinical trials and numerous pre-clinical studies utilizing these novel vectors, the future of ocular gene therapy continues to hold vast potential. PMID:26609316

  9. Progress and prospects: hurdles to cardiovascular gene therapy clinical trials.

    PubMed

    Hedman, M; Hartikainen, J; Ylä-Herttuala, S

    2011-08-01

    Several gene therapy approaches have been designed for the treatment of cardiovascular diseases. A positive finding is that the safety of cardiovascular gene therapy has been excellent even in long-term follow-up. However, several hurdles to this field are still present. A major disappointing feature of the trials is that while preclinical and uncontrolled phase-I gene therapy trials have been positive, none of the randomized controlled phase-II/III cardiovascular gene therapy trials have shown clinically relevant positive effects. Low gene transfer efficiency seems to be associated with several trials. A sophisticated efficient delivery method for cardiovascular applications is still lacking and only low concentrations of the gene product are produced in the target tissues. Only a few gene therapy vectors can be produced in large scale. In addition, inflammatory reactions against vectors and inability to regulate gene expression are still present. Furthermore, a strong placebo effect is affecting the results in gene therapy trials, and long-term trials have become more difficult to conduct because of the multiplicity of therapies applied simultaneously on the patients. This review summarizes advances and obstacles of current cardiovascular clinical gene therapy trials.

  10. Prospects for Gene Therapy in the Fragile X Syndrome

    ERIC Educational Resources Information Center

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  11. Prospects for Gene Therapy in the Fragile X Syndrome

    ERIC Educational Resources Information Center

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  12. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy

    PubMed Central

    Yue, Yongping; Binalsheikh, Ibrahim M.; Leach, Stacey B.; Domeier, Timothy L.; Duan, Dongsheng

    2016-01-01

    Introduction Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. Areas covered Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. Expert opinion Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials. PMID:27340611

  13. Gene therapy for muscular dystrophy: current progress and future prospects.

    PubMed

    Trollet, Capucine; Athanasopoulos, Takis; Popplewell, Linda; Malerba, Alberto; Dickson, George

    2009-07-01

    Muscular dystrophies refer to a group of inherited disorders characterized by progressive muscle weakness, wasting and degeneration. So far, there is no effective treatment but new gene-based therapies are currently being developed with particular noted advances in using conventional gene replacement strategies, RNA-based approaches, or cell-based gene therapy with a main focus on Duchenne muscular dystrophy (DMD). DMD is the most common and severe form of muscular dystrophy and current treatments are far from adequate. However, genetic and cell-based therapies, in particular exon skipping induced by antisense strategies, and corrective gene therapy via functionally engineered dystrophin genes hold great promise, with several clinical trials ongoing. Proof-of-concept of exon skipping has been obtained in animal models, and most recently in clinical trials; this approach represents a promising therapy for a subset of patients. In addition, gene-delivery-based strategies exist both for antisense-induced reading frame restoration, and for highly efficient delivery of functional dystrophin mini- and micro-genes to muscle fibres in vivo and muscle stem cells ex-vivo. In particular, AAV-based vectors show efficient systemic gene delivery to skeletal muscle directly in vivo, and lentivirus-based vectors show promise of combining ex vivo gene modification strategies with cell-mediated therapies.

  14. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    PubMed

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  15. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy

    PubMed Central

    Nalla, Arun K.; Trobridge, Grant D.

    2016-01-01

    Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC). Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV. PMID:28536375

  16. Challenges and Prospects for Alpha-1 Antitrypsin Deficiency Gene Therapy

    PubMed Central

    Wozniak, Joanna; Wandtke, Tomasz; Kopinski, Piotr; Chorostowska-Wynimko, Joanna

    2015-01-01

    Alpha-1 antitrypsin (AAT) is a protease inhibitor belonging to the serpin family. A number of identified mutations in the SERPINA1 gene encoding this protein result in alpha-1 antitrypsin deficiency (AATD). A decrease in AAT serum concentration or reduced biological activity causes considerable risk of chronic respiratory and liver disorders. As a monogenic disease, AATD appears to be an attractive target for gene therapy, particularly for patients with pulmonary dysfunction, where augmentation of functional AAT levels in plasma might slow down respiratory disease development. The short AAT coding sequence and its activity in the extracellular matrix would enable an increase in systemic serum AAT production by cellular secretion. In vitro and in vivo experimental AAT gene transfer with gamma-retroviral, lentiviral, adenoviral, and adeno-associated viral (AAV) vectors has resulted in enhanced AAT serum levels and a promising safety profile. Human clinical trials using intramuscular viral transfer with AAV1 and AAV2 vectors of the AAT gene demonstrated its safety, but did not achieve a protective level of AAT >11 μM in serum. This review provides an in-depth critical analysis of current progress in AATD gene therapy based on viral gene transfer. The factors affecting transgene expression levels, such as site of administration, dose and type of vector, and activity of the immune system, are discussed further as crucial variables for optimizing the clinical effectiveness of gene therapy in AATD subjects. PMID:26413996

  17. Challenges and Prospects for Alpha-1 Antitrypsin Deficiency Gene Therapy.

    PubMed

    Wozniak, Joanna; Wandtke, Tomasz; Kopinski, Piotr; Chorostowska-Wynimko, Joanna

    2015-11-01

    Alpha-1 antitrypsin (AAT) is a protease inhibitor belonging to the serpin family. A number of identified mutations in the SERPINA1 gene encoding this protein result in alpha-1 antitrypsin deficiency (AATD). A decrease in AAT serum concentration or reduced biological activity causes considerable risk of chronic respiratory and liver disorders. As a monogenic disease, AATD appears to be an attractive target for gene therapy, particularly for patients with pulmonary dysfunction, where augmentation of functional AAT levels in plasma might slow down respiratory disease development. The short AAT coding sequence and its activity in the extracellular matrix would enable an increase in systemic serum AAT production by cellular secretion. In vitro and in vivo experimental AAT gene transfer with gamma-retroviral, lentiviral, adenoviral, and adeno-associated viral (AAV) vectors has resulted in enhanced AAT serum levels and a promising safety profile. Human clinical trials using intramuscular viral transfer with AAV1 and AAV2 vectors of the AAT gene demonstrated its safety, but did not achieve a protective level of AAT >11 μM in serum. This review provides an in-depth critical analysis of current progress in AATD gene therapy based on viral gene transfer. The factors affecting transgene expression levels, such as site of administration, dose and type of vector, and activity of the immune system, are discussed further as crucial variables for optimizing the clinical effectiveness of gene therapy in AATD subjects.

  18. Pathogenic mechanisms and the prospect of gene therapy for choroideremia

    PubMed Central

    Dimopoulos, Ioannis S; Chan, Stephanie; MacLaren, Robert E

    2015-01-01

    Introduction Choroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss. Areas covered This article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies. Expert opinion While still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community. PMID:26251765

  19. Gene therapy for primary immunodeficiencies: current status and future prospects.

    PubMed

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed.

  20. Gene therapy of inherited retinal degenerations: prospects and challenges.

    PubMed

    Trapani, Ivana; Banfi, Sandro; Simonelli, Francesca; Surace, Enrico M; Auricchio, Alberto

    2015-04-01

    Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Dozens of promising proofs of concept have been obtained in animal models of inherited retinal degenerations (IRDs), and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. However, this progress has also generated new questions and posed challenges that need to be addressed to further expand the applicability of gene therapy in the eye, including safe delivery of viral vectors to the outer retina, treatment of dominant IRDs as well as of IRDs caused by mutations in large genes, and, finally, selection of the appropriate IRDs and patients to maximize the efficacy of gene transfer. This review summarizes the strategies that are currently being exploited to overcome these challenges and drive the clinical development of retinal gene therapy.

  1. Current and future prospects for hemophilia gene therapy.

    PubMed

    Ward, Peter; Walsh, Christopher E

    2016-07-01

    Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.

  2. Progress and prospects: gene therapy for inherited immunodeficiencies.

    PubMed

    Qasim, W; Gaspar, H B; Thrasher, A J

    2009-11-01

    Haematopoietic stem cell transplantation (HSCT) is now widely used to treat primary immunodeficiencies (PID). For patients with specific disorders (severe combined immunodeficiency (SCID)-X1, adenosine deaminase deficiency (ADA)-SCID, X-chronic granulomatous disease (CGD) and Wiskott-Aldrich Syndrome (WAS)) who lack a suitable human leukocyte antigen (HLA)-matched donor, gene therapy has offered an important alternative treatment option. The success of gene therapy can be attributed, in part, to the selective advantage offered to gene-corrected cells, the avoidance of graft-versus-host disease and to the use of pre-conditioning in patients with chemotherapy to facilitate engraftment of corrected cells. Adverse events have been encountered and this has led to detailed characterization of retroviral vector integration profiles. A new generation of self-inactivating retroviral and lentiviral vectors have been designed to address these safety concerns, and are at an advanced stage of preparation for the next phase of clinical testing.

  3. Gene therapy for PIDs: Progress, pitfalls and prospects

    PubMed Central

    Mukherjee, Sayandip; Thrasher, Adrian J.

    2013-01-01

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future. PMID:23566838

  4. Gene therapy for PIDs: progress, pitfalls and prospects.

    PubMed

    Mukherjee, Sayandip; Thrasher, Adrian J

    2013-08-10

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.

  5. Prospects for retinal cone-targeted gene therapy.

    PubMed

    Alexander, John J; Hauswirth, William W

    2008-06-01

    Gene therapy strategies that target therapeutic genes to retinal cones are a worthy goal both because cone photoreceptor diseases are severely vision limiting and because many retinal diseases that do not affect cones directly eventually lead to cone loss, the reason for eventual blindness. Human achromatopsia is a genetic disease of cones that renders them nonfunctional but otherwise intact. Thus, animal models of achromatopsia were used in conjunction with adeno-associated virus (AAV) vectors whose serotype efficiently transduces cones and with a promoter that limits transgene expression to cones. In the Gnat2(cpfl3) mouse model of one genetic form of human achromatopsia, we were able to demonstrate recovery of normal cone function and visual acuity after a single subretinal treatment of vector that supplied wild-type Gnat2 protein to cones. This validates the overall strategy of targeting cones using recombinant viral vectors and justifies a more complete examination of animal models of cone disease as a prelude to considering a clinical gene therapy trial. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  6. Gene therapy progress and prospects: stem cell plasticity.

    PubMed

    Kashofer, K; Bonnet, D

    2005-08-01

    properties similar to embryonic stem (ES) cells. These cells can be cultured and expanded in vitro without losing their stem cell potential making them an attractive target for cell therapy. Finally, it is still not clear if stem cells for various tissues are present in peripheral blood, or bone marrow and thus can be directly purified from these sources. Identification of putative tissue stem cells would be necessary before purification strategies can be devised. In this review, we discuss the evidence for these models, and the conflicting results obtained to date.

  7. Gene Therapy for PRPH2-Associated Ocular Disease: Challenges and Prospects

    PubMed Central

    Conley, Shannon M.; Naash, Muna I.

    2014-01-01

    The peripherin-2 (PRPH2) gene encodes a photoreceptor-specific tetraspanin protein called peripherin-2/retinal degeneration slow (RDS), which is critical for the formation and maintenance of rod and cone outer segments. Over 90 different disease-causing mutations in PRPH2 have been identified, which cause a variety of forms of retinitis pigmentosa and macular degeneration. Given the disease burden associated with PRPH2 mutations, the gene has long been a focus for preclinical gene therapy studies. Adeno-associated viruses and compacted DNA nanoparticles carrying PRPH2 have been successfully used to mediate improvement in the rds−/− and rds+/− mouse models. However, complexities in the pathogenic mechanism for PRPH2-associated macular disease coupled with the need for a precise dose of peripherin-2 to combat a severe haploinsufficiency phenotype have delayed the development of clinically viable genetic treatments. Here we discuss the progress and prospects for PRPH2-associated gene therapy. PMID:25167981

  8. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium

    PubMed Central

    Koirala, Adarsha; Conley, Shannon M.; Naash, Muna I.

    2013-01-01

    Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE. PMID:23796578

  9. Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors.

    PubMed

    Brunetti-Pierri, N; Ng, P

    2008-04-01

    Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field.

  10. Gene therapy progress and prospects: fetal gene therapy--first proofs of concept--some adverse effects.

    PubMed

    Coutelle, C; Themis, M; Waddington, S N; Buckley, S M K; Gregory, L G; Nivsarkar, M S; David, A L; Peebles, D; Weisz, B; Rodeck, C

    2005-11-01

    Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease based on the hypothesis that prenatal intervention may avoid the development of severe manifestations of early-onset disease, allow targeting of otherwise inaccessible tissues including expanding stem cell populations, induce tolerance against the therapeutic transgenic protein and thereby provide permanent somatic gene correction. This approach is particularly relevant in relation to prenatal screening programmes for severe genetic diseases as it could offer prevention as a third option to families faced with the prenatal diagnosis of a genetically affected child. Most investigations towards in utero gene therapy have been performed on mice and sheep fetuses as model animals for human disease and for the application of clinically relevant intervention techniques such as vector delivery by minimally invasive ultrasound guidance. Other animals such as dogs may serve as particular disease models and primates have to be considered in immediate preparation for clinical trials. Proof of principle for the hypothesis of fetal gene therapy has been provided during the last 2 years in mouse models for Crigler Najjar Disease, Leber's congenital amaurosis, Pompe's disease and haemophilia B showing long-term postnatal therapeutic effects and tolerance of the transgenic protein after in utero gene delivery. However, recently we have also observed a high incidence of liver tumours after in utero application of an early form of third-generation equine infectious anaemia virus vectors with SIN configuration. These findings highlight the need for more investigations into the safety and the ethical aspects of in utero gene therapy as well as for science-based public information on risks and benefits of this preventive gene therapy approach before application in humans can be contemplated.

  11. [Prospects of gene therapy in mucoviscidosis using viral infection of the airway epithelium].

    PubMed

    Bayle, J Y; Boucher, R C

    1994-01-01

    Mucoviscidosis is the most common severe inherited autosomal recessive disease. Since the gene has been recognised (cystic fibrosis transmembrane conductance regulator gene) (CFTR) the technique of genetic transfer has been applied to the airway epithelium. The prospect for gene therapy to treat the consequences of bronchopulmonary mucoviscidosis is now evident. The in vitro introduction of the normal CFTR human gene in epithelial cells has been obtained using recombinant retrovirus, adenovirus and parvovirus rendered defective for replication. The abnormal bioelectric phenotype of the cells from patients with mucoviscidosis has been corrected. Of these, only adenovirus and parvovirus have been capable of assuring effective genetic transfer by direct introduction into the airways. This data has been considered sufficient to justify starting clinical trials in man with adenovirus; the preliminary results confirm the possibility of correcting the chloride transport. Nevertheless the observation of an immune response and secondary inflammation raises ethical questions relative to the safety of such trials. This observation justifies research into an alternative non-viral technique such as employing liposomes. The authors have made a review of the data which may be established as a basis for genetic therapy for mucoviscidosis.

  12. An overview of the history, applications, advantages, disadvantages and prospects of gene therapy.

    PubMed

    Jafarlou, M; Baradaran, B; Saedi, T A; Jafarlou, V; Shanehbandi, D; Maralani, M; Othman, F

    2016-01-01

    Gene therapy has become a significant issue in science-related news. The principal concept of gene therapy is an experimental technique that uses genes to treat or prevent disease. Although gene therapy was originally conceived as a way to treat life-threatening disorders (inborn defects, cancers) refractory to conventional treatment, it is now considered for many non–life-threatening conditions, such as those adversely impacting a patient’s quality of life. An extensive range of efficacious vectors, delivery techniques, and approaches for developing gene-based interventions for diseases have evolved in the last decade. The lack of suitable treatment has become a rational basis for extending the scope of gene therapy. The aim of this review is to investigate the general methods by which genes are transferred and to give an overview to clinical applications. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. Gene therapy has made substantial progress albeit much slower than was initially predicted. This review also describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various surface disorders and diseases. The conclusion is that, with increased pathobiological understanding and biotechnological improvements, gene therapy will become a standard part of clinical practice.

  13. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  14. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies

    PubMed Central

    Boison, Detlev

    2009-01-01

    Deficiencies in the brain’s own adenosine-based seizure control system contribute to seizure generation. Consequently, reconstitution of adenosinergic neuromodulation constitutes a rational approach for seizure control. This review will critically discuss focal adenosine augmentation strategies and their potential for antiepileptic and disease modifying therapy. Due to systemic side effects of adenosine focal adenosine augmentation – ideally targeted to an epileptic focus – becomes a therapeutic necessity. This has experimentally been achieved in kindled seizure models as well as in post status epilepticus models of spontaneous recurrent seizures using three different therapeutic strategies that will be discussed here: (i) Polymer-based brain implants that were loaded with adenosine; (ii) Brain implants comprised of cells engineered to release adenosine and embedded in a cell-encapsulation device; (iii) Direct transplantation of stem cells engineered to release adenosine. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme adenosine kinase (ADK) in rodent and human cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. New developments and therapeutic challenges in using AATs for epilepsy therapy will critically be evaluated. PMID:19428218

  15. Gene Therapy

    MedlinePlus

    ... cells in an effort to treat or stop disease. Genes contain your DNA — the code that controls much of your body's form and function, from making you grow taller to regulating your body systems. Genes that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds ...

  16. Prospects for the Use of Artificial Chromosomes and Minichromosome-Like Episomes in Gene Therapy

    PubMed Central

    Pérez-Luz, Sara; Díaz-Nido, Javier

    2010-01-01

    Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia) has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy. PMID:20862363

  17. Prospects for the use of artificial chromosomes and minichromosome-like episomes in gene therapy.

    PubMed

    Pérez-Luz, Sara; Díaz-Nido, Javier

    2010-01-01

    Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia) has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy.

  18. Gene Therapy

    PubMed Central

    Scheller, E.L.; Krebsbach, P.H.

    2009-01-01

    Gene therapy is defined as the treatment of disease by transfer of genetic material into cells. This review will explore methods available for gene transfer as well as current and potential applications for craniofacial regeneration, with emphasis on future development and design. Though non-viral gene delivery methods are limited by low gene transfer efficiency, they benefit from relative safety, low immunogenicity, ease of manufacture, and lack of DNA insert size limitation. In contrast, viral vectors are nature’s gene delivery machines that can be optimized to allow for tissue-specific targeting, site-specific chromosomal integration, and efficient long-term infection of dividing and non-dividing cells. In contrast to traditional replacement gene therapy, craniofacial regeneration seeks to use genetic vectors as supplemental building blocks for tissue growth and repair. Synergistic combination of viral gene therapy with craniofacial tissue engineering will significantly enhance our ability to repair and replace tissues in vivo. PMID:19641145

  19. Gene therapy.

    PubMed

    Williamson, B

    1982-07-29

    Gene therapy is not yet possible, but may become feasible soon, particularly for well understood gene defects. Although treatment of a patient raises no ethical problems once it can be done well, changing the genes of an early embryo is more difficult, controversial and unlikely to be required clinically.

  20. Gene therapy for haemophilia: prospects and challenges to prevent or reverse inhibitor formation.

    PubMed

    Scott, David W; Lozier, Jay N

    2012-02-01

    Monogenic hereditary diseases, such as haemophilia A and B, are ideal targets for gene therapeutic approaches. While these diseases can be treated with protein therapeutics, such as factor VIII (FVIII) or IX (FIX), the notion that permanent transfer of the genes encoding these factors can cure haemophilia is very attractive. An underlying problem with a gene therapy approach, however, is the patient's immune response to the therapeutic protein (as well as to the transmission vector), leading to the formation of inhibitory antibodies. Even more daunting is reversing an existing immune response in patients with pre-existing inhibitors. In this review, we will describe the laboratory and clinical progress, and the challenges met thus far, in achieving the goal of gene therapy efficacy, with a focus on the goal of tolerance induction.

  1. Progress and prospects of gene therapy clinical trials for the muscular dystrophies.

    PubMed

    Bengtsson, Niclas E; Seto, Jane T; Hall, John K; Chamberlain, Jeffrey S; Odom, Guy L

    2016-04-15

    Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.

  2. Prospects for the therapeutic application of lentivirus-based gene therapy to HIV-1 infection.

    PubMed

    Yamamoto, Takuya; Tsunetsugu-Yokota, Yasuko

    2008-02-01

    Highly active antiretroviral therapy is not sufficient to fully control HIV replication and problems of side effects and escape mutation have emerged. Current prophylactic and therapeutic vaccine strategies appear to be unable to confer full protection. However, given the rapid recent progress made in RNA interference and lentivirus technologies, it may soon be possible to develop effective gene therapies against HIV infection. We describe here the recent progress made in the lentivirus-based HIV-1-targeting RNAi system and the possibility that this system can be used to generate an anti-HIV-1 gene therapy. We speculate that this system would be most useful if it would be used in a coordinated manner with vaccines that can initiate and maintain potent anti-HIV immunity.

  3. [Current status and future prospects of stem cell gene therapy for primary immunodeficiency].

    PubMed

    Uchiyama, Toru; Onodera, Masafumi

    2013-01-01

    Patients affected by primary immunodeficiency (PID) can be cured by allogeneic hematopoietic stem cell transplantation (HSCT). In the absence of HLA-matched donors, however, incidence of HSCT-related complications is observed. Therefore, gene therapy has been developed as a highly desirable alternative treatment for patients lacking suitable donors. Retrovirus-based gene therapy was begun in 1990 for the patients of adenosine deaminase deficiency, followed by X-linked severe combined immunodeficiency, Wiskott-Aldrich syndrome and chronic granulomatous disease. Although treated patients have had excellent immune reconstitution and resolution of ongoing infections, complications such as a lymphoproliferative syndrome and a disappearance of gene-modified cells were observed in some clinical trials. To overcome these, ongoing and upcoming clinical trials use some new strategies. The use of preconditioning chemotherapy makes space in the bone marrow for the gene-treated stem cells and allows engraftment of multi lineage stem/progenitor cells. Self-inactivating vectors in which strong enhancers of long terminal repeat are eliminated may reduce the risk of insertional activation of proto-oncogene resulting in leukemia. These modifications will surely increase the safety and efficacy of stem cell gene therapy for PID.

  4. Ethical issues in and beyond prospective clinical trials of human gene therapy.

    PubMed

    Fletcher, J C

    1985-08-01

    As the potential for the first human trials of somatic cell gene therapy nears, two ethical issues are examined: problems of moral choice for members of institutional review boards who consider the first protocols, for parents, and for the clinical researchers, and the special protections that may be required for the infants and children to be involved, and ethical objections to somatic cell therapy made by those concerned about a putative inevitable progression of genetic knowledge from therapy to mass genetic engineering in human reproduction. The author's viewpoint is that a consensus exists on the required moral approach to somatic cell therapy, but that no moral approach yet exists for experiments beyond this level, especially in the germline cells of human beings.

  5. Gene Therapy.

    PubMed

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  6. Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy

    PubMed Central

    Yan, Ziying; Stewart, Zoe A.; Sinn, Patrick L.; Olsen, John C.; Hu, Jim; McCray, Paul B.

    2015-01-01

    Abstract Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies. PMID:25675143

  7. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects.

    PubMed

    Mansilla-Soto, Jorge; Riviere, Isabelle; Boulad, Farid; Sadelain, Michel

    2016-04-01

    The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade.

  8. Gene therapy.

    PubMed

    Drugan, A; Miller, O J; Evans, M I

    1987-01-01

    Severe genetic disorders are potentially correctable by the addition of a normal gene into tissues. Although the technical problems involving integration, stable expression, and insertional damage to the treated cell are not yet fully solved, enough scientific progress has already been made to consider somatic cell gene therapy acceptable from both the ethical and scientific viewpoints. The resolutions to problems evolving from somatic cell gene therapy will help to overcome the technical difficulties encountered presently with germ line gene manipulation. This procedure would then become morally permissible as it will cause, in time, a reduction in the pool of abnormal genes in the population. Enhancement genetic engineering is technically feasible but morally unacceptable. Eugenic genetic engineering is not technically possible or ethically permissible in the foreseeable future.

  9. Prospects for herpes-simplex-virus thymidine-kinase and cytokine gene transduction as immunomodulatory gene therapy for prostate cancer.

    PubMed

    Hassan, W; Sanford, M A; Woo, S L; Chen, S H; Hall, S J

    2000-04-01

    In completed and ongoing clinical trials, adenovirus-mediated (Ad.) expression of herpes-simplex-virus thymidine-kinase (HSV-tk) gene transduction followed by ganciclovir (GCV) therapy has produced limited toxicity and evidence of antitumor activity following injection of the prostate. Furthermore, this system has been shown to direct systemic antitumor activity in several experimental cancer models, including that of prostate cancer, which may serve as the basis for in-situ immunomodulatory gene therapy. In a mouse model of prostate cancer, natural killer (NK) cells have been identified as the mediator of antimetastatic activity following Ad.HSV-tk + GCV, resulting in the combination of Ad.HSV-tk and adenovirus-mediated expression of interleukin 12 (Ad.IL-12) to exploit this cytokine's ability to enhance NK proliferation and cytotoxicity. Combination therapy demonstrated superior local and systemic growth suppression over that obtained with either therapy alone. Importantly, when the metastatic tumor burden was increased to an extent that negated the growth-suppressive activity directed by Ad.HSV-tk + GCV or Ad.IL-12 alone, combination therapy continued to demonstrate significant growth suppression. Examination of tumor-infiltrating lymphocytes documented enhanced NK lytic activity following combination therapy. Therefore, it appears that the combination of Ad.HSV-tk and Ad.IL-12 should be validated in a clinical trial for the treatment of prostate cancer.

  10. Gene therapy for liver regeneration: Experimental studies and prospects for clinical trials

    PubMed Central

    Atta, Hussein M

    2010-01-01

    The liver is an exceptional organ, not only because of its unique anatomical and physiological characteristics, but also because of its unlimited regenerative capacity. Unfolding of the molecular mechanisms that govern liver regeneration has allowed researchers to exploit them to augment liver regeneration. Dramatic progress in the field, however, was made by the introduction of the powerful tool of gene therapy. Transfer of genetic materials, such as hepatocyte growth factor, using both viral and non-viral vectors has proved to be successful in augmenting liver regeneration in various animal models. For future clinical studies, ongoing research aims at eliminating toxicity of viral vectors and increasing transduction efficiency of non-viral vectors, which are the main drawbacks of these systems. Another goal of current research is to develop gene therapy that targets specific liver cells using receptors that are unique to and highly expressed by different liver cell types. The outcome of such investigations will, undoubtedly, pave the way for future successful clinical trials. PMID:20731015

  11. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy

    PubMed Central

    Williams, David S.

    2009-01-01

    Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects, retinal phenotypes are relatively mild and have been difficult to characterize. The retinal functions of the Usher proteins are still largely unknown. Protein binding studies have suggested many interactions among the proteins, and a model of interaction among all the proteins in the photoreceptor synapse has been proposed. However this model is not supported by localization data from some laboratories, or the indication of any synaptic phenotype in mutant mice. An earlier suggestion, based on patient pathologies, of Usher protein function in the photoreceptor cilium continues to gain support from immunolocalization and mutant mouse studies, which are consistent with Usher protein interaction in the photoreceptor ciliary/periciliary region. So far, the most characterized Usher protein is myosin VIIa. It is present in the apical RPE and photoreceptor ciliary/periciliary region, where it is required for organelle transport and clearance of opsin from the connecting cilium, respectively. Usher syndrome is amenable to gene replacement therapy, but also has some specific challenges. Progress in this treatment approach has been achieved by correction of mutant phenotypes in Myo7a-null mouse retinas, following lentiviral delivery of MYO7A. PMID:17936325

  12. 78 FR 26794 - Prospective Grant of Start-Up Exclusive Evaluation Option License Agreement: Gene Therapy and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... License Agreement: Gene Therapy and Cell-Based Therapy for Cardiac Arrhythmias AGENCY: National Institutes... limited to ``Gene therapy and cell-based therapy for cardiac arrhythmias in humans.'' Upon the expiration..., as well as cardiac cells or cardiac-like cells derived from embryonic stem cells or mesenchymal...

  13. Prospects of Neurotrophic Factors for Parkinson's Disease: Comparison of Protein and Gene Therapy.

    PubMed

    Domanskyi, Andrii; Saarma, Mart; Airavaara, Mikko

    2015-08-01

    Neurotrophic factors (NTFs) hold great potential as therapeutic agents in the treatment of neurodegenerative conditions, including Parkinson's disease (PD), in which the progressive loss of dopamine neurons in the substantia nigra pars compacta causes severe motor symptoms. There is extensive evidence that in preclinical animal models of PD NTFs are both neuroprotective and neurorestorative. In particular, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), cerebral dopamine neurotrophic factor, and mesencephalic astrocyte-derived neurotrophic factor have shown great potential to restore dopamine neurocircuitry. Although some previous clinical trials have demonstrated limited efficacy of GDNF and NRTN, there are several concerns raised with these studies. Moreover, open-label studies with GDNF as well as a study with NRTN showed clinical improvement, particularly in patients with early-stage PD. Indeed, as previous clinical trials with NTFs were associated with several technical problems, there is a great need for further investigations. In this review we discuss the emerging and existing possibilities to use NTFs as neurorestorative agents and the ways to improve their efficacy, and compare gene therapy and recombinant protein therapy approaches for restoring the dopamine circuitry in PD.

  14. Transgenic Studies with a Keratin Promoter-Driven Growth Hormone Transgene: Prospects for Gene Therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zinkel, Sandra; Polonsky, Kenneth; Fuchs, Elaine

    1997-01-01

    Keratinocytes are potentially appealing vehicles for the delivery of secreted gene products because they can be transferred to human skin by the relatively simple procedure of grafting. Adult human keratinocytes can be efficiently propagated in culture with sufficient proliferative capacity to produce enough epidermis to cover the body surface of an average adult. However, the feasibility of delivering secreted proteins through skin grafting rests upon (i) the strength of the promoter in keratinocytes and (ii) the efficiency of protein transport through the basement membrane of the stratified epithelium and into the bloodstream. In this paper, we use transgenic technology to demonstrate that the activity of the human keratin 14 promoter remains high in adult skin and that keratinocyte-derived human growth hormone (hGH) can be produced, secreted, and transported to the bloodstream of mice with efficiency that is sufficient to exceed by an order of magnitude the circulating hGH concentration in growing children. Transgenic skin grafts from these adults continue to produce and secrete hGH stably, at ≈ 1/10 physiological levels in the bloodstream of nontransgenic recipient mice. These studies underscore the utility of the keratin 14 promoter for expressing foreign transgenes in keratinocytes and demonstrate that keratinocytes can be used as effective vehicles for transporting factors to the bloodstream and for eliciting metabolic changes. These findings have important implications for considering the keratinocyte as a possible vehicle for gene therapy.

  15. Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy.

    PubMed

    Jiang, L; Vader, P; Schiffelers, R M

    2017-03-01

    Nucleic acid-based drugs offer a potentially effective tool for treatment of a variety of diseases, including cancer, cardiovascular diseases, neurological disorders and infectious diseases. However, clinical applications are hindered by instability of RNA molecules in the circulation and lack of efficient vectors that can deliver RNAs to target tissues and into diseased target cells. Synthetic polymer and lipids as well as virus-based vectors are among the most widely explored vehicles for RNA delivery, but clinical progress has been limited as a result of issues related to toxicity, immunogenicity and low efficiency. Most recently, the discovery that extracellular vesicles (EVs) are endogenous RNA carriers, which may display better biocompatibility and higher delivery efficiency as compared with the synthetic systems, has provided a ray of hope in coping with the delivery dilemma, and EV-based gene therapy has already sparked general interest both in academia and industry. In this review, the current knowledge on EV biology and their role in cell-cell communication will be summarized. Promises of EVs as drug carriers and recent technologies on tailoring EVs' biological attributes will be included, and preclinical studies in which EVs have shown promise for therapeutic RNA delivery will be discussed.

  16. Gene therapy research in Asia.

    PubMed

    Deng, H-X; Wang, Y; Ding, Q-R; Li, D-L; Wei, Yu-Quan

    2017-09-07

    Gene therapy has shown great potential for the treatment of diseases that previously were either untreatable or treatable but not curable with conventional schemes. Recent progress in clinical gene therapy trials has emerged in various severe diseases, including primary immunodeficiencies, leukodystrophies, Leber's congenital amaurosis, haemophilia, as well as retinal dystrophy. The clinical transformation and industrialization of gene therapy in Asia have been remarkable and continue making steady progress. A total of six gene therapy-based products have been approved worldwide, including two drugs from Asia. This review aims to highlight recent progress in gene therapy clinical trials and discuss the prospects for the future in China and wider Asia.Gene Therapy advance online publication, 7 September 2017; doi:10.1038/gt.2017.62.

  17. Gene therapy in pancreatic cancer.

    PubMed

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-10-07

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.

  18. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  19. Safe Gene Therapy for Type 1 Diabetes

    DTIC Science & Technology

    2010-10-01

    Safe Gene Therapy for Type 1 Diabetes PRINCIPAL INVESTIGATOR: Massimo Trucco, M.D...4. TITLE AND SUBTITLE Safe Gene Therapy for Type 1 Diabetes New Advanced Technology to Improve Prediction and Prevention 5a. CONTRACT NUMBER...scientific skepticism, the prospect of gene therapy -based treatments remains intriguing and the use of human stem cell research carries with it enor- mous

  20. Hadron therapy: history, status, prospects

    NASA Astrophysics Data System (ADS)

    Klenov, G. I.; Khoroshkov, V. S.

    2016-08-01

    A brief historical review is given of external radiation therapy (RT), one of the main cancer treatment methods along with surgery and chemotherapy. Cellular mechanisms of radiation damage are described. Special attention is paid to hadron (proton and ion) therapy, its history, results, problems, challenges, current trends, and prospects. Undeniably great contributions to proton therapy have been made by Russian researchers, notably at the experimental centers that have operated since the mid-20th century at the Joint Institute for Nuclear Research, the A I Alikhanov Institute for Theoretical and Experimental Physics (ITEP), and the B P Konstantinov Petersburg Institute of Nuclear Physics. A quarter of the global clinical experience was accumulated by 1990 at the world's largest ITEP-hosted multicabin proton therapy center.

  1. Gene therapy for blindness.

    PubMed

    Sahel, José-Alain; Roska, Botond

    2013-07-08

    Sight-restoring therapy for the visually impaired and blind is a major unmet medical need. Ocular gene therapy is a rational choice for restoring vision or preventing the loss of vision because most blinding diseases originate in cellular components of the eye, a compartment that is optimally suited for the delivery of genes, and many of these diseases have a genetic origin or genetic component. In recent years we have witnessed major advances in the field of ocular gene therapy, and proof-of-concept studies are under way to evaluate the safety and efficacy of human gene therapies. Here we discuss the concepts and recent advances in gene therapy in the retina. Our review discusses traditional approaches such as gene replacement and neuroprotection and also new avenues such as optogenetic therapies. We conjecture that advances in gene therapy in the retina will pave the way for gene therapies in other parts of the brain.

  2. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  3. Gene therapy review.

    PubMed

    Moss, Joseph Anthony

    2014-01-01

    The use of genes to treat disease, more commonly known as gene therapy, is a valid and promising tool to manage and treat diseases that conventional drug therapies cannot cure. Gene therapy holds the potential to control a wide range of diseases, including cystic fibrosis, heart disease, diabetes, cancer, and blood diseases. This review assesses the current status of gene therapy, highlighting therapeutic methodologies and applications, terminology, and imaging strategies. This article presents an overview of roadblocks associated with each therapeutic methodology, along with some of the scientific, social, and ethical issues associated with gene therapy.

  4. Cell and gene therapy.

    PubMed

    Rao, Rajesh C; Zacks, David N

    2014-01-01

    Replacement or repair of a dysfunctional gene combined with promoting cell survival is a two-pronged approach that addresses an unmet need in the therapy of retinal degenerative diseases. In this chapter, we discuss various strategies toward achieving both goals: transplantation of wild-type cells to replace degenerating cells and to rescue gene function, sequential gene and cell therapy, and in vivo reprogramming of rods to cones. These approaches highlight cutting-edge advances in cell and gene therapy, and cellular lineage conversion in order to devise new therapies for various retinal degenerative diseases.

  5. Gene therapy for haemophilia.

    PubMed

    Sharma, Akshay; Easow Mathew, Manu; Sriganesh, Vasumathi; Neely, Jessica A; Kalipatnapu, Sasank

    2014-11-14

    Haemophilia is a genetic disorder which is characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 06 November 2014. Eligible trials included randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. No trials of gene therapy for haemophilia were found. No trials of gene therapy for haemophilia were identified. No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the effects of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.

  6. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.

    PubMed Central

    Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C

    1996-01-01

    A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763

  7. Antiangiogenic Eye Gene Therapy.

    PubMed

    Corydon, Thomas J

    2015-08-01

    The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.

  8. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  9. Gene therapy in the cornea.

    PubMed

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  10. Human gene therapy.

    PubMed

    Sandhu, J S; Keating, A; Hozumi, N

    1997-01-01

    Human gene therapy and its application for the treatment of human genetic disorders, such as cystic fibrosis, cancer, and other diseases, are discussed. Gene therapy is a technique in which a functioning gene is inserted into a human cell to correct a genetic error or to introduce a new function to the cell. Many methods, including retroviral vectors and non-viral vectors, have been developed for both ex vivo and in vivo gene transfer into cells. Vectors need to be developed that efficiently transfer genes to target cells, and promoter systems are required that regulate gene expression according to physiologic needs of the host cell. There are several safety and ethical issues related to manipulating the human genome that need to be resolved. Current gene therapy efforts focus on gene insertion into somatic cells only. Gene therapy has potential for the effective treatment of genetic disorders, and gene transfer techniques are being used for basic research, for example, in cancer, to examine the underlying mechanism of disease. There are still many technical obstacles to be overcome before human gene therapy can become a routine procedure. The current human genome project provides the sequences of a vast number of human genes, leading to the identification, characterization, and understanding of genes that are responsible for many human diseases.

  11. [Gene therapy and ethics].

    PubMed

    Müller, H; Rehmann-Sutter, C

    1995-01-10

    Gene therapy represents a new strategy to treat human disorders. It was originally conceived as a cure for severe monogenetic disorders. Since its conception, the spectrum of possible application for gene therapy has been to include the treatment of acquired diseases, such as various forms of cancer and some viral infections, most notably human immune deficiency virus (HIV) and hepatitis B virus. Since somatic gene therapy does not cause substantially new ethical problems, it has gained broad approval. This is by no means the case with germ-line gene therapy. Practically all bodies who were evaluating the related ethical aspects wanted to ban its medical application on grounds of fundamental and pragmatic considerations. In this review, practical and ethical views concerning gene therapy are summarized which were presented at the "Junitagung 1994" of the Swiss Society for Biomedical Ethics in Basle.

  12. Immunotherapy and gene therapy.

    PubMed

    Simpson, Elizabeth

    2004-02-01

    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  13. Gene therapy for haemophilia.

    PubMed

    Sharma, Akshay; Easow Mathew, Manu; Sriganesh, Vasumathi; Reiss, Ulrike M

    2016-12-20

    Haemophilia is a genetic disorder characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. This is an update of a published Cochrane Review. To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 18 August 2016. Eligible trials include randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation for individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. No trials of gene therapy for haemophilia were found. No trials of gene therapy for haemophilia were identified. No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the safety and efficacy of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.

  14. Regulated Gene Therapy.

    PubMed

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  15. Parkinson's disease: gene therapies.

    PubMed

    Coune, Philippe G; Schneider, Bernard L; Aebischer, Patrick

    2012-04-01

    With the recent development of effective gene delivery systems, gene therapy for the central nervous system is finding novel applications. Here, we review existing viral vectors and discuss gene therapy strategies that have been proposed for Parkinson's disease. To date, most of the clinical trials were based on viral vectors to deliver therapeutic transgenes to neurons within the basal ganglia. Initial trials used genes to relieve the major motor symptoms caused by nigrostriatal degeneration. Although these new genetic approaches still need to prove more effective than existing symptomatic treatments, there is a need for disease-modifying strategies. The investigation of the genetic factors implicated in Parkinson's disease is providing precious insights in disease pathology that, combined with innovative gene delivery systems, will hopefully offer novel opportunities for gene therapy interventions to slow down, or even halt disease progression.

  16. Gene therapy for hemophilia.

    PubMed

    Hortelano, G; Chang, P L

    2000-01-01

    Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.

  17. Prospective Randomized Phase 2 Trial of Intensity Modulated Radiation Therapy With or Without Oncolytic Adenovirus-Mediated Cytotoxic Gene Therapy in Intermediate-Risk Prostate Cancer

    SciTech Connect

    Freytag, Svend O.; Stricker, Hans; Lu, Mei; Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho; Peabody, James; Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang; Oja-Tebbe, Nancy; Bourgeois, Renee; Gupta, Nilesh; Lane, Zhaoli; Rodriguez, Ron; DeWeese, Theodore; and others

    2014-06-01

    Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.

  18. Gene therapy for hemophilia.

    PubMed

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia.

  19. Gene therapy in periodontics.

    PubMed

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  20. Gene therapy for hemophilia.

    PubMed

    Ponder, Katherine P

    2006-09-01

    This review will highlight the progress achieved in the past 2 years on using gene therapy to treat hemophilia in animals and humans. There has been substantial progress in using gene therapy to treat animals with hemophilia. Novel approaches for hemophilia A in mice include expression of Factor VIII in blood cells or platelets derived from ex-vivo transduced hematopoietic stem cells, or in-vivo transfer of transposons expressing Factor VIII into endothelial cells or hepatocytes. Advances in large-animal models include the demonstration that neonatal administration of a retroviral vector expressing canine Factor VIII completely corrected hemophilia A in dogs, and that double-stranded adeno-associated virus vectors resulted in expression of Factor IX that is 28-fold that obtained using single-stranded adeno-associated virus vectors. In humans, one hemophilia B patient achieved 10% of normal activity after liver-directed gene therapy with a single-stranded adeno-associated virus vector expressing human Factor IX. Expression fell at 1 month, however, which was likely due to an immune response to the modified cells. Gene therapy has been successful in a patient with hemophilia B, but expression was unstable due to an immune response. Abrogating immune responses is the next major hurdle for achieving long-lasting gene therapy.

  1. Gene therapy for newborns.

    PubMed

    Kohn, D B; Parkman, R

    1997-07-01

    Application of gene therapy to treat genetic and infectious diseases may have several advantages if performed in newborns. Because of the minimal adverse effect of the underlying disease on cells of the newborn, the relatively small size of infants, and the large amount of future growth, gene therapy may be more successful in newborns than in older children or adults. The presence of umbilical cord blood from newborns provides a unique and susceptible target for the genetic modification of hematopoietic stem cells. In our first trial of gene therapy in newborns, we inserted a normal adenosine deaminase gene into umbilical cord blood cells of three neonates with a congenital immune deficiency. The trial demonstrated the successful transduction and engraftment of stem cells, which continue to contribute to leukocyte production more than 3 years later. A similar approach may be taken to insert genes that inhibit replication of HIV-1 into umbilical cord blood cells of HIV-1-infected neonates. Many other metabolic and infectious disorders could be treated by gene therapy during the neonatal period if prenatal diagnoses are made and the appropriate technical and regulatory requirements have been met.

  2. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    PubMed

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  3. Gene Therapy for Skin Diseases

    PubMed Central

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab

    2014-01-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically. PMID:24692191

  4. Noncoding RNA for Cancer Gene Therapy.

    PubMed

    Zhong, Xiaomin; Zhang, Dongmei; Xiong, Minmin; Zhang, Lin

    Gene therapy is a prospective strategy to modulate gene expression level in specific cells to treat human inherited diseases, cancers, and acquired disorders. A subset of noncoding RNAs, microRNAs (miRNAs) and small interference RNAs (siRNAs), compose an important class of widely used effectors for gene therapy, especially in cancer treatment. Functioning through the RNA interference (RNAi) mechanism, miRNA and siRNA show potent ability in silencing oncogenic factors for cancer gene therapy. For a better understanding of this field, we reviewed the mechanism and biological function, the principles of design and synthesis, and the delivery strategies of noncoding RNAs with clinical potentials in cancer gene therapy.

  5. Alphaviruses in Gene Therapy

    PubMed Central

    Lundstrom, Kenneth

    2015-01-01

    Alphavirus vectors present an attractive approach for gene therapy applications due to the rapid and simple recombinant virus particle production and their broad range of mammalian host cell transduction. Mainly three types of alphavirus vectors, namely naked RNA, recombinant particles and DNA/RNA layered vectors, have been subjected to preclinical studies with the goal of achieving prophylactic or therapeutic efficacy, particularly in oncology. In this context, immunization with alphavirus vectors has provided protection against challenges with tumor cells. Moreover, alphavirus intratumoral and systemic delivery has demonstrated substantial tumor regression and significant prolonged survival rates in various animal tumor models. Recent discoveries of the strong association of RNA interference and disease have accelerated gene therapy based approaches, where alphavirus-based gene delivery can play an important role. PMID:25961488

  6. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy and ... by a "bad" gene. continue Two Types of Gene Therapy The two forms of gene therapy are: Somatic ...

  7. The ethics of gene therapy.

    PubMed

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  8. Gene therapy for mucopolysaccharidosis

    PubMed Central

    Ponder, Katherine P; Haskins, Mark E

    2012-01-01

    Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved. PMID:17727324

  9. Transposons for gene therapy!

    PubMed

    Ivics, Zoltán; Izsvák, Zsuzsanna

    2006-10-01

    Gene therapy is a promising strategy for the treatment of several inherited and acquired human diseases. Several vector platforms exist for the delivery of therapeutic nucleic acids into cells. Vectors based on viruses are very efficient at introducing gene constructs into cells, but their use has been associated with genotoxic effects of vector integration or immunological complications due to repeated administration in vivo. Non-viral vectors are easier to engineer and manufacture, but their efficient delivery into cells is a major challenge, and the lack of their chromosomal integration precludes long-term therapeutic effects. Transposable elements are non-viral gene delivery vehicles found ubiquitously in nature. Transposon-based vectors have the capacity of stable genomic integration and long-lasting expression of transgene constructs in cells. Molecular reconstruction of Sleeping Beauty, an ancient transposon in fish, represents a cornerstone in applying transposition-mediated gene delivery in vertebrate species, including humans. This review summarizes the state-of-the-art in the application of transposable elements for therapeutic gene transfer, and identifies key targets for the development of transposon-based gene vectors with enhanced efficacy and safety for human applications.

  10. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  11. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  12. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    PubMed

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  13. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  14. [Basic principles of gene therapy].

    PubMed

    Vieweg, J

    1996-09-01

    The rapid development of recombinant DNA technology and our enhanced understanding of the genetic basis of human disease has facilitated the development of new molecular therapeutic modalities, termed gene therapy. Gene therapy involves the transfer of functional genes into somatic cells and their expression in target tissues in order to replace absent genes, correct defective genes, or induce antitumoral activity in the tumor-bearing host. Currently, an increasing number of gene therapy strategies are being investigated in experimental and clinical trials. Despite substantial progress, a number of technical and logistical hurdles must still be overcome before gene therapy can be safety and effectively applied in the human patient. Since gene therapy involves complex cell processing and can be time consuming and costly, simplifications or even alternative approaches will be necessary in order to establish this therapy as suitable for clinical use. This report reviews various gene therapy strategies and gene delivery techniques currently under clinical or experimental investigation. Special emphasis is given to cytokine gene therapy using gene-modified tumor vaccines for cancer treatment.

  15. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  16. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  17. Gene regulation in cancer gene therapy strategies.

    PubMed

    Scanlon, Ian; Lehouritis, Panos; Niculescu-Duvaz, Ion; Marais, Richard; Springer, Caroline J

    2003-10-01

    Regulation of expression in gene therapy is considered to be a very desirable goal, preventing toxic effects and improving biological efficacy. A variety of systems have been reported in an ever widening range of applications, this paper describes these systems with specific reference to cancer gene therapy.

  18. [Gene therapy. Methods and applications].

    PubMed

    Jonassen, T O; Grinde, B; Orstavik, I

    1994-04-10

    Modern techniques in molecular biology and cell biology will probably make gene therapy, i.e. therapeutic transfer of genes to the patient's cells, available for treatment of many genetic diseases, cancer, cardiovascular diseases and infectious diseases. For genetic diseases the treatment will involve the transfer of a functional copy of the defect gene. The strategy for treatment of cancer may include the transfer of genes that induce the death of cancer cells via toxic molecules, and genes that enhance the immune response to tumour cells. After several years of preclinical studies, the National Institutes of Health in the USA has, up to February 1994, approved 56 protocols for clinical trials in human gene therapy. Most of the protocols include use of viruses to aid gene delivery. This paper briefly reviews the scientific basis for gene therapy, and discusses some clinical applications of somatic gene therapy in humans.

  19. Gene therapy for psychiatric disorders.

    PubMed

    Gelfand, Yaroslav; Kaplitt, Michael G

    2013-01-01

    Gene therapy has become of increasing interest in clinical neurosurgery with the completion of numerous clinical trials for Parkinson disease, Alzheimer disease, and pediatric genetic disorders. With improved understanding of the dysfunctional circuitry mediating various psychiatric disorders, deep brain stimulation for refractory psychiatric diseases is being increasingly explored in human patients. These factors are likely to facilitate development of gene therapy for psychiatric diseases. Because delivery of gene therapy agents would require the same surgical techniques currently being employed for deep brain stimulation, neurosurgeons are likely to lead the development of this field, as has occurred in other areas of clinical gene therapy for neurologic disorders. We review the current state of gene therapy for psychiatric disorders and focus specifically on particular areas of promising research that may translate into human trials for depression, drug addiction, obsessive-compulsive disorder, and schizophrenia. Issues that are relatively unique to psychiatric gene therapy are also discussed.

  20. Progress in gene therapy for neurological disorders.

    PubMed

    Simonato, Michele; Bennett, Jean; Boulis, Nicholas M; Castro, Maria G; Fink, David J; Goins, William F; Gray, Steven J; Lowenstein, Pedro R; Vandenberghe, Luk H; Wilson, Thomas J; Wolfe, John H; Glorioso, Joseph C

    2013-05-01

    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy.

  1. Progress in gene therapy for neurological disorders

    PubMed Central

    Simonato, Michele; Bennett, Jean; Boulis, Nicholas M.; Castro, Maria G.; Fink, David J.; Goins, William F.; Gray, Steven J.; Lowenstein, Pedro R.; Vandenberghe, Luk H.; Wilson, Thomas J.; Wolfe, John H.; Glorioso, Joseph C.

    2013-01-01

    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy. PMID:23609618

  2. Gene Therapy for Autoimmune Disease.

    PubMed

    Shu, Shang-An; Wang, Jinjun; Tao, Mi-Hua; Leung, Patrick S C

    2015-10-01

    Advances in understanding the immunological and molecular basis of autoimmune diseases have made gene therapy a promising approach to treat the affected patients. Gene therapy for autoimmune diseases aims to regulate the levels of proinflammatory cytokines or molecules and the infiltration of lymphocytes to the effected sites through successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain the immune tolerance to the relevant autoantigens and improve clinical outcomes for patients. Here, we summarize the recent progress in identifying genes responsible for autoimmune diseases and present examples where gene therapy has been applied as treatments or prevention in autoimmune diseases both in animal models and the clinical trials. Discussion on the advantages and pitfalls of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of autoimmune diseases.

  3. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life.

  4. Gene therapy for human genetic disease?

    PubMed

    Friedmann, T; Roblin, R

    1972-03-03

    enhancing the technical prospects for gene therapy.

  5. Gene therapy for hemophilia.

    PubMed

    Rogers, Geoffrey L; Herzog, Roland W

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.

  6. Gene therapy for hemophilia

    PubMed Central

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  7. Gene therapy for deafness.

    PubMed

    Kohrman, D C; Raphael, Y

    2013-12-01

    Hearing loss is the most common sensory deficit in humans and can result from genetic, environmental or combined etiologies that prevent normal function of the cochlea, the peripheral sensory organ. Recent advances in understanding the genetic pathways that are critical for the development and maintenance of cochlear function, as well as the molecular mechanisms that underlie cell trauma and death, have provided exciting opportunities for modulating these pathways to correct genetic mutations, to enhance the endogenous protective pathways for hearing preservation and to regenerate lost sensory cells with the possibility of ameliorating hearing loss. A number of recent animal studies have used gene-based therapies in innovative ways toward realizing these goals. With further refinement, some of the protective and regenerative approaches reviewed here may become clinically applicable.

  8. Evolving Gene Therapy in Primary Immunodeficiency.

    PubMed

    Thrasher, Adrian J; Williams, David A

    2017-05-03

    Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  9. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Gene Therapy and Children KidsHealth > For Parents > Gene Therapy ... that don't respond to conventional therapies. About Genes Our genes help make us unique. Inherited from ...

  10. Gene therapy for malignant glioma.

    PubMed

    Okura, Hidehiro; Smith, Christian A; Rutka, James T

    2014-01-01

    Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.

  11. Molecular imaging and cancer gene therapy.

    PubMed

    Saadatpour, Z; Bjorklund, G; Chirumbolo, S; Alimohammadi, M; Ehsani, H; Ebrahiminejad, H; Pourghadamyari, H; Baghaei, B; Mirzaei, H R; Sahebkar, A; Mirzaei, H; Keshavarzi, M

    2016-11-18

    Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.

  12. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy

    PubMed Central

    Papapetrou, Eirini P; Schambach, Axel

    2016-01-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  13. Gene therapy in metachromatic leukodystrophy.

    PubMed

    Sevin, C; Cartier-Lacave, N; Aubourg, P

    2009-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A. Deficiency of this enzyme results in intralysosomal storage of sphingolipid cerebroside 3-sulfates (sulfatides), which are abundant in myelin and neurons. A pathological hallmark of MLD is demyelination and neurodegeneration, causing various and ultimately lethal neurological symptoms. This review discusses the potential therapeutic application of hematopoietic stem cell gene therapy and intracerebral gene transfer (brain gene therapy) in patients with MLD.

  14. Gene therapy: progress and predictions.

    PubMed

    Collins, Mary; Thrasher, Adrian

    2015-12-22

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. © 2015 The Authors.

  15. Cocaine hydrolase gene therapy for cocaine abuse

    PubMed Central

    Brimijoin, Stephen; Gao, Yang

    2013-01-01

    Rapid progress in the past decade with re-engineering of human plasma butyrylcholinesterase has led to enzymes that destroy cocaine so efficiently that they prevent or interrupt drug actions in the CNS even though confined to the blood stream. Over the same time window, improved gene-transfer technology has made it possible to deliver such enzymes by endogenous gene transduction at high levels for periods of a year or longer after a single treatment. This article reviews recent advances in this field and considers prospects for development of a robust therapy aimed at aiding recovering drug users avoid addiction relapse. PMID:22300095

  16. Nanoparticles for Retinal Gene Therapy

    PubMed Central

    Conley, Shannon M.; Naash, Muna I.

    2010-01-01

    Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber’s congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics. PMID:20452457

  17. Wilson's disease: Prospective developments towards new therapies.

    PubMed

    Ranucci, Giusy; Polishchuck, Roman; Iorio, Raffaele

    2017-08-14

    Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism, caused by mutations in the ATP7B gene. A clear demand for novel WD treatment strategies has emerged. Although therapies using zinc salts and copper chelators can effectively cure WD, these drugs exhibit limitations in a substantial pool of WD patients who develop intolerance and/or severe side effects. Several lines of research have indicated intriguing potential for novel strategies and targets for development of new therapies. Here, we review these new approaches, which comprise correction of ATP7B mutants and discovery of new compounds that circumvent ATP7B-deficiency, as well as cell and gene therapies. We also discuss whether and when these new therapeutic strategies will be translated into clinical use, according to the key requirements for clinical trials that remain to be met. Finally, we discuss the hope for the current rapidly developing research on molecular mechanisms underlying WD pathogenesis and for the related potential therapeutic targets to provide a solid foundation for the next generation of WD therapies that may lead to an effective, tolerable and safe cure.

  18. Gene Therapy for Infectious Diseases

    PubMed Central

    Bunnell, Bruce A.; Morgan, Richard A.

    1998-01-01

    Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent. PMID:9457428

  19. Gene therapy: proceed with caution.

    PubMed

    Grobstein, C; Flower, M

    1984-04-01

    On 6 February 1984 the Recombinant DNA Advisory Committee of the National Institutes of Health approved a recommendation that the committee provide prior review of research protocols involving human gene therapy. Grobstein and Flower trace the development of public policy in response to concerns about the dangers of gene therapy, especially as it applies to germ line alteration. They offer guidelines and propose principles for an oversight body to confront the immediate and long term technical, social, and ethical implications of human genetic modification. An accompanying article presents a plea for the development of gene therapy by the mother of three children who have sickle cell anemia.

  20. The promise of gene therapy.

    PubMed

    Pergament, Eugene

    2016-04-01

    The promise of gene therapy performed in the preimplantation and prenatal periods of pregnancy is rapidly becoming a reality. New technologies capable of making designed changes in single nucleotides make germline gene therapy possible. The article reviews the ethical and technical challenges of germline gene therapy. Clustered regularly interspaced short palindromic repeats and related technologies are capable of deleting and inserting specific DNA sequences in mutated genes so as to correct the targeted DNA. The ability to target specific gene mutations will offer unique opportunities to at risk families, particularly those whose genotypes prevent any chance of a normal pregnancy outcome. Other applications of gene-modifying technologies on gametes, zygotes, and embryos are likely in the near future. There will be renewed debates on the potentially controversial applications of these technologies because of their capability to genetically alter the human germline and thereby future generations.

  1. Gene Therapy in Heart Failure.

    PubMed

    Fargnoli, Anthony S; Katz, Michael G; Bridges, Charles R; Hajjar, Roger J

    2016-10-28

    Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.

  2. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  3. A prospective, single-blind, multicenter, dose escalation study of intracoronary iNOS lipoplex (CAR-MP583) gene therapy for the prevention of restenosis in patients with de novo or restenotic coronary artery lesion (REGENT I extension).

    PubMed

    von der Leyen, Heiko E; Mügge, Andreas; Hanefeld, Christoph; Hamm, Christian W; Rau, Mathias; Rupprecht, Hans J; Zeiher, Andreas M; Fichtlscherer, Stephan

    2011-08-01

    Neointimal hyperplasia causing recurrent stenosis is a limitation of the clinical utility of percutaneous transluminal coronary interventions (PCI). Nitric oxide (NO) inhibits smooth muscle cell proliferation, platelet activation, and inflammatory responses, all of which have been implicated in the pathogenesis of restenosis. In animals, neointimal proliferation after balloon injury has been shown to be effectively reduced by gene transfer of the inducible NO synthase (iNOS). The primary objective of this first multicenter, prospective, single-blind, dose escalation study was to obtain safety and tolerability information of the iNOS lipoplex (CAR-MP583) gene therapy for reducing restenosis following PCI. Local coronary intramural CAR-MP583 delivery was achieved using the Infiltrator balloon catheter. A total of 30 patients were treated in the study (six patients, 0.5 μg; six patients, 2.0 μg; six patients, 5.0 μg; and 12 patients, 10 μg). There were no complications related to local application of CAR-MP583. In one patient, PCI procedure-related transient vessel occlusion occurred with consecutive troponin elevation. There were no signs of inflammatory responses or hepatic or renal toxicity. No dose relationship was seen with regard to adverse events across the dose groups. Thus, coronary intramural lipoplex-enhanced iNOS gene therapy during PCI is feasible and appears to be safe. These initial clinical results are encouraging to support further clinical research, in particular in conjunction with new local drug delivery technologies.

  4. Gene Therapy for Childhood Neurofibromatosis

    DTIC Science & Technology

    2014-05-01

    AD_________________ Award Number: W81XWH-13-1-0101 TITLE: Gene Therapy for Childhood ...May 2014 4. TITLE AND SUBTITLE Gene Therapy for Childhood Neurofibromatosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0101 5c...technology. This approach still represents a plausible and very different way to treat childhood neurofibromatosis, as well as other solid tumors

  5. Gene Therapy for Pituitary Tumors

    PubMed Central

    Seilicovich, Adriana; Pisera, Daniel; Sciascia, Sandra A.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Jaita, Gabriela; Castro, Maria G.

    2009-01-01

    Pituitary tumors are the most common primary intracranial neoplasms. Although most pituitary tumors are considered typically benign, others can cause severe and progressive disease. The principal aims of pituitary tumor treatment are the elimination or reduction of the tumor mass, normalization of hormone secretion and preservation of remaining pituitary function. In spite of major advances in the therapy of pituitary tumors, for some of the most difficult tumors, current therapies that include medical, surgical and radiotherapeutic methods are often unsatisfactory and there is a need to develop new treatment strategies. Gene therapy, which uses nucleic acids as drugs, has emerged as an attractive therapeutic option for the treatment of pituitary tumors that do not respond to classical treatment strategies if the patients become intolerant to the therapy. The development of animal models for pituitary tumors and hormone hypersecretion has proven to be critical for the implementation of novel treatment strategies and gene therapy approaches. Preclinical trials using several gene therapy approaches for the treatment of anterior pituitary diseases have been successfully implemented. Several issues need to be addressed before clinical implementation becomes a reality, including the development of more effective and safer viral vectors, uncovering novel therapeutic targets and development of targeted expression of therapeutic transgenes. With the development of efficient gene delivery vectors allowing long-term transgene expression with minimal toxicity, gene therapy will become one of the most promising approaches for treating pituitary adenomas. PMID:16457646

  6. Clinical adenoviral gene therapy for prostate cancer.

    PubMed

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  7. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  8. New approaches to gene and cell therapy for hemophilia.

    PubMed

    Ohmori, T; Mizukami, H; Ozawa, K; Sakata, Y; Nishimura, S

    2015-06-01

    Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques.

  9. Gene Therapy for Metabolic Diseases

    PubMed Central

    Chandler, Randy J.; Venditti, Charles P.

    2016-01-01

    SUMMARY Gene therapy has recently shown great promise as an effective treatment for a number of metabolic diseases caused by genetic defects in both animal models and human clinical trials. Most of the current success has been achieved using a viral mediated gene addition approach, but gene-editing technology has progressed rapidly and gene modification is being actively pursued in clinical trials. This review focuses on viral mediated gene addition approaches, because most of the current clinical trials utilize this approach to treat metabolic diseases. PMID:27853673

  10. [Gene therapy for adenosine deaminase (ADA) deficiency: review of the past, the present and the future].

    PubMed

    Ariga, T

    2001-01-01

    ADA deficiency is the first disease being treated by gene therapy. Since the first trial of gene therapy performed ten years ago, more than 10 patients including our case with ADA deficiency have been treated by the gene therapy with different clinical protocols. In contrast to the recent successful report for X-SCID patients, however, no curative effect of gene therapy for ADA deficiency has been achieved at the moment. In this chapter, I would like to review the past, the present and the future of gene therapy for ADA deficiency, and discuss an issue, especially PEG-ADA therapy, regarding the prospect for stem cell gene therapy for the disease.

  11. Gene Therapy in Heart Failure

    PubMed Central

    Vinge, Leif Erik; Raake, Philip W.; Koch, Walter J.

    2008-01-01

    With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality. PMID:18566312

  12. Newer gene editing technologies toward HIV gene therapy.

    PubMed

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  13. Apoptotic genes in cancer therapy.

    PubMed

    Opalka, Bertram; Dickopp, Alexandra; Kirch, Hans-Christoph

    2002-01-01

    Induction of apoptosis in malignant cells is a major goal of cancer therapy in general and of certain cancer gene therapy strategies in particular. Numerous apoptosis-regulating genes have been evaluated for this purpose. Besides the most prominent p53 gene others include p16, p21, p27, E2F genes, FHIT, PTEN and CASPASE genes. Recently, the potential for therapy of an adenoviral gene, E1A, known for a long time for its apoptosis-inducing activity, has been discovered. In experimental settings, these genes have proven their tumor-suppressive and apoptosis-inducing activity. Clinical trials are currently being performed with selected genes. By far the most studies transfer the p53 gene using retro- or adenoviral vectors. Disease stabilization or other benefits were observed in a limited number of patients when p53 was applied alone or in combination with cytotoxic drugs. A second proapoptotic gene that has entered clinical trials is adenovirus E1A. Here, too, disease stabilization as well as/or local regression in one case have been demonstrated in selected patients. In all cases, side effects were tolerable. To further improve E1A as a therapeutic transgene, we have deleted transforming domains from the adenovirus 5 and 12 13S cDNAs. Mutants were derived which had completely lost their transforming activity in combination with the E1B oncogene but retained a pronounced tumor-suppressive activity. Cells transduced with these constructs showed a highly reduced ability to grow in soft agar, and tumor growth in nude mice could be substantially suppressed. Outgrowing tumors had lost E1A expression when analyzed in Western blots. These E1A constructs may represent valuable tools for cancer gene therapy in the future.

  14. Gene therapy for bone regeneration.

    PubMed

    Luo, Jeffrey; Sun, Michael H; Kang, Quan; Peng, Ying; Jiang, Wei; Luu, Hue H; Luo, Qing; Park, Jae Yoon; Li, Yien; Haydon, Rex C; He, Tong-Chuan

    2005-04-01

    Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone has the unique ability to regenerate and continuously remodel itself throughout life. However, clinical situations arise when bone is unable to heal itself, as with segmental bone loss, fracture non-union, and failed spinal fusion. This leads to significant morbidity and mortality. Current attempts at improved bone healing have been met with limited success, fueling the development of improved techniques. Gene therapy in many ways represents an ideal approach for augmenting bone regeneration. Gene therapy allows specific gene products to be delivered to a precise anatomic location. In addition, the level of transgene expression as well as the duration of expression can be regulated with current techniques. For bone regeneration, the gene of interest should be delivered to the fracture site, expressed at appropriate levels, and then deactivated once the fracture has healed. Delivery of biological factors, mostly bone morphogenetic proteins (BMPs), has yielded promising results both in animal and clinical studies. There has also been tremendous work on discovering new growth factors and exploring previously defined ones. Finally, significant advances are being made in the delivery systems of the genes, ranging from viral and non-viral vectors to tissue engineering scaffolds. Despite some public hesitation to gene therapy, its use has great potential to expand our ability to treat a variety of human bone and musculoskeletal disorders. It is conceivable that in the near future gene therapy can be utilized to induce bone formation in virtually any region of the body in a minimally invasive manner. As bone biology and gene therapy research progresses, the goal of successful human gene transfer for augmentation of bone regeneration draws nearer.

  15. Delivery systems for gene therapy.

    PubMed

    Mali, Shrikant

    2013-01-01

    The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  16. Gene Therapy for Duchenne muscular dystrophy

    PubMed Central

    Ramos, Julian; Chamberlain, Jeffrey S

    2015-01-01

    Introduction Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. Areas Covered Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. Expert Opinion Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response. PMID:26594599

  17. Viral Vectors for Gene Therapy: Current State and Clinical Perspectives.

    PubMed

    Lukashev, A N; Zamyatnin, A A

    2016-07-01

    Gene therapy is the straightforward approach for the application of recent advances in molecular biology into clinical practice. One of the major obstacles in the development of gene therapy is the delivery of the effector to and into the target cell. Unfortunately, most methods commonly used in laboratory practice are poorly suited for clinical use. Viral vectors are one of the most promising methods for gene therapy delivery. Millions of years of evolution of viruses have resulted in the development of various molecular mechanisms for entry into cells, long-term survival within cells, and activation, inhibition, or modification of the host defense mechanisms at all levels. The relatively simple organization of viruses, small genome size, and evolutionary plasticity allow modifying them to create effective instruments for gene therapy approaches. This review summarizes the latest trends in the development of gene therapy, in particular, various aspects and prospects of the development of clinical products based on viral delivery systems.

  18. Human germline gene therapy reconsidered.

    PubMed

    Resnik, D B; Langer, P J

    2001-07-20

    This paper reevaluates the notion of human germline gene therapy (HGLGT) in light of developments in biomedicine, biotechnology, and ethical and policy analysis. The essay makes the following key points. First, because the distinction among "therapy," "prevention," and "enhancement" is not clear in human genetics, "gene therapy" is an inadequate descriptor of the process and goals of germline genetic alterations. The alternate use of the phrase "human germline genome modification" (HGLGM) could avoid a misleading label. Second, procedures that could be construed as genetic "enhancement" may not be as morally problematic as some have supposed, once one understands that the boundaries between therapy, prevention, and enhancement are not obvious in genetic medicine. Third, HGLGM might be the medically and morally most appropriate way of avoiding the birth of a child with a genetic disease in only a small range of cases. Fourth, there are still many ethical and scientific problems relating to the safety and efficacy of HGLGM.

  19. [Gene therapy and hospital strategy].

    PubMed

    Leclercq, B

    1993-10-01

    Gene therapy raises strong interrogations among hospital managers. Actually, hospital environment is disturbed and moving as well in a legislative political and statutory level as in an economical (competition, consumerism, proximity of the establishments) and demographic one (ageing, new pathologies). The fast development of medical technologies amplifies this disturbance. In front of that environment, the hospital has to anticipate the arriving of gene therapy without underestimating the deontological, medical, economical and judicial risks. The decisions of implantation have to be taken in a collective way, and seriously planned and estimated on a medical and economical level. The way to train people and to forecast their careers don't have to be underestimated in consideration of the challenge which is represented by the gene therapy.

  20. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  1. Gene therapy for Down syndrome.

    PubMed

    Fillat, Cristina; Altafaj, Xavier

    2012-01-01

    The presence of an additional copy of HSA21 chromosome in Down syndrome (DS) individuals leads to the overexpression of 30-50% of HSA21 genes. This upregulation can, in turn, trigger a deregulation on the expression of non-HSA21 genes. Moreover, the overdose of HSA21 microRNAs (miRNAs) may result in the downregulation of its target genes. Additional complexity can also arise from epigenetic changes modulating gene expression. Thus, a myriad of transcriptional and posttranscriptional alterations participate to produce abnormal phenotypes in almost all tissues and organs of DS individuals. The study of the physiological roles of genes dysregulated in DS, as well as their characterization in murine models with gene(s) dosage imbalance, pointed out several genes, and functional noncoding elements to be particularly critical in the etiology of DS. Recent findings indicate that gene therapy strategies-based on the introduction of genetic elements by means of delivery vectors-toward the correction of phenotypic abnormalities in DS are also very promising tool to identify HSA21 and non-HSA21 gene candidates, contributing to DS phenotype. In this chapter, we focus on the impact of normalizing the expression levels of up or downregulated genes to rescue particular phenotypes of DS. Attempts toward gene-based treatment approaches in mouse models will be discussed as new opportunities to ameliorate DS alterations.

  2. Future prospects for gene delivery systems.

    PubMed

    Kuşcu, Lale; Sezer, Ali Demir

    2017-10-01

    Gene therapy is the challenging area of biotechnology. Despite its promise for critical diseases, it has serious safety and efficiency issues, particularly with regards to gene transfer systems. Areas covered: We examined the current situation with gene transfer systems and addressed problems this technology. We then searched patent applications about in the area from the Patentscope online system, the international patent database. We analyzed the data obtained to get a general idea about gene delivery systems designed for future use and assessed approaches for more efficient, safer and valid delivery systems. Expert opinion: When quality assurance terms are fulfilled, some of these issues (genetic changes, mutations) could be minimized during the production process. Modification of vectors for improving their efficiency and safety or development of alternative transfer systems could be the solutions for these problems. Gene transfer technologies are important for gene therapy and should demonstrate effective, target-specific and acceptable safety profiles. For this reason, searching for alternatives to current systems is a necessity.

  3. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  4. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  5. Gene therapy for primary immunodeficiencies.

    PubMed

    Thrasher, Adrian J

    2008-05-01

    Primary immunodeficiencies are a group of disorders that are highly amenable to gene therapy because of their defined pathophysiology and the accessibility of the hematopoietic system to molecular intervention. The development of this new therapeutic modality has been driven by the established morbidity and mortality associated with conventional allogeneic stem cell transplantation, particularly in the human leukocyte antigen-mismatched setting. Recently, several clinical studies have shown that gamma retroviral gene transfer technology can produce major beneficial therapeutic effects, but, as for all cellular and pharmacologic treatment approaches, with a finite potential for toxicity. Newer developments in vector design showing promise in overcoming these issues are likely to establish gene therapy as an efficacious strategy for many forms of primary immunodeficiencies.

  6. [Gene therapy and Alzheimer's disease].

    PubMed

    Li, Jian; Li, Wenwen; Zhou, Jun

    2015-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the presence of extracellular β-amyloid in the senile plaques, intracellular aggregates of abnormal phosphorylation of tau protein in the neurofibrillary tangles, neuronal loss and cerebrovascular amyloidosis. The manifestations of clinical symptoms include memory impairment, cognitive decline, altered behavior and language deficit. Currently available drugs in AD therapy consist of acetylcholinesterase inhibitors, NMDA receptor antagonists, non-steroidal anti-inflammatory drugs, etc. These drugs can only alleviate the symptoms of AD. Gene therapy is achieved by vector-mediated gene transfer technology, which can delivery DNA or RNA into target cells to promote the expression of a protective or therapeutic protein and silence certain virulence genes.

  7. Gene Therapy Shows Promise for Aggressive Lymphoma

    MedlinePlus

    ... fullstory_163824.html Gene Therapy Shows Promise for Aggressive Lymphoma Over one-third of patients appeared disease- ... 2017 (HealthDay News) -- An experimental gene therapy for aggressive non-Hodgkin lymphoma beat back more than a ...

  8. Gene therapy: Myth or reality?

    PubMed

    Fischer, Alain

    2016-01-01

    Gene therapy has become a reality, although still a fragile one. Clinical benefit has been achieved over the last 17years in a limited number of medical conditions for which pathophysiological studies determined that they were favorable settings. They include inherited disorders of the immune system, leukodystrophies, possibly hemoglobinopathies, hemophilia B, and retinal dystrophies. Advances in the treatment of B-cell leukemias and lymphomas have also been achieved. Advances in vector development and possible usage of gene editing may lead to significant advances over the next years.

  9. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2004-06-01

    From the studies performed during the last one year, we determined the effects of AAV-mediated anti-angiogenic gene therapy as a combination therapy...angiogenic gene therapy in combination with chemotherapy. In the next year, we will determine whether such a combination therapy would provide regression of established tumors.

  10. Gene Therapy for Primary Immunodeficiencies

    PubMed Central

    Rivat, Christine; Santilli, Giorgia; Gaspar, H. Bobby

    2012-01-01

    Abstract For over 40 years, primary immunodeficiencies (PIDs) have featured prominently in the development and refinement of human allogeneic hematopoietic stem cell transplantation. More recently, ex vivo somatic gene therapy using autologous cells has provided remarkable evidence of clinical efficacy in patients without HLA-matched stem cell donors and in whom toxicity of allogeneic procedures is likely to be high. Together with improved preclinical models, a wealth of information has accumulated that has allowed development of safer, more sophisticated technologies and protocols that are applicable to a much broader range of diseases. In this review we summarize the status of these gene therapy trials and discuss the emerging application of similar strategies to other PIDs. PMID:22691036

  11. American Society of Gene & Cell Therapy

    MedlinePlus

    ... Join ASGCT! Job Bank Donate Media The American Society of Gene & Cell Therapy The American Society of Gene & Cell Therapy is the primary professional membership organization for gene and cell therapy. The Society's members are scientists, physicians, patient advocates, and other ...

  12. Gene therapy of benign gynecological diseases☆

    PubMed Central

    Hassan, Memy H.; Othman, Essam E.; Hornung, Daniela; Al-Hendy, Ayman

    2015-01-01

    Gene therapy is the introduction of genetic material into patient’s cells to achieve therapeutic benefit. Advances in molecular biology techniques and better understanding of disease pathogenesis have validated the use of a variety of genes as potential molecular targets for gene therapy based approaches. Gene therapy strategies include: mutation compensation of dysregulated genes; replacement of defective tumor-suppressor genes; inactivation of oncogenes; introduction of suicide genes; immunogenic therapy and antiangiogenesis based approaches. Preclinical studies of gene therapy for various gynecological disorders have not only shown to be feasible, but also showed promising results in diseases such as uterine leiomyomas and endometriosis. In recent years, significant improvement in gene transfer technology has led to the development of targetable vectors, which have fewer side-effects without compromising their efficacy. This review provides an update on developing gene therapy approaches to treat common gynecological diseases such as uterine leiomyoma and endometriosis. PMID:19446586

  13. Orthopedic Gene Therapy in 2008

    PubMed Central

    Evans, Christopher H; Ghivizzani, Steven C; Robbins, Paul D

    2008-01-01

    Orthopedic disorders, although rarely fatal, are the leading cause of morbidity and impose a huge socioeconomic burden. Their prevalence will increase dramatically as populations age and gain weight. Many orthopedic conditions are difficult to treat by conventional means; however, they are good candidates for gene therapy. Clinical trials have already been initiated for arthritis and the aseptic loosening of prosthetic joints, and the development of bone-healing applications is at an advanced, preclinical stage. Other potential uses include the treatment of Mendelian diseases and orthopedic tumors, as well as the repair and regeneration of cartilage, ligaments, and tendons. Many of these goals should be achievable with existing technologies. The main barriers to clinical application are funding and regulatory issues, which in turn reflect major safety concerns and the opinion, in some quarters, that gene therapy should not be applied to nonlethal, nongenetic diseases. For some indications, advances in nongenetic treatments have also diminished enthusiasm. Nevertheless, the preclinical and early clinical data are impressive and provide considerable optimism that gene therapy will provide straightforward, effective solutions to the clinical management of several common debilitating disorders that are otherwise difficult and expensive to treat. PMID:19066598

  14. Virotherapy: cancer gene therapy at last?

    PubMed Central

    Bilsland, Alan E.; Spiliopoulou, Pavlina; Evans, T. R. Jeffry

    2016-01-01

    For decades, effective cancer gene therapy has been a tantalising prospect; for a therapeutic modality potentially able to elicit highly effective and selective responses, definitive efficacy outcomes have often seemed out of reach. However, steady progress in vector development and accumulated experience from previous clinical studies has finally led the field to its first licensed therapy. Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec) received US approval as a treatment for cutaneous and subcutaneous melanoma in October 2015, followed several weeks later by its European authorisation. These represent the first approvals for an oncolytic virotherapy. Imlygic is an advanced-generation herpesvirus-based vector optimised for oncolytic and immunomodulatory activities. Many other oncolytic agents currently remain in development, providing hope that current success will be followed by other diverse vectors that may ultimately come to constitute a new class of clinical anti-cancer agents. In this review, we discuss some of the key oncolytic viral agents developed in the adenovirus and herpesvirus classes, and the prospects for further enhancing their efficacy by combining them with novel immunotherapeutic approaches. PMID:27635234

  15. Cancer gene therapy: challenges and opportunities.

    PubMed

    Scanlon, Kevin J

    2004-01-01

    Understanding the molecular basis of human disease has been the corner-stone of rationally designed molecular therapies. Medicine has a long history of treating patients with cell therapies (i.e., blood transfusions) and protein therapies (i.e., growth factors and cytokines). Gene therapies are the newest therapeutic strategy for treating human diseases. Where will gene therapy be in five years after the euphoria and frustrations of the last 14 years? This is a complex question, but the primary challenge for gene therapy will be to successfully deliver an efficacious dose of a therapeutic gene to the defective tissue. Will the delivery systems return to the early clinical trials of ex vivo gene therapy or will there still be a high demand for systemic therapy? Will systemic therapy continue to depend on viral vectors, or will non-viral and nano-particles become the new mode for gene delivery? The future success of gene therapy will be built on achievements in other fields, such as medical devices, cell therapy, protein therapy and nano-particle technology. This review describes the advances being made in the gene therapy field, as well as addressing the challenges of the near future for cancer gene therapy.

  16. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  17. Gene therapy for heart failure.

    PubMed

    Greenberg, Barry

    2017-04-01

    Novel strategies are needed to treat the growing population of heart failure patients. While new drug and device based therapies have improved outcomes over the past several decades, heart failure patients continue to experience amongst the lowest quality of life of any chronic disease, high likelihood of being hospitalized and marked reduction in survival. Better understanding of many of the basic mechanisms involved in the development of heart failure has helped identify abnormalities that could potentially be targeted by gene transfer. Despite success in experimental animal models, translating gene transfer strategies from the laboratory to the clinic remains at an early stage. This review provides an introduction to gene transfer as a therapy for treating heart failure, describes some of the many factors that need to be addressed in order for it to be successful and discusses some of the recent studies that have been carried out in heart failure patients. Insights from these studies highlight both the enormous promise of gene transfer and the obstacles that still need to be overcome for this treatment approach to be successful. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Gene therapy for heart failure.

    PubMed

    Greenberg, Barry

    2015-09-01

    Heart failure is a major public health problem throughout the world and it is likely that its prevalence will continue to grow over the next several decades. Despite advances in the treatment of heart failure, morbidity and mortality remain unacceptably high. Gene transfer therapy provides a novel strategy for targeting abnormalities in cardiac cells that adversely affect cardiac function. New vectors for gene delivery, mainly adeno-associated viruses (AAVs) that are preferentially taken up by cardiomyocytes, can result in sustained transgene expression. The cardiac isoform of sarco(endo)plasmic reticulum Ca(2+)ATPase (SERCA2a) plays a major role in regulating calcium levels in cardiomyocytes. Abnormal calcium handling by the failing heart caused by a reduction in SERCA2a activity adversely affects both systolic and diastolic function. The Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) study was a Phase 2a double-blind, randomized, placebo-controlled, dose-finding study that was performed in patients with advanced heart failure due to systolic dysfunction. Eligible patients received AAV/SERCA2a or placebo by direct antegrade infusion into the coronary circulation. At the end of 12 months, patients receiving high-dose therapy (i.e. 1×10(13) DNase Resistant Particles) had evidence of favorable changes in several clinically relevant domains compared to patients treated with placebo. There were no safety concerns at any dose of AAV/SERCA2a. Patients treated with AAV/SERCA2a exhibited a striking reduction in cardiovascular events that persisted through 36 months of follow-up compared to patients who received placebo. Transgene expression was detected in the myocardium of patients receiving AAV/SERCA2a gene therapy as long as 31 months after delivery. A second Phase 2b study, CUPID 2, designed to confirm this favorable effect on heart failure events, is currently underway with the results expected to be presented later in

  19. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    PubMed

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  20. [Study and prospects for clinical diseases treated with scraping therapy].

    PubMed

    Wang, Ying-ying; Yang, Jin-sheng

    2009-02-01

    In order to explore characteristics of clinical diseases treated by scraping therapy, summarize laws of clinical application of scraping therapy, and prospect for research direction of scraping therapy in future, collect 437 articles about scraping therapy between 1994-2007 and analyze and summarize the treated diseases and methods of scraping therapy. Results indicate that scraping therapy has been widely applied to commonly encountered diseases and frequently encountered diseases in departments of internal medicine, surgery, gynecology and pediatrics, etc. with more obvious therapeutic effects. Clinically, it can combine with acupuncture and moxibustion, cupping, massage, blood-letting puncture and other methods. In future, the studies on standardization of manipulation and standards for assessment of therapeutic effect, suitable diseases and the mechanisms of scraping therapy, and development of tools and media, etc. of scraping therapy should be strengthened.

  1. Gene therapy for carcinoma of the breast

    PubMed Central

    Stoff-Khalili, MA; Dall, P; Curiel, DT

    2007-01-01

    In view of the limited success of available treatment modalities for breast cancer, alternative and complementary strategies need to be developed. The delineation of the molecular basis of breast cancer provides the possibility of specific intervention by gene therapy through the introduction of genetic material for therapeutic purposes. In this regard, several gene therapy approaches for carcinoma of the breast have been developed. These approaches can be divided into six broad categories: (1) mutation compensation, (2) molecular chemotherapy, (3) proapoptotic gene therapy, (4) antiangiogenic gene therapy, (5) genetic immunopotentiation, and (6) genetic modulation of resistance/sensitivity. Clinical trials for breast cancer have been initiated to evaluate safety, toxicity, and efficacy. Combined modality therapy with gene therapy and chemotherapy or radiation therapy has shown promising results. It is expected that as new therapeutic targets and approaches are identified and advances in vector design are realized, gene therapy will play an increasing role in clinical breast cancer treatment. PMID:16410823

  2. Episomal vectors for gene therapy.

    PubMed

    Ehrhardt, Anja; Haase, Rudolf; Schepers, Aloys; Deutsch, Manuel J; Lipps, Hans Joachim; Baiker, Armin

    2008-06-01

    The increasing knowledge of the molecular and genetic background of many different human diseases has led to the vision that genetic engineering might be used one day for their phenotypic correction. The main goal of gene therapy is to treat loss-of-function genetic disorders by delivering correcting therapeutic DNA sequences into the nucleus of a cell, allowing its long-term expression at physiologically relevant levels. Manifold different vector systems for the therapeutic gene delivery have been described over the recent years. They all have their individual advantages but also their individual limitations and must be judged on a careful risk/benefit analysis. Integrating vector systems can deliver genetic material to a target cell with high efficiency enabling long-term expression of an encoded transgene. The main disadvantage of integrating vector systems, however, is their potential risk of causing insertional mutagenesis. Episomal vector systems have the potential to avoid these undesired side effects, since they behave as separate extrachromosomal elements in the nucleus of a target cell. Within this article we present a comprehensive survey of currently available episomal vector systems for the genetic modification of mammalian cells. We will discuss their advantages and disadvantages and their applications in the context of basic research, biotechnology and gene therapy.

  3. Stem cell directed gene therapy.

    PubMed

    Engel, B C; Kohn, D B

    1999-05-01

    A potential therapeutic approach to HIV-1 infection is the genetic modification of cells of a patient to make them resistant to HIV-1. Hematopoietic stem cells are an attractive target for gene therapy of AIDS because of their ability to generate a broad repertoire of mature T lymphocytes, as well as the monocytic cells (macrophages, dendritic cells and microglia) which are also involved in HIV-1 pathogenesis. A number of synthetic "anti-HIV-1 genes" have been developed which inhibit HIV-1 replication. However, current methods for gene transfer into human hematopoietic stem cells, using retroviral vectors derived from the Moloney murine leukemia virus, have been minimally effective. Clinical trials performed to date in which hematopoietic cells from HIV-1-positive patients have been transduced with retroviral vectors and then reinfused have produced low to undetectable levels of gene-containing peripheral blood leukocytes. New vector delivery systems, such as lentiviral vectors, need to be developed to ensure efficient gene transfer and persistent transgene expression to provide life-long resistance to the cells targeted by HIV-1.

  4. Gene therapy in the cornea: 2005--present.

    PubMed

    Mohan, Rajiv R; Tovey, Jonathan C K; Sharma, Ajay; Tandon, Ashish

    2012-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities has begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer toward establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea.

  5. Gene Therapy in the Cornea: 2005-present

    PubMed Central

    Mohan, Rajiv R.; Tovey, Jonathan C.K.; Sharma, Ajay; Tandon, Ashish

    2011-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities have begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer towards establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea. PMID:21967960

  6. Hematopoietic Stem Cell Expansion and Gene Therapy

    PubMed Central

    Watts, Korashon Lynn; Adair, Jennifer; Kiem, Hans-Peter

    2012-01-01

    Hematopoietic stem cell (HSC) gene therapy remains a highly attractive treatment option for many disorders including hematologic conditions, immunodeficiencies including HIV/AIDS, and other genetic disorders like lysosomal storage diseases, among others. In this review, we discuss the successes, side effects, and limitations of current gene therapy protocols. In addition, we describe the opportunities presented by implementing ex vivo expansion of gene-modified HSCs, as well as summarize the most promising ex vivo expansion techniques currently available. We conclude by discussing how some of the current limitations of HSC gene therapy could be overcome by combining novel HSC expansion strategies with gene therapy. PMID:21999373

  7. Gene therapy for bone healing.

    PubMed

    Evans, Christopher H

    2010-06-23

    Clinical problems in bone healing include large segmental defects, spinal fusions, and the nonunion and delayed union of fractures. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment.

  8. Gene therapy for bone healing

    PubMed Central

    Evans, Christopher H.

    2015-01-01

    Clinical problems in bone healing include large segmental defects, nonunion and delayed union of fractures, and spinal fusions. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment. PMID:20569532

  9. Gene therapy for allergic diseases.

    PubMed

    Chuang, Ya-Hui; Yang, Yao-Hsu; Wu, Si-Jie; Chiang, Bor-Luen

    2009-06-01

    Allergic diseases, such as allergic asthma, allergic rhinitis, atopic dermatitis, conjunctivitis, urticaria, food allergy, and/or anaphylaxis, are associated with the skewing of immune responses towards a T helper 2 (TH2) phenotype, resulting in eosinophilic inflammation. TH2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13, promote IgE production, mast cell differentiation, and eosinophil growth, migration and activation which then lead to the pathologic abnormalities in allergic diseases. Moreover, the impaired function of regulatory T cells has been noted in allergic diseases. To date, treatments for allergic diseases, such as antihistamines, corticosteroids, bronchodilators and some allergen-specific immunotherapy, are effective but costly and require long-term and recurrent drug administration. Gene therapy has been shown to be an easy, effective, and convenient treatment by delivering the allergen or the therapeutic protein in the form of plasmid DNA in vivo to modulate allergic immune responses. We summarize here the recent advances of gene therapy in allergic diseases and discuss the challenges in clinical application.

  10. Perspectives on Best Practices for Gene Therapy Programs

    PubMed Central

    Cheever, Thomas R.; Berkley, Dale; Braun, Serge; Brown, Robert H.; Byrne, Barry J.; Chamberlain, Jeffrey S.; Cwik, Valerie; Duan, Dongsheng; Federoff, Howard J.; High, Katherine A.; Kaspar, Brian K.; Klinger, Katherine W.; Larkindale, Jane; Lincecum, John; Mavilio, Fulvio; McDonald, Cheryl L.; McLaughlin, James; Weiss McLeod, Bonnie; Mendell, Jerry R.; Nuckolls, Glen; Stedman, Hansell H.; Tagle, Danilo A.; Vandenberghe, Luk H.; Wang, Hao; Wernett, Pamela J.; Wilson, James M.; Porter, John D.

    2015-01-01

    Abstract With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on “Best Practices for Gene Therapy Programs,” with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field. PMID:25654329

  11. Recent progress in cerebrovascular gene therapy.

    PubMed

    Sato, Naoyuki; Shimamura, Munehisa; Morishita, Ryuichi

    2005-07-01

    Gene therapy provides a potential strategy for the treatment of cardiovascular disease such as peripheral arterial disease, myocardial infarction, restenosis after angioplasty, and vascular bypass graft occlusion. Currently, more than 20 clinical studies of gene therapy for cardiovascular disease are in progress. Although cerebrovascular gene therapy has not proceeded to clinical trials, in contrast to cardiovascular gene therapy, there have been several trials in experimental models. Three major potential targets for cerebrovascular gene therapy are vasospasm after subarachnoid hemorrhage (SAH), ischemic cerebrovascular disease, and restenosis after angioplasty, for which current therapy is often inadequate. In experimental SAH models, strategies using genes encoding a vasodilating protein or decoy oligodeoxynucleotides have been reported to be effective against vasospasm after SAH. In experimental ischemic cerebrovascular disease, gene therapy using growth factors, such as Brain-derived neurotrophic factor (BDNF), Fibroblast growth factor-2 (FGF-2), or Hepatocyte growth factor (HGF), has been reported to be effective for neuroprotection and angiogenesis. Nevertheless, cerebrovascular gene therapy for clinical human treatment still has some problems, such as transfection efficiency and the safety of vectors. Development of an effective and safe delivery system for a target gene will make human cerebrovascular gene therapy possible.

  12. Immunomodulatory gene therapy in lysosomal storage disorders.

    PubMed

    Koeberl, Dwight D; Kishnani, Priya S

    2009-12-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders.

  13. Immunomodulatory gene therapy in lysosomal storage disorders

    PubMed Central

    Koeberl, D.D.; Kishnani, P.S.

    2010-01-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  14. Bacteriophage therapy in children: facts and prospects.

    PubMed

    Fortuna, Wojciech; Miedzybrodzki, Ryszard; Weber-Dabrowska, Beata; Górski, Andrzej

    2008-08-01

    Data from the World Health Organization confirm a decrease in the effectiveness of antibiotic therapy. The spread of bacteria resistant to several groups of antibiotics creates more problems in the treatment of various diseases, especially in children. It is possible that pharmacological agents may prove to be ineffective in curing infections caused by resistant pathogens, and this could lead to a post-antibiotic era. It is necessary to extend the arsenal of the available therapeutic tools. Bacteriophages have long been used therapeutically and prophylactically in children. In the beginnings of phage therapy, enthusiasm prevailed over the rational methods used in contemporary controlled studies. Many people dealing with phages described cases of successful therapy, but did not conduct comparative studies. Nevertheless, phage administration seems to be safe, even in children after intravenous administration. The therapeutic and prophylactic application of phages is now experiencing a renaissance of interest. The authors' own recent analysis demonstrated the cost effectiveness of phages over antibiotic especially in the treatment of infections caused by multidrug-resistant bacteria. It can be concluded that the results of the therapeutic and prophylactic application of phages against multi-drug resistant pathogens are encouraging. It seems clear that bacteriophages need further evaluation regarding the control of bacterial infection in children.

  15. Photo-pharmaceutical therapy: features and prospects

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Potapenko, Alexander Y.; Minenkov, Alexander A.

    2001-07-01

    This article is an attempt to analyze the concept, distinguishing features and possible application of photo- pharmaceutical therapy (PPT). Besides photopheresis, PUVA, and photodynamic therapy, PPT also embraces a broad spectrum of various combinations of light and drugs. PPT techniques can be classified according to the role of light in drug therapy into several groups: 1) Light activation of drugs before, during or after their administration, 2) light activation of cells of biotissue to potentiate the pharmaceutical effect of drugs, 3) light assisted drug delivery, 4) optical sensing of drug action at cellular and subcellular levels, and 5) selective photochemistry of drugs during their manufacturing. PPT seeks to describe the mechanisms of light-drug interaction, to time and sequence light-drug action, and to verify their synergetic effect. This article yields the results of developing new PPT modifications created in collaboration with some Russian scientific institutes and medical centers. The developed modifications are as follows: 1) drug pre-administration photoactivation, 2) antibody-photoconformation photoimmunotherapy, 3) photophonophoresis with a blend of photosensitizers and antibiotics, 4) photoelectrophoresis, 5) drug effect enhancement due to laser-induced blood circulation activation, 6) photoimmunization with alpha- fetoprotein, 7) photo-pharmaceutical dosimetry, and 8) a rapid drug toxicity photoassay.

  16. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  17. Antifungal Lock Therapy with Liposomal Amphotericin B: A Prospective Trial.

    PubMed

    McGhee, William; Michaels, Marian G; Martin, Judith M; Mazariegos, George V; Green, Michael

    2016-03-01

    We conducted a prospective pilot study to evaluate the potential role of combined systemic antifungal and liposomal amphotericin B lock therapy in children with intestinal insufficiency with fungal catheter-related bloodstream infections whose central venous catheters had not been removed. Our results provide supportive evidence for the conduct of larger clinical trials to confirm the efficacy and safety of this approach.

  18. Targeted Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1998-08-01

    AD AWARD NUMBER DAMD17-97-1-7232 TITLE: Targeted Gene Therapy for Breast Cancer PRINCIPAL INVESTIGATOR: Jinha M. Park CONTRACTING ORGANIZATION...FUNDING NUMBERS Targeted Gene Therapy for Breast Cancer DAMD17-97-1-7232 6. AUTHOR(S) Jinha M. Park 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...of surface mAb has been internalized by receptor-mediated endocytosis. These mAbs show promise in the specific delivery of gene therapy vectors

  19. Cardiac gene therapy: are we there yet?

    PubMed

    Matkar, P N; Leong-Poi, H; Singh, K K

    2016-08-01

    The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality.

  20. Update on clinical gene therapy in childhood

    PubMed Central

    Qasim, Waseem; Gaspar, H Bobby; Thrasher, Adrian J

    2007-01-01

    The successful use of gene therapy to correct rare immune system disorders has highlighted the enormous potential of such therapies. We review the current state of gene therapy for childhood immune system disorders, and consider why these conditions have been particularly amenable to genetic correction. As with all emerging therapies, there have been unexpected side effects and their underlying mechanisms are the subject of intense research. Minimising such risks through improved vector design will play an important role in developing the next generation of gene based therapies and extending their applicability. PMID:17954483

  1. Gene based therapies for kidney regeneration.

    PubMed

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-11-05

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  2. Gene therapy returns to centre stage.

    PubMed

    Naldini, Luigi

    2015-10-15

    Recent clinical trials of gene therapy have shown remarkable therapeutic benefits and an excellent safety record. They provide evidence for the long-sought promise of gene therapy to deliver 'cures' for some otherwise terminal or severely disabling conditions. Behind these advances lie improved vector designs that enable the safe delivery of therapeutic genes to specific cells. Technologies for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.

  3. Towards gene therapy for deafness.

    PubMed

    Di Domenico, Marina; Ricciardi, Carmela; Martone, Tiziana; Mazzarella, Nicoletta; Cassandro, Claudia; Chiarella, Giuseppe; D'Angelo, Luigi; Cassandro, Ettore

    2011-10-01

    Many hearing disorders are associated with the damage or loss of sensory hair cells (HC) which can produce a profound and irreversible deafness. Apoptosis pathway is reported to play an important role leading to rapid expansion of the HC lesion after exposure to intense noise. Furthermore, progress made over the last year in understanding molecular mechanisms involved in the proliferative and regenerative capacity of sensory cells in the mammalian inner ear has raised the possibility that targeted therapies might prevent the loss of these cells and preserve the patient's hearing. A first step towards the successful therapeutic exploitation is a better understanding of the different pathways that control survival and proliferation of sensory cells. In this review, we provide an overview of recent findings concerning the possibility to prevent apoptosis in auditory cells. We also show the current knowledge on the molecular mechanisms involved in the potential regenerative behavior of these cells and the progress of gene therapy to prevent deafness noise-induced.

  4. Clinical applications of gene therapy for primary immunodeficiencies.

    PubMed

    Cicalese, Maria Pia; Aiuti, Alessandro

    2015-04-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.

  5. Promising and delivering gene therapies for vision loss.

    PubMed

    Carvalho, Livia S; Vandenberghe, Luk H

    2015-06-01

    The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.

  6. Approaches to mitochondrial gene therapy.

    PubMed

    D'Souza, Gerard G M; Weissig, Volkmar

    2004-09-01

    Since their discovery during the end of the 80's the number of diseases found to be associated with defects in the mitochondrial genome has grown significantly. Organs affected by mutations in mitochondrial DNA (mtDNA) include in decreasing order of vulnerability the brain, skeletal muscle, heart, kidney and liver. Hence neuromuscular and neurodegenerative diseases represent the two largest groups of mtDNA diseases. Despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is however no satisfactory treatment available to the vast majority of patients. This is largely due to the fact that most of these patients have respiratory chain defects, i.e. defects that involve the final common pathway of oxidative metabolism, making it impossible to bypass the defect by administering alternative metabolic carriers of energy. Conventional biochemical treatment having reached an impasse, the exploration of gene therapeutic approaches for patients with mtDNA defects is warranted. For now mitochondrial gene therapy appears to be only theoretical and speculative. Any possibility for gene replacement is dependent on the development of an efficient mitochondrial transfection vector. In this review we describe the current state of the development of mitochondria-specific DNA delivery systems. We summarize our own efforts in exploring the properties of dequalinium and other similar cationic bolaamphiphiles with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells. Further, we outline some unique hurdles that need to be overcome if the development of such delivery systems is to progress.

  7. Gene therapy oversight: lessons for nanobiotechnology.

    PubMed

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology.

  8. Current status of gene therapy for cancer.

    PubMed

    Walther, Wolfgang; Schlag, Peter M

    2013-11-01

    In recent years, remarkable progress has been made in the development of cancer gene therapy into an applicable treatment modality for immunogene, suicide, gene correction and oncolytic therapies. New exciting developments for gene suppression or miRNA therapies are under way. The efforts are focused on more efficient and specific attack at known and novel targets, improvement of vector delivery and therapeutic efficacy. In this review, promising and new gene therapy approaches and clinical studies are briefly discussed to highlight important future directions of preclinical and clinical efforts. Apart from progress for vector development and even more important, improvements for suicide, T-cell-based, oncolytic virus therapies were achieved. In addition, new emerging therapies are successfully developed, which are particularly promising for siRNA-based technologies applied to gene suppression therapy. Novel approaches, such as transcription factor ODN-based decoy, complement the spectrum of current cancer gene therapy. In summary, cancer gene therapy has made remarkable progress in the improvement/refinement of existing strategies and delivery systems. The field is moving toward a therapeutic option, which will also be applicable for the treatment of disseminated metastases. Furthermore, numerous new approaches are about to be translated in clinical trials.

  9. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  10. Prospects for cannabinoid therapies in viral encephalitis.

    PubMed

    Solbrig, Marylou V; Fan, Yijun; Hazelton, Paul

    2013-11-06

    Cannabinoids are promising therapies to support neurogenesis and decelerate disease progression in neuroinflammatory and degenerative disorders. Whether neuroprotective effects of cannabinoids are sustainable during persistent viral infection of the CNS is not known. Using a rodent model of chronic viral encephalitis based on Borna Disease (BD) virus, in which 1 week treatment with the general cannabinoid WIN 55,212-2 has been shown to be neuroprotective (Solbrig et al., 2010), we examine longer term (2 week treatment) effects of a general (CB1 and CB2) cannabinoid receptor agonist WIN55,212-2 (1mg/kg ip twice per day) or a specific (CB2) cannabinoid receptor agonist HU-308 (5mg/kg ip once daily) on histopathology, measures of frontostriatal neurogenesis and gliogenesis, and viral load. We find that WIN and HU-308 differ in their ability to protect new BrdU(+) cells. The selective CB2 agonist HU increases BrdU(+) cells in prefrontal cortex (PFC), significantly increases BrdU(+) cells in striatum, differentially regulates polydendrocytes vs. microglia/macrophages, and reduces immune activation at a time WIN-treated rats appear tolerant to the anti-inflammatory effect of their cannabinoid treatment. WIN and HU had little direct viral effect in PFC and striatum, yet reduced viral signal in hippocampus. Thus, HU-308 action on CB2 receptors, receptors known to be renewed during microglia proliferation and action, is a nontolerizing mechanism of controlling CNS inflammation during viral encephalitis by reducing microglia activation, as well as partially limiting viral infection, and uses a nonpsychotropic cannabinoid agonist. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Engineering Factor Viii for Hemophilia Gene Therapy

    PubMed Central

    Roberts, Sean A.; Dong, Biao; Firrman, Jenni A.; Moore, Andrea R.; Sang, Nianli; Xiao, Weidong

    2012-01-01

    Current treatment of hemophilia A by intravenous infusion of factor VIII (fVIII) concentrates is very costly and has a potential adverse effect of developing inhibitors. Gene therapy, on the other hand, can potentially overcome these limitations associated with fVIII replacement therapy. Although hemophilia B gene therapy has achieved promising outcomes in human clinical trials, hemophilia A gene therapy lags far behind. Compared to factor IX, fVIII is a large protein which is difficult to express at sustaining therapeutic levels when delivered by either viral or non-viral vectors. To improve fVIII gene delivery, numerous strategies have been exploited to engineer the fVIII molecule and overcome the hurdles preventing long term and high level expression. Here we reviewed these strategies, and discussed their pros and cons in human gene therapy of hemophilia A. PMID:23565342

  12. Cancer gene therapy targeting cellular apoptosis machinery.

    PubMed

    Jia, Lin-Tao; Chen, Si-Yi; Yang, An-Gang

    2012-11-01

    The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.

  13. Gene therapy for childhood immunological diseases.

    PubMed

    Kohn, D B

    2008-01-01

    Gene therapy using autologous hematopoietic stem cells (HSC) that are corrected with the normal gene may have a beneficial effect on blood cell production or function, without the immunologic complications of allogeneic HSC transplantation. Childhood immunological diseases are highly favorable candidates for responses to gene therapy using HSC. Hemoglobinopathies, lysosomal and metabolic disorders and defects of hematopoietic stem and progenitor cells should also be ameliorated by gene therapy using autologous HSC. At present, gene therapy has been beneficial for patients with XSCID, ADA-deficient SCID and chronic granulomatous disease. The principle that partial marrow conditioning increases engraftment of gene-corrected HSC has been demonstrated. Clinical trials are being developed in Europe and the United States to treat several other genetic blood cell disorders. This progress is tempered by the serious complication observed in XSCID patients developing T lymphoproliferative disease. New methods for gene transfer (lentiviral and foamy viral vectors, semi-viral systems and gene correction) may retain or further increase the efficacy and decrease the risks from gene therapy using HSC. Ultimately, the relative benefits and risks of autologous gene therapy will be weighed against other available options (for example, allogeneic HSCT) to determine the treatment of choice.

  14. Current applications and future prospects of nanomaterials in tumor therapy

    PubMed Central

    Huang, Yu; Fan, Chao-Qiang; Dong, Hui; Wang, Su-Min; Yang, Xiao-Chao; Yang, Shi-Ming

    2017-01-01

    Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed. PMID:28331307

  15. Candidate diseases for prenatal gene therapy.

    PubMed

    David, Anna L; Waddington, Simon N

    2012-01-01

    Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before irreparable tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application may target genes to a large population of stem cells, and the smaller fetal size allows a higher vector to target cell ratio to be achieved. Early gestation delivery may allow the development of immune tolerance to the transgenic protein, which would facilitate postnatal repeat vector administration if needed. Moreover, early delivery would avoid anti-vector immune responses which are often acquired in postnatal life. The NIH Recombinant DNA Advisory Committee considered that a candidate disease for prenatal gene therapy should pose serious morbidity and mortality risks to the fetus or neonate, and not have any effective postnatal treatment. Prenatal gene therapy would therefore be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy. If deemed safer and more efficacious, prenatal gene therapy may be applicable for nonlethal conditions if adult gene transfer is unlikely to be of benefit. Many candidate diseases will be inherited congenital disorders such as thalassaemia or lysosomal storage disorders. However, obstetric conditions such as fetal growth restriction may also be treated using a targeted gene therapy approach. In each disease, the condition must be diagnosed prenatally, either via antenatal screening and prenatal diagnosis, for example, in the case of hemophilias, or by ultrasound assessment of the fetus, for example, congenital diaphragmatic hernia. In this chapter, we describe some examples of the candidate diseases and discuss how a prenatal gene therapy approach might work.

  16. Recent advances in fetal gene therapy.

    PubMed

    Buckley, Suzanne M K; Rahim, Ahad A; Chan, Jerry K Y; David, Anna L; Peebles, Donald M; Coutelle, Charles; Waddingtont, Simon N

    2011-04-01

    Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.

  17. Gene therapy for sickle cell disease.

    PubMed

    Olowoyeye, Abiola; Okwundu, Charles I

    2016-11-14

    Sickle cell disease encompasses a group of genetic disorders characterized by the presence of at least one hemoglobin S (Hb S) allele, and a second abnormal allele that could allow abnormal hemoglobin polymerisation leading to a symptomatic disorder.Autosomal recessive disorders (such as sickle cell disease) are good candidates for gene therapy because a normal phenotype can be restored in diseased cells with only a single normal copy of the mutant gene. This is an update of a previously published Cochrane Review. The objectives of this review are:to determine whether gene therapy can improve survival and prevent symptoms and complications associated with sickle cell disease;to examine the risks of gene therapy against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises of references identified from comprehensive electronic database searches and searching relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 15 August 2016. All randomised or quasi-randomised clinical trials (including any relevant phase 1, 2 or 3 trials) of gene therapy for all individuals with sickle cell disease, regardless of age or setting. No trials of gene therapy for sickle cell disease were found. No trials of gene therapy for sickle cell disease were reported. No randomised or quasi-randomised clinical trials of gene therapy for sickle cell disease were reported. Thus, no objective conclusions or recommendations in practice can be made on gene therapy for sickle cell disease. This systematic review has identified the need for well-designed, randomised controlled trials to assess the benefits and risks of gene therapy for sickle cell disease.

  18. Adenovirus-derived vectors for prostate cancer gene therapy.

    PubMed

    de Vrij, Jeroen; Willemsen, Ralph A; Lindholm, Leif; Hoeben, Rob C; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Dautzenberg, Iris J C; de Ridder, Corrina; Dzojic, Helena; Erbacher, Patrick; Essand, Magnus; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Jennings, Ian; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nugent, Regina; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schenk-Braat, Ellen; Schooten, Erik; Seymour, Len; Slade, Michael; Szyjanowicz, Pio; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; van der Weel, Laura; van Weerden, Wytske; Wagner, Ernst; Zuber, Guy

    2010-07-01

    Prostate cancer is a leading cause of death among men in Western countries. Whereas the survival rate approaches 100% for patients with localized cancer, the results of treatment in patients with metastasized prostate cancer at diagnosis are much less successful. The patients are usually presented with a variety of treatment options, but therapeutic interventions in prostate cancer are associated with frequent adverse side effects. Gene therapy and oncolytic virus therapy may constitute new strategies. Already a wide variety of preclinical studies has demonstrated the therapeutic potential of such approaches, with oncolytic prostate-specific adenoviruses as the most prominent vector. The state of the art and future prospects of gene therapy in prostate cancer are reviewed, with a focus on adenoviral vectors. We summarize advances in adenovirus technology for prostate cancer treatment and highlight areas where further developments are necessary.

  19. [Gene therapy of neurological diseases].

    PubMed

    Kahn, A; Haase, G; Akli, S; Guidotti, J E

    1996-01-01

    transgenes transferred through adenoviral vectors, we have constructed vectors with cDNAs or genes for various neutrophic factors: CNTF, NT3, BDNF and GDNF. These vectors were biologically active on target cells, ex vivo and in vivo. In the pmn mouse model of progressive motor neuronal degeneration, some of these vectors, alone or combined, allowed for prolongation of life of homozygous animals by more than two fold, and for decrease in the demyelination of phrenic nerve axons. Finally, we have also constructed an adenoviral vector carrying the alpha-hexosaminidase cDNA, encoding the enzyme subunit deficient in Tay Sachs patients. This vector permitted to normalize ganglioside metabolism in Tay Sachs fibroblasts and is currently tested in knock out mice deficient in hexosaminidase A. In spite of all these encouraging results, we are nevertheless aware that progress in vector design and delivery strategies will be needed before gene therapy can become a realistic therapeutical strategy in humans.

  20. Gene therapy for B cell lymphomas.

    PubMed

    Fielding, A K; Russell, S J

    1997-01-01

    The use of genes or genetically modified cells for therapeutic benefit is likely to have a significant therapeutic role for patients with B cell lymphomas in the future. To date, most gene therapy strategies applicable to the therapy of these diseases have not reached the point of clinical study. Adoptive immunotherapy using donor leucocyte infusion to treat aggressive B cell neoplasms in immunosuppressed patients has, however, shown great promise clinically, and studies of idiotypic vaccination in patients with low grade B cell neoplasms are also under way. Results from in vitro and animal studies continue to suggest that it may become possible to use the immune system for therapeutic benefit, and many current basic research strategies in the gene therapy of B cell non-Hodgkin's lymphoma are based on immune modulation of T cells or tumour cells themselves. Other major approaches to gene therapy for B cell malignancies include the introduction of directly toxic or "suicide genes" into B cells or the chemoprotection of haemopoietic stem cells by the introduction of drug resistance genes. All of these approaches require efficient and accurate gene transfer as well as correct expression of the gene product within the target cell. Although some way from therapeutic use, specific targeting of gene delivery is an area of active investigation and will be of value in many of the gene therapy strategies applicable to B cell lymphomas.

  1. Treatment of ocular disorders by gene therapy.

    PubMed

    Solinís, M Ángeles; del Pozo-Rodríguez, Ana; Apaolaza, Paola S; Rodríguez-Gascón, Alicia

    2015-09-01

    Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although beginning to show encouraging results. Currently 33 clinical trials have been approved, are in progress, or have been completed. The most promising results have been obtained in clinical trials of ocular gene therapy for Leber Congenital Amaurosis, which have prompted the study of several ocular diseases that are good candidates to be treated with gene therapy: glaucoma, age-related macular degeneration, retinitis pigmentosa, or choroideremia. The success of gene therapy relies on the efficient delivery of the genetic material to target cells, achieving optimum long-term gene expression. Although viral vectors have been widely used, their potential risk associated mainly with immunogenicity and mutagenesis has promoted the design of non-viral vectors. In this review, the main administration routes and the most studied delivery systems, viral and non-viral, for ocular gene therapy are presented. The primary ocular disease candidates to be treated with gene therapy have been also reviewed, including the genetic basis and the most relevant preclinical and clinical studies.

  2. Vectors--shuttle vehicles for gene therapy.

    PubMed

    Wilson, J M

    1997-01-01

    Gene therapy is being considered for the treatment of various inherited and acquired disorders. The basic premise of this new therapeutic modality is manipulation of gene expression towards a therapeutic end. The early development of the field focused on a technique called ex vivo gene therapy in which autologous cells are genetically manipulated in culture prior to transplantation. Recent advances have stimulated the development of in vivo gene therapy approaches based on direct delivery of the therapeutic gene to cells in vivo. The rate-limiting technologies of gene therapy are the gene delivery vehicles, called vectors, used to accomplish gene transfer. The most efficient vectors are based on recombinant versions of viruses with retroviral vectors serving as prototypes. This viral vector system has been exploited in ex vivo approaches of gene therapy in which cultured, dividing cells are transduced with the recombinant virus resulting in integration of the proviral DNA into the chromosomal DNA of the recipient cell. The use of retroviral vectors in gene therapy has been restricted to ex vivo approaches because of difficulties in purifying the virion and the requirement that the target cell is dividing at the time of transduction. More recently, vectors based on adenoviruses have been developed for in vivo gene therapy. These viruses can be grown in large quantities and highly purified. Importantly, they efficiently transduce the recombinant genome into non-dividing cells. Applications include in vivo gene delivery to a variety of targets such as muscle, lung, liver and the central nervous system. Clinical trials of in vivo delivery with adenoviruses have been undertaken for the treatment of cystic fibrosis.

  3. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy.

    PubMed

    Nash, Benjamin M; Wright, Dale C; Grigg, John R; Bennetts, Bruce; Jamieson, Robyn V

    2015-04-01

    Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs.

  4. Fight fire with fire: Gene therapy strategies to cure HIV.

    PubMed

    Huyghe, Jon; Magdalena, Sips; Vandekerckhove, Linos

    2017-08-01

    Human Immunodeficiency Virus (HIV) to date remains one of the most notorious viruses mankind has ever faced. Despite enormous investments in HIV research for more than 30 years an effective cure for HIV has been elusive. Areas covered: Combination antiretroviral therapy (cART) suppresses active viral replication, but is not able to eliminate the virus completely due to stable integration of HIV inside the host genome of infected cells and the establishment of a latent reservoir, that is insensitive to cART. Nevertheless, this latent HIV reservoir is fully capable to refuel viral replication when treatment is stopped, creating a major obstacle towards a cure for HIV. Several gene therapy approaches ranging from the generation of HIV resistant CD4 + T cells to the eradication of HIV infected cells by immune cell engineering are currently under pre-clinical and clinical investigation and may present a promising road to a cure. In this review, we focus on the status and the prospects of gene therapy strategies to cure/eradicate HIV. Expert commentary: Recent advances in gene therapy for oncology and infectious diseases indicate that gene therapy may be a feasible and very potent cure strategy, and therefore a potential game changer in the search for an effective HIV cure.

  5. Bacteria as vectors for gene therapy of cancer

    PubMed Central

    Baban, Chwanrow K; Cronin, Michelle; O'Hanlon, Deirdre; O'Sullivan, Gerald C

    2010-01-01

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels. PMID:21468205

  6. Gene therapy in Alzheimer's disease - potential for disease modification.

    PubMed

    Nilsson, Per; Iwata, Nobuhisa; Muramatsu, Shin-ichi; Tjernberg, Lars O; Winblad, Bengt; Saido, Takaomi C

    2010-04-01

    Alzheimer's disease (AD) is the major cause of dementia in the elderly, leading to memory loss and cognitive decline. The mechanism underlying onset of the disease has not been fully elucidated. However, characteristic pathological manifestations include extracellular accumulation and aggregation of the amyloid beta-peptide (Abeta) into plaques and intracellular accumulation and aggregation of hyperphosphorylated tau, forming neurofibrillary tangles. Despite extensive research worldwide, no disease modifying treatment is yet available. In this review, we focus on gene therapy as a potential treatment for AD, and summarize recent work in the field, ranging from proof-of-concept studies in animal models to clinical trials. The multifactorial causes of AD offer a variety of possible targets for gene therapy, including two neurotrophic growth factors, nerve growth factor and brain-derived neurotrophic factor, Abeta-degrading enzymes, such as neprilysin, endothelin-converting enzyme and cathepsin B, and AD associated apolipoprotein E. This review also discusses advantages and drawbacks of various rapidly developing virus-mediated gene delivery techniques for gene therapy. Finally, approaches aiming at down-regulating amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 levels by means of siRNA-mediated knockdown are briefly summarized. Overall, the prospects appear hopeful that gene therapy has the potential to be a disease modifying treatment for AD.

  7. CAR T-Cell Therapy: Progress and Prospects.

    PubMed

    Wilkins, Olivia; Keeler, Allison M; Flotte, Terence R

    2017-04-01

    Lentivirus-mediated transduction of autologous T cells with a chimeric antigen receptor (CAR) to confer a desired epitope specificity as a targeted immunotherapy for cancer has been among the first human gene therapy techniques to demonstrate widespread therapeutic efficacy. Other approaches to using gene therapy to enhance antitumor immunity have been less specific and less effective. These have included amplification, marking, and cytokine transduction of tumor infiltrating lymphocytes, recombinant virus-based expression of tumor antigens as a tumor vaccine, and transduction of antigen-presenting cells with tumor antigens. Unlike any of those methods, the engineering of CAR T cells combine specific monoclonal antibody gene sequences to confer epitope specificity and other T-cell receptor and activation domains to create a self-contained single vector approach to produce a very specific antitumor response, as is seen with CD19-directed CAR T cells used to treat CD19-expressing B-cell malignancies. Recent success with these therapies is the culmination of a long step-wise iterative process of improvement in the design of CAR vectors. This review aims to summarize this long series of advances in the development of effective CAR vector since their initial development in the 1990s, and to describe emerging approaches to design that promise to enhance and widen the human gene therapy relevance of CAR T-cell therapy in the future.

  8. Stem Cell Therapy: A Prospective Treatment for Alzheimer's Disease.

    PubMed

    Lee, Ji Han; Oh, Il-Hoan; Lim, Hyun Kook

    2016-11-01

    Alzheimer's disease (AD) without cure remains as a serious health issue in the modern society. The major neuropathological alterations in AD are characterized by chronic neuroinflammation and neuronal loss due to neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau, plaques of β-amyloid (Aβ) and various metabolic dysfunctions. Due to the multifaceted nature of AD pathology and our limited understanding on its etiology, AD is difficult to be treated with currently available pharmaceuticals. This unmet need, however, could be met with stem cell technology that can be engineered to replace neuronal loss in AD patients. Although stem cell therapy for AD is only in its development stages, it has vast potential uses ranging from replacement therapy to disease modelling and drug development. Current progress with stem cells in animal model studies offers promising results for the new prospective treatment for AD. This review will discuss the characteristics of AD, current progress in stem cell therapy and remaining challenges and promises in its development.

  9. Voice therapy in pediatric functional dysphonia: a prospective study.

    PubMed

    Trani, Margherita; Ghidini, Angelo; Bergamini, Giuseppe; Presutti, Livio

    2007-03-01

    We evaluated the efficacy of voice therapy according to Borragan's method associated to S. Magnani's vocal counselling in functional dysphonia in children. We prospectively treated 16 patients with vocal fold nodules (10 males, 6 females). Age ranged from 6 to 11 years with a mean age of 9 years. We performed a full screening phoniatric evaluation. In addition psychological tests were carried out to investigate psychological background. We lost three patients at follow-up; one patient received surgery, eight patients healed (43.75%), four improved (25%). There was no statistical difference in the analysis of electroacoustical parameters while MPT significatively raised after therapy. If patients have motivation voice therapy could improve functional dysphonia in children. It is also important psychological background. Further studies on bigger populations with long-term follow-up are needed.

  10. In Vivo Noninvasive Imaging for Gene Therapy

    PubMed Central

    2003-01-01

    Gene therapy is reaching a stage where some clinical benefits have been demonstrated on patients involved in phase I/II clinical trials. However, in many cases, the clinical benefit is hardly measurable and progress in the improvement of gene therapy formulations is hampered by the lack of objective clinical endpoints to measure transgene delivery and to quantitate transgene expression. However, these endpoints rely almost exclusively on the analysis of biopsies by molecular and histopathological methods. These methods provide only a limited picture of the situation. Therefore, there is a need for a technology that would allow precise, spacio-temporal measurement of gene expression on a whole body scale upon administration of the gene delivery vector. In the field of gene therapy, a considerable effort is being invested in the development of noninvasive imaging of gene expression and this review presents the various strategies currently being developed. PMID:12721514

  11. Gene Therapy Techniques for Peripheral Arterial Disease

    SciTech Connect

    Manninen, Hannu I.; Maekinen, Kimmo

    2002-03-15

    Somatic gene therapy is the introduction of new genetic material into selective somatic cells with resulting therapeutic benefits. Vascular wall and, subsequently, cardiovascular diseases have become an interesting target for gene therapy studies.Arteries are an attractive target for gene therapy since vascular interventions, both open surgical and endovascular, are well suited for minimally invasive, easily monitored gene delivery. Promising therapeutic effects have been obtained in animal models in preventing post-angioplasty restenosis and vein graft thickening, as well as increasing blood flow and collateral development in ischemic limbs.First clinical trials suggest a beneficial effect of vascular endothelial growth factor in achieving therapeutic angiogenesis in chronic limb ischemia and the efficacy of decoy oligonucleotides to prevent infrainguinal vein graft stenosis. However, further studies are mandatory to clarify the safety issues, to develop better gene delivery vectors and delivery catheters, to improve transgene expression, as well as to find the most effective and safe treatment genes.

  12. [Gene therapy: current status and promise].

    PubMed

    Kaneda, Y

    2001-04-01

    As of summer 2000, more than 400 protocols developed for human gene therapy have been reported, and there have been recent successful applications in some diseases such as arteriosclerosis obliterance, immunodeficiency X-1 (SCID-X1) and hemophilia B. However, complications have also occurred. Successful gene therapy is dependent on the development of an effective gene delivery system. One approach is development of chimeric vector systems that combine at least two different vector systems. However, a perfect vector system has not yet been constructed. Difficulties of in vivo gene transfer appear to result from resistance of living cells to invasion by foreign materials and from interference of cellular functions. We should reevaluate what barriers in tissues affect in vivo gene transfection and how to solve these problems for gene therapy. Moreover, in Japan, there should be more extensive preparation of social systems to promote clinical trials based on basic research.

  13. Biodegradable nanoparticles for gene therapy technology

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-07-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  14. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    PubMed

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  15. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    PubMed Central

    Wang, Dan; Gao, Guangping

    2015-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future. PMID:25227756

  16. Cancer suicide gene therapy: a patent review.

    PubMed

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  17. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  18. Genome-editing Technologies for Gene and Cell Therapy.

    PubMed

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  19. Genome-editing Technologies for Gene and Cell Therapy

    PubMed Central

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  20. Clinical applications of retinal gene therapy.

    PubMed

    Lipinski, Daniel M; Thake, Miriam; MacLaren, Robert E

    2013-01-01

    Many currently incurable forms of blindness affecting the retina have a genetic etiology and several others, such as those resulting from retinal vascular disturbances, respond to repeated, potentially indefinite administration of molecular based treatments. The recent clinical advances in retinal gene therapy have shown that viral vectors can deliver genes safely to the retina and the promising initial results from a number of clinical trials suggest that certain diseases may potentially be treatable. Gene therapy provides a means of expressing proteins within directly transduced cells with far greater efficacy than might be achieved by traditional systemic pharmacological approaches. Recent developments have demonstrated how vector gene expression may be regulated and further improvements to vector design have limited side effects and improved safety profiles. These recent steps have been most significant in bringing gene therapy into the mainstream of ophthalmology. Nevertheless translating retinal gene therapy from animal research into clinical trials is still a lengthy process, including complexities in human retinal diseases that have been difficult to model in the laboratory. The focus of this review is to summarize the genetic background of the most common retinal diseases, highlight current concepts of gene delivery technology, and relate those technologies to pre-clinical and clinical gene therapy studies.

  1. Gene Therapy for Diseases and Genetic Disorders

    MedlinePlus

    ... notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA-SCID) ADA- ... in preclinical animal models of this disease. Other genetic disorders After many years of laboratory and preclinical ...

  2. Gene Therapy: A Paradigm Shift in Dentistry

    PubMed Central

    Siddique, Nida; Raza, Hira; Ahmed, Sehrish; Khurshid, Zohaib; Zafar, Muhammad Sohail

    2016-01-01

    Gene therapy holds a promising future for bridging the gap between the disciplines of medicine and clinical dentistry. The dynamic treatment approaches of gene therapy have been advancing by leaps and bounds. They are transforming the conventional approaches into more precise and preventive ones that may limit the need of using drugs and surgery. The oral cavity is one of the most accessible areas for the clinical applications of gene therapy for various oral tissues. The idea of genetic engineering has become more exciting due to its advantages over other treatment modalities. For instance, the body is neither subjected to an invasive surgery nor deep wounds, nor is it susceptible to systemic effects of drugs. The aim of this article is to review the gene therapy applications in the field of dentistry. In addition, therapeutic benefits in terms of treatment of diseases, minimal invasion and maximum outcomes have been discussed. PMID:27834914

  3. Gene Therapy: A Paradigm Shift in Dentistry.

    PubMed

    Siddique, Nida; Raza, Hira; Ahmed, Sehrish; Khurshid, Zohaib; Zafar, Muhammad Sohail

    2016-11-10

    Gene therapy holds a promising future for bridging the gap between the disciplines of medicine and clinical dentistry. The dynamic treatment approaches of gene therapy have been advancing by leaps and bounds. They are transforming the conventional approaches into more precise and preventive ones that may limit the need of using drugs and surgery. The oral cavity is one of the most accessible areas for the clinical applications of gene therapy for various oral tissues. The idea of genetic engineering has become more exciting due to its advantages over other treatment modalities. For instance, the body is neither subjected to an invasive surgery nor deep wounds, nor is it susceptible to systemic effects of drugs. The aim of this article is to review the gene therapy applications in the field of dentistry. In addition, therapeutic benefits in terms of treatment of diseases, minimal invasion and maximum outcomes have been discussed.

  4. Gene Therapy for Post-Traumatic Osteoarthritis

    DTIC Science & Technology

    2015-10-01

    chronic, degenerative, often crippling disease that primarily affects large weight bearing joints. There is strong evidence that interleukin - 1 (IL- 1 ) is a...Osteoarthritis (OA) Gene Therapy Equine Adeno-Associated Virus (AAV) Interleukin - 1 Receptor Antagonist (IL-1Ra) Post-traumatic OA (PTOA) Self...AD______________ AWARD NUMBER: W81XWH-14- 1 -0498 TITLE: Gene Therapy for Post-Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Steven C

  5. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs.

  6. Gene therapy for inherited retinal degenerations.

    PubMed

    Dalkara, Deniz; Sahel, José-Alain

    2014-03-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Progress over the past decade has moved proof-of-concept gene therapies from bench to bedside. The remarkable success in safety and efficacy, in the phase I/II clinical trials for the form of the severe childhood-onset blindness, Leber's Congenital Amaurosis (LCA) type II (due to mutations in the RPE65 gene) generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was due to combining the favorable features of both the retina as a target organ and adeno-associated virus (AAV) as a vector. The retina offers several advantages for gene therapy approaches. It is an anatomically defined structure that is readily accessible for therapy and has some degree of immune privilege, making it suitable for application of viral vectors. AAV, on the other hand, is a non-pathogenic helper dependent virus that has little immunogenicity. This viral vector transduces quiescent cells efficiently and thanks to its small size diffuses well in the interneural matrix, making it suitable for applications in neural tissue. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases. This article will discuss what are some of the most imminent targets for such therapies and what are the challenges that we face in moving these therapies to the clinic.

  7. Human Studies of Angiogenic Gene Therapy

    PubMed Central

    Gupta, Rajesh; Tongers, Jörn; Losordo, Douglas W.

    2009-01-01

    Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early pre-clinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we will examine the clinical development of angiogenic therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials. PMID:19815827

  8. Cardiovascular gene therapy for myocardial infarction

    PubMed Central

    Scimia, Maria C; Gumpert, Anna M; Koch, Walter J

    2014-01-01

    Introduction Cardiovascular gene therapy is the third most popular application for gene therapy, representing 8.4% of all gene therapy trials as reported in 2012 estimates. Gene therapy in cardiovascular disease is aiming to treat heart failure from ischemic and non-ischemic causes, peripheral artery disease, venous ulcer, pulmonary hypertension, atherosclerosis and monogenic diseases, such as Fabry disease. Areas covered In this review, we will focus on elucidating current molecular targets for the treatment of ventricular dysfunction following myocardial infarction (MI). In particular, we will focus on the treatment of i) the clinical consequences of it, such as heart failure and residual myocardial ischemia and ii) etiological causes of MI (coronary vessels atherosclerosis, bypass venous graft disease, in-stent restenosis). Expert opinion We summarise the scheme of the review and the molecular targets either already at the gene therapy clinical trial phase or in the pipeline. These targets will be discussed below. Following this, we will focus on what we believe are the 4 prerequisites of success of any gene target therapy: safety, expression, specificity and efficacy (SESE). PMID:24328708

  9. Strategies in Gene Therapy for Glioblastoma

    PubMed Central

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy. PMID:24202446

  10. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  11. Comparing conventional gauze therapy to vacuum-assisted closure wound therapy: a prospective randomised trial.

    PubMed

    Mouës, C M; van den Bemd, G J C M; Heule, F; Hovius, S E R

    2007-01-01

    Vacuum-assisted closure wound therapy (vacuum therapy) has been used in our department since 1997 as a tool to bridge the period between debridement and definite surgical closure in full-thickness wounds. We performed a prospective randomised clinical trial to compare the efficacy of vacuum therapy to conventional moist gauze therapy in this stage of wound treatment. Treatment efficacy was assessed by semi-quantitative scoring of the wound conditions (signs of rubor, calor, exudate and fibrinous slough) and by wound surface area measurements. Tissue biopsies were performed to quantify the bacterial load. Besides this, the duration until 'ready for surgical therapy' and complications encountered during therapy and postoperatively were recorded. Fifty-four patients were included (vacuum n=29, conventional n=25). With vacuum therapy, healthier wound conditions were observed. Furthermore, a tendency towards a shorter duration of therapy was found, which was most prominent in late-treated wounds. In addition, the wound surface area reduced significantly faster with vacuum therapy. Surprisingly, these results were obtained without a decrease in the number of bacteria colonising the wound. Complications were minor, except for one case of septicaemia and one case of increased tissue necrosis, which compelled us to stop vacuum therapy. For the treatment of full-thickness wounds, vacuum therapy has proven to be a valid wound healing modality.

  12. Gene therapy: a primer for neurosurgeons.

    PubMed

    Chiocca, E Antonio

    2003-08-01

    Gene therapy involves the transfer of genes into cells with therapeutic intent. Although several methods can accomplish this, vectors based on viruses still provide the most efficient approach. For neurosurgical purposes, preclinical and clinical applications in the areas of glioma therapy, spinal neurosurgery, and neuroprotection for treatment of Parkinson's disease and cerebral ischemia are reviewed. In general, therapies applied in the neurosurgical realm have proven relatively safe, despite occasional, well-publicized cases of morbidity and death in non-neurosurgical trials. However, continued clinical and preclinical research in this area is critical, to fully elucidate potential toxicities and to generate truly effective treatments that can be applied in neurological diseases.

  13. Viral vectors for vascular gene therapy

    PubMed Central

    Fischer, Lukas; Preis, Meir; Weisz, Anat; Koren, Belly; Lewis, Basil S; Flugelman, Moshe Y

    2002-01-01

    Vascular gene therapy is the focus of multiple experimental and clinical research efforts. While several genes with therapeutic potential have been identified, the best method of gene delivery is unknown. Viral vectors have the capacity to transfer genes at high efficiency rates. Several viral-based vectors have been used in experimental vascular gene therapy for in vivo and ex vivo gene transfer. Adenoviral-based vectors are being used for the induction of angiogenesis in phase 1 and 2 clinical trials. In the present review, the characteristics of the ‘ideal’ viral vector are discussed and the major types of viral vectors used in vascular gene transfer are reviewed. Basic knowledge of the use of viral vectors for direct in vivo gene transfer (adenoviral-based vectors, etc) and for ex vivo gene transfer (retroviral-based vectors) is provided. New developments in the field of viral vectorology, such as pseudotyping of retroviral vectors and targeting of other viral vectors to a specific cell type, will enhance the more rapid transition of vascular gene therapy from the experimental arena to the clinical setting. PMID:19649233

  14. Gene and Cell Therapy for Heart Failure

    PubMed Central

    2009-01-01

    Abstract Cardiac gene and cell therapy have both entered clinical trials aimed at ameliorating ventricular dysfunction in patients with chronic congestive heart failure. The transduction of myocardial cells with viral constructs encoding a specific cardiomyocyte Ca2+ pump in the sarcoplasmic reticulum (SR), SRCa2+-ATPase has been shown to correct deficient Ca2+ handling in cardiomyocytes and improvements in contractility in preclinical studies, thus leading to the first clinical trial of gene therapy for heart failure. In cell therapy, it is not clear whether beneficial effects are cell-type specific and how improvements in contractility are brought about. Despite these uncertainties, a number of clinical trials are under way, supported by safety and efficacy data from trials of cell therapy in the setting of myocardial infarction. Safety concerns for gene therapy center on inflammatory and immune responses triggered by viral constructs, and for cell therapy with myoblast cells, the major concern is increased incidence of ventricular arrhythmia after cell transplantation. Principles and mechanisms of action of gene and cell therapy for heart failure are discussed, together with the potential influence of reactive oxygen species on the efficacy of these treatments and the status of myocardial-delivery techniques for viral constructs and cells. Antioxid. Redox Signal. 11, 2025–2042. PMID:19416058

  15. Novel Cell and Gene Therapies for HIV

    PubMed Central

    Hoxie, James A.; June, Carl H.

    2012-01-01

    Highly active antiretroviral therapy dramatically improves survival in HIV-infected patients. However, persistence of HIV in reservoirs has necessitated lifelong treatment that can be complicated by cumulative toxicities, incomplete immune restoration, and the emergence of drug-resistant escape mutants. Cell and gene therapies offer the promise of preventing progressive HIV infection by interfering with HIV replication in the absence of chronic antiviral therapy. Individuals homozygous for a deletion in the CCR5 gene (CCR5Δ32) are largely resistant to infection from R5-topic HIV-1 strains, which are most commonly transmitted. A recent report that an HIV-infected patient with relapsed acute myelogenous leukemia was effectively cured from HIV infection after transplantation of hematopoietic stem/progenitor cells (HSC) from a CCR5Δ32 homozygous donor has generated renewed interest in developing treatment strategies that target viral reservoirs and generate HIV resistance in a patient’s own cells. Although the development of cell-based and gene transfer therapies has been slow, progress in a number of areas is evident. Advances in the fields of gene-targeting strategies, T-cell-based approaches, and HSCs have been encouraging, and a series of ongoing and planned trials to establish proof of concept for strategies that could lead to successful cell and gene therapies for HIV are under way. The eventual goal of these studies is to eliminate latent viral reservoirs and the need for lifelong antiretroviral therapy. PMID:23028130

  16. Human gene therapy and slippery slope arguments.

    PubMed Central

    McGleenan, T

    1995-01-01

    Any suggestion of altering the genetic makeup of human beings through gene therapy is quite likely to provoke a response involving some reference to a 'slippery slope'. In this article the author examines the topography of two different types of slippery slope argument, the logical slippery slope and the rhetorical slippery slope argument. The logical form of the argument suggests that if we permit somatic cell gene therapy then we are committed to accepting germ line gene therapy in the future because there is no logically sustainable distinction between them. The rhetorical form posits that allowing somatic cell therapy now will be taking the first step on a slippery slope which will ultimately lead to the type of genocide perpetrated by the Nazis. The author tests the validity of these lines of argument against the facts of human gene therapy and concludes that because of their dependence on probabilities that cannot be empirically proven they should be largely disregarded in the much more important debate on moral line-drawing in gene therapy. PMID:8778459

  17. [Gene therapy--hopes and fears].

    PubMed

    Pietrzyk, J J

    1998-01-01

    Gene therapy assumes the correction of a genetic defect by the delivery of a correct DNA sequence to the target cells. Depending on the target cells two types gene therapy have been defined: somatic and germinal. By July 1998, 351 protocols of somatic therapy were approved by the Recombinant DNA Advisory Committee. The majority of protocols focus on cancer therapy and monogenic diseases. By now, still there is more unfulfilled expectation than clinically sound achievements, since no effective prevention or successful treatment for genetic diseases or cancer have been developed. Germline genetic modification is considered as the treatment of choice for such a diseases like retinoblastoma. Tay-Sachs, Lesch-Nyhan and metachromatic leuko-dystrophy. This approach which is still illegal or prohibited by rules in many European countries, is gathering more and more advocates. Once we learn how to control gene expression the perspectives for clinical application of gene therapy might be enormous. The safety of genetic modification of gametes or embryonal stem cells remains to be properly addressed and successfully solved. The ethical issues of germinal gene therapy are still the subject of controversial opinions among the scientists, lawyers and philosophers.

  18. Human gene therapy and slippery slope arguments.

    PubMed

    McGleenan, T

    1995-12-01

    Any suggestion of altering the genetic makeup of human beings through gene therapy is quite likely to provoke a response involving some reference to a 'slippery slope'. In this article the author examines the topography of two different types of slippery slope argument, the logical slippery slope and the rhetorical slippery slope argument. The logical form of the argument suggests that if we permit somatic cell gene therapy then we are committed to accepting germ line gene therapy in the future because there is no logically sustainable distinction between them. The rhetorical form posits that allowing somatic cell therapy now will be taking the first step on a slippery slope which will ultimately lead to the type of genocide perpetrated by the Nazis. The author tests the validity of these lines of argument against the facts of human gene therapy and concludes that because of their dependence on probabilities that cannot be empirically proven they should be largely disregarded in the much more important debate on moral line-drawing in gene therapy.

  19. Alphavirus vectors for cancer gene therapy (review).

    PubMed

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  20. Gene Therapy for Leber Hereditary Optic Neuropathy

    PubMed Central

    Feuer, William J.; Schiffman, Joyce C.; Davis, Janet L.; Porciatti, Vittorio; Gonzalez, Phillip; Koilkonda, Rajeshwari D.; Yuan, Huijun; Lalwani, Anil; Lam, Byron L.; Guy, John

    2015-01-01

    Purpose Leber hereditary optic neuropathy (LHON) is a disorder characterized by severe and rapidly progressive visual loss when caused by a mutation in the mitochondrial gene encoding NADH:ubiquinone oxidoreductase subunit 4 (ND4). We have initiated a gene therapy trial to determine the safety and tolerability of escalated doses of an adeno-associated virus vector (AAV) expressing a normal ND4 complementary DNA in patients with a G to A mutation at nucleotide 11778 of the mitochondrial genome. Design In this prospective open-label trial (NCT02161380), the study drug (self-complementary AAV [scAAV]2(Y444,500,730F)-P1ND4v2) was intravitreally injected unilaterally into the eyes of 5 blind participants with G11778A LHON. Four participants with visual loss for more than 12 months were treated. The fifth participant had visual loss for less than 12 months. The first 3 participants were treated at the low dose of vector (5 × 109 vg), and the fourth participant was treated at the medium dose (2.46 × 1010 vg). The fifth participant with visual loss for less than 12 months received the low dose. Treated participants were followed for 90 to 180 days and underwent ocular and systemic safety assessments along with visual structure and function examinations. Participants Five legally blind patients with G11778A LHON. Main Outcome Measures Loss of visual acuity. Results Visual acuity as measured by the Early Treatment Diabetic Retinopathy Study (ETDRS) eye chart remained unchanged from baseline to 3 months in the first 3 participants. For 2 participants with 90-day follow-up, acuity increased from hand movements to 7 letters in 1 and by 15 letters in 1, representing an improvement equivalent to 3 lines. No one lost vision, and no serious adverse events were observed. Minor adverse events included a transient increase of intraocular pressure (IOP), exposure keratitis, subconjunctival hemorrhage, a sore throat, and a transient increase in neutralizing antibodies (NAbs) against

  1. Gene replacement therapy for hereditary emphysema

    SciTech Connect

    Skolnick, A.

    1989-11-10

    Investigators suggest that human trials of gene therapy to correct a genetic disorder that usually leads to emphysema early in life may be only a few years away. Speaking at the American Lung Association's Second Annual Science Writers' Forum, R. G. Crystal, chief of the Pulmonary Branch of the National Heart, Lung, and Blood Institute offered an explanation of how hereditary emphysema may be more amenable to genetic therapy than other such diseases. In persons who lack a functioning gene for alpha{sup 1}-antitrypsin, a proteolytic enzyme, neutrophil elastase, attacks the walls of the lungs' alveoli, eventually leading to progressive pulmonary function loss. Two animal models of gene insertion are described.

  2. The case for intrauterine gene therapy.

    PubMed

    Mattar, Citra N; Waddington, Simon N; Biswas, Arijit; Davidoff, Andrew M; Choolani, Mahesh; Chan, Jerry K Y; Nathwani, Amit C

    2012-10-01

    Single-gene disorders can cause perinatal mortality or severe permanent morbidity. Intrauterine gene therapy seeks to correct the genetic defect in the early stages of pathogenesis through delivery of a vector system expressing the therapeutic transgene to the fetus. Advantages of intrauterine gene therapy include prevention of irreversible organ damage, potentially inducing central tolerance and wider bio-distribution, including the brain after delivery of vector. Already, proof-of-cure has been demonstrated in knockout animal models for several diseases. Long-term outcomes pertaining to efficacy and durability of transgene expression and safety are under investigation in clinically relevant non-human primate models. Bystander effects in the mother from transplacental vector trafficking require further assessment. In this chapter, we discuss the candidate diseases amenable to intrauterine gene therapy, current state-of-the-art evidence, and potential clinical applications.

  3. Update on gene therapy for immunodeficiencies.

    PubMed

    Kohn, Donald B

    2010-05-01

    Primary immune deficiencies (PID) are due to blood cell defects and can be treated with transplantation of normal hematopoietic stem cells (HSC) from another person (allogeneic). Gene therapy in which a patient's autologous HSC are genetically corrected represents an alternative treatment for patients with PID, which could avoid the immunologic risks of allogeneic HSCT and confer similar benefits. Recent clinical trials using gene therapy have led to immune restoration in patients with X-linked severe combined immune deficiency (XSCID), adenosine deaminase (ADA)-deficient SCID and chronic granulomatous disease (CGD). However, severe complications arose in several of the patients in whom the integrated retroviral vectors led to leukoproliferative disorders. New approaches using safer integrating vectors or direct correction of the defective gene underlying the PID are being developed and may lead to safer and effective gene therapy for PID.

  4. What Is Next for Retinal Gene Therapy?

    PubMed

    Vandenberghe, Luk H

    2015-04-15

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  6. Employment of Salmonella in Cancer Gene Therapy.

    PubMed

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  7. Nonviral gene therapy approaches to hemophilia.

    PubMed

    Gómez-Vargas, Andrew; Hortelano, Gonzalo

    2004-04-01

    The goal of hemophilia gene therapy is to obtain long-term therapeutic levels of factor VIII (FVIII) or factor IX (FIX) without stimulating an immune response against the transgene product or the vector. The success of gene therapy is largely dependent on the development of appropriate gene delivery vectors. Both viral vectors and nonviral vectors have been considered for the development of hemophilia gene therapy. In general, viral vectors are far more efficient than nonviral gene delivery approaches and resulted in long-term therapeutic levels of FVIII or FIX in preclinical animal models. However, there are several reasons why a nonviral treatment would still be desirable, particularly because some viral vectors are associated with inflammatory reactions, that render transgene expression transient, or with an increased risk of insertional oncogenesis when random integrating vectors are used. Nonviral vectors may obviate some of these concerns. Since nonviral vectors are typically assembled in cell-free systems from well-defined components, they have significant manufacturing advantages over viral vectors. The continued development of improved nonviral gene delivery approaches offers new perspectives for gene therapy of chronic diseases including hemophilia.

  8. Prospective antifungal therapy (PATH) alliance(®) : focus on mucormycosis.

    PubMed

    Kontoyiannis, Dimitrios P; Azie, Nkechi; Franks, Billy; Horn, David L

    2014-04-01

    Mucormycosis is increasingly encountered in immunosuppressed patients, such as those with haematological malignancies or stem cell transplantation. We present a descriptive analysis of 121 cases of mucormycosis from the Prospective Antifungal Therapy Alliance(®) registry (July 2004 to December 2008). Patients with proven or probable mucormycosis were enrolled and followed prospectively for 12 weeks. The most common underlying disease and site of infection were haematologic malignancy (61.2%) and lungs (46.3%) respectively. Rhizopus (n = 63; 52.1%) was the most commonly isolated species, followed by Mucor (n = 28; 23.1%), other or unknown (n = 17; 14.0%), Rhizomucor (n = 9; 7.4%) and Lichtheimia (n = 4; 3.3%). The 12-week Kaplan-Meier survival probability for all patients was 0.41; however, there was large variation in survival probabilities between species, with highest survival probability observed for Lichtheimia (0.5), followed by Rhizopus (0.47), Mucor (0.40), unknown Mucormycetes species (0.40), other Mucormycetes species (0.17) and Rhizomucor (0.15). Prior use of voriconazole decreased 12-week survival probability. Survival probability was higher in patients receiving amphotericin B by Day 3 (0.72) vs. those who started amphotericin B therapy after Day 3 (0.33). The low survival probability observed underscores the importance of further studies of mucormycosis. Optimal treatment selection and timing may improve prognosis.

  9. Prospects for gene transmformation in insects

    USDA-ARS?s Scientific Manuscript database

    The ability to manipulate genetic material in vitro and integrate it into a host genome has proven to be one of the more powerful methods of genetic analysis, as well as a means to manipUlate an organism's biology. In insects, the use of gene transformation is equally Significant in its potential to...

  10. Current status of haemophilia gene therapy.

    PubMed

    High, K H; Nathwani, A; Spencer, T; Lillicrap, D

    2014-05-01

    After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future. © 2014 John Wiley & Sons Ltd.

  11. RNAi-based Gene Therapy for Dominant Limb Girdle Muscular Dystrophies

    PubMed Central

    Liu, Jian; Harper, Scott Q.

    2014-01-01

    Limb Girdle Muscular Dystrophy (LGMD) refers to a group of 25 genetic diseases linked by common clinical features, including wasting of muscles supporting the pelvic and shoulder girdles. Cardiac involvement may also occur. Like other muscular dystrophies, LGMDs are currently incurable, but prospective gene replacement therapies targeting recessive forms have shown promise in pre-clinical and clinical studies. In contrast, little attention has been paid to developing gene therapy approaches for dominant forms of LGMD, which would likely benefit from disease gene silencing. Despite the lack of focus to date on developing gene therapies for dominant LGMDs, the field is not starting at square one, since translational studies on recessive LGMDs provided a framework that can be applied to treating dominant forms of the disease. In this manuscript, we discuss the prospects of treating dominantly inherited forms of LGMD with gene silencing approaches. PMID:22856606

  12. The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders

    PubMed Central

    2014-01-01

    Background Angelman syndrome is a monogenic neurologic disorder that affects 1 in 15,000 children, and is characterized by ataxia, intellectual disability, speech impairment, sleep disorders, and seizures. The disorder is caused by loss of central nervous system expression of UBE3A, a gene encoding a ubiquitin ligase. Current treatments focus on the management of symptoms, as there have not been therapies to treat the underlying molecular cause of the disease. However, this outlook is evolving with advances in molecular therapies, including artificial transcription factors a class of engineered DNA-binding proteins that have the potential to target a specific site in the genome. Results Here we review the recent progress and prospect of targeted gene expression therapies. Three main issues that must be addressed to advance toward human clinical trials are specificity, toxicity, and delivery. Conclusions Artificial transcription factors have the potential to address these concerns on a level that meets and in some cases exceeds current small molecule therapies. We examine the possibilities of such approaches in the context of Angelman syndrome, as a template for other single-gene, neurologic disorders. PMID:24946931

  13. Gene therapy legislation in The Netherlands.

    PubMed

    Bleijs, D A; Haenen, I T W C; Bergmans, J E N

    2007-10-01

    Several regulatory organisations are involved in the assessment of clinical gene therapy trials involving genetically modified organisms (GMOs) in The Netherlands. Medical, ethical and scientific aspects are, for instance, evaluated by the Central Committee on Research Involving Human Subjects (CCMO). The Ministry of Housing, Spatial Planning and the Environment (VROM) is the competent authority for the environmental risk assessment according to the deliberate release Directive 2001/18/EC. A Gene Therapy Office has been established in order to streamline the different national review processes and to enable the official procedures to be completed as quickly as possible. Although the Gene Therapy Office improved the application process at the national level, there is a difference of opinion between the EU member states with respect to the EU Directive according to which gene therapy trials are assessed, that urges for harmonisation. This review summarises the gene therapy legislation in The Netherlands and in particular The Netherlands rationale to follow Directive 2001/18/EC for the environmental risk assessment.

  14. Stem cell based cancer gene therapy.

    PubMed

    Cihova, Marina; Altanerova, Veronika; Altaner, Cestmir

    2011-10-03

    The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Suicide gene therapy using genetically engineered mesenchymal stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. This review provides an explanation of the stem cell-targeted prodrug cancer gene therapy principle, with focus on the choice of prodrug, properties of bone marrow and adipose tissue-derived mesenchymal stem and neural stem cells as well as the mechanisms of their tumor homing ability. Therapeutic achievements of the cytosine deaminase/5-fluorocytosine prodrug system and Herpes simplex virus thymidine kinase/ganciclovir are discussed. In addition, delivery of immunostimulatory cytokines, apoptosis inducing genes, nanoparticles and antiangiogenic proteins by stem cells to tumors and metastases is discussed as a promising approach for antitumor therapy. Combinations of traditional, targeted and stem cell-directed gene therapy could significantly advance the treatment of cancer.

  15. A Comprehensive Review of Retinal Gene Therapy

    PubMed Central

    Boye, Shannon E; Boye, Sanford L; Lewin, Alfred S; Hauswirth, William W

    2013-01-01

    Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement. PMID:23358189

  16. Fetal gene therapy: opportunities and risks.

    PubMed

    Wagner, Anna M; Schoeberlein, Andreina; Surbek, Daniel

    2009-08-10

    Advances in human prenatal medicine and molecular genetics have allowed the diagnosis of many genetic diseases early in gestation. In-utero transplantation of allogeneic hematopoietic stem cells (HSC) has been successfully used as a therapy in different animal models and recently also in human fetuses. Unfortunately, clinical success of this novel treatment is limited by the lack of donor cell engraftment in non-immunocompromised hosts and is thus restricted to diseases where the fetus is affected by severe immunodeficiency. Gene therapy using genetically modified autologous HSC circumvents allogeneic HLA barriers and constitutes one of the most promising new approaches to correct genetic deficits in the fetus. Recent developments of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells include the use of new vector constructs and transduction protocols. These improvements open new perspectives for gene therapy in general and for prenatal gene transfer in particular. The fetus may be especially susceptible for successful gene therapy due to the immunologic naiveté of the immature hematopoietic system during gestation, precluding an immune reaction towards the transgene. Ethical issues, in particular those regarding treatment safety, must be taken into account before clinical trials with fetal gene therapy in human pregnancies can be initiated.

  17. Promising and delivering gene therapies for vision loss

    PubMed Central

    Carvalho, Livia S.; Vandenberghe, Luk H.

    2014-01-01

    The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time. PMID:25094052

  18. New tools in regenerative medicine: gene therapy.

    PubMed

    Muñoz Ruiz, Miguel; Regueiro, José R

    2012-01-01

    Gene therapy aims to transfer genetic material into cells to provide them with new functions. A gene transfer agent has to be safe, capable of expressing the desired gene for a sustained period of time in a sufficiently large population of cells to produce a biological effect. Identifying a gene transfer tool that meets all of these criteria has proven to be a difficult objective. Viral and nonviral vectors, in vivo, ex vivo and in situ strategies co-exist at present, although ex vivo lenti-or retroviral vectors are presently the most popular.Natural stem cells (from embryonic, hematopoietic, mesenchymal, or adult tissues) or induced progenitor stem (iPS) cells can be modified by gene therapy for use in regenerative medicine. Among them, hematopoietic stem cells have shown clear clinical benefit, but iPS cells hold humongous potential with no ethical concerns.

  19. Variables Predicting Prospective Biology Teachers' Acceptance Perceptions Regarding Gene Technology

    ERIC Educational Resources Information Center

    Yilmaz, Mirac; Demirhan, Haydar

    2014-01-01

    The different opinions on products and applications of gene technology (GT) draw attention to the training and education activities related to GT. The purpose of this study is to review some variables predicting the acceptance perception regarding GT, and to investigate their changes at levels. The prospective teachers' subjective knowledge and…

  20. Progress and prospects for engineered T cell therapies.

    PubMed

    Qasim, Waseem; Thrasher, Adrian J

    2014-09-01

    Proof-of-concept studies have demonstrated the therapeutic potential of engineered T cells. Transfer of recombinant antigen-specific T cell receptors (TCR) and chimaeric antigen receptors (CARs) against tumour and viral antigens are under investigation by multiple approaches, including viral- and nonviral-mediated gene transfer into both autologous and allogeneic T cell populations. There have been notable successes recently using viral vector-mediated transfer of CARs specific for B cell antigens, but also reports of anticipated and unanticipated complications in these and other studies. We review progress in this promising area of cellular therapy, and consider developments in antigen receptor therapies including the application of emerging gene-editing technologies. © 2014 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  1. Therapeutic genes for anti-HIV/AIDS gene therapy.

    PubMed

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  2. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy

    PubMed Central

    Nash, Benjamin M.; Wright, Dale C.; Grigg, John R.; Bennetts, Bruce

    2015-01-01

    Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs. PMID:26835369

  3. NIH modifies gene therapy research guidelines.

    PubMed

    Levine, Carol

    1985-06-01

    In response to public comments on the first draft of its "Points to Consider in the Design and Submission of Human Somatic-Cell Gene Therapy Protocols," the Working Group on Human Gene Therapy of the National Institutes of Health has issued a revised set of guidelines for researchers. This second draft spells out the need for public review of gene therapy protocols, the Working Group's willingness to review selected protocols before the completion of animal studies, and requirements for informed consent to long-term follow-up and to autopsy in the event of death. The document also expresses the Working Group's concern that researchers and the public be kept fully informed of the results of such studies.

  4. Gene Therapy for Fracture Repair

    DTIC Science & Technology

    2005-12-01

    chemotactic factor for human mast cells. J. Immunol. 153: 3717-3723. 36 41. Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, Akasaka Y, Ishii T...1994;153:3717–23. [37] Ono I, Yamashita T, Hida T, Jin HY, Ito Y, Hamada H, et al. Local administration of hepatocyte growth factor gene enhances the

  5. Stem Cell Therapy: A Prospective Treatment for Alzheimer's Disease

    PubMed Central

    Lee, Ji Han; Oh, Il-Hoan

    2016-01-01

    Alzheimer's disease (AD) without cure remains as a serious health issue in the modern society. The major neuropathological alterations in AD are characterized by chronic neuroinflammation and neuronal loss due to neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau, plaques of β-amyloid (Aβ) and various metabolic dysfunctions. Due to the multifaceted nature of AD pathology and our limited understanding on its etiology, AD is difficult to be treated with currently available pharmaceuticals. This unmet need, however, could be met with stem cell technology that can be engineered to replace neuronal loss in AD patients. Although stem cell therapy for AD is only in its development stages, it has vast potential uses ranging from replacement therapy to disease modelling and drug development. Current progress with stem cells in animal model studies offers promising results for the new prospective treatment for AD. This review will discuss the characteristics of AD, current progress in stem cell therapy and remaining challenges and promises in its development. PMID:27909447

  6. Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  7. Radiopharmaceutical and Gene Therapy Program

    SciTech Connect

    Buchsbaum, Donald J.

    2006-02-09

    The objective of our research program was to determine whether novel receptors can be induced in solid cancers as a target for therapy with radiolabeled unmodified peptides that bind to the receptors. The hypothesis was that induction of a high number of receptors on the surface of these cancer cells would result in an increased uptake of the radiolabeled monomeric peptides as compared to published results with radiolabeled antibodies or peptides to naturally expressed antigens or receptors, and therefore a better therapeutic outcome. The following is a summary of published results.

  8. Searching for obesity genes: progress and prospects.

    PubMed

    Liu, Yong-Jun; Xiao, Peng; Xiong, Dong Hai; Recker, Robert R; Deng, Hong-Wen

    2005-05-01

    Obesity is a condition of excess body fat that causes or exacerbates several major public health problems. Remarkable progress has been made in the molecular elucidation of monogenic forms of obesity both in rodents and in humans. The most common form of obesity, however, is considered to be a polygenic disorder arising from the interaction of multiple genetic and environmental factors. Identification and characterization of susceptibility genes underlying obesity will contribute to a greater understanding of the pathogenesis of obesity and ultimately will assist in the development of better strategies for prevention and therapeutic intervention. In this article, we discuss the current status and future perspectives for the genetic dissection of obesity, with a focus on the most striking or representative findings.

  9. Haemophilia gene therapy: Progress and challenges.

    PubMed

    Lheriteau, Elsa; Davidoff, Andrew M; Nathwani, Amit C

    2015-09-01

    Current treatment for haemophilia entails life-long intravenous infusion of clotting factor concentrates. This is highly effective at controlling and preventing haemorrhage and its associated complications. Clotting factor replacement therapy is, however, demanding, exceedingly expensive and not curative. In contrast, gene therapy for haemophilia offers the potential of a cure as a result of continuous endogenous expression of biologically active factor VIII (FVIII) or factor IX (FIX) proteins following stable transfer of a normal copy of the respective gene. Our group has recently established the first clear proof-of-concept for a gene therapy approach to the treatment of severe haemophilia B. This entails a single intravenous administration of an adeno-associated virus vector encoding an optimised FIX gene, resulting in a long-term (>4 years) dose dependent increase in plasma FIX levels at therapeutic levels without persistent or late toxicity. Gene therapy therefore has the potential to change the treatment paradigm for haemophilia but several hurdles need to be overcome before this can happen. This review provides a summary of the progress made to date and discusses the remaining changes.

  10. [Postoperative pain therapy in urology. A prospective study].

    PubMed

    Gronau, E; Pannek, J; Benninghoff, A; Seibold, W; Senge, T

    2002-05-01

    A sufficient analgesic treatment in the early postoperative period is important for the patients comfort level. Moreover, physical therapy for prophylaxis of pneumonia and thrombosis is better tolerated. In a prospective study, we compared two postoperative pain management regimens to establish a sufficient pain management without the need of additional costs or manpower. Of 215 patients undergoing major urologic surgery, 111 patients received on demand medication exclusively (group 1), whereas 104 patients were treated with basic analgesics combined with on demand medication (group 2). Pain intensity, side effects and subjective well being were evaluated with a visual analogue scale and a standardised interview. Pain intensity and side effects were significantly lower in group 2. Thus, with combined analgesic treatment, postoperative pain relieve can be achieved safely and without additional costs.

  11. Gene repair and transposon-mediated gene therapy.

    PubMed

    Richardson, Paul D; Augustin, Lance B; Kren, Betsy T; Steer, Clifford J

    2002-01-01

    The main strategy of gene therapy has traditionally been focused on gene augmentation. This approach typically involves the introduction of an expression system designed to express a specific protein in the transfected cell. Both the basic and clinical sciences have generated enough information to suggest that gene therapy would eventually alter the fundamental practice of modern medicine. However, despite progress in the field, widespread clinical applications and success have not been achieved. The myriad deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. One, derived primarily from the pioneering work of homologous recombination, is gene repair. Simply stated, the process involves targeting the mutation in situ for gene correction and a return to normal gene function. Site-specific genetic repair has many advantages over augmentation although it too is associated with significant limitations. This review outlines the advantages and disadvantages of gene correction. In particular, we discuss technologies based on chimeric RNA/DNA oligonucleotides, single-stranded and triplex-forming oligonucleotides, and small fragment homologous replacement. While each of these approaches is different, they all share a number of common characteristics, including the need for efficient delivery of nucleic acids to the nucleus. In addition, we review the potential application of a novel and exciting nonviral gene augmentation strategy--the Sleeping Beauty transposon system.

  12. Genome editing for human gene therapy.

    PubMed

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  13. Hot prospect for new gene amplifier

    SciTech Connect

    Not Available

    1991-11-29

    Molecular biologist Francis Barany is investigating one of the hottest areas in biotechnology: a gene-amplification technique called ligase chain reaction, or LCR. Already scientists have used LCR to detect the tiny mutation that causes sickle cell anemia and have adapted it to screen for a handful of other genetic diseases simultaneously - in a single test-tube. Some experts, in fact, are predicting that LCR will supplement the polymerase chain reaction (PCR), and in some cases even supplant it. LCR could revolutionize DNA diagnostics just as PCR transformed basic molecular biology following its introduction 6 years ago. With its ease of automation and ability to produce useful quantitative results, LCR could become a major player in the rapidly growing market for DNA diagnostics. LCR, like PCR, uses snippets of nucleic acid, or oligonucleotides, that anneal to a specific, complementary sequence on the target DNA to be amplified. But where PCR uses oligos that bracket the stretch to be amplified, LCR uses pairs of oligos that completely cover the target sequence.

  14. The Mucus Barrier to Inhaled Gene Therapy.

    PubMed

    Duncan, Gregg A; Jung, James; Hanes, Justin; Suk, Jung Soo

    2016-12-01

    Recent evidence suggests that the airway mucus gel layer may be impermeable to the viral and synthetic gene vectors used in past inhaled gene therapy clinical trials for diseases like cystic fibrosis. These findings support the logic that inhaled gene vectors that are incapable of penetrating the mucus barrier are unlikely to provide meaningful benefit to patients. In this review, we discuss the biochemical and biophysical features of mucus that contribute its barrier function, and how these barrier properties may be reinforced in patients with lung disease. We next review biophysical techniques used to assess the potential ability of gene vectors to penetrate airway mucus. Finally, we provide new data suggesting that fresh human airway mucus should be used to test the penetration rates of gene vectors. The physiological barrier properties of spontaneously expectorated CF sputum remained intact up to 24 hours after collection when refrigerated at 4 °C. Conversely, the barrier properties were significantly altered after freezing and thawing of sputum samples. Gene vectors capable of overcoming the airway mucus barrier hold promise as a means to provide the widespread gene transfer throughout the airway epithelium required to achieve meaningful patient outcomes in inhaled gene therapy clinical trials.

  15. Renal diseases as targets of gene therapy.

    PubMed

    Phillips, Brett; Giannoukakis, Nick; Trucco, Massimo

    2008-01-01

    A number of renal pathologies exist that have seen little or no improvement in treatment methods over the past 20 years. These pathologies include acute and chronic kidney diseases as well as posttransplant kidney survival and host rejection. A novel approach to treatment methodology may provide new insight to further progress our understanding of the disease and overall patient outcome. Recent advances in human genomics and gene delivery systems have opened the door to possible cures through the direct modulation of cellular genes. These techniques of gene therapy have not been extensively applied to renal pathologies, but clinical trials on other organ systems and kidney research in animal models hold promise. Techniques have employed viral and nonviral vectors to deliver gene modulating compounds directly into the cell. These vectors have the capability to replace defective alleles, express novel genes, or suppress the expression of pathogenic genes in a wide variety of kidney cell types. Focus has also been placed on ex vivo modification of kidney tissue to promote allograft survival and limit the resulting immune response to the transplanted organ. This could prove a valuable alternative to current immunosuppressive drugs and their deleterious effects on patients. While continued research and clinical trials are needed to identify a robust system of gene delivery, gene therapy techniques have great potential to treat kidney disease at the cellular level and improve patient quality of life.

  16. Gene Therapy for Fracture Repair

    DTIC Science & Technology

    2003-12-01

    relative transgene expression efficiencies for the MLV-based and lentiviral-based vectors, the Enhanced Green Fluorescent Protein (EGFP) was used as...for both Cy3 and Cy5 2,-15i Hybridized to to Aigilent Rat -s 2-- Gene Chip - iGnTrr. . tea 2 ug universal RNAw silx sl59 (?es) Cy310-0 (control) 1...fractures were also examined at sacrifice for evidence of fibrosis due to irritation or migration of the stabilizing pin. None was observed and the fracture

  17. [Developments in gene delivery vectors for ocular gene therapy].

    PubMed

    Khabou, Hanen; Dalkara, Deniz

    2015-05-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Its remarkable success in safety and efficacy, in clinical trials for Leber's congenital amaurosis (LCA) type II generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was mainly due to the favorable characteristics of the retina as a target organ. The eye offers several advantages as it is readily accessible and has some degree of immune privilege making it suitable for application of viral vectors. The viral vectors most frequently used for retinal gene delivery are lentivirus, adenovirus and adeno-associated virus (AAV). Here we will discuss the use of these viral vectors in retinal gene delivery with a strong focus on favorable properties of AAV. Thanks to its small size, AAV diffuses well in the inter-neural matrix making it suitable for applications in neural retina. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases using AAV as a vector. This article will discuss what are some of the most imminent cellular targets for such therapies and the AAV toolkit that has been built to target these cells successfully. We will also discuss some of the challenges that we face in translating AAV-based gene therapies to the clinic.

  18. Emerging cellular and gene therapies for congenital anemias.

    PubMed

    Ludwig, Leif S; Khajuria, Rajiv K; Sankaran, Vijay G

    2016-12-01

    Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Cancer gene therapy using mesenchymal stem cells.

    PubMed

    Uchibori, Ryosuke; Tsukahara, Tomonori; Ohmine, Ken; Ozawa, Keiya

    2014-04-01

    Cellular and gene therapies represent promising treatment strategies at the frontier of medicine. Hematopoietic stem cells, lymphocytes, and mesenchymal stem cells (MSCs) can all serve as sources of cells for use in such therapies. Strategies for gene therapy are often based on those of cell therapy, and it is anticipated that some examples will be put to practical use in the near future. Given their ability to support hematopoiesis, MSCs may be useful for the enhancement of stem cell engraftment, and the acceleration of hematopoietic reconstitution. Furthermore, MSCs may advance the treatment of severe graft-versus-host disease, based on their immunosuppressive ability. This application is also based on the homing behavior of MSCs to sites of injury and inflammation. Interestingly, MSCs possess tumor-homing ability, opening up the possibility of applications in the targeted delivery of anti-cancer genes to tumors. Many reports have indicated that MSCs can be utilized to target tumors and to deliver anti-cancer molecules locally, as tumors are recognized as non-healing wounds with inflammatory tissue. Here, we review both the potential of MSCs as cellular vehicles for targeted cancer therapy and the molecular mechanisms underlying MSC accumulation at tumor sites.

  20. ORTHOPAEDIC GENE THERAPY – LOST IN TRANSLATION?

    PubMed Central

    Evans, C.H.; Ghivizzani, S.C.; Robbins, P.D.

    2011-01-01

    Orthopaedic gene therapy has been the topic of considerable research for two decades. The preclinical data are impressive and many orthopaedic conditions are well suited to genetic therapies. But there have been few clinical trials and no FDA-approved product exists. This paper examines why this is so. The reasons are multifactorial. Clinical translation is expensive and difficult to fund by traditional academic routes. Because gene therapy is viewed as unsafe and risky, it does not attract major funding from the pharmaceutical industry. Start-up companies are burdened by the complex intellectual property environment and difficulties in dealing with the technology transfer offices of major universities. Successful translation requires close interactions between scientists, clinicians and experts in regulatory and compliance issues. It is difficult to create such a favourable translational environment. Other promising fields of biological therapy have contemplated similar frustrations approximately 20 years after their founding, so there seem to be more general constraints on translation that are difficult to define. Gene therapy has noted some major clinical successes in recent years, and a sense of optimism is returning to the field. We hope that orthopaedic applications will benefit collaterally from this upswing and move expeditiously into advanced clinical trials. PMID:21948071

  1. Orthopedic gene therapy--lost in translation?

    PubMed

    Evans, C H; Ghivizzani, S C; Robbins, P D

    2012-02-01

    Orthopedic gene therapy has been the topic of considerable research for two decades. The preclinical data are impressive and many orthopedic conditions are well suited to genetic therapies. But there have been few clinical trials and no FDA-approved product exists. This paper examines why this is so. The reasons are multifactorial. Clinical translation is expensive and difficult to fund by traditional academic routes. Because gene therapy is viewed as unsafe and risky, it does not attract major funding from the pharmaceutical industry. Start-up companies are burdened by the complex intellectual property environment and difficulties in dealing with the technology transfer offices of major universities. Successful translation requires close interactions between scientists, clinicians and experts in regulatory and compliance issues. It is difficult to create such a favorable translational environment. Other promising fields of biological therapy have contemplated similar frustrations approximately 20 years after their founding, so there seem to be more general constraints on translation that are difficult to define. Gene therapy has noted some major clinical successes in recent years, and a sense of optimism is returning to the field. We hope that orthopedic applications will benefit collaterally from this upswing and move expeditiously into advanced clinical trials. Copyright © 2011 Wiley Periodicals, Inc.

  2. Review: Stem cells and gene therapy.

    PubMed

    Alenzi, Faris Q; Lotfy, Mahmoud; Tamimi, Waleed G; Wyse, Richard K H

    2010-09-01

    Both stem cell and gene therapy research are currently the focus of intense research in institutions and companies around the world. Both approaches hold great promise by offering radical new and successful ways of treating debilitating and incurable diseases effectively. Gene therapy is an approach to treat, cure, or ultimately prevent disease by changing the pattern of gene expression. It is mostly experimental, but a number of clinical human trials have already been conducted. Gene therapy can be targeted to somatic or germ cells; the most common vectors are viruses. Scientists manipulate the viral genome and thus introduce therapeutic genes to the target organ. Viruses, in this context, can cause adverse events such as toxicity, immune and inflammatory responses, as well as gene control and targeting issues. Alternative modalities being considered are complexes of DNA with lipids and proteins. Stem cells are primitive cells that have the capacity to self renew as well as to differentiate into 1 or more mature cell types. Pluripotent embryonic stem cells derived from the inner cell mass can develop into more than 200 different cells and differentiate into cells of the 3 germ cell layers. Because of their capacity of unlimited expansion and pluripotency, they are useful in regenerative medicine. Tissue or adult stem cells produce cells specific to the tissue in which they are found. They are relatively unspecialized and predetermined to give rise to specific cell types when they differentiate. The current review provides a summary of our current knowledge of stem cells and gene therapy as well as their clinical implications and related therapeutic options.

  3. Aptamer-mediated cancer gene therapy.

    PubMed

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Zhou, Shu-Feng; Li, Yong; Wei, Ming Q; Qiao, Liang; Shamaileh, Hadi Al; Zhu, Yimin; Zheng, Conglong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

  4. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  5. Gene and cell therapy for pancreatic cancer.

    PubMed

    Singh, Hans Martin; Ungerechts, Guy; Tsimberidou, Apostolia M

    2015-04-01

    The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.

  6. Gene therapy and targeted toxins for glioma.

    PubMed

    Castro, Maria G; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D; Curtin, James F; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Ghulam Muhammad, A K M; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R

    2011-06-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.

  7. Gene therapy in dentistry: present and future.

    PubMed

    Baum, Bruce J

    2014-12-01

    Gene therapy is one of several novel biological treatments under active study for a wide variety of clinical applications, including many relevant to dentistry. This review will provide some background on this therapeutic approach, assess the current state of its applications generally, and in the oral cavity, and suggest the implications for its use in the next 25 years.

  8. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor.

  9. Foamy Virus Vectors for HIV Gene Therapy

    PubMed Central

    Olszko, Miles E.; Trobridge, Grant D.

    2013-01-01

    Highly active antiretroviral therapy (HAART) has vastly improved outcomes for patients infected with HIV, yet it is a lifelong regimen that is expensive and has significant side effects. Retroviral gene therapy is a promising alternative treatment for HIV/AIDS; however, inefficient gene delivery to hematopoietic stem cells (HSCs) has so far limited the efficacy of this approach. Foamy virus (FV) vectors are derived from non-pathogenic viruses that are not endemic to the human population. FV vectors have been used to deliver HIV-inhibiting transgenes to human HSCs, and they have several advantages relative to other retroviral vectors. These include an attractive safety profile, broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. In addition, the titers of FV vectors are not reduced by anti-HIV transgenes that affect the production of lentivirus (LV) vectors. Thus FV vectors are very promising for anti-HIV gene therapy. This review covers the advantages of FV vectors and describes their preclinical development for anti-HIV gene therapy. PMID:24153061

  10. Cardiac gene therapy: optimization of gene delivery techniques in vivo.

    PubMed

    Katz, Michael G; Swain, JaBaris D; White, Jennifer D; Low, David; Stedman, Hansell; Bridges, Charles R

    2010-04-01

    Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods--including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques--with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity.

  11. Cardiac Gene Therapy: Optimization of Gene Delivery Techniques In Vivo

    PubMed Central

    Katz, Michael G.; Swain, JaBaris D.; White, Jennifer D.; Low, David; Stedman, Hansell

    2010-01-01

    Abstract Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods—including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques—with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity. PMID:19947886

  12. Optimizing ribozymes for somatic cell gene therapy.

    PubMed

    Branch, A D; Klotman, P E

    1998-01-01

    Therapeutic ribozymes are created through a multistep process that requires trial and error. There are few established rules governing ribozyme design, but guidelines are emerging. It is not yet known whether hammerheads and hairpins, the two ribozymes most widely studied as potential gene therapy agents, have the inherent capability to ablate single genes. Their capacity for specificity and selectivity remains to be explored through rigorous experimentation. These experiments require a battery of control molecules, the characteristics of which are outlined here. Methods for completing the steps in the ribozyme development process, from the selection of a target gene to the quantitation of RNA levels, are also presented and discussed.

  13. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  14. Gene Therapy and Wound Healing

    PubMed Central

    Eming, Sabine A.; Krieg, Thomas; Davidson, Jeffrey M

    2007-01-01

    Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel_therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound-healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair. PMID:17276205

  15. Gene therapy used for tissue engineering applications.

    PubMed

    Heyde, Mieke; Partridge, Kris A; Oreffo, Richard O C; Howdle, Steven M; Shakesheff, Kevin M; Garnett, Martin C

    2007-03-01

    This review highlights the advances at the interface between tissue engineering and gene therapy. There are a large number of reports on gene therapy in tissue engineering, and these cover a huge range of different engineered tissues, different vectors, scaffolds and methodology. The review considers separately in-vitro and in-vivo gene transfer methods. The in-vivo gene transfer method is described first, using either viral or non-viral vectors to repair various tissues with and without the use of scaffolds. The use of a scaffold can overcome some of the challenges associated with delivery by direct injection. The ex-vivo method is described in the second half of the review. Attempts have been made to use this therapy for bone, cartilage, wound, urothelial, nerve tissue regeneration and for treating diabetes using viral or non-viral vectors. Again porous polymers can be used as scaffolds for cell transplantation. There are as yet few comparisons between these many different variables to show which is the best for any particular application. With few exceptions, all of the results were positive in showing some gene expression and some consequent effect on tissue growth and remodelling. Some of the principal advantages and disadvantages of various methods are discussed.

  16. Human embryonic stem cells and gene therapy.

    PubMed

    Strulovici, Yael; Leopold, Philip L; O'Connor, Timothy P; Pergolizzi, Robert G; Crystal, Ronald G

    2007-05-01

    Human embryonic stem cells (hESCs) theoretically represent an unlimited supply of normal differentiated cells to engineer diseased tissues to regain normal function. However, before hESCs can be useful as human therapeutics, technologies must be developed to provide them with the specific signals required to differentiate in a controlled fashion, to regulate and/or shut down the growth of hESCs and their progeny once they have been transferred to the recipient, and to circumvent the recognition of non-autologous hESC-derived cells as foreign. In the context that gene therapy technologies represent strategies to deliver biological signals to address all of these challenges, this review sets out a framework for combined gene transfer/hESC therapies. We discuss how hESCs are derived, characterized, and differentiated into specific cell lineages, and we summarize the characteristics of the 500 hESC lines reported to date. The successes and failures of gene transfer to hESCs are reviewed for both non-viral and viral vectors, as are the challenges to successful use of gene transfer in developing hESC therapy. We also consider gene transfer as a means of facilitating growth and isolation of genetically modified hESCs and as a mechanism for mitigating adverse effects associated with administration of hESCs or their derivatives. Finally, we evaluate the challenges that are likely to be encountered in translating the promise of hESCs to the clinic.

  17. The gene therapy revolution in ophthalmology

    PubMed Central

    Al-Saikhan, Fahad I.

    2013-01-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber’s Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red–green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable. PMID:24227970

  18. The gene therapy revolution in ophthalmology.

    PubMed

    Al-Saikhan, Fahad I

    2013-04-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber's Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red-green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable.

  19. Transcriptional Targeting in Cancer Gene Therapy

    PubMed Central

    2003-01-01

    Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future. PMID:12721516

  20. Treating Immunodeficiency through HSC Gene Therapy.

    PubMed

    Booth, Claire; Gaspar, H Bobby; Thrasher, Adrian J

    2016-04-01

    Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future.

  1. Recent progress in gene therapy for hemophilia.

    PubMed

    Chuah, Marinee K; Nair, Nisha; VandenDriessche, Thierry

    2012-06-01

    Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.

  2. Gene Therapy: Implications for Craniofacial Regeneration

    PubMed Central

    Scheller, Erica L.; Villa-Diaz, Luis G; Krebsbach, Paul H.

    2011-01-01

    Gene therapy in the craniofacial region provides a unique tool for delivery of DNA to coordinate protein production in both time and space. The drive to bring this technology to the clinic is derived from the fact that over 85% of the global population may at one time require repair or replacement of a craniofacial structure. This need ranges from mild tooth decay and tooth loss to temporomandibular joint disorders and large-scale reconstructive surgery. Our ability to insert foreign DNA into a host cell has been developing since early uses of gene therapy to alter bacterial properties for waste cleanup in the 1980s followed by successful human clinical trials in the 1990s to treat severe combined immunodeficiency. In the past twenty years the emerging field of craniofacial tissue engineering has adopted these techniques to enhance regeneration of mineralized tissues, salivary gland, periodontium, and to reduce tumor burden of head and neck squamous cell carcinoma. Studies are currently pursuing research on both biomaterial-mediated gene delivery as well as more clinically efficacious, though potentially more hazardous, viral methods. Though hundreds of gene therapy clinical trials have taken place in the past twenty years, we must still work to ensure an ideal safety profile for each gene and delivery method combination. With adequate genotoxicity testing, we can expect gene therapy to augment protein delivery strategies and potentially allow for tissue-specific targeting, delivery of multiple signals, and increased spatial and temporal control with the goal of natural tissue replacement in the craniofacial complex. PMID:22337437

  3. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  4. Noninvasive tracking of gene transcript and neuroprotection after gene therapy.

    PubMed

    Ren, J; Chen, Y I; Liu, C H; Chen, P-C; Prentice, H; Wu, J-Y; Liu, P K

    2016-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer's dementia, Parkinson's disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine.

  5. Fetal muscle gene therapy/gene delivery in large animals.

    PubMed

    Abi-Nader, Khalil N; David, Anna L

    2011-01-01

    Gene delivery to the fetal muscles is a potential strategy for the early treatment of muscular dystrophies. In utero muscle gene therapy can also be used to treat other genetic disorders such as hemophilia, where the missing clotting proteins may be secreted from the treated muscle. In the past few years, studies in small animal models have raised the hopes that a phenotypic cure can be obtained after fetal application of gene therapy. Studies of efficacy and safety in large animals are, however, essential before clinical application can be considered in the human fetus. For this reason, the development of clinically applicable strategies for the delivery of gene therapy to the fetal muscles is of prime importance. In this chapter, we describe the protocols for in utero ultrasound-guided gene delivery to the ovine fetal muscle in early gestation. In particular, procedures to inject skeletal muscle groups such as the thigh and thoracic musculature and targeting the diaphragm in the fetus are described in detail.

  6. [Application of gene therapy to oncologic ophthalmology].

    PubMed

    Philiponnet, A; Grange, J-D; Baggetto, L G

    2014-02-01

    Since the discovery of the structure of DNA in 1953 by Watson and Crick, our understanding of the genetic causes and the regulations involved in tumor development have hugely increased. The important amount of research developed since then has led to the development of gene therapy, which specifically targets and treats cancer cells by interacting with, and correcting their genetic material. This study is a review of the most accomplished research using gene therapy aimed at treating malignant ophthalmologic diseases, and focuses more specifically on uveal melanoma and retinoblastoma. Such approaches are remarkable regarding the efficiency and the cellular targeting specificity. However, gene therapy-based treatments are so recent that many long-term interrogations subsist. The majority of the reviewed studies are conducted in vitro or in murine models, thereby requiring several years before the resulting therapies become part of the daily ophthalmologists' arsenal. However, the recent spectacular developments based on advanced scientific knowledge justify an up-to-date review that would benefit the ophthalmologist community.

  7. Gene Therapy Applications to Cancer Treatment

    PubMed Central

    2003-01-01

    Over the past ten years significant advances have been made in the fields of gene therapy and tumour immunology, such that there now exists a considerable body of evidence validating the proof in the principle of gene therapy based cancer vaccines. While clinical benefit has so far been marginal, data from preclinical and early clinical trials of gene therapy combined with standard therapies are strongly suggestive of additional benefit. Many reasons have been proposed to explain the paucity of clinical responses to single agent vaccination strategies including the poor antigenicity of tumour cells and the development of tolerance through down-regulation of MHC, costimulatory, signal transduction, and other molecules essential for the generation of strong immune responses. In addition, there is now evidence from animal models that the growing tumour may actively inhibit the host immune response. Removal of the primary tumour prior to T cell transfer from the spleen of cancer bearing animals, led to effective tumour cell line specific immunity in the recipient mouse suggesting that there is an ongoing tumour-host interaction. This model also illustrates the potential difficulties of clinical vaccine trials in patients with advanced stage disease. PMID:12686721

  8. Alternative Strategies for Gene Therapy of Hemophilia

    PubMed Central

    Montgomery, Robert R.; Shi, Qizhen

    2012-01-01

    Hemophilia A and B are monogenic disorders that were felt to be ideal targets for initiation of gene therapy. Although the first hemophilia gene therapy trial has been over 10 years ago, few trials are currently actively recruiting. Although preclinical studies in animals were promising, levels achieved in humans did not achieve long-term expression at adequate levels to achieve cures. Transplantation as a source of cellular replacement therapy for both hemophilia A and B have been successful following liver transplantation in which the recipient produces normal levels of either factor VIII (FVIII) or factor IX (FIX). Most of these transplants have been conducted for the treatment of liver failure rather than for “curing” hemophilia. There are a variety of new strategies for delivering the missing clotting factor through ectopic expression of the deficient protein. One approach uses hematopoietic stem cells using either a nonspecific promoter or using a lineage-specific promoter. An alternative strategy includes enhanced expression in endothelial cells or blood-outgrowth endothelial cells. An additional approach includes the expression of FVIII or FIX intraarticularly to mitigate the intraarticular bleeding that causes much of the disability for hemophilia patients. Because activated factor VII (FVIIa) can be used to treat patients with inhibitory antibodies to replacement clotting factors, preclinical gene therapy has been performed using platelet- or liver-targeted FVIIa expression. All of these newer approaches are just beginning to be explored in large animal models. Whereas improved recombinant replacement products continue to be the hallmark of hemophilia therapy, the frequency of replacement therapy is beginning to be addressed through longer-acting replacement products. A safe cure of hemophilia is still the desired goal, but many barriers must still be overcome. PMID:21239794

  9. Alternative strategies for gene therapy of hemophilia.

    PubMed

    Montgomery, Robert R; Shi, Qizhen

    2010-01-01

    Hemophilia A and B are monogenic disorders that were felt to be ideal targets for initiation of gene therapy. Although the first hemophilia gene therapy trial has been over 10 years ago, few trials are currently actively recruiting. Although preclinical studies in animals were promising, levels achieved in humans did not achieve long-term expression at adequate levels to achieve cures. Transplantation as a source of cellular replacement therapy for both hemophilia A and B have been successful following liver transplantation in which the recipient produces normal levels of either factor VIII (FVIII) or factor IX (FIX). Most of these transplants have been conducted for the treatment of liver failure rather than for "curing" hemophilia. There are a variety of new strategies for delivering the missing clotting factor through ectopic expression of the deficient protein. One approach uses hematopoietic stem cells using either a nonspecific promoter or using a lineage-specific promoter. An alternative strategy includes enhanced expression in endothelial cells or blood-outgrowth endothelial cells. An additional approach includes the expression of FVIII or FIX intraarticularly to mitigate the intraarticular bleeding that causes much of the disability for hemophilia patients. Because activated factor VII (FVIIa) can be used to treat patients with inhibitory antibodies to replacement clotting factors, preclinical gene therapy has been performed using platelet- or liver-targeted FVIIa expression. All of these newer approaches are just beginning to be explored in large animal models. Whereas improved recombinant replacement products continue to be the hallmark of hemophilia therapy, the frequency of replacement therapy is beginning to be addressed through longer-acting replacement products. A safe cure of hemophilia is still the desired goal, but many barriers must still be overcome.

  10. Engineering HSV-1 vectors for gene therapy.

    PubMed

    Goins, William F; Huang, Shaohua; Cohen, Justus B; Glorioso, Joseph C

    2014-01-01

    Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications, and with the approval of Glybera (alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20: 1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme, a fatal form of brain cancer, and in malignant melanoma. In fact, T-VEC (talimogene laherparepvec, formerly known as OncoVex GM-CSF) displayed efficacy in a recent Phase III trial when compared to standard GM-CSF treatment alone (Andtbacka et al. J Clin Oncol 31: sLBA9008, 2013) and may soon become the second FDA-approved gene therapy product used in standard patient care. In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy, and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are totally replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.

  11. AAV-mediated gene therapy for hemophilia.

    PubMed

    Couto, Linda B; Pierce, Glenn F

    2003-10-01

    Gene therapy for hemophilia has been contemplated since the coagulation Factor genes responsible for the disease were cloned 20 years ago. Multiple approaches towards the delivery of Factors VIII or IX, the defective genes in the most common forms of hemophilia, have resulted in positive results in animals, and largely equivocal results in human clinical testing. Use of vectors based on adeno-associated virus has led to robust and sustained cures in hemophilic mice and dogs, and intriguing preliminary results in small or ongoing clinical trials. As more clinical experience is gained, solving delivery issues will be of paramount importance and will lead to more clinical success. This success will permit hemophilia to be cured following a single injection of the normal gene.

  12. Methods to monitor gene therapy with molecular imaging.

    PubMed

    Waerzeggers, Yannic; Monfared, Parisa; Viel, Thomas; Winkeler, Alexandra; Voges, Jürgen; Jacobs, Andreas H

    2009-06-01

    Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.

  13. [New possibilities will open up in human gene therapy].

    PubMed

    Portin, Petter

    2016-01-01

    Gene therapy is divided into somatic and germ line therapy. The latter involves reproductive cells or their stem cells, and its results are heritable. The effects of somatic gene therapy are generally restricted to a single tissue of the patient in question. Until now, all gene therapies in the world have belonged to the regime of somatic therapy, germ line therapy having been a theoretical possibility only. Very recently, however, a method has been developed which is applicable to germ line therapy as well. In addition to technical challenges, severe ethical problems are associated with germ line therapy, demanding opinion statement.

  14. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases

    PubMed Central

    Hocquemiller, Michaël; Giersch, Laura; Audrain, Mickael; Parker, Samantha; Cartier, Nathalie

    2016-01-01

    Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery. PMID:27267688

  15. Gene therapy for vision loss -- recent developments.

    PubMed

    Stieger, Knut; Lorenz, Birgit

    2010-11-01

    Retinal gene therapy mediated by adeno-associated virus (AAV) based gene transfer was recently proven to improve photoreceptor function in one form of inherited retinal blinding disorder associated with mutations in the RPE65 gene. Several clinical trials are currently ongoing, and more than 30 patients have been treated to date. Even though only a very limited number of patients will greatly benefit from this still experimental treatment protocol, the technique itself has been shown to be safe and will likely be used in other retinal disorders in the near future. A canine model for achromatopsia has been treated successfully as well as mouse models for different forms of Leber congenital amaurosis (LCA). For patients with autosomal dominant retinitis pigmentosa (adRP), a combined gene knockdown and gene addition therapy is being developed using RNA interference to block mRNA of the mutant allele. For those patients suffering from RP with unknown mutations, an AAV based transfer of bacterial forms of rhodopsin in the central retina might be an option to reactivate residual cones in the future.

  16. Is cancer gene therapy an empty suit?

    PubMed Central

    Brenner, Malcolm K; Gottschalk, Stephen; Leen, Ann M; Vera, Juan F

    2014-01-01

    Gene therapy as a treatment for cancer is regarded as high in promise, but low in delivery, a deficiency that has become more obvious with ever-increasing reports of the successful correction of monogenic disorders by this approach. We review the commercial and scientific obstacles that have led to these delays and describe how they are progressively being overcome. Recent and striking successes and correspondingly increased commercial involvement suggest that gene transfer could finally become a powerful method for development of safe and effective cancer therapeutic drugs. PMID:24079872

  17. Gene therapy: X-SCID transgene leukaemogenicity.

    PubMed

    Thrasher, Adrian J; Gaspar, H Bobby; Baum, Christopher; Modlich, Ute; Schambach, Axel; Candotti, Fabio; Otsu, Makoto; Sorrentino, Brian; Scobie, Linda; Cameron, Ewan; Blyth, Karen; Neil, Jim; Abina, Salima Hacein-Bey; Cavazzana-Calvo, Marina; Fischer, Alain

    2006-09-21

    Gene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the gamma-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.

  18. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  19. Targeting tumor suppressor genes for cancer therapy.

    PubMed

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  20. Cardiac gene therapy: from concept to reality.

    PubMed

    Kratlian, Razmig Garo; Hajjar, Roger J

    2012-03-01

    Heart failure is increasing in incidence throughout the world, especially in industrialized countries. Although the current therapeutic modalities have been successful in stabilizing the course of heart failure, morbidity and mortality remain quite high and there remains a great need for innovative breakthroughs that will offer new treatment strategies for patients with advanced forms of the disease. The past few years have witnessed a greater understanding of the molecular underpinnings of the failing heart, paving the way for novel strategies in modulating the cellular environment. As such, gene therapy has recently emerged as a powerful tool offering the promise of a new paradigm for alleviating heart failure. Current gene therapy research for heart failure is focused on exploring potential cellular targets and preclinical and clinical studies are ongoing toward the realization of this goal. Efforts also include the development of sophisticated viral vectors and vector delivery methods for efficient transduction of cardiomyocytes.

  1. Advances of gene therapy for primary immunodeficiencies

    PubMed Central

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases. PMID:27508076

  2. Non-professionals' evaluations of gene therapy ethics.

    PubMed

    Scully, Jackie Leach; Rippberger, Christine; Rehmann-Sutter, Christoph

    2004-04-01

    Although the moral responsibilities of clinicians and researchers in the new genetics are exhaustively reflected upon, much less attention has been paid to the factors affecting the moral reasoning of non-professionals when they reflect on genetic issues. In this paper, we compare the moral evaluations of somatic gene therapy (SGT) made by some of its potential consumers (patients) and its providers (medical professionals). The results highlight significant differences between professional opinion and non-professional evaluations. Medical professionals shared a moral evaluation of SGT that (a) based its acceptability on a strong therapeutic imperative, (b) grounded this in an unproblematic separation of identity and disability/illness, and (c) generally did not see SGT as ethically different from other medical interventions. Prospective patients (a) often questioned the effectiveness of "therapeutic" interventions, (b) could derive a strong sense of identity from disability/illness, and (c) sometimes saw genetic interventions as changing a person's identity, either directly (through the genes) or indirectly (through altered life experience). We discuss the implications of these differences for the professional and public debate on the ethics of gene therapy. Our results highlight the need to take into account non-professionals' views of SGT.

  3. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  4. [The return of germline gene therapy].

    PubMed

    Jordan, Bertrand

    2015-01-01

    The recent development of a powerful and flexible genome editing technique (the CRISP-cas9 method) accelerates tremendously the production of animal models and will significantly enhance the perspectives of (somatic) gene therapy. However, it also raises a real possibility of germline modifications in humans, with therapeutic aims or for "improvement": this raises thorny ethical questions that are no longer theoretical (as in the 1990s) but will have to be faced in the very near future.

  5. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  6. Tooth loss in individuals under periodontal maintenance therapy: prospective study.

    PubMed

    Lorentz, Telma Campos Medeiros; Cota, Luís Otávio Miranda; Cortelli, José Roberto; Vargas, Andréia Maria Duarte; Costa, Fernando Oliveira

    2010-01-01

    This prospective study aimed to evaluate the incidence, the underlying reasons, and the influence of predictors of risk for the occurrence of tooth loss (TL) in a program of Periodontal Maintenance Therapy (PMT). The sample was composed of 150 complier individuals diagnosed with chronic moderate-severe periodontitis who had finished active periodontal treatment and were incorporated in a program of PMT. Social, demographic, behavioral and biological variables were collected at quarterly recalls, over a 12-month period. The effect of predictors of risk of and confounding for the dependent variable TL was tested by univariate and multivariate analysis, as well as the underlying reasons and the types of teeth lost. During the monitoring period, there was a considerable improvement in periodontal clinical parameters, with a stability of periodontal status in the majority of individuals. Twenty-eight subjects (18.66%) had TL, totaling 47 lost teeth (1.4%). The underlying reasons for TL were: periodontal disease (n = 34, 72.3%), caries (n = 3, 6.4%), prosthetic reasons (n = 9, 19.2%), and endodontic reasons (n = 1, 2.1%). Additionally, subjects with 10% of sites with probing depth between 4 and 6 mm were 5 times more likely to present TL (OR = 5.13, 95% CI 2.04-12.09). In this study, the incidence of TL was small and limited to few individuals. Additionally, gender and severity of periodontitis were significantly associated with TL during the monitoring period.

  7. Massage Therapy for Lyme Disease Symptoms: a Prospective Case Study

    PubMed Central

    Thomason, Meghan J.; Moyer, Christopher A.

    2012-01-01

    Introduction To study the effects of massage therapy (MT) on Lyme disease (LD) symptoms and affect. Methods A 21-year-old female college student previously diagnosed with LD was recruited for a prospective case study that incorporated alternating periods of treatment and nontreatment across 65 days. Her self-reported symptoms of pain, fatigue, and impairment of concentration were assessed by means of a daily diary with corresponding visual analog scales. Immediate effects of MT on affect were assessed by completion of the Positive and Negative Affect Scales before and after each treatment session. Results LD symptoms decreased during treatment periods and increased during nontreatment periods. Positive affect was increased at every MT session. Conclusions MT is a promising treatment for the symptoms pain, fatigue, and impaired concentration associated with LD. In addition, MT reliably increased positive affect. Massage therapists should consider using light-to-medium pressure MT for treatment of persons who present with a similar pattern of LD symptoms, and further research with this population is warranted. PMID:23429967

  8. Gene Therapy in Thalassemia and Hemoglobinopathies

    PubMed Central

    Breda, Laura; Gambari, Roberto; Rivella, Stefano

    2009-01-01

    Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough. PMID:21415990

  9. Natural gene therapy in dystrophic epidermolysis bullosa.

    PubMed

    van den Akker, Peter C; Nijenhuis, Miranda; Meijer, Gonnie; Hofstra, Robert M W; Jonkman, Marcel F; Pasmooij, Anna M G

    2012-02-01

    Dystrophic epidermolysis bullosa is a genetic blistering disorder caused by mutations in the type VII collagen gene, COL7A1. In revertant mosaicism, germline mutations are corrected by somatic events resulting in a mosaic disease distribution. This "natural gene therapy" phenomenon long has been recognized in other forms of epidermolysis bullosa but only recently in dystrophic epidermolysis bullosa. We describe a 21-year-old man with recessive dystrophic epidermolysis bullosa carrying the homozygous c.6508C>T (p.Gln2170X) nonsense mutation who reported an unaffected skin patch on his neck where blisters never had occurred. Immunofluorescent type VII collagen staining was normal in 80% of the unaffected skin biopsy; however, it was strongly reduced in the affected skin. In the unaffected skin, the somatic nucleotide substitution c.6510G>T reverted the germline nonsense codon to tyrosine (p.Gln2170Tyr), thereby restoring functional protein production. Revertant mosaicism is considered rare in recessive dystrophic epidermolysis bullosa. However, it might be more common than previously anticipated because our patient is the third in whom revertant mosaicism was identified in a short period of time. The correction mechanism is different than that previously reported. Systematic examination of patients with recessive dystrophic epidermolysis bullosa, therefore, will likely reveal more patients with revertant patches. This is important because the natural gene therapy phenomenon may provide opportunities for revertant cell therapy.

  10. Ex vivo gene therapy and vision.

    PubMed

    Gregory-Evans, Kevin; Bashar, A M A Emran; Tan, Malcolm

    2012-04-01

    Ex vivo gene therapy, a technique where genetic manipulation of cells is undertaken remotely and more safely since it is outside the body, is an emerging therapeutic strategy particularly well suited to targeting a specific organ rather than for treating a whole organism. The eye and visual pathways therefore make an attractive target for this approach. With blindness still so prevalent worldwide, new approaches to treatment would also be widely applicable and a significant advance in improving quality of life. Despite being a relatively new approach, ex vivo gene therapy has already achieved significant advances in the treatment of blindness in pre-clinical trials. In particular, advances are being achieved in corneal disease, glaucoma, retinal degeneration, stroke and multiple sclerosis through genetic re-programming of cells to replace degenerate cells and through more refined neuroprotection, modulation of inflammation and replacement of deficient protein. In this review we discuss the latest developments in ex vivo gene therapy relevant to the visual pathways and highlight the challenges that need to be overcome for progress into clinical trials.

  11. [Gene therapy for adenosine deaminase deficiency].

    PubMed

    Sakiyama, Yukio; Ariga, Tadashi; Ohtsu, Makoto

    2005-03-01

    A four year-old boy with adenosine deaminase (ADA-) deficient severe combined immunodeficiency(SCID) receiving PEG-ADA was treated under a gene therapy protocol targeting peripheral blood lymphocytes (PBLs) in 1995. After eleven infusions of autologous PBLs transduced with retroviral vector LASN encoding ADAcDNA, he exhibited increased levels of the CD8+ T lymphocytes, serum immunoglobulin, specific antibodies and delayed type hypersensitivity skin tests. Follow-up studies also provided evidence of long-term persistence and function of transduced PBLs with improvement in the immune function. However, the therapeutic effect of this gene therapy has been difficult to assess because of the concomitant treatment of PEG-ADA. Two ADA-SCID patients have been currently treated with autologous bone marrow CD34+ cells engineered with a retroviral vector GCsapM-ADA after discontinuation of PEG-ADA. The restoration of intracellular ADA enzymatic activity in lymphocytes and granulocytes resulted in correction of the systemic toxicity and liver function in the absence of PEG-ADA treatment. Both patients are at home where they are clinically well, and they do not experience adversed effect, with follow up being 12 months after CD34+ cells gene therapy.

  12. [Gene therapy--current status and outlook].

    PubMed

    Hantzopoulos, P A; Gänsbacher, B

    1996-10-01

    None of the human gene transfer studies to date has shown definitive proof of clinical efficacy, despite more than 100 clinical protocols involving nearly 600 patients. In spite of the lack of positive results, tremendous hope permeates the field, biotechnology companies are getting started and raising millions of dollars from venture capital, and patients all over the world are agreeing to enroll in protocols involving this technology. Critics of the field claim that gene therapy has been overemphasized by researchers in academia, government and industry and by the scientific and popular media. Supporters of the field argue that the state of gene therapy is no different than other experimental therapies in its early stages. During the early stages of chemotherapy, agents were tested on hundreds of patients, often with a similar level of hope and no clinical effects. Despite the many controversies, one issue is shared by both groups: all of them recognize the tremendous potential of this technology to have an impact on human disease and share hope for long-term results.

  13. Prospects for neuroprotective therapies in prodromal Huntington's disease.

    PubMed

    Chandra, Abhishek; Johri, Ashu; Beal, M Flint

    2014-03-01

    Huntington's disease (HD) is a prototypical dominantly inherited neurodegenerative disorder characterized by progressive cognitive deterioration, psychiatric disturbances, and a movement disorder. The genetic cause of the illness is a CAG repeat expansion in the huntingtin gene, which leads to a polyglutamine expansion in the huntingtin protein. The exact mechanism by which mutant huntingtin causes HD is unknown, but it causes abnormalities in gene transcription as well as both mitochondrial dysfunction and oxidative damage. Because the penetrance of HD is complete with CAG repeats greater than 39, patients can be diagnosed well before disease onset with genetic testing. Longitudinal studies of HD patients before disease onset have shown that subtle cognitive and motor deficits occur as much as 10 years before onset, as do reductions in glucose utilization and striatal atrophy. An increase in inflammation, as shown by elevated interleukin-6, occurs approximately 15 years before onset. Detection of these abnormalities may be useful in defining an optimal time for disease intervention to try to slow or halt the degenerative process. Although reducing gene expression with small interfering RNA or short hairpin RNA is an attractive approach, other approaches targeting energy metabolism, inflammation, and oxidative damage may be more easily and rapidly moved into the clinic. The recent PREQUEL study of coenzyme Q10 in presymptomatic gene carriers showed the feasibility of carrying out clinical trials to slow or halt onset of HD. We review both the earliest detectable clinical and laboratory manifestations of HD, as well as potential neuroprotective therapies that could be utilized in presymptomatic HD.

  14. Tripartite meeting in gene and cell therapy, 2008: Irish Society for Gene and Cell Therapy, British Society for Gene Therapy, and International Society for Cell and Gene Therapy of Cancer.

    PubMed

    Guinn, Barbara; Casey, Garrett; Collins, Sara; O'Brien, Tim; Alexander, M Yvonne; Tangney, Mark

    2008-10-01

    The second annual meeting of the Irish Society for Gene and Cell Therapy was held in Cork, Ireland on May 15 and 16, 2008 (http://crr.ucc.ie/isgct/). The meeting was jointly organized with the British Society for Gene Therapy and the International Society for Cell and Gene Therapy of Cancer. Because of the location of the conference and the co-organization of this meeting with the British and International Gene Therapy societies, the meeting enjoyed a range of talks from some of the major leaders in the field. Particularly notable were the talented molecular and cell biologists from Ireland who have contributed cutting edge science to the field of gene therapy. Topics including cardiovascular disease, repair of single-gene disorders, and cancer gene therapy were discussed with presentations ranging from basic research to translation into the clinic. Here we describe some of the most exciting presentations and their potential impact on imminent clinical gene therapy trials.

  15. Frontiers in Suicide Gene Therapy of Cancer

    PubMed Central

    Malecki, Marek

    2012-01-01

    The National Cancer Institute (NCI) and the American Cancer Society (ACS) predict that 1,638,910 men and women will be diagnosed with cancer in the USA in 2012. Nearly 577,190 patients will die of cancer of all sites this year. Patients undergoing current systemic therapies will suffer multiple side effects from nausea to infertility. Potential parents, when diagnosed with cancer, will have to deposit oocytes or sperm prior to starting systemic radiation or chemo-therapy for the future genetic testing and in vitro fertilization, while trying to avoid risks of iatrogenic mutations in their germ cells. Otherwise, children of parents treated with systemic therapies, will be at high risk of developing genetic disorders. According to these predictions, this year will carry another, very poor therapeutic record again. The ultimate goal of cancer therapy is the complete elimination of all cancer cells, while leaving all healthy cells unharmed. One of the most promising therapeutic strategies in this regard is cancer suicide gene therapy (CSGT), which is rapidly progressing into new frontiers. The therapeutic success, in CSGT, is primarily contingent upon precision in delivery of the therapeutic transgenes to the cancer cells only. This is addressed by discovering and targeting unique or / and over-expressed biomarkers displayed on the cancer cells and cancer stem cells. Specificity of cancer therapeutic effects is further enhanced by designing the DNA constructs, which put the therapeutic genes under the control of the cancer cell specific promoters. The delivery of the suicidal genes to the cancer cells involves viral, as well as synthetic vectors, which are guided by cancer specific antibodies and ligands. The delivery options also include engineered stem cells with tropisms towards cancers. Main mechanisms inducing cancer cells’ deaths include: transgenic expression of thymidine kinases, cytosine deaminases, intracellular antibodies, telomeraseses, caspases, DNases

  16. [Gene therapy of SCID-X1].

    PubMed

    Baum, C; Schambach, A; Modlich, U; Thrasher, A

    2007-12-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited disease caused by inactivating mutations in the gene encoding the interleukin 2 receptor common gamma chain (IL2RG), which is located on the X-chromosome. Affected boys fail to develop two major effector cell types of the immune system (T cells and NK cells) and suffer from a functional B cell defect. Although drugs such as antibiotics can offer partial protection, the boys normally die in the first year of life in the absence of a curative therapy. For a third of the children, bone marrow transplantation from a fully matched donor is available and can cure the disease without major side effects. Mismatched bone marrow transplantation, however, is complicated by severe and potentially lethal side effects. Over the past decade, scientists worldwide have developed new treatments by introducing a correct copy of the IL2RG-cDNA. Gene therapy was highly effective when applied in young children. However, in a few patients the IL2RG-gene vector has unfortunately caused leukaemia. Activation of cellular proto-oncogenes by accidental integration of the gene vector has been identified as the underlying mechanism. In future clinical trials, improved vector technology in combination with other protocol modifications may reduce the risk of this side effect.

  17. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease

    PubMed Central

    Hoban, Megan D.; Bauer, Daniel E.

    2016-01-01

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development. PMID:26758916

  18. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    PubMed

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development. © 2016 by The American Society of Hematology.

  19. Curing genetic disease with gene therapy.

    PubMed

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  20. Curing Genetic Disease with Gene Therapy

    PubMed Central

    Williams, David A.

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile. PMID:25125725

  1. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients.

    PubMed

    Adair, Jennifer E; Johnston, Sandra K; Mrugala, Maciej M; Beard, Brian C; Guyman, Laura A; Baldock, Anne L; Bridge, Carly A; Hawkins-Daarud, Andrea; Gori, Jennifer L; Born, Donald E; Gonzalez-Cuyar, Luis F; Silbergeld, Daniel L; Rockne, Russell C; Storer, Barry E; Rockhill, Jason K; Swanson, Kristin R; Kiem, Hans-Peter

    2014-09-01

    Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMT(hi)). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. We enrolled 7 newly diagnosed glioblastoma patients with MGMT(hi) tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5-57+) months and OS of 20 (range 13-57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. Clinicaltrials.gov NCT00669669. R01CA114218, R

  2. Gene expression-targeted isoflavone therapy.

    PubMed

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  3. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2000-10-01

    The results of this study show that particle-mediated IL-12 gene therapy was effective against mammary tumors in mouse models. IL-12 gene therapy of...combination with IL-12 gene therapy , IL-18 and ICE genes were found to be more effective in treatment of established TS/A mammary tumor than IL-12 alone. These...results suggest that particle-mediated IL-12 gene therapy , alone or in combination with other immunological approaches, may be effective for

  4. Multiple sclerosis: a review of existing therapy and future prospects.

    PubMed

    Khan, O A

    1996-01-01

    demyelinating lesion. Regardless of the plausibility of this theory and without going into details, several aspects of immune mediated pathology of MS remain unexplained. This is an attempt to review the status of current therapy and future prospects in the treatment of MS.

  5. Antioxidant gene therapy against neuronal cell death

    PubMed Central

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  6. Gene therapy for primary adaptive immune deficiencies.

    PubMed

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials.

  7. The Future of Hemophilia Treatment: Longer-Acting Factor Concentrates versus Gene Therapy.

    PubMed

    Giangrande, Paul

    2016-07-01

    Gene therapy is the only novel technology that currently offers the prospect of a lasting cure for hemophilia and freedom from the burden of repeated injections. Recent data from a handful of patients who have undergone gene therapy for hemophilia B are very encouraging with a sustained factor IX (FIX) level of 0.05 IU/mL maintained for over 4 years. While this level is above the current usual target trough levels, it falls well short of the level that patients on prophylaxis with longer-acting products can expect. Prophylaxis is also associated with high peak levels, which permits patients to maintain an active lifestyle. A major barrier to widespread adoption of gene therapy is a high seroprevalence of antibodies to adeno-associated virus (AAV) vectors in the general population. Young children would be the best candidates for gene therapy in view of much lower seroprevalence to AAV in infants. A stable level of FIX early in life would prevent the onset of joint bleeds and the development of arthropathy. The recent experience with apolipoprotein tiparvovec (Glybera; uniQure, Amsterdam, the Netherlands) indicates that gene therapy is unlikely to prove to be a cheap therapeutic option. It is also quite possible that other new technologies that do not require viral vectors (such as stem cell therapy) may overtake gene therapy during development and make it redundant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  9. Gene therapy targeting inflammation in atherosclerosis.

    PubMed

    Van-Assche, Tim; Huygelen, Veronique; Crabtree, Mark J; Antoniades, Charalambos

    2011-12-01

    The extensive cross-talk between the immune system and vasculature leading to the infiltration of immune cells into the vascular wall is a major step in atherogenesis. In this process, reactive oxygen species play a crucial role, by inducing the oxidation of LDL and the formation of foam cells, and by activating a number of redox-sensitive transcriptional factors such as nuclear factor kappa B (NFkappa B) or activating protein 1 (AP1), that regulate the expression of multiple pro/anti inflammatory genes involved in atherogenesis. Delivery of genes encoding antioxidant defense enzymes (e.g. superoxide dismutase, catalase, glutathione peroxidase or heme oxygenase- 1) or endothelial nitric oxide synthase (eNOS), suppress atherogenesis in animal models. Similarly, delivery of genes encoding regulators of redox sensitive transcriptional factors (e.g. NF-kappa B, AP-1, Nrf2 etc) or reactive oxygen species scavengers have been successfully used in experimental studies. Despite the promising results from basic science, the clinical applicability of these strategies has proven to be particularly challenging. Issues regarding the vectors used to deliver the genes (and the development of immune responses or other side effects) and the inability of sufficient and sustained local expression of these genes at the target-tissue are some of the main reasons preventing optimism regarding the use of these strategies at a clinical level. Therefore, although premature to discuss about effective "gene therapy" in atherosclerosis at a clinical level, gene delivery techniques opened new horizons in cardiovascular research, and the development of new vectors may allow their extensive use in clinical trials in the future.

  10. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    PubMed

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  11. Gene therapy: progress in childhood disease.

    PubMed

    Ginn, Samantha L; Alexander, Ian E

    2012-06-01

    The recent sequencing of the human genome combined with the development of massively high throughput genetic analysis technologies is driving unprecedented growth in our knowledge of the molecular basis of disease. While this has already had a major impact on our diagnostic power, the therapeutic benefits remain largely unrealised. This review examines progress in the exciting and challenging field of gene therapy. In particular we focus on the treatment of genetic disease in infants and children where the most significant successes have been observed to date, despite the majority of trial participants being adults. Notably, gene transfer to the haematopoietic compartment has provided the clearest examples of therapeutic benefit, particularly in the context of primary immunodeficiencies. The triumphs and tribulations of these successes are explored, and the key challenges confronting researchers as they seek to further advance the field are defined and discussed.

  12. Gene therapy: Into the home stretch

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Tumors cannot live without blood. Shut off the blood vessels that feed a tumor and the tumor will turn black and shrivel away. That simple idea lies behind the first attempt to cure a disease by gene therapy, expected to take place at the National Cancer Institute in the next few weeks. When it does, it will test a technique that worked like a charm in mice. When a potent natural killer called tumor necrosis factor, or TNF, is injected into the bloodstream of mice, it begins to shrink tumors within hours, sometimes even minutes. But so far, attempts to recreate that miracle in people with cancer have not fared as well. TNF has been given intravenously to more than 35 patients in experiments that were a failure. Researchers hope to deliver TNF in much larger doses directly to a tumor by packaging the gene for TNF inside special lymphocytes that have a natural affinity for cancer.

  13. Gene therapy of primary T cell immunodeficiencies.

    PubMed

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2013-08-10

    Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.

  14. [Genetic basis of head and neck cancers and gene therapy].

    PubMed

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  15. The future of human gene therapy.

    PubMed

    Rubanyi, G M

    2001-06-01

    Human gene therapy (HGT) is defined as the transfer of nucleic acids (DNA) to somatic cells of a patient which results in a therapeutic effect, by either correcting genetic defects or by overexpressing proteins that are therapeutically useful. In the past, both the professional and the lay community had high (sometimes unreasonably high) expectations from HGT because of the early promise of treating or preventing diseases effectively and safely by this new technology. Although the theoretical advantages of HGT are undisputable, so far HGT has not delivered the promised results: convincing clinical efficacy could not be demonstrated yet in most of the trials conducted so far, while safety concerns were raised recently as the consequence of the "Gelsinger Case" in Philadelphia. This situation resulted from the by now well-recognized disparity between theory and practice. In other words, the existing technologies could not meet the practical needs of clinically successful HGT so far. However, over the past years, significant progress was made in various enabling technologies, in the molecular understanding of diseases and the manufacturing of vectors. HGT is a complex process, involving multiple steps in the human body (delivery to organs, tissue targeting, cellular trafficking, regulation of gene expression level and duration, biological activity of therapeutic protein, safety of the vector and gene product, to name just a few) most of which are not completely understood. The prerequisite of successful HGT include therapeutically suitable genes (with a proven role in pathophysiology of the disease), appropriate gene delivery systems (e.g., viral and non-viral vectors), proof of principle of efficacy and safety in appropriate preclinical models and suitable manufacturing and analytical processes to provide well-defined HGT products for clinical investigations. The most promising areas for gene therapy today are hemophilias, for monogenic diseases, and cardiovascular

  16. Cell Targeting in Anti-Cancer Gene Therapy

    PubMed Central

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene therapy research and its application in relation to anti-cancer treatment. PMID:22977356

  17. The prospect of precision therapy for renal cell carcinoma.

    PubMed

    Ciccarese, Chiara; Brunelli, Matteo; Montironi, Rodolfo; Fiorentino, Michelangelo; Iacovelli, Roberto; Heng, Daniel; Tortora, Giampaolo; Massari, Francesco

    2016-09-01

    The therapeutic landscape of renal cell carcinoma (RCC) has greatly expanded in the last decade. From being a malignancy orphan of effective therapies, kidney cancer has become today a tumor with several treatment options. Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). In this complex scenario it is important to find prognostic and predictive factors that can help in decision making in the treatment of mRCC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Corneal gene therapy: basic science and translational perspective.

    PubMed

    Mohan, Rajiv R; Rodier, Jason T; Sharma, Ajay

    2013-07-01

    Corneal blindness is the third leading cause of blindness worldwide. Gene therapy is an emerging technology for corneal blindness due to the accessibility and immune-privileged nature of the cornea, ease of vector administration and visual monitoring, and ability to perform frequent noninvasive corneal assessment. Vision restoration by gene therapy is contingent upon vector and mode of therapeutic gene introduction into targeted cells/tissues. Numerous efficacious vectors, delivery techniques, and approaches have evolved in the last decade for developing gene-based interventions for corneal diseases. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. This review describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various ocular surface disorders and diseases.

  19. Corneal Gene Therapy: Basic Science and Translational Perspective

    PubMed Central

    Mohan, Rajiv R.; Rodier, Jason T.; Sharma, Ajay

    2013-01-01

    Corneal blindness is the third leading cause of blindness worldwide. Gene therapy is an emerging technology for corneal blindness due to the accessibility and immune-privileged nature of the cornea, ease of vector administration and visual monitoring, and ability to perform frequent noninvasive corneal assessment. Vision restoration by gene therapy is contingent upon vector and mode of therapeutic gene introduction into targeted cells/tissues. Numerous efficacious vectors, delivery techniques, and approaches have evolved in last decade for developing gene-based interventions for corneal diseases. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. This review describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various ocular surface disorders and diseases. PMID:23838017

  20. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2007-11-01

    established vector systems, new viruses are also being developed for targeted gene therapy . One promising example is the measles virus , an enveloped...promising approach. However, the gene delivery efficiency of human serotype 5 recombinant adeno- viruses (Ad5) in cancer gene therapy clinical trials to...replicative viruses , is a highly attractive approach, and an alternate approach to standard cancer therapies , including gene therapies . Virotherapy exploits

  1. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    PubMed

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  2. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  3. Gene replacement therapy for genetic hepatocellular jaundice.

    PubMed

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  4. Gene therapy for osteosarcoma: steps towards clinical studies.

    PubMed

    Dass, Crispin R; Choong, Peter F M

    2008-04-01

    Gene therapy, an applied form of biotechnology, relies on the delivery of foreign DNA into cells. More than 50% of all reported clinical trials for gene therapy are for cancer, though only a scant number for osteosarcoma. Osteosarcoma is a neoplasm afflicting young adults, who in their prime years of life suffer debilitation if not death. The disease is not entirely curable, even with surgery combined with aggressive chemotherapy. Thus, other forms of therapies are being evaluated, including gene therapy. There exist two major forms of gene transfer: viral and non-viral. This review only covers proof-of-principle work carried out in cancer beyond the cell culture stage, in animals. Drawing from the experiences of gene therapy against other cancers, studies for which have already reached the clinical phase, the review discusses potential pitfalls and solutions to enhance gene therapy for osteosarcoma.

  5. The promise of gene therapy in gastrointestinal and liver diseases

    PubMed Central

    Prieto, J; Herraiz, M; Sangro, B; Qian, C; Mazzolini, G; Melero, I; Ruiz, J

    2003-01-01

    Gene therapy consists of the transfer of genetic material to cells to achieve a therapeutic goal. In the field of gastroenterology and hepatology gene therapy has produced considerable expectation as a potential tool in the management of conditions that lack effective therapy including non-resectable neoplasms of the liver, pancreas and gastrointestinal tract, chronic viral hepatitis unresponsive to interferon therapy, liver cirrhosis, and inflammatory bowel disease. PMID:12651882

  6. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1999-10-01

    The overall goal of our research is to develop an immunological approach for breast cancer gene therapy . The results of the first year study...described in our previous Annual Report, show that gene gun-mediated Th-12 gene therapy is effective against breast tumors in mouse models. During the second...effect of IL-l2 gene therapy against 4T1 tumor is not mediated by T cells, but rather involves NK cells. From several different immunomodulatory genes

  7. Customized biomaterials to augment chondrocyte gene therapy.

    PubMed

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-02-07

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins.

  8. Lentiviral Vectors and Cystic Fibrosis Gene Therapy

    PubMed Central

    Castellani, Stefano; Conese, Massimo

    2010-01-01

    Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the Retroviridae family, show interesting properties for CF gene therapy, since they integrate into the host genome and allow long-lasting gene expression. Proof-of-principle that LV vectors can transduce the airway epithelium and correct the basic electrophysiological defect in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly administered to the lung and do not give rise to a gross inflammatory process, although they can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy and safety profile of LV vectors in new complex animal models with CF, such as ferrets and pigs. PMID:21994643

  9. Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors

    DTIC Science & Technology

    2006-03-01

    W81XWH-04-1-0701 TITLE: Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors PRINCIPAL INVESTIGATOR: Urszula T. Iwaniec...CONTRACT NUMBER Central Leptin Gene Therapy to Reduce Breast Cancer Risk Factors 5b. GRANT NUMBER W81XWH-04-1-0701 5c. PROGRAM ELEMENT NUMBER...control of obesity through centrally administered, recombinant adeno-associated virus leptin gene (rAAV-lep) therapy will decrease the incidence of

  10. Progresses towards safe and efficient gene therapy vectors.

    PubMed

    Chira, Sergiu; Jackson, Carlo S; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A; Berindan-Neagoe, Ioana

    2015-10-13

    The emergence of genetic engineering at the beginning of the 1970's opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.

  11. [Development of gene therapy in major brain diseases].

    PubMed

    Fan, Li; Jiang, Xin-guo

    2010-09-01

    In recent years, the development of molecular biology and medicine has prompted the research of gene therapy for brain diseases. In this review, we summarized the current gene therapy approaches of major brain diseases. Against the pathogenesis of major brain diseases, including brain tumors, Parkinson's disease, Alzheimer's disease and cerebrovascular disorders, there are several effective gene therapy strategies. It is no doubt that, gene therapy, as a novel treatment, is of great significance for understanding the causes, as well as comprehensive treatment for brain diseases.

  12. [The gene therapy for a patient with ADA deficiency; report of the first gene therapy trial in Japan].

    PubMed

    Ariga, T; Kawamura, N; Sakiyama, Y

    1997-06-01

    Since the first gene therapy clinical trial for an ADA deficient patient was performed in September 1990, 10 ADA deficient patients have been enrolled in gene therapy clinical trial. We have been performing the first gene therapy trial in Japan for a 5 year boy with ADA deficiency since August 1995. Activated T cells from the patient's peripheral mononuclear cells were transduced by a retrovirus vector, LASN, which contained cDNA of human ADA gene, and re-infused to him intravenously after 7-11 days. We have already performed 10 cycles of the therapy for the patient. Here, we report the successful results of the gene therapy with laboratory and clinical evaluation. Furthermore, we overview the results of gene therapy for ADA deficient patients which were recently reported from 4 other groups.

  13. Improved animal models for testing gene therapy for atherosclerosis.

    PubMed

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  14. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    PubMed

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment.

  15. Gene Therapy and Gene Editing for the Corneal Dystrophies.

    PubMed

    Williams, Keryn A; Irani, Yazad D

    2016-01-01

    Despite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.

  16. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  17. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.

  18. Revertant mosaicism in skin: natural gene therapy

    PubMed Central

    Lai-Cheong, Joey E.; McGrath, John A.; Uitto, Jouni

    2011-01-01

    Revertant mosaicism is a naturally occurring phenomenon involving spontaneous correction of a pathogenic mutation in a somatic cell. Recent studies suggest that it is not a rare event and that it could be clinically relevant to phenotypic expression and patient treatment. Indeed, revertant cell therapy represents a potential “natural gene therapy” because in vivo reversion obviates the need for further genetic correction. Revertant mosaicism has been observed in several inherited conditions, including epidermolysis bullosa, a heterogeneous group of blistering skin disorders. These diseases provide a useful model for studying revertant mosaicism because of the visual and accessible nature of skin. This overview highlights the latest developments in revertant mosaicism and the translational implications germane to heritable skin disorders. PMID:21195026

  19. The companions: regulatory T cells and gene therapy

    PubMed Central

    Eghtesad, Saman; Morel, Penelope A; Clemens, Paula R

    2009-01-01

    Undesired immunological responses to products of therapeutic gene replacement have been obstacles to successful gene therapy. Understanding such responses of the host immune system to achieve immunological tolerance to a transferred gene product is therefore crucial. In this article, we review relevant studies of immunological responses to gene replacement therapy, the role of immunological tolerance mediated by regulatory T cells in down-regulating the unwanted immune responses, and the interrelationship of the two topics. PMID:19368560

  20. [Gene replacement therapy in achromatopsia type 2].

    PubMed

    Mühlfriedel, R; Tanimoto, N; Seeliger, M W

    2014-03-01

    Achromatopsia is an autosomal recessive inherited retinal disease caused by a complete loss of cone photoreceptor function. About 80 % of achromatopsia patients show mutations in the alpha or beta subunit (A3 and B3) of the cGMP controlled cation channel CNG (cyclic nucleotide-gated channel) of cone photoreceptors. Homologous to the human disease, CNGA3 deficient mice reveal a loss of cone specific functionality leading to degeneration of affected cone photoreceptors. The Institute for Ophthalmic Research in Tübingen has now succeeded in curing achromatopsia ACHM2 in an animal model. In this article, we explain the recombinant adeno-associated virus-based approach in detail. Furthermore, applied non-invasive diagnostic techniques for quality and success control, ERG, SLO and OCT, are described. The success of the therapy is indicated by a restored cone photoreceptor function as well as the neuronal processing of retinal signals resulting in a specific, cone-mediated behaviour. The outstanding results derived from the animal model are the starting point for the first human translation of a gene therapy for achromatopsia in Germany.

  1. The Academy of Cognitive Therapy: Purpose, History, and Future Prospects

    ERIC Educational Resources Information Center

    Dobson, Keith S.; Beck, Judith S.; Beck, Aaron T.

    2005-01-01

    The Academy of Cognitive Therapy (ACT) was developed as a means to identify and credential mental health professionals who demonstrate competence in cognitive therapy. Its missions include certifying clinicians from all disciplines as competent cognitive therapists and educating the public about this empirically supported treatment. This article…

  2. The Academy of Cognitive Therapy: Purpose, History, and Future Prospects

    ERIC Educational Resources Information Center

    Dobson, Keith S.; Beck, Judith S.; Beck, Aaron T.

    2005-01-01

    The Academy of Cognitive Therapy (ACT) was developed as a means to identify and credential mental health professionals who demonstrate competence in cognitive therapy. Its missions include certifying clinicians from all disciplines as competent cognitive therapists and educating the public about this empirically supported treatment. This article…

  3. Vascular gene therapy in the 21st century.

    PubMed

    Clowes, A W

    1997-07-01

    The technology of gene transfer has developed rapidly and has been applied successfully as pharmacological therapy in animal models of human vascular disease. Human vascular gene therapy has not become a reality although clinical trials are starting. In the next century, gene therapy will find its place in the vascular physicians' armamentarium as new pharmacological targets are defined and new vectors devised for gene transfer. Vascular gene therapy, the use of gene transfer to treat diseases of the vascular system, excites the imagination and captures the public's attention because it promises at a single step almost magically to cure the previously uncurable. The goal has been elusive although the promise remains. What can we look forward to in the 21st century? Will the dream ever be realized or is it a fantasy that will always be out of reach? The sceptics argue that research into pharmacology continues to provide us with powerful drugs for the treatment of vascular disease. Why bother with gene transfer? Could not the same goals be achieved by more conventional means? These questions demand answers and adequate justification. In developing the response, we gain a clear understanding of the potential of gene therapy and thereby define a better set of objectives. Gene therapy in broad terms covers somatic cell and germ line gene therapy. Genetic manipulation of the germ line leads to the development of transgenic animals with specific genes that have been deleted or overexpressed; these animals are useful for the study of gene function. Their organs might also be of use for transplantation into humans. For example, transgenic pigs are being developed for this purpose(1). Although the study of transgenic animals and the field of germ line gene therapy are of great importance for vascular biology, they will not be covered here. This review will address vascular somatic gene therapy and will attempt to focus on potential targets, progress made in the last decade

  4. Advances in gene therapy for ADA-deficient SCID.

    PubMed

    Aiuti, Alessandro

    2002-10-01

    Adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) was the first inherited disease treated with gene therapy. The pilot gene therapy studies demonstrated the safety, therapeutic potential and limitations of ADA gene transfer into hematopoietic cells using retroviral vectors. This review describes the latest progress in ADA-SCID dinical trials using peripheral blood lymphocytes (PBLs) and hematopoietic stem cells (HSCs). PBL gene therapy was able to restore T-cell functions after discontinuation of ADA enzyme replacement therapy, but only partially corrected the purine metabolic defect. The development of improved HSC gene transfer protocols, combined with low intensity conditioning, allowed full correction of the immunological and metabolic ADA defects, with clinic benefit. These results have important implications for future applications of gene therapy in other disorders involving the hemapoietic system.

  5. Molecular genetics of ADHD: prospects for novel therapies.

    PubMed

    Levy, Florence

    2002-07-01

    Attention deficit hyperactivity disorder has been shown to be a highly heritable disorder, leading to an increasing interest in genetic studies. While multiple genes may be involved, the candidate gene approach is based on postulated neurotransmitter mechanisms. Molecular genetic advances in relation to dopaminergic (dopamine transporter, dopamine D4 receptor and dopamine D5 receptor) genes, adrenergic, serotonergic and nicotinic receptor genes are reviewed. Comorbidity of attention deficit hyperactivity disorder with learning disability is discussed and possible genetic influences briefly reviewed. Recent pharmacogenomic studies of ADHD are reviewed and promising pathways suggested. Treatments 5 years from now may be more individually tailored in terms of gene/phenotype relationships.

  6. Development of mitochondrial gene replacement therapy.

    PubMed

    Khan, Shaharyar M; Bennett, James P

    2004-08-01

    Many "classic" mitochondrial diseases have been described that arise from single homoplasmic mutations in mitochondrial DNA (mtDNA). These diseases typically affect nonmitotic tissues (brain, retina, muscle), present with variable phenotypes, can appear sporadically, and are untreatable. Evolving evidence implicates mtDNA abnormalities in diseases such as Alzheimer's, Parkinson's, and type II diabetes, but specific causal mutations for these conditions remain to be defined. Understanding the mtDNA genotype-phenotype relationships and developing specific treatment for mtDNA-based diseases is hampered by inability to manipulate the mitochondrial genome. We present a novel protein transduction technology ("protofection") that allows insertion and expression of the human mitochondrial genome into mitochondria of living cells. With protofection, the mitochondrial genotype can be altered, or exogenous genes can be introduced to be expressed and either retained in mitochondria or be directed to other organelles. Protofection also delivers mtDNA in vivo, opening the way to rational development of mitochondrial gene replacement therapy of mtDNA-based diseases.

  7. Gene replacement therapy for retinal CNG channelopathies.

    PubMed

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2013-10-01

    Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3'-5'-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.

  8. Modifier genes: Moving from pathogenesis to therapy.

    PubMed

    McCabe, Edward R B

    2017-09-01

    This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms. Since one of the goals of research on modifier genes and networks is to identify novel therapeutic targets, the challenges to patient access and compliance because of the high costs of medications for rare genetic diseases must be recognized. A recent article explored protective modifiers, including plastin 3 (PLS3) and coronin 1C (CORO1C), in spinal muscular atrophy (SMA). SMA is an autosomal recessive deficit of survival motor neuron protein (SMN) caused by mutations in SMN1. However, the severity of SMA is determined primarily by the number of SMN2 copies, and this results in significant phenotypic variability. PLS3 was upregulated in siblings who were asymptomatic compared with those who had SMA2 or SMA3, but identical homozygous SMN1 deletions and equal numbers of SMN2 copies. CORO1C was identified by interrogation of the PLS3 interactome. Overexpression of these proteins rescued endocytosis in SMA models. In addition, antisense RNA for upregulation of SMN2 protein expression is being developed as another way of modifying the SMA phenotype. These investigations suggest the practical application of protective modifiers to rescue SMA phenotypes. Other examples of the potential therapeutic value of novel protective modifiers will be discussed, including in Duchenne muscular dystrophy and glycerol kinase deficiency. This work shows that while we live in an exciting era of genomic sequencing, a functional understanding of biology, the impact of its

  9. Viability of long-term gene therapy in the cochlea.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Richardson, Rachael T

    2014-04-22

    Gene therapy has been investigated as a way to introduce a variety of genes to treat neurological disorders. An important clinical consideration is its long-term effectiveness. This research aims to study the long-term expression and effectiveness of gene therapy in promoting spiral ganglion neuron survival after deafness. Adenoviral vectors modified to express brain derived neurotrophic factor or neurotrophin-3 were unilaterally injected into the guinea pig cochlea one week post ototoxic deafening. After six months, persistence of gene expression and significantly greater neuronal survival in neurotrophin-treated cochleae compared to the contralateral cochleae were observed. The long-term gene expression observed indicates that gene therapy is potentially viable; however the degeneration of the transduced cells as a result of the original ototoxic insult may limit clinical effectiveness. With further research aimed at transducing stable cochlear cells, gene therapy may be an efficacious way to introduce neurotrophins to promote neuronal survival after hearing loss.

  10. American Society of Gene Therapy - Third Annual Meeting.

    PubMed

    Atkinson, E M

    2000-09-01

    The field of gene therapy, delivering genes to directly treat diseases, has had a remarkable year. This is no more evident than in the scope of the third annual meeting of the American Society of Gene Therapy (ASGT). Clear progress has been made in both ex vivo clinical protocols and in vivo administration. The meeting covered every major method of gene delivery, from injection of naked DNA to advanced synthetic gene delivery systems, as well as the major viral-based vectors. The optimism of the society was tempered, however, by the much-publicized death of a patient in a clinical trial at the University of Pennsylvania last year. There was a correspondingly high regulatory presence at the meeting, with several presentations by representatives of the US FDA and National Institutes of Health (NIH). Major clinical advances in gene therapy have been in genetic diseases, including hemophilia, severe combined immunodeficiency, and cystic fibrosis. Therapies are in later-stage clinical trials, and evidence of efficacy has been demonstrated, most notably by the apparent cure of SCID-affected children in Paris by ex vivo gene therapy with cytokine receptor subunit genes. Cancer gene therapy is also making significant headway, with many products entering phase II and III trials. Basic technology development is proceeding in vector targeting, enhancement of gene transfer efficiency, and regulating expression of therapeutic genes. In addition, basic research demonstrates the promise of new combined modes for treating diseases such as muscular dystrophy, lysosomal storage diseases and cardiovascular disease.

  11. Gene therapy of the brain: the trans-vascular approach.

    PubMed

    Schlachetzki, Felix; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2004-04-27

    Many chronic neurologic diseases do not respond to small molecule therapeutics, and have no effective long-term therapy. Gene therapy offers the promise of an effective cure for both genetic and acquired brain disease. However, the limiting problem in brain gene therapy is delivery to brain followed by regulation of the expression of the transgene. Present day gene vectors do not cross the blood-brain barrier (BBB). Consequently, brain gene therapy requires craniotomy and the local injection of a viral gene vector. However, there are few brain disorders that can be effectively treated with local injection. Most applications of gene therapy require global expression in the brain of the exogenous gene, and this can only be achieved with a noninvasive delivery through the BBB--the trans-vascular route to brain. An additional consideration is the potential toxicity of all viral and nonviral approaches, which may either integrate into the host genome and cause insertional mutagenesis or cause inflammation in the brain. Nonviral, noninvasive gene therapy of the brain is now possible with the development of a new approach to targeting therapeutic genes to the brain following an IV administration. This approach utilizes genetically engineered molecular Trojan horses, which ferry the gene across the BBB and into neurons. Global and reversible expression of therapeutic genes in the human brain without surgery and without viral vectors is now possible.

  12. Development of a Nanotechnology Platform for Prostate Cancer Gene Therapy

    DTIC Science & Technology

    2012-07-01

    metastatic and characterized to be CAR¯/HER2¯. This means that they are not a good candidate for adenoviral gene therapy or Herceptin anti-HER2...and can potentially be used in the treatment of the patients that do not respond to adenoviral gene therapy or Herceptin immunotherapy.     5

  13. Regulatory considerations for translating gene therapy: a European Union perspective.

    PubMed

    Galli, Maria Cristina

    2009-11-11

    A preclinical study on a gene therapy approach for treatment of the severe muscle weakness associated with a variety of neuromuscular disorders provides a forum to discuss the translational challenges of gene therapy from a regulatory point of view. In this Perspective, the findings are considered from the view of European regulatory requirements for first clinical use.

  14. Gene therapy: a possible future standard for HIV care.

    PubMed

    Abou-El-Enein, Mohamed; Bauer, Gerhard; Reinke, Petra

    2015-07-01

    Despite undeniable accomplishments in developing cell and gene therapeutic strategies to combat HIV infection, key social, economic, and policy-related challenges still need to be overcome for any future commercialization efforts of these novel therapies to be successful. Here, we address these challenges and structure a framework for eradicating HIV/AIDS using gene therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Gene therapy in head and neck cancer: a review

    PubMed Central

    Chisholm, E; Bapat, U; Chisholm, C; Alusi, G; Vassaux, G

    2007-01-01

    Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed. PMID:18057169

  16. Combination Therapies for Traumatic Brain Injury: Prospective Considerations

    PubMed Central

    Hicks, Ramona

    2009-01-01

    Abstract Traumatic brain injury (TBI) initiates a cascade of numerous pathophysiological events that evolve over time. Despite the complexity of TBI, research aimed at therapy development has almost exclusively focused on single therapies, all of which have failed in multicenter clinical trials. Therefore, in February 2008 the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Development, the National Heart, Lung, and Blood Institute, and the Department of Veterans Affairs, convened a workshop to discuss the opportunities and challenges of testing combination therapies for TBI. Workshop participants included clinicians and scientists from a variety of disciplines, institutions, and agencies. The objectives of the workshop were to: (1) identify the most promising combinations of therapies for TBI; (2) identify challenges of testing combination therapies in clinical and pre-clinical studies; and (3) propose research methodologies and study designs to overcome these challenges. Several promising combination therapies were discussed, but no one combination was identified as being the most promising. Rather, the general recommendation was to combine agents with complementary targets and effects (e.g., mechanisms and time-points), rather than focusing on a single target with multiple agents. In addition, it was recommended that clinical management guidelines be carefully considered when designing pre-clinical studies for therapeutic development. To overcome the challenges of testing combination therapies it was recommended that statisticians and the U.S. Food and Drug Administration be included in early discussions of experimental design. Furthermore, it was agreed that an efficient and validated screening platform for candidate therapeutics, sensitive and clinically relevant biomarkers and outcome measures, and standardization and data sharing across centers would greatly facilitate the development of

  17. Somatic gene therapy in otolaryngology-head and neck surgery.

    PubMed

    O'Malley, B W; Ledley, F D

    1993-11-01

    The initial clinical trials of somatic gene therapy have demonstrated that gene transfer can be performed safely in a clinical setting and with public acceptance. These trials have focused attention on the broad applications of this technology in routine medical and surgical practice. This article reviews the reasons why somatic gene therapy could lead to significant improvements in clinical practice as well as specific therapies in otolaryngology-head and neck surgery. Early applications include the treatment of inherited diseases such as cystic fibrosis, new approaches for treating malignancies, new methods for enhancing tissue repair, and regeneration after plastic and reconstructive surgery, and the potential for using the thyroid as a target for somatic gene therapy. The following review will illustrate how somatic gene therapy may have a significant impact not only on the treatment of rare genetic diseases but on managing the common problems encountered by physicians and patients in daily practice.

  18. A snapshot of gene therapy in Latin America

    PubMed Central

    Linden, Rafael; Matte, Ursula

    2014-01-01

    Gene therapy attempts the insertion and expression of exogenous genetic material in cells for therapeutic purposes. Conceived in the 1960s, gene therapy reached its first clinical trial at the end of the 1980s and by December 2013 around 600 genuine open clinical trials of gene therapy were registered at NIH Clinical Trials Database. Here, we summarize the current efforts towards the development of gene therapy in Latin America. Our survey shows that the number of scientists involved in the development of gene therapy and DNA vaccines in Latin America is still very low. Higher levels of investment in this technology are necessary to boost the advancement of innovation and intellectual property in this field in a way that would ease both the social and financial burden of various medical conditions in Latin America. PMID:24764763

  19. A snapshot of gene therapy in Latin America.

    PubMed

    Linden, Rafael; Matte, Ursula

    2014-03-01

    Gene therapy attempts the insertion and expression of exogenous genetic material in cells for therapeutic purposes. Conceived in the 1960s, gene therapy reached its first clinical trial at the end of the 1980s and by December 2013 around 600 genuine open clinical trials of gene therapy were registered at NIH Clinical Trials Database. Here, we summarize the current efforts towards the development of gene therapy in Latin America. Our survey shows that the number of scientists involved in the development of gene therapy and DNA vaccines in Latin America is still very low. Higher levels of investment in this technology are necessary to boost the advancement of innovation and intellectual property in this field in a way that would ease both the social and financial burden of various medical conditions in Latin America.

  20. Cardiac gene therapy: Recent advances and future directions.

    PubMed

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles

    PubMed Central

    2013-01-01

    Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865

  2. Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now?

    PubMed

    Daliri, Karim; Ljubimov, Alexander V; Hekmatimoghaddam, Seyedhossein

    2017-08-31

    Glaucoma is the second most common cause of blindness, affecting 70~80 million people around the world. The death of retinal ganglion cells (RGCs) is the main cause of blindness related to this disease. Current therapies do not provide enough protection and regeneration of RGCs. A novel opportunity for treatment of glaucoma is application of technologies related to stem cell and gene therapy. In this perspective we will thus focus on emerging approaches to glaucoma treatment including stem cells and gene therapy.

  3. Advances in Gene Therapy for Diseases of the Eye

    PubMed Central

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-01-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  4. Human gene therapy: a brief overview of the genetic revolution.

    PubMed

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  5. Vectors and strategies for nonviral cancer gene therapy.

    PubMed

    Pahle, Jessica; Walther, Wolfgang

    2016-01-01

    This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.

  6. Gene therapy in The Netherlands: highlights from the Low Countries.

    PubMed

    Schenk-Braat, Ellen A M; Kaptein, Leonie C M; Hallemeesch, Marcella M; Bangma, Chris H; Hoeben, Rob C

    2007-10-01

    Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication-defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non-viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non-viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno-gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands. Copyright 2007 John Wiley & Sons, Ltd.

  7. Mechanically enhanced microcapsules for cellular gene therapy.

    PubMed

    Shen, F; Mazumder, M A J; Burke, N A D; Stöver, H D H; Potter, M A

    2009-07-01

    Microcapsules bearing a covalently cross-linked coating have been developed for cellular gene therapy as an improvement on alginate-poly(L-lysine)-alginate (APA) microcapsules that only have ionic cross-linking. In this study, two mutually reactive polyelectrolytes, a polycation (designated C70), poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride-co-2-aminoethyl methacrylate hydrochloride) and a polyanion (designated A70), poly(sodium methacrylate-co-2-(methacryloyloxy)ethyl acetoacetate), were used during the microcapsule fabrication. Ca-alginate beads were sequentially laminated with C70, A70, poly(L-lysine) (PLL), and alginate. The A70 reacts with both C70 and PLL to form a approximately 30 microm thick covalently cross-linked interpenetrating polymer network on the surface of the capsules. Confocal images confirmed the location of the C70/A70/PLL network and the stability of the network after 4 weeks implantation in mice. The mechanical and chemical resistance of the capsules was tested with a "stress test" where microcapsules were gently shaken in 0.003% EDTA for 15 min. APA capsules disappeared during this treatment, whereas the modified capsules, even those that had been retrieved from mice after 4-weeks implantation, remained intact. Analysis of solutions passing through model flat membranes showed that the molecular weight cut-off of alginate-C70-A70-PLL-alginate is similar to that of alginate-PLL-alginate. Recombinant cells encapsulated in APA and modified capsules were able to secrete luciferase into culture media. The modified capsules were found to capture some components of regular culture media used during preparation, causing an immune reaction in implanted mice, but use of UltraCulture serum-free medium was found to prevent this immune reaction. In vivo biocompatibility of the new capsules was similar to the APA capsules, with no sign of clinical toxicity on complete blood counts and liver function tests. The increased stability of the

  8. Targeted Radionuclide Therapy: Practical Applications and Future Prospects

    PubMed Central

    Zukotynski, Katherine; Jadvar, Hossein; Capala, Jacek; Fahey, Frederic

    2016-01-01

    In recent years, there has been a proliferation in the development of targeted radionuclide cancer therapy. It is now possible to use baseline clinical and imaging assessments to determine the most effective therapy and to tailor this therapy during the course of treatment based on radiation dosimetry and tumor response. Although this personalized approach to medicine has the advantage of maximizing therapeutic effect while limiting toxicity, it can be challenging to implement and expensive. Further, in order to use targeted radionuclide therapy effectively, there is a need for multidisciplinary awareness, education, and collaboration across the scientific, industrial, and medical communities. Even more important, there is a growing understanding that combining radiopharmaceuticals with conventional treatment such as chemotherapy and external beam radiotherapy may limit patient morbidity while improving survival. Developments in radiopharmaceuticals as biomarkers capable of predicting therapeutic response and targeting disease are playing a central role in medical research. Adoption of a practical approach to manufacturing and delivering radiopharmaceuticals, assessing patient eligibility, optimizing post-therapy follow-up, and addressing reimbursement issues will be essential for their success. PMID:27226737

  9. Genome Editing Gene Therapy for Duchenne Muscular Dystrophy.

    PubMed

    Hotta, Akitsu

    2015-09-22

    Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by loss of function of the dystrophin gene on the X chromosome. Gene augmentation of dystrophin is challenging due to the large size of the dystrophin cDNA. Emerging genome editing technologies, such as TALEN and CRISPR-Cas9 systems, open a new erain the restoration of functional dystrophin and are a hallmark of bona fide gene therapy. In this review, we summarize current genome editing approaches, properties of target cell types for ex vivo gene therapy, and perspectives of in vivo gene therapy including genome editing in human zygotes. Although technical challenges, such as efficacy, accuracy, and delivery of the genome editing components, remain to be further improved, yet genome editing technologies offer a new avenue for the gene therapy of DMD.

  10. [Progress on study of achromatopsia and targeted gene therapy].

    PubMed

    Dai, Xu-feng; Pang, Ji-jing

    2012-08-01

    Achromatopsia is an early onset retinal dystrophy that causes severe visual impairment. To date, four genes have been found to be implicated in achromatopsia-associated mutations: guanine nucleotide-binding protein (GNAT2), cyclic nucleotide-gated channel alpha-3 (CNGA3), cyclic nucleotide-gated channel beta-3 (CNGB3) and phosphodiesterase 6C (PDE6C). Even with early onset, the slow progress and the good responses to gene therapy in animal models render achromatopsia a very attractive candidate for human gene therapy after the successful of the Phase I clinical trials of Leber's congenital amaurosis. With the development of molecular genetics and the therapeutic gene replacement technology, the adeno-associated viral (AAV) vector-mediated gene therapy for achromatopsia in the preclinical animal experiments achieved encouraging progress in the past years. This article briefly reviews the recent research achievements of achromatopsia with gene therapy.

  11. Neural stem cell-based gene therapy for brain tumors.

    PubMed

    Kim, Seung U

    2011-03-01

    Advances in gene-based medicine since 1990s have ushered in new therapeutic strategy of gene therapy for inborn error genetic diseases and cancer. Malignant brain tumors such as glioblastoma multiforme and medulloblastoma remain virtually untreatable and lethal. Currently available treatment for brain tumors including radical surgical resection followed by radiation and chemotherapy, have substantially improved the survival rate in patients suffering from these brain tumors; however, it remains incurable in large proportion of patients. Therefore, there is substantial need for effective, low-toxicity therapies for patients with malignant brain tumors, and gene therapy targeting brain tumors should fulfill this requirement. Gene therapy for brain tumors includes many therapeutic strategies and these strategies can be grouped in two major categories: molecular and immunologic. The widely used molecular gene therapy approach is suicide gene therapy based on the conversion of non-toxic prodrugs into active anticancer agents via introduction of enzymes and genetic immunotherapy involves the gene transfer of immune-stimulating cytokines including IL-4, IL-12 and TRAIL. For both molecular and immune gene therapy, neural stem cells (NSCs) can be used as delivery vehicle of therapeutic genes. NSCs possess an inherent tumor tropism that supports their use as a reliable delivery vehicle to target therapeutic gene products to primary brain tumors and metastatic cancers throughout the brain. Significance of the NSC-based gene therapy for brain tumor is that it is possible to exploit the tumor-tropic property of NSCs to mediate effective, tumor-selective therapy for primary and metastatic cancers in the brain and outside, for which no tolerated curative treatments are currently available.

  12. Gene therapy for eye as regenerative medicine? Lessons from RPE65 gene therapy for Leber's Congenital Amaurosis.

    PubMed

    Rakoczy, Elizabeth P; Narfström, Kristina

    2014-11-01

    Recombinant virus mediated gene therapy of Leber's Congenital Amaurosis has provided a wide range of data on the utility of gene replacement therapy for recessive diseases. Studies to date demonstrate that gene therapy in the eye is safe and can result in long-term recovery of visual function, but they also highlight that further research is required to identify optimum intervention time-points, target populations and the compatibility of associate therapies. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stem Cell Therapy for Neonatal Disorders: Prospects and Challenges

    PubMed Central

    Chang, Yun Sil; Ahn, So Yoon; Sung, Sein

    2017-01-01

    Despite recent advances in neonatal medicine, neonatal disorders, such as bronchopulmonary dysplasia and intraventricular hemorrhage in preterm neonates and hypoxic ischemic encephalopathy in term neonates, remain major causes of mortality and morbidities. Promising preclinical research results suggest that stem cell therapies represent the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies. This review focuses primarily on the potential role of stem cell therapy in the above mentioned neonatal disorders, highlighting the results of human clinical trials and the challenges that remain to be addressed for their safe and successful translation into clinical care of newborn infants. PMID:28120555

  14. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    PubMed Central

    Barar, Jaleh; Omidi, Yadollah

    2012-01-01

    Introduction Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications. PMID:23678451

  15. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  16. Retroviral Integrations in Gene Therapy Trials

    PubMed Central

    Biasco, Luca; Baricordi, Cristina; Aiuti, Alessandro

    2012-01-01

    γ-Retroviral and lentiviral vectors allow the permanent integration of a therapeutic transgene in target cells and have provided in the last decade a delivery platform for several successful gene therapy (GT) clinical approaches. However, the occurrence of adverse events due to insertional mutagenesis in GT treated patients poses a strong challenge to the scientific community to identify the mechanisms at the basis of vector-driven genotoxicity. Along the last decade, the study of retroviral integration sites became a fundamental tool to monitor vector–host interaction in patients overtime. This review is aimed at critically revising the data derived from insertional profiling, with a particular focus on the evidences collected from GT clinical trials. We discuss the controversies and open issues associated to the interpretation of integration site analysis during patient's follow up, with an update on the latest results derived from the use of high-throughput technologies. Finally, we provide a perspective on the future technical development and on the application of these studies to address broader biological questions, from basic virology to human hematopoiesis. PMID:22252453

  17. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    PubMed

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  18. Targeted endometrial cancer therapy as a future prospect.

    PubMed

    Thanapprapasr, Duangmani; Cheewakriangkrai, Chalong; Likittanasombut, Puchong; Thanapprapasr, Kamolrat; Mutch, David G

    2013-03-01

    Among female-specific cancers worldwide, endometrial cancer is the third most common after breast cancer and cervical cancer. In addition, it is the most common gynecological cancer in the USA and Europe. The incidence of this disease appears to be increasing. The cause of this increase is multifactorial, but a few possible factors involved are increasing obesity, an aging population leading to more postmenopausal women and greater tamoxifen use. Surgery is generally the primary treatment of this disease and postoperative radiation therapy in some patients with high or intermediate risk may prevent locoregional recurrences. Adjuvant chemotherapy improves progression-free survival in advanced or recurrent cancer. However, overall survival in patients with advanced disease is poor. Hence, better therapy is needed and targeted molecular therapies are emerging as possible treatment candidates. These include molecules that target VEGF, mTOR, tyrosine kinases, human EGF receptors and FGF receptors. Therapies targeting specific molecular features should be evaluated in future strategies in the treatment of endometrial cancer.

  19. Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate.

    PubMed

    Miki, K; Xu, M; Gupta, A; Ba, Y; Tan, Y; Al-Refaie, W; Bouvet, M; Makuuchi, M; Moossa, A R; Hoffman, R M

    2001-09-15

    In this study, we report a novel approach to gene-directed enzyme prodrug therapy for cancer. This gene therapy strategy exploits the toxic pro-oxidant property of methylselenol, which is released from selenomethionine (SeMET) by cancer cells with the adenoviral-delivered methionine alpha,gamma-lyase (MET) gene cloned from Pseudomonas putida. In MET-transduced tumor cells, the cytotoxicity of SeMET is increased up to 1000-fold compared with nontransduced cells. A strong bystander effect occurred because of methylselenol release from MET gene-transduced cells and uptake by surrounding tumor cells. Methylselenol damaged the mitochondria via oxidative stress and caused cytochrome c release into the cytosol, thereby activating the caspase cascade and apoptosis. Adenoviral MET-gene/SeMET treatment also inhibited tumor growth in rodents and significantly prolonged their survival. Recombinant adenovirus-encoding MET gene-SeMET treatment thereby offers a new paradigm for cancer gene therapy.

  20. Bio and nanotechnological strategies for tumor-targeted gene therapy.

    PubMed

    Kang, Jeong-Hun; Toita, Riki; Katayama, Yoshiki

    2010-01-01

    Gene therapy is a new medical approach for the treatment of tumors. For safe and efficient gene therapy, therapeutic genes need to be delivered efficiently into the target tumor cells. Development of gene delivery systems to specifically recognize and target tumor cells and to distinguish them from normal cells, especially in the same tissue or organ, is one of the most important issues regarding the present gene delivery methodologies. The enhanced permeability and retention (EPR) effect using the characteristics of angiogenic tumor blood vessels, as well as gene delivery systems recognizing hyperactivated receptors or intracellular signals, is broadly applied to tumor-targeted gene therapy. In addition, bacterial vectors can be a useful means for targeting hypoxic or anoxic regions of a tumor.

  1. Evaluation of ADA gene expression and transduction efficiency in ADA/SCID patients undergoing gene therapy.

    PubMed

    Carlucci, F; Tabucchi, A; Aiuti, A; Rosi, F; Floccari, F; Pagani, R; Marinello, E

    2004-10-01

    A capillary electrophoresis (CE) method was developed for ADA/SCID diagnosis and monitoring of enzyme replacement therapy, as well as for exploring the transfection efficiency for different retroviral vectors in gene therapy.

  2. [Polymeric nanoparticles with therapeutic gene for gene therapy: I. Preparation and in vivo gene transfer study].

    PubMed

    Yang, Jing; Song, Cunxian; Sun, Hongfan; Wu, Li; Tang, Lina; Leng, Xigang; Wang, Pengyan; Xu, Yiyao; Li, Yongjun; Guan, Heng

    2005-06-01

    VEGF nanoparticle (VEGF-NP) was prepared by a multi-emulsification technique using a biodegradable poly-dl-lactic-co-glycolic (PLGA) as matrix material. The nanoparticles were characterized for size, VEGF loading capacity, and in vitro release. VEGF-NP and naked VEGF plasmid were intramuscularly injected into the ischemia site of the rabbit chronic hindlimb ischemia model and the efficiency of VEGF-NP as gene delivery carrier for gene therapy in animal model was evaluated. Gene therapuetic effect was assessed evaluated by RT-PCR, immunohistochemistry and angiography assay. The average size of VEGF-NP was around 300 nm. The encapsulation efficiency of VEGF was above 96%. Loading amount of VEGF in the nanoparticles was about 4%. In vitro, nanoparticles maintained sustained-release of VEGF for two weeks. Two weeks post gene injection the capillary density in VEGF-NP group (81.22 per mm2) was significantly higher than that in control group (29.54 mm2). RT-PCR results showed greatly higher VEGF expression in VEGF-NP group (31.79au * mm) than that in naked VEGF group (9.15 au * mm). As a carrier system for gene therapy in animal model, VEGF-NP is much better than naked DNA plasmid. The results demonstrate great possibility of using NP carrier in human gene therapy.

  3. Prospective Validation of a 21-Gene Expression Assay in Breast Cancer

    PubMed Central

    Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Perez, E.A.; Olson, J.A.; Zujewski, J.A.; Lively, T.; Badve, S.S.; Saphner, T.J.; Wagner, L.I.; Whelan, T.J.; Ellis, M.J.; Paik, S.; Wood, W.C.; Ravdin, P.; Keane, M.M.; Gomez Moreno, H.L.; Reddy, P.S.; Goggins, T.F.; Mayer, I.A.; Brufsky, A.M.; Toppmeyer, D.L.; Kaklamani, V.G.; Atkins, J.N.; Berenberg, J.L.; Sledge, G.W.

    2015-01-01

    BACKGROUND Prior studies with the use of a prospective–retrospective design including archival tumor samples have shown that gene-expression assays provide clinically useful prognostic information. However, a prospectively conducted study in a uniformly treated population provides the highest level of evidence supporting the clinical validity and usefulness of a biomarker. METHODS We performed a prospective trial involving women with hormone-receptor–positive, human epidermal growth factor receptor type 2 (HER2)–negative, axillary node–negative breast cancer with tumors of 1.1 to 5.0 cm in the greatest dimension (or 0.6 to 1.0 cm in the greatest dimension and intermediate or high tumor grade) who met established guidelines for the consideration of adjuvant chemotherapy on the basis of clinicopathologic features. A reverse-transcriptase–polymerase-chain-reaction assay of 21 genes was performed on the paraffin-embedded tumor tissue, and the results were used to calculate a score indicating the risk of breast-cancer recurrence; patients were assigned to receive endocrine therapy without chemotherapy if they had a recurrence score of 0 to 10, indicating a very low risk of recurrence (on a scale of 0 to 100, with higher scores indicating a greater risk of recurrence). RESULTS Of the 10,253 eligible women enrolled, 1626 women (15.9%) who had a recurrence score of 0 to 10 were assigned to receive endocrine therapy alone without chemotherapy. At 5 years, in this patient population, the rate of invasive disease–free survival was 93.8% (95% confidence interval [CI], 92.4 to 94.9), the rate of freedom from recurrence of breast cancer at a distant site was 99.3% (95% CI, 98.7 to 99.6), the rate of freedom from recurrence of breast cancer at a distant or local–regional site was 98.7% (95% CI, 97.9 to 99.2), and the rate of overall survival was 98.0% (95% CI, 97.1 to 98.6). CONCLUSIONS Among patients with hormone-receptor–positive, HER2-negative, axillary node

  4. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption.

    PubMed

    Bergen, Andrew W; Michel, Martha; Nishita, Denise; Krasnow, Ruth; Javitz, Harold S; Conneely, Karen N; Lessov-Schlaggar, Christina N; Hops, Hyman; Zhu, Andy Z X; Baurley, James W; McClure, Jennifer B; Hall, Sharon M; Baker, Timothy B; Conti, David V; Benowitz, Neal L; Lerman, Caryn; Tyndale, Rachel F; Swan, Gary E

    2015-01-01

    The Nicotine Metabolite Ratio (NMR, ratio of trans-3'-hydroxycotinine and cotinine), has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET) gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis.

  5. The roles of traditional Chinese medicine in gene therapy.

    PubMed

    Ling, Chang-quan; Wang, Li-na; Wang, Yuan; Zhang, Yuan-hui; Yin, Zi-fei; Wang, Meng; Ling, Chen

    2014-03-01

    The field of gene therapy has been increasingly studied in the last four decades, and its clinical application has become a reality in the last 15 years. Traditional Chinese medicine (TCM), an important component of complementary and alternative medicine, has evolved over thousands of years with its own unique system of theories, diagnostics and therapies. TCM is well-known for its various roles in preventing and treating infectious and chronic diseases, and its usage in other modern clinical practice. However, whether TCM can be applied alongside gene therapy is a topic that has not been systematically examined. Here we provide an overview of TCM theories in relation to gene therapy. We believe that TCM theories are congruent with some principles of gene therapy. TCM-derived drugs may also act as gene therapy vehicles, therapeutic genes, synergistic therapeutic treatments, and as co-administrated drugs to reduce side effects. We also discuss in this review some possible approaches to combine TCM and gene therapy.

  6. Duchenne muscular dystrophy gene therapy in the canine model.

    PubMed

    Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model.

  7. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  8. Emerging biotechnological strategies for non-viral antiangiogenic gene therapy.

    PubMed

    Liu, Chunxi; Zhang, Na

    2012-12-01

    Angiogenesis has emerged as a promising target of cancer treatment. With the development of biotechnology, major progress has been made in the exploring effective therapies on targeting tumor angiogenesis over the last 20 years. Gene therapy has attracted considerable interest by virtue of the capabilities of expressing sustained levels of therapeutic agents within cells of the patients. However, the major challenge of gene therapy is the efficient delivery of therapeutic gene to the target site. Compared with viral strategies, non-viral strategies were more acceptable by their widely recognized security and lower side effects. This paper reviews the basic biology of angiogenesis, the potential advantages of antiangiogenic gene therapy, the therapeutic genetic drugs developed through biotechnology, as well as the biotechnological strategies that enhancing non-viral gene therapy targeting to tumor angiogenesis in a more controlled manner, with great respect to RNA interference, ligand-directed vascular targeting strategies, vascular endothelial growth factor pathway and tumor associated macrophages targeting. In conclusion, antiangiogenic gene therapy holds great promise in advancing cancer therapy. Developing better non-viral biotechnological platforms will benefit antiangiogenic targeted cancer gene therapeutic methods, support their evaluation in human clinical trials and realize the actual utilization in the near future.

  9. [Ethical guidelines on genetic testing and gene therapy].

    PubMed

    Fukushima, Yoshimitsu

    2005-03-01

    According to the recent and rapid advances in molecular genetics research, genetic testing and gene therapy have a potential of giving unexpected influence to the human beings. To prevent and to solve various ethical, legal and social implementations (ELSI) of genetic testing and gene therapy, several guidelines have been established. In Japan, all researchers and all clinicians have to know and keep the following three guidelines on genetic testing and a guideline on gene therapy: 1) "Guidelines for Researches on Human Genome and Gene (2001)" by the three Ministries (Education, Health and Economy), 2) "Guidelines for Genetic Testing (2001)" by the Genetic--medicine--related 10 societies, 3) "Ethical Principles on Entrusted Genetic Testing (2001)" by the Japan Registered Clinical Laboratories Association, and 4) "Guidelines for Clinical Research on Gene Therapy (2002)" by the two Ministries (Health and Education).

  10. Current status of gene therapy for rheumatoid arthritis.

    PubMed

    Reinecke, J; Koch, H; Meijer, H; Granrath, M; Schulitz, K P; Wehling, P

    1999-02-01

    Despite the high prevalence of the disease, at present little effective pharmacological treatment of rheumatoid arthritis is available. Novel approaches utilising biological agents have resulted in the development of new antiarthritic and antiinflammatory agents, such as tumour necrosis factor-alpha (TNFalpha)-specific antibodies and interleukin-1 receptor antagonist (IL-1ra). Local gene therapy not only allows the pharmaceutical use of these biologicals, but also allows for continuous drug supply, which is necessary for chronic diseases like rheumatoid arthritis. We discuss the basics of rheumatoid arthritis therapy, candidate genes and possible gene transfer methods. A current clinical gene therapy trial is focusing on the IL-1 system using IL-1ra as a transgene. The transfer system, clinical protocol and preliminary results are described. After treatment of 11 patients we feel that gene therapy will offer potential as a new avenue to treat rheumatoid arthritis.

  11. Gene therapy for heart failure: where do we stand?

    PubMed

    Naim, Charbel; Yerevanian, Armen; Hajjar, Roger J

    2013-02-01

    Advances in understanding of the molecular basis of myocardial dysfunction, together with the development of increasingly efficient gene transfer technology, has placed heart failure within reach of gene-based therapy. Multiple components of cardiac contractility, including the Beta-adrenergic system, the calcium channel cycling pathway, and cytokine mediated cell proliferation, have been identified as appropriate targets for gene therapy. The development of efficient and safe vectors such as adeno-associated viruses and polymer nanoparticles has provided an opportunity for clinical application for gene therapy. The recent successful and safe completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) has the potential to open a new era for gene therapy in the treatment of heart failure.

  12. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Müller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10−9 M) the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic

  13. Targeted alpha anticancer therapies: update and future prospects

    PubMed Central

    Allen, Barry J; Huang, Chen-Yu; Clarke, Raymond A

    2014-01-01

    Targeted alpha therapy (TAT) is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. 223RaCl2 (Xofigo®) is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes 211At, 213Bi, 225Ac and 227Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT) effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed. PMID:25422581

  14. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    PubMed Central

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years. PMID:24312844

  15. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    PubMed

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  16. Therapy of HIV Infection: Current Approaches and Prospects

    PubMed Central

    Prokofjeva, M. M.; Kochetkov, S. N.; Prassolov, V. S.

    2016-01-01

    The human immunodeficiency virus type 1 (HIV-1) is the causative agent of one of the most dangerous human diseases – the acquired immune deficiency syndrome (AIDS). Over the past 30 years since the discovery of HIV-1, a number of antiviral drugs have been developed to suppress various stages of the HIV-1 life cycle. This approach has enables the suppression of virus replication in the body, which significantly prolongs the life of HIV patients. The main downside of the method is the development of viral resistance to many anti-HIV drugs, which requires the creation of new drugs effective against drug-resistant viral forms. Currently, several fundamentally new approaches to HIV-1 treatment are under development, including the use of neutralizing antibodies, genome editing, and blocking an integrated latent provirus. This review describes a traditional approach involving HIV-1 inhibitors as well as the prospects of other treatment options. PMID:28050264

  17. Large animal models of neurological disorders for gene therapy.

    PubMed

    Gagliardi, Christine; Bunnell, Bruce A

    2009-01-01

    he development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinsons disease, Huntingtons disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research.

  18. Does human gene therapy raise new ethical questions?

    PubMed

    Tauer, C A

    1990-01-01

    Consideration of the ethics of human gene therapy does not seem to raise questions that have never been asked before. However, particularly when gene therapy is extended to modification of the germ cells, several ethical issues take on an added importance or significance. These issues are: (i) possible moral limitations on tampering with "human nature"; (ii) the extent of our responsibility to future generations; (iii) the appropriate use of early human embryos in genetic research. Furthermore, standard norms in clinical and research ethics require careful application to trials of human gene therapy, even if only somatic rather than germ-line improvements are sought.

  19. Communicating in context: a priority for gene therapy researchers.

    PubMed

    Robillard, Julie M

    2015-03-01

    History shows that public opinion of emerging biotechnologies has the potential to impact the research process through mechanisms such as funding and advocacy. It is critical, therefore, to consider public attitudes towards modern biotechnology such as gene therapy and more specifically towards the ethics of gene therapy, alongside advances in basic and clinical research. Research conducted through social media recently assessed how online users view the ethics of gene therapy and showed that while acceptability is high, significant ethical concerns remain. To address these concerns, the development of effective and evidence-based communication strategies that engage a wide range of stakeholders should be a priority for researchers.

  20. Novel AIDS therapies based on gene editing.

    PubMed

    Khalili, Kamel; White, Martyn K; Jacobson, Jeffrey M

    2017-02-16

    HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.

  1. Keratin disorders: from gene to therapy.

    PubMed

    McLean, W H Irwin; Moore, C B Tara

    2011-10-15

    The term 'keratin' is generally accepted to refer to the epithelial keratins of soft and hard epithelial tissues such as: skin, cornea, hair and nail. Since their initial characterization, the total number of mammalian keratins has increased to 54, including 28 type I and 26 type II keratins. Inherited defects that weaken the keratin load-bearing cytoskeleton produce phenotypes characterized by fragility of specific subsets of epithelial tissues. The vast majority of mutations are either missense or small in-frame in-del mutations and disease severity often relates to the position of the mutation in relation to the rod domain. The most complex epithelial structure in humans, the hair follicle, contains trichocyte ('hard') keratin filaments and approximately half of the 54 functional human keratin genes are trichocyte keratins. So far, only four of these have been linked to human genetic disorders: monilethrix, hair-nail ectodermal dysplasia, pseudofolliculitis barbae and woolly hair, while the majority of the hair keratins remain unlinked to human phenotypes. Keratin disorders are a classical group of dominant-negative genetic disorders, representing a large healthcare burden, especially within dermatology. Recent advances in RNA interference therapeutics, particularly in the form of small-interfering RNAs, represent a potential therapy route for keratin disorders through selectively silencing the mutant allele. To date, mutant-specific siRNAs for epidermolysis bullosa simplex, pachyonychia congenita and Messmann epithelial corneal dystrophy-causing missense mutations have been developed and proven to have unprecedented specificity and potency. This could herald the dawn of a new era in translational medical research applied to genetics.

  2. The interplay of post-translational modification and gene therapy

    PubMed Central

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. PMID:27013864

  3. Synergistic nanomedicine by combined gene and photothermal therapy.

    PubMed

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.

  4. The interplay of post-translational modification and gene therapy.

    PubMed

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery.

  5. Suicide gene therapy in cancer: where do we stand now?

    PubMed

    Duarte, Sónia; Carle, Georges; Faneca, Henrique; de Lima, Maria C Pedroso; Pierrefite-Carle, Valérie

    2012-11-28

    Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial gene, which allows the conversion of a non-toxic compound into a lethal drug. Although suicide gene therapy has been successfully used in a large number of in vitro and in vivo studies, its application to cancer patients has not reached the desirable clinical significance. However, recent reports on pre-clinical cancer models demonstrate the huge potential of this strategy when used in combination with new therapeutic approaches. In this review, we summarize the different suicide gene systems and gene delivery vectors addressed to cancer, with particular emphasis on recently developed systems and associated bystander effects. In addition, we review the different strategies that have been used in combination with suicide gene therapy and provide some insights into the future directions of this approach, particularly towards cancer stem cell eradication.

  6. Pharmaceutical emulsions: a new approach for gene therapy.

    PubMed

    Verissimo, Lourena Mafra; Lima, Lucymara Fassarela Agnez; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, E Sócrates Tabosa

    2010-06-01

    The concept of gene therapy involves the experimental transfer of a therapeutic gene into an individual's cells and tissues to replace an abnormal gene aiming to treat a disease, or to use the gene to treat a disease just like a medicine, improving the clinical status of a patient. The achievement of a foreigner nucleic acid into a population of cells requires its transfer to the target. Therefore, it is essential to create carriers (vectors) that transfer and protect the nucleic acid until it reaches the target. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as emulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. This review focuses on the progress of cationic emulsions and the improvement of the formulations, as a potential delivery system for gene therapy.

  7. Imaging techniques: new avenues in cancer gene and cell therapy.

    PubMed

    Saadatpour, Z; Rezaei, A; Ebrahimnejad, H; Baghaei, B; Bjorklund, G; Chartrand, M; Sahebkar, A; Morovati, H; Mirzaei, H R; Mirzaei, H

    2017-01-01

    Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.

  8. [The prospect of pluripotent stem cell-based therapy].

    PubMed

    Borisenko, G G

    2009-01-01

    Human embrional stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into any somatic cell type. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have great potential for the therapy of incurable diseases. Here, we review new developments in the area of embrional stem cells and discuss major challenges--standartization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new aprouches for directed differentiation etc.--which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches of hESC therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines (3). In addition, we discuss brifly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinic. Therefore, the major direction of hESC use is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks. Finally, cell therapy is far more complex and resource-consuming process as compared to drug-based medicine; pluripotent stem cell biology and technology is in need of further investigation and development before these cells can be used in clinics.

  9. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1999-01-01

    gene therapy . The results of the first year study, described in our previous Annual Report, show that gene gun-mediated IL-12 gene therapy is effective against breast tumors in mouse models. During the second year of this study we demonstrated that 4T1 tumor is weakly immunogenic, and it can induce a low level immune response. However, the anti-metastatic effect of IL-12 gene therapy against 4T1 tumor is not mediated by T cells, but rather involves NK cells. From several different immunomidulatory genes tested in combination with

  10. Gene therapy for age-related macular degeneration.

    PubMed

    Moore, Nicholas A; Bracha, Peter; Hussain, Rehan M; Morral, Nuria; Ciulla, Thomas A

    2017-10-01

    In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.

  11. Genetic basis and gene therapy trials for thyroid cancer.

    PubMed

    Al-Humadi, Hussam; Zarros, Apostolos; Al-Saigh, Rafal; Liapi, Charis

    2010-01-01

    Gene therapy is regarded as one of the most promising novel therapeutic approaches for hopeless cases of thyroid cancer and those not responding to traditional treatment. In the last two decades, many studies have focused on the genetic factors behind the origin and the development of thyroid cancer, in order to investigate and shed more light on the molecular pathways implicated in different differentiated or undifferentiated types of thyroid tumors. We, herein, review the current data on the main genes that have been proven to (or thought to) be implicated in thyroid cancer etiology, and which are involved in several well-known signaling pathways (such as the mitogen-activated protein kinase and phosphatidylinositol-3-kinase/Akt pathways). Moreover, we review the results of the efforts made through multiple gene therapy trials, via several gene therapy approaches/strategies, on different thyroid carcinomas. Our review leads to the conclusion that future research efforts should seriously consider gene therapy for the treatment of thyroid cancer, and, thus, should: (a) shed more light on the molecular basis of thyroid cancer tumorigenesis, (b) focus on the development of novel gene therapy approaches that can achieve the required antitumoral efficacy with minimum normal tissue toxicity, as well as (c) perform more gene therapy clinical trials, in order to acquire more data on the efficacy of the examined approaches and to record the provoked adverse effects.

  12. Bone Marrow Gene Therapy for HIV/AIDS

    PubMed Central

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-01-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described. PMID:26193303

  13. Gene Therapy from the perspective of Systems Biology

    PubMed Central

    Mac Gabhann, Feilim; Annex, Brian H.

    2010-01-01

    Gene therapy research has expanded from its original concept of replacing absent or defective DNA with functional DNA for transcription. Genetic material may be delivered via multiple vectors, including naked plasmid DNA, viruses and even cells with the goal of increasing gene expression; and the targeting of specific tissues or cell types is aimed at decreasing risks of systemic or side effects. As with the development of any drug, there is an amount of empiricism in the choice of gene target, route of administration, dosing and in particular the scaling-up from pre-clinical models to clinical trials. Systems Biology, whose arsenal includes high-throughput experimental and computational studies that account for the complexities of host-disease-therapy interactions, holds significant promise in aiding the development and optimization of gene therapies, including personalized therapies and the identification of biomarkers for success of these strategies. In this review we describe some of the obstacles and successes in gene therapy, using the specific example of growth factor gene delivery to promote angiogenesis and blood vessel remodeling in ischemic diseases; we also make references to anti-angiogenic gene therapy in cancer. The opportunities for Systems Biology and in silico modeling to improve on current outcomes are highlighted. PMID:20886389

  14. Bone Marrow Gene Therapy for HIV/AIDS.

    PubMed

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-07-17

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  15. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  16. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    PubMed Central

    Pranjol, Md Zahidul Islam; Hajitou, Amin

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974

  17. Alphavirus vectors as tools in neuroscience and gene therapy.

    PubMed

    Lundstrom, Kenneth

    2016-05-02

    Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models.

  18. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy.

    PubMed

    Yang, Shuo; Ma, Si-Qi; Wan, Xing; He, Heng; Pei, Han; Zhao, Min-Jian; Chen, Chen; Wang, Dao-Wen; Dong, Xiao-Yan; Yuan, Jia-Jia; Li, Bin

    2016-08-01

    Leber's hereditary optic neuropathy (LHON) is a disease that leads to blindness. Gene therapy has been investigated with some success, and could lead to important advancements in treating LHON. This was a prospective, open-label trial involving 9 LHON patients at Tongji Hospital, Wuhan, China, from August 2011 to December 2015. The purpose of this study was to evaluate the long-term outcomes of gene therapy for LHON. Nine LHON patients voluntarily received an intravitreal injection of rAAV2-ND4. Systemic examinations and visual function tests were performed during the 36-month follow-up period to determine the safety and efficacy of this gene therapy. Based on successful experiments in an animal model of LHON, 1 subject also received an rAAV2-ND4 injection in the second eye 12months after gene therapy was administered in the first eye. Recovery of visual acuity was defined as the primary outcome of this study. Changes in the visual field, visual evoked potential (VEP), optical coherence tomography findings, liver and kidney function, and antibodies against AAV2 were defined as secondary endpoints. Eight patients (Patients 2-9) received unilateral gene therapy and visual function improvement was observed in both treated eyes (Patients 4, 6, 7, and 8) and untreated eyes (Patients 2, 3, 4, 6 and 8). Visual regression fluctuations, defined as changes in visual acuity greater than or equal to 0.3 logMAR, were observed in Patients 2 and 9. Age at disease onset, disease duration, and the amount of remaining optic nerve fibers did not have a significant effect on the visual function improvement. The visual field and pattern reversal VEP also improved. The patient (Patient 1) who received gene therapy in both eyes had improved visual acuity in the injected eye after the first treatment. Unfortunately, visual acuity in this eye decreased 3months after he received gene therapy in the second eye. Animal experiments suggested that ND4 expression remains stable in the

  19. The use of genes for performance enhancement: doping or therapy?

    PubMed

    Oliveira, R S; Collares, T F; Smith, K R; Collares, T V; Seixas, F K

    2011-12-01

    Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such 'gene doping', exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  20. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... therapy, therapeutic vaccination, xenotransplantation, and certain biologic-device combination products... product areas covered by this guidance include cellular therapy, gene therapy, therapeutic...

  1. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    PubMed Central

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  2. Investor Outlook: Gene Therapy Picking up Steam; At a Crossroads.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2016-09-01

    The gene therapy field continues to pick up steam with recent successes in a number of different therapeutic indications that highlight the potential for the platform. As the field continues to make progress, a growing data set of long-term safety and efficacy data will continue to define gene therapy's role, determining ultimately how widely it may be used beyond rare, serious diseases with high unmet needs. New technologies often take unanticipated twists and turns as patient exposure accumulates, and gene therapy may be no exception. That said, with many diseases that have no other treatment options beyond gene therapy and that present considerable morbidity and mortality, the field appears poised to withstand some minor and even major bumps in the road should they emerge.

  3. Potential application of gene therapy to X-linked agammaglobulinemia.

    PubMed

    Moreau, Thomas; Calmels, Boris; Barlogis, Vincent; Michel, Gérard; Tonnelle, Cécile; Chabannon, Christian

    2007-08-01

    X-linked agammaglobulinemia (XLA), or Bruton's disease, is the most common human primary humoral immunodeficiency. XLA is caused by mutations of the Bruton's tyrosine kinase (BTK), a key regulator of B-cell physiology. Since the mid 80's, substitutive therapy by intravenous gammaglobulin infusions has significantly improved XLA patient survival and quality of life. Nevertheless, some frequent affections persist despite treatment, and lead to handicapping and further to morbid clinical complications for XLA individuals. Development of gene therapy by transfer of the BTK gene into hematopoietic progenitors could represent an alternative strategy for the treatment of Bruton's disease, with the advantage of a definitive cure for XLA patients. Gene therapy of XLA could be considered as a paradigm for future expansion of gene therapy approaches for many other diseases, since future utilization may be strictly dependent on a marked improvement of risk-benefit ratio compared to pre-existing treatments.

  4. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  5. Gene Therapy Helps 2 Babies Fight Type of Leukemia

    MedlinePlus

    ... gov/news/fullstory_163244.html Gene Therapy Helps 2 Babies Fight Type of Leukemia Tweaking T-cells ... 25, 2017 WEDNESDAY, Jan. 25, 2017 (HealthDay News) -- Two infants with an advanced form of leukemia are ...

  6. Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain.

    PubMed

    Serguera, C; Bemelmans, A-P

    2014-12-01

    The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors.

  7. The pharmacology of neurokinin receptors in addiction: prospects for therapy

    PubMed Central

    Sandweiss, Alexander J; Vanderah, Todd W

    2015-01-01

    Addiction is a chronic disorder in which consumption of a substance or a habitual behavior becomes compulsive and often recurrent, despite adverse consequences. Substance p (SP) is an undecapeptide and was the first neuropeptide of the neurokinin family to be discovered. The subsequent decades of research after its discovery implicated SP and its neurokinin relatives as neurotransmitters involved in the modulation of the reward pathway. Here, we review the neurokinin literature, giving a brief historical perspective of neurokinin pharmacology, localization in various brain regions involved in addictive behaviors, and the functional aspects of neurokinin pharmacology in relation to reward in preclinical models of addiction that have shaped the rational drug design of neurokinin antagonists that could translate into human research. Finally, we will cover the clinical investigations using neurokinin antagonists and discuss their potential as a therapy for drug abuse. PMID:26379454

  8. Approach-Avoidance Attitudes Associated with Initial Therapy Appointment Attendance: A Prospective Study.

    PubMed

    Murphy, Elizabeth; Mansell, Warren; Craven, Sally; McEvoy, Phil

    2016-01-01

    Initial therapy appointments have high nonattendance rates yet the reasons remain poorly understood. This study aimed to identify positive and negative attitudes towards therapy that predicted initial attendance, informed by a perceptual control theory account of approach-avoidance conflicts in help-seeking. A prospective study was conducted within a low intensity CBT service using first appointment attendance (n = 96) as an outcome. Measures included attitudes towards therapy, depression and anxiety scales, and demographic variables. Endorsement of a negative attitude item representing concern about self-disclosure was independently predictive of nonattendance. Positive attitudes predicted increased attendance, especially endorsement of motives for self-reflection, but only among less depressed individuals. Self-disclosure concerns contribute to therapy avoidance and having goals for self-reflection may represent approach motivation for therapy; however, the latter has less impact among more highly depressed people.

  9. Prevailing public perceptions of the ethics of gene therapy.

    PubMed

    Robillard, Julie M; Roskams-Edris, Dylan; Kuzeljevic, Boris; Illes, Judy

    2014-08-01

    Gene therapy research is advancing rapidly, and hopes of treating a large number of brain disorders exist alongside ethical concerns. Most surveys of public attitudes toward these ethical issues are already dated and the content of these surveys has been researcher-driven. To examine current public perceptions, we developed an online instrument that is responsive and relevant to the latest research about ethics, gene therapy, and the brain. The 16-question survey was launched with the platform Amazon Mechanical Turk and was made available to residents of Canada and the United States. The survey was divided into six themes: (1) demographic information, (2) general opinions about gene therapy, (3) medical applications of gene therapy, (4) identity and moral/belief systems, (5) enhancement, and (6) risks. We received and analyzed responses from a total of 467 participants. Our results show that a majority of respondents (>90%) accept gene therapy as a treatment for severe illnesses such as Alzheimer disease, but this receptivity decreases for conditions perceived as less severe such as attention deficit hyperactivity disorder (79%), and for nontherapeutic applications (47%). The greatest area of concern for the application of gene therapy to brain conditions is the fear of not receiving sufficient information before undergoing the treatment. The main ethical concerns with enhancement were the potential for disparities in resource allocation, access to the procedure, and discrimination. When comparing these data with those from the 1990s, our findings suggest that the acceptability of gene therapy is increasing and that this trend is occurring despite lingering concerns over ethical issues. Providing the public and patients with up-to-date information and opportunities to engage in the discourse about areas of research in gene therapy is a priority.

  10. Regulatory Oversight of Gene Therapy and Cell Therapy Products in Korea.

    PubMed

    Choi, Minjoung; Han, Euiri; Lee, Sunmi; Kim, Taegyun; Shin, Won

    2015-01-01

    The Ministry of Food and Drug Safety regulates gene therapy and cell therapy products as biological products under the authority of the Pharmaceutical Affairs Act. As with other medicinal products, gene therapy and cell therapy products are subject to approval for use in clinical trials and for a subsequent marketing authorization and to post-market surveillance. Research and development of gene therapy and cell therapy products have been progressing rapidly in Korea with extensive investment, offering great potential for the treatment of various serious diseases. To facilitate development of safe and effective products and provide more opportunities to patients suffering from severe diseases, several regulatory programs, such as the use of investigational products for emergency situations, fast-track approval, prereview of application packages, and intensive regulatory consultation, can be applied to these products. The regulatory approach for these innovative products is case by case and founded on science-based review that is flexible and balances the risks and benefits.

  11. Gene Therapy with the Sleeping Beauty Transposon System.

    PubMed

    Kebriaei, Partow; Izsvák, Zsuzsanna; Narayanavari, Suneel A; Singh, Harjeet; Ivics, Zoltán

    2017-09-27

    The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gene, stem cell, and future therapies for orphan diseases.

    PubMed

    Phillips, M Ian

    2012-08-01

    There are an estimated 7,000 "orphan diseases," but treatments are currently available for only about 5% of them. Recent progress in the advanced platforms of gene therapy, stem cell therapy, gene modification, and gene correction offers possibilities for new therapies and cures for rare diseases. Many rare diseases are genetic in origin, and gene therapy is being successfully applied to treat them. Human stem cell therapy, apart from bone marrow transplants, is still experimental. Genetic modification of stem cells can make stem cell-based products more effective. Autologous induced pluripotent stem (iPS) cells, when combined with new classes of artificial nucleases, have great potential in the ex vivo repair of specific mutated DNA sequences (zinc-finger proteins and transactivator-like effector nucleases). Patient-specific iPS cells can be corrected and transplanted back into the patient. Stem cells secrete paracrine factors that could become new therapeutic tools in the treatment of orphan diseases. Gene therapy and stem cell therapy with DNA repair are promising approaches to the treatment of rare, intractable diseases.

  13. Immunosuppressive Therapy of LGL Leukemia: Prospective Multicenter Phase II Study by the Eastern Cooperative Oncology Group (E5998)

    PubMed Central

    Loughran, Thomas P.; Zickl, Lynette; Olson, Thomas L.; Wang, Victoria; Zhang, Dan; Rajala, Hanna L.M.; Hasanali, Zainul; Bennett, John M.; Lazarus, Hillard M.; Litzow, Mark R.; Evens, Andrew M.; Mustjoki, Satu; Tallman, Martin S.

    2015-01-01

    Failure to undergo activation-induced cell death due to global dysregulation of apoptosis is the pathogenic hallmark of large granular lymphocyte (LGL) leukemia. Consequently, immunosuppressive agents are rational choices for treatment. This first prospective trial in LGL leukemia was a multicenter, phase 2 clinical trial evaluating methotrexate at 10 mg/m2 orally weekly as initial therapy (Step 1). Patients failing methotrexate were eligible for treatment with cyclophosphamide at 100 mg orally daily (Step 2). The overall response in Step 1 was 38% with 95% confidence interval (CI): 26%, 53%. The overall response in Step 2 was 64% with 95% CI: 35%, 87%. The median overall survival for patients with anemia was 69 months with a 95% CI lower bound of 46 months and an upper bound not yet reached. The median overall survival for patients with neutropenia has not been reached 13 years from study activation. Serum biomarker studies confirmed the inflammatory milieu of LGL but were not a priori predictive of response. We identify a gene expression signature that correlates with response and may be STAT3 mutation driven. Immunosuppressive therapies have efficacy in LGL leukemia. Gene signature and mutational profiling may be an effective tool in determining whether methotrexate is appropriate therapy. PMID:25306898

  14. Gene transfer as a future therapy for rheumatoid arthritis.

    PubMed

    Müller-Ladner, Ulf; Pap, Thomas; Gay, Renate E; Gay, Steffen

    2003-07-01

    Inhibiting key pathogenic processes within the rheumatoid synovium is a most attractive goal to achieve, and the number of potential intra- and extracellular pathways operative in rheumatoid arthritis (RA) that could be used for a gene therapy strategy is increasing continuously. Gene transfer or gene therapy might also be one of the approaches to solve the problem of long-term expression of therapeutic genes, in order to replace the frequent application of recombinant proteins, in the future. However, at present, gene therapy has not reached a realistic clinical stage, which is mainly due to severe side effects in humans, the complexity of RA pathophysiology and the current state of available gene transfer techniques. On the other hand, novel gene delivery systems are not restricted to vectors or certain types of cells, as mobile cells including macrophages, dendritic cells, lymphocytes and multipotent stem cells can also be used as smart gene transfer vehicles. Moreover, the observation in animal models that application of viral vectors into a joint can exert additional therapeutic effects in nearby joints might also facilitate the transfer from animal to human gene therapy. Future strategies will also examine the potential of novel long-term expression vectors such as lentiviruses and cytomegalovirus (CMV)-based viruses as a basis for future clinical trials in RA.

  15. Gene therapy and peripheral nerve repair: a perspective.

    PubMed

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, Joost

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV) and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS) repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS-gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.

  16. Gene therapy and peripheral nerve repair: a perspective

    PubMed Central

    Hoyng, Stefan A.; de Winter, Fred; Tannemaat, Martijn R.; Blits, Bas; Malessy, Martijn J. A.; Verhaagen, Joost

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan’s, Parkinson’s (PD) and Alzheimer’s disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV) and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS) repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS-gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study. PMID:26236188

  17. Gene therapy for the fetus: is there a future?

    PubMed

    David, Anna L; Peebles, Donald

    2008-02-01

    Gene therapy uses the intracellular delivery of genetic material for the treatment of disease. A wide range of diseases - including cancer, vascular and neurodegenerative disorders and inherited genetic diseases - are being considered as targets for this therapy in adults. There are particular reasons why fetal application might prove better than application in the adult for treatment, or even prevention of early-onset genetic disorders such as cystic fibrosis and Duchenne muscular dystrophy. Research shows that gene transfer to the developing fetus targets rapidly expanding populations of stem cells, which are inaccessible after birth, and indicates that the use of integrating vector systems results in permanent gene transfer. In animal models of congenital disease such as haemophilia, studies show that the functionally immature fetal immune system does not respond to the product of the introduced gene, and therefore immune tolerance can be induced. This means that treatment could be repeated after birth, if that was necessary to continue to correct the disease. For clinicians and parents, fetal gene therapy would give a third choice following prenatal diagnosis of inherited disease, where termination of pregnancy or acceptance of an affected child are currently the only options. Application of this therapy in the fetus must be safe, reliable and cost-effective. Recent developments in the understanding of genetic disease, vector design, and minimally invasive delivery techniques have brought fetal gene therapy closer to clinical practice. However more research needs to be done in before it can be introduced as a therapy.

  18. Correction of Monogenic and Common Retinal Disorders with Gene Therapy.

    PubMed

    Sengillo, Jesse D; Justus, Sally; Cabral, Thiago; Tsang, Stephen H

    2017-01-27

    The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.

  19. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    PubMed

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Bioethical conflicts of gene therapy: a brief critical review.

    PubMed

    Freire, José Ednésio da Cruz; Medeiros, Suelen Carneiro de; Lopes Neto, Antônio Viana; Monteiro Júnior, José Edvar; Sousa, Antônio Juscelino Sudário; Rocha, Antônio José; Menezes, Léa Maria Bezerra de

    2014-01-01

    Methods and techniques employed in gene therapy are reviewed in parallel with pertinent ethical conflicts. Clinical interventions based on gene therapy techniques preferentially use vectors for the transportation of therapeutic genes, however little is known about the potential risks and damages to the patient. Thus, attending carefully to the clinical complications arising as well as to security is essential. Despite the scientific and technological advances, there are still many uncertainties about the side effects of gene therapy. Moreover, there is a need, above all, to understand the principles of bioethics as both science and ethics, in accordance with its socioecological responsibility, in order to prioritize the health and welfare of man and nature, using properly natural resources and technology. Therefore, it is hard to determine objective results and to which extent the insertion of genes can affect the organism, as well as the ethical implication.

  1. Chemical modification of chitosan for efficient gene therapy.

    PubMed

    Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su

    2014-01-01

    Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy. © 2014 Elsevier Inc. All rights reserved.

  2. Correction of Monogenic and Common Retinal Disorders with Gene Therapy

    PubMed Central

    Sengillo, Jesse D.; Justus, Sally; Cabral, Thiago; Tsang, Stephen H.

    2017-01-01

    The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions. PMID:28134823

  3. Gene therapy: regulations, ethics and its practicalities in liver disease.

    PubMed

    Jin, Xi; Yang, Yi-Da; Li, You-Ming

    2008-04-21

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases. By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity, inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  4. A Prospective Study of Conformal Radiation Therapy for Pediatric Ependymoma

    PubMed Central

    Merchant, Thomas E.; Li, Chenghong; Xiong, Xiaoping; Kun, Larry E.; Boop, Frederic A.; Sanford, Robert A.

    2013-01-01

    Background Successful therapy for ependymoma includes aggressive surgical intervention and radiation therapy administered using methods which minimize the risk of side effects. We extended this treatment approach to include children under the age of 3 years. Methods Between July 1997 and 2007, 153 pediatric patients (median age 2·9 years, range 0·9–22·9 years) with localized ependymoma received conformal radiation therapy after definitive surgery. Doses of 59·4 (n=131) or 54·0 Gy (n=22) were prescribed to a 10mm clinical target volume margin surrounding the post-operative residual tumor and/or tumor bed. The patients had the following characteristics: anaplastic ependymoma (n=85), infratentorial location (n=122), prior chemotherapy (n=35) and extent of resection (gross-total=125, near-total=17, subtotal=11). Disease control, patterns of failure and complications were recorded for patients followed through 10 years. Findings With a median follow-up of 5·3 years (range 0·4 to 10·4 years), death was recorded in 23 patients and tumor progression in 36, including local (n=14), distant (n=15) and combined failure (n=7). Tumor grade predicted overall (OS) and event-free (EFS) survival and distant failure. Extent of resection predicted OS, EFS and local failure. Race predicted OS. The 7 year local control, event-free and overall survival were 83·7% (95% CI: 73·9–93·5%), 69·1% (95% CI: 56·9–81·3%) and 81·0% (95% CI: 71·0–91·0%), respectively. The cumulative incidence of local and distance failure were 16·3% (95% CI: 9·6–23·0%) and 11·48% (95% CI: 5·9–17·1%), respectively. Considering only those patients treated with immediate post-operative CRT (without delay or chemotherapy) the 7 year OS, EFS and CI of local and distant failure were 85·0% (95% CI: 74·2–95·8%), 76·9% (95% CI: 63·4–90·4%), 12·59% (95% CI: 5·1–20·1%)and 8·56% (95% CI: 2·8–14·3%), respectively. The incidence of secondary malignant brain tumor at 7 years

  5. Gene therapy progress and prospects: in tissue engineering.

    PubMed

    Polak, J; Hench, L

    2005-12-01

    Tissue engineering (TE) has existed for several years as an area spanning many disciplines, including medicine and engineering. The use of stem cells as a biological basis for TE coupled with advances in materials science has opened up an entirely new chapter in medicine and holds the promise of major contributions to the repair, replacement and regeneration of damaged tissues and organs. In this article, we review the spectrum of stem cells and scaffolds being investigated for their potential applications in medicine.

  6. Prospective peer review quality assurance for outpatient radiation therapy.

    PubMed

    Ballo, Matthew T; Chronowski, Gregory M; Schlembach, Pamela J; Bloom, Elizabeth S; Arzu, Isadora Y; Kuban, Deborah A

    2014-01-01

    We implemented a peer review program that required presentation of all nonpalliative cases to a weekly peer review conference. The purpose of this review is to document compliance and determine how this program impacted care. A total of 2988 patients were eligible for peer review. Patient data were presented to a group of physicians, physicists, and dosimetrists, and the radiation therapy plan was reviewed. Details of changes made were documented within a quality assurance note dictated after discussion. Changes recommended by the peer review process were categorized as changes to radiation dose, target, or major changes. Breast cancer accounted for 47.9% of all cases, followed in frequency by head-and-neck (14.8%), gastrointestinal (9.9%), genitourinary (9.3%), and thoracic (6.7%) malignancies. Of the 2988 eligible patients, 158 (5.3%) were not presented for peer review. The number of missed presentations decreased over time; 2007, 8.2%; 2008, 5.7%; 2009, 3.8%; and 2010, 2.7% (P < .001). The reason for a missed presentation was unknown but varied by disease site and physician. Of the 2830 cases presented for peer review, a change was recommended in 346 cases (12.2%) and categorized as a dose change in 28.3%, a target change in 69.1%, and a major treatment change in 2.6%. When examined by year of treatment the number of changes recommended decreased over time: 2007, 16.5%; 2008, 11.5%; 2009, 12.5%; and 2010, 7.8% (P < .001). The number of changes recommended varied by disease site and physician. The head-and-neck, gynecologic, and gastrointestinal malignancies accounted for the majority of changes made. Compliance with this weekly program was satisfactory and improved over time. The program resulted in decreased treatment plan changes over time reflecting a move toward treatment consensus. We recommend that peer review be considered for patients receiving radiation therapy as it creates a culture where guideline adherence and discussion are part of normal practice

  7. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1997-10-01

    immunogenic 4T1 tumor, primary tumor growth was not affected by IL-12 gene therapy , although lung metastasis was significantly reduced. The anti...metastatically effect in the 4T1 model appears to be T cell independent, and we are investigating its mechanism. These results suggest that a similar gene therapy protocol may be useful in human breast cancer treatment.

  8. Epigenetics in autoimmune diseases: Pathogenesis and prospects for therapy.

    PubMed

    Zhang, Zimu; Zhang, Rongxin

    2015-10-01

    Epigenetics is the study of heritable changes in genome function without underlying modifications in their nucleotide sequence. Disorders of epigenetic processes, which involve DNA methylation, histone modification, non-coding RNA and nucleosome remodeling, may influence chromosomal stability and gene expression, resulting in complicated syndromes. In the past few years, it has been disclosed that identified epigenetic alterations give rise to several typical human autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and multiple sclerosis (MS). These emerging epigenetic studies provide new insights into autoimmune diseases. The identification of specific epigenetic dysregulation may inspire more discoveries of other uncharacterized mechanisms. Further elucidation of the biological functions and clinical significance of these epigenetic alterations may be exploited for diagnostic biomarkers and therapeutic benefits.

  9. The use of gene therapy tools in reproductive immunology research.

    PubMed

    Zenclussen, Ana Claudia; Zenclussen, Maria L; Ritter, Thomas; Volk, Hans D

    2005-10-01

    Mammalian pregnancy is a complex phenomenon allowing the maternal immune system to support its allogeneic fetus, while still being effective against pathogens. Gene therapy approaches have the potential to treat devastating inherited diseases for which there is a little hope of finding a conventional cure. In reproductive medicine, experimental trials have been made so far only for correcting gene defects in utero. The use of gene therapy for improving pregnancy-rate success or avoiding pregnancy-related diseases i.e. miscarriage or pre-eclampsia, remains a very distant goal with unresolved moral and ethical aspects. However, gene therapy may help determining the role of several genes in supporting fetal growth and/or avoiding its rejection experimentally and might further help to identify new targets of intervention. Gene therapy strategies to avoid fetal rejection may include the transfer and expression of cyto-protective molecules locally at the fetal-placental interface. In addition, the ex-vivo genetic modification of immune cells for tolerance induction is a novel and tempting approach. In this regard, we have confirmed the role of the cyto-protective and immunomodulatory molecule Heme Oxygenase-1 (HO-1), by treating animals undergoing abortion with an adenovirus coding for HO-1. Since the sole application of a control vector did not provoke deleterious effects in pregnancy outcome, we propose the use of experimental gene therapy for unveiling molecular and cellular pathways leading to pregnancy success.

  10. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    PubMed

    Wykes, R C; Lignani, G

    2017-05-28

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Progress in gene therapy of dystrophic heart disease.

    PubMed

    Lai, Y; Duan, D

    2012-06-01

    The heart is frequently afflicted in muscular dystrophy. In severe cases, cardiac lesion may directly result in death. Over the years, pharmacological and/or surgical interventions have been the mainstay to alleviate cardiac symptoms in muscular dystrophy patients. Although these traditional modalities remain useful, the emerging field of gene therapy has now provided an unprecedented opportunity to transform our thinking/approach in the treatment of dystrophic heart disease. In fact, the premise is already in place for genetic correction. Gene mutations have been identified and animal models are available for several types of muscular dystrophy. Most importantly, innovative strategies have been developed to effectively deliver therapeutic genes to the heart. Dystrophin-deficient Duchenne cardiomyopathy is associated with Duchenne muscular dystrophy (DMD), the most common lethal muscular dystrophy. Considering its high incidence, there has been a considerable interest and significant input in the development of Duchenne cardiomyopathy gene therapy. Using Duchenne cardiomyopathy as an example, here we illustrate the struggles and successes experienced in the burgeoning field of dystrophic heart disease gene therapy. In light of abundant and highly promising data with the adeno-associated virus (AAV) vector, we have specially emphasized on AAV-mediated gene therapy. Besides DMD, we have also discussed gene therapy for treating cardiac diseases in other muscular dystrophies such as limb-girdle muscular dystrophy.

  12. Progresses towards safe and efficient gene therapy vectors

    PubMed Central

    Chira, Sergiu; Jackson, Carlo S.; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S.; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A.; Berindan-Neagoe, Ioana

    2015-01-01

    The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors. PMID:26362400

  13. Porphycenes: facts and prospects in photodynamic therapy of cancer.

    PubMed

    Stockert, J C; Cañete, M; Juarranz, A; Villanueva, A; Horobin, R W; Borrell, J I; Teixidó, J; Nonell, S

    2007-01-01

    The photodynamic process induces cell damage and death by the combined effect of a photosensitizer (PS), visible light, and molecular oxygen, which generate singlet oxygen ((1)O(2)) and other reactive oxygen species that are responsible for cytotoxicity. The most important application of this process with increasing biomedical interest is the photodynamic therapy (PDT) of cancer. In addition to hematoporphyrin-based drugs, 2nd generation PSs with better photochemical properties are now studied using cell cultures, experimental tumors and clinical trials. Porphycene is a structural isomer of porphyrin and constitutes an interesting new class of PS. Porphycene derivatives show higher absorption than porphyrins in the red spectral region (lambda > 600 nm, epsilon > 50000 M-(1)cm(-1)) owing to the lower molecular symmetry. Photophysical and photobiological properties of porphycenes make them excellent candidates as PSs, showing fast uptake and diverse subcellular localizations (mainly membranous organelles). Several tetraalkylporphycenes and the tetraphenyl derivative (TPPo) induce photodamage and cell death in vitro. Photodynamic treatments of cultured tumor cells with TPPo and its palladium(II) complex induce cytoskeletal changes, mitotic blockage, and dose-dependent apoptotic or necrotic cell death. Some pharmacokinetic and phototherapeutic studies on experimental tumors after intravenous or topical application of lipophilic alkyl-substituted porphycene derivatives are known. Taking into account all these features, porphycene PSs should be very useful for PDT of cancer and other biomedical applications.

  14. Yoga therapy for breast cancer patients: a prospective cohort study.

    PubMed

    Sudarshan, Monisha; Petrucci, Andrea; Dumitra, Sinziana; Duplisea, Jodie; Wexler, Sharon; Meterissian, Sarkis

    2013-11-01

    We sought to study the impact of yoga therapy on anxiety, depression and physical health in breast cancer patients. Stage I-III post-operative breast cancer patients were recruited with twelve 1-h weekly yoga sessions completed with an experienced yoga instructor. Before and after each module completion, assessments were obtained with the Hospital Anxiety and Depression scale (HADS), the Dallas pain scale and shoulder flexibility measurements. Fourteen patients completed the entire yoga session with 42.8% having a total mastectomy and 15.4% having breast reconstruction. Both right and left shoulder abduction flexibility significantly improved (p = 0.004; p = 0.015 respectively) as well as left shoulder flexion (p = 0.046). An improvement trend in scores for the HADS and Dallas questionnaires pre- and post-intervention was found, although it was not statistically significant. Our data indicates an improvement in physical function in addition to a consistent amelioration in anxiety, depression and pain symptoms after a yoga intervention.

  15. Congenital Cytomegalovirus Infection: New Prospects for Prevention and Therapy

    PubMed Central

    Swanson, Elizabeth C.; Schleiss, Mark R.

    2013-01-01

    SYNOPSIS Cytomegalovirus (CMV) is the most common congenital viral infection in the developed world, with an overall birth prevalence of approximately 0.6%. Approximately 10% of congenitally infected infants have signs and symptoms of disease at birth, and these symptomatic infants have a high risk for demonstration of subsequent neurologic sequelae, including sensorineural hearing loss (SNHL), mental retardation, microcephaly, development delay, seizure disorders, and cerebral palsy. Antiviral therapy of children with symptomatic central nervous system (CNS) congenital CMV infection is effective at reducing the risk of long-term disabilities and should be offered to families with affected newborns. An effective pre-conceptual vaccine against CMV could, by preventing congenital infection, protect against long-term neurological sequelae and other disabilities. A variety of active and passive immunization strategies are in clinical trials and are likely to be licensed in the next few years. Until a vaccine is licensed, preventive strategies aimed at reducing transmission should be emphasized and public awareness increased, particularly among women of child-bearing age. PMID:23481104

  16. Postmenopausal hormone therapy and Alzheimer disease: A prospective cohort study.

    PubMed

    Imtiaz, Bushra; Tuppurainen, Marjo; Rikkonen, Toni; Kivipelto, Miia; Soininen, Hilkka; Kröger, Heikki; Tolppanen, Anna-Maija

    2017-03-14

    To explore the association between postmenopausal hormone therapy (HT) and Alzheimer disease (AD). Twenty-year follow-up data from the Kuopio Osteoporosis Risk Factor and Prevention study cohort were used. Self-administered questionnaires were sent to all women aged 47-56 years, residing in Kuopio Province starting in 1989 until 2009, every 5th year. Register-based information on HT prescriptions was available since 1995. Probable AD cases, based on DSM-IV and National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association criteria, were identified from the special reimbursement register (1999-2009). The study population included 8,195 women (227 cases of incident AD). Postmenopausal estrogen use was not associated with AD risk in register-based or self-reported data (hazard ratio/95% confidence interval 0.92/0.68-1.2, 0.99/0.75-1.3, respectively). Long-term self-reported postmenopausal HT was associated with reduced AD risk (0.53/0.31-0.91). Similar results were obtained with any dementia diagnosis in the hospital discharge register as an outcome. Our results do not provide strong evidence for a protective association between postmenopausal HT use and AD or dementia, although we observed a reduced AD risk among those with long-term self-reported HT use. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  17. [Scientific ethics of gene therapy for individuals. The urgency for DNA gene surgery].

    PubMed

    Valenzuela, Carlos Y

    2003-10-01

    Gene therapy for individuals is mainly directed to somatic or germ cells. The present technology aims to insert a DNA segment in the recipient cells. This therapy is useful in Mendelian recessive diseases. There is an ethical moratorium to perform insertion gene therapy in germ cells, because this procedure increases the human genome. Somatic cell gene therapy cures individuals but increases the gene frequency of genetic diseases in the population. This occurs because the descendants of the cured patient should carry his or her "ill" genes. We denots by "DNA gene surgery" the procedure that replaces "ill" nucleotide(s) by healthy one(s) conserving the genome size and the gene context of expression and regulation. Several procedures for gene surgery have been applied to cells and animals. Those based on DNA repair as Chimeric RNA/DNA, one stranded oligonucleotides and tristranded DNA. Those based on DNA recombination with oligo DNA or one stranded DNA, and transposable DNA segments. Gene surgery can be applied to germ cell gene therapy without ethical contraindications. It can cure Mendelian dominant diseases and it can be applied to heterozygotes. It preserves the regulation and expression gene context. If a technical safe procedure is available, the entire mankind could be treated and cured of all the Mendelian diseases, in one generation. Susceptibilities for all diseases could also be treated. The moratorium for research on germ cell gene therapy by gene surgery should be interrupted. Safe gene surgery is a moral imperative for gene therapy of patients and their descendants, for the treatment of dominant genetic diseases and for heterozygous carriers of recessive disorders.

  18. High-sensitivity Cardiac Troponin Elevation after Electroconvulsive Therapy: A Prospective