A combined learning algorithm for prostate segmentation on 3D CT images.
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2017-11-01
Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.
A supervoxel-based segmentation method for prostate MR images
NASA Astrophysics Data System (ADS)
Tian, Zhiqiang; Liu, LiZhi; Fei, Baowei
2015-03-01
Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling process. The data term estimates the likelihood of a supervoxel belongs to the prostate according to a shape feature. The geometric relationship between two neighboring supervoxels is used to construct a smoothness term. A threedimensional (3D) graph cut method is used to minimize the energy function in order to segment the prostate. A 3D level set is then used to get a smooth surface based on the output of the graph cut. The performance of the proposed segmentation algorithm was evaluated with respect to the manual segmentation ground truth. The experimental results on 12 prostate volumes showed that the proposed algorithm yields a mean Dice similarity coefficient of 86.9%+/-3.2%. The segmentation method can be used not only for the prostate but also for other organs.
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion
NASA Astrophysics Data System (ADS)
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei
2017-02-01
Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.
Prostate segmentation by sparse representation based classification
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-01-01
Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching
Guo, Yanrong; Gao, Yaozong
2016-01-01
Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods. PMID:26685226
Prostate segmentation by sparse representation based classification.
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-10-01
The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-01-01
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-07-01
Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yanrong; Shao, Yeqin; Gao, Yaozong
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiubin; Gao, Yaozong; Shen, Dinggang, E-mail: dgshen@med.unc.edu
2015-05-15
Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmark-guided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation. Methods: To localize the prostate in the daily treatment images, the authors first automatically detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark detection method. Specifically, in this method, a two-layer regression forest is trained as amore » detector for each target landmark. Once all the newly detected landmarks from new treatment images are reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as new patient-specific information to update all the two-layer regression forests for the next treatment day. As more and more treatment images of the current patient are acquired, the two-layer regression forests can be continually updated by incorporating the patient-specific information into the training procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented prostates of the current patient after they are aligned to the current treatment image. Subsequently, the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed) by clinicians before including it as a new shape example into the prostate shape dataset for helping localize the entire prostate in the next treatment image. Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors’ proposed online update scheme in improving the accuracies of both landmark detection and prostate segmentation. Besides, compared to the other state-of-the-art prostate segmentation methods, the authors’ method achieves the best performance. Conclusions: By appropriate use of valuable patient-specific information contained in the previous treatment images, the authors’ proposed online update scheme can obtain satisfactory results for both landmark detection and prostate segmentation.« less
A supervoxel-based segmentation method for prostate MR images.
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Xue, Jianru; Fei, Baowei
2017-02-01
Segmentation of the prostate on MR images has many applications in prostate cancer management. In this work, we propose a supervoxel-based segmentation method for prostate MR images. A supervoxel is a set of pixels that have similar intensities, locations, and textures in a 3D image volume. The prostate segmentation problem is considered as assigning a binary label to each supervoxel, which is either the prostate or background. A supervoxel-based energy function with data and smoothness terms is used to model the label. The data term estimates the likelihood of a supervoxel belonging to the prostate by using a supervoxel-based shape feature. The geometric relationship between two neighboring supervoxels is used to build the smoothness term. The 3D graph cut is used to minimize the energy function to get the labels of the supervoxels, which yields the prostate segmentation. A 3D active contour model is then used to get a smooth surface by using the output of the graph cut as an initialization. The performance of the proposed algorithm was evaluated on 30 in-house MR image data and PROMISE12 dataset. The mean Dice similarity coefficients are 87.2 ± 2.3% and 88.2 ± 2.8% for our 30 in-house MR volumes and the PROMISE12 dataset, respectively. The proposed segmentation method yields a satisfactory result for prostate MR images. The proposed supervoxel-based method can accurately segment prostate MR images and can have a variety of application in prostate cancer diagnosis and therapy. © 2016 American Association of Physicists in Medicine.
Active appearance model and deep learning for more accurate prostate segmentation on MRI
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.
2016-03-01
Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Jani, A; Rossi, P
Purpose: MRI has shown promise in identifying prostate tumors with high sensitivity and specificity for the detection of prostate cancer. Accurate segmentation of the prostate plays a key role various tasks: to accurately localize prostate boundaries for biopsy needle placement and radiotherapy, to initialize multi-modal registration algorithms or to obtain the region of interest for computer-aided detection of prostate cancer. However, manual segmentation during biopsy or radiation therapy can be time consuming and subject to inter- and intra-observer variation. This study’s purpose it to develop an automated method to address this technical challenge. Methods: We present an automated multi-atlas segmentationmore » for MR prostate segmentation using patch-based label fusion. After an initial preprocessing for all images, all the atlases are non-rigidly registered to a target image. And then, the resulting transformation is used to propagate the anatomical structure labels of the atlas into the space of the target image. The top L similar atlases are further chosen by measuring intensity and structure difference in the region of interest around prostate. Finally, using voxel weighting based on patch-based anatomical signature, the label that the majority of all warped labels predict for each voxel is used for the final segmentation of the target image. Results: This segmentation technique was validated with a clinical study of 13 patients. The accuracy of our approach was assessed using the manual segmentation (gold standard). The mean volume Dice Overlap Coefficient was 89.5±2.9% between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D MRI-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning label fusion framework, demonstrated its clinical feasibility, and validated its accuracy. This segmentation technique could be a useful tool in image-guided interventions for prostate-cancer diagnosis and treatment.« less
Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E
2018-05-15
Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.
Combining population and patient-specific characteristics for prostate segmentation on 3D CT images
NASA Astrophysics Data System (ADS)
Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei
2016-03-01
Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rossi, P; Jani, A
Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less
Real time MRI prostate segmentation based on wavelet multiscale products flow tracking.
Flores-Tapia, Daniel; Venugopal, Niranjan; Thomas, Gabriel; McCurdy, Boyd; Ryner, Lawrence; Pistorius, Stephen
2010-01-01
Currently, prostate cancer is the third leading cause of cancer-related deaths among men in North America. As with many others types of cancer, early detection and treatment greatly increases the patient's chance of survival. Combined Magnetic Resonance Imaging and Spectroscopic Imaging (MRI/MRSI) techniques have became a reliable tool for early stage prostate cancer detection. Nevertheless, their performance is strongly affected by the determination of the region of interest (ROI) prior to data acquisition process. The process of executing prostate MRI/MRSI techniques can be significantly enhanced by segmenting the whole prostate. A novel method for segmentation of the prostate in MRI datasets is presented. This method exploits the different behavior presented by signal singularities and noise in the wavelet domain in order to accurately detect the borders around the prostate. The prostate contour is then traced by using a set of spatially variant rules that are based on prior knowledge about the general shape of the prostate. The proposed method yielded promising results when applied to clinical datasets.
The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsager, Anne Sofie, E-mail: asko@hst.aau.dk; Østergaard, Lasse Riis; Fortunati, Valerio
2015-04-15
Purpose: An automatic method for 3D prostate segmentation in magnetic resonance (MR) images is presented for planning image-guided radiotherapy treatment of prostate cancer. Methods: A spatial prior based on intersubject atlas registration is combined with organ-specific intensity information in a graph cut segmentation framework. The segmentation is tested on 67 axial T{sub 2}-weighted MR images in a leave-one-out cross validation experiment and compared with both manual reference segmentations and with multiatlas-based segmentations using majority voting atlas fusion. The impact of atlas selection is investigated in both the traditional atlas-based segmentation and the new graph cut method that combines atlas andmore » intensity information in order to improve the segmentation accuracy. Best results were achieved using the method that combines intensity information, shape information, and atlas selection in the graph cut framework. Results: A mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance (MSD) of 1.45 mm with respect to the manual delineation were achieved. Conclusions: This approaches the interobserver DSC of 0.90 and interobserver MSD 0f 1.15 mm and is comparable to other studies performing prostate segmentation in MR.« less
Shahedi, Maysam; Cool, Derek W; Romagnoli, Cesare; Bauman, Glenn S; Bastian-Jordan, Matthew; Gibson, Eli; Rodrigues, George; Ahmad, Belal; Lock, Michael; Fenster, Aaron; Ward, Aaron D
2014-11-01
Three-dimensional (3D) prostate image segmentation is useful for cancer diagnosis and therapy guidance, but can be time-consuming to perform manually and involves varying levels of difficulty and interoperator variability within the prostatic base, midgland (MG), and apex. In this study, the authors measured accuracy and interobserver variability in the segmentation of the prostate on T2-weighted endorectal magnetic resonance (MR) imaging within the whole gland (WG), and separately within the apex, midgland, and base regions. The authors collected MR images from 42 prostate cancer patients. Prostate border delineation was performed manually by one observer on all images and by two other observers on a subset of ten images. The authors used complementary boundary-, region-, and volume-based metrics [mean absolute distance (MAD), Dice similarity coefficient (DSC), recall rate, precision rate, and volume difference (ΔV)] to elucidate the different types of segmentation errors that they observed. Evaluation for expert manual and semiautomatic segmentation approaches was carried out. Compared to manual segmentation, the authors' semiautomatic approach reduces the necessary user interaction by only requiring an indication of the anteroposterior orientation of the prostate and the selection of prostate center points on the apex, base, and midgland slices. Based on these inputs, the algorithm identifies candidate prostate boundary points using learned boundary appearance characteristics and performs regularization based on learned prostate shape information. The semiautomated algorithm required an average of 30 s of user interaction time (measured for nine operators) for each 3D prostate segmentation. The authors compared the segmentations from this method to manual segmentations in a single-operator (mean whole gland MAD = 2.0 mm, DSC = 82%, recall = 77%, precision = 88%, and ΔV = - 4.6 cm(3)) and multioperator study (mean whole gland MAD = 2.2 mm, DSC = 77%, recall = 72%, precision = 86%, and ΔV = - 4.0 cm(3)). These results compared favorably with observed differences between manual segmentations and a simultaneous truth and performance level estimation reference for this data set (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 66%, precision = 77%, and ΔV = 15.5 cm(3)). The authors found that overall, midgland segmentation was more accurate and repeatable than the segmentation of the apex and base, with the base posing the greatest challenge. The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.
Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2018-06-01
Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast, robust, and accurate performance for 3D prostate segmentation of CT images, specifically when no previous, intrapatient information, that is, previously segmented images, was available. The accuracy of the algorithm is comparable to the best performance results reported in the literature and approaches the interexpert variability observed in manual segmentation. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.
2010-03-01
Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.
Prostate segmentation in MRI using fused T2-weighted and elastography images
NASA Astrophysics Data System (ADS)
Nir, Guy; Sahebjavaher, Ramin S.; Baghani, Ali; Sinkus, Ralph; Salcudean, Septimiu E.
2014-03-01
Segmentation of the prostate in medical imaging is a challenging and important task for surgical planning and delivery of prostate cancer treatment. Automatic prostate segmentation can improve speed, reproducibility and consistency of the process. In this work, we propose a method for automatic segmentation of the prostate in magnetic resonance elastography (MRE) images. The method utilizes the complementary property of the elastogram and the corresponding T2-weighted image, which are obtained from the phase and magnitude components of the imaging signal, respectively. It follows a variational approach to propagate an active contour model based on the combination of region statistics in the elastogram and the edge map of the T2-weighted image. The method is fast and does not require prior shape information. The proposed algorithm is tested on 35 clinical image pairs from five MRE data sets, and is evaluated in comparison with manual contouring. The mean absolute distance between the automatic and manual contours is 1.8mm, with a maximum distance of 5.6mm. The relative area error is 7.6%, and the duration of the segmentation process is 2s per slice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, AS; Piper, J; Curry, K
2015-06-15
Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluatedmore » using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: <0.60(4), 0.60–0.69(6), 0.70–0.79(7), 0.80–0.89(9), >0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential to provide significant time savings for prostate VOI definition. AS Nelson and J Piper are partial owners of MIM Software, Inc. AS Nelson, J Piper, K Curry, and A Swallen are current employees at MIM Software, Inc.« less
Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, A. B.; Chen, J.; Nguyen, T. B.
2012-02-15
Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less
MR PROSTATE SEGMENTATION VIA DISTRIBUTED DISCRIMINATIVE DICTIONARY (DDD) LEARNING.
Guo, Yanrong; Zhan, Yiqiang; Gao, Yaozong; Jiang, Jianguo; Shen, Dinggang
2013-01-01
Segmenting prostate from MR images is important yet challenging. Due to non-Gaussian distribution of prostate appearances in MR images, the popular active appearance model (AAM) has its limited performance. Although the newly developed sparse dictionary learning method[1, 2] can model the image appearance in a non-parametric fashion, the learned dictionaries still lack the discriminative power between prostate and non-prostate tissues, which is critical for accurate prostate segmentation. In this paper, we propose to integrate deformable model with a novel learning scheme, namely the Distributed Discriminative Dictionary ( DDD ) learning, which can capture image appearance in a non-parametric and discriminative fashion. In particular, three strategies are designed to boost the tissue discriminative power of DDD. First , minimum Redundancy Maximum Relevance (mRMR) feature selection is performed to constrain the dictionary learning in a discriminative feature space. Second , linear discriminant analysis (LDA) is employed to assemble residuals from different dictionaries for optimal separation between prostate and non-prostate tissues. Third , instead of learning the global dictionaries, we learn a set of local dictionaries for the local regions (each with small appearance variations) along prostate boundary, thus achieving better tissue differentiation locally. In the application stage, DDDs will provide the appearance cues to robustly drive the deformable model onto the prostate boundary. Experiments on 50 MR prostate images show that our method can yield a Dice Ratio of 88% compared to the manual segmentations, and have 7% improvement over the conventional AAM.
Shao, Yeqin; Gao, Yaozong; Wang, Qian; Yang, Xin; Shen, Dinggang
2015-01-01
Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: 1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; 2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; 3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance. PMID:26439938
NASA Astrophysics Data System (ADS)
Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.
2013-03-01
3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.
SEGMENTING CT PROSTATE IMAGES USING POPULATION AND PATIENT-SPECIFIC STATISTICS FOR RADIOTHERAPY.
Feng, Qianjin; Foskey, Mark; Tang, Songyuan; Chen, Wufan; Shen, Dinggang
2009-08-07
This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application.
SEGMENTING CT PROSTATE IMAGES USING POPULATION AND PATIENT-SPECIFIC STATISTICS FOR RADIOTHERAPY
Feng, Qianjin; Foskey, Mark; Tang, Songyuan; Chen, Wufan; Shen, Dinggang
2010-01-01
This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application. PMID:21197416
Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping
2016-06-01
In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors' model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors' method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate.
Gland segmentation in prostate histopathological images
Singh, Malay; Kalaw, Emarene Mationg; Giron, Danilo Medina; Chong, Kian-Tai; Tan, Chew Lim; Lee, Hwee Kuan
2017-01-01
Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists. PMID:28653016
Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Wu; Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8; Yuchi Ming
Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped;more » the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.« less
Sun, Yue; Qiu, Wu; Yuan, Jing; Romagnoli, Cesare; Fenster, Aaron
2015-04-01
Registration of three-dimensional (3-D) magnetic resonance (MR) to 3-D transrectal ultrasound (TRUS) prostate images is an important step in the planning and guidance of 3-D TRUS guided prostate biopsy. In order to accurately and efficiently perform the registration, a nonrigid landmark-based registration method is required to account for the different deformations of the prostate when using these two modalities. We describe a nonrigid landmark-based method for registration of 3-D TRUS to MR prostate images. The landmark-based registration method first makes use of an initial rigid registration of 3-D MR to 3-D TRUS images using six manually placed approximately corresponding landmarks in each image. Following manual initialization, the two prostate surfaces are segmented from 3-D MR and TRUS images and then nonrigidly registered using the following steps: (1) rotationally reslicing corresponding segmented prostate surfaces from both 3-D MR and TRUS images around a specified axis, (2) an approach to find point correspondences on the surfaces of the segmented surfaces, and (3) deformation of the surface of the prostate in the MR image to match the surface of the prostate in the 3-D TRUS image and the interior using a thin-plate spline algorithm. The registration accuracy was evaluated using 17 patient prostate MR and 3-D TRUS images by measuring the target registration error (TRE). Experimental results showed that the proposed method yielded an overall mean TRE of [Formula: see text] for the rigid registration and [Formula: see text] for the nonrigid registration, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm. A landmark-based nonrigid 3-D MR-TRUS registration approach is proposed, which takes into account the correspondences on the prostate surface, inside the prostate, as well as the centroid of the prostate. Experimental results indicate that the proposed method yields clinically sufficient accuracy.
Bidirectional segmentation of prostate capsule from ultrasound volumes: an improved strategy
NASA Astrophysics Data System (ADS)
Wei, Liyang; Narayanan, Ramkrishnan; Kumar, Dinesh; Fenster, Aaron; Barqawi, Albaha; Werahera, Priya; Crawford, E. David; Suri, Jasjit S.
2008-03-01
Prostate volume is an indirect indicator for several prostate diseases. Volume estimation is a desired requirement during prostate biopsy, therapy and clinical follow up. Image segmentation is thus necessary. Previously, discrete dynamic contour (DDC) was implemented in orthogonal unidirectional on the slice-by-slice basis for prostate boundary estimation. This suffered from the glitch that it needed stopping criteria during the propagation of segmentation procedure from slice-to-slice. To overcome this glitch, axial DDC was implemented and this suffered from the fact that central axis never remains fixed and wobbles during propagation of segmentation from slice-to-slice. The effect of this was a multi-fold reconstructed surface. This paper presents a bidirectional DDC approach, thereby removing the two glitches. Our bidirectional DDC protocol was tested on a clinical dataset on 28 3-D ultrasound image volumes acquired using side fire Philips transrectal ultrasound. We demonstrate the orthogonal bidirectional DDC strategy achieved the most accurate volume estimation compared with previously published orthogonal unidirectional DDC and axial DDC methods. Compared to the ground truth, we show that the mean volume estimation errors were: 18.48%, 9.21% and 7.82% for unidirectional, axial and bidirectional DDC methods, respectively. The segmentation architecture is implemented in Visual C++ in Windows environment.
Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping
2016-01-01
Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors’ method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. Results: The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors’ model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors’ method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. Conclusions: As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate. PMID:27277056
Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders
2013-10-03
Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.
NASA Astrophysics Data System (ADS)
Liu, Xin; Samil Yetik, Imam
2012-04-01
Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.
Automatic Organ Localization for Adaptive Radiation Therapy for Prostate Cancer
2005-05-01
and provides a framework for task 3. Key Research Accomplishments "* Comparison of manual segmentation with our automatic method, using several...well as manual segmentations by a different rater. "* Computation of the actual cumulative dose delivered to both the cancerous and critical healthy...adaptive treatment of prostate or other cancer. As a result, all such work must be done manually . However, manual segmentation of the tumor and neighboring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallawi, A; Farrell, T; Diamond, K
2014-08-15
Automated atlas-based segmentation has recently been evaluated for use in planning prostate cancer radiotherapy. In the typical approach, the essential step is the selection of an atlas from a database that best matches the target image. This work proposes an atlas selection strategy and evaluates its impact on the final segmentation accuracy. Prostate length (PL), right femoral head diameter (RFHD), and left femoral head diameter (LFHD) were measured in CT images of 20 patients. Each subject was then taken as the target image to which all remaining 19 images were affinely registered. For each pair of registered images, the overlapmore » between prostate and femoral head contours was quantified using the Dice Similarity Coefficient (DSC). Finally, we designed an atlas selection strategy that computed the ratio of PL (prostate segmentation), RFHD (right femur segmentation), and LFHD (left femur segmentation) between the target subject and each subject in the atlas database. Five atlas subjects yielding ratios nearest to one were then selected for further analysis. RFHD and LFHD were excellent parameters for atlas selection, achieving a mean femoral head DSC of 0.82 ± 0.06. PL had a moderate ability to select the most similar prostate, with a mean DSC of 0.63 ± 0.18. The DSC obtained with the proposed selection method were slightly lower than the maximums established using brute force, but this does not include potential improvements expected with deformable registration. Atlas selection based on PL for prostate and femoral diameter for femoral heads provides reasonable segmentation accuracy.« less
Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent
2010-04-01
The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
2013-12-15
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar
2014-01-01
Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798
Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge
Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant
2014-01-01
Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598
A multiresolution prostate representation for automatic segmentation in magnetic resonance images.
Alvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2017-04-01
Accurate prostate delineation is necessary in radiotherapy processes for concentrating the dose onto the prostate and reducing side effects in neighboring organs. Currently, manual delineation is performed over magnetic resonance imaging (MRI) taking advantage of its high soft tissue contrast property. Nevertheless, as human intervention is a consuming task with high intra- and interobserver variability rates, (semi)-automatic organ delineation tools have emerged to cope with these challenges, reducing the time spent for these tasks. This work presents a multiresolution representation that defines a novel metric and allows to segment a new prostate by combining a set of most similar prostates in a dataset. The proposed method starts by selecting the set of most similar prostates with respect to a new one using the proposed multiresolution representation. This representation characterizes the prostate through a set of salient points, extracted from a region of interest (ROI) that encloses the organ and refined using structural information, allowing to capture main relevant features of the organ boundary. Afterward, the new prostate is automatically segmented by combining the nonrigidly registered expert delineations associated to the previous selected similar prostates using a weighted patch-based strategy. Finally, the prostate contour is smoothed based on morphological operations. The proposed approach was evaluated with respect to the expert manual segmentation under a leave-one-out scheme using two public datasets, obtaining averaged Dice coefficients of 82% ± 0.07 and 83% ± 0.06, and demonstrating a competitive performance with respect to atlas-based state-of-the-art methods. The proposed multiresolution representation provides a feature space that follows a local salient point criteria and a global rule of the spatial configuration among these points to find out the most similar prostates. This strategy suggests an easy adaptation in the clinical routine, as supporting tool for annotation. © 2017 American Association of Physicists in Medicine.
Deep convolutional neural network for prostate MR segmentation
NASA Astrophysics Data System (ADS)
Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei
2017-03-01
Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.
PSNet: prostate segmentation on MRI based on a convolutional neural network.
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei
2018-04-01
Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.
Efficient 3D multi-region prostate MRI segmentation using dual optimization.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi
2014-11-01
Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approachmore » that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0.86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy.« less
Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian
2014-01-01
Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0.86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy. PMID:25370648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Hyun; Gao, Yaozong, E-mail: yzgao@cs.unc.edu; Shi, Yinghuan, E-mail: syh@nju.edu.cn
Purpose: Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correctmore » the segmentations from any type of automatic or interactive segmentation methods. Methods: The authors formulate the editing problem as a semisupervised learning problem which can utilize a priori knowledge of training data and also the valuable information from user interactions. Specifically, from a region of interest near the given user interactions, the appropriate training labels, which are well matched with the user interactions, can be locally searched from a training set. With voting from the selected training labels, both confident prostate and background voxels, as well as unconfident voxels can be estimated. To reflect informative relationship between voxels, location-adaptive features are selected from the confident voxels by using regression forest and Fisher separation criterion. Then, the manifold configuration computed in the derived feature space is enforced into the semisupervised learning algorithm. The labels of unconfident voxels are then predicted by regularizing semisupervised learning algorithm. Results: The proposed interactive segmentation method was applied to correct automatic segmentation results of 30 challenging CT images. The correction was conducted three times with different user interactions performed at different time periods, in order to evaluate both the efficiency and the robustness. The automatic segmentation results with the original average Dice similarity coefficient of 0.78 were improved to 0.865–0.872 after conducting 55–59 interactions by using the proposed method, where each editing procedure took less than 3 s. In addition, the proposed method obtained the most consistent editing results with respect to different user interactions, compared to other methods. Conclusions: The proposed method obtains robust editing results with few interactions for various wrong segmentation cases, by selecting the location-adaptive features and further imposing the manifold regularization. The authors expect the proposed method to largely reduce the laborious burdens of manual editing, as well as both the intra- and interobserver variability across clinicians.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, K; Pollack, A; Stoyanova, R
Purpose: Automatically generated prostate MRI contours can be used to aid in image registration with CT or ultrasound and to reduce the burden of contouring for radiation treatment planning. In addition, prostate and zonal contours can assist to automate quantitative imaging features extraction and the analyses of longitudinal MRI studies. These potential gains are limited if the solutions are not compatible across different MRI vendors. The goal of this study is to characterize an atlas based automatic segmentation procedure of the prostate collected on MRI systems from multiple vendors. Methods: The prostate and peripheral zone (PZ) were manually contoured bymore » an expert radiation oncologist on T2-weighted scans acquired on both GE (n=31) and Siemens (n=33) 3T MRI systems. A leave-one-out approach was utilized where the target subject is removed from the atlas before the segmentation algorithm is initiated. The atlas-segmentation method finds the best nine matched atlas subjects and then performs a normalized intensity-based free-form deformable registration of these subjects to the target subject. These nine contours are then merged into a single contour using Simultaneous Truth and Performance Level Estimation (STAPLE). Contour comparisons were made using Dice similarity coefficients (DSC) and Hausdorff distances. Results: Using the T2 FatSat (FS) GE datasets the atlas generated contours resulted in an average DSC of 0.83±0.06 for prostate, 0.57±0.12 for PZ and 0.75±0.09 for CG. Similar results were found when using the Siemens data with a DSC of 0.79±0.14 for prostate, 0.54±0.16 and 0.70±0.9. Contrast between prostate and surrounding anatomy and between the PZ and CG contours for both vendors demonstrated superior contrast separation; significance was found for all comparisons p-value < 0.0001. Conclusion: Atlas-based segmentation yielded promising results for all contours compared to expertly defined contours in both Siemens and GE 3T systems providing fast and automatic segmentation of the prostate. Funding Support, Disclosures, and Conflict of Interest: AS Nelson is a partial owner of MIM Software, Inc. AS Nelson, and A Swallen are current employees at MIM Software, Inc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jinghao; Kim, Sung; Jabbour, Salma
2010-03-15
Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less
Segmentation of prostate biopsy needles in transrectal ultrasound images
NASA Astrophysics Data System (ADS)
Krefting, Dagmar; Haupt, Barbara; Tolxdorff, Thomas; Kempkensteffen, Carsten; Miller, Kurt
2007-03-01
Prostate cancer is the most common cancer in men. Tissue extraction at different locations (biopsy) is the gold-standard for diagnosis of prostate cancer. These biopsies are commonly guided by transrectal ultrasound imaging (TRUS). Exact location of the extracted tissue within the gland is desired for more specific diagnosis and provides better therapy planning. While the orientation and the position of the needle within clinical TRUS image are limited, the appearing length and visibility of the needle varies strongly. Marker lines are present and tissue inhomogeneities and deflection artefacts may appear. Simple intensity, gradient oder edge-detecting based segmentation methods fail. Therefore a multivariate statistical classificator is implemented. The independent feature model is built by supervised learning using a set of manually segmented needles. The feature space is spanned by common binary object features as size and eccentricity as well as imaging-system dependent features like distance and orientation relative to the marker line. The object extraction is done by multi-step binarization of the region of interest. The ROI is automatically determined at the beginning of the segmentation and marker lines are removed from the images. The segmentation itself is realized by scale-invariant classification using maximum likelihood estimation and Mahalanobis distance as discriminator. The technique presented here could be successfully applied in 94% of 1835 TRUS images from 30 tissue extractions. It provides a robust method for biopsy needle localization in clinical prostate biopsy TRUS images.
Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.
Li, Haisen S; Chetty, Indrin J; Solberg, Timothy D
2008-05-01
The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy (IMRT) delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function (PDF) of motion during delivery of the segment, whereas in the conventional convolution method ("average-based convolution"), the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern (PDF) as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system (Calypso Medical Technologies, Inc., Seattle, WA) was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated (five fractions) or conventional (> 30 fractions) regimen, the discrepancy in total dose due to interplay effect was negligible.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Saleh, Z; Tang, X
Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trainedmore » expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model based algorithm might improve the segmentation in these two scenarios.« less
NASA Astrophysics Data System (ADS)
Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.
2012-02-01
Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.
OCT image segmentation of the prostate nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-08-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.
Dual optimization based prostate zonal segmentation in 3D MR images.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2014-05-01
Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo
2018-01-01
The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose distributions with the highest accuracy and the least bias compared to SECT. When imaging noise is considered, benefits of DECT are noticeable if important calcifications are found within the prostate.
NASA Astrophysics Data System (ADS)
Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2015-01-01
The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.
Bladder segmentation in MR images with watershed segmentation and graph cut algorithm
NASA Astrophysics Data System (ADS)
Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael
2014-03-01
Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Rachel, E-mail: rachel.sparks@ucl.ac.uk; Barratt, Dean; Nicolas Bloch, B.
2015-03-15
Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. Inmore » this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State-of-the-art MRI-TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state-of-the-art methods that require manual intervention.« less
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
Open-source image registration for MRI-TRUS fusion-guided prostate interventions.
Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare
2015-06-01
We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.
Lumen-based detection of prostate cancer via convolutional neural networks
NASA Astrophysics Data System (ADS)
Kwak, Jin Tae; Hewitt, Stephen M.
2017-03-01
We present a deep learning approach for detecting prostate cancers. The approach consists of two steps. In the first step, we perform tissue segmentation that identifies lumens within digitized prostate tissue specimen images. Intensity- and texture-based image features are computed at five different scales, and a multiview boosting method is adopted to cooperatively combine the image features from differing scales and to identify lumens. In the second step, we utilize convolutional neural networks (CNN) to automatically extract high-level image features of lumens and to predict cancers. The segmented lumens are rescaled to reduce computational complexity and data augmentation by scaling, rotating, and flipping the rescaled image is applied to avoid overfitting. We evaluate the proposed method using two tissue microarrays (TMA) - TMA1 includes 162 tissue specimens (73 Benign and 89 Cancer) and TMA2 comprises 185 tissue specimens (70 Benign and 115 Cancer). In cross-validation on TMA1, the proposed method achieved an AUC of 0.95 (CI: 0.93-0.98). Trained on TMA1 and tested on TMA2, CNN obtained an AUC of 0.95 (CI: 0.92-0.98). This demonstrates that the proposed method can potentially improve prostate cancer pathology.
Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi
2015-01-01
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674
Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi; Åkerfelt, Malin; Nees, Matthias
2015-01-01
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.
Segmentation of organs at risk in CT volumes of head, thorax, abdomen, and pelvis
NASA Astrophysics Data System (ADS)
Han, Miaofei; Ma, Jinfeng; Li, Yan; Li, Meiling; Song, Yanli; Li, Qiang
2015-03-01
Accurate segmentation of organs at risk (OARs) is a key step in treatment planning system (TPS) of image guided radiation therapy. We are developing three classes of methods to segment 17 organs at risk throughout the whole body, including brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin. The three classes of segmentation methods include (1) threshold-based methods for organs of large contrast with adjacent structures such as lungs, trachea, and skin; (2) context-driven Generalized Hough Transform-based methods combined with graph cut algorithm for robust localization and segmentation of liver, kidneys and spleen; and (3) atlas and registration-based methods for segmentation of heart and all organs in CT volumes of head and pelvis. The segmentation accuracy for the seventeen organs was subjectively evaluated by two medical experts in three levels of score: 0, poor (unusable in clinical practice); 1, acceptable (minor revision needed); and 2, good (nearly no revision needed). A database was collected from Ruijin Hospital, Huashan Hospital, and Xuhui Central Hospital in Shanghai, China, including 127 head scans, 203 thoracic scans, 154 abdominal scans, and 73 pelvic scans. The percentages of "good" segmentation results were 97.6%, 92.9%, 81.1%, 87.4%, 85.0%, 78.7%, 94.1%, 91.1%, 81.3%, 86.7%, 82.5%, 86.4%, 79.9%, 72.6%, 68.5%, 93.2%, 96.9% for brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin, respectively. Various organs at risk can be reliably segmented from CT scans by use of the three classes of segmentation methods.
A multiview boosting approach to tissue segmentation
NASA Astrophysics Data System (ADS)
Kwak, Jin Tae; Xu, Sheng; Pinto, Peter A.; Turkbey, Baris; Bernardo, Marcelino; Choyke, Peter L.; Wood, Bradford J.
2014-04-01
Digitized histopathology images have a great potential for improving or facilitating current assessment tools in cancer pathology. In order to develop accurate and robust automated methods, the precise segmentation of histologic objects such epithelium, stroma, and nucleus is necessary, in the hopes of information extraction not otherwise obvious to the subjective eye. Here, we propose a multivew boosting approach to segment histology objects of prostate tissue. Tissue specimen images are first represented at different scales using a Gaussian kernel and converted into several forms such HSV and La*b*. Intensity- and texture-based features are extracted from the converted images. Adopting multiview boosting approach, we effectively learn a classifier to predict the histologic class of a pixel in a prostate tissue specimen. The method attempts to integrate the information from multiple scales (or views). 18 prostate tissue specimens from 4 patients were employed to evaluate the new method. The method was trained on 11 tissue specimens including 75,832 epithelial and 103,453 stroma pixels and tested on 55,319 epithelial and 74,945 stroma pixels from 7 tissue specimens. The technique showed 96.7% accuracy, and as summarized into a receiver operating characteristic (ROC) plot, the area under the ROC curve (AUC) of 0.983 (95% CI: 0.983-0.984) was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Najeeb; Toth, Robert; Chappelow, Jonathan
2012-04-15
Purpose: Prostate gland segmentation is a critical step in prostate radiotherapy planning, where dose plans are typically formulated on CT. Pretreatment MRI is now beginning to be acquired at several medical centers. Delineation of the prostate on MRI is acknowledged as being significantly simpler to perform, compared to delineation on CT. In this work, the authors present a novel framework for building a linked statistical shape model (LSSM), a statistical shape model (SSM) that links the shape variation of a structure of interest (SOI) across multiple imaging modalities. This framework is particularly relevant in scenarios where accurate boundary delineations ofmore » the SOI on one of the modalities may not be readily available, or difficult to obtain, for training a SSM. In this work the authors apply the LSSM in the context of multimodal prostate segmentation for radiotherapy planning, where the prostate is concurrently segmented on MRI and CT. Methods: The framework comprises a number of logically connected steps. The first step utilizes multimodal registration of MRI and CT to map 2D boundary delineations of the prostate from MRI onto corresponding CT images, for a set of training studies. Hence, the scheme obviates the need for expert delineations of the gland on CT for explicitly constructing a SSM for prostate segmentation on CT. The delineations of the prostate gland on MRI and CT allows for 3D reconstruction of the prostate shape which facilitates the building of the LSSM. In order to perform concurrent prostate MRI and CT segmentation using the LSSM, the authors employ a region-based level set approach where the authors deform the evolving prostate boundary to simultaneously fit to MRI and CT images in which voxels are classified to be either part of the prostate or outside the prostate. The classification is facilitated by using a combination of MRI-CT probabilistic spatial atlases and a random forest classifier, driven by gradient and Haar features. Results: The authors acquire a total of 20 MRI-CT patient studies and use the leave-one-out strategy to train and evaluate four different LSSMs. First, a fusion-based LSSM (fLSSM) is built using expert ground truth delineations of the prostate on MRI alone, where the ground truth for the gland on CT is obtained via coregistration of the corresponding MRI and CT slices. The authors compare the fLSSM against another LSSM (xLSSM), where expert delineations of the gland on both MRI and CT are employed in the model building; xLSSM representing the idealized LSSM. The authors also compare the fLSSM against an exclusive CT-based SSM (ctSSM), built from expert delineations of the gland on CT alone. In addition, two LSSMs trained using trainee delineations (tLSSM) on CT are compared with the fLSSM. The results indicate that the xLSSM, tLSSMs, and the fLSSM perform equivalently, all of them out-performing the ctSSM. Conclusions: The fLSSM provides an accurate alternative to SSMs that require careful expert delineations of the SOI that may be difficult or laborious to obtain. Additionally, the fLSSM has the added benefit of providing concurrent segmentations of the SOI on multiple imaging modalities.« less
Geraghty, John P; Grogan, Garry; Ebert, Martin A
2013-04-30
This study investigates the variation in segmentation of several pelvic anatomical structures on computed tomography (CT) between multiple observers and a commercial automatic segmentation method, in the context of quality assurance and evaluation during a multicentre clinical trial. CT scans of two prostate cancer patients ('benchmarking cases'), one high risk (HR) and one intermediate risk (IR), were sent to multiple radiotherapy centres for segmentation of prostate, rectum and bladder structures according to the TROG 03.04 "RADAR" trial protocol definitions. The same structures were automatically segmented using iPlan software for the same two patients, allowing structures defined by automatic segmentation to be quantitatively compared with those defined by multiple observers. A sample of twenty trial patient datasets were also used to automatically generate anatomical structures for quantitative comparison with structures defined by individual observers for the same datasets. There was considerable agreement amongst all observers and automatic segmentation of the benchmarking cases for bladder (mean spatial variations < 0.4 cm across the majority of image slices). Although there was some variation in interpretation of the superior-inferior (cranio-caudal) extent of rectum, human-observer contours were typically within a mean 0.6 cm of automatically-defined contours. Prostate structures were more consistent for the HR case than the IR case with all human observers segmenting a prostate with considerably more volume (mean +113.3%) than that automatically segmented. Similar results were seen across the twenty sample datasets, with disagreement between iPlan and observers dominant at the prostatic apex and superior part of the rectum, which is consistent with observations made during quality assurance reviews during the trial. This study has demonstrated quantitative analysis for comparison of multi-observer segmentation studies. For automatic segmentation algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2014-04-01
We propose a novel global optimization-based approach to segmentation of 3-D prostate transrectal ultrasound (TRUS) and T2 weighted magnetic resonance (MR) images, enforcing inherent axial symmetry of prostate shapes to simultaneously adjust a series of 2-D slice-wise segmentations in a "global" 3-D sense. We show that the introduced challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. In this regard, we propose a novel coherent continuous max-flow model (CCMFM), which derives a new and efficient duality-based algorithm, leading to a GPU-based implementation to achieve high computational speeds. Experiments with 25 3-D TRUS images and 30 3-D T2w MR images from our dataset, and 50 3-D T2w MR images from a public dataset, demonstrate that the proposed approach can segment a 3-D prostate TRUS/MR image within 5-6 s including 4-5 s for initialization, yielding a mean Dice similarity coefficient of 93.2%±2.0% for 3-D TRUS images and 88.5%±3.5% for 3-D MR images. The proposed method also yields relatively low intra- and inter-observer variability introduced by user manual initialization, suggesting a high reproducibility, independent of observers.
Poster - 32: Atlas Selection for Automated Segmentation of Pelvic CT for Prostate Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallawi, Abrar; Farrell, TomTom; Diamond, Kevin-Ro
2016-08-15
Atlas based-segmentation has recently been evaluated for use in prostate radiotherapy. In a typical approach, the essential step is the selection of an atlas from a database that the best matches of the target image. This work proposes an atlas selection strategy and evaluate it impacts on final segmentation accuracy. Several anatomical parameters were measured to indicate the overall prostate and body shape, all of these measurements obtained on CT images. A brute force procedure was first performed for a training dataset of 20 patients using image registration to pair subject with similar contours; each subject was served as amore » target image to which all reaming 19 images were affinity registered. The overlap between the prostate and femoral heads was quantified for each pair using the Dice Similarity Coefficient (DSC). Finally, an atlas selection procedure was designed; relying on the computation of a similarity score defined as a weighted sum of differences between the target and atlas subject anatomical measurement. The algorithm ability to predict the most similar atlas was excellent, achieving mean DSCs of 0.78 ± 0.07 and 0.90 ± 0.02 for the CTV and either femoral head. The proposed atlas selection yielded 0.72 ± 0.11 and 0.87 ± 0.03 for CTV and either femoral head. The DSC obtained with the proposed selection method were slightly lower than the maximum established using brute force, but this does not include potential improvements expected with deformable registration. The proposed atlas selection method provides reasonable segmentation accuracy.« less
Prostate segmentation in MR images using discriminant boundary features.
Yang, Meijuan; Li, Xuelong; Turkbey, Baris; Choyke, Peter L; Yan, Pingkun
2013-02-01
Segmentation of the prostate in magnetic resonance image has become more in need for its assistance to diagnosis and surgical planning of prostate carcinoma. Due to the natural variability of anatomical structures, statistical shape model has been widely applied in medical image segmentation. Robust and distinctive local features are critical for statistical shape model to achieve accurate segmentation results. The scale invariant feature transformation (SIFT) has been employed to capture the information of the local patch surrounding the boundary. However, when SIFT feature being used for segmentation, the scale and variance are not specified with the location of the point of interest. To deal with it, the discriminant analysis in machine learning is introduced to measure the distinctiveness of the learned SIFT features for each landmark directly and to make the scale and variance adaptive to the locations. As the gray values and gradients vary significantly over the boundary of the prostate, separate appearance descriptors are built for each landmark and then optimized. After that, a two stage coarse-to-fine segmentation approach is carried out by incorporating the local shape variations. Finally, the experiments on prostate segmentation from MR image are conducted to verify the efficiency of the proposed algorithms.
NASA Astrophysics Data System (ADS)
Li, Lu; Narayanan, Ramakrishnan; Miller, Steve; Shen, Feimo; Barqawi, Al B.; Crawford, E. David; Suri, Jasjit S.
2008-02-01
Real-time knowledge of capsule volume of an organ provides a valuable clinical tool for 3D biopsy applications. It is challenging to estimate this capsule volume in real-time due to the presence of speckles, shadow artifacts, partial volume effect and patient motion during image scans, which are all inherent in medical ultrasound imaging. The volumetric ultrasound prostate images are sliced in a rotational manner every three degrees. The automated segmentation method employs a shape model, which is obtained from training data, to delineate the middle slices of volumetric prostate images. Then a "DDC" algorithm is applied to the rest of the images with the initial contour obtained. The volume of prostate is estimated with the segmentation results. Our database consists of 36 prostate volumes which are acquired using a Philips ultrasound machine using a Side-fire transrectal ultrasound (TRUS) probe. We compare our automated method with the semi-automated approach. The mean volumes using the semi-automated and complete automated techniques were 35.16 cc and 34.86 cc, with the error of 7.3% and 7.6% compared to the volume obtained by the human estimated boundary (ideal boundary), respectively. The overall system, which was developed using Microsoft Visual C++, is real-time and accurate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy
2012-11-15
Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measuremore » of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was Less-Than-Or-Slanted-Equal-To 3 mm (95th percentiles within {+-}4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from -0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of Less-Than-Or-Slanted-Equal-To 5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance.« less
Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Wells, William M.; Tempany, Clare M.; Cormack, Robert A.
2012-01-01
Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measure of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was ⩽3 mm (95th percentiles within ±4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from −0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of ⩽5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance. PMID:23127078
Adaptive intensity modulated radiotherapy for advanced prostate cancer
NASA Astrophysics Data System (ADS)
Ludlum, Erica Marie
The purpose of this research is to develop and evaluate improvements in intensity modulated radiotherapy (IMRT) for concurrent treatment of prostate and pelvic lymph nodes. The first objective is to decrease delivery time while maintaining treatment quality, and evaluate the effectiveness and efficiency of novel one-step optimization compared to conventional two-step optimization. Both planning methods are examined at multiple levels of complexity by comparing the number of beam apertures, or segments, the amount of radiation delivered as measured by monitor units (MUs), and delivery time. One-step optimization is demonstrated to simplify IMRT planning and reduce segments (from 160 to 40), MUs (from 911 to 746), and delivery time (from 22 to 7 min) with comparable plan quality. The second objective is to examine the capability of three commercial dose calculation engines employing different levels of accuracy and efficiency to handle high--Z materials, such as metallic hip prostheses, included in the treatment field. Pencil beam, convolution superposition, and Monte Carlo dose calculation engines are compared by examining the dose differences for patient plans with unilateral and bilateral hip prostheses, and for phantom plans with a metal insert for comparison with film measurements. Convolution superposition and Monte Carlo methods calculate doses that are 1.3% and 34.5% less than the pencil beam method, respectively. Film results demonstrate that Monte Carlo most closely represents actual radiation delivery, but none of the three engines accurately predict the dose distribution when high-Z heterogeneities exist in the treatment fields. The final objective is to improve the accuracy of IMRT delivery by accounting for independent organ motion during concurrent treatment of the prostate and pelvic lymph nodes. A leaf-shifting algorithm is developed to track daily prostate position without requiring online dose calculation. Compared to conventional methods of adjusting patient position, adjusting the multileaf collimator (MLC) leaves associated with the prostate in each segment significantly improves lymph node dose coverage (maintains 45 Gy compared to 42.7, 38.3, and 34.0 Gy for iso-shifts of 0.5, 1 and 1.5 cm). Altering the MLC portal shape is demonstrated as a new and effective solution to independent prostate movement during concurrent treatment.
NASA Astrophysics Data System (ADS)
Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter
2012-02-01
Manual delineation of the prostate is a challenging task for a clinician due to its complex and irregular shape. Furthermore, the need for precisely targeting the prostate boundary continues to grow. Planning for radiation therapy, MR-ultrasound fusion for image-guided biopsy, multi-parametric MRI tissue characterization, and context-based organ retrieval are examples where accurate prostate delineation can play a critical role in a successful patient outcome. Therefore, a robust automated full prostate segmentation system is desired. In this paper, we present an automated prostate segmentation system for 3D MR images. In this system, the prostate is segmented in two steps: the prostate displacement and size are first detected, and then the boundary is refined by a shape model. The detection approach is based on normalized gradient fields cross-correlation. This approach is fast, robust to intensity variation and provides good accuracy to initialize a prostate mean shape model. The refinement model is based on a graph-search based framework, which contains both shape and topology information during deformation. We generated the graph cost using trained classifiers and used coarse-to-fine search and region-specific classifier training. The proposed algorithm was developed using 261 training images and tested on another 290 cases. The segmentation performance using mean DSC ranging from 0.89 to 0.91 depending on the evaluation subset demonstrates state of the art performance. Running time for the system is about 20 to 40 seconds depending on image size and resolution.
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-07-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.
Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M
2009-01-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.
SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, R; Qin, A; Yan, D
Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated withmore » seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and rotation. It is superior to the daily-IGRT correction, and comparable to the online-IMRT planning for dose to the target and rectal-wall.« less
Segmentation of prostate boundaries from ultrasound images using statistical shape model.
Shen, Dinggang; Zhan, Yiqiang; Davatzikos, Christos
2003-04-01
This paper presents a statistical shape model for the automatic prostate segmentation in transrectal ultrasound images. A Gabor filter bank is first used to characterize the prostate boundaries in ultrasound images in both multiple scales and multiple orientations. The Gabor features are further reconstructed to be invariant to the rotation of the ultrasound probe and incorporated in the prostate model as image attributes for guiding the deformable segmentation. A hierarchical deformation strategy is then employed, in which the model adaptively focuses on the similarity of different Gabor features at different deformation stages using a multiresolution technique, i.e., coarse features first and fine features later. A number of successful experiments validate the algorithm.
NASA Astrophysics Data System (ADS)
Burgos, Ninon; Guerreiro, Filipa; McClelland, Jamie; Presles, Benoît; Modat, Marc; Nill, Simeon; Dearnaley, David; deSouza, Nandita; Oelfke, Uwe; Knopf, Antje-Christin; Ourselin, Sébastien; Cardoso, M. Jorge
2017-06-01
To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7+/- 4.6 HU and the ME -1.6+/- 7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14 % in the PTV for {{D}98 % } , and between -0.14 % and 0.05% in the PTV, bladder, rectum and femur heads for D mean and {{D}2 % } . Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.
NASA Astrophysics Data System (ADS)
Litjens, G. J. S.; Barentsz, J. O.; Karssemeijer, N.; Huisman, H. J.
2012-03-01
MRI has shown to have great potential in prostate cancer localization and grading, but interpreting those exams requires expertise that is not widely available. Therefore, CAD applications are being developed to aid radiologists in detecting prostate cancer. Existing CAD applications focus on the prostate as a whole. However, in clinical practice transition zone cancer and peripheral zone cancer are considered to have different appearances. In this paper we present zone-specific CAD, in addition to an atlas based segmentation technique which includes zonal segmentation. Our CAD system consists of a detection and a classification stage. Prior to the detection stage the prostate is segmented into two zones. After segmentation features are extracted. Subsequently a likelihood map is generated on which local maxima detection is performed. For each local maximum a region is segmented. In the classification stage additional shape features are calculated, after which the regions are classified. Validation was performed on 288 data sets with MR-guided biopsy results as ground truth. Freeresponse Receiver Operating Characteristic (FROC) analysis was used for statistical evaluation. The difference between whole-prostate and zone-specific CAD was assessed using the difference between the FROCs. Our results show that evaluating the two zones separately results in an increase in performance compared to whole-prostate CAD. The FROC curves at .1, 1 and 3 false positives have a sensitivity of 0.0, 0.55 and 0.72 for whole-prostate and 0.08, 0.57 and 0.80 for zone-specific CAD. The FROC curve of the zone-specific CAD also showed significantly better performance overall (p < 0.05).
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Rosen, Mark; Madabhushi, Anant
2008-03-01
Current techniques for localization of prostatic adenocarcinoma (CaP) via blinded trans-rectal ultrasound biopsy are associated with a high false negative detection rate. While high resolution endorectal in vivo Magnetic Resonance (MR) prostate imaging has been shown to have improved contrast and resolution for CaP detection over ultrasound, similarity in intensity characteristics between benign and cancerous regions on MR images contribute to a high false positive detection rate. In this paper, we present a novel unsupervised segmentation method that employs manifold learning via consensus schemes for detection of cancerous regions from high resolution 1.5 Tesla (T) endorectal in vivo prostate MRI. A significant contribution of this paper is a method to combine multiple weak, lower-dimensional representations of high dimensional feature data in a way analogous to classifier ensemble schemes, and hence create a stable and accurate reduced dimensional representation. After correcting for MR image intensity artifacts, such as bias field inhomogeneity and intensity non-standardness, our algorithm extracts over 350 3D texture features at every spatial location in the MR scene at multiple scales and orientations. Non-linear dimensionality reduction schemes such as Locally Linear Embedding (LLE) and Graph Embedding (GE) are employed to create multiple low dimensional data representations of this high dimensional texture feature space. Our novel consensus embedding method is used to average object adjacencies from within the multiple low dimensional projections so that class relationships are preserved. Unsupervised consensus clustering is then used to partition the objects in this consensus embedding space into distinct classes. Quantitative evaluation on 18 1.5 T prostate MR data against corresponding histology obtained from the multi-site ACRIN trials show a sensitivity of 92.65% and a specificity of 82.06%, which suggests that our method is successfully able to detect suspicious regions in the prostate.
NASA Astrophysics Data System (ADS)
Acosta, Oscar; Dowling, Jason; Cazoulat, Guillaume; Simon, Antoine; Salvado, Olivier; de Crevoisier, Renaud; Haigron, Pascal
The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals' organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.
Two-stage atlas subset selection in multi-atlas based image segmentation.
Zhao, Tingting; Ruan, Dan
2015-06-01
Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.
Lin, Yen-Ting; Amouyal, Grégory; Correas, Jean-Michel; Pereira, Héléna; Pellerin, Olivier; Del Giudice, Costantino; Déan, Carole; Thiounn, Nicolas; Sapoval, Marc
2016-10-01
To assess the impact of prostatic arterial embolisation (PAE) on various prostate gland anatomical zones. We retrospectively reviewed paired MRI scans obtained before and after PAE for 25 patients and evaluated changes in volumes of the median lobe (ML), central gland (CG), peripheral zone (PZ) and whole prostate gland (WPV) following PAE. We used manual segmentation to calculate volume on axial view T2-weighted images for ML, CG and WPV. We calculated PZ volume by subtracting CG volume from WPV. Enhanced phase on dynamic contrasted-enhanced MRI was used to evaluate the infarction areas after PAE. Clinical results of International Prostate Symptom Score and International Index of Erectile Function questionnaires and the urodynamic study were evaluated before and after PAE. Significant reductions in volume were observed after PAE for ML (26.2 % decrease), CG (18.8 %), PZ (16.4 %) and WPV (19.1 %; p < 0.001 for all these volumes). Patients with clinical failure had smaller volume reductions for WPV, ML and CG (all p < 0.05). Patients with significant CG infarction after PAE displayed larger WPV, ML and CG volume reductions (all p < 0.01). PAE can significantly decrease WPV, ML, CG and PZ volumes, and poor clinical outcomes are associated with smaller volume reductions. • The MRI segmentation method provides detailed comparisons of prostate volume change. • Prostatic arterial embolisation (PAE) decreased central gland and peripheral zone volumes. • Prostates with infarction after PAE showed larger decreases in volume. • A larger decrease in prostate volume is associated with clinical success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London
2013-01-01
Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level and baseline manual contouring speed.« less
3D Registration of mpMRI for Assessment of Prostate Cancer Focal Therapy.
Orczyk, Clément; Rosenkrantz, Andrew B; Mikheev, Artem; Villers, Arnauld; Bernaudin, Myriam; Taneja, Samir S; Valable, Samuel; Rusinek, Henry
2017-12-01
This study aimed to assess a novel method of three-dimensional (3D) co-registration of prostate magnetic resonance imaging (MRI) examinations performed before and after prostate cancer focal therapy. We developed a software platform for automatic 3D deformable co-registration of prostate MRI at different time points and applied this method to 10 patients who underwent focal ablative therapy. MRI examinations were performed preoperatively, as well as 1 week and 6 months post treatment. Rigid registration served as reference for assessing co-registration accuracy and precision. Segmentation of preoperative and postoperative prostate revealed a significant postoperative volume decrease of the gland that averaged 6.49 cc (P = .017). Applying deformable transformation based on mutual information from 120 pairs of MRI slices, we refined by 2.9 mm (max. 6.25 mm) the alignment of the ablation zone, segmented from contrast-enhanced images on the 1-week postoperative examination, to the 6-month postoperative T2-weighted images. This represented a 500% improvement over the rigid approach (P = .001), corrected by volume. The dissimilarity by Dice index of the mapped ablation zone using deformable transformation vs rigid control was significantly (P = .04) higher at the ablation site than in the whole gland. Our findings illustrate our method's ability to correct for deformation at the ablation site. The preliminary analysis suggests that deformable transformation computed from mutual information of preoperative and follow-up MRI is accurate in co-registration of MRI examinations performed before and after focal therapy. The ability to localize the previously ablated tissue in 3D space may improve targeting for image-guided follow-up biopsy within focal therapy protocols. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin
2012-01-01
In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region.
Surface-based prostate registration with biomechanical regularization
NASA Astrophysics Data System (ADS)
van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.
2013-03-01
Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanoun, Salim, E-mail: Salim.kanoun@gmail.com; LE2I UMR6306, Centre national de la recherche scientifique, Arts et Métiers, Université Bourgogne Franche-Comté, Dijon; MRI Unit, Centre Hospitalier Régional Universitaire, Hôpital François Mitterrand, Dijon
Purpose: To compare the diagnostic performance of {sup 18}F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT), multiparametric prostate magnetic resonance imaging (mpMRI), and a combination of both techniques for the detection of local recurrence of prostate cancer initially treated by radiation therapy. Methods and Materials: This was a retrospective, single-institution study of 32 patients with suspected prostate cancer recurrence who underwent both FCH-PET/CT and 3T mpMRI within 3 months of one another for the detection of recurrence. All included patients had to be cleared for metastatic recurrence. The reference procedure was systematic 3-dimensional (3D)-transperineal prostate biopsy for the final assessment of local recurrence.more » Both imaging modalities were analyzed by 2 experienced readers blinded to clinical data. The analysis was made per-patient and per-segment using a 4-segment model. Results: The median prostate-specific antigen value at the time of imaging was 2.92 ng/mL. The mean prostate-specific antigen doubling time was 14 months. Of the 32 patients, 31 had a positive 3D-transperineal mapping biopsy for a local relapse. On a patient-based analysis, the detection rate was 71% (22 of 31) for mpMRI and 74% (23 of 31) for FCH-PET/CT. On a segment-based analysis, the sensitivity and specificity were, respectively, 32% and 87% for mpMRI, 34% and 87% for FCH-PET/CT, and 43% and 83% for the combined analysis of both techniques. Accuracy was 64%, 65%, and 66%, respectively. The interobserver agreement was κ = 0.92 for FCH-PET/CT and κ = 0.74 for mpMRI. Conclusions: Both mpMRI and FCH-PET/CT show limited sensitivity but good specificity for the detection of local cancer recurrence after radiation therapy, when compared with 3D-transperineal mapping biopsy. Prostate biopsy still seems to be mandatory to diagnose local relapse and select patients who could benefit from local salvage therapy.« less
Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
Liao, Shu; Gao, Yaozong; Oto, Aytekin; Shen, Dinggang
2013-01-01
Image representation plays an important role in medical image analysis. The key to the success of different medical image analysis algorithms is heavily dependent on how we represent the input data, namely features used to characterize the input image. In the literature, feature engineering remains as an active research topic, and many novel hand-crafted features are designed such as Haar wavelet, histogram of oriented gradient, and local binary patterns. However, such features are not designed with the guidance of the underlying dataset at hand. To this end, we argue that the most effective features should be designed in a learning based manner, namely representation learning, which can be adapted to different patient datasets at hand. In this paper, we introduce a deep learning framework to achieve this goal. Specifically, a stacked independent subspace analysis (ISA) network is adopted to learn the most effective features in a hierarchical and unsupervised manner. The learnt features are adapted to the dataset at hand and encode high level semantic anatomical information. The proposed method is evaluated on the application of automatic prostate MR segmentation. Experimental results show that significant segmentation accuracy improvement can be achieved by the proposed deep learning method compared to other state-of-the-art segmentation approaches.
Multiview boosting digital pathology analysis of prostate cancer.
Kwak, Jin Tae; Hewitt, Stephen M
2017-04-01
Various digital pathology tools have been developed to aid in analyzing tissues and improving cancer pathology. The multi-resolution nature of cancer pathology, however, has not been fully analyzed and utilized. Here, we develop an automated, cooperative, and multi-resolution method for improving prostate cancer diagnosis. Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The TMAs include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples (TMA2), 70 benign and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), and 72 benign and 86 cancer samples (TMA5). The tissue specimen images are segmented using intensity- and texture-based features. Using the segmentation results, a number of morphological features from lumens and epithelial nuclei are computed to characterize tissues at different resolutions. Applying a multiview boosting algorithm, tissue characteristics, obtained from differing resolutions, are cooperatively combined to achieve accurate cancer detection. In segmenting prostate tissues, the multiview boosting method achieved≥ 0.97 AUC using TMA1. For detecting cancers, the multiview boosting method achieved an AUC of 0.98 (95% CI: 0.97-0.99) as trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed method was superior to single-view approaches, utilizing features from a single resolution or merging features from all the resolutions. Moreover, the performance of the proposed method was insensitive to the choice of the training dataset. Trained on TMA3, TMA4, and TMA5, the proposed method obtained an AUC of 0.97 (95% CI: 0.96-0.98), 0.98 (95% CI: 0.96-0.99), and 0.97 (95% CI: 0.96-0.98), respectively. The multiview boosting method is capable of integrating information from multiple resolutions in an effective and efficient fashion and identifying cancers with high accuracy. The multiview boosting method holds a great potential for improving digital pathology tools and research. Copyright © 2017 Elsevier B.V. All rights reserved.
Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1
Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron
2005-01-01
Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593
NASA Astrophysics Data System (ADS)
Diaz, Kristians; Castaneda, Benjamin
2008-03-01
This paper presents a semi-automated algorithm for prostate boundary segmentation from three-dimensional (3D) ultrasound (US) images. The US volume is sampled into 72 slices which go through the center of the prostate gland and are separated at a uniform angular spacing of 2.5 degrees. The approach requires the user to select four points from slices (at 0, 45, 90 and 135 degrees) which are used to initialize a discrete dynamic contour (DDC) algorithm. 4 Support Vector Machines (SVMs) are trained over the output of the DDC and classify the rest of the slices. The output of the SVMs is refined using binary morphological operations and DDC to produce the final result. The algorithm was tested on seven ex vivo 3D US images of prostate glands embedded in an agar mold. Results show good agreement with manual segmentation.
Two-stage atlas subset selection in multi-atlas based image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu
2015-06-15
Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stagemore » atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.« less
NASA Astrophysics Data System (ADS)
Nanayakkara, Nuwan D.; Samarabandu, Jagath; Fenster, Aaron
2006-04-01
Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this paper, we present a semi-automatic discrete dynamic contour (DDC) model based image segmentation algorithm, which effectively combines a multi-resolution model refinement procedure together with the domain knowledge of the image class. The segmentation begins on a low-resolution image by defining a closed DDC model by the user. This contour model is then deformed progressively towards higher resolution images. We use a combination of a domain knowledge based fuzzy inference system (FIS) and a set of adaptive region based operators to enhance the edges of interest and to govern the model refinement using a DDC model. The automatic vertex relocation process, embedded into the algorithm, relocates deviated contour points back onto the actual prostate boundary, eliminating the need of user interaction after initialization. The accuracy of the prostate boundary produced by the proposed algorithm was evaluated by comparing it with a manually outlined contour by an expert observer. We used this algorithm to segment the prostate boundary in 114 2D transrectal ultrasound (TRUS) images of six patients scheduled for brachytherapy. The mean distance between the contours produced by the proposed algorithm and the manual outlines was 2.70 ± 0.51 pixels (0.54 ± 0.10 mm). We also showed that the algorithm is insensitive to variations of the initial model and parameter values, thus increasing the accuracy and reproducibility of the resulting boundaries in the presence of noise and artefacts.
Lu, Chao; Chelikani, Sudhakar; Papademetris, Xenophon; Knisely, Jonathan P.; Milosevic, Michael F.; Chen, Zhe; Jaffray, David A.; Staib, Lawrence H.; Duncan, James S.
2011-01-01
External beam radiotherapy (EBRT) has become the preferred options for non-surgical treatment of prostate cancer and cervix cancer. In order to deliver higher doses to cancerous regions within these pelvic structures (i.e. prostate or cervix) while maintaining or lowering the doses to surrounding non-cancerous regions, it is critical to account for setup variation, organ motion, anatomical changes due to treatment and intra-fraction motion. In previous work, manual segmentation of the soft tissues is performed and then images are registered based on the manual segmentation. In this paper, we present an integrated automatic approach to multiple organ segmentation and nonrigid constrained registration, which can achieve these two aims simultaneously. The segmentation and registration steps are both formulated using a Bayesian framework, and they constrain each other using an iterative conditional model strategy. We also propose a new strategy to assess cumulative actual dose for this novel integrated algorithm, in order to both determine whether the intended treatment is being delivered and, potentially, whether or not a plan should be adjusted for future treatment fractions. Quantitative results show that the automatic segmentation produced results that have an accuracy comparable to manual segmentation, while the registration part significantly outperforms both rigid and non-rigid registration. Clinical application and evaluation of dose delivery show the superiority of proposed method to the procedure currently used in clinical practice, i.e. manual segmentation followed by rigid registration. PMID:21646038
Modeling prostate anatomy from multiple view TRUS images for image-guided HIFU therapy.
Penna, Michael A; Dines, Kris A; Seip, Ralf; Carlson, Roy F; Sanghvi, Narendra T
2007-01-01
Current planning methods for transrectal high-intensity focused ultrasound treatment of prostate cancer rely on manually defining treatment regions in 15-20 sector transrectal ultrasound (TRUS) images of the prostate. Although effective, it is desirable to reduce user interaction time by identifying functionally related anatomic structures (segmenting), then automatically laying out treatment sites using these structures as a guide. Accordingly, a method has been developed to effectively generate solid three-dimensional (3-D) models of the prostate, urethra, and rectal wall from boundary trace data. Modeling the urethra and rectal wall are straightforward, but modeling the prostate is more difficult and has received much attention in the literature. New results presented here are aimed at overcoming many of the limitations of previous approaches to modeling the prostate while using boundary traces obtained via manual tracing in as few as 5 sector and 3 linear images. The results presented here are based on a new type of surface, the Fourier ellipsoid, and the use of sector and linear TRUS images. Tissue-specific 3-D models will ultimately permit finer control of energy deposition and more selective destruction of cancerous regions while sparing critical neighboring structures.
Sparks, Rachel; Bloch, B Nicolas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant
2013-03-08
In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 ± 0.85 mm.
Wong, Wicger K H; Leung, Lucullus H T; Kwong, Dora L W
2016-01-01
To evaluate and optimize the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. A retrospective study was conducted, and the accuracy of the multiple-atlas-based segmentation was tested on 30 patients. The effect of library size (LS), number of atlases used for contour averaging and the contour averaging strategy were also studied. The autogenerated contours were compared with the manually drawn contours. Dice similarity coefficient (DSC) and Hausdorff distance were used to evaluate the segmentation agreement. Mixed results were found between simultaneous truth and performance level estimation (STAPLE) and majority vote (MV) strategies. Multiple-atlas approaches were relatively insensitive to LS. A LS of ten was adequate, and further increase in the LS only showed insignificant gain. Multiple atlas performed better than single atlas for most of the time. Using more atlases did not guarantee better performance, with five atlases performing better than ten atlases. With our recommended setting, the median DSC for the bladder, rectum, prostate, seminal vesicle and femurs was 0.90, 0.77, 0.84, 0.56 and 0.95, respectively. Our study shows that multiple-atlas-based strategies have better accuracy than single-atlas approach. STAPLE is preferred, and a LS of ten is adequate for prostate cases. Using five atlases for contour averaging is recommended. The contouring accuracy of seminal vesicle still needs improvement, and manual editing is still required for the other structures. This article provides a better understanding of the influence of the parameters used in multiple-atlas-based segmentation of prostate cancers.
A software tool for advanced MRgFUS prostate therapy planning and follow up
NASA Astrophysics Data System (ADS)
van Straaten, Dörte; Hoogenboom, Martijn; van Amerongen, Martinus J.; Weiler, Florian; Issawi, Jumana Al; Günther, Matthias; Fütterer, Jurgen; Jenne, Jürgen W.
2017-03-01
US guided HIFU/FUS ablation for the therapy of prostate cancer is a clinical established method, while MR guided HIFU/FUS applications for prostate recently started clinical evaluation. Even if MRI examination is an excellent diagnostic tool for prostate cancer, it is a time consuming procedure and not practicable within an MRgFUS therapy session. The aim of our ongoing work is to develop software to support therapy planning and post-therapy follow-up for MRgFUS on localized prostate cancer, based on multi-parametric MR protocols. The clinical workflow of diagnosis, therapy and follow-up of MR guided FUS on prostate cancer was deeply analyzed. Based on this, the image processing workflow was designed and all necessary components, e.g. GUI, viewer, registration tools etc. were defined and implemented. The software bases on MeVisLab with several implemented C++ modules for the image processing tasks. The developed software, called LTC (Local Therapy Control) will register and visualize automatically all images (T1w, T2w, DWI etc.) and ADC or perfusion maps gained from the diagnostic MRI session. This maximum of diagnostic information helps to segment all necessary ROIs, e.g. the tumor, for therapy planning. Final therapy planning will be performed based on these segmentation data in the following MRgFUS therapy session. In addition, the developed software should help to evaluate the therapy success, by synchronization and display of pre-therapeutic, therapy and follow-up image data including the therapy plan and thermal dose information. In this ongoing project, the first stand-alone prototype was completed and will be clinically evaluated.
Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin; Lin, Wei-Chan; Khoshnoodi, Pooria; Sayre, James W; Ramakrishna, Bharath; Ahuja, Preeti; Huang, Jiaoti; Margolis, Daniel J A; Lu, David S K; Reiter, Robert E; Goldin, Jonathan G; Brown, Matthew S; Enzmann, Dieter R
2018-02-19
We present a method for generating a T2 MR-based probabilistic model of tumor occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve as a diagnostic tool to aid radiological evaluation of prostate cancer. In our study, the prostate and any radiological findings within were segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical prostatectomy. Subsequent histopathological analysis determined both the ground truth and the Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a multi-subject-derived prostate template. Subsequently, a cascading registration algorithm involving both affine and non-rigid B-spline transforms was used to register the prostate of every subject to the template. Corresponding transformation of radiological findings yielded a population-based probabilistic model of tumor occurrence. The quality of our probabilistic model building approach was statistically evaluated by measuring the proportion of correct placements of tumors in the prostate template, i.e., the number of tumors that maintained their anatomical location within the prostate after their transformation into the prostate template space. Probabilistic model built with tumors deemed clinically significant demonstrated a heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions analyzed, 248 maintained their original anatomical location with respect to the prostate zones after transformation to the prostate. We present a robust method for generating a probabilistic model of tumor occurrence in the prostate that could aid clinical decision making, such as selection of anatomical sites for MR-guided prostate biopsies.
Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib
2009-11-01
We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquier, David; Lacornerie, Thomas; Vermandel, Maximilien
Purpose: Target-volume and organ-at-risk delineation is a time-consuming task in radiotherapy planning. The development of automated segmentation tools remains problematic, because of pelvic organ shape variability. We evaluate a three-dimensional (3D), deformable-model approach and a seeded region-growing algorithm for automatic delineation of the prostate and organs-at-risk on magnetic resonance images. Methods and Materials: Manual and automatic delineation were compared in 24 patients using a sagittal T2-weighted (T2-w) turbo spin echo (TSE) sequence and an axial T1-weighted (T1-w) 3D fast-field echo (FFE) or TSE sequence. For automatic prostate delineation, an organ model-based method was used. Prostates without seminal vesicles were delineatedmore » as the clinical target volume (CTV). For automatic bladder and rectum delineation, a seeded region-growing method was used. Manual contouring was considered the reference method. The following parameters were measured: volume ratio (Vr) (automatic/manual), volume overlap (Vo) (ratio of the volume of intersection to the volume of union; optimal value = 1), and correctly delineated volume (Vc) (percent ratio of the volume of intersection to the manually defined volume; optimal value 100). Results: For the CTV, the Vr, Vo, and Vc were 1.13 ({+-}0.1 SD), 0.78 ({+-}0.05 SD), and 94.75 ({+-}3.3 SD), respectively. For the rectum, the Vr, Vo, and Vc were 0.97 ({+-}0.1 SD), 0.78 ({+-}0.06 SD), and 86.52 ({+-}5 SD), respectively. For the bladder, the Vr, Vo, and Vc were 0.95 ({+-}0.03 SD), 0.88 ({+-}0.03 SD), and 91.29 ({+-}3.1 SD), respectively. Conclusions: Our results show that the organ-model method is robust, and results in reproducible prostate segmentation with minor interactive corrections. For automatic bladder and rectum delineation, magnetic resonance imaging soft-tissue contrast enables the use of region-growing methods.« less
3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy
NASA Astrophysics Data System (ADS)
Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron
2014-03-01
Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.
Lin, Yuting; Lin, Wei-Ching; Fwu, Peter T; Shih, Tzu-Ching; Yeh, Lee-Ren; Su, Min-Ying; Chen, Jeon-Hor
2015-10-01
This study applied a simulation method to map the temperature distribution based on magnetic resonance imaging (MRI) of individual patients, and investigated the influence of different pelvic tissue types as well as the choice of thermal property parameters on the efficiency of endorectal cooling balloon (ECB). MR images of four subjects with different prostate sizes and pelvic tissue compositions, including fatty tissue and venous plexus, were analyzed. The MR images acquired using endorectal coil provided a realistic geometry of deformed prostate that resembled the anatomy in the presence of ECB. A single slice with the largest two-dimensional (2D) cross-sectional area of the prostate gland was selected for analysis. The rectal wall, prostate gland, peri-rectal fatty tissue, peri-prostatic fatty tissue, peri-prostatic venous plexus, and urinary bladder were manually segmented. Pennes' bioheat thermal model was used to simulate the temperature distribution dynamics, by using an in-house finite element mesh based solver written in MATLAB. The results showed that prostate size and periprostatic venous plexus were two major factors affecting ECB cooling efficiency. For cases with negligible amount of venous plexus and small prostate, the average temperature in the prostate and neurovascular bundles could be cooled down to 25 °C within 30 min. For cases with abundant venous plexus and large prostate, the temperature could not reach 25 °C at the end of 3 h cooling. Large prostate made the cooling difficult to propagate through. The impact of fatty tissue on cooling effect was small. The filling of bladder with warm urine during the ECB cooling procedure did not affect the temperature in the prostate or NVB. In addition to the 2D simulation, in one case a 3D pelvic model was constructed for volumetric simulation. It was found that the 2D slice with the largest cross-sectional area of prostate had the most abundant venous plexus, and was the most difficult slice to cool, thus it may provide a conservative prediction of the cooling effect. This feasibility study demonstrated that the simulation tool could potentially be used for adjusting the setting of ECB for individual patients during hypothermic radical prostatectomy. Further studies using MR thermometry are required to validate the in silico results obtained using simulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lin, Yuting; Lin, Wei-Ching; Fwu, Peter T.; Shih, Tzu-Ching; Yeh, Lee-Ren; Su, Min-Ying; Chen, Jeon-Hor
2015-01-01
This study applied a simulation method to map the temperature distribution based on magnetic resonance imaging (MRI) of individual patients, and investigated the influence of different pelvic tissue types as well as the choice of thermal property parameters on the efficiency of endorectal cooling balloon (ECB). MR images of four subjects with different prostate sizes and pelvic tissue compositions, including fatty tissue and venous plexus, were analyzed. The MR images acquired using endorectal coil provided a realistic geometry of deformed prostate that resembled the anatomy in the presence of ECB. A single slice with the largest two-dimensional (2D) cross-sectional area of the prostate gland was selected for analysis. The rectal wall, prostate gland, peri-rectal fatty tissue, peri-prostatic fatty tissue, peri-prostatic venous plexus, and urinary bladder were manually segmented. Pennes’ bioheat thermal model was used to simulate the temperature distribution dynamics, by using an in-house finite element mesh based solver written in Matlab. The results showed that prostate size and periprostatic venous plexus were two major factors affecting ECB cooling efficiency. For cases with negligible amount of venous plexus and small prostate, the averaged temperature in the prostate and neurovascular bundles could be cooled down to 25°C within 30 minutes. For cases with abundant venous plexus and large prostate, the temperature could not reach 25°C at the end of 3 hours cooling. Large prostate made the cooling difficult to propagate through. The impact of fatty tissue on cooling effect was small. The filling of bladder with warm urine during the ECB cooling procedure did not affect the temperature in the prostate or NVB. In addition to the 2D simulation, in one case a 3D pelvic model was constructed for volumetric simulation. It was found that the 2D slice with the largest cross-sectional area of prostate had the most abundant venous plexus, and was the most difficult slice to cool, thus it may provide a conservative prediction of the cooling effect. This feasibility study demonstrated that the simulation tool could potentially be used for adjusting the setting of ECB for individual patients during hypothermic radical prostatectomy. Further studies using MR thermometry are required to validate the in silico results obtained using simulation. PMID:26198131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosini, M; GALAL, M; Emam, I
2014-06-01
Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less
3D prostate TRUS segmentation using globally optimized volume-preserving prior.
Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing
2014-01-01
An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.
Liu, Xin; Yetik, Imam Samil
2011-06-01
Multiparametric magnetic resonance imaging (MRI) has been shown to have higher localization accuracy than transrectal ultrasound (TRUS) for prostate cancer. Therefore, automated cancer segmentation using multiparametric MRI is receiving a growing interest, since MRI can provide both morphological and functional images for tissue of interest. However, all automated methods to this date are applicable to a single zone of the prostate, and the peripheral zone (PZ) of the prostate needs to be extracted manually, which is a tedious and time-consuming job. In this paper, our goal is to remove the need of PZ extraction by incorporating the spatial and geometric information of prostate tumors with multiparametric MRI derived from T2-weighted MRI, diffusion-weighted imaging (DWI) and dynamic contrast enhanced MRI (DCE-MRI). In order to remove the need of PZ extraction, the authors propose a new method to incorporate the spatial information of the cancer. This is done by introducing a new feature called location map. This new feature is constructed by applying a nonlinear transformation to the spatial position coordinates of each pixel, so that the location map implicitly represents the geometric position of each pixel with respect to the prostate region. Then, this new feature is combined with multiparametric MR images to perform tumor localization. The proposed algorithm is applied to multiparametric prostate MRI data obtained from 20 patients with biopsy-confirmed prostate cancer. The proposed method which does not need the masks of PZ was found to have prostate cancer detection specificity of 0.84, sensitivity of 0.80 and dice coefficient value of 0.42. The authors have found that fusing the spatial information allows us to obtain tumor outline without the need of PZ extraction with a considerable success (better or similar performance to methods that require manual PZ extraction). Our experimental results quantitatively demonstrate the effectiveness of the proposed method, depicting that the proposed method has a slightly better or similar localization performance compared to methods which require the masks of PZ.
Prostate contouring in MRI guided biopsy.
Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor
2009-03-27
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice.
Prostate contouring in MRI guided biopsy
Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor
2010-01-01
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083
Nearest neighbor 3D segmentation with context features
NASA Astrophysics Data System (ADS)
Hristova, Evelin; Schulz, Heinrich; Brosch, Tom; Heinrich, Mattias P.; Nickisch, Hannes
2018-03-01
Automated and fast multi-label segmentation of medical images is challenging and clinically important. This paper builds upon a supervised machine learning framework that uses training data sets with dense organ annotations and vantage point trees to classify voxels in unseen images based on similarity of binary feature vectors extracted from the data. Without explicit model knowledge, the algorithm is applicable to different modalities and organs, and achieves high accuracy. The method is successfully tested on 70 abdominal CT and 42 pelvic MR images. With respect to ground truth, an average Dice overlap score of 0.76 for the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones, prostate and rectum is 0.65. Additionally, we benchmark several variations of the main components of the method and reduce the computation time by up to 47% without significant loss of accuracy. The segmentation results are - for a nearest neighbor method - surprisingly accurate, robust as well as data and time efficient.
Sjöberg, C; Ahnesjö, A
2013-06-01
Label fusion multi-atlas approaches for image segmentation can give better segmentation results than single atlas methods. We present a multi-atlas label fusion strategy based on probabilistic weighting of distance maps. Relationships between image similarities and segmentation similarities are estimated in a learning phase and used to derive fusion weights that are proportional to the probability for each atlas to improve the segmentation result. The method was tested using a leave-one-out strategy on a database of 21 pre-segmented prostate patients for different image registrations combined with different image similarity scorings. The probabilistic weighting yields results that are equal or better compared to both fusion with equal weights and results using the STAPLE algorithm. Results from the experiments demonstrate that label fusion by weighted distance maps is feasible, and that probabilistic weighted fusion improves segmentation quality more the stronger the individual atlas segmentation quality depends on the corresponding registered image similarity. The regions used for evaluation of the image similarity measures were found to be more important than the choice of similarity measure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint
NASA Astrophysics Data System (ADS)
Qiu, Wu; Yuan, Jing; Fenster, Aaron
2016-03-01
We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrinivich, Thomas; Hoover, Douglas; Surry, Kathlee
Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were usedmore » to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.« less
Liu, Ying-jia; Song, Guo-hong; Zhang, Chen
2015-08-01
To explore the possible pain mechanism of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). The models of CP/CPPS were established in male Wistar rats by the autoimmune method. The paw withdrawal threshold (PWT) was detected using Von Frey filament. The expressions of the substance P and c-fos in the prostate and spinal L5-S2 segments were determined by immunohistochemistry followed by analysis of their correlation with CP/CPPS. Compared with the control rats, the CP/CPPS models showed significantly decreased PWT (P < 0.05), remarkable prostatic inflammation, enlarged scope of lesions, and obvious interstitial lymphocytic infiltration (P < 0.05). Both the expressions of substance P and c-fos were markedly elevated in the prostate and spinal dorsal horn (L5-S2) of the rat models (P < 0.05), but the expression of substance P in the prostate exhibited no correlation with that in the spinal cord (r = 0.099, P = 0.338), nor did that of c-fos (r = 0.027, P = 0.454). The upregulated expressions of substance P and c-fos in the spinal cord L5-S2 sections may be associated with the pain mechanism of CP/CPPS.
Berenguer, Roberto; de la Vara, Victoria; Lopez-Honrubia, Veronica; Nuñez, Ana Teresa; Rivera, Miguel; Villas, Maria Victoria; Sabater, Sebastia
2018-01-01
To analyse the influence of the image registration method on the adaptive radiotherapy of an IMRT prostate treatment, and to compare the dose accumulation according to 3 different image registration methods with the planned dose. The IMRT prostate patient was CT imaged 3 times throughout his treatment. The prostate, PTV, rectum and bladder were segmented on each CT. A Rigid, a deformable (DIR) B-spline and a DIR with landmarks registration algorithms were employed. The difference between the accumulated doses and planned doses were evaluated by the gamma index. The Dice coefficient and Hausdorff distance was used to evaluate the overlap between volumes, to quantify the quality of the registration. When comparing adaptive vs no adaptive RT, the gamma index calculation showed large differences depending on the image registration method (as much as 87.6% in the case of DIR B-spline). The quality of the registration was evaluated using an index such as the Dice coefficient. This showed that the best result was obtained with DIR with landmarks compared with the rest and it was always above 0.77, reported as a recommended minimum value for prostate studies in a multi-centre review. Apart from showing the importance of the application of an adaptive RT protocol in a particular treatment, this work shows that the election of the registration method is decisive in the result of the adaptive radiotherapy and dose accumulation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
Purpose: The aim of this work is to study the dosimetric impact of leaf interdigitation in prostate cancer dynamic IMRT treatment planning. Methods: Fifteen previously treated prostate cancer patients were replanned for dynamic IMRT (dMLC) with and without leaf interdigitation using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 70Gy/35 fractions. Various dosimetric variables, such as PTV coverage, OAR sparing, delivery efficiency and optimization time, were evaluated for each plan. Results: Interdigitation did not improve the coverage, HI and CI for PTV. Regarding OARs, sparing was equivalent with and without interdigitation. Interdigitation shownmore » an increase in MUs and segments. It was worth noting that leaf interdigitation saved the optimization time. Conclusion: This study shows that leaf interdigitation does not improve plan quality when performing dMLC treatment plan for prostate cancer. However, it influences delivery efficiency and optimization time. Interdigitation may gain efficiency for dosimetrist when designing the prostate cancer dMLC plans.« less
Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z.; Chen, Ronald C.
2016-01-01
Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a nonlocal external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Robert A.; Hannoun-Levi, Jean-Michel; Horwitz, Eric
2006-10-01
Purpose: The aim of this study was to evaluate the feasibility of treating the pelvic lymphatic regions during prostate intensity-modulated radiotherapy (IMRT) with respect to our routine acceptance criteria. Methods and Materials: A series of 10 previously treated prostate patients were randomly selected and the pelvic lymphatic regions delineated on the fused magnetic resonance/computed tomography data sets. A targeting progression was formed from the prostate and proximal seminal vesicles only to the inclusion of all pelvic lymphatic regions and presacral region resulting in 5 planning scenarios of increasing geometric difficulty. IMRT plans were generated for each stage for two acceleratormore » manufacturers. Dose volume histogram data were analyzed with respect to dose to the planning target volumes, rectum, bladder, bowel, and normal tissue. Analysis was performed for the number of segments required, monitor units, 'hot spots,' and treatment time. Results: Both rectal endpoints were met for all targets. Bladder endpoints were not met and the bowel endpoint was met in 40% of cases with the inclusion of the extended and presacral lymphatics. A significant difference was found in the number of segments and monitor units with targeting progression and between accelerators, with the smaller beamlets yielding poorer results. Treatment times between the 2 linacs did not exhibit a clinically significant difference when compared. Conclusions: Many issues should be considered with pelvic lymphatic irradiation during IMRT delivery for prostate cancer including dose per fraction, normal structure dose/volume limits, planning target volumes generation, localization, treatment time, and increased radiation leakage. We would suggest that, at a minimum, the endpoints used in this work be evaluated before beginning IMRT pelvic nodal irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y
2015-06-15
Purpose: To improve the quality of kV X-ray cone beam CT (CBCT) for use in radiotherapy delivery assessment and re-planning by using penalized likelihood (PL) iterative reconstruction and auto-segmentation accuracy of the resulting CBCTs as an image quality metric. Methods: Present filtered backprojection (FBP) CBCT reconstructions can be improved upon by PL reconstruction with image formation models and appropriate regularization constraints. We use two constraints: 1) image smoothing via an edge preserving filter, and 2) a constraint minimizing the differences between the reconstruction and a registered prior image. Reconstructions of prostate therapy CBCTs were computed with constraint 1 alone andmore » with both constraints. The prior images were planning CTs(pCT) deformable-registered to the FBP reconstructions. Anatomy segmentations were done using atlas-based auto-segmentation (Elekta ADMIRE). Results: We observed small but consistent improvements in the Dice similarity coefficients of PL reconstructions over the FBP results, and additional small improvements with the added prior image constraint. For a CBCT with anatomy very similar in appearance to the pCT, we observed these changes in the Dice metric: +2.9% (prostate), +8.6% (rectum), −1.9% (bladder). For a second CBCT with a very different rectum configuration, we observed +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). For a third case with significant lateral truncation of the field of view, we observed: +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). Adding the prior image constraint raised Dice measures by about 1%. Conclusion: Efficient and practical adaptive radiotherapy requires accurate deformable registration and accurate anatomy delineation. We show here small and consistent patterns of improved contour accuracy using PL iterative reconstruction compared with FBP reconstruction. However, the modest extent of these results and the pattern of differences across CBCT cases suggest that significant further development will be required to make CBCT useful to adaptive radiotherapy.« less
Open-source software platform for medical image segmentation applications
NASA Astrophysics Data System (ADS)
Namías, R.; D'Amato, J. P.; del Fresno, M.
2017-11-01
Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, T; Zhou, L; Li, Y
2015-06-15
Purpose: To develop a patient-specific rectal toxicity predictor guided plan quality control tool for prostate SBRT plans. Methods: For prostate SBRT cases, four segments of rectal walls including peri-prostatic anterior rectal wall, peri-prostatic lateral rectal walls, peri-prostatic posterior rectal wall and rectum superior to prostate are identified as organs at risk and the circumference of rectal wall receiving more than 39 Gy (CRW39) and 24 Gy (CRW24) are rectal toxicity predictors. In this new geometry-dosimetry model, a patient geometry descriptor, differential circumference of rectal wall (dCRW) is used as model input geometry parameters and plan dosimetric endpoints CRW39 and CRW24more » are output dosimetric parameters. Linear models are built to correlate dCRW to both CRW39 and CRW24 and established with both a linear regression method and a modified bagging ensemble machine learning method. 27 SBRT prostate cases are retrospectively studied from a dose-escalated clinical trial research. 20 prescribed 50 Gy SBRT cases are recruited to train the model and the other rescaled 7 cases are used to evaluated model feasibility and accuracy. Results: Each solved linear coefficient sequence related to CRW39 or CRW24 is a one-dimensional decreasing function of the distance from the PTV boundary, indicating that the different locations of each rectal circumference have different contributions to each particular dosimetric endpoint. The fitting errors for those trained 20 prostate SBRT cases are small with mean values of 2.39%, 2.45% relative to the endpoint values for SBRT rectal toxicity predictor CRW39 and CRW24 respectively. 1 out of 7 evaluation plans is identified as poor quality plan. After re-planning, the CRW39 and CRW24 can be reduced by 3.34% and 3%, without sacrificing PTV coverage. Conclusion: The proposed patient geometry-plan toxicity predictor model for SBRT plans can be successfully applied to plan quality control for prostate SBRT cases.« less
Skerk, Visnja; Krhen, Ivan; Cajić, Vjeran; Markovinović, Leo; Puntarić, Alemka; Roglić, Srdan; Zekan, Sime; Ljubin-Sternak, Suncanica; Zidovec Lepej, Snjezana; Vince, Adriana
2007-01-01
Since the beginning of 1999, over 1500 patients with symptoms of chronic prostatitis were examined at Dr. Fran Mihaljević University Hospital for Infectious Diseases in Zagreb. In almost all of these patients urethral swabs and quantitative segmented bacteriologic cultures and microscopy of expressed prostatic secretion (EPS) or voided bladder urine3 (VB3) were performed as described by Meares and Stamey. Urethral swabs, EPS or VB3 were examined for the presence of Chlamydia (C.) trachomatis by McCoy culture and Lugol stain or by immunofluorescent typing with monoclonal antibodies. In the majority of patients C. trachomatis was demonstrated in parallel in EPS or VB3 by DNA/RNA hybridization method. Normal white blood cell count viewed per high power field<10 was found in 362 (68%) of 536 patients with symptoms of chronic prostatitis and C. trachomatis detected in EPS or VB3. These findings additionally suggest that C. trachomatis can be suspected as a causative pathogen in all categories of chronic prostatitis syndrome. Furthermore, this paper summarizes the results of five previously published clinical studies on the efficacy and tolerability of various treatment schemes for chronic chlamydial prostatitis, conducted from the beginning of 1999 until the end of 2003.
MRI/TRUS data fusion for prostate brachytherapy. Preliminary results.
Reynier, Christophe; Troccaz, Jocelyne; Fourneret, Philippe; Dusserre, André; Gay-Jeune, Cécile; Descotes, Jean-Luc; Bolla, Michel; Giraud, Jean-Yves
2004-06-01
Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this imaging modality particularly as regards the apex of the gland and from an intra- and interobserver variability standpoint. Radioactive seeds are implanted inside open interventional MR machines in some centers. Since MRI was shown to be sensitive and specific for prostate imaging whilst open MR is prohibitive for most centers and makes surgical procedures very complex, this work suggests bringing the MR virtually in the operating room with MRI/TRUS data fusion. This involves providing the physician with bi-modality images (TRUS plus MRI) intended to improve treatment planning from the data registration stage. The paper describes the method developed and implemented in the PROCUR system. Results are reported for a phantom and first series of patients. Phantom experiments helped characterize the accuracy of the process. Patient experiments have shown that using MRI data linked with TRUS data improves TRUS image segmentation especially regarding the apex and base of the prostate. This may significantly modify prostate volume definition and have an impact on treatment planning.
Artan, Yusuf; Haider, Masoom A; Langer, Deanna L; van der Kwast, Theodorus H; Evans, Andrew J; Yang, Yongyi; Wernick, Miles N; Trachtenberg, John; Yetik, Imam Samil
2010-09-01
Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Therefore, in vivo imaging plays an important role for the detection and treatment of the disease. Accurate prostate cancer localization with noninvasive imaging can be used to guide biopsy, radiotherapy, and surgery as well as to monitor disease progression. Magnetic resonance imaging (MRI) performed with an endorectal coil provides higher prostate cancer localization accuracy, when compared to transrectal ultrasound (TRUS). However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intraobserver variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this study presents an automated localization method using cost-sensitive support vector machines (SVMs) and shows that this method results in improved localization accuracy than classical SVM. Additionally, we develop a new segmentation method by combining conditional random fields (CRF) with a cost-sensitive framework and show that our method further improves cost-sensitive SVM results by incorporating spatial information. We test SVM, cost-sensitive SVM, and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced methods such as cost-sensitive SVM as well as the proposed cost-sensitive CRF can boost the performance significantly when compared to SVM.
Anatomy-aware measurement of segmentation accuracy
NASA Astrophysics Data System (ADS)
Tizhoosh, H. R.; Othman, A. A.
2016-03-01
Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.
Singh, Swaroop S; Kim, Desok; Mohler, James L
2005-05-11
Androgen acts via androgen receptor (AR) and accurate measurement of the levels of AR protein expression is critical for prostate research. The expression of AR in paired specimens of benign prostate and prostate cancer from 20 African and 20 Caucasian Americans was compared to demonstrate an application of this system. A set of 200 immunopositive and 200 immunonegative nuclei were collected from the images using a macro developed in Image Pro Plus. Linear Discriminant and Logistic Regression analyses were performed on the data to generate classification coefficients. Classification coefficients render the automated image analysis software independent of the type of immunostaining or image acquisition system used. The image analysis software performs local segmentation and uses nuclear shape and size to detect prostatic epithelial nuclei. AR expression is described by (a) percentage of immunopositive nuclei; (b) percentage of immunopositive nuclear area; and (c) intensity of AR expression among immunopositive nuclei or areas. The percent positive nuclei and percent nuclear area were similar by race in both benign prostate hyperplasia and prostate cancer. In prostate cancer epithelial nuclei, African Americans exhibited 38% higher levels of AR immunostaining than Caucasian Americans (two sided Student's t-tests; P < 0.05). Intensity of AR immunostaining was similar between races in benign prostate. The differences measured in the intensity of AR expression in prostate cancer were consistent with previous studies. Classification coefficients are required due to non-standardized immunostaining and image collection methods across medical institutions and research laboratories and helps customize the software for the specimen under study. The availability of a free, automated system creates new opportunities for testing, evaluation and use of this image analysis system by many research groups who study nuclear protein expression.
Normalization of T2W-MRI prostate images using Rician a priori
NASA Astrophysics Data System (ADS)
Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Vilanova, Joan C.; Walker, Paul M.; Freixenet, Jordi; Meyer-Baese, Anke; Mériaudeau, Fabrice; Martí, Robert
2016-03-01
Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene
2016-03-01
Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perk, T; Bradshaw, T; Harmon, S
2015-06-15
Purpose: Identification of metastatic bone lesions is critical in prostate cancer, where treatments may be more effective in patients with fewer lesions. This study aims characterize the distribution and spread of bone lesions and create a probability map of metastatic spread in bone. Methods: Fifty-five metastatic castrate-resistant prostate cancer patients received up to 3 whole-body [F-18]NaF PET/CT scans. Lesions were identified by physician on PET/CT and contoured using a threshold of SUV>15. An atlas-based segmentation method was used to create CT regions, which determined skeletal location of lesions. Patients were divided into 3 groups with low (N<40), medium (40100) numbersmore » of lesions. A combination of articulated and deformable registrations was used to register the skeletal segments and lesions of each patient to a single skeleton. All the lesion data was then combined to make a probability map. Results: A total of 4038 metastatic lesions (mean 74, range 2–304) were identified. Skeletal regions with highest occurrence of lesions included ribs, thoracic spine, and pelvis with 21%, 19%, and 15% of the total number lesions and 8%, 18%, and 31 % of the total lesion volume, respectively. Interestingly, patients with fewer lesions were found to have a lower proportion of lesions in the ribs (9% in low vs. 27% in high number of lesions). Additionally, the probability map showed specific areas in the spine and pelvis where over 75% of patients had metastases, and other areas in the skeleton with a less than 2% of metastases. Conclusion: We identified skeletal regions with higher incidence of metastases and specific sub-regions in the skeleton that had high or low probability of occurrence of metastases. Additionally, we found that metastatic lesions in the ribs and skull occur more commonly in advanced disease. These results may have future applications in computer-aided diagnosis. Funding from the Prostate Cancer Foundation.« less
Delpon, Grégory; Escande, Alexandre; Ruef, Timothée; Darréon, Julien; Fontaine, Jimmy; Noblet, Caroline; Supiot, Stéphane; Lacornerie, Thomas; Pasquier, David
2016-01-01
Automated atlas-based segmentation (ABS) algorithms present the potential to reduce the variability in volume delineation. Several vendors offer software that are mainly used for cranial, head and neck, and prostate cases. The present study will compare the contours produced by a radiation oncologist to the contours computed by different automated ABS algorithms for prostate bed cases, including femoral heads, bladder, and rectum. Contour comparison was evaluated by different metrics such as volume ratio, Dice coefficient, and Hausdorff distance. Results depended on the volume of interest showed some discrepancies between the different software. Automatic contours could be a good starting point for the delineation of organs since efficient editing tools are provided by different vendors. It should become an important help in the next few years for organ at risk delineation. PMID:27536556
Prostate malignancy grading using gland-related shape descriptors
NASA Astrophysics Data System (ADS)
Braumann, Ulf-Dietrich; Scheibe, Patrick; Loeffler, Markus; Kristiansen, Glen; Wernert, Nicolas
2014-03-01
A proof-of-principle study was accomplished assessing the descriptive potential of two simple geometric measures (shape descriptors) applied to sets of segmented glands within images of 125 prostate cancer tissue sections. Respective measures addressing glandular shapes were (i) inverse solidity and (ii) inverse compactness. Using a classifier based on logistic regression, Gleason grades 3 and 4/5 could be differentiated with an accuracy of approx. 95%. Results suggest not only good discriminatory properties, but also robustness against gland segmentation variations. False classifications in part were caused by inadvertent Gleason grade assignments, as a-posteriori re-inspections had turned out.
Experimental autoimmune prostatitis induces microglial activation in the spinal cord
Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen
2014-01-01
Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093
Learning normalized inputs for iterative estimation in medical image segmentation.
Drozdzal, Michal; Chartrand, Gabriel; Vorontsov, Eugene; Shakeri, Mahsa; Di Jorio, Lisa; Tang, An; Romero, Adriana; Bengio, Yoshua; Pal, Chris; Kadoury, Samuel
2018-02-01
In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data. In our image segmentation pipeline, we use FCNs to obtain normalized images, which are then iteratively refined by means of a FC-ResNet to generate a segmentation prediction. As in other fully convolutional approaches, our pipeline can be used off-the-shelf on different image modalities. We show that using this pipeline, we exhibit state-of-the-art performance on the challenging Electron Microscopy benchmark, when compared to other 2D methods. We improve segmentation results on CT images of liver lesions, when contrasting with standard FCN methods. Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods. The obtained results illustrate the strong potential and versatility of the pipeline by achieving accurate segmentations on a variety of image modalities and different anatomical regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Kranz, J; Maurer, G; Maurer, U; Deserno, O; Schulte, S; Steffens, J
2017-03-01
A urethral stricture is a scar of the urethral epithelium which can cause obstructive voiding dysfunction with consequential damage of the upper urinary tract. Almost 45% of all strictures are iatrogenic; they develop in 2-9% of patients after radical prostatectomy, but can also occur after prostate cancer radiotherapy. This study provides 5‑year data of a certified prostate cancer center (PKZ) in terms of urethral strictures. Between 01/2008 and 12/2012 a total of 519 men were irradiated for prostate cancer (LDR and HDR brachytherapy as well as external beam radiation). The entire cohort was followed-up prospectively according to a standardized protocol (by type of irradiation). Short segment urethral strictures were treated by urethrotomy, recurrent and long segment stenosis with buccal mucosa urethroplasty. A total of 18 of 519 (3.4%) patients developed a urethral stricture post-therapeutically, which recurred in 66% of cases after the first operative treatment. The largest risk for developing a urethral stricture is attributed to the HDR brachytherapy (8.9%). Urethral strictures after prostate cancer radiotherapy should be diagnosed and treated in time for long-term preservation of renal function. The rate of radiogenic urethral strictures (3.4%) is equivalent to those after radical prostatectomy. Due to a high rate of recurrences, urethrotomy has a limited importance after irradiation.
A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy.
Anas, Emran Mohammad Abu; Mousavi, Parvin; Abolmaesumi, Purang
2018-06-01
Targeted prostate biopsy, incorporating multi-parametric magnetic resonance imaging (mp-MRI) and its registration with ultrasound, is currently the state-of-the-art in prostate cancer diagnosis. The registration process in most targeted biopsy systems today relies heavily on accurate segmentation of ultrasound images. Automatic or semi-automatic segmentation is typically performed offline prior to the start of the biopsy procedure. In this paper, we present a deep neural network based real-time prostate segmentation technique during the biopsy procedure, hence paving the way for dynamic registration of mp-MRI and ultrasound data. In addition to using convolutional networks for extracting spatial features, the proposed approach employs recurrent networks to exploit the temporal information among a series of ultrasound images. One of the key contributions in the architecture is to use residual convolution in the recurrent networks to improve optimization. We also exploit recurrent connections within and across different layers of the deep networks to maximize the utilization of the temporal information. Furthermore, we perform dense and sparse sampling of the input ultrasound sequence to make the network robust to ultrasound artifacts. Our architecture is trained on 2,238 labeled transrectal ultrasound images, with an additional 637 and 1,017 unseen images used for validation and testing, respectively. We obtain a mean Dice similarity coefficient of 93%, a mean surface distance error of 1.10 mm and a mean Hausdorff distance error of 3.0 mm. A comparison of the reported results with those of a state-of-the-art technique indicates statistically significant improvement achieved by the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielen, Gerard J. van der; Hoogeman, Mischa S.; Dohle, Gert R.
2008-07-01
Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and themore » penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins.« less
A spline-based non-linear diffeomorphism for multimodal prostate registration.
Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice
2012-08-01
This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Factors Affecting Prostate Volume Estimation in Computed Tomography Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Cheng-Hsiu; Wang, Shyh-Jen; Institute of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
2011-04-01
The aim of this study was to investigate how apex-localizing methods and the computed tomography (CT) slice thickness affected the CT-based prostate volume estimation. Twenty-eight volunteers underwent evaluations of prostate volume by CT, where the contour segmentations were performed by three observers. The bottom of ischial tuberosities (ITs) and the bulb of the penis were used as reference positions to locate the apex, and the distances to the apex were recorded as 1.3 and 2.0 cm, respectively. Interobserver variations to locate ITs and the bulb of the penis were, on average, 0.10 cm (range 0.03-0.38 cm) and 0.30 cm (rangemore » 0.00-0.98 cm), respectively. The range of CT slice thickness varied from 0.08-0.48 cm and was adopted to examine the influence of the variation on volume estimation. The volume deviation from the reference case (0.08 cm), which increases in tandem with the slice thickness, was within {+-} 3 cm{sup 3}, regardless of the adopted apex-locating reference positions. In addition, the maximum error of apex identification was 1.5 times of slice thickness. Finally, based on the precise CT films and the methods of apex identification, there were strong positive correlation coefficients for the estimated prostate volume by CT and the transabdominal ultrasonography, as found in the present study (r > 0.87; p < 0.0001), and this was confirmed by Bland-Altman analysis. These results will help to identify factors that affect prostate volume calculation and to contribute to the improved estimation of the prostate volume based on CT images.« less
NASA Astrophysics Data System (ADS)
Dréan, G.; Acosta, O.; Ospina, J. D.; Voisin, C.; Rigaud, B.; Simon, A.; Haigron, P.; de Crevoisier, R.
2013-11-01
Nowadays, the de nition of patient-speci c constraints in prostate cancer radiotherapy planning are solely based on dose-volume histogram (DVH) parameters. Nevertheless those DVH models lack of spatial accuracy since they do not use the complete 3D information of the dose distribution. The goal of the study was to propose an automatic work ow to de ne patient-speci c rectal sub-regions (RSR) involved in rectal bleeding (RB) in case of prostate cancer radiotherapy. A multi-atlas database spanning the large rectal shape variability was built from a population of 116 individuals. Non-rigid registration followed by voxel-wise statistical analysis on those templates allowed nding RSR likely correlated with RB (from a learning cohort of 63 patients). To de ne patient-speci c RSR, weighted atlas-based segmentation with a vote was then applied to 30 test patients. Results show the potentiality of the method to be used for patient-speci c planning of intensity modulated radiotherapy (IMRT).
SU-E-T-250: New IMRT Sequencing Strategy: Towards Intra-Fraction Plan Adaptation for the MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
2014-06-01
Purpose: To develop a new sequencer for IMRT planning that during treatment makes the inclusion of external factors possible and by doing so accounts for intra-fraction anatomy changes. Given a real-time imaging modality that will provide the updated patient anatomy during delivery, this sequencer is able to take these changes into account during the calculation of subsequent segments. Methods: Pencil beams are generated for each beam angle of the treatment and a fluence optimization is performed. The pencil beams, together with the patient anatomy and the above optimal fluence form the input of our algorithm. During each iteration the followingmore » steps are performed: A fluence optimization is done and each beam's fluence is then split to discrete intensity levels. Deliverable segments are calculated for each one of these. Each segment's area multiplied by its intensity describes its efficiency. The most efficient segment among all beams is then chosen to deliver a part of the calculated fluence and the dose that will be delivered by this segment is calculated. This delivered dose is then subtracted from the remaining dose. This loop is repeated until 90% of the dose has been delivered and a final segment weight optimization is performed to reach full convergence. Results: This algorithm was tested in several prostate cases yielding results that meet all clinical constraints. Quality assurance was performed on Delta4 and film phantoms for one of these prostate cases and received clinical acceptance after passing both gamma analyses with the 3%/3mm criteria. Conclusion: A new sequencing algorithm was developed to facilitate the needs of intensity modulated treatment. The first results on static anatomy confirm that it can calculate clinical plans equivalent to those of the commercially available planning systems. We are now working towards 100% dose convergence which will allow us to handle anatomy deformations. This work is financially supported by Elekta AB, Stockholm, Sweden.« less
Influence of Antiflatulent Dietary Advice on Intrafraction Motion for Prostate Cancer Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lips, Irene M., E-mail: I.M.Lips@umcutrecht.nl; Kotte, Alexis N.T.J.; Gils, Carla H. van
Purpose: To evaluate the effect of an antiflatulent dietary advice on the intrafraction prostate motion in patients treated with intensity-modulated radiotherapy (IMRT) for prostate cancer. Methods and Materials: Between February 2002 and December 2009, 977 patients received five-beam IMRT for prostate cancer to a dose of 76 Gy in 35 fractions combined with fiducial markers for position verification. In July 2008, the diet, consisting of dietary guidelines to obtain regular bowel movements and to reduce intestinal gas by avoiding certain foods and air swallowing, was introduced to reduce the prostate motion. The intrafraction prostate movement was determined from the portalmore » images of the first segment of all five beams. Clinically relevant intrafraction motion was defined as {>=}50% of the fractions with an intrafraction motion outside a range of 3 mm. Results: A total of 739 patients were treated without the diet and 105 patients were treated with radiotherapy after introduction of the diet. The median and interquartile range of the average intrafraction motion per patient was 2.53 mm (interquartile range, 2.2-3.0) without the diet and 3.00 mm (interquartile range, 2.4-3.5) with the diet (p < .0001). The percentage of patients with clinically relevant intrafraction motion increased statistically significant from 19.1% without diet to 42.9% with a diet (odds ratio, 3.18; 95% confidence interval, 2.07-4.88; p < .0001). Conclusions: The results of the present study suggest that antiflatulent dietary advice for patients undergoing IMRT for prostate cancer does not reduce the intrafraction movement of the prostate. Therefore, antiflatulent dietary advice is not recommended in clinical practice for this purpose.« less
SU-F-T-41: 3D MTP-TRUS for Prostate Implant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, P
Purpose: Prostate brachytherapy is an effective treatment for early prostate cancer. The current prostate implant is limited to using 2D transrectal ultrassound (TRUS) or machenical motor driven 2D array either in the end or on the side. Real-time 3D images can improve the accuracy of the guidance of prostate implant. The concept of our system is to allow realtime full visualization of the entire prostate with the multiple transverse scan. Methods: The prototype of 3D Multiple-Transverse-Plane Transrectal Ultrasound probe (MTP-TRUS) has been designed by us and manufactured by Blatek inc. It has 7 convex linear arrays and each array hasmore » 96 elements. It is connected to cQuest Fire bird research system (Cephasonics inc.) which is a flexible and configurable ultrasound-development platform. The size of cQuest Firebird system is compact and supports the real-time wireless image transferring. A relay based mux board is designed for the cQuest Firebird system to be able to connect 672 elements. Results: The center frequency of probe is 6MHz±10%. The diameter of probe is 3cm and the length is 20cm. The element pitch is 0.205 mm. Array focus is 30mm and spacing 1.6cm. The beam data for each array was measured and met our expectation. The interface board of MTP-TURS is made and able to connect to cQuest Firebird system. The image display interface is still under the development. Our real-time needle tracking algorithm will be implemented too. Conclusion: Our MTP-TRUS system for prostate implant will be able to acquire real-time 3D images of prostate and do the real-time needle segmentation and tracking. The system is compact and have wireless function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Jin Aun; Institute of Medical Physics, School of Physics, University of Sydney, New South Wales; Booth, Jeremy T.
2012-12-01
Purpose: Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). Methods and Materials: Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiringmore » kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced {>=}3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. Results: KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of {>=}3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. Conclusions: KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.« less
Fast automated segmentation of multiple objects via spatially weighted shape learning
NASA Astrophysics Data System (ADS)
Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart
2016-11-01
Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.
Fast automated segmentation of multiple objects via spatially weighted shape learning.
Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart
2016-11-21
Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, T; Dooley, J; Zhu, T
2016-06-15
Purpose: Clinical implementations of adaptive radiotherapy (ART) are limited mainly by the requirement of delivery QA (DQA) prior to the treatment. Small segment size and small segment MU are two dominant factors causing failures of DQA. The aim of this project is to explore the feasibility of ART treatment without DQA by using a partial optimization approach. Methods: A retrospective simulation study was performed on two prostate cancer patients treated with SMLC-IMRT. The prescription was 180cGx25 fractions with daily CT-on-rail imaging for target alignment. For each patient, seven daily CTs were selected randomly across treatment course. The contours were deformablelymore » transferred from the simulation CT onto the daily CTs and modified appropriately. For each selected treatment, dose distributions from original beams were calculated on the daily treatment CTs (DCT plan). An ART plan was also created by optimizing the segmental MU only, while the segment shapes were preserved and the minimum MU constraint was respected. The overlaps, between PTV and the rectum, between PTV and the bladder, were normalized by the PTV volume. This ratio was used to characterize the difficulty of organs-at-risk (OAR) sparing. Results: Comparing to the original plan, PTV coverage was compromised significantly in DCT plans (82% ± 7%) while all ART plans preserved PTV coverage. ART plans showed similar OAR sparing as the original plan, such as V40Gy=11.2cc (ART) vs 11.4cc (original) for the rectum and D10cc=4580cGy vs 4605cGy for the bladder. The sparing of the rectum/bladder depends on overlap ratios. The sparing in ART was either similar or improved when overlap ratios in treatment CTs were smaller than those in original plan. Conclusion: A partial optimization method is developed that may make the real-time ART feasible on selected patients. Future research is warranted to quantify the applicability of the proposed method.« less
Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS; Kapanen, Mika
2014-01-15
Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from −2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.« less
Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
Xu, Zhoubing; Burke, Ryan P; Lee, Christopher P; Baucom, Rebeccah B; Poulose, Benjamin K; Abramson, Richard G; Landman, Bennett A
2015-08-01
Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Ting; Kim, Sung; Goyal, Sharad
2010-01-15
Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintainmore » the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a displacement map was generated. Segmented volumes in the CT images deformed using the displacement field were compared against the manual segmentations in the CBCT images to quantitatively measure the convergence of the shape and the volume. Other image features were also used to evaluate the overall performance of the registration. Results: The algorithm was able to complete the segmentation and registration process within 1 min, and the superimposed clinical objects achieved a volumetric similarity measure of over 90% between the reference and the registered data. Validation results also showed that the proposed registration could accurately trace the deformation inside the target volume with average errors of less than 1 mm. The method had a solid performance in registering the simulated images with up to 20 Hounsfield unit white noise added. Also, the side by side comparison with the original demons algorithm demonstrated its improved registration performance over the local pixel-based registration approaches. Conclusions: Given the strength and efficiency of the algorithm, the proposed method has significant clinical potential to accelerate and to improve the CBCT delineation and targets tracking in online IGRT applications.« less
Almatani, Turki; Hugtenburg, Richard P; Lewis, Ryan D; Barley, Susan E; Edwards, Mark A
2016-10-01
Cone beam CT (CBCT) images contain more scatter than a conventional CT image and therefore provide inaccurate Hounsfield units (HUs). Consequently, CBCT images cannot be used directly for radiotherapy dose calculation. The aim of this study is to enable dose calculations to be performed with the use of CBCT images taken during radiotherapy and evaluate the necessity of replanning. A patient with prostate cancer with bilateral metallic prosthetic hip replacements was imaged using both CT and CBCT. The multilevel threshold (MLT) algorithm was used to categorize pixel values in the CBCT images into segments of homogeneous HU. The variation in HU with position in the CBCT images was taken into consideration. This segmentation method relies on the operator dividing the CBCT data into a set of volumes where the variation in the relationship between pixel values and HUs is small. An automated MLT algorithm was developed to reduce the operator time associated with the process. An intensity-modulated radiation therapy plan was generated from CT images of the patient. The plan was then copied to the segmented CBCT (sCBCT) data sets with identical settings, and the doses were recalculated and compared. Gamma evaluation showed that the percentage of points in the rectum with γ < 1 (3%/3 mm) were 98.7% and 97.7% in the sCBCT using MLT and the automated MLT algorithms, respectively. Compared with the planning CT (pCT) plan, the MLT algorithm showed -0.46% dose difference with 8 h operator time while the automated MLT algorithm showed -1.3%, which are both considered to be clinically acceptable, when using collapsed cone algorithm. The segmentation of CBCT images using the method in this study can be used for dose calculation. For a patient with prostate cancer with bilateral hip prostheses and the associated issues with CT imaging, the MLT algorithms achieved a sufficient dose calculation accuracy that is clinically acceptable. The automated MLT algorithm reduced the operator time associated with implementing the MLT algorithm to achieve clinically acceptable accuracy. This saved time makes the automated MLT algorithm superior and easier to implement in the clinical setting. The MLT algorithm has been extended to the complex example of a patient with bilateral hip prostheses, which with the introduction of automation is feasible for use in adaptive radiotherapy, as an alternative to obtaining a new pCT and reoutlining the structures.
Retrograde double-labeling demonstrates convergent afferent innervation of the prostate and bladder.
Lee, Sanghee; Yang, Guang; Xiang, William; Bushman, Wade
2016-06-01
Prostatic inflammation is a common histologic finding in men with lower urinary tract symptoms (LUTS). It has been postulated that prostatic inflammation could sensitize afferent neurons innervating the bladder and thereby produce changes in voiding behavior. In support of this, we demonstrate an anatomic basis for pelvic cross-talk involving the prostate and bladder. Retrograde labeling was performed by an application of a neuro-tracer Fast Blue (FB) to one side of either the anterior prostate (AP), dorsal lateral prostate (DLP)/ventral prostate (VP), bladder, or seminal vesicle (SV). Examination of dorsal root ganglion (DRG) neuron labeling revealed shared afferent innervation of the prostate and bladder at spinal segments of T13, L1, L2, L6, and S1. Dual labeling was performed by an application of FB and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyaine perchlorate (DiI) to the AP and bladder, respectively. We observed double-labeled DRG neurons at T13, L1, L2, L6, and S1--a finding that proves convergent innervation of prostate and bladder. Our observations demonstrate the potential for neural cross-talk between the prostate and bladder and support a postulated mechanism that prostatic inflammation may induce hyper-sensitization of bladder afferents and produce irritative LUTS. © 2016 Wiley Periodicals, Inc.
The fractionated dipole antenna: A new antenna for body imaging at 7 Tesla.
Raaijmakers, Alexander J E; Italiaander, Michel; Voogt, Ingmar J; Luijten, Peter R; Hoogduin, Johannes M; Klomp, Dennis W J; van den Berg, Cornelis A T
2016-03-01
Dipole antennas in ultrahigh field MRI have demonstrated advantages over more conventional designs. In this study, the fractionated dipole antenna is presented: a dipole where the legs are split into segments that are interconnected by capacitors or inductors. A parameter study has been performed on dipole antenna length using numerical simulations. A subsequent simulation study investigates the optimal intersegment capacitor/inductor value. The resulting optimal design has been constructed and compared to a previous design, the single-side adapted dipole (SSAD) by simulations and measurements. An array of eight elements has been constructed for prostate imaging on four subjects (body mass index 20-27.5) using 8 × 2 kW amplifiers. For prostate imaging at 7T, lowest peak local specific-absorption rate (SAR) levels are achieved if the antenna is 30 cm or longer. A fractionated dipole antenna design with inductors between segments has been chosen to achieve even lower SAR levels and more homogeneous receive sensitivities. With the new design, good quality prostate images are acquired. SAR levels are reduced by 41% to 63% in comparison to the SSAD. Coupling levels are moderate (average nearest neighbor: -14.6 dB) for each subject and prostate B1+ levels range from 12 to 18 μT. © 2015 Wiley Periodicals, Inc.
Decision forests for learning prostate cancer probability maps from multiparametric MRI
NASA Astrophysics Data System (ADS)
Ehrenberg, Henry R.; Cornfeld, Daniel; Nawaf, Cayce B.; Sprenkle, Preston C.; Duncan, James S.
2016-03-01
Objectives: Advances in multiparametric magnetic resonance imaging (mpMRI) and ultrasound/MRI fusion imaging offer a powerful alternative to the typical undirected approach to diagnosing prostate cancer. However, these methods require the time and expertise needed to interpret mpMRI image scenes. In this paper, a machine learning framework for automatically detecting and localizing cancerous lesions within the prostate is developed and evaluated. Methods: Two studies were performed to gather MRI and pathology data. The 12 patients in the first study underwent an MRI session to obtain structural, diffusion-weighted, and dynamic contrast enhanced image vol- umes of the prostate, and regions suspected of being cancerous from the MRI data were manually contoured by radiologists. Whole-mount slices of the prostate were obtained for the patients in the second study, in addition to structural and diffusion-weighted MRI data, for pathology verification. A 3-D feature set for voxel-wise appear- ance description combining intensity data, textural operators, and zonal approximations was generated. Voxels in a test set were classified as normal or cancer using a decision forest-based model initialized using Gaussian discriminant analysis. A leave-one-patient-out cross-validation scheme was used to assess the predictions against the expert manual segmentations confirmed as cancer by biopsy. Results: We achieved an area under the average receiver-operator characteristic curve of 0.923 for the first study, and visual assessment of the probability maps showed 21 out of 22 tumors were identified while a high level of specificity was maintained. In addition to evaluating the model against related approaches, the effects of the individual MRI parameter types were explored, and pathological verification using whole-mount slices from the second study was performed. Conclusions: The results of this paper show that the combination of mpMRI and machine learning is a powerful tool for quantitatively diagnosing prostate cancer.
Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate
NASA Astrophysics Data System (ADS)
Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi
2014-03-01
Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, D; Bol, GH; Asselen, B van
Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically andmore » manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.« less
An Analysis of Image Segmentation Time in Beam’s-Eye-View Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chun; Spelbring, D.R.; Chen, George T.Y.
In this work we tabulate and histogram the image segmentation time for beam’s eye view (BEV) treatment planning in our center. The average time needed to generate contours on CT images delineating normal structures and treatment target volumes is calculated using a data base containing over 500 patients’ BEV plans. The average number of contours and total image segmentation time needed for BEV plans in three common treatment sites, namely, head/neck, lung/chest, and prostate, were estimated.
Evaluation of atlas-based auto-segmentation software in prostate cancer patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenham, Stuart, E-mail: stuart.greenham@ncahs.health.nsw.gov.au; Dean, Jenna; Fu, Cheuk Kuen Kenneth
2014-09-15
The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinicallymore » in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined.« less
NASA Astrophysics Data System (ADS)
Rubeaux, Mathieu; Simon, Antoine; Gnep, Khemara; Colliaux, Jérémy; Acosta, Oscar; de Crevoisier, Renaud; Haigron, Pascal
2013-03-01
Image-Guided Radiation Therapy (IGRT) aims at increasing the precision of radiation dose delivery. In the context of prostate cancer, a planning Computed Tomography (CT) image with manually defined prostate and organs at risk (OAR) delineations is usually associated with daily Cone Beam Computed Tomography (CBCT) follow-up images. The CBCT images allow to visualize the prostate position and to reposition the patient accordingly. They also should be used to evaluate the dose received by the organs at each fraction of the treatment. To do so, the first step is a prostate and OAR segmentation on the daily CBCTs, which is very timeconsuming. To simplify this task, CT to CBCT non-rigid registration could be used in order to propagate the original CT delineations in the CBCT images. For this aim, we compared several non-rigid registration methods. They are all based on the Mutual Information (MI) similarity measure, and use a BSpline transformation model. But we add different constraints to this global scheme in order to evaluate their impact on the final results. These algorithms are investigated on two real datasets, representing a total of 70 CBCT on which a reference delineation has been realized. The evaluation is led using the Dice Similarity Coefficient (DSC) as a quality criteria. The experiments show that a rigid penalty term on the bones improves the final registration result, providing high quality propagated delineations.
Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui
2013-12-01
The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results were obtained with normalization by both the computer estimated and pathologist estimated epithelium percentage. Our results show that estimation of tissue epithelium percentage using our color-based segmentation method correlates well with pathologists' estimation of tissue epithelium percentages. The epithelium contents estimated by color-based segmentation may be useful in immuno-based analysis or clinical proteomic analysis of tumor proteins. The codes used for epithelium estimation as well as the micrographs with estimated epithelium content are available online.
Automatic selection of arterial input function using tri-exponential models
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Chen, Jeremy; Castro, Marcelo; Thomasson, David
2009-02-01
Dynamic Contrast Enhanced MRI (DCE-MRI) is one method for drug and tumor assessment. Selecting a consistent arterial input function (AIF) is necessary to calculate tissue and tumor pharmacokinetic parameters in DCE-MRI. This paper presents an automatic and robust method to select the AIF. The first stage is artery detection and segmentation, where knowledge about artery structure and dynamic signal intensity temporal properties of DCE-MRI is employed. The second stage is AIF model fitting and selection. A tri-exponential model is fitted for every candidate AIF using the Levenberg-Marquardt method, and the best fitted AIF is selected. Our method has been applied in DCE-MRIs of four different body parts: breast, brain, liver and prostate. The success rates in artery segmentation for 19 cases are 89.6%+/-15.9%. The pharmacokinetic parameters computed from the automatically selected AIFs are highly correlated with those from manually determined AIFs (R2=0.946, P(T<=t)=0.09). Our imaging-based tri-exponential AIF model demonstrated significant improvement over a previously proposed bi-exponential model.
NASA Astrophysics Data System (ADS)
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B.
2017-05-01
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
Chang, Jina; Tian, Zhen; Lu, Weiguo; Gu, Xuejun; Chen, Mingli; Jiang, Steve B
2017-05-07
Multi-atlas segmentation (MAS) has been widely used to automate the delineation of organs at risk (OARs) for radiotherapy. Label fusion is a crucial step in MAS to cope with the segmentation variabilities among multiple atlases. However, most existing label fusion methods do not consider the potential dosimetric impact of the segmentation result. In this proof-of-concept study, we propose a novel geometry-dosimetry label fusion method for MAS-based OAR auto-contouring, which evaluates the segmentation performance in terms of both geometric accuracy and the dosimetric impact of the segmentation accuracy on the resulting treatment plan. Differently from the original selective and iterative method for performance level estimation (SIMPLE), we evaluated and rejected the atlases based on both Dice similarity coefficient and the predicted error of the dosimetric endpoints. The dosimetric error was predicted using our previously developed geometry-dosimetry model. We tested our method in MAS-based rectum auto-contouring on 20 prostate cancer patients. The accuracy in the rectum sub-volume close to the planning tumor volume (PTV), which was found to be a dosimetric sensitive region of the rectum, was greatly improved. The mean absolute distance between the obtained contour and the physician-drawn contour in the rectum sub-volume 2 mm away from PTV was reduced from 3.96 mm to 3.36 mm on average for the 20 patients, with the maximum decrease found to be from 9.22 mm to 3.75 mm. We also compared the dosimetric endpoints predicted for the obtained contours with those predicted for the physician-drawn contours. Our method led to smaller dosimetric endpoint errors than the SIMPLE method in 15 patients, comparable errors in 2 patients, and slightly larger errors in 3 patients. These results indicated the efficacy of our method in terms of considering both geometric accuracy and dosimetric impact during label fusion. Our algorithm can be applied to different tumor sites and radiation treatments, given a specifically trained geometry-dosimetry model.
NASA Astrophysics Data System (ADS)
Gummeson, Anna; Arvidsson, Ida; Ohlsson, Mattias; Overgaard, Niels C.; Krzyzanowska, Agnieszka; Heyden, Anders; Bjartell, Anders; Aström, Kalle
2017-03-01
Prostate cancer is the most diagnosed cancer in men. The diagnosis is confirmed by pathologists based on ocular inspection of prostate biopsies in order to classify them according to Gleason score. The main goal of this paper is to automate the classification using convolutional neural networks (CNNs). The introduction of CNNs has broadened the field of pattern recognition. It replaces the classical way of designing and extracting hand-made features used for classification with the substantially different strategy of letting the computer itself decide which features are of importance. For automated prostate cancer classification into the classes: Benign, Gleason grade 3, 4 and 5 we propose a CNN with small convolutional filters that has been trained from scratch using stochastic gradient descent with momentum. The input consists of microscopic images of haematoxylin and eosin stained tissue, the output is a coarse segmentation into regions of the four different classes. The dataset used consists of 213 images, each considered to be of one class only. Using four-fold cross-validation we obtained an error rate of 7.3%, which is significantly better than previous state of the art using the same dataset. Although the dataset was rather small, good results were obtained. From this we conclude that CNN is a promising method for this problem. Future work includes obtaining a larger dataset, which potentially could diminish the error margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Gu, X; Lu, W
Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, Nikolay A.; Shilnikov, Kirill E.
Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreibmann, Eduard, E-mail: eschre2@emory.edu; Schuster, David M.; Rossi, Peter J.
Purpose: {sup 18}F-Fluciclovine (anti-1-amino-3-[{sup 18}F]fluorocyclobutane-1-carboxylic acid) is a novel positron emission tomography (PET)/computed tomography (CT) radiotracer that has demonstrated utility for detection of prostate cancer. Our goal is to report the initial results from a randomized controlled trial of the integration of {sup 18}F-fluciclovine PET-CT into treatment planning for defining prostate bed and lymph node target volumes. Methods and Materials: We report our initial findings from a cohort of 41 patients, of the first enrolled on a randomized controlled trial, who were randomized to the {sup 18}F-fluciclovine arm. All patients underwent {sup 18}F-fluciclovine PET-CT for the detection of metabolic abnormalitiesmore » and high-resolution CT for treatment planning. The 2 datasets were registered first by use of a rigid registration. If soft tissue displacement was observable, the rigid registration was improved with a deformable registration. Each {sup 18}F-fluciclovine abnormality was segmented as a percentage of the maximum standard uptake value (SUV) within a small region of interest around the lesion. The percentage best describing the SUV falloff was integrated in planning by expanding standard target volumes with the PET abnormality. Results: In 21 of 55 abnormalities, a deformable registration was needed to map the {sup 18}F-fluciclovine activity into the simulation CT. The most selected percentage was 50% of maximum SUV, although values ranging from 15% to 70% were used for specific patients, illustrating the need for a per-patient selection of a threshold SUV value. The inclusion of {sup 18}F-fluciclovine changed the planning volumes for 46 abnormalities (83%) of the total 55, with 28 (51%) located in the lymph nodes, 11 (20%) in the prostate bed, 10 (18%) in the prostate, and 6 (11%) in the seminal vesicles. Only 9 PET abnormalities were fully contained in the standard target volumes based on the CT-based segmentations and did not necessitate expansion. Conclusions: The use of {sup 18}F-fluciclovine in postprostatectomy radiation therapy planning was feasible and led to augmentation of the target volumes in the majority (30 of 41) of the patients studied.« less
Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick
2017-01-01
Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p < 0.001). There was a moderate, significant inverse correlation of prostate volume to a positive biopsy result (r = -0.24, p = 0.004). The ellipsoid formula gives sufficient approximation of prostate volume on 3-Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Mazzetti, S.; Giannini, V.; Russo, F.; Regge, D.
2018-05-01
Computer-aided diagnosis (CAD) systems are increasingly being used in clinical settings to report multi-parametric magnetic resonance imaging (mp-MRI) of the prostate. Usually, CAD systems automatically highlight cancer-suspicious regions to the radiologist, reducing reader variability and interpretation errors. Nevertheless, implementing this software requires the selection of which mp-MRI parameters can best discriminate between malignant and non-malignant regions. To exploit functional information, some parameters are derived from dynamic contrast-enhanced (DCE) acquisitions. In particular, much CAD software employs pharmacokinetic features, such as K trans and k ep, derived from the Tofts model, to estimate a likelihood map of malignancy. However, non-pharmacokinetic models can be also used to describe DCE-MRI curves, without any requirement for prior knowledge or measurement of the arterial input function, which could potentially lead to large errors in parameter estimation. In this work, we implemented an empirical function derived from the phenomenological universalities (PUN) class to fit DCE-MRI. The parameters of the PUN model are used in combination with T2-weighted and diffusion-weighted acquisitions to feed a support vector machine classifier to produce a voxel-wise malignancy likelihood map of the prostate. The results were all compared to those for a CAD system based on Tofts pharmacokinetic features to describe DCE-MRI curves, using different quality aspects of image segmentation, while also evaluating the number and size of false positive (FP) candidate regions. This study included 61 patients with 70 biopsy-proven prostate cancers (PCa). The metrics used to evaluate segmentation quality between the two CAD systems were not statistically different, although the PUN-based CAD reported a lower number of FP, with reduced size compared to the Tofts-based CAD. In conclusion, the CAD software based on PUN parameters is a feasible means with which to detect PCa, without affecting segmentation quality, and hence it could be successfully applied in clinical settings, improving the automated diagnosis process and reducing computational complexity.
Prostate-cancer diagnosis by non-invasive prostatic Zinc mapping using X-Ray Fluorescence (XRF)
NASA Astrophysics Data System (ADS)
Cortesi, Marco
At present, the major screening tools (PSA, DRE, TRUS) for prostate cancer lack sensitivity and specificity, and none can distinguish between low-grade indolent cancer and high-grade lethal one. The situation calls for the promotion of alternative approaches, with better detection sensitivity and specificity, to provide more efficient selection of patients to biopsy and with possible guidance of the biopsy needles. The prime objective of the present work was the development of a novel non-invasive method and tool for promoting detection, localization, diagnosis and follow-up of PCa. The method is based on in-vivo imaging of Zn distribution in the peripheral zone of the prostate, by a trans-rectal X-ray fluorescence (XRF) probe. Local Zn levels, measured in 1--4 mm3 fresh tissue biopsy segments from an extensive clinical study involving several hundred patients, showed an unambiguous correlation with the histological classification of the tissue (Non-Cancer or PCa), and a systematic positive correlation of its depletion level with the cancer-aggressiveness grade (Gleason classification). A detailed analysis of computer-simulated Zn-concentration images (with input parameters from clinical data) disclosed the potential of the method to provide sensitive and specific detection and localization of the lesion, its grade and extension. Furthermore, it also yielded invaluable data on some requirements, such as the image resolution and counting-statistics, requested from a trans-rectal XRF probe for in-vivo recording of prostatic-Zn maps in patients. By means of systematic table-top experiments on prostate-phantoms comprising tumor-like inclusions, followed by dedicated Monte Carlo simulations, the XRF-probe and its components have been designed and optimized. Multi-parameter analysis of the experimental data confirmed the simulation estimations of the XRF detection system in terms of: delivered dose, counting statistics, scanning resolution, target-volume size and the accuracy of locating at various depths of small-volume tumor-like inclusions in tissue-phantoms. The clinical study, the Monte Carlo simulations and the analysis of Zn-map images provided essential information and promising vision on the potential performance of the Zn-based PCa detection concept. Simulations focusing on medical-probe design and its performance at permissible radiation doses yielded positive results - confirmed by a series of systematic laboratory experiments with a table-top XRF system.
A Prospective Randomized Trial of Two Different Prostate Biopsy Schemes
2016-07-03
Prostate Cancer; Local Anesthesia; Prostate-Specific Antigen/Blood; Biopsy/Methods; Image-guided Biopsy/Methods; Prostatic Neoplasms/Diagnosis; Prostate/Pathology; Prospective Studies; Humans; Male; Ultrasonography, Interventional/Methods
Designing image segmentation studies: Statistical power, sample size and reference standard quality.
Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C
2017-12-01
Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Rodenacker, K; Aubele, M; Hutzler, P; Adiga, P S
1997-01-01
In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH). The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA) can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI) to a software package for display, inspection, count and (semi-)automatic analysis of 3-D images for pathologists is outlined including the underlying methods of 3-D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer-aided analysis of large 3-D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3-D data is not in sight. A semi-automatic segmentation method is thus presented here.
NASA Astrophysics Data System (ADS)
Scott, Richard; Khan, Faisal M.; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo
2016-03-01
The Gleason score is the most common architectural and morphological assessment of prostate cancer severity and prognosis. There have been numerous quantitative techniques developed to approximate and duplicate the Gleason scoring system. Most of these approaches have been developed in standard H and E brightfield microscopy. Immunofluorescence (IF) image analysis of tissue pathology has recently been proven to be extremely valuable and robust in developing prognostic assessments of disease, particularly in prostate cancer. There have been significant advances in the literature in quantitative biomarker expression as well as characterization of glandular architectures in discrete gland rings. In this work we leverage a new method of segmenting gland rings in IF images for predicting the pathological Gleason; both the clinical and the image specific grade, which may not necessarily be the same. We combine these measures with nuclear specific characteristics as assessed by the MST algorithm. Our individual features correlate well univariately with the Gleason grades, and in a multivariate setting have an accuracy of 85% in predicting the Gleason grade. Additionally, these features correlate strongly with clinical progression outcomes (CI of 0.89), significantly outperforming the clinical Gleason grades (CI of 0.78). This work presents the first assessment of morphological gland unit features from IF images for predicting the Gleason grade.
Analysis of the spatial distribution of prostate cancer obtained from histopathological images
NASA Astrophysics Data System (ADS)
Diaz, Kristians; Castaneda, Benjamin; Montero, Maria Luisa; Yao, Jorge; Joseph, Jean; Rubens, Deborah; Parker, Kevin J.
2013-03-01
Understanding the spatial distribution of prostate cancer and how it changes according to prostate specific antigen (PSA) values, Gleason score, and other clinical parameters may help comprehend the disease and increase the overall success rate of biopsies. This work aims to build 3D spatial distributions of prostate cancer and examine the extent and location of cancer as a function of independent clinical parameters. The border of the gland and cancerous regions from wholemount histopathological images are used to reconstruct 3D models showing the localization of tumor. This process utilizes color segmentation and interpolation based on mathematical morphological distance. 58 glands are deformed into one prostate atlas using a combination of rigid, affine, and b-spline deformable registration techniques. Spatial distribution is developed by counting the number of occurrences in a given position in 3D space from each registered prostate cancer. Finally a difference between proportions is used to compare different spatial distributions. Results show that prostate cancer has a significant difference (SD) in the right zone of the prostate between populations with PSA greater and less than 5ng/ml. Age does not have any impact in the spatial distribution of the disease. Positive and negative capsule-penetrated cases show a SD in the right posterior zone. There is SD in almost all the glands between cases with tumors larger and smaller than 10% of the whole prostate. A larger database is needed to improve the statistical validity of the test. Finally, information from whole-mount histopathological images may provide better insight into prostate cancer.
Automatic Gleason grading of prostate cancer using SLIM and machine learning
NASA Astrophysics Data System (ADS)
Nguyen, Tan H.; Sridharan, Shamira; Marcias, Virgilia; Balla, Andre K.; Do, Minh N.; Popescu, Gabriel
2016-03-01
In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.
Brown, Matthew S; Kim, Grace Hyun J; Chu, Gregory H; Ramakrishna, Bharath; Allen-Auerbach, Martin; Fischer, Cheryce P; Levine, Benjamin; Gupta, Pawan K; Schiepers, Christiaan W; Goldin, Jonathan G
2018-01-01
A clinical validation of the bone scan lesion area (BSLA) as a quantitative imaging biomarker was performed in metastatic castration-resistant prostate cancer (mCRPC). BSLA was computed from whole-body bone scintigraphy at baseline and week 12 posttreatment in a cohort of 198 mCRPC subjects (127 treated and 71 placebo) from a clinical trial involving a different drug from the initial biomarker development. BSLA computation involved automated image normalization, lesion segmentation, and summation of the total area of segmented lesions on bone scan AP and PA views as a measure of tumor burden. As a predictive biomarker, treated subjects with baseline BSLA [Formula: see text] had longer survival than those with higher BSLA ([Formula: see text] and [Formula: see text]). As a surrogate outcome biomarker, subjects were categorized as progressive disease (PD) if the BSLA increased by a prespecified 30% or more from baseline to week 12 and non-PD otherwise. Overall survival rates between PD and non-PD groups were statistically different ([Formula: see text] and [Formula: see text]). Subjects without PD at week 12 had longer survival than subjects with PD: median 398 days versus 280 days. BSLA has now been demonstrated to be an early surrogate outcome for overall survival in different prostate cancer drug treatments.
Xue, Y; Sonke, G; Schoots, C; Schalken, J; Verhofstad, A; de la Rosette, J; Smedts, F
2001-10-01
To gain further insight into the molecular cell biologic features of prostate development, we investigated the proliferative activity of prostate epithelial and stromal cells and their topographic relationship with neuroendocrine (NE) cell distribution and regional heterogeneity. Consecutive sections from 43 prostates taken during autopsy representing fetuses (12-38 weeks of gestation), infants, prepubertal males and adults were double stained for chromogranin A and MIB-1. MIB-1 labeling index (LI) was calculated in the budding tips, forming acini, major collecting ducts, adjacent and non-adjacent stromal compartments. Furthermore, the topographic relationship between proliferating cells and NE cells was evaluated. In the first half of gestation, cell proliferation as revealed by MIB-1 LI was significantly higher in epithelial structures and stroma than in older fetuses and other age groups. MIB-1 LI was higher in budding tips than in other epithelial regions. MIB-1 LI in stroma adjacent to budding tips was not higher than that adjacent to other epithelial branching segments. Co-expression of chromogranin A and MIB-1 staining was not observed. MIB-1 LI was lower in cells in the direct vicinity of chromogranin A positive NE cells than at a distance from NE cells. Prostate development in the first half of gestation is explosive. Thereafter, the prostate basically is a slow-growing organ. Budding tips are the major growth foci during early prostate development, while stromal growth is evenly distributed throughout the prostate, probably indicating that stromal-epithelial interactions do not manifest in enhanced proliferation at their interface. NE cells may have an inhibitory effect on proliferation of exocrine epithelial cells and are probably only associated with differentiation of prostate exocrine cells in the prostate. Copyright 2001 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T; Rella, J; Yang, J
Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less
Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie
2016-01-01
Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314
Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial
NASA Astrophysics Data System (ADS)
Moult, E.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.; Fallavollita, P.
2011-03-01
Motivation: In prostate brachytherapy, real-time dosimetry would be ideal to allow for rapid evaluation of the implant quality intra-operatively. However, such a mechanism requires an imaging system that is both real-time and which provides, via multiple C-arm fluoroscopy images, clear information describing the three-dimensional position of the seeds deposited within the prostate. Thus, accurate tracking of the C-arm poses proves to be of critical importance to the process. Methodology: We compute the pose of the C-arm relative to a stationary radiographic fiducial of known geometry by employing a hybrid registration framework. Firstly, by means of an ellipse segmentation algorithm and a 2D/3D feature based registration, we exploit known FTRAC geometry to recover an initial estimate of the C-arm pose. Using this estimate, we then initialize the intensity-based registration which serves to recover a refined and accurate estimation of the C-arm pose. Results: Ground-truth pose was established for each C-arm image through a published and clinically tested segmentation-based method. Using 169 clinical C-arm images and a +/-10° and +/-10 mm random perturbation of the ground-truth pose, the average rotation and translation errors were 0.68° (std = 0.06°) and 0.64 mm (std = 0.24 mm). Conclusion: Fully automated C-arm pose estimation using a 2D/3D hybrid registration scheme was found to be clinically robust based on human patient data.
NASA Astrophysics Data System (ADS)
Salgaonkar, Vasant A.; Prakash, Punit; Rieke, Viola; Ozhinsky, Eugene; Plata, Juan; Kurhanewicz, John; Hsu, I.-C. Joe; Diederich, Chris J.
2017-03-01
Here, operational modifications to a commercial MR-guided ultrasound phased array designed for prostate ablation (part of ExAblate 2100, InSightec Ltd) are presented for the delivery of protracted mild (40 - 45°C) hyperthermia to large contiguous target volumes in the prostate. This high-intensity focused ultrasound phased array is already in clinical trials for prostate ablation, and can be potentially fast-tracked for clinical hyperthermia treatments. As a part of this preliminary feasibility study, patient-specific numerical simulations were performed using Pennes bioheat model and acoustic field calculations were conducted using the rectangular radiator method for the ExAblate prostate array (2.3 MHz, 2.3×4.0 cm2, ˜1000 channels). Thermal solutions were computed using 3D finite element methods (FEM) implemented using Comsol Multiphysics (Comsol Inc). The patient-specific geometries were created through manual segmentation of anatomical structures from representative patient MRIs and 3D rendering (Mimics 15.01, Materialise) and generation of finite element meshes (3-Matic 7.01, Materialise). Array beamforming was employed and acoustic fields were synthesized (Matlab 2010a, MathWorks) to deliver protracted continuous wave hyperthermia to focal prostate cancer targets identified in the patient-specific models. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Sonication strategies explored during modeling were implemented on the ExAblate prostate array and preliminary experiments were conducted in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). Therapeutic temperatures (40 - 45 °C) could be established conformably in focal cancer volumes in a single prostate quadrant using focused heating patterns and hemi-gland heating was possible using diffused heating patterns (iso-phase or diverging). T>41 °C was calculated in 13-23 cm3 volumes for sonications with planar or diverging beam patterns at 0.9-1.2 W/cm2, in 1.5-4 cm3 volumes for simultaneous multi-point focus beam patterns at 2 - 3.4 W/cm2, and in ˜6.0 cm3 for curvilinear (cylindrical) beam patterns at 0.75 W/cm2. Patient-specific models also revealed that treatable volume sizes may be limited from pubic bone heating, especially if the pubic bone is within 15 mm from the prostate. Parametric studies also showed therapeutic heating was possible within power constraints of the phased array for a range of perfusion values (0.5 - 8 kg/m3/s), rectal cooling (22 - 35 °C) and sonication duty cycles (80% - 90%). Focused (simultaneous 4-point, cylindrical) and diffused (iso-phase, cylindrically diverging) phasing patterns investigated during modeling were successfully implemented on the ExAblate prostate array produced 4-12 °C temperature rises during protracted heating of phantom experiments (˜0.86 W/cm2, 15 min).
Roy, Jyoti; Nguyen, Trung Xuan; Kanduluru, Ananda Kumar; Venkatesh, Chelvam; Lv, Wei; Reddy, P V Narasimha; Low, Philip S; Cushman, Mark
2015-04-09
Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancer cells while being present at low or undetectable levels in normal cells. This difference provides an opportunity to selectively deliver cytotoxic drugs to prostate cancer cells while sparing normal cells that lack PSMA, thus improving potencies and reducing toxicities. PSMA has high affinity for 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) (Ki = 8 nM). After binding to a DUPA-drug conjugate, PSMA internalizes, unloads the conjugate, and returns to the surface. In the present studies, an indenoisoquinoline topoisomerase I inhibitor was conjugated to DUPA via a peptide linker and a drug-release segment that facilitates intracellular cleavage to liberate the drug cargo. The DUPA-indenoisoquinoline conjugate exhibited an IC50 in the low nanomolar range in 22RV1 cell cultures and induced a complete cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice.
Blackledge, Matthew D; Collins, David J; Koh, Dow-Mu; Leach, Martin O
2016-02-01
We present pyOsiriX, a plugin built for the already popular dicom viewer OsiriX that provides users the ability to extend the functionality of OsiriX through simple Python scripts. This approach allows users to integrate the many cutting-edge scientific/image-processing libraries created for Python into a powerful DICOM visualisation package that is intuitive to use and already familiar to many clinical researchers. Using pyOsiriX we hope to bridge the apparent gap between basic imaging scientists and clinical practice in a research setting and thus accelerate the development of advanced clinical image processing. We provide arguments for the use of Python as a robust scripting language for incorporation into larger software solutions, outline the structure of pyOsiriX and how it may be used to extend the functionality of OsiriX, and we provide three case studies that exemplify its utility. For our first case study we use pyOsiriX to provide a tool for smooth histogram display of voxel values within a user-defined region of interest (ROI) in OsiriX. We used a kernel density estimation (KDE) method available in Python using the scikit-learn library, where the total number of lines of Python code required to generate this tool was 22. Our second example presents a scheme for segmentation of the skeleton from CT datasets. We have demonstrated that good segmentation can be achieved for two example CT studies by using a combination of Python libraries including scikit-learn, scikit-image, SimpleITK and matplotlib. Furthermore, this segmentation method was incorporated into an automatic analysis of quantitative PET-CT in a patient with bone metastases from primary prostate cancer. This enabled repeatable statistical evaluation of PET uptake values for each lesion, before and after treatment, providing estaimes maximum and median standardised uptake values (SUVmax and SUVmed respectively). Following treatment we observed a reduction in lesion volume, SUVmax and SUVmed for all lesions, in agreement with a reduction in concurrent measures of serum prostate-specific antigen (PSA). Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Experimental autoimmune prostatitis induces microglial activation in the spinal cord.
Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen
2015-01-01
The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.
Optical coherence tomography of the prostate nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab
Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving a man's ability to have spontaneous erections following surgery. These microscopic nerves course along the surface of the prostate within a few millimeters of the prostate capsule, and they vary in size and location from one patient to another, making preservation of the nerves difficult during dissection and removal of a cancerous prostate gland. These observations may explain in part the wide variability in reported sexual potency rates (9--86%) following prostate cancer surgery. Any technology capable of providing improved identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery would be of great assistance in improving sexual function after surgery, and result in direct patient benefit. Optical coherence tomography (OCT) is a noninvasive optical imaging technique capable of performing high-resolution cross-sectional in vivo and in situ imaging of microstructures in biological tissues. OCT imaging of the cavernous nerves in the rat and human prostate has recently been demonstrated. However, improvements in the OCT system and the quality of the images for identification of the cavernous nerves is necessary before clinical use. The following chapters describe complementary approaches to improving identification and imaging of the cavernous nerves during OCT of the prostate gland. After the introduction to OCT imaging of the prostate gland, the optimal wavelength for deep imaging of the prostate is studied in Chapter 2. An oblique-incidence single point measurement technique using a normal-detector scanning system was implemented to determine the absorption and reduced scattering coefficients, mua and m's , of fresh canine prostate tissue, ex vivo, from the diffuse reflectance profile of near-IR light as a function of source-detector distance. The effective attenuation coefficient, mueff, and the Optical Penetration Depth (OPD) were then calculated for near-IR wavelengths of 1064 nm, 1307 nm, and 1555 nm. Chapters 3 and 4 describe locally adaptive denoising algorithms applied to reduce speckle noise in OCT images of the prostate taken by experimental and clinical systems, respectively. The dual-tree complex wavelet transform (CDWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. The CDWT algorithm was implemented for denoising of OCT images. In Chapter 5, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low pass sub-band was chosen as the filtered image. Finally, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. Morphological post-processing was used to remove small voids. In Chapter 6, a new algorithm based on thresholding and first-order derivative class of differential edge detection was implemented to see deeper in the OCT images. One of the main limitations in OCT imaging of the prostate tissue is the inability to image deep into opaque tissues. Currently, OCT is limited to an image depth of approximately 1 min in opaque tissues. Theoretical comparisons of detection performance for Fourier domain (FD) and time domain (TD) OCT have been previously reported. In Chapter 7, we compare several image quality metrics including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and equivalent number of looks (ENL) for TD-OCT and FD-OCT images taken of the rat prostate, in vivo. The results show that TD-OCT has inferior CNR, but superior SNR compared to FD-OCT, and that TD-OCT is better for deep imaging of opaque tissues. Finally, Chapter 8 summarizes the study and future directions for OCT imaging of the prostate gland are discussed.
Giesel, Frederik L; Fiedler, H; Stefanova, M; Sterzing, F; Rius, M; Kopka, K; Moltz, J H; Afshar-Oromieh, A; Choyke, P L; Haberkorn, U; Kratochwil, C
2015-11-01
PET/CT with the PSMA ligand is a powerful new method for the early detection of nodal metastases in patients with biochemical relapse. The purpose of this retrospective investigation was to evaluate the volume and dimensions of nodes identified by Glu-urea-Lys-(Ahx)-[(68)Ga(HBED-CC)] ((68)Ga-PSMA-11) in the setting of recurrent prostate cancer. All PET/CT images were acquired 60 ± 10 min after intravenous injection of (68)Ga-PSMA-11 (mean dose 176 MBq). In 21 patients with recurrent prostate cancer and rising PSA, 49 PSMA-positive lymph nodes were identified. Using semiautomated lymph node segmentation software, node volume and short-axis and long-axis dimensions were measured and compared with the maximum standardized uptake values (SUVmax). Round nodes greater than or equal to 8 mm were considered positive by morphological criteria alone. The percentage of nodes identified by elevated SUVmax but not by conventional morphological criteria was determined. The mean volume of (68)Ga-PSMA-11-positive nodes was 0.5 ml (range 0.2 - 2.3 ml), and the mean short-axis diameter was 5.8 mm (range 2.4 - 13.3 mm). In 7 patients (33.3 %) with 31 PSMA-positive nodes only 11 (36 %) were morphologically positive based on diameters >8 mm on CT. In the remaining 14 patients (66.7 %), 18 (37 %) of PSMA positive lymph nodes had short-axis diameters <8 mm with a mean short-axis diameter of 5.0 mm (range 2.4 - 7.9 mm). Thus, in this population, (68)Ga-PSMA-11 PET/CT detected nodal recurrence in two-thirds of patients who would have been missed using conventional morphological criteria. (68)Ga-PSMA-11 PET/CT is more sensitive than CT based 3D volumetric lymph node evaluation in determining the node status of patients with recurrent prostate cancer, and is a promising method of restaging prostate cancers in this setting.
SU-F-J-156: The Feasibility of MR-Only IMRT Planning for Prostate Anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, R; Sivaramakrishnan, KR; Kumar, Prashant
Purpose: For prostate anatomy, previous investigations have shown that simulated CT (sCT) generated from MR images can be used for accurate dose computation. In this study, we demonstrate the feasibility of MR-only IMRT planning for prostate case. Methods: Regular CT (rCT) and MR images of the same patient were acquired for prostate anatomy. Regions-of-interest (ROIs) i.e. target and risk structures are delineated on the rCT. A simulated CT (sCT) is generated from the MR image using the method described by Schadewaldt N et al. Their work establishes the clinical acceptability of dose calculation results on the sCT when compared tomore » rCT. rCT and sCT are rigidly registered to ensure proper alignment between the two images. rCT and sCT are overlaid on each other and slice-wise visual inspection confirms excellent agreement between the two images. ROIs on the rCT are copied over to sCT. Philips AutoPlanning solution is used for generating treatment plans. The same treatment technique protocol (plan parameters and clinical goals) is used to generate AutoPlan-rCT and AutoPlan-sCT respectively for rCT and and sCT. DVH comparison on ROIs and slice-wise evaluation of dose is performed between AutoPlan-rCT and AutoPlan-sCT. Delivery parameters i.e. beam and corresponding segments from the AutoPlan-sCT are copied over to rCT and dose is computed to get AutoPlan-sCT-on-rCT. Results: Plan evaluation is done based on Dose Volume Histogram (DVH) of ROIs and manual slice-wise inspection of dose distribution. Both AutoPlan-rCT and AutoPlan-sCT provide a clinically acceptable plan. Also, AutoPlan-sCT-on-rCT shows excellent agreement with AutoPlan-sCT. Conclusion: The study demonstrates that it is feasible to do IMRT planning on the simulated CT image obtained from MR image for prostate anatomy. The research is supported by Philips India Ltd.« less
Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.
Salvi, Massimo; Molinari, Filippo
2018-06-20
Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.
High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate
NASA Astrophysics Data System (ADS)
Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.
2017-03-01
Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal targets could be ablated with single or multiple interstitial applicators placed along the prostate periphery. In the representative cases explored during this study, thermal targets could be ablated with acoustic intensity values between 11 - 19 W/cm2 within 6 - 15 min of sonication time. Unifocal ablation could be performed by a single directional applicator (210° sectors). Hemi-gland targets were ablated by two directional applicators (210° sectors). Hockey-stick ablations were performed using 3 directional applicators (2 - 210° and 1 - 150°).
SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, T; Ruan, D
2015-06-15
Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is firstmore » roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit in both complexity and performance is expected to be most pronounced with large-scale heterogeneous data.« less
Dai, Jianrong; Que, William
2004-12-07
This paper introduces a method to simultaneously minimize the leaf travel distance and the tongue-and-groove effect for IMRT leaf sequences to be delivered in segmental mode. The basic idea is to add a large enough number of openings through cutting or splitting existing openings for those leaf pairs with openings fewer than the number of segments so that all leaf pairs have the same number of openings. The cutting positions are optimally determined with a simulated annealing technique called adaptive simulated annealing. The optimization goal is set to minimize the weighted summation of the leaf travel distance and tongue-and-groove effect. Its performance was evaluated with 19 beams from three clinical cases; one brain, one head-and-neck and one prostate case. The results show that it can reduce the leaf travel distance and (or) tongue-and-groove effect; the reduction of the leaf travel distance reaches its maximum of about 50% when minimized alone; the reduction of the tongue-and-groove reaches its maximum of about 70% when minimized alone. The maximum reduction in the leaf travel distance translates to a 1 to 2 min reduction in treatment delivery time per fraction, depending on leaf speed. If the method is implemented clinically, it could result in significant savings in treatment delivery time, and also result in significant reduction in the wear-and-tear of MLC mechanics.
3D conformal MRI-guided transurethral ultrasound therapy: results of gel phantom experiments
NASA Astrophysics Data System (ADS)
N'Djin, W. A.; Burtnyk, M.; McCormick, S.; Bronskill, M.; Chopra, R.
2011-09-01
MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Previous in-vivo studies demonstrated the feasibility of performing conservative treatments using real-time temperature feedback to control accurately the establishment of coagulative lesions within circumscribed prostate regions. This in-vitro study tested device configuration and control options for achieving full prostate treatments. A multi-channel MRI compatible ultrasound therapy system was evaluated in gel phantoms using 3 canine prostate models. Prostate profiles were 5 mm-step-segmented from T2-weighted MR images performed during previous in-vivo experiments. During ultrasound exposures, each ultrasound element was controlled independently by the 3D controller. Decisions on acoustic power, frequency, and device rotation rate were made in real time based on MR thermometry feedback and prostate radii. Low and high power treatment approaches using maximum acoustic powers of 10 or 20 W.cm-2 were tested as well as single and dual-frequency strategies (4.05/13.10 MHz). The dual-frequency strategy used either the fundamental frequency or the 3rd harmonic component, depending on the prostate radius. The 20 W.cm-2 dual frequency approach was the most efficient configuration in achieving full prostate treatments. Treatment times were about half the duration of those performed with 10 W.cm-2 configurations. Full prostate coagulations were performed in 16.3±6.1 min at a rate of 1.8±0.2 cm3.min-1, and resulted in very little undertreated tissue (<3%). Surrounding organs positioned beyond a safety distance of 1.4±1.0 mm from prostate boundaries were not damaged, particularly rectal wall tissues. In this study, a 3D, MR-thermometry-guided transurethral ultrasound therapy was validated in vitro in a tissue-mimicking phantom for performing full prostate treatment. A dual-frequency configuration with 20 W.cm-2 ultrasound intensity exposure showed good results with direct application to full human prostate treatments.
Robust tumor morphometry in multispectral fluorescence microscopy
NASA Astrophysics Data System (ADS)
Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo
2009-02-01
Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L; Qian, J; Gonzales, R
Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less
NASA Astrophysics Data System (ADS)
Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael
2009-04-01
MRI-guided transurethral ultrasound therapy is a promising new approach for the treatment of localized prostate cancer. Several studies have demonstrated the feasibility of producing large regions of thermal coagulation adequate for prostate therapy; however, the quantitative assessment of shaping these regions to complex 3-D human prostate geometries has not been fully explored. This study used numerical simulations and twenty manually-segmented pelvic anatomical models derived from high-quality MR images of prostate cancer patients to evaluate the treatment accuracy and safety of 3-D conformal MRI-guided transurethral ultrasound therapy. The simulations incorporated a rotating multi-element planar dual-frequency ultrasound transducer (seventeen 4×3 mm elements) operating at 4.7/9.7 MHz and 10 W/cm2 maximum acoustic power. Results using a novel feedback control algorithm which modulated the ultrasound frequency, power and device rate of rotation showed that regions of thermal coagulation could be shaped to predefined prostate volumes within 1.0 mm across the vast majority of these glands. Treatment times were typically 30 min and remained below 60 min for large 60 cc prostates. With a rectal cooling temperature of 15° C, the rectal wall did not exceed 30EM43 in half of the twenty patient models with only a few 1 mm3 voxels above this threshold in the other cases. At 4.7 MHz, heating of the pelvic bone can become significant when it is located less than 10 mm from the prostate. Numerical simulations show that MRI-guided transurethral ultrasound therapy can thermally coagulate whole prostate glands accurately and safely in 3-D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, Paul J., E-mail: paul.keall@sydney.edu.au; O’Brien, Ricky; Huang, Chen-Yu
Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2Dmore » to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and dosimetric errors, and resultant improved clinical outcomes, in cancer radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogan, N; Weiss, E; Sleeman, W
Purpose: Errors in displacement vector fields (DVFs) generated by Deformable Image Registration (DIR) algorithms can give rise to significant uncertainties in contour propagation and dose accumulation in Image-Guided Adaptive Radiotherapy (IGART). The purpose of this work is to assess the accuracy of two DIR algorithms using a variety of quality metrics for prostate IGART. Methods: Pelvic CT images were selected from an anonymized database of nineteen prostate patients who underwent 8–12 serial scans during radiotherapy. Prostate, bladder, and rectum were contoured on 34 image-sets for three patients by the same physician. The planning CT was deformably-registered to daily CT usingmore » three variants of the Small deformation Inverse Consistent Linear Elastic (SICLE) algorithm: Grayscale-driven (G), Contour-driven (C, which utilizes segmented structures to drive DIR), combined (G+C); and also grayscale ITK demons (Gd). The accuracy of G, C, G+C SICLE and Gd registrations were evaluated using a new metric Edge Gradient Distance to Agreement (EGDTA) and other commonly-used metrics such as Pearson Correlation Coefficient (PCC), Dice Similarity Index (DSI) and Hausdorff Distance (HD). Results: C and G+C demonstrated much better performance at organ boundaries, revealing the lowest HD and highest DSI, in prostate, bladder and rectum. G+C demonstrated the lowest mean EGDTA (1.14 mm), which corresponds to highest registration quality, compared to G and C DVFs (1.16 and 2.34 mm). However, demons DIR showed the best overall performance, revealing lowest EGDTA (0.73 mm) and highest PCC (0.85). Conclusion: As expected, both C- and C+G SICLE more accurately reproduce manually-contoured target datasets than G-SICLE or Gd using HD and DSI metrics. In general, the Gd appears to have difficulty reproducing large daily position and shape changes in the rectum and bladder. However, Gd outperforms SICLE in terms of EGDTA and PCC metrics, possibly at the expense of topological quality of the estimated DVFs.« less
Long, Jean-Alexandre; Daanen, Vincent; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne; Rambeaud, Jean-Jacques; Descotes, Jean-Luc
2007-11-01
The objective of this study was to determine the added value of real-time three-dimensional (4D) ultrasound guidance of prostatic biopsies on a prostate phantom in terms of the precision of guidance and distribution. A prostate phantom was constructed. A real-time 3D ultrasonograph connected to a transrectal 5.9 MHz volumic transducer was used. Fourteen operators performed 336 biopsies with 2D guidance then 4D guidance according to a 12-biopsy protocol. Biopsy tracts were modelled by segmentation in a 3D ultrasound volume. Specific software allowed visualization of biopsy tracts in the reference prostate and evaluated the zone biopsied. A comparative study was performed to determine the added value of 4D guidance compared to 2D guidance by evaluating the precision of entry points and target points. The distribution was evaluated by measuring the volume investigated and by a redundancy ratio of the biopsy points. The precision of the biopsy protocol was significantly improved by 4D guidance (p = 0.037). No increase of the biopsy volume and no improvement of the distribution of biopsies were observed with 4D compared to 2D guidance. The real-time 3D ultrasound-guided prostate biopsy technique on a phantom model appears to improve the precision and reproducibility of a biopsy protocol, but the distribution of biopsies does not appear to be improved.
Gamat, Melissa; Chew, Keng Yih; Shaw, Geoffrey; Renfree, Marilyn B
2015-01-01
The mammalian prostate is a compact structure in humans but multi-lobed in mice. In humans and mice, FOXA1 and SOX9 play pivotal roles in prostate morphogenesis, but few other species have been examined. We examined FOXA1 and SOX9 in the marsupial tammar wallaby, Macropus eugenii, which has a segmented prostate more similar to human than to mouse. In males, prostatic budding in the urogenital epithelium (UGE) was initiated by day 24 postpartum (pp), but in the female the UGE remained smooth and had begun forming the marsupial vaginal structures. FOXA1 was upregulated in the male urogenital sinus (UGS) by day 51 pp, whilst in the female UGS FOXA1 remained basal. FOXA1 was localised in the UGE in both sexes between day 20 and 80 pp. SOX9 was upregulated in the male UGS at day 21-30 pp and remained high until day 51-60 pp. SOX9 protein was localised in the distal tips of prostatic buds which were highly proliferative. The persistent upregulation of the transcription factors SOX9 and FOXA1 after the initial peak and fall of androgen levels suggest that in the tammar, as in other mammals, these factors are required to sustain prostate differentiation, development and proliferation as androgen levels return to basal levels. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zhou, Naiyun; Gao, Yi
2017-03-01
This paper presents a fully automatic approach to grade intermediate prostate malignancy with hematoxylin and eosin-stained whole slide images. Deep learning architectures such as convolutional neural networks have been utilized in the domain of histopathology for automated carcinoma detection and classification. However, few work show its power in discriminating intermediate Gleason patterns, due to sporadic distribution of prostate glands on stained surgical section samples. We propose optimized hematoxylin decomposition on localized images, followed by convolutional neural network to classify Gleason patterns 3+4 and 4+3 without handcrafted features or gland segmentation. Crucial glands morphology and structural relationship of nuclei are extracted twice in different color space by the multi-scale strategy to mimic pathologists' visual examination. Our novel classification scheme evaluated on 169 whole slide images yielded a 70.41% accuracy and corresponding area under the receiver operating characteristic curve of 0.7247.
Prostate lesion detection and localization based on locality alignment discriminant analysis
NASA Astrophysics Data System (ADS)
Lin, Mingquan; Chen, Weifu; Zhao, Mingbo; Gibson, Eli; Bastian-Jordan, Matthew; Cool, Derek W.; Kassam, Zahra; Chow, Tommy W. S.; Ward, Aaron; Chiu, Bernard
2017-03-01
Prostatic adenocarcinoma is one of the most commonly occurring cancers among men in the world, and it also the most curable cancer when it is detected early. Multiparametric MRI (mpMRI) combines anatomic and functional prostate imaging techniques, which have been shown to produce high sensitivity and specificity in cancer localization, which is important in planning biopsies and focal therapies. However, in previous investigations, lesion localization was achieved mainly by manual segmentation, which is time-consuming and prone to observer variability. Here, we developed an algorithm based on locality alignment discriminant analysis (LADA) technique, which can be considered as a version of linear discriminant analysis (LDA) localized to patches in the feature space. Sensitivity, specificity and accuracy generated by the proposed algorithm in five prostates by LADA were 52.2%, 89.1% and 85.1% respectively, compared to 31.3%, 85.3% and 80.9% generated by LDA. The delineation accuracy attainable by this tool has a potential in increasing the cancer detection rate in biopsies and in minimizing collateral damage of surrounding tissues in focal therapies.
Koivula, Lauri; Kapanen, Mika; Seppälä, Tiina; Collan, Juhani; Dowling, Jason A; Greer, Peter B; Gustafsson, Christian; Gunnlaugsson, Adalsteinn; Olsson, Lars E; Wee, Leonard; Korhonen, Juha
2017-12-01
Recent studies have shown that it is possible to conduct entire radiotherapy treatment planning (RTP) workflow using only MR images. This study aims to develop a generalized intensity-based method to generate synthetic CT (sCT) images from standard T2-weighted (T2 w ) MR images of the pelvis. This study developed a generalized dual model HU conversion method to convert standard T2 w MR image intensity values to synthetic HU values, separately inside and outside of atlas-segmented bone volume contour. The method was developed and evaluated with 20 and 35 prostate cancer patients, respectively. MR images with scanning sequences in clinical use were acquired with four different MR scanners of three vendors. For the generated synthetic CT (sCT) images of the 35 prostate patients, the mean (and maximal) HU differences in soft and bony tissue volumes were 16 ± 6 HUs (34 HUs) and -46 ± 56 HUs (181 HUs), respectively, against the true CT images. The average of the PTV mean dose difference in sCTs compared to those in true CTs was -0.6 ± 0.4% (-1.3%). The study provides a generalized method for sCT creation from standard T2 w images of the pelvis. The method produced clinically acceptable dose calculation results for all the included scanners and MR sequences. Copyright © 2017 Elsevier B.V. All rights reserved.
The diet as a cause of human prostate cancer.
Nelson, William G; Demarzo, Angelo M; Yegnasubramanian, Srinivasan
2014-01-01
Asymptomatic prostate inflammation and prostate cancer have reached epidemic proportions among men in the developed world. Animal model studies implicate dietary carcinogens, such as the heterocyclic amines from over-cooked meats and sex steroid hormones, particularly estrogens, as candidate etiologies for prostate cancer. Each acts by causing epithelial cell damage, triggering an inflammatory response that can evolve into a chronic or recurrent condition. This milieu appears to spawn proliferative inflammatory atrophy (PIA) lesions, a type of focal atrophy that represents the earliest of prostate cancer precursor lesions. Rare PIA lesions contain cells which exhibit high c-Myc expression, shortened telomere segments, and epigenetic silencing of genes such as GSTP1, encoding the π-class glutathione S-transferase, all characteristic of prostatic intraepithelial neoplasia (PIN) and prostate cancer. Subsequent genetic changes, such as the gene translocations/deletions that generate fusion transcripts between androgen-regulated genes (such as TMPRSS2) and genes encoding ETS family transcription factors (such as ERG1), arise in PIN lesions and may promote invasiveness characteristic of prostatic adenocarcinoma cells. Lethal prostate cancers contain markedly corrupted genomes and epigenomes. Epigenetic silencing, which seems to arise in response to the inflamed microenvironment generated by dietary carcinogens and/or estrogens as part of an epigenetic "catastrophe" affecting hundreds of genes, persists to drive clonal evolution through metastatic dissemination. The cause of the initial epigenetic "catastrophe" has not been determined but likely involves defective chromatin structure maintenance by over-exuberant DNA methylation or histone modification. With dietary carcinogens and estrogens driving pro-carcinogenic inflammation in the developed world, it is tempting to speculate that dietary components associated with decreased prostate cancer risk, such as intake of fruits and vegetables, especially tomatoes and crucifers, might act to attenuate the ravages of the chronic or recurrent inflammatory processes. Specifically, nutritional agents might prevent PIA lesions or reduce the propensity of PIA lesions to suffer "catastrophic" epigenome corruption.
The Diet as a Cause of Human Prostate Cancer
Nelson, William G.; DeMarzo, Angelo M.; Yegnasubramanian, Srinivasan
2015-01-01
Asymptomatic prostate inflammation and prostate cancer have reached epidemic proportions among men in the developed world. Animal model studies implicate dietary carcinogens, such as the heterocyclic amines from over-cooked meats and sex steroid hormones, particularly estrogens, as candidate etiologies for prostate cancer. Each acts by causing epithelial cell damage, triggering an inflammatory response that can evolve into a chronic or recurrent condition. This milieu appears to spawn proliferative inflammatory atrophy (PIA) lesions, a type of focal atrophy that represents the earliest of prostate cancer precursor lesions. Rare PIA lesions contain cells which exhibit high c-Myc expression, shortened telomere segments, and epigenetic silencing of genes such as GSTP1, encoding the π-class glutathione S-transferase, all characteristic of prostatic intraepithelial neoplasia (PIN) and prostate cancer. Subsequent genetic changes, such as the gene translocations/deletions that generate fusion transcripts between androgen-regulated genes (such as TMPRSS2) and genes encoding ETS family transcription factors (such as ERG1), arise in PIN lesions and may promote invasiveness characteristic of prostatic adenocarcinoma cells. Lethal prostate cancers contain markedly corrupted genomes and epigenomes. Epigenetic silencing, which seems to arise in response to the inflamed microenvironment generated by dietary carcinogens and/or estrogens as part of an epigenetic “catastrophe” affecting hundreds of genes, persists to drive clonal evolution through metastatic dissemination. The cause of the initial epigenetic “catastrophe” has not been determined but likely involves defective chromatin structure maintenance by over-exuberant DNA methylation or histone modification. With dietary carcinogens and estrogens driving pro-carcinogenic inflammation in the developed world, it is tempting to speculate that dietary components associated with decreased prostate cancer risk, such as intake of fruits and vegetables, especially tomatoes and crucifers, might act to attenuate the ravages of the chronic or recurrent inflammatory processes. Specifically, nutritional agents might prevent PIA lesions or reduce the propensity of PIA lesions to suffer “catastrophic” epigenome corruption. PMID:24114474
Using manual prostate contours to enhance deformable registration of endorectal MRI.
Cheung, M R; Krishnan, K
2012-10-01
Endorectal MRI provides detailed images of the prostate anatomy and is useful for radiation treatment planning. Here we describe a Demons field-initialized B-spline deformable registration of prostate MRI. T2-weighted endorectal MRIs of five patients were used. The prostate and the tumor of each patient were manually contoured. The planning MRIs and their segmentations were simulated by warping the corresponding endorectal MRIs using thin plate spline (TPS). Deformable registration was initialized using the deformation field generated using Demons algorithm to map the deformed prostate MRI to the non-deformed one. The solution was refined with B-Spline registration. Volume overlap similarity was used to assess the accuracy of registration and to suggest a minimum margin to account for the registration errors. Initialization using Demons algorithm took about 15 min on a computer with 2.8 GHz Intel, 1.3 GB RAM. Refinement B-spline registration (200 iterations) took less than 5 min. Using the synthetic images as the ground truth, at zero margin, the average (S.D.) 98 (±0.4)% for prostate coverage was 97 (±1)% for tumor. The average (±S.D.) treatment margin required to cover the entire prostate was 1.5 (±0.2)mm. The average (± S.D.) treatment margin required to cover the tumor was 0.7 (±0.1)mm. We also demonstrated the challenges in registering an in vivo deformed MRI to an in vivo non-deformed MRI. We here present a deformable registration scheme that can overcome large deformation. This platform is expected to be useful for prostate cancer radiation treatment planning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Jong-Han, E-mail: jonghanho@gmail.com; Hagler, Shane; Lujano, Carrie
Cancer is a global health issue that disproportionately kills based on stage of disease, cellular pathology, and genetics, to name a few. Another variable to consider in this ongoing fight is treatment machine complexity that leads to elevated development and purchasing cost, leading to a reduced use. Reducing the complexity (in hopes of lowering costs) would benefit underdeveloped, low- and middle-income countries by introducing newer treatment technology, as their currently accepted standards do not meet standards of more advanced, developed countries. In this study, unilateral head and neck (H&N), and prostate cases using volumetric modulated arc therapy (VMAT) were testedmore » with multiple segment widths of 5, 10, 15, and 20 mm to create treatable plans. Pinnacle 9.10v was used for planning purposes. A total of 12 cases were planned with varying multileaf collimator (MLC) widths. Treatment plans were evaluated retrospectively. Results show that altering the MLC widths from 5 through 20 mm produces both comparable and treatable plans up to 99% and 98% target coverage for H&N and prostate, respectively, albeit clinically significant hot spots were shown to increase with increasing segment width. Furthermore, the results show that increasing widths can produce comparable treatment plans as measured against our current Food and Drug Administration (FDA)–approved treatment devices—leading to an increase in treatment efficacy in economically underdeveloped countries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rossi, P; Ogunleye, T
2014-06-15
Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquiredmore » under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior. Successful integration of multi-parametric MR and TRUS prostate images provides a prostate-cancer map for treatment planning, enables accurate dose planning and delivery, and potentially enhances prostate HDR treatment outcome.« less
SU-E-T-32: A Feasibility Study of Independent Dose Verification for IMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamima, T; Takahashi, R; Sato, Y
2015-06-15
Purpose: To assess the feasibility of the independent dose verification (Indp) for intensity modulated arc therapy (IMAT). Methods: An independent dose calculation software program (Simple MU Analysis, Triangle Products, JP) was used in this study, which can compute the radiological path length from the surface to the reference point for each control point using patient’s CT image dataset and the MLC aperture shape was simultaneously modeled in reference to the information of MLC from DICOM-RT plan. Dose calculation was performed using a modified Clarkson method considering MLC transmission and dosimetric leaf gap. In this study, a retrospective analysis was conductedmore » in which IMAT plans from 120 patients of the two sites (prostate / head and neck) from four institutes were retrospectively analyzed to compare the Indp to the TPS using patient CT images. In addition, an ion-chamber measurement was performed to verify the accuracy of the TPS and the Indp in water-equivalent phantom. Results: The agreements between the Indp and the TPS (mean±1SD) were −0.8±2.4% and −1.3±3.8% for the regions of prostate and head and neck, respectively. The measurement comparison showed similar results (−0.8±1.6% and 0.1±4.6% for prostate and head and neck). The variation was larger in the head and neck because the number of the segments was increased that the reference point was under the MLC and the modified Clarkson method cannot consider the smooth falloff of the leaf penumbra. Conclusion: The independent verification program would be practical and effective for secondary check for IMAT with the sufficient accuracy in the measurement and CT-based calculation. The accuracy would be improved if considering the falloff of the leaf penumbra.« less
Intra-operative 3D guidance in prostate brachytherapy using a non-isocentric C-arm.
Jain, A; Deguet, A; Iordachita, I; Chintalapani, G; Blevins, J; Le, Y; Armour, E; Burdette, C; Song, D; Fichtinger, G
2007-01-01
Intra-operative guidance in Transrectal Ultrasound (TRUS) guided prostate brachytherapy requires localization of inserted radioactive seeds relative to the prostate. Seeds were reconstructed using a typical C-arm, and exported to a commercial brachytherapy system for dosimetry analysis. Technical obstacles for 3D reconstruction on a non-isocentric C-arm included pose-dependent C-arm calibration; distortion correction; pose estimation of C-arm images; seed reconstruction; and C-arm to TRUS registration. In precision-machined hard phantoms with 40-100 seeds, we correctly reconstructed 99.8% seeds with a mean 3D accuracy of 0.68 mm. In soft tissue phantoms with 45-87 seeds and clinically realistic 15 degrees C-arm motion, we correctly reconstructed 100% seeds with an accuracy of 1.3 mm. The reconstructed 3D seed positions were then registered to the prostate segmented from TRUS. In a Phase-1 clinical trial, so far on 4 patients with 66-84 seeds, we achieved intra-operative monitoring of seed distribution and dosimetry. We optimized the 100% prescribed iso-dose contour by inserting an average of 3.75 additional seeds, making intra-operative dosimetry possible on a typical C-arm, at negligible additional cost to the existing clinical installation.
Smith, J B K; Sairam, K; Olsburgh, J
2009-01-01
Urological expertise is usually required for the management of any urological complications of bladder-drained pancreatic allografts whether they are the result of simultaneous pancreas-kidney transplants, pancreas after kidney transplants, or pancreas transplants alone. This study presents a case of urinary retention secondary to prostatic urethra calculus impaction, the nidus of which was found to be metallic staples from the donor duodenal segment of a pancreatic allograft. Knowledge of the pre-transplant benchwork gave a high index of suspicion to the urological sequelae of this case and, in particular, the presence of calculi should suggest a metal clip nidus. We examine the methods of exocrine pancreatic drainage, donor duodenum preparation and case management.
Schouten, Martijn G; van der Leest, Marloes; Pokorny, Morgan; Hoogenboom, Martijn; Barentsz, Jelle O; Thompson, Les C; Fütterer, Jurgen J
2017-06-01
Knowledge of significant prostate (sPCa) locations being missed with magnetic resonance (MR)- and transrectal ultrasound (TRUS)-guided biopsy (Bx) may help to improve these techniques. To identify the location of sPCa lesions being missed with MR- and TRUS-Bx. In a referral center, 223 consecutive Bx-naive men with elevated prostate specific antigen level and/or abnormal digital rectal examination were included. Histopathologically-proven cancer locations, Gleason score, and tumor length were determined. All patients underwent multi-parametric MRI and 12-core systematic TRUS-Bx. MR-Bx was performed in all patients with suspicion of PCa on multi-parametric MRI (n=142). Cancer locations were compared between MR- and TRUS-Bx. Proportions were expressed as percentages, and the corresponding 95% confidence intervals were calculated. In total, 191 lesions were found in 108 patients with sPCa. From these lesion 74% (141/191) were defined as sPCa on either MR- or TRUS-Bx. MR-Bx detected 74% (105/141) of these lesions and 61% (86/141) with TRUS-Bx. TRUS-Bx detected more lesions compared with MR-Bx (140 vs 109). However, these lesions were often low risk (39%). Significant lesions missed with MR-Bx most often had involvement of dorsolateral (58%) and apical (37%) segments and missed segments with TRUS-Bx were located anteriorly (79%), anterior midprostate (50%), and anterior apex (23%). Both techniques have difficulties in detecting apical lesions. MR-Bx most often missed cancer with involvement of the dorsolateral part (58%) and TRUS-Bx with involvement of the anterior part (79%). Both biopsy techniques miss cancer in specific locations within the prostate. Identification of these lesions may help to improve these techniques. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
La Macchia, Mariangela; Fellin, Francesco; Amichetti, Maurizio; Cianchetti, Marco; Gianolini, Stefano; Paola, Vitali; Lomax, Antony J; Widesott, Lamberto
2012-09-18
To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC.To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.
Krieger, John N.; Lee, Shaun Wen Huey; Jeon, Jeonseong; Cheah, Phaik Yeong; Liong, Men Long; Riley, Donald E.
2008-01-01
Background Prostatitis describes a combination of infectious diseases (acute and chronic bacterial prostatitis), chronic pelvic pain syndrome, and asymptomatic inflammation. Materials and methods We employed evidence-based methods to review the epidemiology of prostatitis syndromes. Results The prevalence of prostatitis symptoms could be compared in five studies surveying 10 617 men. Overall, 873 participants met various criteria for prostatitis, representing an overall rate of 8.2%, with prevalence ranging from 2.2 to 9.7%. A history of sexually transmitted diseases was associated with an increased risk for prostatitis symptoms. Men reporting a history of prostatitis symptoms had a substantially increased rate of benign prostatic hyperplasia, lower urinary tract symptoms and prostate cancer. In one study, the incidence of physician-diagnosed prostatitis was 4.9 cases per 1000 person-years. Two studies suggest that about one-third of men reporting prostatitis symptoms had resolution after 1 year. Patients with previous episodes and more severe symptoms are at higher risk for chronic pelvic pain. Discussion The prevalence of prostatitis symptoms is high, comparable to rates of ischamic heart disease and diabetes. Clinical evaluation appears necessary to verify that prostatitis is responsible for patients’ symptoms. Prostatitis symptoms may increase a man’s risk for benign prostate hypertrophy, lower urinary tract symptoms and prostate cancer. We need to define natural history and consequences of prostatitis, develop better algorithms for diagnosis and treatment, and develop strategies for prevention. PMID:18164907
Zhang, Hai-Min; Yan, Yang; Wang, Fang; Gu, Wen-Yu; Hu, Guang-Hui; Zheng, Jun-Hua
2014-01-01
As a definite diagnosis of prostate cancer, puncture biopsy of the prostate is invasive method. The aim of this study was to evaluate the value of OPSAD (the ratio of PSA to the outer gland volume of prostate) as a non-invasive screening and diagnosis method for prostate cancer in a select population. The diagnosis data of 490 subjects undergoing ultrasound-guided biopsy of the prostate were retrospectively analyzed. This included 133 patients with prostate cancer, and 357 patients with benign prostate hyperplasia (BPH). The OPSAD was significantly greater in patients with prostate cancer (1.87 ± 1.26 ng/ml(2)) than those with BPH (0.44 ± 0.21 ng/ml(2)) (P < 0.05). Receiver operating characteristic (ROC) curve analysis revealed that the performance of OPSAD as a diagnostic tool is superior to PSA and PSAD for the diagnosis of prostate cancer. In the different groups divided according to the Gleason score of prostate cancer, OPSAD is elevated with the rise of the Gleason score. OPSAD may be used as a new indicator for the diagnosis and prognosis of prostate cancer, and it can reduce the use of unnecessary puncture biopsy of the prostate.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Xu, Jun; Madabhushi, Anant
2015-01-01
Nuclear architecture or the spatial arrangement of individual cancer nuclei on histopathology images has been shown to be associated with different grades and differential risk for a number of solid tumors such as breast, prostate, and oropharyngeal. Graph-based representations of individual nuclei (nuclei representing the graph nodes) allows for mining of quantitative metrics to describe tumor morphology. These graph features can be broadly categorized into global and local depending on the type of graph construction method. While a number of local graph (e.g. Cell Cluster Graphs) and global graph (e.g. Voronoi, Delaunay Triangulation, Minimum Spanning Tree) features have been shown to associated with cancer grade, risk, and outcome for different cancer types, the sensitivity of the preceding segmentation algorithms in identifying individual nuclei can have a significant bearing on the discriminability of the resultant features. This therefore begs the question as to which features while being discriminative of cancer grade and aggressiveness are also the most resilient to the segmentation errors. These properties are particularly desirable in the context of digital pathology images, where the method of slide preparation, staining, and type of nuclear segmentation algorithm employed can all dramatically affect the quality of the nuclear graphs and corresponding features. In this paper we evaluated the trade off between discriminability and stability of both global and local graph-based features in conjunction with a few different segmentation algorithms and in the context of two different histopathology image datasets of breast cancer from whole-slide images (WSI) and tissue microarrays (TMA). Specifically in this paper we investigate a few different performance measures including stability, discriminability and stability vs discriminability trade off, all of which are based on p-values from the Kruskal-Wallis one-way analysis of variance for local and global graph features. Apart from identifying the set of local and global features that satisfied the trade off between stability and discriminability, our most interesting finding was that a simple segmentation method was sufficient to identify the most discriminant features for invasive tumour detection in TMAs, whereas for tumour grading in WSI, the graph based features were more sensitive to the accuracy of the segmentation algorithm employed.
Lippolis, Giuseppe; Edsjö, Anders; Helczynski, Leszek; Bjartell, Anders; Overgaard, Niels Chr
2013-09-05
Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze histological samples. Morphological and molecular information may be integrated by aligning microscopic histological images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens. Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for androgen receptor (AR). Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were evaluated using both visual and quantitative criteria as defined in the text. Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer (Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%).The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4 sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away. The proposed method is both reliable and fast and therefore well suited for automatic segmentation and analysis of specific areas of interest, combining morphological information with protein expression data from three consecutive tissue sections. Finally, the performance of the algorithm seems to be largely unaffected by the Gleason grade of the prostate tissue samples examined, at least up to Gleason score 7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Ates, O; Li, X
Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed withmore » CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Kapanen, Mika; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS
Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from −2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.« less
NASA Astrophysics Data System (ADS)
Meijs, M.; Debats, O.; Huisman, H.
2015-03-01
In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.
Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer
NASA Astrophysics Data System (ADS)
Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.
2017-09-01
One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.
NASA Astrophysics Data System (ADS)
Wallace, D.; Ng, J. A.; Keall, P. J.; O'Brien, R. T.; Poulsen, P. R.; Juneja, P.; Booth, J. T.
2015-06-01
Kilovoltage intrafraction monitoring (KIM) utilises the kV imager during treatment for real-time tracking of prostate fiducial markers. However, its effectiveness relies on sufficient image quality for the fiducial tracking task. To guide the performance characterisation of KIM under different clinically relevant conditions, the effect of different kV parameters and patient size on image quality, and quantification of MV scatter from the patient to the kV detector panel were investigated in this study. Image quality was determined for a range of kV acquisition frame rates, kV exposure, MV dose rates and patient sizes. Two methods were used to determine image quality; the ratio of kV signal through the patient to the MV scatter from the patient incident on the kilovoltage detector, and the signal-to-noise ratio (SNR). The effect of patient size and frame rate on MV scatter was evaluated in a homogeneous CIRS pelvis phantom and marker segmentation was determined utilising the Rando phantom with embedded markers. MV scatter incident on the detector was shown to be dependent on patient thickness and frame rate. The segmentation code was shown to be successful for all frame rates above 3 Hz for the Rando phantom corresponding to a kV to MV ratio of 0.16 and an SNR of 1.67. For a maximum patient dimension less than 36.4 cm the conservative kV parameters of 5 Hz at 1 mAs can be used to reduce dose while retaining image quality, where the current baseline kV parameters of 10 Hz at 1 mAs is shown to be adequate for marker segmentation up to a patient dimension of 40 cm. In conclusion, the MV scatter component of image quality noise for KIM has been quantified. For most prostate patients, use of KIM with 10 Hz imaging at 1 mAs is adequate however image quality can be maintained and imaging dose reduced by altering existing acquisition parameters.
Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT
NASA Astrophysics Data System (ADS)
Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David
2010-11-01
Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.
Posttraumatic posterior urethral strictures in children: a 20-year experience.
Koraitim, M M
1997-02-01
We attempted to identify the particular features of strictures complicating pelvic fracture urethral injuries in children. A total of 68 boys 3 to 15 years old who had sustained pelvic fracture urethral disruption underwent 78 urethroplasties performed by bulboprostatic anastomosis through the perineum in 42, transpubically in 23 and by 2-stage urethroscrotal inlay in 13. Perineal and transurethral urethroplasty was successful in 93 and 91% of cases respectively. There was a 54% failure rate after urethroscrotal inlay. Urethral strictures were most commonly associated with Malgaigne's fracture (35% of cases) and straddle fracture with or without diastasis of the sacroiliac joint (26%). Strictures were almost invariably inferior to the verumontanum with prostatic displacement in 44% of cases. Length of the strictured segment may be overestimated or underestimated on urethrography as a result of incomplete filling of the prostatic urethra or a urinoma cavity connected with the proximal segment, respectively. Perineal or transpubic bulboprostatic anastomosis is the best treatment for posttraumatic strictures, while internal urethrotomy should be avoided since it may compromise the chance of subsequent anastomotic urethroplasty. Repair of associated bladder neck incompetence may be deferred until the resumption of urethral voiding after urethroplasty, when incontinence can be documented.
Accuracy and variability of tumor burden measurement on multi-parametric MRI
NASA Astrophysics Data System (ADS)
Salarian, Mehrnoush; Gibson, Eli; Shahedi, Maysam; Gaed, Mena; Gómez, José A.; Moussa, Madeleine; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Chin, Joseph L.; Pautler, Stephen; Bauman, Glenn S.; Ward, Aaron D.
2014-03-01
Measurement of prostate tumour volume can inform prognosis and treatment selection, including an assessment of the suitability and feasibility of focal therapy, which can potentially spare patients the deleterious side effects of radical treatment. Prostate biopsy is the clinical standard for diagnosis but provides limited information regarding tumour volume due to sparse tissue sampling. A non-invasive means for accurate determination of tumour burden could be of clinical value and an important step toward reduction of overtreatment. Multi-parametric magnetic resonance imaging (MPMRI) is showing promise for prostate cancer diagnosis. However, the accuracy and inter-observer variability of prostate tumour volume estimation based on separate expert contouring of T2-weighted (T2W), dynamic contrastenhanced (DCE), and diffusion-weighted (DW) MRI sequences acquired using an endorectal coil at 3T is currently unknown. We investigated this question using a histologic reference standard based on a highly accurate MPMRIhistology image registration and a smooth interpolation of planimetric tumour measurements on histology. Our results showed that prostate tumour volumes estimated based on MPMRI consistently overestimated histological reference tumour volumes. The variability of tumour volume estimates across the different pulse sequences exceeded interobserver variability within any sequence. Tumour volume estimates on DCE MRI provided the lowest inter-observer variability and the highest correlation with histology tumour volumes, whereas the apparent diffusion coefficient (ADC) maps provided the lowest volume estimation error. If validated on a larger data set, the observed correlations could support the development of automated prostate tumour volume segmentation algorithms as well as correction schemes for tumour burden estimation on MPMRI.
Bahk, J Y; Hyun, J S; Lee, J Y; Kim, J; Cho, Y H; Lee, J H; Park, J S; Kim, M O
2000-05-01
Excellent treatment results in chronic prostatitis by direct intra-prostatic injection of antibiotic were reported several decades ago with only minimal scientific background. We examined the distribution, in prostatic tissue and fluid, of the antibiotic in canines after intra-prostatic injection of biodegradable sustained-releasing microspheres containing 12 mg. of ofloxacin. A total of 36 male dogs, 12 controls and 24 experimental, older than 2 years, were used. Experimental dogs were given biodegradable sustained releasing microspheres containing ofloxacin 12 mg. and poly(D,L-lactic) acid 28 mg., designed to release over more than a 4 week period. The 12 control animals were divided into 2 groups, and oral ofloxacin 100 mg. was given twice a day for 2 and 4 weeks. The 24 experimental animals were divided into 4 subgroups of 6 dogs each, 4 for prostatic tissue and 2 for prostatic fluid level of ofloxacin determination. Anesthesia was initiated with ketamine HCl and xylazine, and maintained with intermittent ketamine HCl. In the experimental groups, 1 ml. of resolved formula was injected into one lobe of surgically exposed prostates. The concentration of ofloxacin was measured by high performance liquid chromatography (HPLC) of blood, prostatic tissue and prostatic fluid. Pilocarpine 0.5 mg./kg. was used for the collection of the prostatic fluid. The total ofloxacin of controls were 2,800 (2 weeks) and 5,600 (4 weeks) mg. In control groups, tissue concentrations of ofloxacin were relatively even at all segments of prostate, 7.4 +/- 0.8 (2 weeks) and 9.2 +/- 1.1 microg./ml. (4 weeks). The blood level ranged between 3.6 to 5.1 microg./ml. The prostatic fluid level ranged from 3.1 to 5.7 microg. /ml. In the experimental groups, the tissue levels of ofloxacin were 10.5 +/- 3.0 (1 week), 13.8 +/- 4.5 (2 weeks), 7.1 +/- 0.9 (3 weeks) and 7.7 +/- 3.0 microg./ml. (4 weeks) in the injected lobe. The opposite lobes were 8.0 +/- 1.1 (1 week), 10.2 +/- 4.2 (2 weeks), 5. 1 +/- 1.4 (3 weeks) and 7.6 +/- 0.8 (4 weeks) microg./ml. The blood level in the experimental groups ranged between 0.16 to 0.59 microg./ml. The prostate fluid level ranged from 2.9 to 6.1 microg./ml. in 8 dogs. Upon pathologic examination, the microspheres were interposed between prostate stroma and their size was reduced over time. Our study indicates that there is communication between the right and left prostate lobes. Direct injection of biodegradable sustained releasing ofloxacin formula into the prostate may be a substitute for long term antibiotic medication in humans for chronic prostatitis in the future without hurting the minimal inhibitory concentration(MIC)90.
Suzuki, Taiji; Aihara, Kazuyuki
2013-09-01
These days prostate cancer is one of the most common types of malignant neoplasm in men. Androgen ablation therapy (hormone therapy) has been shown to be effective for advanced prostate cancer. However, continuous hormone therapy often causes recurrence. This results from the progression of androgen-dependent cancer cells to androgen-independent cancer cells during the continuous hormone therapy. One possible method to prevent the progression to the androgen-independent state is intermittent androgen suppression (IAS) therapy, which ceases dosing intermittently. In this paper, we propose two methods to estimate the dynamics of prostate cancer, and investigate the IAS therapy from the viewpoint of optimality. The two methods that we propose for dynamics estimation are a variational Bayesian method for a piecewise affine (PWA) system and a Gaussian process regression method. We apply the proposed methods to real clinical data and compare their predictive performances. Then, using the estimated dynamics of prostate cancer, we observe how prostate cancer behaves for various dosing schedules. It can be seen that the conventional IAS therapy is a way of imposing high cost for dosing while keeping the prostate cancer in a safe state. We would like to dedicate this paper to the memory of Professor Luigi M. Ricciardi. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
An Adaptive MR-CT Registration Method for MRI-guided Prostate Cancer Radiotherapy
Zhong, Hualiang; Wen, Ning; Gordon, James; Elshaikh, Mohamed A; Movsas, Benjamin; Chetty, Indrin J.
2015-01-01
Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ/cm3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for development of high-quality MRI-guided radiation therapy. PMID:25775937
An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.
2015-04-01
Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for the development of high-quality MRI-guided radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa
Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasoundmore » scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.« less
NASA Astrophysics Data System (ADS)
Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning
2017-03-01
The Gleason grading system was developed for assessing prostate histopathology slides. It is correlated to the outcome and incidence of relapse in prostate cancer. Although this grading is part of a standard protocol performed by pathologists, visual inspection of whole slide images (WSIs) has an inherent subjectivity when evaluated by different pathologists. Computer aided pathology has been proposed to generate an objective and reproducible assessment that can help pathologists in their evaluation of new tissue samples. Deep convolutional neural networks are a promising approach for the automatic classification of histopathology images and can hierarchically learn subtle visual features from the data. However, a large number of manual annotations from pathologists are commonly required to obtain sufficient statistical generalization when training new models that can evaluate the daily generated large amounts of pathology data. A fully automatic approach that detects prostatectomy WSIs with high-grade Gleason score is proposed. We evaluate the performance of various deep learning architectures training them with patches extracted from automatically generated regions-of-interest rather than from manually segmented ones. Relevant parameters for training the deep learning model such as size and number of patches as well as the inclusion or not of data augmentation are compared between the tested deep learning architectures. 235 prostate tissue WSIs with their pathology report from the publicly available TCGA data set were used. An accuracy of 78% was obtained in a balanced set of 46 unseen test images with different Gleason grades in a 2-class decision: high vs. low Gleason grade. Grades 7-8, which represent the boundary decision of the proposed task, were particularly well classified. The method is scalable to larger data sets with straightforward re-training of the model to include data from multiple sources, scanners and acquisition techniques. Automatically generated heatmaps for theWSIs could be useful for improving the selection of patches when training networks for big data sets and to guide the visual inspection of these images.
McLaughlin, Patrick W; Evans, Cheryl; Feng, Mary; Narayana, Vrinda
2010-02-01
Use of highly conformal radiation for prostate cancer can lead to both overtreatment of surrounding normal tissues and undertreatment of the prostate itself. In this retrospective study we analyzed the radiographic and anatomic basis of common errors in computed tomography (CT) contouring and suggest methods to correct them. Three hundred patients with prostate cancer underwent CT and magnetic resonance imaging (MRI). The prostate was delineated independently on the data sets. CT and MRI contours were compared by use of deformable registration. Errors in target delineation were analyzed and methods to avoid such errors detailed. Contouring errors were identified at the prostatic apex, mid gland, and base on CT. At the apex, the genitourinary diaphragm, rectum, and anterior fascia contribute to overestimation. At the mid prostate, the anterior and lateral fasciae contribute to overestimation. At the base, the bladder and anterior fascia contribute to anterior overestimation. Transition zone hypertrophy and bladder neck variability contribute to errors of overestimation and underestimation at the superior base, whereas variable prostate-to-seminal vesicle relationships with prostate hypertrophy contribute to contouring errors at the posterior base. Most CT contouring errors can be detected by (1) inspection of a lateral view of prostate contours to detect projection from the expected globular form and (2) recognition of anatomic structures (genitourinary diaphragm) on the CT scans that are clearly visible on MRI. This study shows that many CT prostate contouring errors can be improved without direct incorporation of MRI data. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Ling, Yuting; Lang, Stephen; Wang, Ruikang K.; Huang, Zhihong; Nabi, Ghulam
2015-03-01
Objectives. Prostate cancer is the most frequently diagnosed malignancy in men. Digital rectal examination (DRE) - a known clinical tool based on alteration in the mechanical properties of tissues due to cancer has traditionally been used for screening prostate cancer. Essentially, DRE estimates relative stiffness of cancerous and normal prostate tissue. Optical coherence elastography (OCE) are new optical imaging techniques capable of providing cross-sectional imaging of tissue microstructure as well as elastogram in vivo and in real time. In this preliminary study, OCE was used in the setting of the human prostate biopsies ex vivo, and the images acquired were compared with those obtained using standard histopathologic methods. Methods. 120 prostate biopsies were obtained by TRUS guided needle biopsy procedures from 9 patients with clinically suspected cancer of the prostate. The biopsies were approximately 0.8mm in diameter and 12mm in length, and prepared in Formalin solution. Quantitative assessment of biopsy samples using OCE was obtained in kilopascals (kPa) before histopathologic evaluation. The results obtained from OCE and standard histopathologic evaluation were compared provided the cross-validation. Sensitivity, specificity, and positive and negative predictive values were calculated for OCE (histopathology was a reference standard). Results. OCE could provide quantitative elasticity properties of prostate biopsies within benign prostate tissue, prostatic intraepithelial neoplasia, atypical hyperplasia and malignant prostate cancer. Data analysed showed that the sensitivity and specificity of OCE for PCa detection were 1 and 0.91, respectively. PCa had significantly higher stiffness values compared to benign tissues, with a trend of increasing in stiffness with increasing of malignancy. Conclusions. Using OCE, microscopic resolution elastogram is promising in diagnosis of human prostatic diseases. Further studies using this technique to improve the detection and staging of malignant cancer of the prostate are ongoing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Azawi, S; Cho-Lim, J
Purpose: To evaluate the intra-fractional prostate movement range during the beam delivery and implement new IGRT method to correct the prostate movement during the hypofractionated prostate treatment delivery. Methods: To evaluate the prostate internal motion range during the beam delivery, 11 conventional treatments were utilized. Two-arc RapidArc plans were used for the treatment delivery. Orthogonal KV imaging is performed in the middle of the treatment to correct intra-fractional prostate movement. However, it takes gantry-mounted on-board imaging system relative long time to finish the orthogonal KV imaging because of gantry rotation. To avoid gantry movement and accelerate the IGRT processing time,more » orthogonal KV-MV image pair is tested using the OBI daily QA Cube phantom. Results: The average prostate movement between two orthogonal KV image pairs was 0.38cm (0.20cm ∼ 0.85cm). And the interval time between them was 6.71 min (4.64min ∼ 9.22 min). 2-arc beam delivery time is within 3 minutes for conventional RapidArc treatment delivery. Hypofractionated treatment or SBRT need 4 partial arc and possible non-coplanar technology, which need much longer beam delivery time. Therefore prostate movement might be larger. New orthogonal KV-MV image pair is a new method to correct the prostate movement in the middle of the beam delivery if real time tracking method is not available. Orthogonal KV-MV image pair doesn’t need gantry rotation. Images were acquired quickly which minimized possible new prostate movement. Therefore orthogonal KV-MV image pair is feasible for IGRT. Conclusion: Hypofractionated prostate treatment with less PTV margin always needs longer beam delivery time. Therefore prostate movement correction during the treatment delivery is critical. Orthogonal KV-MV imaging pair is efficient and accurate to correct the prostate movement during treatment beam delivery. Due to limited fraction number and high dose per fraction, the MV imaging dose is negligible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.
2013-07-01
Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less
Carl, Jesper; Lund, Bente; Larsen, Erik Hoejkjaer; Nielsen, Jane
2006-02-01
A new method for localization of the prostate during external beam radiotherapy is presented. The method is based on insertion of a thermo-expandable Ni-Ti stent. The stent is originally developed for treatment of bladder outlet obstruction caused by benign hyperplasia. The radiological properties of the stent are used for precise prostate localization during treatment using electronic portal images. Patients referred for intended curative radiotherapy and having a length of their prostatic urethra in the range from 25 to 65 mm were included. Pairs of isocentric orthogonal portal images were used to determine the 3D position at eight different treatment sessions for each patient. Fourteen patients were enrolled in the study. The data obtained demonstrated that the stent position was representative of the prostate location. The stent may also improve delineation of the prostate GTV, and prevent obstruction of bladder outlet during treatment. Precision in localization of the stent was less than 1 mm. Random errors in stent position were left-right 1.6 mm, cranial-caudal 2.2 mm and anterior-posterior 3.2 mm. In four of 14 patients a dislocation of the stent to the bladder occurred. Dislocation only occurred in patients with length of prostatic urethra less than 40 mm. A new method for radiological high precision localization of the prostate during radiotherapy is presented. The method is based on insertion of a standard Ni-Ti thermo-expandable stent, designed for treatment of benign prostate hyperplasia.
SU-E-J-221: A Novel Expansion Method for MRI Based Target Delineation in Prostate Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, B; East Carolina University, Greenville, NC; Feng, Y
Purpose: To compare a novel bladder/rectum carveout expansion method on MRI delineated prostate to standard CT and expansion based methods for maintaining prostate coverage while providing superior bladder and rectal sparing. Methods: Ten prostate cases were planned to include four trials: MRI vs CT delineated prostate/proximal seminal vesicles, and each image modality compared to both standard expansions (8mm 3D expansion and 5mm posterior, i.e. ∼8mm) and carveout method expansions (5mm 3D expansion, 4mm posterior for GTV-CTV excluding expansion into bladder/rectum followed by additional 5mm 3D expansion to PTV, i.e. ∼1cm). All trials were planned to total dose 7920 cGy viamore » IMRT. Evaluation and comparison was made using the following criteria: QUANTEC constraints for bladder/rectum including analysis of low dose regions, changes in PTV volume, total control points, and maximum hot spot. Results: ∼8mm MRI expansion consistently produced the most optimal plan with lowest total control points and best bladder/rectum sparing. However, this scheme had the smallest prostate (average 22.9% reduction) and subsequent PTV volume, consistent with prior literature. ∼1cm MRI had an average PTV volume comparable to ∼8mm CT at 3.79% difference. Bladder QUANTEC constraints were on average less for the ∼1cm MRI as compared to the ∼8mm CT and observed as statistically significant with 2.64% reduction in V65. Rectal constraints appeared to follow the same trend. Case-by-case analysis showed variation in rectal V30 with MRI delineated prostate being most favorable regardless of expansion type. ∼1cm MRI and ∼8mm CT had comparable plan quality. Conclusion: MRI delineated prostate with standard expansions had the smallest PTV leading to margins that may be too tight. Bladder/rectum carveout expansion method on MRI delineated prostate was found to be superior to standard CT based methods in terms of bladder and rectal sparing while maintaining prostate coverage. Continued investigation is warranted for further validation.« less
Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.
Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang
2018-03-27
We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.
Słapa, Rafał Z.; Jakubowski, Wiesław S.; Migda, Bartosz; Dmowski, Tadeusz
2014-01-01
Aim Sonoelastography is a technique that assesses tissue hardness/compressibility. Utility and sensitivity of the method in prostate cancer diagnostics were assessed compared to the current gold standard in prostate cancer diagnostics i.e. systematic biopsy. Material and methods The study involved 84 patients suspected of prostate cancer based on elevated PSA levels or abnormal per rectal examination findings. Sonoelastography was used to evaluate the prostate gland. In the case of regions with hardness two-fold greater than that of symmetric prostate area (strain ratio >2), targeted biopsy was used; which was followed by an ultrasound-guided 8- or 10-core systematic biopsy (regardless of sonoelastography-indicated sites) as a reference point. Results The mean age of patients was 69 years. PSA serum levels ranged between 1.02 and 885 ng/dl. The mean prostate volume was 62 ml (19–149 ml). Prostate cancer was found in 39 out of 84 individuals. Statistically significant differences in strain ratios between cancers and benign lesions were shown. Sonoelastography guided biopsy revealed 30 lesions – overall sensitivity 77% (sensitivity of the method – 81%). Sonoelastographic sensitivity increased depending on cancer stage according to the Gleason grading system: 6–60%, 7–75%, 8–83%, 9/10–100%. The estimated sensitivity of systematic biopsy was 92%. Conclusions Sonoelastography shows higher diagnostic sensitivity in prostate cancer diagnostics compared to conventional imaging techniques, i.e. grey-scale TRUS, Doppler ultrasound. It allows to reduce the number of collected tissue cores, and thus limit the incidence of complications as well as the costs involved. Sonoelastography using the determination of compressibility ratio for symmetrical prostatic regions may prove useful in the detection of clinically significant prostate cancer. PMID:26674065
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, C; Jiang, R; Chow, J
2015-06-15
Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describingmore » the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system.« less
Kim, Seung Hyup
2008-01-01
Objective To evaluate the correlations between prostate volumes estimated by transabdominal, transrectal, and three-dimensional US and the factors affecting the differences. Materials and Methods The prostate volumes of 94 consecutive patients were measured by both transabdominal and transrectal US. Next, the prostate volumes of 58 other patients was measured by both transrectal and three-dimensional US. We evaluated the degree of correlation and mean difference in each comparison. We also analyzed possible factors affecting the differences, such as the experiences of examiners in transrectal US, bladder volume, and prostate volume. Results In the comparison of transabdominal and transrectal US methods, the mean difference was 8.4 ± 10.5 mL and correlation coefficient (r) was 0.775 (p < 0.01). The experienced examiner for the transrectal US method had the highest correlation (r = 0.967) and the significantly smallest difference (5.4 ± 3.9 mL) compared to the other examiners (the beginner and the trained; p < 0.05). Prostate volume measured by transrectal US showed a weak correlation with the difference (r = 0.360, p < 0.05). Bladder volume did not show significant correlation with the difference (r = -0.043, p > 0.05). The comparison between the transrectal and three-dimensional US methods revealed a mean difference of 3.7 ± 3.4 mL and the correlation coefficient was 0.924 for the experienced examiner. Furthermore, no significant difference existed between examiners (p > 0.05). Prostate volume measured by transrectal US showed a positive correlation with the difference for the beginner only (r = 0.405, p < 0.05). Conclusion In the prostate volume estimation by US, experience in transrectal US is important in the correlation with transabdominal US, but not with three-dimensional US. Also, less experienced examiners' assessment of the prostate volume can be affected by prostate volume itself. PMID:18385560
Automated localization and segmentation techniques for B-mode ultrasound images: A review.
Meiburger, Kristen M; Acharya, U Rajendra; Molinari, Filippo
2018-01-01
B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interactive deformation registration of endorectal prostate MRI using ITK thin plate splines.
Cheung, M Rex; Krishnan, Karthik
2009-03-01
Magnetic resonance imaging with an endorectal coil allows high-resolution imaging of prostate cancer and the surrounding normal organs. These anatomic details can be used to direct radiotherapy. However, organ deformation introduced by the endorectal coil makes it difficult to register magnetic resonance images for treatment planning. In this study, plug-ins for the volume visualization software VolView were implemented on the basis of algorithms from the National Library of Medicine's Insight Segmentation and Registration Toolkit (ITK). Magnetic resonance images of a phantom simulating human pelvic structures were obtained with and without the endorectal coil balloon inflated. The prostate not deformed by the endorectal balloon was registered to the deformed prostate using an ITK thin plate spline (TPS). This plug-in allows the use of crop planes to limit the deformable registration in the region of interest around the prostate. These crop planes restricted the support of the TPS to the area around the prostate, where most of the deformation occurred. The region outside the crop planes was anchored by grid points. The TPS was more accurate in registering the local deformation of the prostate compared with a TPS variant, the elastic body spline. The TPS was also applied to register an in vivo T(2)-weighted endorectal magnetic resonance image. The intraprostatic tumor was accurately registered. This could potentially guide the boosting of intraprostatic targets. The source and target landmarks were placed graphically. This TPS plug-in allows the registration to be undone. The landmarks could be added, removed, and adjusted in real time and in three dimensions between repeated registrations. This interactive TPS plug-in allows a user to obtain a high level of accuracy satisfactory to a specific application efficiently. Because it is open-source software, the imaging community will be able to validate and improve the algorithm.
Method of constructing a microwave antenna
NASA Technical Reports Server (NTRS)
Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Carl, James (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method of Constructing a Microwave Antenna
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method for selective thermal ablation
NASA Technical Reports Server (NTRS)
Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Raffoul, George W. (Inventor); Carl, James (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method for Selective Thermal Ablation
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Häggström, Christel; Van Hemelrijck, Mieke; Garmo, Hans; Robinson, David; Stattin, Pär; Rowley, Mark; Coolen, Anthony C C; Holmberg, Lars
2018-05-09
Most previous studies of prostate cancer have not taken into account that men in the studied populations are also at risk of competing event, and that these men may have different susceptibility to prostate cancer risk. The aim of this study was to investigate heterogeneity in risk of prostate cancer, using a recently developed latent class regression method for competing risks. We further aimed to elucidate the association between type 2 diabetes mellitus (T2DM) and prostate cancer risk, and to compare the results with conventional methods for survival analysis. We analysed the risk of prostate cancer in 126,482 men from the comparison cohort of the Prostate Cancer Data base Sweden (PCBaSe) 3.0. During a mean follow-up of 6 years 6,036 men were diagnosed with prostate cancer and 22,393 men died. We detected heterogeneity in risk of prostate cancer with two distinct latent classes in the study population. The smaller class included 9% of the study population in which men had a higher risk of prostate cancer and the risk was stronger associated with class membership than any of the covariates included in the study. Moreover, we found no association between T2DM and risk of prostate cancer after removal of the effect of informative censoring due to competing risks. The recently developed latent class for competing risks method could be used to provide new insights in precision medicine with the target to classify individuals regarding different susceptibility to a particular disease, reaction to a risk factor or response to treatment. This article is protected by copyright. All rights reserved. © 2018 UICC.
Medved, Milica; Sammet, Steffen; Yousuf, Ambereen; Oto, Aytekin
2015-01-01
Purpose To determine the possibility of obtaining high-quality magnetic resonance (MR) images before, during, and immediately after ejaculation and detecting measurable changes in quantitative MR imaging parameters after ejaculation. Materials and Methods In this prospective, institutional review board–approved, HIPAA-compliant study, eight young healthy volunteers (median age, 22.5 years), after providing informed consent, underwent MR imaging while masturbating to the point of ejaculation. A 1.5-T MR imaging unit was used, with an eight-channel surface coil and a dynamic single-shot fast spin-echo sequence. In addition, a quantitative MR imaging protocol that allowed calculation of T1, T2, and apparent diffusion coefficient (ADC) values was applied before and after ejaculation. Volumes of the prostate and seminal vesicles (SV) were calculated by using whole-volume segmentation on T2-weighted images, both before and after ejaculation. Pre- and postejaculation changes in quantitative MR parameters and measured volumes were evaluated by using the Wilcoxon signed rank test with Bonferroni adjustment. Results There was no significant change in prostate volumes on pre- and postejaculation images, while the SV contracted by 41% on average (median, 44.5%; P = .004). No changes before and after ejaculation were observed in T1 values or in T2 and ADC values in the central gland, while T2 and ADC values were significantly reduced in the peripheral zone by 12% and 14%, respectively (median, 13% and 14.5%, respectively; P = .004). Conclusion Successful dynamic MR imaging of ejaculation events and the ability to visualize internal sphincter closure, passage of ejaculate, and significant changes in SV volumes were demonstrated. Significant changes in peripheral zone T2 and ADC values were observed. PMID:24495265
Simmat, I; Georg, P; Georg, D; Birkfellner, W; Goldner, G; Stock, M
2012-09-01
The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability. A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS(®) and iPlan(®) were compared to an expert's delineation by calculating the Dice similarity coefficient (DSC) and conformity index. Demo-atlases of both systems showed different results for bladder (DSC(ABAS) 0.86 ± 0.17, DSC(iPlan) 0.51 ± 0.30) and prostate (DSC(ABAS) 0.71 ± 0.14, DSC(iPlan) 0.57 ± 0.19). Rectum delineation (DSC(ABAS) 0.78 ± 0.11, DSC(iPlan) 0.84 ± 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS(®) was closest to the interobserver benchmark. Autosegmentation with iPlan(®), ABAS(®) and manual segmentation took 0.5, 4 and 15-20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34). For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy.
Cantin, Audrey; Gingras, Luc; Lachance, Bernard; Foster, William; Goudreault, Julie; Archambault, Louis
2015-12-01
The movements of the prostate relative to the pelvic lymph nodes during intensity-modulated radiation therapy treatment can limit margin reduction and affect the protection of the organs at risk (OAR). In this study, the authors performed an analysis of three adaptive treatment strategies that combine information from both bony and gold marker registrations. The robustness of those treatments against the interfraction prostate movements was evaluated. A retrospective study was conducted on five prostate cancer patients with 7-13 daily cone-beam CTs (CBCTs). The clinical target volumes (CTVs) consisting of pelvic lymph nodes, prostate, and seminal vesicles as well as the OARs were delineated on each CBCT and the initial CT. Three adaptive strategies were analyzed. Two of these methods relied on a two-step patient positioning at each fraction. First step: a bony registration was used to deliver the nodal CTV prescription. Second step: a gold marker registration was then used either to (1) complete the dose delivered to the prostate (complement); (2) or give almost the entire prescription to the prostate with a weak dose gradient between the targets to compensate for possible motions (gradient). The third method (COR) used a pool of precalculated plans based on images acquired at previous treatment fractions. At each new fraction, a plan is selected from that pool based on the daily position of prostate center-of-mass. The dosimetric comparison was conducted and results are presented with and without the systematic shift in the prostate position on the CT planning. The adaptive strategies were compared to the current clinical standard where all fractions are treated with the initial nonadaptive plan. The minimum daily prostate D95% is improved by 2%, 9%, and 6% for the complement, the gradient, and the COR approaches, respectively, compared to the nonadaptive method. The average nodal CTV D95% remains constant across the strategies, except for the gradient approach where a reduction of 7% is observed. However, a correction of the systematic shift reduced the problem, and the adaptive strategies remain robust against the prostate movement across the fraction. The bladder V55Gy is reduced by 35% on average for the adaptive strategies. Because they offer increased CTV coverage and OAR sparing, adaptive methods may be suitable candidates for simple and efficient adaptive treatment strategies for prostate cancer. Margin reduction and systematic error correction in the prostate position improve the protection of the OAR and the dose coverage. A cumulative dose to simulate a complete treatment would show real effects and allow a better comparison between each method.
Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer
ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT
2008-01-01
Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantin, Audrey; Gingras, Luc; Archambault, Louis, E-mail: louis.archambault@phy.ulaval.ca
Purpose: The movements of the prostate relative to the pelvic lymph nodes during intensity-modulated radiation therapy treatment can limit margin reduction and affect the protection of the organs at risk (OAR). In this study, the authors performed an analysis of three adaptive treatment strategies that combine information from both bony and gold marker registrations. The robustness of those treatments against the interfraction prostate movements was evaluated. Methods: A retrospective study was conducted on five prostate cancer patients with 7–13 daily cone-beam CTs (CBCTs). The clinical target volumes (CTVs) consisting of pelvic lymph nodes, prostate, and seminal vesicles as well asmore » the OARs were delineated on each CBCT and the initial CT. Three adaptive strategies were analyzed. Two of these methods relied on a two-step patient positioning at each fraction. First step: a bony registration was used to deliver the nodal CTV prescription. Second step: a gold marker registration was then used either to (1) complete the dose delivered to the prostate (complement); (2) or give almost the entire prescription to the prostate with a weak dose gradient between the targets to compensate for possible motions (gradient). The third method (COR) used a pool of precalculated plans based on images acquired at previous treatment fractions. At each new fraction, a plan is selected from that pool based on the daily position of prostate center-of-mass. The dosimetric comparison was conducted and results are presented with and without the systematic shift in the prostate position on the CT planning. The adaptive strategies were compared to the current clinical standard where all fractions are treated with the initial nonadaptive plan. Results: The minimum daily prostate D{sub 95%} is improved by 2%, 9%, and 6% for the complement, the gradient, and the COR approaches, respectively, compared to the nonadaptive method. The average nodal CTV D{sub 95%} remains constant across the strategies, except for the gradient approach where a reduction of 7% is observed. However, a correction of the systematic shift reduced the problem, and the adaptive strategies remain robust against the prostate movement across the fraction. The bladder V{sub 55Gy} is reduced by 35% on average for the adaptive strategies. Conclusions: Because they offer increased CTV coverage and OAR sparing, adaptive methods may be suitable candidates for simple and efficient adaptive treatment strategies for prostate cancer. Margin reduction and systematic error correction in the prostate position improve the protection of the OAR and the dose coverage. A cumulative dose to simulate a complete treatment would show real effects and allow a better comparison between each method.« less
Potentiation of Prostate Cancer Radiotherapy using Combined Antiangiogenic and Antitumor Therapies
2006-10-01
frozen sections based on the overall intensity of the fluorescently conjugated antibody to EF5. Combination treated groups are shown paired with day...different pericyte markers were evaluated (one of which, NG2, is being recut to improve the auto -segmentation process). The expectation was that the...studies of vascular regression in the retina following hyperoxia, and in tumors following VEGF withdrawal, have shown that vessels covered by α
Wang, Xinggang; Yang, Wei; Weinreb, Jeffrey; Han, Juan; Li, Qiubai; Kong, Xiangchuang; Yan, Yongluan; Ke, Zan; Luo, Bo; Liu, Tao; Wang, Liang
2017-11-13
Prostate cancer (PCa) is a major cause of death since ancient time documented in Egyptian Ptolemaic mummy imaging. PCa detection is critical to personalized medicine and varies considerably under an MRI scan. 172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate were obtained. A deep learning with deep convolutional neural network (DCNN) and a non-deep learning with SIFT image feature and bag-of-word (BoW), a representative method for image recognition and analysis, were used to distinguish pathologically confirmed PCa patients from prostate benign conditions (BCs) patients with prostatitis or prostate benign hyperplasia (BPH). In fully automated detection of PCa patients, deep learning had a statistically higher area under the receiver operating characteristics curve (AUC) than non-deep learning (P = 0.0007 < 0.001). The AUCs were 0.84 (95% CI 0.78-0.89) for deep learning method and 0.70 (95% CI 0.63-0.77) for non-deep learning method, respectively. Our results suggest that deep learning with DCNN is superior to non-deep learning with SIFT image feature and BoW model for fully automated PCa patients differentiation from prostate BCs patients. Our deep learning method is extensible to image modalities such as MR imaging, CT and PET of other organs.
Spencer, Jeffrey; Blakely, Stephen; Daugherty, Michael; Angulo, Javier C; Martins, Francisco; Venkatesan, Krishnan; Nikolavsky, Dmitriy
2018-01-01
To evaluate clinical and patient-reported urinary and sexual outcomes after a long-segment stricture repair using the 1-sided urethral dissection, penile invagination, and dorsal buccal mucosa graft onlay technique described by Kulkarni et al. Patients from 4 institutions after single-stage repairs for long-segment urethral strictures (>8 cm) from January 2002 to April 2016 were reviewed. Technique described by Kulkarni et al was used in all cases. Clinical outcomes included uroflowmetry (Qmax) and post-void residuals. Patient-reported outcome measures included International Prostate Symptom Score survey, Sexual Health Inventory for Men, Male Sexual Health Questionnaire, and Global Response Assessment questionnaire to measure voiding, sexual, ejaculatory symptoms, and overall improvement, respectively. Seventy-three patients with a minimum of 12 months' follow-up were included. The mean age and stricture length were 56 (21-80) years and 13.6 (8-21) cm, respectively. At a mean follow-up of 44 (12-162) months, 9 of 73 (12%) strictures recurred. The mean baseline International Prostate Symptom Score of 23 (7-24) decreased to 10 (1-17) on follow-up (P <.001). Eight of 42 patients (21.4%) reported an increase, and 6 of 42 patients (14.3%) decreased in Sexual Health Inventory for Men following urethroplasty. Ejaculatory function on Male Sexual Health Questionnaire improved after urethroplasty from 8 preoperatively to 11 postoperatively (P <.004). All patients reported improvement after urethroplasty on Global Response Assessment questionnaire. Post-void dribbling and chordee occurred in 45% and 25% of patients, respectively. Durable patency in most patients is demonstrated in this study. PROMs indicate an improvement in urinary function and moderate effect on sexual function. Transient penile chordee was evident in 25% of patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Cancer Localization in the Prostate with F-18 Fluorocholine Positron Emission Tomography
2007-01-01
INTRODUCTION Prostate cancer is the second leading cause of cancer death in American men over 50 years of age. Ultrasound - guided prostate biopsy is...currently the most common method for diagnosing and localizing cancer in the prostate. However, even when standard 6 or 12 needle biopsy templates... needles employed (1, 2). While progress has been made in the detection of primary prostate cancer using imaging techniques such as ultrasound and
TU-AB-303-12: Towards Inter and Intra Fraction Plan Adaptation for the MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
Purpose: To develop a new sequencer for IMRT that during treatment can account for anatomy changes provided by online and real-time MRI. This sequencer employs a novel inter and intra fraction scheme that converges to the prescribed dose without a final segment weight optimization (SWO) and enables immediate optimization and delivery of radiation adapted to the deformed anatomy. Methods: The sequencer is initially supplied with a voxel-based dose prescription and during the optimization iteratively generates segments that provide this prescribed dose. Every iteration selects the best segment for the current anatomy state, calculates the dose it will deliver, warps itmore » back to the reference prescription grid and subtracts it from the remaining prescribed dose. This process continues until a certain percentage of dose or a number of segments has been delivered. The anatomy changes that occur during treatment require that convergence is achieved without a final SWO. This is resolved by adding the difference between the prescribed and delivered dose up to this fraction to the prescription of the subsequent fraction. This process is repeated for all fractions of the treatment. Results: Two breast cases were selected to stress test the pipeline by producing artificial inter and intra fraction anatomy deformations using a combination of incrementally applied rigid transformations. The dose convergence of the adaptive scheme over the entire treatment, relative to the prescribed dose, was on average 8.6% higher than the static plans delivered to the respective deformed anatomies and only 1.6% less than the static segment weighted plans on the static anatomy. Conclusion: This new adaptive sequencing strategy enables dose convergence without the need of SWO while adapting the plan to intermediate anatomies, which is a prerequisite for online plan adaptation. We are now testing our pipeline on prostate cases using clinical anatomy deformation data from our department. This work is financially supported by Elekta AB, Stockholm, Sweden.« less
Urine Flow Dynamics Through Prostatic Urethra With Tubular Organ Modeling Using Endoscopic Imagery
Kambara, Yoichi; Yamanishi, Tomonori; Naya, Yukio; Igarashi, Tatsuo
2014-01-01
Voiding dysfunction is common in the aged male population. However, the obstruction mechanism in the lower urinary tract and critical points for obstruction remains uncertain. The aim of this paper was to develop a system to investigate the relationship between voiding dysfunction and alteration of the shape of the prostatic urethra by processing endoscopic video images of the urethra and analyzing the fluid dynamics of the urine stream. A panoramic image of the prostatic urethra was generated from cystourethroscopic video images. A virtual 3-D model of the urethra was constructed using the luminance values in the image. Fluid dynamics using the constructed model was then calculated assuming a static urethra and maximum urine flow rate. Cystourethroscopic videos from 11 patients with benign prostatic hyperplasia were recorded around administration of an alpha-1 adrenoceptor antagonist. The calculated pressure loss through the prostatic urethra in each model corresponded to the prostatic volume, and the improvements of the pressure loss after treatment correlated to the conventional clinical indices. As shown by the proposed method, the shape of the prostatic urethra affects the transporting urine fluid energy, and this paper implies a possible method for detecting critical lesions responsible for voiding dysfunction. The proposed method provides critical information about deformation of the prostatic urethra on voiding function. Detailed differences in the various types of relaxants for the lower urinary tract could be estimated. PMID:27170869
Szerkus, O; Jacyna, J; Wiczling, P; Gibas, A; Sieczkowski, M; Siluk, D; Matuszewski, M; Kaliszan, R; Markuszewski, M J
2016-09-01
Fluoroquinolones are considered as gold standard for the prevention of bacterial infections after transrectal ultrasound guided prostate biopsy. However, recent studies reported that fluoroquinolone- resistant bacterial strains are responsible for gradually increasing number of infections after transrectal prostate biopsy. In daily clinical practice, antibacterial efficacy is evaluated only in vitro, by measuring the reaction of bacteria with an antimicrobial agent in culture media (i.e. calculation of minimal inhibitory concentration). Such approach, however, has no relation to the treated tissue characteristics and might be highly misleading. Thus, the objective of this study was to develop, with the use of Design of Experiments approach, a reliable, specific and sensitive ultra-high performance liquid chromatography- diode array detection method for the quantitative analysis of levofloxacin in plasma and prostate tissue samples obtained from patients undergoing prostate biopsy. Moreover, correlation study between concentrations observed in plasma samples vs prostatic tissue samples was performed, resulting in better understanding, evaluation and optimization of the fluoroquinolone-based antimicrobial prophylaxis during transrectal ultrasound guided prostate biopsy. Box-Behnken design was employed to optimize chromatographic conditions of the isocratic elution program in order to obtain desirable retention time, peak symmetry and resolution of levofloxacine and ciprofloxacine (internal standard) peaks. Fractional Factorial design 2(4-1) with four center points was used for screening of significant factors affecting levofloxacin extraction from the prostatic tissue. Due to the limited number of tissue samples the prostatic sample preparation procedure was further optimized using Central Composite design. Design of Experiments approach was also utilized for evaluation of parameter robustness. The method was found linear over the range of 0.030-10μg/mL for human plasma and 0.300-30μg/g for human prostate tissue samples. The intra-day and inter-day variability for levofloxacine from both plasma and prostate samples were less than 10%, with accuracies between 93 and 108% of the nominal values. The limit of detection and the limit of quantification for human plasma were 0.01μg/mL and 0.03μg/mL, respectively. For the prostate tissue, the limit of detection and the limit of quantification were 0.1μg/g and 0.3μg/g, respectively. The average recoveries of levofloxacin were in the range from 99 to 106%. Also, the method fulfills requirements of robustness what was determined and proved by Design of Experiments. The developed method was successfully applied to examine prostate tissue and plasma samples from 140 hospitalized patients enrolled into the clinical study, 12h after oral administration of LVF at a dose of 500mg. The mean (±SD) LVF concentration in prostate was 6.22±3.52μg/g and in plasma 2.54±1.14μg/mL. Due to simplicity of the method and relative small amount of sample needed for the assay, the method can be applied in clinical practice for monitoring of LVF concentrations in plasma and prostate gland. Copyright © 2016 Elsevier B.V. All rights reserved.
AgNOR histochemical expression in benign prostatic hyperplasia and prostatic adenocarcinoma
NASA Astrophysics Data System (ADS)
Rita, R.; Delyuzar; Laksmi, L. I.
2018-03-01
Benign prostatic hyperplasia and prostatic adenocarcinoma were common diseases and usually occurred after the 5th decade of life. The problem in diagnosing using Hematoxylin and Eosin staining was how to differentiate whether it is benign or malignant zone. Therefore, proliferating markers, such as AgNOR, could be helping to over this difficulty. A descriptive study using consecutive sampling as the method of sample recruiting was conducted to describe AgNOR histochemical expression in benign prostatic hyperplasia and prostatic adenocarcinoma. AgNOR staining was done in 13 benign prostatic hyperplasia samples and 7 prostatic adenocarcinoma samples, which have been confirmed using p63 immunohistochemical staining before. Benign prostatic hyperplasia usually showed lower AgNOR proliferating activity while all of theprostatic adenocarcinoma (100%) had high AgNOR proliferating activity.
Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate.
Lam, Michelle; Dey, Anupa; Lang, Richard J; Exintaris, Betty
2013-08-01
What's known on the subject? and what does the study add?: Several studies have examined the functional role of tyrosine kinase receptors in the generation of spontaneous activity in various segments of the gastrointestinal and urogenital tracts through the application of its inhibitor, imatinib mesylate (Glivec®), but results are fairly inconsistent. This is the first study detailing the effects of imatinib mesylate on the spontaneous activity in the young and ageing prostate gland. As spontaneous electrical activity underlies the spontaneous rhythmic prostatic contractions that occur at rest, elucidating the mechanisms involved in the regulation of the spontaneous electrical activity and the resultant phasic contractions could conceivably lead to the identification of better targets and the development of more specific therapeutic agents to treat prostate conditions. To investigate the effect of imatinib mesylate, a tyrosine kinase receptor inhibitor, in the generation of spontaneous electrical and contractile activity in the young and ageing guinea-pig prostate. Standard tension and intracellular recording were used to measure spontaneous contractions and slow waves, respectively from the guinea-pig prostate at varying concentrations of imatinib mesylate (1-50 μm). Imatinib mesylate (1-10 μm), did not significantly affect slow waves recorded in the prostate of both age groups but at 50 μm, the amplitude of slow waves from the ageing guinea-pig prostate was significantly reduced (P < 0.05, n = 5). In contrast, the amplitude of contractions across all concentrations in the young guinea-pig prostate was reduced to between 35% and 41% of control, while the frequency was reduced to 15.7% at 1 μm (n = 7), 49.8% at 5 μm (n = 10), 46.2% at 10 μm (n = 7) and 53.1% at 50 μm (n = 5). Similarly, imatinib mesylate attenuated the amplitude and slowed the frequency of contractions in ageing guinea-pigs to 5.15% and 3.3% at 1 μm (n = 6); 21.1% and 20.8% at 5 μm (n = 8); 58.4% and 8.8% at 10 μm (n = 11); 72.7% and 60% at 50 μm (n = 5). A significant reduction in contractions but persistence of slow waves suggests imatinib mesylate may affect the smooth muscle contractile mechanism. Imatinib mesylate also significantly reduced contractions in the prostates of younger guinea pigs more than older ones, which is consistent with the notion that the younger guinea-pig prostate is more reliant on the tyrosine-dependent pacemaker ability of interstitial cells of Cajal-like prostatic interstitial cells. © 2013 The Authors BJU International © 2013 BJU International.
Subudhi, Badri Narayan; Thangaraj, Veerakumar; Sankaralingam, Esakkirajan; Ghosh, Ashish
2016-11-01
In this article, a statistical fusion based segmentation technique is proposed to identify different abnormality in magnetic resonance images (MRI). The proposed scheme follows seed selection, region growing-merging and fusion of multiple image segments. In this process initially, an image is divided into a number of blocks and for each block we compute the phase component of the Fourier transform. The phase component of each block reflects the gray level variation among the block but contains a large correlation among them. Hence a singular value decomposition (SVD) technique is adhered to generate a singular value of each block. Then a thresholding procedure is applied on these singular values to identify edgy and smooth regions and some seed points are selected for segmentation. By considering each seed point we perform a binary segmentation of the complete MRI and hence with all seed points we get an equal number of binary images. A parcel based statistical fusion process is used to fuse all the binary images into multiple segments. Effectiveness of the proposed scheme is tested on identifying different abnormalities: prostatic carcinoma detection, tuberculous granulomas identification and intracranial neoplasm or brain tumor detection. The proposed technique is established by comparing its results against seven state-of-the-art techniques with six performance evaluation measures. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Romero, Frederico R.; Romero, Antonio W.; Filho, Thadeu Brenny; Kulysz, David; Oliveira, Fernando C., Jr.; Filho, Renato Tambara
2012-01-01
Objective: To help students, residents, and general practitioners to improve the technique, skills, and reproducibility of their prostate examination. Methods: We developed a comprehensive guideline outlining prostate anatomy, indications, patient preparation, positioning, technique, findings, and limitations of this ancient art of urological…
[Prostate biopsy under magnetic resonance imaging guidance].
Kuplevatskiy, V I; CherkashiN, M A; Roshchin, D A; Berezina, N A; Vorob'ev, N A
2016-01-01
Prostate cancer (PC) is one of the most important problems in modern oncology. According to statistical data, PC ranks second in the cancer morbidity structure in the Russian Federation and developed countries and its prevalence has been progressively increasing over the past decade. A need for early diagnosis and maximally accurate morphological verification of the diagnosis in difficult clinical cases (inconvenient tumor location for standard transrectal biopsy; gland scarring changes concurrent with prostatitis and hemorrhage; threshold values of prostate-specific antigen with unclear changes in its doubling per unit time; suspicion of biochemical recurrence or clinical tumor progression after special treatment) leads to revised diagnostic algorithms and clinically introduced new high-tech invasive diagnostic methods. This paper gives the first analysis of literature data on Russian practice using one of the new methods to verify prostate cancer (transrectal prostate cancer under magnetic resonance imaging (MRI) guidance). The have sought the 1995-2015 data in the MEDLINE and Pubmed.
Segmentation precision of abdominal anatomy for MRI-based radiotherapy
Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.
2014-01-01
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701
Segmentation precision of abdominal anatomy for MRI-based radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.
2014-10-01
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less
Pellegrini, Kathryn L.; Patil, Dattatraya; Douglas, Kristen J.S.; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S.; Moreno, Carlos S.; Sanda, Martin G.
2018-01-01
Background The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient’s risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Methods Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. Results RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Conclusions Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. PMID:28419548
Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study
NASA Astrophysics Data System (ADS)
Gomez, A.; Rus, G.; Saffari, N.
2016-01-01
Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible.
Fusion set selection with surrogate metric in multi-atlas based image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Tingting; Ruan, Dan
2016-02-01
Multi-atlas based image segmentation sees unprecedented opportunities but also demanding challenges in the big data era. Relevant atlas selection before label fusion plays a crucial role in reducing potential performance loss from heterogeneous data quality and high computation cost from extensive data. This paper starts with investigating the image similarity metric (termed ‘surrogate’), an alternative to the inaccessible geometric agreement metric (termed ‘oracle’) in atlas relevance assessment, and probes into the problem of how to select the ‘most-relevant’ atlases and how many such atlases to incorporate. We propose an inference model to relate the surrogates and the oracle geometric agreement metrics. Based on this model, we quantify the behavior of the surrogates in mimicking oracle metrics for atlas relevance ordering. Finally, analytical insights on the choice of fusion set size are presented from a probabilistic perspective, with the integrated goal of including the most relevant atlases and excluding the irrelevant ones. Empirical evidence and performance assessment are provided based on prostate and corpus callosum segmentation.
Fast approximate delivery of fluence maps for IMRT and VMAT
NASA Astrophysics Data System (ADS)
Balvert, Marleen; Craft, David
2017-02-01
In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for dynamically delivered fluence maps. At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. We begin with the single fluence map case and then generalize the model and the solution technique to the delivery of sequential fluence maps. The resulting large-scale, non-convex optimization problem was solved using a heuristic approach. We test our method using a prostate case and a head and neck case, and present the resulting trade-off curves. Analysis of the leaf trajectories reveals that short time plans have larger leaf openings in general than longer delivery time plans. Our method allows one to explore the continuum of possibilities between coarse, large segment plans characteristic of direct aperture approaches and narrow field plans produced by sliding window approaches. Exposing this trade-off will allow for an informed choice between plan quality and solution time. Further research is required to speed up the optimization process to make this method clinically implementable.
Synergistic interaction of benign prostatic hyperplasia and prostatitis on prostate cancer risk
Hung, S-C; Lai, S-W; Tsai, P-Y; Chen, P-C; Wu, H-C; Lin, W-H; Sung, F-C
2013-01-01
Background: The incidence of prostate cancer is much lower in Asian men than in Western men. This study investigated whether prostate cancer is associated with prostatitis, benign prostatic hyperplasia (BPH), and other medical conditions in the low-incidence population. Methods: From the claims data obtained from the universal National Health Insurance of Taiwan, we identified 1184 patients with prostate cancer diagnosed from 1997 to 2008. Controls comprised 4736 men randomly selected from a cancer-free population. Both groups were 50 years of age or above. Medical histories between the two groups were compared. Results: Multivariate logistic regression analysis showed that prostatitis and BPH had stronger association with prostate cancer than the other medical conditions tested. Compared with men without prostatitis and BPH, a higher odds ratio (OR) for prostate cancer was associated with BPH (26.2, 95% confidence interval (CI) 20.8–33.0) than with prostatitis (10.5, 95% CI=3.36–32.7). Men with both conditions had an OR of 49.2 (95% CI=34.7–69.9). Conclusion: Men with prostate cancer have strong association with prostatitis and/or BPH. Prostatitis interacts with BPH, resulting in higher estimated relative risk of prostate cancer in men suffering from both conditions. PMID:23612451
Clinicopathological Overview of Granulomatous Prostatitis: An Appraisal
Dravid, Nandkumar; Nikumbh, Dhiraj; Patil, Ashish; Nagappa, Karibasappa Gundabaktha
2016-01-01
Introduction Granulomatous prostatitis is a rare inflammatory condition of the prostate. Granulomatous prostatitis is important because, it mimics prostatic carcinoma clinically and hence the diagnosis can be made only by histopathological examination. Aim To study the histomorphological features and to know the prevalence of granulomatous prostatitis. Materials and Methods Histopathological records of 1,203 prostatic specimens received in the Department of the Pathology over a period of five years (June 2009 – June 2014). Seventeen cases of histopathologically, diagnosed granulomatous prostatitis were retrieved and reterospective data was collected from the patient’s records. Results Out of 17 cases of granulomatous prostatitis, we encountered 9 cases of non-specific granulomatous prostatitis, 5 cases of xanthogranulomatous prostatitis and 3 cases of specific tubercular prostatitis. The common age ranged from 51-75 years (mean 63 years) with mean PSA level of 15.8ng/ml. Six patients showed focal hypoechoic areas on TRUS and 11 cases revealed hard and fixed nodule on DRE. Conclusion Non-specific granulomatous prostatitis is the most common type of granulomatous prostatitis. There is no specific pattern of clinical, biochemical and ultrasound findings that allows the diagnosis of granulomatous prostatitis or differentiates it from prostatic carcinoma. Hence, histomorphological diagnosis is the gold standard in differentiating various prostatic lesions. PMID:27014642
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2014-01-01
The morphometric estimation of parenchyma and stroma condition included the determination of 25 parameters in a prostate gland at 27 persons. The mathematical model of morphogenesis of prostate gland was created by Bayes' method. The method of differential diagnosis of a prostate gland tissues' changes conditioned by the influence of the Chernobyl factor and/or unfavorable terms of the work in underground coal mines have been worked out. Its practical use provides exactness and reliability of the diagnosis (not less than 95%), independence from the level of the qualification and personal experience of the doctor, allows us to unify, optimize and individualize the diagnostic algorithms, answer the requirements of evidential medicine.
Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning
NASA Astrophysics Data System (ADS)
Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Kajdacsy-Balla, Andre; Melamed, Jonathan; Do, Minh N.; Popescu, Gabriel
2017-03-01
We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illustrate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each pixel in the image into different classes. Automatic diagnosis results were computed from the segmented regions. By combining morphological features with quantitative information from the glands and stroma, logistic regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tissue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the range of human error when interobserver variability is considered. We anticipate that our approach will provide a clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instruments and laboratories and feed the computer algorithms for improved accuracy.
Atmospheric Pressure Photoionization Tandem Mass Spectrometry of Androgens in Prostate Cancer
Lih, Fred Bjørn; Titus, Mark A.; Mohler, James L.; Tomer, Kenneth B.
2010-01-01
Androgen deprivation therapy is the most common treatment option for advanced prostate cancer. Almost all prostate cancers recur during androgen deprivation therapy, and new evidence suggests that androgen receptor activation persists despite castrate levels of circulating androgens. Quantitation of tissue levels of androgens is critical to understanding the mechanism of recurrence of prostate cancer during androgen deprivation therapy. A liquid chromatography atmospheric pressure photoionization tandem mass spectrometric method was developed for quantitation of tissue levels of androgens. Quantitation of the saturated keto-steroids dihydrotestosterone and 5-α-androstanedione required detection of a novel parent ion, [M + 15]+. The nature of this parent ion was explored and the method applied to prostate tissue and cell culture with comparison to results achieved using electrospray ionization. PMID:20560527
Longitudinal Association between Prostatitis and Development of Benign Prostatic Hyperplasia
St. Sauver, Jennifer L.; Jacobson, Debra J.; McGree, Michaela E.; Girman, Cynthia J.; Lieber, Michael M.; Jacobsen, Steven J.
2008-01-01
OBJECTIVES To determine whether physician-diagnosed prostatitis was associated with later development of development of BPH-associated events in a longitudinal, population-based sample of 2447 men residing in Olmsted County, Minnesota. METHODS Medical records were reviewed for physician diagnosis of prostatitis and subsequent diagnoses of BPH, enlarged prostate, prostatism, and acute urinary retention. Records were also reviewed for medical or surgical treatments for BPH. Odds ratios were calculated to assess the associations between physician-diagnosed prostatitis and later development of development of BPH-associated events. RESULTS Physician-diagnosed prostatitis was associated with a 2.4-fold increased odds of receiving a later diagnosis of prostatism, enlarged prostate, or BPH (OR: 2.44, 95% CI: 1.48, 4.01). Prostatitis was also associated with a 70% increased odds of requiring later treatment for BPH (OR: 1.69, 95% CI: 1.28, 2.22), and a non-significant increased odds of acute urinary retention (OR: 1.33, 95% CI: 0.89, 1.99). CONCLUSIONS Physician-diagnosed prostatitis was associated with an increased risk of later onset of several BPH-associated events. Physician-diagnosed prostatitis may therefore be an early marker or a risk factor for development of later prostatic or urologic problems. PMID:18342190
Zamboglou, Constantinos; Drendel, Vanessa; Jilg, Cordula A.; Rischke, Hans C.; Beck, Teresa I.; Schultze-Seemann, Wolfgang; Krauss, Tobias; Mix, Michael; Schiller, Florian; Wetterauer, Ulrich; Werner, Martin; Langer, Mathias; Bock, Michael; Meyer, Philipp T.; Grosu, Anca L.
2017-01-01
Purpose: The exact detection and delineation of the intraprostatic tumour burden is crucial for treatment planning in primary prostate cancer (PCa). We compared 68Ga-HBED-CC-PSMA PET/CT with multiparametric MRI (mpMRI) for diagnosis and tumour delineation in patients with primary PCa based on slice by slice correlation with histopathological reference material. Methodology: Seven patients with histopathologically proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT and MRI followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and prepared for histopathology. Invasive PCa was delineated on a HE stained histologic tissue slide and matched to ex-vivo CT to obtain gross tumor volume (GTV-)histo. Ex-vivo CT including GTV-histo and MRI data were matched to in-vivo CT(PET). Consensus contours based on MRI (GTV-MRI), PSMA PET (GTV-PET) or the combination of both (GTV-union/-intersection) were created. In each in-vivo CT slice the prostate was separated into 4 equal segments and sensitivity and specificity for PSMA PET and mpMRI were assessed by comparison with histological reference material. Furthermore, the spatial overlap between GTV-histo and GTV-PET/-MRI and the Sørensen-Dice coefficient (DSC) were calculated. In the case of multifocal PCa (4/7 patients), SUV values (PSMA PET) and ADC-values (diffusion weighted MRI) were obtained for each lesion. Results: PSMA PET and mpMRI detected PCa in all patients. GTV-histo was detected in 225 of 340 segments (66.2%). Sensitivity and specificity for GTV-PET, GTV-MRI, GTV-union and GTV-intersection were 75% and 87%, 70% and 82%, 82% and 67%, 55% and 99%, respectively. GTV-histo had on average the highest overlap with GTV-union (57±22%), which was significantly higher than overlap with GTV-MRI (p=0.016) and GTV-PET (p=0.016), respectively. The mean DSC for GTV-union, GTV-PET and GTV-MRI was 0.51 (±0.18), 0.45 (±0.17) and 0.48 (±0.19), respectively. In every patient with multifocal PCa there was one lesion which had both the highest SUV and the lowest ADC-value (mean and max). Conclusion: In a slice by slice analysis with histopathology, 68Ga-HBED-CC-PSMA PET/CT and mpMRI showed high sensitivity and specificity in detection of primary PCa. A combination of both methods performed even better in terms of sensitivity (GTV-union) and specificity (GTV-intersection). A moderate to good spatial overlap with GTV-histo was observed for PSMA PET/CT and mpMRI alone which was significantly improved by GTV-union. Further studies are warranted to analyse the impact of these preliminary findings for diagnostic (multimodal guided TRUS biopsy) and therapeutic (focal therapy) strategies in primary PCa. PMID:28042330
Gnep, Khémara; Fargeas, Auréline; Gutiérrez-Carvajal, Ricardo E; Commandeur, Frédéric; Mathieu, Romain; Ospina, Juan D; Rolland, Yan; Rohou, Tanguy; Vincendeau, Sébastien; Hatt, Mathieu; Acosta, Oscar; de Crevoisier, Renaud
2017-01-01
To explore the association between magnetic resonance imaging (MRI), including Haralick textural features, and biochemical recurrence following prostate cancer radiotherapy. In all, 74 patients with peripheral zone localized prostate adenocarcinoma underwent pretreatment 3.0T MRI before external beam radiotherapy. Median follow-up of 47 months revealed 11 patients with biochemical recurrence. Prostate tumors were segmented on T 2 -weighted sequences (T 2 -w) and contours were propagated onto the coregistered apparent diffusion coefficient (ADC) images. We extracted 140 image features from normalized T 2 -w and ADC images corresponding to first-order (n = 6), gradient-based (n = 4), and second-order Haralick textural features (n = 130). Four geometrical features (tumor diameter, perimeter, area, and volume) were also computed. Correlations between Gleason score and MRI features were assessed. Cox regression analysis and random survival forests (RSF) were performed to assess the association between MRI features and biochemical recurrence. Three T 2 -w and one ADC Haralick textural features were significantly correlated with Gleason score (P < 0.05). Twenty-eight T 2 -w Haralick features and all four geometrical features were significantly associated with biochemical recurrence (P < 0.05). The most relevant features were Haralick features T 2 -w contrast, T 2 -w difference variance, ADC median, along with tumor volume and tumor area (C-index from 0.76 to 0.82; P < 0.05). By combining these most powerful features in an RSF model, the obtained C-index was 0.90. T 2 -w Haralick features appear to be strongly associated with biochemical recurrence following prostate cancer radiotherapy. 3 J. Magn. Reson. Imaging 2017;45:103-117. © 2016 International Society for Magnetic Resonance in Medicine.
Belugin, R S; Zabusov, A V; Zhemchugov, A V
2004-01-01
The water-salt equilibrium and the degree of endogenous intoxication (albumin fluorescence test) were examined in 60 patients with transurethral resection of the prostate (TURP), 40 of whom had ischemic heart disease (IHD). Body temperature, ECG, ST segment and echocardioscopy were daily monitored perioperatively in all patients. The results showed a lack of any pronounced changes in the water-salt equilibrium in TURP that lasted up to 1.5 hours and included big volumes of 5% glucose; they were also indicative of a lower postoperative binding albumin ability, which is normally most pronounced in patients with hyperthermia. As for the IHD patients, hyperthermia was found to be concurrent in them with the onset of ischemia of the myocardium and with its low contractive ability, which can be referred to as a significant factor in case of the above patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viraganathan, H; Jiang, R; Chow, J
Purpose: We proposed a method to predict the change of dose-volume histogram (DVH) for PTV due to patient weight loss in prostate volumetric modulated arc therapy (VMAT). This method is based on a pre-calculated patient dataset and DVH curve fitting using the Gaussian error function (GEF). Methods: Pre-calculated dose-volume data from patients having weight loss in prostate VMAT was employed to predict the change of PTV coverage due to reduced depth in external contour. The effect of patient weight loss in treatment was described by a prostate dose-volume factor (PDVF), which was evaluated by the prostate PTV. Along with themore » PDVF, the GEF was used to fit into the DVH curve for the PTV. To predict a new DVH due to weight loss, parameters from the GEF describing the shape of DVH curve were determined. Since the parameters were related to the PDVF as per the specific reduced depth, we could first predict the PDVF at a reduced depth based on the prostate size from the pre-calculated dataset. Then parameters of the GEF could be determined from the PDVF to plot the new DVH for the PTV corresponding to the reduced depth. Results: A MATLAB program was built basing on the patient dataset with different prostate sizes. We input data of the prostate size and reduced depth of the patient into the program. The program then calculated the PDVF and DVH for the PTV considering the patient weight loss. The program was verified by different patient cases with various reduced depths. Conclusion: Our method can estimate the change of DVH for the PTV due to patient weight loss quickly without CT rescan and replan. This would help the radiation staff to predict the change of PTV coverage, when patient’s external contour reduced in prostate VMAT.« less
Disruption of Prostate Microvasculature by Combining Microbubble-Enhanced Ultrasound and Prothrombin
Liu, Yongliang; Qiao, Lu; Gao, Wenhong; Zhang, Weiguo; Liu, Zheng
2016-01-01
Previous studies have shown a unique method to disrupt tumor vasculature using pulsed, high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study, we attempted to destroy the prostate vasculature of canine prostates using microbubble-enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using microbubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Prothrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection. Contrast-enhanced ultrasound was performed to assess the blood perfusion of the prostates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours later for pathological examination. The contrast-enhanced ultrasound peak value of the prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS group, but it remained unchanged in the other groups. Histological examination found severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-treated prostates immediately after treatment, while disruption in the PMEUS group was more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated that PMEUS disrupted the normal microvasculature of canine prostates and induced massive necrosis. PMEUS could potentially become a new noninvasive method used for the treatment of benign prostatic hyperplasia. PMID:27643992
Hughes, Lucinda; Ruth, Karen; Rebbeck, Timothy R.; Giri, Veda N.
2013-01-01
Background Men with a family history of prostate cancer and African American men are at high risk for prostate cancer and in need of personalized risk estimates to inform screening decisions. This study evaluated genetic variants in genes encoding microRNA (miRNA) binding sites for informing of time to prostate cancer diagnosis among ethnically-diverse, high-risk men undergoing prostate cancer screening. Methods The Prostate Cancer Risk Assessment Program (PRAP) is a longitudinal screening program for high-risk men. Eligibility includes men ages 35-69 with a family history of prostate cancer or African descent. Participants with ≥ 1 follow-up visit were included in the analyses (n=477). Genetic variants in regions encoding miRNA binding sites in four target genes (ALOX15, IL-16, IL-18, and RAF1) previously implicated in prostate cancer development were evaluated. Genotyping methods included Taqman® SNP Genotyping Assay (Applied Biosystems) or pyrosequencing. Cox models were used to assess time to prostate cancer diagnosis by risk genotype. Results Among 256 African Americans with ≥ one follow-up visit, the TT genotype at rs1131445 in IL-16 was significantly associated with earlier time to prostate cancer diagnosis vs. the CC/CT genotypes (p=0.013), with a suggestive association after correction for false-discovery (p=0.065). Hazard ratio after controlling for age and PSA for TT vs. CC/CT among African Americans was 3.0 (95% CI 1.26-7.12). No association to time to diagnosis was detected among Caucasians by IL-16 genotype. No association to time to prostate cancer diagnosis was found for the other miRNA target genotypes. Conclusions Genetic variation in IL-16 encoding miRNA target site may be informative of time to prostate cancer diagnosis among African American men enrolled in prostate cancer risk assessment, which may inform individualized prostate cancer screening strategies in the future. PMID:24061634
Microwave Medical Treatment Apparatus and Method
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); George, W. Rflfoul (Inventor)
2005-01-01
Methods, simulations, and apparatus are provided that may be utilized for medical treatments which are especially suitable for treatment of benign prostatic hyperplasia (BPH). In a preferred embodiment, a plurality of separate microwave antennas are utilized to heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. By utilizing constructive and destructive interference of the microwave transmission, the energy can be deposited on the tissues to be necrosed while protecting other tissues such as the urethra. Saline injections to alter the conductivity of the tissues may also be used to further focus the energy deposits. A computer simulation is Provided that can be used to Predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of one or more catheters and the methods of applying microwave energy, a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Alignment focus of daily image guidance for concurrent treatment of prostate and pelvic lymph nodes.
Ferjani, Samah; Huang, Guangshun; Shang, Qingyang; Stephans, Kevin L; Zhong, Yahua; Qi, Peng; Tendulkar, Rahul D; Xia, Ping
2013-10-01
To determine the dosimetric impact of daily imaging alignment focus on the prostate soft tissue versus the pelvic bones for the concurrent treatment of the prostate and pelvic lymph nodes (PLN) and to assess whether multileaf collimator (MLC) tracking or adaptive planning (ART) is necessary with the current clinical planning margins of 8 mm/6 mm posterior to the prostate and 5 mm to the PLN. A total of 124 kilovoltage cone-beam computed tomography (kV-CBCT) images from 6 patients were studied. For each KV-CBCT, 4 plans were retrospectively created using an isocenter shifting method with 2 different alignment focuses (prostate, PLN), an MLC shifting method, and the ART method. The selected dosimetric endpoints were compared among these plans. For the isoshift contour, isoshift bone, MLC shift, and ART plans, D99 of the prostate was ≥97% of the prescription dose in 97.6%, 73.4%, 98.4%, and 96.8% of 124 fractions, respectively. Accordingly, D99 of the PLN was ≥97% of the prescription dose in 98.4%, 98.4%, 98.4%, and 100% of 124 fractions, respectively. For the rectum, D5 exceeded 105% of the planned D5 (and D5 of ART plans) in 11% (4%), 10% (2%), and 13% (5%) of 124 fractions, respectively. For the bladder, D5 exceeded 105% of the planned D5 (and D5 of ART) plans in 0% (2%), 0% (2%), and 0% (1%) of 124 fractions, respectively. For concurrent treatment of the prostate and PLN, with a planning margin to the prostate of 8 mm/6 mm posterior and a planning margin of 5 mm to the PLN, aligning to the prostate soft tissue can achieve adequate dose coverage to the both target volumes; aligning to the pelvic bone would result in underdosing to the prostate in one-third of fractions. With these planning margins, MLC tracking and ART methods have no dosimetric advantages. Copyright © 2013 Elsevier Inc. All rights reserved.
Cryosurgery Planning Using Bubble Packing in 3D
Tanaka, Daigo; Shimada, Kenji; Rossi, Michael R.; Rabin, Yoed
2008-01-01
As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of −22°C. Bubble packing has the potential to dramatically reduce the run time for automated planning. PMID:17963095
Cryosurgery planning using bubble packing in 3D.
Tanaka, Daigo; Shimada, Kenji; Rossi, Michael R; Rabin, Yoed
2008-04-01
As part of an ongoing project to develop automated tools for cryosurgery planning, the current study focuses on the development of a 3D bubble packing method. A proof-of-concept for the new method is demonstrated on five prostate models, reconstructed from ultrasound images. The new method is a modification of an established method in 2D. Ellipsoidal bubbles are packed in the volume of the prostate in the current study; such bubbles can be viewed as a first-order approximation of a frozen region around a single cryoprobe. When all cryoprobes are inserted to the same depth, optimum planning was found to occur at about 60% of the length of the prostate (measured from its apex), which leads to cooling of approximately 75% of the prostate volume below a specific temperature threshold of - 22 degrees C. Bubble packing has the potential to dramatically reduce the run time for automated planning.
ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D.
Komura, Kazumasa; Yoshikawa, Yuki; Shimamura, Teppei; Chakraborty, Goutam; Gerke, Travis A; Hinohara, Kunihiko; Chadalavada, Kalyani; Jeong, Seong Ho; Armenia, Joshua; Du, Shin-Yi; Mazzu, Ying Z; Taniguchi, Kohei; Ibuki, Naokazu; Meyer, Clifford A; Nanjangud, Gouri J; Inamoto, Teruo; Lee, Gwo-Shu Mary; Mucci, Lorelei A; Azuma, Haruhito; Sweeney, Christopher J; Kantoff, Philip W
2018-06-04
Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.
Thin-needle aspiration biopsy of the prostate.
Koss, L G; Woyke, S; Schreiber, K; Kohlberg, W; Freed, S Z
1984-05-01
The authors summarize the current status of thin-needle aspiration biopsy of the prostate and evaluate the accomplishments and limitations of this method of diagnosis. Historical developments, indications, technique, contraindications, complications, cytology of aspirates, diagnostic efficacy of aspirates, and grading of prostatic carcinomas are discussed.
Transcatheter Microwave Antenna
NASA Technical Reports Server (NTRS)
Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)
2001-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Prostate ultrasound: back in business!
Crisan, Nicolae; Andras, Iulia; Radu, Corina; Andras, David; Coman, Radu-Tudor; Tucan, Paul; Pisla, Doina; Crisan, Dana; Coman, Ioan
2017-11-29
The use of grey scale prostate ultrasound decreased after the implementation of magnetic resonance imaging (MRI) for the diagnosis and evaluation of prostate cancer. The new developments, such as multiparametric ultrasound and MRI-ultrasound fusion technology, renewed the interest for this imaging method in the assessment of prostate cancer. The purpose of this paper was to review the current role of prostate ultrasound in the setting of these new applications. A thorough reevaluation of the selection criteria of the patients is required to assess which patients would benefit from multiparametric ultrasound, who wouldbenefit from multiparametric MRI or the combination of both to assist prostate biopsy in order to ensure the balance between overdiagnosis and underdiagnosis of prostate cancer.
Szewczyk, Wojciech; Prajsner, Andrzej; Kozina, Janusz; Login, Tomasz; Kaczorowski, Marek
2004-01-01
General practitioner very often uses transabdominal ultrasonograpy (TAUS) in order to measure prostatic volume. Using this method it is rather impossible to distinguish between tissue of benign prostatic hyperplasia (BPH) and prostatic tissue which forms so called surgical capsule of BPH. The aim of this study was a comparison of prostatic volume measured during suprapubic (transabdominal) ultrasonography and volume of the enucleated gland after open prostatectomy. Regarding the results authors created a nomogram based on TAUS measurement of the prostate which helps to predict the volume of BPH. They also stated that surgical capsule of the BPH makes about 1/3 of the whole volume of the prostate measured by TAUS.
Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.
Hegde, John V.; Mulkern, Robert V.; Panych, Lawrence P.; Fennessy, Fiona M.; Fedorov, Andriy; Maier, Stephan E.; Tempany, Clare M.C.
2013-01-01
Magnetic resonance (MR) examinations of men with prostate cancer are most commonly performed for detecting, characterizing, and staging the extent of disease to best determine diagnostic or treatment strategies, which range from biopsy guidance to active surveillance to radical prostatectomy. Given both the exam's importance to individual treatment plans and the time constraints present for its operation at most institutions, it is essential to perform the study effectively and efficiently. This article reviews the most commonly employed modern techniques for prostate cancer MR examinations, exploring the relevant signal characteristics from the different methods discussed and relating them to intrinsic prostate tissue properties. Also, a review of recent articles using these methods to enhance clinical interpretation and assess clinical performance is provided. PMID:23606141
State of the art of prostatic arterial embolization for benign prostatic hyperplasia.
Petrillo, Mario; Pesapane, Filippo; Fumarola, Enrico Maria; Emili, Ilaria; Acquasanta, Marzia; Patella, Francesca; Angileri, Salvatore Alessio; Rossi, Umberto G; Piacentini, Igor; Granata, Antonio Maria; Ierardi, Anna Maria; Carrafiello, Gianpaolo
2018-04-01
Prostatectomy via open surgery or transurethral resection of the prostate (TURP) is the standard treatment for benign prostatic hyperplasia (BPH). Several patients present contraindication for standard approach, individuals older than 60 years with urinary tract infection, strictures, post-operative pain, incontinence or urinary retention, sexual dysfunction, and blood loss are not good candidates for surgery. Prostatic artery embolization (PAE) is emerging as a viable method for patients unsuitable for surgery. In this article, we report results about technical and clinical success and safety of the procedure to define the current status.
Method for detecting the presence of prostate cancer
Karin, Michael; Luo, Jun-Li; Tan, Wei
2010-04-13
The present invention relates to compositions and methods for cancer diagnosis, treatment and drug screening. In particular, the present invention provides compositions and methods for targeting the nuclear translocation of IkB kinase-.alpha. (IKK.alpha.) and the IKK.alpha.-mediated suppression of Maspin expression observed in metastatic prostate cancer cells.
Leidinger, Petra; Keller, Andreas; Milchram, Lisa; Harz, Christian; Hart, Martin; Werth, Angelika; Lenhof, Hans-Peter; Weinhäusel, Andreas; Keck, Bastian; Wullich, Bernd; Ludwig, Nicole; Meese, Eckart
2015-01-01
Although an increased level of the prostate-specific antigen can be an indication for prostate cancer, other reasons often lead to a high rate of false positive results. Therefore, an additional serological screening of autoantibodies in patients' sera could improve the detection of prostate cancer. We performed protein macroarray screening with sera from 49 prostate cancer patients, 70 patients with benign prostatic hyperplasia and 28 healthy controls and compared the autoimmune response in those groups. We were able to distinguish prostate cancer patients from normal controls with an accuracy of 83.2%, patients with benign prostatic hyperplasia from normal controls with an accuracy of 86.0% and prostate cancer patients from patients with benign prostatic hyperplasia with an accuracy of 70.3%. Combining seroreactivity pattern with a PSA level of higher than 4.0 ng/ml this classification could be improved to an accuracy of 84.1%. For selected proteins we were able to confirm the differential expression by using luminex on 84 samples. We provide a minimally invasive serological method to reduce false positive results in detection of prostate cancer and according to PSA screening to distinguish men with prostate cancer from men with benign prostatic hyperplasia.
MR and CT image fusion for postimplant analysis in permanent prostate seed implants.
Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto
2004-12-01
To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.
Preventive effect of ginsenoid on chronic bacterial prostatitis.
Kim, Sang Hoon; Ha, U-Syn; Sohn, Dong Wan; Lee, Seung-Ju; Kim, Hyun Woo; Han, Chang Hee; Cho, Yong-Hyun
2012-10-01
Empirical antibiotic therapy is the preferred primary treatment modality for chronic bacterial prostatitis (CBP). However, this method of treatment has a low success rate and long-term therapy may result in complications and the appearance of resistant strains. Therefore a new alternative method for the prevention of CBP is necessary. There are several reports that ginsenoid has a preventive effect on urinary tract infection (UTI). To evaluate the preventive effect of ginsenoid on CBP compared to conventional antibiotics, we carried out an experiment in a rat model of the disease. Four groups of adult male Wistar rats were treated with the following medications: (1) control (no medication), (2) ciprofloxacin, (3) ginsenoid, and (4) ciprofloxacin/ginsenoid. All medications were given for 4 weeks, and then we created a CBP model in the animals by injecting an Escherichia coli Z17 (O2:K1;H(-)) suspension into the prostatic urethra. After 4 weeks, results of microbiological cultures of prostate and urine samples, as well as histological findings of the prostate in each group were analyzed. The microbiological cultures of the prostate samples demonstrated reduced bacterial growth in all experimental groups compared with the control group. Histopathological examination showed a significantly decreased rate of infiltration of inflammatory cells into prostatic tissue and decreased interstitial fibrosis in the ginsenoid group compared with the control group. Inhibition of prostate infection was greater in the group receiving both ginsenoid and antibiotic than in the single-medication groups. Although the findings of this study suggest a preventive effect of ginsenoid, preventive methods for CBP are still controversial.
Microbiological Characteristics of Acute Prostatitis After Transrectal Prostate Biopsy
Bang, Jun-Ho; Choe, Hyun-Sop; Lee, Dong-Sup; Lee, Seung-Ju
2013-01-01
Purpose We aimed to identify microbiological characteristics in patients with acute prostatitis after transrectal prostate biopsy to provide guidance in the review of prevention and treatment protocols. Materials and Methods A retrospective analysis of medical records was performed in 1,814 cases who underwent prostate biopsy at Seoul St. Mary's Hospital and St. Vincent's Hospital over a 5 year period from 2006 to 2011. Cases in which acute prostatitis occurred within 7 days after the biopsy were investigated. Before starting treatment with antibiotics, sample collections were done for culture of urine and blood. Culture and drug susceptibility was identified by use of a method established by the Clinical and Laboratory Standards Institute. Results A total of 1,814 biopsy procedures were performed in 1,541 patients. For 1,246 patients, the procedure was the first biopsy, whereas for 295 patients it was a repeat biopsy. Twenty-one patients (1.36%) were identified as having acute bacterial prostatitis after the biopsy. Fifteen patients (1.2%) had acute prostatitis after the first biopsy, and 6 patients (2.03%) experienced acute prostatitis after a repeat biopsy. Even though the incidence of acute bacterial prostatitis was higher after repeat biopsy than that after the first biopsy, there was no statistically significant intergroup difference in terms of incidence (χ2=1.223, p=0.269). When the collected urine and blood samples were cultured, Escherichia coli was found in samples from 15 patients (71.4%), Klebsiella pneumoniae in 3 patients (14.3%), Enterobacter intermedius in 1 patient (4.8%), E. aerogenes in 1 patient (4.8%), and Pseudomonas aeruginosa in 1 patient (4.8%). A fluoroquinolone-resistant strain was confirmed in 5 cases (23.8%) in total. Three cases of E. coli and 1 case of Klebsiella had extended-spectrum β-lactamase activity. Conclusions Empirical treatment of acute prostatitis should be done with consideration of geographical prevalence and drug resistance. This study will provide meaningful information for the management of acute prostatitis after transrectal prostate biopsy. PMID:23550205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, X; Yi, J; Xie, C
Purpose: To evaluate the impact of complexity indices on the plan quality and deliverability of volumetric modulated arc therapy (VMAT), and to determine the most significant parameters in the generation of an ideal VMAT plan. Methods: A multi-dimensional exploratory statistical method, canonical correlation analysis (CCA) was adopted to study the correlations between VMAT parameters of complexity, quality and deliverability, as well as their contribution weights with 32 two-arc VMAT nasopharyngeal cancer (NPC) patients and 31 one-arc VMAT prostate cancer patients. Results: The MU per arc (MU/Arc) and MU per control point (MU/CP) of NPC were 337.8±25.2 and 3.7±0.3, respectively, whichmore » were significantly lower than those of prostate cancer patients (MU/Arc : 506.9±95.4, MU/CP : 5.6±1.1). The plan complexity indices indicated that two-arc VMAT plans were more complex than one-arc VMAT plans. Plan quality comparison confirmed that one-arc VMAT plans had a high quality than two-arc VMAT plans. CCA results implied that plan complexity parameters were highly correlated with plan quality with the first two canonical correlations of 0.96, 0.88 (both p<0.001) and significantly correlated with deliverability with the first canonical correlation of 0.79 (p<0.001), plan quality and deliverability was also correlated with the first canonical correlation of 0.71 (p=0.02). Complexity parameters of MU/CP, segment area (SA) per CP, percent of MU/CP less 3 and planning target volume (PTV) were weighted heavily in correlation with plan quality and deliveability . Similar results obtained from individual NPC and prostate CCA analysis. Conclusion: Relationship between complexity, quality, and deliverability parameters were investigated with CCA. MU, SA related parameters and PTV volume were found to have strong effect on the plan quality and deliverability. The presented correlation among different quantified parameters could be used to improve the plan quality and the efficiency of the radiotherapy process when creating a complex VMAT plan.« less
Ca2+ Receptor, Prostate Cancer, and Bone Metastases
2005-03-01
calcium receptor cDNAs. J Biol Chem 270: 12919-12925, 1995. 3. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor 0, Sun A, Hediger MA, Lytton J...Hrol FA , Vassilev PhL, Quinn s, and le.bert SC, G- TOE-p as a result of decreased bone resorption. protein-coupiad. extracelluar Ca zrksensing receptor...bmne cells, several EDTA. FBS was obtainod from Gemini Bio -Produets (Cab nephron segments other than thf distal tubule, and many abasas, CA), and
Gajić, Milan M.; Obradović, Vladimir B.; Baum, Richard P.
2014-01-01
Abstract Aim: The aim was to investigate somatostatin receptor (sstr) expression in normal prostate by determining the maximum standardized uptake value (SUVmax) of 68Ga-DOTATOC PET/CT in neuroendocrine tumor (NET) patients, without NET involvement of the prostate gland, for establishing the reference standard. Methods: Sixty-four NET patients underwent 68Ga-DOTATOC PET/CT. SUVmax of the prostate gland, normal liver, testes, and gluteus muscles were evaluated. The prostate gland size was measured. Statistical analysis was performed using dedicated software (SPSS13). Results: Mean/median 68Ga-DOTATOC SUVmax values were as follows: normal prostate 2.6±0.0, slightly enlarged prostate 4.2±1.6, prostatic hypertrophy 4.9±1.6, prostatic hyperplasia 5.0±1.5, prostate cancer 9.5±2.1, normal liver 7.3±1.8, testes 1.8±0.5, and gluteus 1.0±0.2. The normal prostate gland had three times less sstr expression than normal liver tissue. Strong correlation was found between patient age and sstr expression in prostate/prostate size. No significant difference existed in sstr expression between prostatic hypertrophy and hyperplasia. Much higher sstr expression was found in prostatic cancer compared with normal prostate. Conclusion: 68Ga-DOTATOC PET/CT defines the baseline sstr uptake in prostate not affected by NET (significantly lower than in the liver). Higher values were established in prostatic hyperplasia and hypertrophy. Only concomitant prostate cancer was associated with higher SUVmax in comparison with non-neoplastic liver. PMID:24450327
Textural feature calculated from segmental fluences as a modulation index for VMAT.
Park, So-Yeon; Park, Jong Min; Kim, Jung-In; Kim, Hyoungnyoun; Kim, Il Han; Ye, Sung-Joon
2015-12-01
Textural features calculated from various segmental fluences of volumetric modulated arc therapy (VMAT) plans were optimized to enhance its performance to predict plan delivery accuracy. Twenty prostate and twenty head and neck VMAT plans were selected retrospectively. Fluences were generated for each VMAT plan by summations of segments at sequential groups of control points. The numbers of summed segments were 5, 10, 20, 45, 90, 178 and 356. For each fluence, we investigated 6 textural features: angular second moment, inverse difference moment, contrast, variance, correlation and entropy (particular displacement distances, d = 1, 5 and 10). Spearman's rank correlation coefficients (rs) were calculated between each textural feature and several different measures of VMAT delivery accuracy. The values of rs of contrast (d = 10) with 10 segments to both global and local gamma passing rates with 2%/2 mm were 0.666 (p <0.001) and 0.573 (p <0.001), respectively. It showed rs values of -0.895 (p <0.001) and 0.727 (p <0.001) to multi-leaf collimator positional errors and gantry angle errors during delivery, respectively. The number of statistically significant rs values (p <0.05) to the changes in dose-volumetric parameters during delivery was 14 among a total of 35 tested parameters. Contrast (d = 10) with 10 segments showed higher correlations to the VMAT delivery accuracy than did the conventional modulation indices. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Integrated segmentation of cellular structures
NASA Astrophysics Data System (ADS)
Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo
2011-03-01
Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margalit, Danielle N., E-mail: dmargalit@lroc.harvard.edu; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
2012-05-01
Purpose: The safety of antioxidant supplementation during radiation therapy (RT) for cancer is controversial. Antioxidants could potentially counteract the pro-oxidant effects of RT and compromise therapeutic efficacy. We performed a prospective study nested within the Physicians' Health Study (PHS) randomized trial to determine if supplemental antioxidant use during RT for prostate cancer is associated with an increased risk of prostate cancer death or metastases. Methods and Materials: PHS participants (383) received RT for prostate cancer while randomized to receive beta-carotene (50 mg on alternate days) or placebo. The primary endpoint was time from RT to lethal prostate cancer, defined asmore » prostate cancer death or bone metastases. The Kaplan-Meier method was used to estimate survival probabilities and the log-rank test to compare groups. Cox proportional hazards regression was used to estimate the effect of beta-carotene compared with that of placebo during RT. Results: With a median follow-up of 10.5 years, there was no significant difference between risk of lethal prostate cancer with the use of beta-carotene during RT compared with that of placebo (hazard ratio = 0.72; 95% confidence interval [CI], 0.42-1.24; p = 0.24). After we adjusted for age at RT, prostate-specific antigen serum level, Gleason score, and clinical stage, the difference remained nonsignificant. The 10-year freedom from lethal prostate cancer was 92% (95% CI, 87-95%) in the beta-carotene group and 89% (95% CI, 84-93%) in the placebo group. Conclusion: The use of supplemental antioxidant beta-carotene during RT was not associated with an increased risk of prostate cancer death or metastases. This study suggests a lack of harm from supplemental beta-carotene during RT for prostate cancer.« less
Transurethral Drainage of Prostatic Abscess: Points of Technique
El-Shazly, Mohamed; El- Enzy, Nawaf; El-Enzy, Khaled; Yordanov, Encho; Hathout, Badawy; Allam, Adel
2012-01-01
Background The incidence of prostatic abscess (PA) has markedly declined with the widespread use of antibiotics and the decreasing incidence of urethral gonococcal infections. Objectives To evaluate different treatment methods for prostatic abscess and to describe technical points that will improve the outcome of transurethral (TUR) drainage of prostatic abscess. Patients and Methods We performed a retrospective study of a series of 11 patients diagnosed with prostatic abscess, who were admitted and treated in Farwaniya Hospital, Kuwait, between February 2008 and November 2010. Drainage was indicated when antibiotic therapy did not cause clinical improvement and after prostatic abscess was confirmed by TRUS (Transrectal ultrasonography) and/or CT computed Tomographyscan. TUR drainage was indicated in 7 cases, ultrasound-guided transrectal drainage was performed in 2 cases, and ultrasound-guided perineal drainage was performed in 2 cases. Results All patients that underwent TUR-drainage had successful outcomes, without the need of secondary treatment or further surgery. Conclusions TUR drainage of a prostatic abscess increases the likelihood of a successful outcome and lowers the incidence of treatment failure or repeated surgery. Less invasive treatment, with perineal or transrectal aspiration, may be preferred as a primary treatment in relatively young patients with localized abscess cavities. PMID:23573466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Keall, P; Poulsen, P
Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Prostate Mechanical Imaging: A New Method For Prostate Assessment
Weiss, Robert E; Egorov, Vladimir; Ayrapetyan, Suren; Sarvazyan, Noune; Sarvazyan, Armen
2008-01-01
Objectives To evaluate the ability of Prostate Mechanical Imaging (PMI) technology to provide an objective and reproducible image and to assess the prostate nodularity. Methods The PMI device developed by Artann Laboratories was evaluated in a pilot clinical study. For the 168 patients (ages 44 to 94) presented to an urologist for prostate evaluation, PMI-produced images and assessment of prostate size, shape, consistency/hardness, mobility, nodularity, and was compared with digital rectal examination (DRE) findings. The PMI and DRE results were further tested for correlation against a transrectal ultrasound of the prostate (TRUS) guided biopsy for a sub-group of 21 patients with an elevated PSA level. Results In 84% of the cases the PMI device was able to reconstruct 3-D and 2-D cross-sectional images of the prostate. The PMI System and DRE pre-tests were able to determine malignant nodules in 10 and 6 patients, respectively, of the 13 patients with biopsy-confirmed malignant inclusions. The PMI System findings were consistent with all 8 biopsy negative cases, while the DRE had 1 abnormal reading for this group. The correlation between PMI and DRE detection of palpable nodularity was 81%, as indicated by the area under the receiver operating characteristic (ROC) curve. Estimates of the prostate size provided by PMI and DRE were found to be statistically significantly correlated. Conclusions The PMI has the potential to enable a physician to obtain, examine and store a three dimensional image of the prostate based on mechanical and geometrical characteristics of the gland and its internal structures. PMID:18342178
Prostate Cancer, Nutrition, and Dietary Supplements (PDQ®)—Health Professional Version
Nutrition methods and dietary supplements have been studied for prostate cancer prevention or treatment. Read about the history of research, laboratory, and human studies on various prostate supplements, such as calcium, green tea, lycopene, pomegranate, selenium, soy, and vitamin E in this expert-reviewed summary.
Arias, Carlos Roberto; Yeh, Hsiang-Yuan; Soo, Von-Wun
2012-01-01
Finding a genetic disease-related gene is not a trivial task. Therefore, computational methods are needed to present clues to the biomedical community to explore genes that are more likely to be related to a specific disease as biomarker. We present biomarker identification problem using gene prioritization method called gene prioritization from microarray data based on shortest paths, extended with structural and biological properties and edge flux using voting scheme (GP-MIDAS-VXEF). The method is based on finding relevant interactions on protein interaction networks, then scoring the genes using shortest paths and topological analysis, integrating the results using a voting scheme and a biological boosting. We applied two experiments, one is prostate primary and normal samples and the other is prostate primary tumor with and without lymph nodes metastasis. We used 137 truly prostate cancer genes as benchmark. In the first experiment, GP-MIDAS-VXEF outperforms all the other state-of-the-art methods in the benchmark by retrieving the truest related genes from the candidate set in the top 50 scores found. We applied the same technique to infer the significant biomarkers in prostate cancer with lymph nodes metastasis which is not established well. PMID:22654636
Screening spectroscopy of prostate cancer
NASA Astrophysics Data System (ADS)
Yermolenko, S. B.; Voloshynskyy, D. I.; Fedoruk, O. S.
2015-11-01
The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the state of prostate cancer and choosing the best personal treatment. The objects of study were selected venous blood plasma of patient with prostate cancer, histological sections of rat prostate gland in the postoperative period. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5-25 microns) dry residue of plasma by spectral diagnostic technique of thin histological sections of biological tissues.
Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice
Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.
2013-01-01
BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407
Gorday, William; Sadrzadeh, Hossein; de Koning, Lawrence; Naugler, Christopher T
2015-12-01
1.) Identify whether prostate-specific antigen velocity improves the ability to predict prostate biopsy diagnosis. 2.) Test whether there is an increase in the predictive capability of models when Gleason 7 prostate cancers are separated into a 3+4 and a 4+3 group. Calgary Laboratory Services' Clinical Laboratory Information System was searched for prostate biopsies reported between January 1, 2009 and December 31, 2013. Total prostate-specific antigen tests were recorded for each patient from January 1, 2007 to the most recent test before their recorded prostate biopsy. The data set was divided into the following three groups for comparison; benign, all prostate cancer and Gleason 7-10. The Gleason grade 7-10 group was further divided into 4+3 and 3+4 Gleason 7 prostate cancers. Prostate-specific antigen velocity was calculated using four different methods found in the literature. Receiver operator curves were used to assess operational characteristics of the tests. 4622 men between the ages of 40-89 with a prostate biopsy were included for analysis. Combining prostate-specific antigen velocity with total prostate-specific antigen (AUC=0.570-0.712) resulted in small non-statistically significant changes to the area under the curve compared to the area under the curve of total prostate-specific antigen alone (AUC=0.572-0.699). There were marked increases in the area under curves when 3+4 and 4+3 Gleason 7 cancers were separated. Prostate-specific antigen velocity does not add predictive value for prostate biopsy diagnosis. The clinical significance of the prostate specific antigen test can be improved by separating Gleason 7 prostate cancers into a 3+4 and 4+3 group. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Rybicki, BA; Kryvenko, ON; Wang, Y; Jankowski, M; Trudeau, S; Chitale, DA; Gupta, NS; Rundle, A; Tang, D
2016-01-01
BACKGROUND Epidemiologic studies, primarily done in white men, suggest that a history of clinically-diagnosed prostatitis increases prostate cancer risk, but that histological prostate inflammation decreases risk. The relationship between a clinical history of prostatitis and histologic inflammation in terms of how these two manifestations of prostatic inflammation jointly contribute to prostate cancer risk and whether racial differences exist in this relationship is uncertain. METHODS Using a nested design within a cohort of men with benign prostate tissue specimens, we analyzed the data on both clinically-diagnosed prostatitis (NIH categories I–III) and histological inflammation in 574 prostate cancer case-control pairs (345 white, 229 African American). RESULTS Clinical prostatitis was not associated with increased prostate cancer risk in the full sample, but showed a suggestive inverse association with prostate cancer in African Americans (odds ratio (OR) = 0.47; 95% confidence interval (CI) = 0.27–0.81). In whites, clinical prostatitis increased risk by 40%, but was only associated with a significant increased prostate cancer risk in the absence of evidence of histological inflammation (OR = 3.56; 95% CI = 1.15–10.99). Moreover, PSA velocity (P = 0.008) and frequency of PSA testing (P = 0.003) were significant modifiers of risk. Clinical prostatitis increased risk of prostate cancer almost three-fold (OR = 2.97; 95% CI = 1.40–6.30) in white men with low PSA velocity and about twofold in white men with more frequent PSA testing (OR = 1.91; 95% CI = 1.09–3.35). CONCLUSIONS In our cohort of men with benign prostate specimens, race, and histological inflammation were important cofactors in the relationship between clinical prostatitis and prostate cancer. Clinical prostatitis was associated with a slightly decreased risk for prostate cancer in African American men. In white men, the relationship between clinical prostatitis and prostate cancer risk was modified by histological prostatic inflammation, PSA velocity, and frequency of PSA testing—suggesting a complex interplay between these indications of prostatic inflammation and prostate cancer detection. PMID:26620738
Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364
Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui
2016-02-01
Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.
Ponkratov, S V; Kheyfets, V Kh; Kagan, O F
2017-01-01
Data on epidemiology of a prostate cancer are presented in article, high prevalence and body height of a case rate cause relevance of researches on this oncopathology. It is shown that the number augmentation for the first time of the taped cases is bound including to the program of a screening of inspection of men by determination of level of prostates-specific antigen (PSA). Modern diagnostic methods of identification of modifications of PSA, possessing larger sensitivity and specificity concerning a prostate cancer are lit. The attention to change of level of PSA depending on age is focused that needs to be considered at diagnostics of malignant neoplasms of a prostate.
Anatomy structure creation and editing using 3D implicit surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibbard, Lyndon S.
2012-05-15
Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less
Glybochko, P V; Alyaev, Yu G; Amosov, A V; Krupinov, G E; Ganzha, T M; Vorobev, A V; Lumpov, I S; Semendyaev, R I
2016-08-01
Early detection of prostate cancer (PCa) remains a challenging issue. There are studies underway aimed to develop and implement new methods for prostate cancer screening by tumor imaging and obtaining tissue samples from suspicious areas for morphological examination. One of these new methods is shear wave ultrasound elastography (SWUE). The current literature is lacking sufficient coverage of informativeness and specificity of SWUE in the prostate cancer detection, there is no clear criteria for assessing tissue stiffness at different values of PSA and tumor grade, and in prostate hyperplasia and prostatitis. To evaluate the informativeness and specificity of SWUE compared with other diagnostic methods. SWUE has been used in the Clinic of Urology of Sechenov First MSMU since October 2015. During this period, 302 patients were examined using SWUE. SWUE was performed with Aixplorer ultrasound system (Super Sonic Imagine), which provides a single-stage SWUE imaging with both B-mode and real-time mode. The first group (prospective study) included 134 men aged 47 to 81 years with suspected prostate cancer scheduled to either initial or repeat prostate biopsy. PSA levels ranged from 4 to 24 ng/ml. The second group (retrospective study) comprised 120 men with confirmed prostate cancer and PSA levels between 4 and 90 ng/ml. The third group (the control group), comprised 48 healthy men whose PSA level did not exceed 3 ng/ml. All patients of the groups 1 and 2 underwent a standard comprehensive examination. Patients in group 1 were subsequently subjected to transrectal prostate biopsy guided by localization of areas with abnormal tissue stiffness. PCa was detected in 100 of 134 patients. 217 patients of groups 1 and 2 underwent radical prostatectomy. In 28 of them, the match between the cancer location and differentiation in the removed prostate and SWUE findings before surgery was examined. Contrast-enhanced magnetic resonance imaging of pelvic organs was performed in 63 patients of groups 1 and 2. Threshold values of stiffness (Emean) were determined, which normally range from 0 to 23 kPa, from 23.4 to 50 kPa in prostatic hyperplasia and 50.5 kPa and greater in prostate cancer. A total of 220 patients in groups 1 and 2 were found to have prostate cancer. The findings showed increased stiffness of prostate tissue depending on tumor differentiation, Gleason score, and hence, cancer risk. The sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) were calculated for SWUE, biopsy based on 6 peripheral points used during SWUE, and for histologic findings from prostate cross sections. When compared to needle biopsy, Se, Sp, PPV, NPV for SWUE were 90.8, 94.6, 56.6 and 97.9%, respectively. The study findings suggest a high diagnostic performance of SWUE in detecting prostate cancer.
AEG-1 promoter-mediated imaging of prostate cancer
Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C.; Gabrielson, Matthew; Sysa, Polina; Minn, Il; Green, Gilbert; Simmons, Brian; Gabrielson, Kathleen; Sarkar, Siddik; Fisher, Paul B.; Pomper, Martin G.
2014-01-01
We describe a new imaging method for detecting prostate cancer, whether localized or disseminated and metastatic to soft tissues and bone. The method relies on the use of imaging reporter genes under the control of the promoter of AEG-1 (MTDH), which is selectively active only in malignant cells. Through systemic, nanoparticle-based delivery of the imaging construct, lesions can be identified through bioluminescence imaging and single photon emission-computed tomography in the PC3-ML murine model of prostate cancer at high sensitivity. This approach is applicable for the detection of prostate cancer metastases, including bone lesions for which there is no current reliable agent for non-invasive clinical imaging. Further, the approach compares favorably to accepted and emerging clinical standards, including positron emission tomography with [18F]fluorodeoxyglucose and [18F]sodium fluoride. Our results offer a preclinical proof of concept that rationalizes clinical evaluation in patients with advanced prostate cancer. PMID:25145668
Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert
2014-11-01
Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a significantly higher percent of cancer involvement per biopsy core. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
T CELLS LOCALIZED TO THE ANDROGEN-DEPRIVED PROSTATE ARE TH1 AND TH17 BIASED
Morse, Matthew D.; McNeel, Douglas G.
2013-01-01
BACKGROUND T cells infiltrate the prostates of prostate cancer patients undergoing neoadjuvant androgen deprivation. These prostate-infiltrating T cells have an oligoclonal phenotype, suggesting the development of an antigen-specific T-cell response. We hypothesized that androgen deprivation might elicit a prostate tissue-specific T-cell response that could potentially be combined with other immune-active therapies, and consequently sought to investigate the nature and timing of this T-cell response following castration. METHODS We investigated the phenotype and cytokine expression of T cells at various time points in the prostates of Lewis rats following surgical castration, and used adoptive transfer of prostate-infiltrating lymphocytes to determine whether the infiltration by T cells was mediated by effects of castration on the prostate or lymphocytes. RESULTS Prostate T-cell infiltration shortly after castration was TH1 biased up to approximately 30 days, followed by a predominance of TH17-type cells, which persisted until at least 90 days post castration. Prostate-infiltrating lymphocytes from sham-treated or castrate rats localized to the prostates of castrate animals. CONCLUSIONS These observations suggest castration elicits a time-dependent prostate-specific T-cell infiltration, and this infiltration is likely mediated by effects of castration on prostate tissue rather than T cells. These findings have implications for the timing of immunotherapies combined with androgen deprivation as treatments for prostate cancer. PMID:22213030
Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis
Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie
2015-01-01
Introduction Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Materials and methods Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N = 66) and prostatitis patients (N = 36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Results Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (P < 0.001). Urinary bacteria count allowed for discriminating prostatitis patients from HV (P < 0.001). Total amount of biantennary structures (urinary 2A/MA marker) was significantly lower in prostatitis patients compared to HV (P < 0.001). Combining the urinary 2A/MA marker and urinary WBC count resulted in an AUC of 0.79, 95% confidence interval (CI) = (0.70–0.89) which was significantly better than urinary WBC count (AUC = 0.70, 95% CI = [0.59–0.82], P = 0.042) as isolated test. Conclusions We have demonstrated the diagnostic value of urinary N-glycosylation profiling, which shows great potential as biomarker for prostatitis. Further research is required to unravel the developmental course of prostatic inflammation. PMID:26526330
Engelhardt, Paul Friedrich; Seklehner, Stephan; Brustmann, Hermann; Lusuardi, Lukas; Riedl, Claus R
2015-04-01
This study prospectively investigated the immunohistochemical expression of interleukin-2 receptor (IL-2R) and interleukin-6 (IL-6) in patients with prostate cancer and benign prostatic hyperplasia (BPH), and a possible association of these conditions with asymptomatic inflammatory prostatitis National Institutes of Health (NIH) category IV. The study included 139 consecutive patients who underwent transurethral resection of the prostate and transvesical enucleation of the prostate (n = 82) or radical prostatectomy (n = 57). To characterize inflammatory changes the criteria proposed by Irani et al. [J Urol 1997;157:1301-3] were used. IL-2R and IL-6 expression was studied by a standard immunohistochemical method. Results were correlated with tumour, node, metastasis stage, Gleason scores, total prostate-specific antigen, International Prostate Symptom Score and body mass index. IL-2R and IL-6 expression was significantly higher in neoplastic prostate cancer tissue than in normal tissue of prostate cancer patients (p < 0.001 and p < 0.04, respectively). Prostate cancer patients with prostatitis showed significantly higher IL-2R expression than those without inflammation (p < 0.03). In patients with BPH, expression of IL-2R as well as IL-6 was higher in patients with prostatitis than in those without (p < 0.01 and p < 0.02, respectively). IL-2R and IL-6 expression was significantly higher in prostate cancer tissue than in normal tissue. Patients with asymptomatic inflammatory prostatitis NIH category IV showed significantly greater activity.
Antibody Responses to Prostate-Associated Antigens in Patients with Prostatitis and Prostate Cancer
Maricque, Brett B.; Eickhoff, Jens C.; McNeel, Douglas G.
2010-01-01
Background An important focus of tumor immunotherapy has been the identification of appropriate antigenic targets. Serum-based screening approaches have led to the discovery of hundreds of tumor-associated antigens recognized by IgG. Our efforts to identify immunologically recognized proteins in prostate cancer have yielded a multitude of antigens, however prioritizing these antigens as targets for evaluation in immunotherapies has been challenging. In this report, we set out to determine whether the evaluation of multiple antigenic targets would allow the identification of a subset of antigens that are common immunologic targets in patients with prostate cancer. Methods Using a phage immunoblot approach, we evaluated IgG responses in patients with prostate cancer (n=126), patients with chronic prostatitis (n=45), and men without prostate disease (n=53). Results We found that patients with prostate cancer or prostatitis have IgG specific for multiple common antigens. A subset of 23 proteins was identified to which IgG were detected in 38% of patients with prostate cancer and 33% patients with prostatitis versus 6% of controls (p<0.001 and p=0.003, respectively). Responses to multiple members were not higher in patients with advanced disease, suggesting antibody immune responses occur early in the natural history of cancer progression. Conclusions These findings suggest an association between inflammatory conditions of the prostate and prostate cancer, and suggest that IgG responses to a panel of commonly recognized prostate antigens could be potentially used in the identification of patients at risk for prostate cancer or as a tool to identify immune responses elicited to prostate tissue. PMID:20632317
Cao, Ying; Luo, Guang-Heng; Luo, Lei; Yang, Xiu-Shu; Hu, Jian-Xin; Shi, Hua; Huang, Ping; Sun, Zhao-Lin; Xia, Shu-Jie
2015-01-01
The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP). TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14), CK5, CK18, synaptophysin (Syn), chromogranin A (CgA), uroplakin, transforming growth factor-β1(TGF-β1), and TGF-β type II receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type II receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury. PMID:25652631
2005-11-01
care for localized prostate cancer. To date, we have completed all survey mailings, collected responses, entered these into an Access database, and...vignette, patient socioeconomic status, not race, influenced treatment recommendations for localized prostate cancer. A majority of urologists rate their...in patterns of care for localized prostate cancer. See Introduction (page 14) and Methods (pages 15-17) in Appendix B for details. Key research
Goren, M; Gat, Y
2018-03-22
In varicocele, there is venous flow of free testosterone (FT) directly from the testes into the prostate. Intraprostatic FT accelerates prostate cell production and prolongs cell lifespan, leading to the development of BPH. We show that in a large group of patients presenting with BPH, bilateral varicocele is found in all patients. A total of 901 patients being treated for BPH were evaluated for varicocele. Three diagnostic methods were used as follows: physical examination, colour flow Doppler ultrasound and contact liquid crystal thermography. Bilateral varicocele was found in all 901 patients by at least one of three diagnostic methods. Of those subsequently treated by sclerotherapy, prostate volume was reduced in more than 80%, with prostate symptoms improved. A straightforward pathophysiologic connection exists between bilateral varicocele and BPH. The failure of the one-way valves in the internal spermatic veins leads to a cascade of phenomena that are unique to humans, a result of upright posture. The prostate is subjected to an anomalous venous supply of undiluted, bioactive free testosterone. FT, the obligate control hormone of prostate cells, reaches the prostate directly via the venous drainage system in high concentrations, accelerating the rate of cell production and lengthening cell lifespan, resulting in BPH. © 2018 Blackwell Verlag GmbH.
Gandaglia, Giorgio; Briganti, Alberto; Gontero, Paolo; Mondaini, Nicola; Novara, Giacomo; Salonia, Andrea; Sciarra, Alessandro; Montorsi, Francesco
2013-08-01
Several different stimuli may induce chronic prostatic inflammation, which in turn would lead to tissue damage and continuous wound healing, thus contributing to prostatic enlargement. Patients with chronic inflammation and benign prostatic hyperplasia (BPH) have been shown to have larger prostate volumes, more severe lower urinary tract symptoms (LUTS) and a higher probability of acute urinary retention than their counterparts without inflammation. Chronic inflammation could be a predictor of poor response to BPH medical treatment. Thus, the ability to identify patients with chronic inflammation would be crucial to prevent BPH progression and develop target therapies. Although the histological examination of prostatic tissue remains the only available method to diagnose chronic inflammation, different parameters, such as prostatic calcifications, prostate volume, LUTS severity, storage and prostatitis-like symptoms, poor response to medical therapies and urinary biomarkers, have been shown to be correlated with chronic inflammation. The identification of patients with BPH and chronic inflammation might be crucial in order to develop target therapies to prevent BPH progression. In this context, clinical, imaging and laboratory parameters might be used alone or in combination to identify patients that harbour chronic prostatic inflammation. © 2013 BJU International.
Modifiable Prostate Cancer Risk Reduction and Early Detection Behaviors in Black Men
ERIC Educational Resources Information Center
Odedina, Folakemi T.; Scrivens, John J., Jr.; Larose-Pierre, Margareth; Emanuel, Frank; Adams, Angela Denise; Dagne, Getachew A.; Pressey, Shannon Alexis; Odedina, Oladapo
2011-01-01
Objective: To explore the personal factors related to modifiable prostate cancer risk-reduction and detection behaviors among black men. Methods: Three thousand four hundred thirty (3430) black men were surveyed and structural equation modeling employed to test study hypotheses. Results: Modifiable prostate cancer risk-reduction behavior was found…
Yamamoto, F; Yamamoto, M
2004-07-01
We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.
Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas
2015-01-01
Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639
Automated IMRT planning with regional optimization using planning scripts
Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.
2013-01-01
Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393
Romppanen, T; Huttunen, E; Helminen, H J
1980-07-01
An improved light microscopical histoquantitative method for the analysis of the stereologic structure of the ventral lobe of the rat prostate is introduced. From paraffin-embedded tissue sections, volumetric fractions of the acinar parenchyma, the glandular epithelium, the glandular lumen, and the interacinar tissue were determined. The surface density of the glandular epithelium and the length density of the glandular tubules per cubic millimeter of tissue were also calculated. The corresponding total amount/quantity of each tissue compartment was computed for the whole ventral lobe based on the weight of the lobe. Using established stereologic laws, the height of the epithelium, the diameter of the glandular tubules, the free distance between the glandular tubules, and the distance between the glandular centers (means) were determined. The fitness of the method was tested by analyzing, in addition to normal prostates, ventral prostates of rats castrated 30 days before sacrifice.
Wang, Hongzhi; Das, Sandhitsu R.; Suh, Jung Wook; Altinay, Murat; Pluta, John; Craige, Caryne; Avants, Brian; Yushkevich, Paul A.
2011-01-01
We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems. The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter segmentation, respectively. PMID:21237273
Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.
2015-01-01
BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731
Ibrayev, Yermek; Oda, Keiji; Fraser, Gary E; Knutsen, Synnove F
2013-01-01
Background: Prostate-specific antigen test and digital rectal examination are considered important screening methods for early detection of prostate cancer. However, the utilization of prostate cancer screening varies widely and there is limited knowledge of the predictors of utilization. Methods: Self-reported prostate cancer screening utilization within the last 2 years was investigated among 11,162 black and non-black North American Seventh-day Adventist men, aged 50-75 years, with different dietary patterns and lifestyle characteristics. Results: Blacks were more likely to screen for prostate cancer than non-blacks (Odds Ratio (OR)=1.38 (95% confidence interval (CI): 1.20-1.57). Those with a vegetarian diet, especially vegans, were less likely to follow screening guidelines, particularly among non-Blacks: vegans (OR=0.47, 0.39-0.58), lacto-ovo-vegetarians (OR=0.75, 0.66-0.86), and pesco-vegetarians (OR=0.74, 0.60-0.91) compared to non-vegetarians after adjusting for age, BMI, marital status, education, income, and family history of cancer. Trends for dietary patterns remained unchanged after stratification on age, family history of cancer, education, personal income, marital status, and BMI. Among black men, diet patterns showed no significant associations with utilization of prostate cancer screening, although vegans tended to underutilize screening compared to non-vegetarians (OR=0.70, 0.44-1.10). Conclusions: Vegetarians, especially non-black vegans, are less likely to follow recommended prostate cancer screening guidelines. The effect of diet was attenuated, and not statistically significant, among black men. Impact: Since only about 60% of US men follow prostate cancer screening guidelines, it is important to study reasons for non-compliance in order to increase utilization of preventive measures against prostate cancer. PMID:23833686
Identification of viral infections in the prostate and evaluation of their association with cancer
2010-01-01
Background Several viruses with known oncogenic potential infect prostate tissue, among these are the polyomaviruses BKV, JCV, and SV40; human papillomaviruses (HPVs), and human cytomegalovirus (HCMV) infections. Recently, the Xenotropic Murine Leukemia Virus-related gammaretrovirus (XMRV) was identified in prostate tissue with a high prevalence observed in prostate cancer (PC) patients homozygous for the glutamine variant of the RNASEL protein (462Q/Q). Association studies with the R462Q allele and non-XMRV viruses have not been reported. We assessed associations between prostate cancer, prostate viral infections, and the RNASEL 462Q allele in Mexican cancer patients and controls. Methods 130 subjects (55 prostate cancer cases and 75 controls) were enrolled in the study. DNA and RNA isolated from prostate tissues were screened for the presence of viral genomes. Genotyping of the RNASEL R462Q variant was performed by Taqman method. Results R/R, R/Q, and Q/Q frequencies for R462Q were 0.62, 0.38, and 0.0 for PC cases and 0.69, 0.24, and 0.07 for controls, respectively. HPV sequences were detected in 11 (20.0%) cases and 4 (5.3%) controls. XMRV and HCMV infections were detected in one and six control samples, respectively. The risk of PC was significantly increased (Odds Ratio = 3.98; 95% CI: 1.17-13.56, p = 0.027) by infection of the prostatic tissue with HPV. BKV, JCV, and SV40 sequences were not detected in any of the tissue samples examined. Conclusions We report a positive association between PC and HPV infection. The 462Q/Q RNASEL genotype was not represented in our PC cases; thus, its interaction with prostate viral infections and cancer could not be evaluated. PMID:20576103
Cryotherapy for prostate cancer.
Bermejo, Carlos E; Pisters, Louis L
2003-06-01
Cryotherapy, or the use of freezing, is a long-established method of tumor cell destruction. Although in the past cryotherapy was widely used as a local treatment for prostate cancer, this technique was abandoned not due to lack of efficacy but because the complication rate was unacceptably high. However, there has been a re-emergence in the popularity of cryotherapy for the treatment of localized prostate cancer due to improvements in instrumentation, tumor localization and treatment delivery. Using transrectal ultrasound imaging, prostate cryotherapy is currently delivered with multiple probes via a percutaneous transperineal approach. The extent of freezing can be precisely controlled and monitored with thermocouples and tissue destruction is monitored with real-time visualization of the prostate and surrounding structures. The role of cryotherapy in localized prostate cancer is reviewed.
Anway, Matthew D.; Skinner, Michael K.
2018-01-01
PURPOSE The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. METHODS Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. RESULTS Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1–F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). CONCLUSIONS The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease. PMID:18220299
[Breast metastases from extramammary malignancies in men].
Murakami, T; Hideura, S; Shimizu, R; Shimizu, T; Yano, K; Ishihara, T
1985-12-01
Metastases to the breast from extramammary carcinomas are rare. Carcinoma of the male breast is generally regarded as primary in origin and uncommon, accounting for less than 0.42% of all malignancies in men. Tow men who presented with breast malignancies in the course of their prostatic carcinoma are described. One was metastasis to the breast from prostatic cancer, the other from pancreatic cancer. The prostatic origin of these carcinomas, was confirmed by histological findings and immunocytochemical demonstration of prostatic acid phosphatase with the avidin-biotin-complex method.
SU-F-T-267: A Clarkson-Based Independent Dose Verification for the Helical Tomotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagata, H; Juntendo University, Hongo, Tokyo; Hongo, H
2016-06-15
Purpose: There have been few reports for independent dose verification for Tomotherapy. We evaluated the accuracy and the effectiveness of an independent dose verification system for the Tomotherapy. Methods: Simple MU Analysis (SMU, Triangle Product, Ishikawa, Japan) was used as the independent verification system and the system implemented a Clarkson-based dose calculation algorithm using CT image dataset. For dose calculation in the SMU, the Tomotherapy machine-specific dosimetric parameters (TMR, Scp, OAR and MLC transmission factor) were registered as the machine beam data. Dose calculation was performed after Tomotherapy sinogram from DICOM-RT plan information was converted to the information for MUmore » and MLC location at more segmented control points. The performance of the SMU was assessed by a point dose measurement in non-IMRT and IMRT plans (simple target and mock prostate plans). Subsequently, 30 patients’ treatment plans for prostate were compared. Results: From the comparison, dose differences between the SMU and the measurement were within 3% for all cases in non-IMRT plans. In the IMRT plan for the simple target, the differences (Average±1SD) were −0.70±1.10% (SMU vs. TPS), −0.40±0.10% (measurement vs. TPS) and −1.20±1.00% (measurement vs. SMU), respectively. For the mock prostate, the differences were −0.40±0.60% (SMU vs. TPS), −0.50±0.90% (measurement vs. TPS) and −0.90±0.60% (measurement vs. SMU), respectively. For patients’ plans, the difference was −0.50±2.10% (SMU vs. TPS). Conclusion: A Clarkson-based independent dose verification for the Tomotherapy can be clinically available as a secondary check with the similar tolerance level of AAPM Task group 114. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camps, S; With, P de; Verhaegen, F
2016-06-15
Purpose: The use of ultrasound (US) imaging in radiotherapy is not widespread, primarily due to the need for skilled operators performing the scans. Automation of probe positioning has the potential to remove this need and minimize operator dependence. We introduce an algorithm for obtaining a US probe position that allows good anatomical structure visualization based on clinical requirements. The first application is on 4D transperineal US images of prostate cancer patients. Methods: The algorithm calculates the probe position and orientation using anatomical information provided by a reference CT scan, always available in radiotherapy workflows. As initial test, we apply themore » algorithm on a CIRS pelvic US phantom to obtain a set of possible probe positions. Subsequently, five of these positions are randomly chosen and used to acquire actual US volumes of the phantom. Visual inspection of these volumes reveal if the whole prostate, and adjacent edges of bladder and rectum are fully visualized, as clinically required. In addition, structure positions on the acquired US volumes are compared to predictions of the algorithm. Results: All acquired volumes fulfill the clinical requirements as specified in the previous section. Preliminary quantitative evaluation was performed on thirty consecutive slices of two volumes, on which the structures are easily recognizable. The mean absolute distances (MAD) between actual anatomical structure positions and positions predicted by the algorithm were calculated. This resulted in MAD of 2.4±0.4 mm for prostate, 3.2±0.9 mm for bladder and 3.3±1.3 mm for rectum. Conclusion: Visual inspection and quantitative evaluation show that the algorithm is able to propose probe positions that fulfill all clinical requirements. The obtained MAD is on average 2.9 mm. However, during evaluation we assumed no errors in structure segmentation and probe positioning. In future steps, accurate estimation of these errors will allow for better evaluation of the achieved accuracy.« less
The lived experience of men diagnosed with prostate cancer.
Krumwiede, Kelly A; Krumwiede, Norma
2012-09-01
To investigate the lived experience of prostate cancer from a patient perspective. Descriptive, qualitative. Community setting. 10 men with prostate cancer aged 62-70 years. A hermeneutic phenomenologic method using semistructured, open-ended questions addressing the lived experience. Phenomenology of praxis proposed by van Manen guided the data analysis and transformed personal experiences into disciplinary understanding. The use of van Manen's method of inquiry and analysis has contributed to the findings of the study by providing a way to explore the meaning of the lived experiences in an attempt to understand living with prostate cancer. Several themes were identified: living in the unknown, yearning to understand and know, struggling with unreliability of body, bearing the diagnosis of cancer, shifting priorities in the gap, and feeling comfort in the presence of others. Oncology nurses can use van Manen's four fundamental existentials-lived space (spatiality), lived body (corporeality), lived time (temporality), and lived other (relationality)-to understand the lived experience of prostate cancer. Nurses have many opportunities to impact the lives of men diagnosed with prostate cancer, including diagnosis, management of physical integrity, management of psychosocial integrity, and providing education. Nurses may encourage men to describe their diagnosis story and illness experience to better understand the meaning of the prostate cancer experience and to provide appropriate nursing care.
HIFU therapy for patients with high risk prostate cancer
NASA Astrophysics Data System (ADS)
Solovov, V. A.; Vozdvizhenskiy, M. O.; Matysh, Y. S.
2017-03-01
Objectives. Patients with high-risk prostate cancer undergoing radical prostatectomy, external beam radiation therapy (EBRT) combined with androgen deprivation therapy (ADT) or ADT alone. The widely accepted definition of high-risk prostate was first proposed by D'Amico based on a pretreatment Gleason score of ≥8, clinical stage T3, PSA level ≥20 ng/mL. There is no trial that compares traditional methods of treatment of such patients with HIFU therapy. Here we explored the effectiveness of the HIFU in multimodal treatment for patients with high risk prostate cancer. Materials & Methods. 701 patients with high risk prostate cancer were treated in our center between September 2007 and December 2013. Gleason score were 8-10, stage T3N0M0, age 69 (58-86) years, mean PSA before treatment 43.3 (22.1-92.9) ng/ml, mean prostate volume - 59.3 (38-123) cc. 248 patients were treated by HIFU. We compare this group of patients with patients who undertook EBRT: number 196, and ADT: number 257. Mean follow-up time 58 months (6-72). Results. The 5-year overall survival rates in patients after HIFU were 73.8 %, after EBRT - 63.0 % and after ADT - 18.1%. Conclusions. Our experience showed that HIFU therapy in combined treatment were successful for high risk prostate cancer.
Green and black tea intake in relation to prostate cancer risk among Singapore Chinese
Montague, Julia A.; Wu, Anna H.; Genkinger, Jeanine M.; Koh, Woon-Puay; Wong, Alvin S.; Wang, Renwei; Yuan, Jian-Min; Yu, Mimi C.
2013-01-01
Purpose Tea is one of the most commonly consumed beverages worldwide. To date, observational data from prospective cohort studies investigating the relationship between green and black tea intake and prostate cancer risk are sparse and equivocal. In a population-based, prospective cohort study of Chinese men in Singapore, we investigated the relationship between green and black tea intake and prostate cancer risk. Methods Tea consumption data for 27,293 men were collected at baseline (between 1993 and 1998) using a validated food frequency questionnaire. After an average of 11.2 years of follow-up, 298 men had developed prostate cancer. Proportional hazards regression methods were used to assess the associations between tea intake and prostate cancer risk. Results There was no association between daily green tea intake and prostate cancer risk, compared with no green tea intake [hazard ratio (HR) = 1.08; 95 % confidence interval (CI) 0.79, 1.47]. For black tea, a statistically significant positive association and trend were observed for daily intake compared with no black tea intake (HR = 1.41, 95 % CI 1.03, 1.92; p for trend <0.01) Conclusions Few prospective data are available from populations that have both a high level and wide range of black and green tea intake; this study represents a unique opportunity to evaluate their individual effects on prostate cancer risk. Our findings support the notion that green tea intake does not protect against prostate cancer and that black tea intake may increase prostate cancer risk. PMID:22864870
Photodynamic Therapy of the Canine Prostate: Intra-arterial Drug Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Ronald B.; Xiao, Zhengwen; Owen, Richard J.
2008-01-15
Purpose. Interstitial photodynamic therapy (PDT) selectively destroys tissue targeted with a photosensitizer and then exposed to light of a specific wavelength. We report a novel delivery method-intra-arterial drug delivery for PDT of the prostate-in a canine model.Methods. To evaluate drug distribution, the prostatovesical artery was selectively cannulated and photosensitizers alone or in conjunction with 99m-technetium-labeled macro-aggregated albumin ({sup 99m}Tc-MAA) were injected via a 3 Fr microcatheter in 8 animals. One dog was followed for 3 months to determine tolerance and toxicity. The remaining animals were euthanized and imaged with whole-body single photon emission CT and gamma counting for radioactivity distribution.more » Photosensitizer distribution was further analyzed by fluorescence confocal microscopy and tissue chemical extraction. To evaluate PDT, the photosensitizer QLT0074 was infused in 3 animals followed by interstitial illumination with 690 nm laser light. Results. Intra-arterial infusion selectively delivered drugs to the prostate, with both radioactivity and photosensitizer levels significantly higher (up to 18 times) than in the surrounding organs (i.e., rectum). With unilateral injection of {sup 99m}Tc-MAA, only the injected half of the prostate showed activity whereas bilateral administration resulted in drug delivery to the entire prostate. PDT resulted in comprehensive damage to the prostate without severe complications or systemic toxicity. Conclusion. Injection of radiolabeled MAA into the prostatovesical artery results in distribution within the prostate with negligible amounts reaching the adjacent organs. PDT also demonstrates selective damage to the prostate, which warrants clinical application in targeted prostate therapies.« less
Direct aperture optimization using an inverse form of back-projection.
Zhu, Xiaofeng; Cullip, Timothy; Tracton, Gregg; Tang, Xiaoli; Lian, Jun; Dooley, John; Chang, Sha X
2014-03-06
Direct aperture optimization (DAO) has been used to produce high dosimetric quality intensity-modulated radiotherapy (IMRT) treatment plans with fast treatment delivery by directly modeling the multileaf collimator segment shapes and weights. To improve plan quality and reduce treatment time for our in-house treatment planning system, we implemented a new DAO approach without using a global objective function (GFO). An index concept is introduced as an inverse form of back-projection used in the CT multiplicative algebraic reconstruction technique (MART). The index, introduced for IMRT optimization in this work, is analogous to the multiplicand in MART. The index is defined as the ratio of the optima over the current. It is assigned to each voxel and beamlet to optimize the fluence map. The indices for beamlets and segments are used to optimize multileaf collimator (MLC) segment shapes and segment weights, respectively. Preliminary data show that without sacrificing dosimetric quality, the implementation of the DAO reduced average IMRT treatment time from 13 min to 8 min for the prostate, and from 15 min to 9 min for the head and neck using our in-house treatment planning system PlanUNC. The DAO approach has also shown promise in optimizing rotational IMRT with burst mode in a head and neck test case.
Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.
Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity wasmore » assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.« less
GPRC6A regulates prostate cancer progression
Pi, Min; Quarles, L. Darryl
2011-01-01
BACKGROUND GPRC6A is a nutrient sensing GPCR that is activated in vitro by a variety of ligands, including amino acids, calcium, zinc, osteocalcin (OC) and testosterone. The association between nutritional factors and risk of prostate cancer, the finding of increased expression of OC in prostate cancer cells and the association between GPRC6A and risk of prostate cancer in Japanese men implicates a role of GPRC6A in prostate cancer. METHODS We examined if GPRC6A is expressed in human prostate cancer cell lines and used siRNA-mediated knockdown GPRC6A expression in prostate cancer cells to explore the function of GPRC6A in vitro. To assess the role GPRC6A in prostate cancer progression in vivo we intercrossed Gprc6a−/− mice onto the TRAMP mouse prostate cancer model. RESULTS GPRC6A transcripts were markedly increased in prostate cancer cell lines 22Rv1, PC-3 and LNCaP, compared to the normal prostate RWPE-1 cell line. In addition, a panel of GPRC6A ligands, including calcium, OC, and arginine, exhibited in prostate cancer cell lines a dose-dependent stimulation of ERK activity, cell proliferation, chemotaxis, and prostate specific antigen and Runx 2 gene expression. These responses were inhibited by siRNA-mediated knockdown of GPRC6A. Finally, transfer of Gprc6a deficiency onto a TRAMP mouse model of prostate cancer significantly retarded prostate cancer progression and improved survival of compound Gprc6a−/−/TRAMP mice. CONCLUSIONS GPRC6A is a novel molecular target for regulating prostate growth and cancer progression. Increments in GPRC6A may augment the ability of prostate cancer cells to proliferate in response to dietary and bone derived ligands. PMID:21681779
2013-10-01
role of copy number variants in prostate cancer risk and progression using a novel genome-wide screening method. 5a. CONTRACT NUMBER 5b. GRANT ...Prostate; Cancer; Risk; Deletion; Prognosismatter Published by Elsevier Inc. .urolonc.2013.06.004 d in part by DOD grant PC081025, by grant arly...Detection Research Network of the National CTRC at UTHSCSA grant P30CA054174. Data omics Core Shared Resource, which is supported CI P30CA054174 (CTRC of
[Bacterial prostatitis and prostatic fibrosis: modern view on the treatment and prophylaxis].
Zaitsev, A V; Pushkar, D Yu; Khodyreva, L A; Dudareva, A A
2016-08-01
Treatments of chronic bacterial prostatitis (CP) remain difficult problem. Bacterial prostatitis is a disease entity diagnosed clinically and by evidence of inflammation and infection localized to the prostate. Risk factors for UTI in men include urological interventions, such as transrectal prostate biopsy. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies. Prostatic inflammation has been suggested to contribute to the etiology of lower urinary tract symptoms (LUTS) by inducing fibrosis. Several studies have shown that prostatic fibrosis is strongly associated with impaired urethral function and LUTS severity. Fibrosis resulting from excessive deposition of collagen is traditionally recognized as a progressive irreversible condition and an end stage of inflammatory diseases; however, there is compelling evidence in both animal and human studies to support that the development of fibrosis could potentially be a reversible process. Prostate inflammation may induce fibrotic changes in periurethral prostatic tissues, promote urethral stiffness and LUTS. Patients experiencing CP and prostate-related LUTS could benefit from anti-inflammatory therapies, especially used in combination with the currently prescribed enzyme treatment with Longidase. Treatment results showed that longidase is highly effective in bacterial and abacterial CP. Longidase addition to standard therapeutic methods significantly reduced the disease symptoms and regression of inflammatory-proliferative alterations in the prostate.
Seminal epithelium in prostate biopsy can mimic malignant and premalignant prostatic lesions.
Arista-Nasr, J; Trolle-Silva, A; Aguilar-Ayala, E; Martínez-Benítez, B
2016-01-01
In most prostate biopsies, the seminal epithelium is easily recognised because it meets characteristic histological criteria. However, some biopsies can mimic malignant or premalignant prostatic lesions. The aims of this study were to analyse the histological appearance of the biopsies that mimic adenocarcinomas or preneoplastic prostatic lesions, discuss the differential diagnosis and determine the frequency of seminal epithelia in prostate biopsies. We consecutively reviewed 500 prostate puncture biopsies obtained using the sextant method and selected those cases in which we observed seminal vesicle or ejaculatory duct epithelium. In the biopsies in which the seminal epithelium resembled malignant or premalignant lesions, immunohistochemical studies were conducted that included prostate-specific antigen and MUC6. The most important clinical data were recorded. Thirty-six (7.2%) biopsies showed seminal epithelium, and 7 of them (1.4%) resembled various prostate lesions, including high-grade prostatic intraepithelial neoplasia, atypical acinar proliferations, adenocarcinomas with papillary patterns and poorly differentiated carcinoma. The seminal epithelium resembled prostate lesions when the lipofuscin deposit, the perinuclear vacuoles or the nuclear pseudoinclusions were inconspicuous or missing. Five of the 7 biopsies showed mild to moderate cellular atypia with small and hyperchromatic nuclei, and only 2 showed cellular pleomorphism. The patients were alive and asymptomatic after an average of 6 years of progression. The seminal epithelium resembles prostatic intraepithelial neoplasia, atypical acinar proliferations and various types of prostatic adenocarcinomas in approximately 1.4% of prostate biopsies. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Song, Shu-qi; Zhang, Ya-qiang
2009-12-01
The etiology, pathogenesis, and diagnostic criteria of chronic prostatitis were reviewed in this article. Based on clinical practice, the authors systematically discussed the thoughts and methods for the treatment of chronic prostatitis by integrated traditional Chinese and Western medicine. Meanwhile, advice on disputed problems in clinical study of prostatits were given, such as curative effect estimation value of the number of leukocytes in expressed prostatic secretion (EPS) and bacterial culture in EPS, the opportunity and treatment course of antibiotics, National Institutes of Health chronic prostatitis symptom index, classification of syndromes of traditional Chinese medicine (TCM), TCM symptom score, and clinical study period.
Urban, M.W.; Fatemi, M.; Greenleaf, J.F.
2011-01-01
This paper reports shear stiffness and viscosity “virtual biopsy” measurements of three excised non-cancerous human prostates using shearwave dispersion ultrasound vibrometry (SDUV) in vitro. Improved methods for prostate guided-biopsy are required to effectively guide needle biopsy to the suspected site. In addition, tissue stiffness measurement helps identifying a suspected site to perform biopsy because stiffness has been shown to correlate with pathology. More importantly, early detection of prostate cancer may guide minimally-invasive therapy and eliminate insidious procedures. In this work, “virtual” biopsies were taken in multiple locations in three excised prostates. Then, SDUV shear elasticity and viscosity measurements have been performed at the selected “suspicious” locations within the prostates. SDUV measurements of prostate elasticity and viscosity are generally in agreement with preliminary values reported previously in the literature. It is however important to emphasize that the obtained viscoelastic parameters values are local, and not a mean value for the whole prostate. PMID:20595086
Wang, Meng; Wu, Kai; Lu, Changhong; Kong, Xiangyin
2015-01-01
Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486
Prostatic Tissue Elimination After Prostatic Artery Embolization (PAE): A Report of Three Cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leite, Leandro Cardarelli; Assis, Andre Moreira de; Moreira, Airton Mota
PurposeWe report three cases of spontaneous prostatic tissue elimination through the urethra while voiding following technically successful prostatic artery embolization (PAE) as a treatment for lower urinary tract symptoms (LUTS) related to benign prostatic hyperplasia (BPH).MethodsAll patients were embolized with 100- to 300-μm microspheres alone or in combination with 300- to 500-μm microspheres.ResultsDuring follow-up prior to eliminating the tissue fragments, the three patients all presented with intermittent periods of LUTS improvement and aggravation. After expelling the prostatic tissue between 1 and 5 months of follow-up, significant improvements in LUTS and urodynamic parameters were observed in all patients.ConclusionsUrethral obstruction after PAEmore » caused by sloughing prostate tissue is a potential complication of the procedure and should be considered in patients with recurrent LUTS in order to avoid inappropriate management.« less
WE-AB-BRA-05: Fully Automatic Segmentation of Male Pelvic Organs On CT Without Manual Intervention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y; Lian, J; Chen, R
Purpose: We aim to develop a fully automatic tool for accurate contouring of major male pelvic organs in CT images for radiotherapy without any manual initialization, yet still achieving superior performance than the existing tools. Methods: A learning-based 3D deformable shape model was developed for automatic contouring. Specifically, we utilized a recent machine learning method, random forest, to jointly learn both image regressor and classifier for each organ. In particular, the image regressor is trained to predict the 3D displacement from each vertex of the 3D shape model towards the organ boundary based on the local image appearance around themore » location of this vertex. The predicted 3D displacements are then used to drive the 3D shape model towards the target organ. Once the shape model is deformed close to the target organ, it is further refined by an organ likelihood map estimated by the learned classifier. As the organ likelihood map provides good guideline for the organ boundary, the precise contouring Result could be achieved, by deforming the 3D shape model locally to fit boundaries in the organ likelihood map. Results: We applied our method to 29 previously-treated prostate cancer patients, each with one planning CT scan. Compared with manually delineated pelvic organs, our method obtains overlap ratios of 85.2%±3.74% for the prostate, 94.9%±1.62% for the bladder, and 84.7%±1.97% for the rectum, respectively. Conclusion: This work demonstrated feasibility of a novel machine-learning based approach for accurate and automatic contouring of major male pelvic organs. It shows the potential to replace the time-consuming and inconsistent manual contouring in the clinic. Also, compared with the existing works, our method is more accurate and also efficient since it does not require any manual intervention, such as manual landmark placement. Moreover, our method obtained very similar contouring results as the clinical experts. Project is partially support by a grant from NCI 1R01CA140413.« less
Haverkamp, Jessica M.; Charbonneau, Bridget; Meyerholz, David K.; Cohen, Michael B.; Snyder, Paul W.; Svensson, Robert U.; Henry, Michael D.; Wang, Hsing- Hui
2011-01-01
Background Prostatitis is a poorly understood disease and increasing evidence suggests inflammation is involved in other prostatic diseases, including prostate cancer. Methods The ability of pre-activated CD8 T cells to induce prostatitis was examined by adoptive transfer into POET-3 mice or POET-3/Luc/Pten−/+ mice. Characterization of the inflammatory response was determined by examining leukocyte infiltration by histological analysis, flow cytometry and by evaluating cytokine and chemokine levels in prostate tissue. The impact of inflammation on the prostate was evaluated by monitoring epithelial cell proliferation over time. Results Initiation of inflammation by ovalbumin specific CD8+ T cells (OT-I cells) resulted in development of acute prostatitis in the anterior, dorsolateral and anterior prostate of POET-3 and POET-3/Luc/Pten−/+ mice. Acute prostatitis was characterized by recruitment of adoptively transferred OT-I cells and importantly, autologous CD4+ and CD8+ T cells, myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). In concert with leukocyte infiltration elevated levels of pro-inflammatory cytokines and chemokines were observed. Inflammation also resulted in marked epithelial cell proliferation that was sustained up to 80 days post adoptive-transfer of OT-I cells. Conclusions The POET-3 model represents a novel mouse model to study both acute and chronic prostate inflammation in an antigen-specific system. Further, the POET-3 mouse model can be crossed with other genetic models of disease such as the C57/Luc/Pten−/− model of prostate cancer, allowing the impact of prostatitis on other prostatic diseases to be evaluated. PMID:21656824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnevale, Francisco C., E-mail: fcarnevale@uol.com.br; Iscaife, Alexandre, E-mail: iscaifeboni@yahoo.com.br; Yoshinaga, Eduardo M., E-mail: dumuracca@ig.com.br
PurposeTo compare clinical and urodynamic results of transurethral resection of the prostate (TURP) to original and PErFecTED prostate artery embolization (PAE) methods for benign prostatic hyperplasia.MethodsWe prospectively randomized 30 patients to receive TURP or original PAE (oPAE) and compared them to a cohort of patients treated by PErFecTED PAE, with a minimum of 1-year follow-up. Patients were assessed for urodynamic parameters, prostate volume, international prostate symptom score (IPSS), and quality of life (QoL).ResultsAll groups were comparable for all pre-treatment parameters except bladder contractility and peak urine flow rate (Q{sub max}), both of which were significantly better in the TURP group,more » and IIEF score, which was significantly higher among PErFecTED PAE patients than TURP patients. All groups experienced significant improvement in IPSS, QoL, prostate volume, and Q{sub max}. TURP and PErFecTED PAE both resulted in significantly lower IPSS than oPAE but were not significantly different from one another. TURP resulted in significantly higher Q{sub max} and significantly smaller prostate volume than either original or PErFecTED PAE but required spinal anesthesia and hospitalization. Two patients in the oPAE group with hypocontractile bladders experienced recurrence of symptoms and were treated with TURP. In the TURP group, urinary incontinence occurred in 4/15 patients (26.7 %), rupture of the prostatic capsule in 1/15 (6.7 %), retrograde ejaculation in all patients (100 %), and one patient was readmitted for temporary bladder irrigation due to hematuria.ConclusionsTURP and PAE are both safe and effective treatments. TURP and PErFecTED PAE yield similar symptom improvement, but TURP is associated with both better urodynamic results and more adverse events.« less
Quantitative Measures for Evaluation of Ultrasound Therapies of the Prostate
NASA Astrophysics Data System (ADS)
Kobelevskiy, Ilya; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv
2010-03-01
Development of non-invasive techniques for prostate cancer treatment requires implementation of quantitative measures for evaluation of the treatment results. In this paper. we introduce measures that estimate spatial targeting accuracy and potential thermal damage to the structures surrounding the prostate. The measures were developed for the technique of treating prostate cancer with a transurethral ultrasound heating applicators guided by active MR temperature feedback. Variations of ultrasound element length and related MR imaging parameters such as MR slice thickness and update time were investigated by performing numerical simulations of the treatment on a database of ten patient prostate geometries segmented from clinical MR images. Susceptibility of each parameter configuration to uncertainty in MR temperature measurements was studied by adding noise to the temperature measurements. Gaussian noise with zero mean and standard deviation of 0, 1, 3 and 5° C was used to model different levels of uncertainty in MR temperature measurements. Results of simulations for each parameter configuration were averaged over the database of the ten prostate patient geometries studied. Results have shown that for update time of 5 seconds both 3- and 5-mm elements achieve appropriate performance for temperature uncertainty up to 3° C, while temperature uncertainty of 5° C leads to noticeable reduction in spatial accuracy and increased risk of damaging rectal wall. Ten-mm elements lacked spatial accuracy and had higher risk of damaging rectal wall compared to 3- and 5-mm elements, but were less sensitive to the level of temperature uncertainty. The effect of changing update time was studied for 5-mm elements. Simulations showed that update time had minor effects on all aspects of treatment for temperature uncertainty of 0° C and 1° C, while temperature uncertainties of 3° C and 5° C led to reduced spatial accuracy, increased potential damage to the rectal wall, and longer treatment times for update time above 5 seconds. Overall evaluation of results suggested that 5-mm elements showed best performance under physically reachable MR imaging parameters.
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong
2017-02-01
Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.
Kaapu, Kalle J; Murtola, Teemu J; Talala, Kirsi; Taari, Kimmo; Tammela, Teuvo Lj; Auvinen, Anssi
2016-11-22
Protective effects have been suggested for digoxin against prostate cancer risk. However, few studies have evaluated the possible effects on prostate cancer-specific survival. We studied the association between use of digoxin or beta-blocker sotalol and prostate cancer-specific survival as compared with users of other antiarrhythmic drugs in a retrospective cohort study. Our study population consisted of 6537 prostate cancer cases from the Finnish Randomized Study of Screening for Prostate Cancer diagnosed during 1996-2009 (485 digoxin users). The median exposure for digoxin was 480 DDDs (interquartile range 100-1400 DDDs). During a median follow-up of 7.5 years after diagnosis, 617 men (48 digoxin users) died of prostate cancer. We collected information on antiarrhythmic drug purchases from the national prescription database. Both prediagnostic and postdiagnostic drug usages were analysed using the Cox regression method. No association was found for prostate cancer death with digoxin usage before (HR 1.00, 95% CI 0.56-1.80) or after (HR 0.81, 95% CI 0.43-1.51) prostate cancer diagnosis. The results were also comparable for sotalol and antiarrhythmic drugs in general. Among men not receiving hormonal therapy, prediagnostic digoxin usage was associated with prolonged prostate cancer survival (HR 0.20, 95% CI 0.05-0.86). No general protective effects against prostate cancer were observed for digoxin or sotalol usage.
An MRI-Compatible Robotic System With Hybrid Tracking for MRI-Guided Prostate Intervention
Krieger, Axel; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Kaushal, Aradhana; Ménard, Cynthia; Pinto, Peter A.; Camphausen, Kevin; Fichtinger, Gabor
2012-01-01
This paper reports the development, evaluation, and first clinical trials of the access to the prostate tissue (APT) II system—a scanner independent system for magnetic resonance imaging (MRI)-guided transrectal prostate interventions. The system utilizes novel manipulator mechanics employing a steerable needle channel and a novel six degree-of-freedom hybrid tracking method, comprising passive fiducial tracking for initial registration and subsequent incremental motion measurements. Targeting accuracy of the system in prostate phantom experiments and two clinical human-subject procedures is shown to compare favorably with existing systems using passive and active tracking methods. The portable design of the APT II system, using only standard MRI image sequences and minimal custom scanner interfacing, allows the system to be easily used on different MRI scanners. PMID:22009867
Giesel, F L; Sterzing, F; Schlemmer, H P; Holland-Letz, T; Mier, W; Rius, M; Afshar-Oromieh, A; Kopka, K; Debus, J; Haberkorn, U; Kratochwil, C
2016-07-01
Multi-parametric magnetic resonance imaging (MP-MRI) is currently the most comprehensive work up for non-invasive primary tumor staging of prostate cancer (PCa). Prostate-specific membrane antigen (PSMA)-Positron emission tomography-computed tomography (PET/CT) is presented to be a highly promising new technique for N- and M-staging in recurrent PCa-patients. The actual investigation analyses the potential of (68)Ga-PSMA11-PET/CT to assess the extent of primary prostate cancer by intra-individual comparison to MP-MRI. In a retrospective study, ten patients with primary PCa underwent MP-MRI and PSMA-PET/CT for initial staging. All tumors were proven histopathological by biopsy. Image analysis was done in a quantitative (SUVmax) and qualitative (blinded read) fashion based on PI-RADS. The PI-RADS schema was then translated into a 3D-matrix and the euclidian distance of this coordinate system was used to quantify the extend of agreement. Both MP-MRI and PSMA-PET/CT presented a good allocation of the PCa, which was also in concordance to the tumor location validated in eight-segment resolution by biopsy. An Isocontour of 50 % SUVmax in PSMA-PET resulted in visually concordant tumor extension in comparison to MP-MRI (T2w and DWI). For 89.4 % of sections containing a tumor according to MP-MRI, the tumor was also identified in total or near-total agreement (euclidian distance ≤1) by PSMA-PET. Vice versa for 96.8 % of the sections identified as tumor bearing by PSMA-PET the tumor was also found in total or near-total agreement by MP-MRI. PSMA-PET/CT and MP-MRI correlated well with regard to tumor allocation in patients with a high pre-test probability for large tumors. Further research will be needed to evaluate its value in challenging situation such as prostatitis or after repeated negative biopsies.
Zelefsky, Michael J; Cohen, Gilad N; Taggar, Amandeep S; Kollmeier, Marisa; McBride, Sean; Mageras, Gig; Zaider, Marco
Our purpose was to describe the process and outcome of performing postimplantation dosimetric assessment and intraoperative dose correction during prostate brachytherapy using a novel image fusion-based treatment-planning program. Twenty-six consecutive patients underwent intraoperative real-time corrections of their dose distributions at the end of their permanent seed interstitial procedures. After intraoperatively planned seeds were implanted and while the patient remained in the lithotomy position, a cone beam computed tomography scan was obtained to assess adequacy of the prescription dose coverage. The implanted seed positions were automatically segmented from the cone-beam images, fused onto a new set of acquired ultrasound images, reimported into the planning system, and recontoured. Dose distributions were recalculated based upon actual implanted seed coordinates and recontoured ultrasound images and were reviewed. If any dose deficiencies within the prostate target were identified, additional needles and seeds were added. Once an implant was deemed acceptable, the procedure was completed, and anesthesia was reversed. When the intraoperative ultrasound-based quality assurance assessment was performed after seed placement, the median volume receiving 100% of the dose (V100) was 93% (range, 74% to 98%). Before seed correction, 23% (6/26) of cases were noted to have V100 <90%. Based on this intraoperative assessment and replanning, additional seeds were placed into dose-deficient regions within the target to improve target dose distributions. Postcorrection, the median V100 was 97% (range, 93% to 99%). Following intraoperative dose corrections, all implants achieved V100 >90%. In these patients, postimplantation evaluation during the actual prostate seed implant procedure was successfully applied to determine the need for additional seeds to correct dose deficiencies before anesthesia reversal. When applied, this approach should significantly reduce intraoperative errors and chances for suboptimal dose delivery during prostate brachytherapy. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babier, A; Joshi, C; Cancer Center of Southeastern Ontario, Kingston General Hospital, Kingston, Ontario
Purpose: In prostate HDR brachytherapy dose distributions are highly sensitive to changes in prostate volume and catheter displacements. We investigate the maximum deformations in implant geometry before planning objectives are violated. Methods: A typical prostate Ir-192 HDR brachytherapy reference plan was calculated on the Oncentra planning system, which used CT images from a tissue equivalent prostate phantom (CIRS Model 053S) embedded inside a pelvis wax phantom. The prostate was deformed and catheters were displaced in simulations using a code written in MATLAB. For each deformation dose distributions were calculated, based on TG43 methods, using the MATLAB code. The calculations weremore » validated through comparison with Oncentra calculations for the reference plan, and agreed within 0.12%SD and 0.3%SD for dose and volume, respectively. Isotropic prostate volume deformations of up to +34% to −27% relative to its original volume, and longitudinal catheter displacements of 7.5 mm in superior and inferior directions were simulated. Planning objectives were based on American Brachytherapy Society guidelines for prostate and urethra volumes. A plan violated the planning objectives when less than 90% of the prostate volume received the prescribed dose or higher (V{sub 100}), or the urethral volume receiving 125% of prescribed dose or higher was more than 1 cc (U{sub 125}). Lastly, the dose homogeneity index (DHI=1-V{sub 150}/V{sub 100}) was evaluated; a plan was considered sub-optimal when the DHI fell below 0.62. Results and Conclusion: Planning objectives were violated when the prostate expanded by 10.7±0.5% or contracted by 11.0±0.2%; objectives were also violated when catheters were displaced by 4.15±0.15 mm and 3.70±0.15 mm in the superior and inferior directions, respectively. The DHI changes did not affect the plan optimality, except in the case of prostate compression. In general, catheter displacements have a significantly larger impact on plan optimality than prostate volume changes.« less
NASA Astrophysics Data System (ADS)
Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael
2013-03-01
A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, N; Zhang, J; Happersett, L
2016-06-15
Purpose: evaluate a commercial synthetic CT (syn-CT) software for use in prostate radiotherapy Methods: Twenty prostate patients underwent CT and MR simulation scans in treatment position on a 3T Philips scanner. The MR protocol consisted of a T2w turbo spin-echo for soft tissue contrast, a 2D balanced-fast field echo (b-FFE) for fiducial identification, a dual-echo 3D FFE B0 map for distortion analysis and a 3D mDIXON FFE sequence to generate syn-CT. Two echoes are acquired during mDIXON scan, allowing water, fat, and in-phase images to be derived using the frequency shift of the fat and water protons. Tissues were classifiedmore » as: air, adipose, water, trabecular/spongy bone and compact/cortical bone and assigned specific bulk HU values. Bone structures are segmented based on a pelvis bone atlas. Accuracy of syn-CT for patient treatment planning was analyzed by transferring the original plan and structures from the CT to syn-CT via rigid registration and recalculating dose. In addition, new IMRT plans were generated on the syn-CT using structures contoured on MR and transferred to the syn-CT. Accuracy of fiducial-based localization at the treatment machine performed using syn-CT or DRRs generated from syn-CT was assessed by comparing to orthogonal kV radiographs or CBCT. Results: Dosimetric comparison between CT and syn-CT was within 0.5% for all structures. The de-novo optimized plans generated on the syn-CT met our institutional clinical objectives for target and normal structures. Patient-induced susceptibility distortion based on B0 maps was within 1mm and 0.4 mm in the body and prostate. The rectal and bladder outlines on the syn-CT were deemed sufficient for assessing rectal and bladder filling on the CBCT at the time of treatment. CBCT localization showed a median error of < ±1 mm in LR, AP and SI direction. Conclusion: MRI derived syn-CT can be used clinically in MR-alone planning and treatment process for prostate. Drs. Deasy, Hunt and Tyagi have Master research agreement with Philips healthcare.« less
MO-AB-BRA-05: [18F]NaF PET/CT Imaging Biomarkers in Metastatic Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, S; Perk, T; Lin, C
Purpose: Clinical use of {sup 18}F-Sodium Fluoride (NaF) PET/CT in metastatic settings often lacks technology to quantitatively measure full disease dynamics due to high tumor burden. This study assesses radiomics-based extraction of NaF PET/CT measures, including global metrics of overall burden and local metrics of disease heterogeneity, in metastatic prostate cancer for correlation to clinical outcomes. Methods: Fifty-six metastatic Castrate-Resistant Prostate Cancer (mCRPC) patients had NaF PET/CT scans performed at baseline and three cycles into chemotherapy (N=16) or androgen-receptor (AR) inhibitors (N=39). A novel technology, Quantitative Total Bone Imaging (QTBI), was used for analysis. Employing hybrid PET/CT segmentation and articulatedmore » skeletal-registration, QTBI allows for response assessment of individual lesions. Various SUV metrics were extracted from each lesion (iSUV). Global metrics were extracted from composite lesion-level statistics for each patient (pSUV). Proportion of detected lesions and those with significant response (%-increase or %-decrease) was calculated for each patient based on test-retest limits for iSUV metrics. Cox proportional hazard regression analyses were conducted between imaging metrics and progression-free survival (PFS). Results: Functional burden (pSUV{sub total}) assessed mid-treatment was the strongest univariate predictor of PFS (HR=2.03; p<0.0001). Various global metrics outperformed baseline clinical markers, including fraction of skeletal burden, mean uptake (pSUV{sub mean}), and heterogeneity of average lesion uptake (pSUV{sub hetero}). Of 43 patients with paired baseline/mid-treatment imaging, 40 showed heterogeneity in lesion-level response, containing populations of lesions with both increasing/decreasing metrics. Proportion of lesions with significantly increasing iSUV{sub mean} was highly predictive of clinical PFS (HR=2.0; p=0.0002). Patients exhibiting higher proportion of lesions with decreasing iSUV{sub total} saw prolonged radiographic PFS (HR=0.51; p=0.02). Conclusion: Technology presented here provides comprehensive disease quantification on NaF PET/CT imaging, showing strong correlation to clinical outcomes. Total functional burden as well as proportions of similarly responding lesions was predictive of PFS. This supports ongoing development of NaF PET/CT based imaging biomarkers in mCRPC. Prostate Cancer Foundation.« less
MO-FG-210-02: Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, B.
Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less
Lack of Comprehension of Common Prostate Cancer Terms in an Underserved Population
Kilbridge, Kerry L.; Fraser, Gertrude; Krahn, Murray; Nelson, Elizabeth M.; Conaway, Mark; Bashore, Randall; Wolf, Andrew; Barry, Michael J.; Gong, Debra A.; Nease, Robert F.; Connors, Alfred F.
2009-01-01
Purpose To assess the comprehension of common medical terms used in prostate cancer in patient education materials to obtain informed consent, and to measure outcomes after prostate cancer treatment. We address this issue among underserved, African-American men because of the increased cancer incidence and mortality observed in this population. Patients and Methods We reviewed patient education materials and prostate-specific quality-of-life instruments to identify technical terms describing sexual, urinary, and bowel function. Understanding of these terms was assessed in face-to-face interviews of 105, mostly African-American men, age ≥ 40, from two low-income clinics. Comprehension was evaluated using semiqualitative methods coded by two independent investigators. Demographics were collected and literacy was measured. Results Fewer than 50% of patients understood the terms “erection” or “impotent.” Only 5% of patients understood the term “incontinence” and 25% understood the term “bowel habits.” More patients recognized word roots than related terms or compound words (eg, “rectum” v “rectal urgency,” “intercourse” v “vaginal intercourse”). Comprehension of terms from all domains was statistically significantly correlated with reading level (P < .001). Median literacy level was fourth to sixth grade. Prostate cancer knowledge was poor. Many patients had difficulty locating key anatomic structures. Conclusion Limited comprehension of prostate cancer terms and low literacy create barriers to obtaining informed consent for treatment and to measuring prostate cancer outcomes accurately in our study population. In addition, the level of prostate cancer knowledge was poor. These results highlight the need for prostate cancer education efforts and outcomes measurements that consider literacy and use nonmedical language. PMID:19307512
Magnetic resonance-guided prostate interventions.
Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C
2005-10-01
We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Veronica J.; O’Malley Ford, Judith M.
Double blind analysis of a batch of thirty skin tissue samples from potential prostate cancer sufferers correctly identified all “control” patients, patients with high and low grade prostate cancers, the presence of benign prostate hyperplasia (BPH), perineural invasions, and the one lymphatic invasion. Identification was by analysis of fibre diffraction patterns interpreted using a schema developed from observations in nine previous studies. The method, schema, and specific experiment results are reported in this paper, with some implications then drawn.
James, Veronica J.; O’Malley Ford, Judith M.
2014-01-01
Double blind analysis of a batch of thirty skin tissue samples from potential prostate cancer sufferers correctly identified all “control” patients, patients with high and low grade prostate cancers, the presence of benign prostate hyperplasia (BPH), perineural invasions, and the one lymphatic invasion. Identification was by analysis of fibre diffraction patterns interpreted using a schema developed from observations in nine previous studies. The method, schema, and specific experiment results are reported in this paper, with some implications then drawn.
Xue, Dong; Zhou, Cui-Xing; Shi, Yun-Bo; Lu, Hao; He, Xiao-Zhou
2015-05-01
Prostate cancer and prostatic hyperplasia detection remains a great challenge, lacking of effective non-invasive and specific diagnostic biomarkers. In the current study, we aimed to identify the relative expression of plasma MD-miniRNA and its diagnostic performance in differentiating prostate cancer and prostatic hyperplasia patients from healthy controls, compared with serum prostate-specific antigen (PSA) level. All of the clinical participants (63 prostate cancer patients, 32 prostatic hyperplasia patients, and 50 healthy controls) were obtained from the Third Affiliated Hospital of Suzhou University in China between January 2013 and April 2014. Clinical characteristics were well matched. Plasma samples were extracted to test the relative expression of MD-miniRNA using the method of qRT-PCR. SPSS 22.0 statistical software package was used to analyze the data and GraphPad Prism 6.0 was used to generate the graphs. Relativity expression of plasma MD-miniRNA was significantly upregulated in prostate cancer, compared with prostatic hyperplasia patients and healthy controls. Serum PSA level revealed similar differences among these groups. MD-miniRNA presented a relatively high diagnostic accuracy with AUC of 0.86 (95 % CI 0.80-0.93) in differentiating prostate cancer patients from healthy controls. Simultaneously, MD-miniRNA was able to discriminate prostate cancer patients from prostatic hyperplasia controls with AUC of 0.79 (95 % CI 0.70-0.88). In addition, MD-miniRNA displayed a better diagnostic performance than PSA level. However, the panel of these two biomarkers revealed the best diagnostic performance, compared with either single biomarker. Results of this study showed that plasma MD-miniRNA could serve as a promising and noninvasive biomarker for diagnosing prostate cancer. Further large-scale studies are needed to confirm its clinical diagnosis accuracy.
2014-01-01
Background The role of lycopene in prostate cancer prevention remains controversial. We examined the associations between dietary lycopene intake and prostate cancer, paying particular attention to the influence of prostate-specific antigen screening, and evaluated tissue biomarkers in prostate cancers in relation to lycopene intake. Methods Among 49898 male health professionals, we obtained dietary information through questionnaires and ascertained total and lethal prostate cancer cases from 1986 through January 31, 2010. Cox regression was used to estimate multivariable hazard ratios (HRs) and 95% confidence intervals (CIs). Tissue microarrays and immunohistochemistry were used to assess tumor biomarker expression in a subset of men. Two-sided χ2 tests were used to calculate the P values. Results Higher lycopene intake was inversely associated with total prostate cancer and more strongly with lethal prostate cancer (top vs bottom quintile: HR = 0.72; 95% CI = 0.56 to 0.94; P trend = .04). In a restricted population of screened participants, the inverse associations became markedly stronger (for lethal prostate cancer: HR = 0.47; 95% CI = 0.29 to 0.75; P trend = .009). Comparing different measures of dietary lycopene, early intake, but not recent intake, was inversely associated with prostate cancer. Higher lycopene intake was associated with biomarkers in the cancer indicative of less angiogenic potential. Conclusions Dietary intake of lycopene was associated with reduced risk of lethal prostate cancer and with a lesser degree of angiogenesis in the tumor. Because angiogenesis is a strong progression factor, an endpoint of lethal prostate cancer may be more relevant than an endpoint of indolent prostate cancer for lycopene in the era of highly prevalent prostate-specific antigen screening. PMID:24463248
Prediction of Prostate Cancer Recurrence Using Quantitative Phase Imaging
NASA Astrophysics Data System (ADS)
Sridharan, Shamira; Macias, Virgilia; Tangella, Krishnarao; Kajdacsy-Balla, André; Popescu, Gabriel
2015-05-01
The risk of biochemical recurrence of prostate cancer among individuals who undergo radical prostatectomy for treatment is around 25%. Current clinical methods often fail at successfully predicting recurrence among patients at intermediate risk for recurrence. We used a label-free method, spatial light interference microscopy, to perform localized measurements of light scattering in prostatectomy tissue microarrays. We show, for the first time to our knowledge, that anisotropy of light scattering in the stroma immediately adjoining cancerous glands can be used to identify patients at higher risk for recurrence. The data show that lower value of anisotropy corresponds to a higher risk for recurrence, meaning that the stroma adjoining the glands of recurrent patients is more fractionated than in non-recurrent patients. Our method outperformed the widely accepted clinical tool CAPRA-S in the cases we interrogated irrespective of Gleason grade, prostate-specific antigen (PSA) levels and pathological tumor-node-metastasis (pTNM) stage. These results suggest that QPI shows promise in assisting pathologists to improve prediction of prostate cancer recurrence.
Texture analysis of tissues in Gleason grading of prostate cancer
NASA Astrophysics Data System (ADS)
Alexandratou, Eleni; Yova, Dido; Gorpas, Dimitris; Maragos, Petros; Agrogiannis, George; Kavantzas, Nikolaos
2008-02-01
Prostate cancer is a common malignancy among maturing men and the second leading cause of cancer death in USA. Histopathological grading of prostate cancer is based on tissue structural abnormalities. Gleason grading system is the gold standard and is based on the organization features of prostatic glands. Although Gleason score has contributed on cancer prognosis and on treatment planning, its accuracy is about 58%, with this percentage to be lower in GG2, GG3 and GG5 grading. On the other hand it is strongly affected by "inter- and intra observer variations", making the whole process very subjective. Therefore, there is need for the development of grading tools based on imaging and computer vision techniques for a more accurate prostate cancer prognosis. The aim of this paper is the development of a novel method for objective grading of biopsy specimen in order to support histopathological prognosis of the tumor. This new method is based on texture analysis techniques, and particularly on Gray Level Co-occurrence Matrix (GLCM) that estimates image properties related to second order statistics. Histopathological images of prostate cancer, from Gleason grade2 to Gleason grade 5, were acquired and subjected to image texture analysis. Thirteen texture characteristics were calculated from this matrix as they were proposed by Haralick. Using stepwise variable selection, a subset of four characteristics were selected and used for the description and classification of each image field. The selected characteristics profile was used for grading the specimen with the multiparameter statistical method of multiple logistic discrimination analysis. The subset of these characteristics provided 87% correct grading of the specimens. The addition of any of the remaining characteristics did not improve significantly the diagnostic ability of the method. This study demonstrated that texture analysis techniques could provide valuable grading decision support to the pathologists, concerning prostate cancer prognosis.
TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wen, N; Gordon, J
2014-06-15
Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less
Microsatellite instability in prostate cancer by PCR or next-generation sequencing.
Hempelmann, Jennifer A; Lockwood, Christina M; Konnick, Eric Q; Schweizer, Michael T; Antonarakis, Emmanuel S; Lotan, Tamara L; Montgomery, Bruce; Nelson, Peter S; Klemfuss, Nola; Salipante, Stephen J; Pritchard, Colin C
2018-04-17
Microsatellite instability (MSI) is now being used as a sole biomarker to guide immunotherapy treatment for men with advanced prostate cancer. Yet current molecular diagnostic tests for MSI have not been evaluated for use in prostate cancer. We evaluated two next-generation sequencing (NGS) MSI-detection methods, MSIplus (18 markers) and MSI by Large Panel NGS (> 60 markers), and compared the performance of each NGS method to the most widely used 5-marker MSI-PCR detection system. All methods were evaluated by comparison to targeted whole gene sequencing of DNA mismatch-repair genes, and immunohistochemistry for mismatch repair genes, where available. In a set of 91 prostate tumors with known mismatch repair status (29-deficient and 62-intact mismatch-repair) MSIplus had a sensitivity of 96.6% (28/29) and a specificity of 100% (62/62), MSI by Large Panel NGS had a sensitivity of 93.1% (27/29) and a specificity of 98.4% (61/62), and MSI-PCR had a sensitivity of 72.4% (21/29) and a specificity of 100% (62/62). We found that the widely used 5-marker MSI-PCR panel has inferior sensitivity when applied to prostate cancer and that NGS testing with an expanded panel of markers performs well. In addition, NGS methods offer advantages over MSI-PCR, including no requirement for matched non-tumor tissue and an automated analysis pipeline with quantitative interpretation of MSI-status.
Detection of benign prostatic hyperplasia nodules in T2W MR images using fuzzy decision forest
NASA Astrophysics Data System (ADS)
Lay, Nathan; Freeman, Sabrina; Turkbey, Baris; Summers, Ronald M.
2016-03-01
Prostate cancer is the second leading cause of cancer-related death in men MRI has proven useful for detecting prostate cancer, and CAD may further improve detection. One source of false positives in prostate computer-aided diagnosis (CAD) is the presence of benign prostatic hyperplasia (BPH) nodules. These nodules have a distinct appearance with a pseudo-capsule on T2 weighted MR images but can also resemble cancerous lesions in other sequences such as the ADC or high B-value images. Describing their appearance with hand-crafted heuristics (features) that also exclude the appearance of cancerous lesions is challenging. This work develops a method based on fuzzy decision forests to automatically learn discriminative features for the purpose of BPH nodule detection in T2 weighted images for the purpose of improving prostate CAD systems.
Kably, Isaam; Pereira, Keith; Chong, William; Bhatia, Shivank
2016-02-01
Incidence of refractory hematuria of prostatic origin (RHPO) is extremely rare, with an iatrogenic etiology even rarer. When conservative methods fail to control bleeding, more invasive surgical methods are needed. In this article we describe our experience with prostatic artery embolization (PAE) as a minimally invasive alternative treatment option in patients with RHPO secondary to iatrogenic urologic trauma. Three patients presented with RHPO. The etiologies were transurethral resection of prostate surgery, Foley catheter removal with a supratherapeutic international normalized ratio and self-traumatic Foley catheter removal respectively. Stepwise management with conservative and medical methods failed to control bleeding. Under local anesthesia and moderate sedation, bilateral PAE was performed via a right common femoral artery access and using cone beam computed tomography. An embolic mixture containing 300-500 um Embosphere® Microspheres (Biosphere Medical, Rockland, MA) was injected under fluoroscopic guidance until stasis was achieved. PAE using the described technique was a technical and clinical success in all three patients. Hematuria resolved within a period of 24 hours. There were no intra- or periprocedural complications. PAE offers a reasonable option in treatment of RHPO, regardless of the cause and may be attempted prior to surgical techniques or sometimes in conjunction. Being minimally invasive and performed under local anesthesia, PAE is especially useful when excessive bleeding prevents adequate visualization of a bleeding source during cystoscopy and in the elderly age group with several comorbidities. An added advantage is the prostatic parenchymal ischemia leading to significant prostate volume reduction and alleviation of the obstructive symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasahara, M; Arimura, H; Hirose, T
Purpose: Current image-guided radiotherapy (IGRT) procedure is bonebased patient positioning, followed by subjective manual correction using cone beam computed tomography (CBCT). This procedure might cause the misalignment of the patient positioning. Automatic target-based patient positioning systems achieve the better reproducibility of patient setup. Our aim of this study was to develop an automatic target-based patient positioning framework for IGRT with CBCT images in prostate cancer treatment. Methods: Seventy-three CBCT images of 10 patients and 24 planning CT images with digital imaging and communications in medicine for radiotherapy (DICOM-RT) structures were used for this study. Our proposed framework started from themore » generation of probabilistic atlases of bone and prostate from 24 planning CT images and prostate contours, which were made in the treatment planning. Next, the gray-scale histograms of CBCT values within CTV regions in the planning CT images were obtained as the occurrence probability of the CBCT values. Then, CBCT images were registered to the atlases using a rigid registration with mutual information. Finally, prostate regions were estimated by applying the Bayesian inference to CBCT images with the probabilistic atlases and CBCT value occurrence probability. The proposed framework was evaluated by calculating the Euclidean distance of errors between two centroids of prostate regions determined by our method and ground truths of manual delineations by a radiation oncologist and a medical physicist on CBCT images for 10 patients. Results: The average Euclidean distance between the centroids of extracted prostate regions determined by our proposed method and ground truths was 4.4 mm. The average errors for each direction were 1.8 mm in anteroposterior direction, 0.6 mm in lateral direction and 2.1 mm in craniocaudal direction. Conclusion: Our proposed framework based on probabilistic atlases and Bayesian inference might be feasible to automatically determine prostate regions on CBCT images.« less
Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana
2011-01-01
Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.
Vance, Terrence M; Azabdaftari, Gissou; Pop, Elena A; Lee, Sang Gil; Su, L Joseph; Fontham, Elizabeth T H; Bensen, Jeannette T; Steck, Susan E; Arab, Lenore; Mohler, James L; Chen, Ming-Hui; Koo, Sung I; Chun, Ock K
2015-01-01
Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1), an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher's exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P = 0.01) and inversely associated with dietary antioxidant intake (P = 0.03). In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P = 0.01). No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P = 0.04). Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants.
Nyalwidhe, Julius O.; Betesh, Lucy R.; Powers, Thomas W.; Jones, E. Ellen; White, Krista Y.; Burch, Tanya C.; Brooks, Jasmin; Watson, Megan T.; Lance, Raymond S.; Troyer, Dean A.; Semmes, O. John; Mehta, Anand; Drake, Richard R.
2013-01-01
Purpose Using prostatic fluids rich in glycoproteins like prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) , the goal of this study was to identify the structural types and relative abundance of glycans associated with prostate cancer status for subsequent use in emerging mass spectrometry-based glycopeptide analysis platforms. Experimental Design A series of pooled samples of expressed prostatic secretions (EPS) and exosomes reflecting different stages of prostate cancer disease were used for N-linked glycan profiling by three complementary methods, MALDI-TOF profiling, normal-phase HPLC separation, and triple quadropole MS analysis of PAP glycopeptides. Results Glycan profiling of N-linked glycans from different EPS fluids indicated a global decrease in larger branched tri- and tetra-antennary glycans. Differential exoglycosidase treatments indicated a substantial increase in bisecting N-acetylglucosamines correlated with disease severity. A triple quadrupole MS analysis of the N-linked glycopeptides sites from PAP in aggressive prostate cancer pools was done to cross-reference with the glycan profiling data. Conclusion and clinical relevance Changes in glycosylation as detected in EPS fluids reflect the clinical status of prostate cancer. Defining these molecular signatures at the glycopeptide level in individual samples could improve current approaches of diagnosis and prognosis. PMID:23775902
Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi
2011-10-01
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.
Mohsenzadegan, Monireh; Tajik, Nader; Madjd, Zahra; Shekarabi, Mehdi; Farajollahi, Mohammad M
2015-01-01
Background: Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investigate its expression in prostate cancer cells. Methods: In the present study, we investigated NGEP expression in LNCaP and DU145 cells by real time and RT-PCR, flow cytometric and immunocytochemical analyses. Results: Real time and RT-PCR analyses of NGEP expression showed that NGEP was expressed in the LNCaP cells but not in DU145 cells. The detection of NGEP protein by flow cytometric and immunocytochemistry analyses indicated that NGEP protein was weakly expressed only in LNCaP cell membrane. Conclusion: Our results demonstrate that LNCaP cell line is more suitable than DU145 for NGEP expression studies; however, its low-level expression is a limiting issue. NGEP expression may be increased by androgen supplementation of LNCaP cell culture medium. PMID:26000254
Incidental Prostate Cancer in Transurethral Resection of the Prostate Specimens in the Modern Era
Barbieri, Christopher; Te, Alexis E.; Kaplan, Steven A.
2014-01-01
Objectives. To identify rates of incidentally detected prostate cancer in patients undergoing surgical management of benign prostatic hyperplasia (BPH). Materials and Methods. A retrospective review was performed on all transurethral resections of the prostate (TURP) regardless of technique from 2006 to 2011 at a single tertiary care institution. 793 men (ages 45–90) were identified by pathology specimen. Those with a known diagnosis of prostate cancer prior to TURP were excluded (n = 22) from the analysis. Results. 760 patients had benign pathology; eleven (1.4%) patients were found to have prostate cancer. Grade of disease ranged from Gleason 3 + 3 = 6 to Gleason 3 + 4 = 7. Nine patients had cT1a disease and two had cT1b disease. Seven patients were managed by active surveillance with no further events, one patient underwent radiation, and three patients underwent radical prostatectomy. Conclusions. Our series demonstrates that 1.4% of patients were found to have prostate cancer, of these 0.5% required treatment. Given the low incidental prostate cancer detection rate, the value of pathologic review of TURP specimens may be limited depending on the patient population. PMID:24876835
Incidental prostate cancer in transurethral resection of the prostate specimens in the modern era.
Otto, Brandon; Barbieri, Christopher; Lee, Richard; Te, Alexis E; Kaplan, Steven A; Robinson, Brian; Chughtai, Bilal
2014-01-01
Objectives. To identify rates of incidentally detected prostate cancer in patients undergoing surgical management of benign prostatic hyperplasia (BPH). Materials and Methods. A retrospective review was performed on all transurethral resections of the prostate (TURP) regardless of technique from 2006 to 2011 at a single tertiary care institution. 793 men (ages 45-90) were identified by pathology specimen. Those with a known diagnosis of prostate cancer prior to TURP were excluded (n = 22) from the analysis. Results. 760 patients had benign pathology; eleven (1.4%) patients were found to have prostate cancer. Grade of disease ranged from Gleason 3 + 3 = 6 to Gleason 3 + 4 = 7. Nine patients had cT1a disease and two had cT1b disease. Seven patients were managed by active surveillance with no further events, one patient underwent radiation, and three patients underwent radical prostatectomy. Conclusions. Our series demonstrates that 1.4% of patients were found to have prostate cancer, of these 0.5% required treatment. Given the low incidental prostate cancer detection rate, the value of pathologic review of TURP specimens may be limited depending on the patient population.
Role of prostate artery embolization in the management of refractory haematuria of prostatic origin.
Pereira, Keith; Halpern, Joshua A; McClure, Timothy D; Lewis, Nicholas A; Kably, Isaam; Bhatia, Shivank; Hu, Jim C
2016-09-01
Prostatic haematuria is among the most common genitourinary complaints of emergency room visits, distressing and troublesome to men and a challenging clinical problem to the treating physician. The most common aetiologies of prostatic haematuria include benign prostatic hyperplasia and prostate cancer. Prostatic haematuria usually resolves with conservative and medical methods; failure of these interventions results in refractory haematuria of prostatic origin (RHPO), a potentially life-threatening scenario. Several different treatments have been described, with varying degrees of success. Patients with RHPO are often elderly and unfit for radical surgery. Prostate artery embolization (PAE) has evolved as a safe and effective technique in the management of RHPO. Use of a superselective approach optimizes clinical success while minimizing complications. This minimally invasive approach improves patients with haemodynamic instability, serves as a bridge to elective surgery, and is a highly effective treatment for RHPO. It may obviate the need for more invasive and morbid surgical therapies. The aim of the present review was to describe the current management of RHPO and the technique of PAE and to review its efficacy and associated morbidity. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Prostate Angiogenesis in Development and Inflammation
Wong, Letitia; Gipp, Jerry; Carr, Jason; Loftus, Christopher; Benck, Molly; Lee, Sanghee; Mehta, Vatsal; Vezina, Chad; Bushman, Wade
2014-01-01
BACKGROUND Prostatic inflammation is an important factor in development and progression of BPH/LUTS. This study was performed to characterize the normal development and vascular anatomy of the mouse prostate and then examine, for the first time, the effects of prostatic inflammation on the prostate vasculature. METHODS Adult mice were perfused with India ink to visualize the prostatic vascular anatomy. Immunostaining was performed on the E16.5 UGS and the P5, P20 and adult prostate to characterize vascular development. Uropathogenic E. coli 1677 was instilled transurethrally into adult male mice to induce prostate inflammation. RT-PCR and BrdU labeling was performed to assay anigogenic factor expression and endothelial proliferation, respectively. RESULTS An artery on the ventral surface of the bladder trifurcates near the bladder neck to supply the prostate lobes and seminal vesicle. Development of the prostatic vascular system is associated with endothelial proliferation and robust expression of pro-angiogenic factors Pecam1, Tie1, Tek, Angpt1, Angpt2, Fgf2, Vegfa, Vegfc, Figf. Bacterial-induced prostatic inflammation induced endothelial cell proliferation and increased vascular density but surprisingly decreased pro-angiogenic factor expression. CONCLUSIONS The striking decrease in pro-angiogenic factor mRNA expression associated with endothelial proliferation and increased vascular density during inflammation suggests that endothelial response to injury is not a recapitulation of normal development and may be initiated and regulated by different regulatory mechanisms. PMID:24293357
Prostate cancer is the second leading cause of cancer death in American men, accounting for 26% of new cancer diagnoses and 9% of cancer deaths in men. Active surveillance, radical prostatectomy and radiotherapy are commonly used treatments for clinically localized prostate cancer. However, current risk stratification methods cannot be used effectively to avoid subjecting
Cross-platform method for identifying candidate network biomarkers for prostate cancer.
Jin, G; Zhou, X; Cui, K; Zhang, X-S; Chen, L; Wong, S T C
2009-11-01
Discovering biomarkers using mass spectrometry (MS) and microarray expression profiles is a promising strategy in molecular diagnosis. Here, the authors proposed a new pipeline for biomarker discovery that integrates disease information for proteins and genes, expression profiles in both genomic and proteomic levels, and protein-protein interactions (PPIs) to discover high confidence network biomarkers. Using this pipeline, a total of 474 molecules (genes and proteins) related to prostate cancer were identified and a prostate-cancer-related network (PCRN) was derived from the integrative information. Thus, a set of candidate network biomarkers were identified from multiple expression profiles composed by eight microarray datasets and one proteomics dataset. The network biomarkers with PPIs can accurately distinguish the prostate patients from the normal ones, which potentially provide more reliable hits of biomarker candidates than conventional biomarker discovery methods.
NASA Astrophysics Data System (ADS)
Giannini, Valentina; Vignati, Anna; Mazzetti, Simone; De Luca, Massimo; Bracco, Christian; Stasi, Michele; Russo, Filippo; Armando, Enrico; Regge, Daniele
2013-02-01
Prostate specific antigen (PSA)-based screening reduces the rate of death from prostate cancer (PCa) by 31%, but this benefit is associated with a high risk of overdiagnosis and overtreatment. As prostate transrectal ultrasound-guided biopsy, the standard procedure for prostate histological sampling, has a sensitivity of 77% with a considerable false-negative rate, more accurate methods need to be found to detect or rule out significant disease. Prostate magnetic resonance imaging has the potential to improve the specificity of PSA-based screening scenarios as a non-invasive detection tool, in particular exploiting the combination of anatomical and functional information in a multiparametric framework. The purpose of this study was to describe a computer aided diagnosis (CAD) method that automatically produces a malignancy likelihood map by combining information from dynamic contrast enhanced MR images and diffusion weighted images. The CAD system consists of multiple sequential stages, from a preliminary registration of images of different sequences, in order to correct for susceptibility deformation and/or movement artifacts, to a Bayesian classifier, which fused all the extracted features into a probability map. The promising results (AUROC=0.87) should be validated on a larger dataset, but they suggest that the discrimination on a voxel basis between benign and malignant tissues is feasible with good performances. This method can be of benefit to improve the diagnostic accuracy of the radiologist, reduce reader variability and speed up the reading time, automatically highlighting probably cancer suspicious regions.
Saigal, Christopher S; Lambrechts, Sylvia I; Seenu Srinivasan, V; Dahan, Ely
2017-06-01
Many guidelines advocate the use of shared decision making for men with newly diagnosed prostate cancer. Decision aids can facilitate the process of shared decision making. Implicit in this approach is the idea that physicians understand which elements of treatment matter to patients. Little formal work exists to guide physicians or developers of decision aids in identifying these attributes. We use a mixed-methods technique adapted from marketing science, the 'Voice of the Patient', to describe and identify treatment elements of value for men with localized prostate cancer. We conducted semi-structured interviews with 30 men treated for prostate cancer in the urology clinic of the West Los Angeles Veteran Affairs Medical Center. We used a qualitative analysis to generate themes in patient narratives, and a quantitative approach, agglomerative hierarchical clustering, to identify attributes of treatment that were most relevant to patients making decisions about prostate cancer. We identified five 'traditional' prostate cancer treatment attributes: sexual dysfunction, bowel problems, urinary problems, lifespan, and others' opinions. We further identified two novel treatment attributes: a treatment's ability to validate a sense of proactivity and the need for an incision (separate from risks of surgery). Application of a successful marketing technique, the 'Voice of the Customer', in a clinical setting elicits non-obvious attributes that highlight unique patient decision-making concerns. Use of this method in the development of decision aids may result in more effective decision support.
Laser Treatment of Benign Prostatic Hyperplasia: Dosimetric and Thermodynamic Considerations
NASA Astrophysics Data System (ADS)
Anvari, Bahman
1993-01-01
Benign prostatic hyperplasia (BPH) is the most commonly occurring neoplastic disease in the aging human male. Currently, surgical treatment of BPH is the primary therapeutic method. However, due to surgical complications, less invasive methods of treatment are desirable. In recent years, thermal coagulation of the hyperplastic prostate by a laser has received a considerable amount of attention. Nevertheless, the optimum laser irradiation parameters that lead to a successful and safe treatment of BPH have not been determined. This dissertation studies the physics of laser coagulation of prostate from both basic science and practical perspectives. Optical properties of prostatic tissue are determined over a spectrum of wavelengths. Knowledge of these properties allows for selection of appropriate laser wavelengths and provides a basis for performing dose equivalency studies among various types of lasers. Furthermore, knowledge of optical properties are needed for development of computer simulation models that predict the extent of thermal injury during laser irradiation of prostate. A computer model of transurethral heating of prostate that can be used to guide the clinical studies in determining an optimum dosimetry is then presented. Studies of the effects of non-laser heating devices, optical properties, blood perfusion, surface irrigation, and beam geometry are performed to examine the extent of heat propagation within the prostate. An in vitro model for transurethral laser irradiation of prostate is also presented to examine the effects of an 810 nm diode laser, thermal boundary conditions, and energy deposition rate during Nd:YAG laser irradiation. Results of these studies suggest that in the presence of laminar irrigation, the convective boundary condition is dominated by thermal diffusion as opposed to the bulk motion of the irrigation fluid. Distinct phases of thermal events are also identified during the laser irradiation. The in vivo studies of transurethral laser irradiation of prostate in canine models are also performed to search for an optimum dosimetry that will result in a maximum zone of coagulation necrosis.
NASA Astrophysics Data System (ADS)
Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Pauly, Kim Butts; Rieke, Viola; Sommer, Graham
2007-05-01
Transurethral ultrasound applicators incorporating an array of multisectored tubular transducers were evaluated in theoretical simulations and in vivo canine prostates under MR guidance as a method for fast, conformal thermal therapy of the prostate. Comprehensive simulations with a biothermal model investigated the effect on lesion creation of sector size, perfusion, treatment time, rectal cooling, prostate target dimensions, and feedback controller parameters (maximum temperature, pilot points at boundary, update times). In vivo canine prostates (n = 4) were treated with trisectored ultrasound transducers (3 mm OD) under MR temperature monitoring to contour the ablation zone (>52 C for 1-2 min) to the boundary of the prostate. Contiguous thermal lesions extended 2 cm in radius from the urethra in less than 15 min and independent sector control simultaneously allowed for conformal treatment in the angular dimension. Experiments investigated sequential translation of the transducer assembly within the catheter for tailoring heat treatments to different partitions in the prostate (base, apex) without changing the initial setup. This treatment method offered greater lesion shape control in three dimensions and slightly lengthened the overall treatment time. The MR temperature images correlated with post-treatment histology and accurately controlled the heating to the target boundary. MR-based control of transurethral ultrasound devices appeared more practical with multisectored transducers compared to rotating curvilinear and planar applicators due to less stringent requirements on spatial and temporal MR parameters. This study demonstrated the applicability of these devices in the prostate for anterior-lateral BPH treatment, and whole gland or quadrant target volumes for cancer treatment.
Elgohary, Hany M; Tantawy, Sayed A
2017-01-01
[Purpose] To investigate the effect of pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia. [Subjects and Methods] Sixty male patients aged 55–65 years with benign prostatic hyperplasia were invited to participate in this study. Patients were randomly assigned to Group A (n=20; patients who received pulsed electromagnetic field in addition to pelvic floor and aerobic exercises), Group B (n=20; patients who received pulsed electromagnetic field), and Group C (n=20; patients who received placebo electromagnetic field). The assessments included post-void residual urine, urine flow rate, prostate specific antigen, white blood cells count, and International Prostate Symptom Score were weighed, before and after a 4-week intervention. [Results] There were significant differences in Group A and B in all parameters. Group C showed non-significant differences in all measured variables except for International Prostate Symptom Score. Among groups, all parameters showed highly significant differences in favor of Group A. There were non-significant differences between Group A and B and significant difference between Groups A and C and between Groups B and C. [Conclusion] The present study demonstrated that electromagnetic field had a significant impact on the treatment of benign prostatic hyperplasia. Accordingly, electromagnetic field can be utilized alone or in combination with other physiotherapy modalities. Moreover, clinicians should have the capacity to perceive the advantages accomplished using extra treatment alternatives. Electromagnetic field is a safe, noninvasive method and can be used for the treatment of benign prostatic hyperplasia. PMID:28878453
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
NASA Astrophysics Data System (ADS)
Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng
2018-04-01
This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.
Prognostic Importance of Small Prostate Size in Men Receiving Definitive Prostate Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taira, Al V.; Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org; Galbreath, Robert W.
Purpose: To assess whether small prostate size is an adverse prognostic factor in men undergoing brachytherapy in the same manner in which it seems to be for men undergoing radical prostatectomy. Methods and Materials: From April 1995 to June 2008, 2024 patients underwent brachytherapy by a single brachytherapist. Median follow-up was 7.4 years. The role of small prostate size ({<=}20 cm{sup 3}) as a prognostic factor for biochemical progression-free survival, cause-specific survival, and all-cause mortality was investigated. The differences in survival between men with small and larger prostates were compared using Kaplan-Meier curves and log-rank tests. Results: Median prostate sizemore » for the entire cohort was 32.7 cm{sup 3}. For the 167 men with small prostates, median prostate size was 17.4 cm{sup 3}. There was no difference in biochemical progression-free survival (95.2% vs 96.2%, P=.603), cause-specific survival (97.7% vs 98.3%, P=.546), or all-cause mortality (78.0% vs 77.2%, P=.838) at 10 years for men with small prostates compared with men with larger prostates. On univariate and multivariate analysis, small prostate size was not associated with any of the primary outcome measures. Conclusion: Men with small prostates treated with brachytherapy have excellent outcomes and are at no higher risk of treatment failure than men with larger glands. High-quality implants with adequate margins seem sufficient to address the increased adverse risk factors associated with small prostate size.« less
POPITA, CRISTIAN; POPITA, ANCA RALUCA; SITAR-TAUT, ADELA; PETRUT, BOGDAN; FETICA, BOGDAN; COMAN, IOAN
2017-01-01
Background and aim Multiparametric-magnetic resonance imaging (mp-MRI) is the main imaging modality used for prostate cancer detection. The aim of this study is to evaluate the diagnostic performance of mp-MRI at 1.5-Tesla (1.5-T) for the detection of clinically significant prostate cancer. Methods In this ethical board approved prospective study, 39 patients with suspected prostate cancer were included. Patients with a history of positive prostate biopsy and patients treated for prostate cancer were excluded. All patients were examined at 1.5-T MRI, before standard transrectal ultrasonography–guided biopsy. Results The overall sensitivity, specificity, positive predictive value and negative predictive value for mp-MRI were 100%, 73.68%, 80% and 100%, respectively. Conclusion Our results showed that 1.5 T mp-MRI has a high sensitivity for detection of clinically significant prostate cancer and high negative predictive value in order to rule out significant disease. PMID:28246496
Lepore, Stephen J.; Wolf, Randi L.; Basch, Charles E.; Godfrey, Melissa; McGinty, Emma; Shmukler, Celia; Ullman, Ralph; Thomas, Nigel; Weinrich, Sally
2012-01-01
Background Decision support interventions have been developed to help men clarify their values and make informed decisions about prostate cancer testing, but they seldom target high-risk black and immigrant men. Purpose This study evaluated the efficacy of a decision support intervention focused on prostate cancer testing in a sample of predominantly immigrant black men. Methods Black men (N = 490) were randomized to tailored telephone education about prostate cancer testing or a control condition. Results Post-intervention, the intervention group had significantly greater knowledge, lower decision conflict, and greater likelihood of talking with their physician about prostate cancer testing than the control group. There were no significant intervention effects on prostate specific antigen testing, congruence between testing intention and behavior, or anxiety. Conclusions A tailored telephone decision support intervention can promote informed decision making about prostate cancer testing in black and predominantly immigrant men without increasing testing or anxiety. Clinical trial Registered in clinicaltrials.gov (NCT01415375) PMID:22825933
Vlasova, O P; German, K E; Krilov, V V; Petriev, V M; Epstein, N B
2015-01-01
About 10.7% cases of prostate cancer were registered in Russia in 2011 (40,000 patients). More than half of cancer cases were revealed in advanced (III-IV) stages when metastases inevitably developed quickly. Clinical problem of early diagnostics and treatment of metastatic prostate cancer is still not solved. Anatomical imaging techniques have low sensitivity and specificity for the detection of this disease. Metabolic visualization methods which use prostate specific antigen (PSA) as a marker are also ineffective. This article describes prostate-specific membrane antigens (PSMA) that are proposed as a marker for diagnostics and therapy of prostate cancer. The most promising PSMA-based radiopharmaceutical agent for diagnostics has been developed and clinically tested in the European countries. These pharmaceuticals are based on small peptide molecules modified with urea, and have the highest affinity to PSMA. Favorable phannacokinetics, rapid accumulation in the tumor and rapid excretion from the body are beneficial features of these pharmaceuticals.
Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN.
Ugalde-Olano, Aitziber; Egia, Ainara; Fernández-Ruiz, Sonia; Loizaga-Iriarte, Ana; Zuñiga-García, Patricia; Garcia, Stephane; Royo, Félix; Lacasa-Viscasillas, Isabel; Castro, Erika; Cortazar, Ana R; Zabala-Letona, Amaia; Martín-Martín, Natalia; Arruabarrena-Aristorena, Amaia; Torrano-Moya, Verónica; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Caro-Maldonado, Alfredo; González-Tampan, Jorge; Cachi-Fuentes, Guido; Bilbao, Elena; Montero, Rocío; Fernández, Sara; Arrieta, Edurne; Zorroza, Kerman; Castillo-Martín, Mireia; Serra, Violeta; Salazar, Eider; Macías-Cámara, Nuria; Tabernero, Jose; Baselga, Jose; Cordón-Cardo, Carlos; Aransay, Ana M; Villar, Amaia Del; Iovanna, Juan L; Falcón-Pérez, Juan M; Unda, Miguel; Bilbao, Roberto; Carracedo, Arkaitz
2015-05-01
Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer. Copyright © 2015. Published by Elsevier Inc.
Trichomonas vaginalis infection and risk of advanced prostate cancer.
Shui, Irene M; Kolb, Suzanne; Hanson, Christi; Sutcliffe, Siobhan; Rider, Jennifer R; Stanford, Janet L
2016-05-01
The epidemiologic evidence for an association of Trichomonas vaginalis (Tv) with overall prostate cancer is mixed, but some studies suggest Tv may increase risk of more aggressive disease. The aim of this study was to assess whether Tv serostatus is associated with advanced or fatal prostate cancer. A total of 146 men with advanced (metastatic or fatal) prostate cancer and 181 age-matched controls were selected from two prior population-based, case-control studies. Tv serostatus was determined with the same laboratory methods used in previous epidemiologic studies. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using multivariable logistic regression to compare Tv serostatus in prostate cancer cases and controls adjusted for potential confounders. The seroprevalence of Tv in controls was 23%. Tv serostatus was not associated with an increased risk of metastatic or fatal prostate cancer (ORs < 1). Our study does not support an increased risk of advanced or fatal prostate cancer in men seropositive for Tv. © 2016 Wiley Periodicals, Inc.
Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A
2017-10-27
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.
2017-11-01
In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.
The method for glomerulations detection in histological images of prostate
NASA Astrophysics Data System (ADS)
Zavarzin, A. A.; Pronichev, A. N.; Rodionova, O. V.; Komochkina, E. A.; Prilepskaya, E. A.; Kovylina, M. V.
2018-01-01
In the work presented, a method for detecting glomeruli in pictures of histological preparations of the prostate gland is described, the presence of which indicates a malignant neoplasm. Pathological structures at the level of microimages are investigated. The developed method is the result of joint activity of the National Research Nuclear University "MEPhI" and the Moscow State Medical and Stomatological University named after A.I. Evdokimova.
Vasavada, Shaleen R; Dobbs, Ryan W; Kajdacsy-Balla, André A; Abern, Michael R; Moreira, Daniel M
2018-05-01
We performed a comprehensive literature review and meta-analysis to evaluate the association of inflammation on prostate needle biopsies and prostate cancer risk. We searched Embase®, PubMed® and Web of Science™ from January 1, 1990 to October 1, 2016 for abstracts containing the key words prostate cancer, inflammation and biopsy. Study inclusion criteria were original research, adult human subjects, cohort or case-control study design, histological inflammation on prostate needle biopsy and prostate cancer on histology. Two independent teams reviewed abstracts and extracted data from the selected manuscripts. Combined ORs and 95% CIs of any, acute and chronic inflammation were calculated using the random effects method. Of the 1,030 retrieved abstracts 46 underwent full text review and 25 were included in the final analysis, comprising a total of 20,585 subjects and 6,641 patients with prostate cancer. There was significant heterogeneity among studies (I 2 = 84.4%, p <0.001). The presence of any inflammation was significantly associated with a lower prostate cancer risk in 25 studies (OR 0.455, 95% CI 0.337-0.573). There was no evidence of publication bias (p >0.05). When subanalyzed by inflammation type, acute inflammation in 4 studies and chronic inflammation in 15 were each associated with a lower prostate cancer risk (OR 0.681, 95% CI 0.450-0.913 and OR 0.499, 95% CI 0.334-0.665, respectively). In a meta-analysis of 25 studies inflammation on prostate needle biopsy was associated with a lower prostate cancer risk. Clinically the presence of inflammation on prostate needle biopsy may lower the risk of a subsequent prostate cancer diagnosis. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kaplan, David J.; Boorjian, Stephen A.; Ruth, Karen; Egleston, Brian L.; Chen, David Y.T.; Viterbo, Rosalia; Uzzo, Robert G.; Buyyounouski, Mark K.; Raysor, Susan; Giri, Veda N.
2009-01-01
Introduction Clinical factors in addition to PSA have been evaluated to improve risk assessment for prostate cancer. The Prostate Cancer Prevention Trial (PCPT) risk calculator provides an assessment of prostate cancer risk based on age, PSA, race, prior biopsy, and family history. This study evaluated the risk calculator in a screening cohort of young, racially diverse, high-risk men with a low baseline PSA enrolled in the Prostate Cancer Risk Assessment Program. Patients and Methods Eligibility for PRAP include men ages 35-69 who are African-American, have a family history of prostate cancer, or have a known BRCA1/2 mutation. PCPT risk scores were determined for PRAP participants, and were compared to observed prostate cancer rates. Results 624 participants were evaluated, including 382 (61.2%) African-American men and 375 (60%) men with a family history of prostate cancer. Median age was 49.0 years (range 34.0-69.0), and median PSA was 0.9 (range 0.1-27.2). PCPT risk score correlated with prostate cancer diagnosis, as the median baseline risk score in patients diagnosed with prostate cancer was 31.3%, versus 14.2% in patients not diagnosed with prostate cancer (p<0.0001). The PCPT calculator similarly stratified the risk of diagnosis of Gleason score ≥7 disease, as the median risk score was 36.2% in patients diagnosed with Gleason ≥7 prostate cancer versus 15.2% in all other participants (p<0.0001). Conclusion PCPT risk calculator score was found to stratify prostate cancer risk in a cohort of young, primarily African-American men with a low baseline PSA. These results support further evaluation of this predictive tool for prostate cancer risk assessment in high-risk men. PMID:19709072
Teerlink, Craig C.; Thibodeau, Stephen N.; McDonnell, Shannon K.; Schaid, Daniel J.; Rinckleb, Antje; Maier, Christiane; Vogel, Walther; Cancel-Tassin, Geraldine; Egrot, Christophe; Cussenot, Olivier; Foulkes, William D.; Giles, Graham G.; Hopper, John L.; Severi, Gianluca; Eeles, Ros; Easton, Douglas; Kote-Jarai, Zsofia; Guy, Michelle; Cooney, Kathleen A.; Ray, Anna M.; Zuhlke, Kimberly A.; Lange, Ethan M.; FitzGerald, Liesel M.; Stanford, Janet L.; Ostrander, Elaine A.; Wiley, Kathleen E.; Isaacs, Sarah D.; Walsh, Patrick C.; Isaacs, William B.; Wahlfors, Tiina; Tammela, Teuvo; Schleutker, Johanna; Wiklund, Fredrik; Grönberg, Henrik; Emanuelsson, Monica; Carpten, John; Bailey-Wilson, Joan; Whittemore, Alice S.; Oakley-Girvan, Ingrid; Hsieh, Chih-Lin; Catalona, William J.; Zheng, S. Lilly; Jin, Guangfu; Lu, Lingyi; Xu, Jianfeng; Camp, Nicola J.; Cannon-Albright, Lisa A.
2013-01-01
Previous GWAS studies have reported significant associations between various common SNPs and prostate cancer risk using cases unselected for family history. How these variants influence risk in familial prostate cancer is not well studied. Here, we analyzed 25 previously reported SNPs across 14 loci from prior prostate cancer GWAS. The International Consortium for Prostate Cancer Genetics (ICPCG) previously validated some of these using a family-based association method (FBAT). However, this approach suffered reduced power due to the conditional statistics implemented in FBAT. Here, we use a case-control design with an empirical analysis strategy to analyze the ICPCG resource for association between these 25 SNPs and familial prostate cancer risk. Fourteen sites contributed 12,506 samples (9,560 prostate cancer cases, 3,368 with aggressive disease, and 2,946 controls from 2,283 pedigrees). We performed association analysis with Genie software which accounts for relationships. We analyzed all familial prostate cancer cases and the subset of aggressive cases. For the familial prostate cancer phenotype, 20 of the 25 SNPs were at least nominally associated with prostate cancer and 16 remained significant after multiple testing correction (p≤1E−3) occurring on chromosomal bands 6q25, 7p15, 8q24, 10q11, 11q13, 17q12, 17q24, and Xp11. For aggressive disease, 16 of the SNPs had at least nominal evidence and 8 were statistically significant including 2p15. The results indicate that the majority of common, low-risk alleles identified in GWAS studies for all prostate cancer also contribute risk for familial prostate cancer, and that some may be contribute risk to aggressive disease. PMID:24162621
Narita, Shintaro; Mitsuzuka, Koji; Tsuchiya, Norihiko; Koie, Takuya; Kawamura, Sadafumi; Ohyama, Chikara; Tochigi, Tatsuo; Yamaguchi, Takuhiro; Arai, Yoichi; Habuchi, Tomonori
2015-11-01
To assess the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. We retrospectively reviewed the medical records of 1268 men with prostate cancer treated using radical prostatectomy without neoadjuvant therapy. The association between various risk factors and biochemical recurrence was then statistically evaluated. The Kaplan-Meier method, log-rank tests and Cox proportional hazards models were used for statistical analysis. In the intermediate-risk group, 96 patients (14.5%) experienced biochemical recurrence during a median follow up of 41 months. In the intermediate-risk group, preoperative prostate-specific antigen level, prostate volume and prostate-specific antigen density were significant preoperative risk factors for biochemical recurrence, whereas other factors including age, primary Gleason 4, clinical stage >T2 and percentage of positive biopsies were not. In multivariate analysis, higher preoperative prostate-specific antigen level and density, and a smaller prostate volume were independent risk factors for biochemical recurrence in the intermediate-risk group. Biochemical recurrence-free survival of patients in the intermediate-risk group with a higher prostate-specific antigen level and density (≥15 ng/mL, ≥0.6 ng/mL/cm(3), respectively), and lower prostate volume (≤10 mL) was comparable with that of high-risk group individuals (P = 0.632, 0.494 and 0.961, respectively). Preoperative prostate-specific antigen, prostate volume and prostate-specific antigen density are significant risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. Using these variables, a subset of the intermediate-risk patients can be identified as having equivalent outcomes to high-risk patients. © 2015 The Japanese Urological Association.
Orr, Brigid; Vanpoucke, Griet; Grace, O Cathal; Smith, Lee; Anderson, Richard A; Riddick, Antony CP; Franco, Omar E; Hayward, Simon W; Thomson, Axel A
2011-01-01
BACKGROUND Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn). METHODS Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. RESULTS During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female. CONCLUSIONS Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels. Prostate 71:305–317, 2011. © 2010 Wiley-Liss, Inc. PMID:20812209
NASA Astrophysics Data System (ADS)
Peng, Yahui; Jiang, Yulei; Soylu, Fatma N.; Tomek, Mark; Sensakovic, William; Oto, Aytekin
2012-02-01
Quantitative analysis of multi-parametric magnetic resonance (MR) images of the prostate, including T2-weighted (T2w) and diffusion-weighted (DW) images, requires accurate image registration. We compared two registration methods between T2w and DW images. We collected pre-operative MR images of 124 prostate cancer patients (68 patients scanned with a GE scanner and 56 with Philips scanners). A landmark-based rigid registration was done based on six prostate landmarks in both T2w and DW images identified by a radiologist. Independently, a researcher manually registered the same images. A radiologist visually evaluated the registration results by using a 5-point ordinal scale of 1 (worst) to 5 (best). The Wilcoxon signed-rank test was used to determine whether the radiologist's ratings of the results of the two registration methods were significantly different. Results demonstrated that both methods were accurate: the average ratings were 4.2, 3.3, and 3.8 for GE, Philips, and all images, respectively, for the landmark-based method; and 4.6, 3.7, and 4.2, respectively, for the manual method. The manual registration results were more accurate than the landmark-based registration results (p < 0.0001 for GE, Philips, and all images). Therefore, the manual method produces more accurate registration between T2w and DW images than the landmark-based method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran, Chris; Herman, Michael G.; Davis, Brian J.
2008-01-01
Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the fourmore » daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction.« less
Automated seed localization from CT datasets of the prostate.
Brinkmann, D H; Kline, R W
1998-09-01
With the increasing utilization of permanent brachytherapy implants for treating carcinoma of the prostate, the importance of accurate post-treatment dose calculation also increases for assessing patient outcome and planning future treatments. An automatic method for seed localization of permanent brachytherapy implants, using CT datasets of the prostate, has been developed and tested on a phantom using an actual patient planned seed distribution. This method was also compared to results with the three-film technique for three patient datasets. The automatic method is as accurate or more accurate than the three film technique for 1 mm, 3 mm, and 5 mm contiguous CT slices, and eliminates the inter- and intra-observer variability of the manual methods. The automated method improves the localization of brachytherapy seeds while reducing the time required for the user to input information, and is demonstrated to be less operator dependent, less time consuming, and potentially more accurate than the three-film technique.
Flexible methods for segmentation evaluation: Results from CT-based luggage screening
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2017-01-01
BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346
SELDI Phase I: Assay Validation-Prostate — EDRN Public Portal
It is then the goal of this collaborative project – EDRN-Prostate-SELDI Investigational Collaboration (EPSIC) - to use state-of-the-art protein profiling technology to develop and validate such screening methods
Valkonen, Mira; Ruusuvuori, Pekka; Kartasalo, Kimmo; Nykter, Matti; Visakorpi, Tapio; Latonen, Leena
2017-01-01
Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity. PMID:28317907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahunbay, Ergun E., E-mail: eahunbay@mcw.edu; Ates,
Purpose: In a situation where a couch shift for patient positioning is not preferred or prohibited (e.g., MR-linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening-filter-free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here the authors propose a new two-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online step. The offline step is to create a series of preshifted-plans (PSPs) obtained by a so-called “warm start”more » optimization (starting optimization from the original plan, rather than from scratch) at a series of isocenter shifts. The PSPs all have the same number of segments with very similar shapes, since the warm start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by picking the closest PSP or linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated and almost instantaneous (no optimization or dose calculation needed). The previously developed SAM algorithm is then applied for daily deformation. The authors tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. Plan interpolation method is effective in diminishing the unflat beam effect and may allow reducing the required number of PSPs. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusions: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation except the delineation of target contour required by the SAM process.« less
Prostate Specific or Enriched Genes as Composite Biomarkers for Prostate Cancer
2008-02-01
isotope dilution by comparing to the 13C- or 15N-labeled reference peptides. The MRM method is best practiced utilizing a triple quadrupole mass...specific, androgen- regulated gene. Here, we evaluate its utility as a prostate cancer tissue marker for diagnosis and prognostic evaluation. Experimental...prevalence of adverse prognostic factors such as capsular penetration, seminal vesicle invasion, and positive surgical margins is rather high compared with
A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk
2017-10-01
times greater compared with European American men. The reasons for this disparity are not completely understood. Current tools in hand to study these...from iPSC of Caucasian and African-American foreskin fibroblasts and 3) compare and establish methods to transform differentiated prostate epithelial...NOT include the italicized descriptions of section contents in your submitted reports. 1. INTRODUCTION: Prostate cancer is the most commonly diagnosed
Laser evaporation of the prostate: preliminary findings in canines
NASA Astrophysics Data System (ADS)
Kuntzman, R. S.; Malek, Reza S.; Barrett, David M.; Bostwick, David G.
1996-05-01
Purpose: We evaluated the ability of KTP laser to evaporate prostatic tissue in vivo and compared the results with historical Nd:YAG treated controls. Methods: Five dogs underwent anterograde transurethral evaporation of the prostate (TUEP) with KTP laser at 38 watts and were sacrificed 48 hours after surgery. Results: All procedures were hemostatic and without complications. Laser evaporation produced cavities within the prostate ranging from 2.5 to 3.2 cm in diameter (average equals 2.9 cm) that were free of necrotic tissue. Conclusions: Preliminary findings in this initial canine study of laser evaporation of the prostate, show that KTP laser produces large spherical cavities within the prostate in a hemostatic fashion. These cavities are free of necrotic tissue. In addition, these cavities are comparable in size to those that have been observed 4 to 8 weeks following Nd:YAG VLAP and are significantly larger than the acute cavities produced by Nd:YAG TUEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, R.Y.; Troncoso, P.; El-Naggar, A.K.
1994-09-01
Identification of chromosomal aberrations that may be used for diagnostic or prognostic evaluation of prostatic adenocarcinoma has been the subject of great interest. In a previous study, we applied the fluorescence in situ hybridization (FISH) method on paraffin-embedded material to show that trisomy 7 was associated with the progression of human prostate cancer. In this study, we attempted to assess the utility of the FISH technique in detecting aneuploidy in fine needle aspirate (FNA) smears of prostatic tissues and to compare FISH results with that of DNA flow cytometry (FCM). Paired samples of normal and tumor FNA smears were obtainedmore » from 10 radical prostatectomy specimens. Dual-color chromosomes 7 and 9-specific centromeric DNA probes were used for FISH. FISH analysis demonstrated increased frequencies of trisomy 7 cells in all 10 tumors studied when compared with the paired normals. In contrast, 6 of 10 tumors were determined to be diploid by FCM. Our results show that FNA of radical prostatectomy specimens is a practical method for obtaining suitable material for both FISH and FCM analyses of prostate carcinoma. Thus, interphase FISH may be a practical screening tool to determine aneuploidy in FNA smears of prostatic carcinoma.« less
Hierarchical parsing and semantic navigation of full body CT data
NASA Astrophysics Data System (ADS)
Seifert, Sascha; Barbu, Adrian; Zhou, S. Kevin; Liu, David; Feulner, Johannes; Huber, Martin; Suehling, Michael; Cavallaro, Alexander; Comaniciu, Dorin
2009-02-01
Whole body CT scanning is a common diagnosis technique for discovering early signs of metastasis or for differential diagnosis. Automatic parsing and segmentation of multiple organs and semantic navigation inside the body can help the clinician in efficiently obtaining accurate diagnosis. However, dealing with the large amount of data of a full body scan is challenging and techniques are needed for the fast detection and segmentation of organs, e.g., heart, liver, kidneys, bladder, prostate, and spleen, and body landmarks, e.g., bronchial bifurcation, coccyx tip, sternum, lung tips. Solving the problem becomes even more challenging if partial body scans are used, where not all organs are present. We propose a new approach to this problem, in which a network of 1D and 3D landmarks is trained to quickly parse the 3D CT data and estimate which organs and landmarks are present as well as their most probable locations and boundaries. Using this approach, the segmentation of seven organs and detection of 19 body landmarks can be obtained in about 20 seconds with state-of-the-art accuracy and has been validated on 80 CT full or partial body scans.
Miyoshi, Y; Uemura, H; Suzuki, K; Shibata, Y; Honma, S; Harada, M; Kubota, Y
2017-03-01
There has been no consensus on the role of serum androgen concentrations in prostate cancer detection in men with prostate-specific antigen levels of 3-10 ng/mL. In this study, testosterone and dihydrotestosterone concentrations in blood were examined by a newly developed method using ultrasensitive liquid chromatography with two serially linked mass spectrometers (LC-MS/MS). We investigated the correlation between serum androgen levels and Gleason scores at biopsy. We analyzed data of 157 men with a total prostate-specific antigen range of 3-10 ng/mL who underwent initial systematic prostate needle biopsy for suspected prostate cancer between April 2000 and July 2003. Peripheral blood testosterone and dihydrotestosterone concentrations were determined by LC-MS/MS. Blood levels of testosterone and dihydrotestosterone were compared with pathological findings by multivariate analyses. Median values of prostate-specific antigen and prostate volume measured by ultrasound were 5.7 ng/mL and 31.4 cm 3 , respectively. Benign prostatic hyperplasia was diagnosed in 97 patients (61.8%), and prostate cancer was diagnosed in 60 (38.2%) patients, including 31 (19.7%) patients with a Gleason score of 6 and 29 (18.5%) patients with a Gleason score of 7-10. Median values of testosterone and dihydrotestosterone in blood were 3798.7 and 371.7 pg/mL, respectively. There was a strong correlation between serum testosterone and dihydrotestosterone. In multivariate analysis, age, prostate volume, and serum dihydrotestosterone were significant predictors of benign prostatic hyperplasia or prostate cancer with a Gleason score of 6. The area under the receiver operating characteristics curve for age, prostate volume, and serum dihydrotestosterone were 0.67, 0.67, and 0.67, respectively . We confirmed that high dihydrotestosterone blood levels can predict benign prostatic hyperplasia or prostate cancer with a Gleason score of 6 in men with prostate-specific antigen levels of 3-10 ng/mL. © 2016 American Society of Andrology and European Academy of Andrology.
Simulation of a pulsed light propagation in the prostate phantom
NASA Astrophysics Data System (ADS)
Guo, Jian; Li, Zhifang; Xie, Wenming; Chen, Haiyu; Weng, Guo-Xing; Li, Hui
2014-09-01
In recent years, more and more Americans are diagnosed with prostate cancer, and the current detection methods still have some disadvantages. Photoacoustic imaging, as a new non-invasive imaging technique, has the capable of imaging complex tissue and owns the ability of early tumor imaging. And the photoacoustic signal of the tumor is bound up with its light energy distribution. In this paper, Monte Carlo method was used to simulate the light propagation in the prostate phantom. The pictures of light energy distribution by the irradiation of a pulsed laser were obtained. With the pulsed laser, according to the absorption coefficient of tumor, the local energy temporal changes in prostate can be illustrated. As we known, the local photoacoustic signal has a relationship with the change of light energy. Then we can see the influence of photoacoustic signal under the changes of the absorption coefficient of tumor.
New transurethral system for interstitial radiation of prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, G.; Callahan, D.; McKiel, C.F. Jr.
Direct endoscopic implantation of radioactive materials for carcinoma of the prostate without an open operation was accomplished by the use of modified existing transurethral instrumentation and techniques. The closed approach seems applicable particularly to the geriatric population, which is afflicted more commonly but is frequently not treated because of concurrent diseases or because the patient had transurethral resection of the prostate as a diagnostic procedure. Eleven patients were implanted using the transurethral route. Implantations were accomplished successfully with extremely low morbidity. Along with more conventional dosimetry studies, computer tomography was used to assess the placement of seeds. The direct visualizationmore » of the method suggests a potential for greater precision of seed placement as illustrated by computer tomography. In addition, this new instrumentation and method offers a low-risk procedure for carcinoma of the prostate that can be performed on an outpatient basis for selected patients.« less
Li, Xiao-Shi; Quan, Chang-Yi; Li, Gang; Cai, Qi-Liang; Hu, Bin; Wang, Jiu-Wei; Niu, Yuan-Jie
2013-02-01
To study the etiology, clinical manifestation, diagnosis and treatment of giant prostatic calculus with neurogenic bladder disease and prostate diverticulum. We retrospectively analyzed the clinical data of a case of giant prostatic calculus with neurogenic bladder disease and prostate diverticulum and reviewed the relevant literature. The patient was a 37-year-old man, with urinary incontinence for 22 years and intermittent dysuria with frequent micturition for 9 years, aggravated in the past 3 months. He had received surgery for spina bifida and giant vesico-prostatic calculus. The results of preoperative routine urinary examination were as follows: WBC 17 -20/HPF, RBC 12 - 15/HPF. KUB, IVU and pelvic CT revealed spina bifida occulta, neurogenic bladder and giant prostatic calculus. The patient underwent TURP and transurethral lithotripsy with holmium-YAG laser. The prostatic calculus was carbonate apatite in composition. Urinary dynamic images at 2 weeks after surgery exhibited significant improvement in the highest urine flow rate and residual urine volume. Seventeen months of postoperative follow-up showed dramatically improved urinary incontinence and thicker urine stream. Prostate diverticulum with prostatic giant calculus is very rare, and neurogenic bladder may play a role in its etiology. Cystoscopy is an accurate screening method for its diagnosis. For the young patients and those who wish to retain sexual function, TURP combined with holmium laser lithotripsy can be employed, and intraoperative rectal examination should be taken to ensure complete removal of calculi.
Shan, Pingnan; Lu, Zhiyong; Ye, Lihong; Fang, Yaqin; Tan, Suhong; Xuan, Guohong; Ru, Jincheng; Mao, Liming
2016-01-01
Background Prostatitis is a common and refractory urological disease with complicated etiology. Ureaplasma urealyticum (UU) has a close relationship with human urinary tract infection that can induce nonbacterial prostatitis. Tripterygium wilfordii polyglycoside (TWP) is a non-steroidal immune inhibitor that causes significant immune suppression and anti-inflammatory effects. Its role in prostatitis caused by UU has not yet been established. The aim of this study was to investigate the effect of TWP on UU-infected prostatitis in a rat model. Material/Methods UU-infected prostatitis SD model rats were randomly divided into 2 groups: the prostatitis group (model group) and the TWP treatment group (treatment group). At 7 days after treatment, prostate weight, leucocyte count, lecithin corpuscles, UU infection rate, and UU microbe count were compared between the 2 groups. Serum inflammatory cytokines TNF-α was determined by ELISA, and ICAM-1 and NF-κB expression were detected. Results UU infection rate was 80% after modeling. The rat prostate weight and leucocyte count in the model group increased significantly, while lecithin corpuscles decreased. Compared with controls, inflammatory factor TNF-α, ICAM-1, and NF-κB expression were obviously higher (P<0.05). TWP markedly reduced prostate weight and leucocyte count, increased lecithin corpuscles, and decreased UU microbe count and TNF-α, ICAM-1, and NF-κB expression (P<0.05). Conclusions TWP can inhibit expression of inflammatory factors and may be useful in treating UU-infected prostatitis through reducing UU infection rate. PMID:27743513
Shan, Pingnan; Lu, Zhiyong; Ye, Lihong; Fang, Yaqin; Tan, Suhong; Xuan, Guohong; Ru, Jincheng; Mao, Liming
2016-10-15
BACKGROUND Prostatitis is a common and refractory urological disease with complicated etiology. Ureaplasma urealyticum (UU) has a close relationship with human urinary tract infection that can induce nonbacterial prostatitis. Tripterygium wilfordii polyglycoside (TWP) is a non-steroidal immune inhibitor that causes significant immune suppression and anti-inflammatory effects. Its role in prostatitis caused by UU has not yet been established. The aim of this study was to investigate the effect of TWP on UU-infected prostatitis in a rat model. MATERIAL AND METHODS UU-infected prostatitis SD model rats were randomly divided into 2 groups: the prostatitis group (model group) and the TWP treatment group (treatment group). At 7 days after treatment, prostate weight, leucocyte count, lecithin corpuscles, UU infection rate, and UU microbe count were compared between the 2 groups. Serum inflammatory cytokines TNF-α was determined by ELISA, and ICAM-1 and NF-κB expression were detected. RESULTS UU infection rate was 80% after modeling. The rat prostate weight and leucocyte count in the model group increased significantly, while lecithin corpuscles decreased. Compared with controls, inflammatory factor TNF-α, ICAM-1, and NF-κB expression were obviously higher (P<0.05). TWP markedly reduced prostate weight and leucocyte count, increased lecithin corpuscles, and decreased UU microbe count and TNF-α, ICAM-1, and NF-κB expression (P<0.05). CONCLUSIONS TWP can inhibit expression of inflammatory factors and may be useful in treating UU-infected prostatitis through reducing UU infection rate.
Miličević, Nevenka; Mrčela, Milanka; Galić, Josip; Marjanović, Ksenija
2015-11-01
Interleukin-6 (IL-6) has been associated with the development of prostate cancer. The aim of the study was to clarify whether IL-6 expression in prostate tissue could be a useful marker in differentiation of prostate diseases in small foci by pathologist visual scoring. Archival paraffin-embedded specimens of benign prostate hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (PIN), prostatitis and prostate adenocarcinoma were studied by immunohistochemistry with a mouse monoclonal antibody IL-6 using the streptavidin-biotin method. Significantly, lower IL-6 immunoreactivity was observed in normal epithelial cells (p=0.000) and basal cells (p=0.000) in the samples of prostate adenocarcinoma in comparison to the samples with BPH, PIN and prostatitis. There was no significant difference in IL-6 expression in malignant and premalignant cells (p=0.814) as well as in stromal cells among the four diagnoses (p=0.22). IL-6 was expressed in normal epithelial cells, premalignant epithelial cells and malignant epithelial cells as well as in stromal cells. However, in our research IL-6 was of limited utility as a single marker for differential diagnosis of the prostate diseases in small foci needle biopsy by pathologist visual scoring. The standardization of immunohistochemical (IHC) staining protocol for IL-6 is required to determine IL-6 expression in order to avoid possible misinterpretation of the IHC results. Copyright © 2015 Elsevier GmbH. All rights reserved.
Feleppa, Ernest J; Porter, Christopher R; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2004-07-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.
Feleppa, Ernest J.; Porter, Christopher R.; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2006-01-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radio frequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employedand evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show can cerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy. PMID:15754797
Pellegrini, Kathryn L; Patil, Dattatraya; Douglas, Kristen J S; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S; Moreno, Carlos S; Sanda, Martin G
2017-06-01
The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient's risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. © 2017 Wiley Periodicals, Inc.
Barriers and Facilitators of Prostate Cancer Screening among Filipino Men in Hawai’i
Conde, Francisco A.; Landier, Wendy; Ishida, Dianne; Bell, Rose; Cuaresma, Charlene F.; Misola, Jane
2013-01-01
Purpose/Objectives To examine perceptions, attitudes, and beliefs regarding barriers and facilitators to prostate cancer screening, and to identify potential interventional strategies to promote prostate cancer screening among Filipino men in Hawai’i. Design Exploratory, qualitative. Setting Community-based settings in Hawai’i. Sample 20 Filipino men, 40 years old or older Methods Focus group discussions were tape-recorded, transcribed, and content analysis performed for emergent themes. Main Research Variables Perceptions regarding prostate cancer, barriers and facilitators to prostate cancer screening, and culturally-relevant interventional strategies Findings Perceptions of prostate cancer included fatalism, hopelessness, and dread. Misconceptions regarding causes of prostate cancer, such as frequency of sexual activity, were identified. Barriers to prostate cancer screening included lack of awareness of the need for screening, reticence to seek healthcare when feeling well, fear of cancer diagnosis, financial issues, time constraints, and embarrassment. Presence of urinary symptoms, personal experience with family or friend who had cancer, and receiving recommendations from a healthcare provider regarding screening were facilitators for screening. Potential culturally-relevant interventional strategies to promote prostate cancer screening included screening recommendations from health professionals and cancer survivors; radio/television commercials and newspaper articles targeted to the Filipino community; informational brochures in Tagalog, Ilocano and/or English; and interactive, educational forums facilitated by Filipino multilingual, male healthcare professionals. Conclusions Culturally-relevant interventions are needed that address barriers to prostate cancer screening participation and misconceptions about causes of prostate cancer. Implications for Nursing Findings provide a foundation for future research regarding development of interventional strategies to promote prostate cancer screening among Filipino men. PMID:21356660
Worldwide Prevalence of Human Papillomavirus and Relative Risk of Prostate Cancer: A Meta-analysis
Yang, Lin; Xie, Shuanghua; Feng, Xiaoshuang; Chen, Yuheng; Zheng, Tongzhang; Dai, Min; Ke Zhou, Cindy; Hu, Zhibin; Li, Ni; Hang, Dong
2015-01-01
Despite the increasing number of studies conducted recently to evaluate the association between HPV infections and the risk of prostate cancer, the results remain inconclusive. Furthermore, the prevalence and distribution of overall and individual HPV types worldwide in prostate cancer has not been reported until now. Therefore, we estimated the prevalence of HPV in prostate cancer by pooling data of 46 studies with 4919 prostate cancer cases, taking into account the heterogeneity of major related parameters, including study region, specimen type, HPV DNA source, detection method, publication calendar period and Gleason score. Moreover, we tested the association of HPV infections with prostate cancer risks by a meta-analysis of 26 tissue-based case-control studies. We found that the prevalence of HPV infection was 18.93% (95% CI = 17.84–20.05%) in prostate cancer cases, and most of which were high-risk HPV types (17.73%, 95% CI = 16.52–18.99%). The prevalence varied by region, PCR primers used, publication calendar period and Gleason score. Our study also showed a significantly increased risk of prostate cancer with the positivity of overall HPV detected in prostate tissues (OR = 1.79, 95% CI = 1.29–2.49) and revealed the geographic variation of association strength (P < 0.001). In conclusion, HPV infections may contribute to the risk of prostate cancer. PMID:26441160
Raman spectroscopy for prostate cancer detection and characterization (Conference Presentation)
NASA Astrophysics Data System (ADS)
Aubertin, Kelly; Trinh, Quoc-Huy; Jermyn, Michael; St-Pierre, Catherine; Vladoiu, Maria-Claudia; Grosset, Andrée.-Anne; Saad, Fred; Trudel, Dominique; Leblond, Frédéric
2017-02-01
Prostate cancer is the most frequent diagnosed cancers among men. When prostate cancer occurs, the cancer does not result in only one or few localized malignant tumor, but is generally spread within the whole prostate. In order to counteract the very high level of heterogeneities exhibited by prostate tissues, we developed a method for high-resolution co-registration of Raman spectroscopy with prostate cancer diagnosis. Raman spectra were acquired on fresh ex vivo prostate within 2 hours after radical prostatectomy using a multi-wavelength hand-held contact probe. After the measurements, the prostate was reintegrated to the usual pathological workflow: formalin fixated and paraffin embedded (FFPE), and prepared for microscope histopathological analyses. The precise reconstruction of the prostate slice with hematoxylin and eosin (H and E) tissue allows the spatial correlation of the measured area (0.2 mm2) with the correspondent histopathological information, for point-by-point diagnosis determination. The tissue was classified into groups (normal/cancer) and subgroups according to the percentage of benign glands, stroma or cancer. Different machine learning algorithms were tested to classify the spectra with increasing levels of categorization. Preliminary results showed that Raman spectroscopy is capable of detecting prostate cancer with an accuracy >90%. In addition, high percentages of stroma (vs. glands) have been correlated with spectral signature of collagen, which is the main constituent of extracellular matrix.
Ultrasound elastography of the prostate: state of the art.
Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O
2013-05-01
Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Coffee and tea consumption in relation to prostate cancer prognosis
Geybels, Milan S.; Neuhouser, Marian L.; Wright, Jonathan L.; Stott-Miller, Marni; Stanford, Janet L.
2013-01-01
Background Bioactive compounds found in coffee and tea may delay the progression of prostate cancer. Methods We investigated associations of pre-diagnostic coffee and tea consumption with risk of prostate cancer recurrence/progression. Study participants were men diagnosed with prostate cancer in 2002–2005 in King County, Washington, USA. We assessed the usual pattern of coffee and tea consumption two years before diagnosis date. Prostate cancer outcome events were identified using a detailed follow-up survey. Multivariable Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results The analysis of coffee intake in relation to prostate cancer recurrence/progression included 630 patients with a median follow-up of 6.4 years, during which 140 prostate cancer recurrence/progression events were recorded. Approximately 61% of patients consumed at least one cup of coffee per day. Coffee consumption was associated with a reduced risk of prostate cancer recurrence/progression; the adjusted HR for ≥4 cups/day versus ≤1 cup/week was 0.41 (95% CI: 0.20, 0.81; P for trend = 0.01). Approximately 14% of patients consumed one or more cups of tea per day, and tea consumption was unrelated to prostate cancer recurrence/progression. Conclusion Results indicate that pre-diagnostic coffee consumption is associated with a lower risk of prostate cancer recurrence/progression. This finding will require replication in larger studies. PMID:23907772
A mathematical analysis to address the 6 degree-of-freedom segmental power imbalance.
Ebrahimi, Anahid; Collins, John D; Kepple, Thomas M; Takahashi, Kota Z; Higginson, Jill S; Stanhope, Steven J
2018-01-03
Segmental power is used in human movement analyses to indicate the source and net rate of energy transfer between the rigid bodies of biomechanical models. Segmental power calculations are performed using segment endpoint dynamics (kinetic method). A theoretically equivalent method is to measure the rate of change in a segment's mechanical energy state (kinematic method). However, these two methods have not produced experimentally equivalent results for segments proximal to the foot, with the difference in methods deemed the "power imbalance." In a 6 degree-of-freedom model, segments move independently, resulting in relative segment endpoint displacement and non-equivalent segment endpoint velocities at a joint. In the kinetic method, a segment's distal end translational velocity may be defined either at the anatomical end of the segment or at the location of the joint center (defined here as the proximal end of the adjacent distal segment). Our mathematical derivations revealed the power imbalance between the kinetic method using the anatomical definition and the kinematic method can be explained by power due to relative segment endpoint displacement. In this study, we tested this analytical prediction through experimental gait data from nine healthy subjects walking at a typical speed. The average absolute segmental power imbalance was reduced from 0.023 to 0.046 W/kg using the anatomical definition to ≤0.001 W/kg using the joint center definition in the kinetic method (95.56-98.39% reduction). Power due to relative segment endpoint displacement in segmental power analyses is substantial and should be considered in analyzing energetic flow into and between segments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early-Onset Endocrine Disruptor–Induced Prostatitis in the Rat
Cowin, Prue A.; Foster, Paul; Pedersen, John; Hedwards, Shelley; McPherson, Stephen J.; Risbridger, Gail P.
2008-01-01
Background Androgens are critical for specifying prostate development, with the fetal prostate sensitive to altered hormone levels and endocrine-disrupting chemicals (EDCs) that exhibit estrogenic or antiandrogenic properties. Prostatic inflammation (prostatitis) affects 9% of men of all ages, and > 90% of cases are of unknown etiology. Objectives In this study we aimed to evaluate effects of in utero exposure to the antiandrogenic EDC vinclozolin, during the period of male reproductive tract development, on neonatal, prepubertal, and postpubertal prostate gland function of male offspring. Methods Fetal rats were exposed to vinclozolin (100 mg/kg body weight) or vehicle control (2.5 mL/kg body weight) in utero from gestational day 14 (GD14) to GD19 via oral administration to pregnant dams. Tissue analysis was carried out when male offspring were 0, 4, or 8 weeks of age. Results In utero exposure to vinclozolin was insufficient to perturb prostatic development and branching, although expression of androgen receptor and mesenchymal fibroblast growth factor-10 was down-regulated. Prostate histology remained normal until puberty, but 100% of animals displayed prostatitis postpubertally (56 days of age). Prostatic inflammation was associated with phosphorylation and nuclear translocation of nuclear factor-kappa B (NFκB) and postpubertal activation of proinflammatory NFκB-dependent genes, including the chemokine interleukin-8 and the cytokine transforming growth factor-β1. Significantly, inflammation arising from vinclozolin exposure was not associated with the emergence of premalignant lesions, such as prostatic intra-epithelial neoplasia or proliferative inflammatory atrophy, and hence mimics nonbacterial early-onset prostatitis that commonly occurs in young men. Conclusions These data are the first to unequivocally implicate EDCs as a causative factor and fill an important knowledge gap on the etiology of prostatitis. PMID:18629315
Zhang, Qiuyang; Liu, Sen; Zhang, Qingsong; Xiong, Zhenggang; Wang, Alun R.; Myers, Leann; Melamed, Jonathan; Tang, Wendell W.; You, Zongbing
2014-01-01
BACKGROUND Interleukin-17 (IL-17) has been demonstrated to promote formation and growth of hormone-naïve prostate adenocarcinoma in mice. IL-17’s role in development of castration-resistant prostate cancer is unknown. In the present study, we investigated IL-17’s role in castration-resistant prostate cancer in a mouse model. METHODS IL-17 receptor C (IL-17RC) deficient mice were interbred with Pten conditional mutant mice to produce RC+ mice that maintained IL-17RC expression and RC− mice that were IL-17RC deficient. Male RC+ and RC− mice were Pten-null and were castrated at 16 weeks of age when invasive prostate cancer had already formed. At 30 weeks of age, all male mice were analyzed for the prostate phenotypes. RESULTS RC− mice displayed prostates that were smaller than RC+ mice. Approximately 23% of prostatic glands in RC− mice, in contrast to 65% of prostatic glands in RC+ mice, developed invasive adenocarcinomas. Compared to castrate RC+ mice, castrate RC− mouse prostate had lower rates of cellular proliferation and higher rates of apoptosis as well as lower levels of MMP7, YBX1, MTA1, and UBE2C proteins. In addition, castrate RC− mouse prostate had less angiogenesis, which was associated with decreased levels of COX-2 and VEGF. Moreover, castrate RC− mouse prostate had fewer inflammatory cells including lymphocytes, myeloid-derived suppressor cells, and macrophages. CONCLUSIONS Taken together, our findings suggest that IL-17 promotes development of invasive prostate adenocarcinomas under castrate conditions, potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment. PMID:24691769
Bae, Yuan; Ito, Takashi; Iida, Tadatsune; Uchida, Keisuke; Sekine, Masaki; Nakajima, Yutaka; Kumagai, Jiro; Yokoyama, Tetsuji; Kawachi, Hiroshi; Akashi, Takumi; Eishi, Yoshinobu
2014-01-01
Background Recent reports on Propionibacterium acnes (P. acnes) suggest that this bacterium is prevalent in the prostate, is associated with acute and chronic prostatic inflammation, and might have a role in prostate carcinogenesis. Methods To evaluate the pathogenic role of this indigenous bacterium, we screened for the bacterium in radical prostatectomy specimens using enzyme immunohistochemistry with a novel P. acnes-specific monoclonal antibody (PAL antibody), together with an anti-nuclear factor-kappa B (NF-κB) antibody. We examined formalin-fixed and paraffin-embedded tissue sections of radical prostatectomy specimens from 28 patients with prostate cancer and 18 age-matched control patients with bladder cancer, but without prostate cancer. Results Immunohistochemistry with the PAL antibody revealed small round bodies within some non-cancerous glandular epithelium and stromal macrophages in most prostate samples. Prostate cancer samples had higher frequencies of either cytoplasmic P. acnes or nuclear NF-κB expression of glandular epithelium and higher numbers of stromal macrophages with P. acnes than control samples. These parameters were also higher in the peripheral zone than in the transitional zone of the prostate, especially in prostate cancer samples. Nuclear NF-κB expression was more frequent in glands with P. acnes than in glands without P. acnes. The number of stromal macrophages with the bacterium correlated with the grade of chronic inflammation in both the PZ and TZ areas and with the grade of acute inflammation in the TZ area. Conclusions Immunohistochemical analysis with a novel monoclonal antibody for detecting P. acnes in the prostate suggested that intraepithelial P. acnes infection in non-cancerous prostate glands and inflammation caused by the bacterium may contribute to the development of prostate cancer. PMID:24587325
Interfraction Prostate Movement in Bone Alignment After Rectal Enema for Radiotherapy
Seo, Young Eun; Kim, Tae Hyo; Lee, Ki Soo; Cho, Won Yeol; Lee, Hyung-Sik; Hur, Won-Joo
2014-01-01
Purpose To assess the effect of a rectal enema on interfraction prostate movement in bone alignment (BA) for prostate radiotherapy (RT), we analyzed the spatial difference in prostates in a bone-matched setup. Materials and Methods We performed BA retrospectively with data from prostate cancer patients who underwent image-guided RT (IGRT). The prostate was identified with implanted fiducial markers. The setup for the IGRT was conducted with the matching of three fiducial markers on RT planning computed tomography images and those on two oblique kV x-ray images. Offline BA was performed at the same position. The coordinates of a virtual prostate in BA and a real prostate were obtained by use of the ExaxTrac/NovalisBody system, and the distance between them was calculated as the spatial difference. Interfraction prostate displacement was drawn from the comparison of the spatial differences. Results A total of 15 patients with localized prostate cancer treated with curative hypofractionated IGRT were enrolled. A total of 420 fractions were analyzed. The mean of the interfraction prostate displacements after BA was 3.12±2.00 mm (range, 0.20-10.53 mm). The directional difference was profound in the anterior-posterior and supero-inferior directions (2.14±1.73 mm and 1.97±1.44 mm, respectively) compared with the right-left direction (0.26±0.22 mm, p<0.05). The required margin around the clinical target volume was 4.97 mm with the formula of van Herk et al. Conclusions The interfraction prostate displacement was less frequent when a rectal enema was performed before the procedure. A rectal enema can be used to reduce interfraction prostate displacement and resulting clinical target volume-to-planning target volume margin. PMID:24466393
Andren, Ove; Ohlson, Anna‐Lena; Carlsson, Jessica; Andersson, Swen‐Olof; Giunchi, Francesca; Rider, Jennifer R.; Fiorentino, Michelangelo
2017-01-01
Background The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (Tregs). In the present study we evaluated the prevalence of Treg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Methods Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4+ Tregs and CD8+ Tregs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of Tregs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. Results In men with prostate cancer, similarly high numbers of stromal CD4+ Tregs were identified in PAH and tumor, but CD4+ Tregs were less common in PIN. Greater numbers of epithelial CD4+ Tregs in normal prostatic tissue were positively associated with both Gleason score and pT‐stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4+ Tregs in the normal prostatic tissue counterpart. Conclusions Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4+ Tregs and indicate that transformation of the anti‐tumor immune response may be initiated even before the primary tumor is established. PMID:29105795
CCL11 (Eotaxin-1): A New Diagnostic Serum Marker for Prostate Cancer
Agarwal, Manisha; He, Chang; Siddiqui, Javed; Wei, John; Macoska, Jill A.
2012-01-01
Background The recent recommendation of the U.S. Preventive Services Task Force against PSA-based screening for prostate cancer was based, in part, on the lack of demonstrated diagnostic utility of serum PSA values in the low, but detectable range to successfully predict prostate cancer. Though controversial, this recommendation reinforced the critical need to develop, validate, and determine the utility of other serum and/or urine transcript and protein markers as diagnostic markers for PCa. The studies described here were intended to determine whether inflammatory cytokines might augment serum PSA as a diagnostic marker for prostate cancer. Methods Multiplex ELISA assays were performed to quantify CCL1, CCL2, CCL5, CCL8, CCL11, CCL17, CXCL1, CXCL5, CXCL8, CXCL10, CXCL12, and IL-6 protein levels in the serum of 272 men demonstrating serum PSA values of < 10 ng/ml and undergoing a 12 core diagnostic needle biopsy for detection of prostate cancer. Logistic regression was used to identify the associations between specific chemokines and prostate cancer status adjusted for prostate volume, and baseline PSA. Results Serum levels for CCL1 (I-309) were significantly elevated among all men with enlarged prostates (p<.04). Serum levels for CCL11 (Eotaxin-1) were significantly elevated among men with prostate cancer regardless of prostate size (p<.01). The remaining 10 cytokines examined in this study did not exhibit significant correlations with either prostate volume or cancer status. Conclusions Serum CCL11 values may provide a useful diagnostic tool to help distinguish between prostatic enlargement and prostate cancer among men demonstrating low, but detectable, serum PSA values. PMID:23059958
Till, Cathee; Goodman, Phyllis J.; Chen, Xiaohong; Leach, Robin J.; Johnson-Pais, Teresa L.; Hsing, Ann W.; Hoque, Ashraful; Tangen, Catherine M.; Chu, Lisa; Parnes, Howard L.; Schenk, Jeannette M.; Reichardt, Juergen K. V.; Thompson, Ian M.; Figg, William D.
2015-01-01
Objective In the Prostate Cancer Prevention Trial (PCPT), finasteride reduced the risk of prostate cancer by 25%, even though high-grade prostate cancer was more common in the finasteride group. However, it remains to be determined whether finasteride concentrations may affect prostate cancer risk. In this study, we examined the association between serum finasteride concentrations and the risk of prostate cancer in the treatment arm of the PCPT and determined factors involved in modifying drug concentrations. Methods Data for this nested case-control study are from the PCPT. Cases were drawn from men with biopsy-proven prostate cancer and matched controls. Finasteride concentrations were measured using a liquid chromatography-mass spectrometry validated assay. The association of serum finasteride concentrations with prostate cancer risk was determined by logistic regression. We also examine whether polymorphisms in the enzyme target and metabolism genes of finasteride are related to drug concentrations using linear regression. Results and Conclusions Among men with detectable finasteride concentrations, there was no association between finasteride concentrations and prostate cancer risk, low-grade or high-grade, when finasteride concentration was analyzed as a continuous variable or categorized by cutoff points. Since there was no concentration-dependent effect on prostate cancer, any exposure to finasteride intake may reduce prostate cancer risk. Of the twenty-seven SNPs assessed in the enzyme target and metabolism pathway, five SNPs in two genes, CYP3A4 (rs2242480; rs4646437; rs4986910), and CYP3A5 (rs15524; rs776746) were significantly associated with modifying finasteride concentrations. These results suggest that finasteride exposure may reduce prostate cancer risk and finasteride concentrations are affected by genetic variations in genes responsible for altering its metabolism pathway. Trial Registration ClinicalTrials.gov NCT00288106 PMID:25955319
Koerber, Stefan A; Utzinger, Maximilian T; Kratochwil, Clemens; Kesch, Claudia; Haefner, Matthias F; Katayama, Sonja; Mier, Walter; Iagaru, Andrei H; Herfarth, Klaus; Haberkorn, Uwe; Debus, Juergen; Giesel, Frederik L
2017-12-01
68 Ga-prostate-specific membrane antigen (PSMA) PET/CT is a promising diagnostic tool for patients with prostate cancer. Our study evaluates SUVs in benign prostate tissue and malignant, intraprostatic tumor lesions and correlates results with several clinical parameters. Methods: One hundred four men with newly diagnosed prostate carcinoma and no previous therapy were included in this study. SUV max was measured and correlated with biopsy findings and MRI. Afterward, data were compared with current prostate-specific antigen (PSA) values, Gleason score (GS), and d'Amico risk classification. Results: In this investigation a mean SUV max of 1.88 ± 0.44 in healthy prostate tissue compared with 10.77 ± 8.45 in malignant prostate lesions ( P < 0.001) was observed. Patients with higher PSA, higher GS, and higher d'Amico risk score had statistically significant higher PSMA uptake on PET/CT ( P < 0.001 each). Conclusion: PSMA PET/CT is well suited for detecting the intraprostatic malignant lesion in patients with newly diagnosed prostate cancer. Our findings indicate a significant correlation of PSMA uptake with PSA, GS, and risk classification according to the d'Amico scale. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Lynch, Mark; Sriprasad, Seshadri; Subramonian, Kesavapillai; Thompson, Peter
2010-01-01
INTRODUCTION Intractable haemorrhage after endoscopic surgery, including transurethral resection of the prostate (TURP) and photoselective vaporisation of the prostate (PVP), is uncommon but a significant and life-threatening problem. The knowledge and technical experience to deal with this complication may not be wide-spread among urologists and trainees. We describe our series of TURPs and PVPs and the incidence of postoperative bleeding requiring intervention. PATIENTS AND METHODS We retrospectively reviewed 437 TURPs and 590 PVPs over 3 years in our institution. We describe the conservative, endoscopic and open prostatic packing techniques used for patients who experienced postoperative bleeding. RESULTS Of 437 TURPs, 19 required endoscopic intervention for postoperative bleeding. Of 590 PVPs, two patients were successfully managed endoscopically for delayed haemorrhage at 7 and 13 days post-surgery, respectively. In one TURP and one PVP patient, endoscopic management was insufficient to control postoperative haemorrhage and open exploration and packing of the prostatic cavity was performed. CONCLUSIONS Significant bleeding after endoscopic prostatic surgery is still a potentially life-threatening complication. Prophylactic measures have been employed to reduce peri-operative bleeding but persistent bleeding post-endoscopic prostatic surgery should be treated promptly to prevent the risk of rapid deterioration. We demonstrated that the technique of open prostate packing may be life-saving. PMID:20522311
Pavlov, K A; Shkoporov, A N; Khokhlova, E V; Korchagina, A A; Sidorenkov, A V; Grigor'ev, M É; Pushkar', D Iu; Chekhonin, V P
2013-01-01
The wide introduction of prostatic specific antigen (PSA) determination into clinical practice has resulted in a larger number of prostate biopsies, while the lower age threshold for PSA has led to a larger number of unnecessary prostate biopsies. Hence, there is a need for new biomarkers that can detect prostate cancer. PCA3 is a noncoding messenger ribonucleic acid (mRNA) that is expressed exclusively in prostate cells. The aim of the study has been to develop a diagnostic test system for early non-invasive detection of prostate cancer based on PCA3 mRNA levels in urine sediment using quantitative reverse transcription polymerase chain reaction (qRT-PCR). As part of the study, a laboratory diagnostic test system prototype has been designed, an application methodology has been developed and specificity and sensitivity data of the method has been assessed. The diagnostic system has demonstrated its ability to detect significantly elevated levels of PCA 3/KLK 3 in samples from prostate cancer (PCa) patients compared with those from healthy men. The findings have shown relatively high diagnostic sensitivity, specificity and negative-predictive values for an early non-invasive screening of prostate cancer
Visualization of prostatic nerves by polarization-sensitive optical coherence tomography
Yoon, Yeoreum; Jeon, Seung Hwan; Park, Yong Hyun; Jang, Won Hyuk; Lee, Ji Youl; Kim, Ki Hean
2016-01-01
Preservation of prostatic nerves is critical to recovery of a man’s sexual potency after radical prostatectomy. A real-time imaging method of prostatic nerves will be helpful for nerve-sparing radical prostatectomy (NSRP). Polarization-sensitive optical coherence tomography (PS-OCT), which provides both structural and birefringent information of tissue, was applied for detection of prostatic nerves in both rat and human prostate specimens, ex vivo. PS-OCT imaging of rat prostate specimens visualized highly scattering and birefringent fibrous structures superficially, and these birefringent structures were confirmed to be nerves by histology or multiphoton microscopy (MPM). PS-OCT could easily distinguish these birefringent structures from surrounding other tissue compartments such as prostatic glands and fats. PS-OCT imaging of human prostatectomy specimens visualized two different birefringent structures, appearing fibrous and sheet-like. The fibrous ones were confirmed to be nerves by histology, and the sheet-like ones were considered to be fascias surrounding the human prostate. PS-OCT imaging of human prostatectomy specimens along the perimeter showed spatial variation in the amount of birefringent fibrous structures which was consistent with anatomy. These results demonstrate the feasibility of PS-OCT for detection of prostatic nerves, and this study will provide a basis for intraoperative use of PS-OCT. PMID:27699090
Biomarkers of Selenium Action in Prostate Cancer
2006-03-01
without BPH) transition zone tissue of a 42-year-old man ac- cording to previously described methods [4]. The pre- sence of contaminating epithelial...protein secreted by cells using a sensitive ELISA method . Replicating the conditions used for the microarray analyses, cells were fed fresh medium...4 Introduction Biomarkers of selenium actions in prostate tissue would be of great value in stratifying patients
Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe; Frouin, Frederique; Garreau, Mireille
2015-01-01
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert.
Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe
2015-01-01
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. PMID:26287691
A Panel of MicroRNAs as Diagnostic Biomarkers for the Identification of Prostate Cancer.
Daniel, Rhonda; Wu, Qianni; Williams, Vernell; Clark, Gene; Guruli, Georgi; Zehner, Zendra
2017-06-16
Prostate cancer is the most common non-cutaneous cancer among men; yet, current diagnostic methods are insufficient, and more reliable diagnostic markers need to be developed. One answer that can bridge this gap may lie in microRNAs. These small RNA molecules impact protein expression at the translational level, regulating important cellular pathways, the dysregulation of which can exert tumorigenic effects contributing to cancer. In this study, high throughput sequencing of small RNAs extracted from blood from 28 prostate cancer patients at initial stages of diagnosis and prior to treatment was used to identify microRNAs that could be utilized as diagnostic biomarkers for prostate cancer compared to 12 healthy controls. In addition, a group of four microRNAs (miR-1468-3p, miR-146a-5p, miR-1538 and miR-197-3p) was identified as normalization standards for subsequent qRT-PCR confirmation. qRT-PCR analysis corroborated microRNA sequencing results for the seven top dysregulated microRNAs. The abundance of four microRNAs (miR-127-3p, miR-204-5p, miR-329-3p and miR-487b-3p) was upregulated in blood, whereas the levels of three microRNAs (miR-32-5p, miR-20a-5p and miR-454-3p) were downregulated. Data analysis of the receiver operating curves for these selected microRNAs exhibited a better correlation with prostate cancer than PSA (prostate-specific antigen), the current gold standard for prostate cancer detection. In summary, a panel of seven microRNAs is proposed, many of which have prostate-specific targets, which may represent a significant improvement over current testing methods.
Dickinson, Louise; Ahmed, Hashim U; Allen, Clare; Barentsz, Jelle O; Carey, Brendan; Futterer, Jurgen J; Heijmink, Stijn W; Hoskin, Peter J; Kirkham, Alex; Padhani, Anwar R; Persad, Raj; Puech, Philippe; Punwani, Shonit; Sohaib, Aslam S; Tombal, Bertrand; Villers, Arnauld; van der Meulen, Jan; Emberton, Mark
2011-04-01
Multiparametric magnetic resonance imaging (mpMRI) may have a role in detecting clinically significant prostate cancer in men with raised serum prostate-specific antigen levels. Variations in technique and the interpretation of images have contributed to inconsistency in its reported performance characteristics. Our aim was to make recommendations on a standardised method for the conduct, interpretation, and reporting of prostate mpMRI for prostate cancer detection and localisation. A consensus meeting of 16 European prostate cancer experts was held that followed the UCLA-RAND Appropriateness Method and facilitated by an independent chair. Before the meeting, 520 items were scored for "appropriateness" by panel members, discussed face to face, and rescored. Agreement was reached in 67% of 260 items related to imaging sequence parameters. T2-weighted, dynamic contrast-enhanced, and diffusion-weighted MRI were the key sequences incorporated into the minimum requirements. Consensus was also reached on 54% of 260 items related to image interpretation and reporting, including features of malignancy on individual sequences. A 5-point scale was agreed on for communicating the probability of malignancy, with a minimum of 16 prostatic regions of interest, to include a pictorial representation of suspicious foci. Limitations relate to consensus methodology. Dominant personalities are known to affect the opinions of the group and were countered by a neutral chairperson. Consensus was reached on a number of areas related to the conduct, interpretation, and reporting of mpMRI for the detection, localisation, and characterisation of prostate cancer. Before optimal dissemination of this technology, these outcomes will require formal validation in prospective trials. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.
MO-FG-210-00: US Guided Systems for Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z.
Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J.
2015-06-15
Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less
Role of serial multiparametric magnetic resonance imaging in prostate cancer active surveillance
Vos, Larissa J; Janoski, Michele; Wachowicz, Keith; Yahya, Atiyah; Boychak, Oleksandr; Amanie, John; Pervez, Nadeem; Parliament, Matthew B; Pituskin, Edith; Fallone, B Gino; Usmani, Nawaid
2016-01-01
AIM: To examine whether addition of 3T multiparametric magnetic resonance imaging (mpMRI) to an active surveillance protocol could detect aggressive or progressive prostate cancer. METHODS: Twenty-three patients with low risk disease were enrolled on this active surveillance study, all of which had Gleason score 6 or less disease. All patients had clinical assessments, including digital rectal examination and prostate specific antigen (PSA) testing, every 6 mo with annual 3T mpMRI scans with gadolinium contrast and minimum sextant prostate biopsies. The MRI images were anonymized of patient identifiers and clinical information and each scan underwent radiological review without the other results known. Descriptive statistics for demographics and follow-up as well as the sensitivity and specificity of mpMRI to identify prostate cancer and progressive disease were calculated. RESULTS: During follow-up (median 24.8 mo) 11 of 23 patients with low-risk prostate cancer had disease progression and were taken off study to receive definitive treatment. Disease progression was identified through upstaging of Gleason score on subsequent biopsies for all 11 patients with only 2 patients also having a PSA doubling time of less than 2 years. All 23 patients had biopsy confirmed prostate cancer but only 10 had a positive index of suspicion on mpMRI scans at baseline (43.5% sensitivity). Aggressive disease prediction from baseline mpMRI scans had satisfactory specificity (81.8%) but low sensitivity (58.3%). Twenty-two patients had serial mpMRI scans and evidence of disease progression was seen for 3 patients all of whom had upstaging of Gleason score on biopsy (30% specificity and 100% sensitivity). CONCLUSION: Addition of mpMRI imaging in active surveillance decision making may help in identifying aggressive disease amongst men with indolent prostate cancer earlier than traditional methods. PMID:27158428
SU-F-T-42: MRI and TRUS Image Fusion as a Mode of Generating More Accurate Prostate Contours
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petronek, M; Purysko, A; Balik, S
Purpose: Transrectal Ultrasound (TRUS) imaging is utilized intra-operatively for LDR permanent prostate seed implant treatment planning. Prostate contouring with TRUS can be challenging at the apex and base. This study attempts to improve accuracy of prostate contouring with MRI-TRUS fusion to prevent over- or under-estimation of the prostate volume. Methods: 14 patients with previous MRI guided prostate biopsy and undergone an LDR permanent prostate seed implant have been selected. The prostate was contoured on the MRI images (1 mm slice thickness) by a radiologist. The prostate was also contoured on TRUS images (5 mm slice thickness) during LDR procedure bymore » a urologist. MRI and TRUS images were rigidly fused manually and the prostate contours from MRI and TRUS were compared using Dice similarity coefficient, percentage volume difference and length, height and width differences. Results: The prostate volume was overestimated by 8 ± 18% (range: 34% to −25%) in TRUS images compared to MRI. The mean Dice was 0.77 ± 0.09 (range: 0.53 to 0.88). The mean difference (TRUS-MRI) in the prostate width was 0 ± 4 mm (range: −11 to 5 mm), height was −3 ± 6 mm (range: −13 to 6 mm) and length was 6 ± 6 (range: −10 to 16 mm). Prostate was overestimated with TRUS imaging at the base for 6 cases (mean: 8 ± 4 mm and range: 5 to 14 mm), at the apex for 6 cases (mean: 11 ± 3 mm and range: 5 to 15 mm) and 1 case was underestimated at both base and apex by 4 mm. Conclusion: Use of intra-operative TRUS and MRI image fusion can help to improve the accuracy of prostate contouring by accurately accounting for prostate over- or under-estimations, especially at the base and apex. The mean amount of discrepancy is within a range that is significant for LDR sources.« less
SU-E-J-126: An Online Replanning Method for FFF Beams Without Couch Shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahunbay, E; Ates, O; Li, X
2015-06-15
Purpose: In a situation that couch shift for patient positioning is not preferred or prohibited (e.g., MR-Linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening filter free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here we propose a new 2-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online steps. The offline step is to create a series of pre-shifted plans (PSP) obtained by a so calledmore » “warm start” optimization (starting optimization from the original plan, rather from scratch) at a series of isocenter shifts with fixed distance (e.g. 2 cm, at x,y,z = 2,0,0 ; 2,2,0 ; 0,2,0; …;− 2,0,0). The PSPs all have the same number of segments with very similar shapes, since the warm-start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated, and instantaneously fast (no optimization or dose calculation needed). The previously-developed SAM algorithm is then applied for daily deformation. We tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusion: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation requiring no additional time from the SAM process. This research was supported by Elekta inc. (Crawley, UK)« less
Ilic, Dragan; Egberts, Kristine; McKenzie, Joanne E; Risbridger, Gail; Green, Sally
2008-04-01
Patient education materials can assist patient decision making on prostate cancer screening. To explore the effectiveness of presenting health information on prostate cancer screening using video, internet, and written interventions on patient decision making, attitudes, knowledge, and screening interest. Randomized controlled trial. A total of 161 men aged over 45, who had never been screened for prostate cancer, were randomized to receive information on prostate cancer screening. Participants were assessed at baseline and 1-week postintervention for decisional conflict, screening interest, knowledge, anxiety, and decision-making preference. A total of 156 men were followed-up at 1-week postintervention. There was no statistical, or clinical, difference in mean change in decisional conflict scores between the 3 intervention groups (video vs internet -0.06 [95% CI -0.24 to 0.12]; video vs pamphlet 0.04 [95%CI -0.15 to 0.22]; internet vs pamphlet 0.10 [95%CI -0.09 to 0.28]). There was also no statistically significant difference in mean knowledge, anxiety, decision-making preference, and screening interest between the 3 intervention groups. Results from this study indicate that there are no clinically significant differences in decisional conflict when men are presented health information on prostate cancer screening via video, written materials, or the internet. Given the equivalence of the 3 methods, other factors need to be considered in deciding which method to use. Health professionals should provide patient health education materials via a method that is most convenient to the patient and their preferred learning style.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, Paul J., E-mail: paul.keall@sydney.edu.au; Ng, Jin Aun; Juneja, Prabhjot
Purpose: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. Methods and Materials: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beammore » is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired kV/MV triangulation for 187 fractions. Results: KIM was successfully used in 197 of 200 fractions. Gating events occurred in 29 fractions (14.5%). In these 29 fractions, the percentage of beam-on time, the prostate displacement was >3 mm from the isocenter position, reduced from 73% without KIM to 24% with KIM-guided gating. Displacements >5 mm were reduced from 16% without KIM to 0% with KIM. The KIM accuracy was measured at <0.3 mm in all 3 dimensions. The KIM precision was <0.6 mm in all 3 dimensions. Conclusions: Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm.« less
The Role of Interleukin-6 Polymorphism (rs1800795) in Prostate Cancer Development and Progression.
Jurečeková, Jana; Drobková, Henrieta; Šarlinová, Miroslava; Babušíková, Eva; Sivoňová, Monika Kmeťová; Matáková, Tatiana; Kliment, Ján; Halašová, Erika
2018-06-01
Interleukin-6 is an important modulator of inflammation, which is one of the factors involved in prostate cancer. The aim of the study was to evaluate the possible association of the IL-6 -174 polymorphism (rs1800795) with the risk of prostate cancer development and progression. The study population consisted of 446 prostate cancer patients, 377 benign prostatic hyperplasia (BHP) patients and 276 healthy men. Genotyping was performed by PCR-RFLP analysis. IL-6 plasma levels were measured by the ELISA method. The GC genotype (OR=0.61, p=0.005) and C allele (OR=0.8, p=0.04) of the IL-6 -174 polymorphism were significantly associated with prostate cancer. No genotype was associated with BHP. IL-6 plasma levels were significantly increased in prostate cancer patients compared to both healthy men (p=0.02) and BHP patients (p=0.008). No significant differences were observed in IL-6 plasma levels in connection with IL-6 -174 genotypes. The IL-6 -174 polymorphism was significantly associated with prostate cancer in Slovak patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Chuang, Yao-Chi; Tu, Chieh-Hsien; Huang, Chao-Cheng; Lin, Hsin-Ju; Chiang, Po-Hui; Yoshimura, Naoki; Chancellor, Michael B
2006-01-01
Background With the increasing interest with botulinum toxin – A (BTX-A) application in the lower urinary tract, we investigated the BTX-A effects on the canine prostate and also in men with bladder outlet obstruction (BOO) due to benign prostatic hyperplasia (BPH). Methods Transperineal injection into the prostate using transrectal ultrasound (TRUS) was performed throughout the study. Saline with or without 100 U of BTX-A was injected into mongrel dogs prostate. One or 3 months later, the prostate was harvested for morphologic and apoptotic study. In addition, eight BPH patients refractory to α-blockers were treated with ultrasound guided intraprostatic injection of 200 U of BTX-A. Results In the BTX-A treated dogs, atrophy and diffuse apoptosis was observed with H&E stain and TUNEL stain at 1 and 3 months. Clinically, the mean prostate volume, symptom score, and quality of life index were significantly reduced by 18.8%, 73.1%, and 61.5% respectively. Maximal flow rate significantly increased by 72.0%. Conclusion Intraprostatic BTX-A injection induces prostate apotosis in dogs and relieves BOO in humans. It is therefore a promising alternative treatment for refractory BOO due to BPH. PMID:16620393
Prostate Cancer Research Training in Health Disparities for Undergraduates (PCaRT)
2011-03-01
objective is to use statistical methods to evaluate the role of meat , fish, The role of meat , fish and eggs in prostate cancer risk among African-American...The role of meat , fish, eggs and diary products in prostate cancer risk among African-Americans. (Poster) 5. Robertino Simpson, Fisk University...Navigator Lovell A. Jones, Ph.D. * Research Ethics Dr. C. Freund Hazard Communication Standard Training Mr. D. Powell Blood Borne Pathogen Standard
Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer
2017-10-01
release; distribution is unlimited. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as...to measure AR activity in CTCs in patients with metastatic prostate cancer receiving treatment with hormonal therapy. We also developed methods for...in prostate cancer, including AR splice variants and the non-canonical Wnt pathway. Finally, this Award provided valuable protection of time for
Goodman, Phyllis J.; Till, Cathee; Schenk, Jeannette M.; Lucia, M. Scott; Thompson, Ian M.
2016-01-01
Purpose To identify factors related to who undergoes a prostate biopsy in a screened population and to estimate the impact of biopsy verification on risk factor–prostate cancer associations. Patients and Methods Men who were screened regularly from the placebo arms of two large prostate cancer prevention trials (Prostate Cancer Prevention Trial [PCPT] and Selenium and Vitamin E Cancer Prevention Trial [SELECT]) were examined to define incident prostate cancer cohorts. Because PCPT had an end-of-study biopsy, prostate cancer cases were categorized by a preceding prostate-specific antigen/digital rectal examination prompt (yes/no) and noncases by biopsy-proven negative status (yes v no). We estimated the association of risk factors (age, ethnicity, family history, body mass index, medication use) with prostate cancer and quantified differences in risk associations across cohorts. Results Men 60 to 69 years of age, those with benign prostatic hyperplasia, and those with a family history of prostate cancer were more likely, and those with a higher body mass index (≥ 25), diabetes, or a smoking history were less likely, to undergo biopsy, adjusting for age and longitudinal prostate-specific antigen and digital rectal examination. Medication use, education, and marital status also influenced who underwent biopsy. Some risk factor estimates for prostate cancer varied substantially across cohorts. Black (v other ethnicities) had odds ratios (ORs) that varied from 1.20 for SELECT (community screening standards, epidemiologic-like cohort) to 1.83 for PCPT (end-of-study biopsy supplemented with imputed end points). Statin use in SELECT provided an OR of 0.65 and statin use in in PCPT provided an OR of 0.99, a relative difference of 34%. Conclusion Among screened men enrolled in prostate cancer prevention trials, differences in risk factor estimates for prostate cancer likely underestimate the magnitude of bias found in other cohorts with varying screening and biopsy recommendations and acceptance. Risk factors for prostate cancer derived from epidemiologic studies not only may be erroneous but may lead to misdirected research efforts. PMID:27998216
2011-01-01
Background Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%. We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines. Conclusions Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer. PMID:21261984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laberge, S; Beauregard, J; Archambault, L
2016-06-15
Purpose: Textural biomarkers as a tool for quantifying intratumoral heterogeneity hold great promise for diagnosis and early assessment of treatment response in prostate cancer. However, spill-in counts from the bladder uptake are suspected to have an impact on the textural measurements of the prostate volume. This work proposes a correction method for the FCh-PET bladder uptake and investigates its impact on intraprostatic textural properties. Methods: Two patients with PC received pre-treatment dynamic FCh-PET scans reconstructed at four time points (interval: 2 min), for which prostate and bladder contours were obtained. Projection bins affected by bladder uptake were determined by forward-projection.more » For each time point and axial position, virtual sinograms were obtained and affected bins replaced by a weighted combination of original values and values interpolated using cubic spline from non-affected bins of the current and adjacent projection angles. The process was optimized using a genetic algorithm in terms of minimization of the root-mean-square error (RMSE) within the bladder between the corrected dynamic time point volume and a reference initial uptake volume. Finally, the impact of the bladder uptake correction on the prostate region was investigated using two standard SUV metrics (1) and three texture metrics (2): 1) SUVmax, SUVmean; 2) Contrast, Homogeneity, Coarseness. Results: Without bladder uptake correction, SUVmax and SUVmean were on average overestimated in the prostate by 0%, 0%, 33.2%, 51.2%, and 3.6%, 6.0%, 2.9%, 3.2%, for each time point respectively. Contrast varied by −9.1%, −6.7%, +40.4%, +107.7%, and Homogeneity and Coarseness by +4.5%, +1.8%, −8.8%, −14.8% and +1.0%, +0.5%, −9.5%, +0.9%. Conclusion: We proposed a method for FCh-PET bladder uptake correction and showed an impact on the quantification of the prostate signal. This method achieved a large reduction of intra-prostatic SUVmax while minimizing the impact on SUVmean. Further investigation is necessary to interpret changes in textural features. SL acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290).« less
NASA Astrophysics Data System (ADS)
Zhuang, Zheng-Fei; Liu, Han-Ping; Guo, Zhou-Yi; Zhuo, Shuang-Mu; Yu, Bi-Ying; Deng, Xiao-Yuan
2010-04-01
This paper first demonstrates second-harmonic generation (SHG) in the intact cell nucleus, which acts as an optical indicator of DNA malignancy in prostate glandular epithelial cells. Within a scanning region of 2.7 μm×2.7 μm in cell nuclei, SHG signals produced from benign prostatic hyperplasia (BPH) and prostate carcinoma (PC) tissues (mouse model C57BL/6) have been investigated. Statistical analyses (t test) of a total of 405 measurements (204 nuclei from BPH and 201 nuclei from PC) show that SHG signals from BPH and PC have a distinct difference (p < 0.05), suggesting a potential optical method of revealing very early malignancy in prostate glandular epithelial cells based upon induced biochemical and/or biophysical modifications in DNA.
O'Shea, Christopher D
2012-01-01
Historical examinations of medical discourse concerning male sexuality have focused on the perceived linkage between masturbation and sexual neurasthenia. However, more tangible conditions such as prostatic hypertrophy were also linked to the sexual misconduct of young and old men. This paper examines both the medical discourse concerning prostatic hypertrophy and how the development of treatment was influenced by contemporary concerns with both sexuality and masculinity. It argues that mainstream doctors moved away from the Victorian preoccupation with the dangers of illicit sexuality and increasingly regarded the restoration of sexual function as being in the best interests of their patients. This view was particularly evident in their quest for an operative method that would cure prostatic hypertrophy while preserving potency.
Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.
2013-01-01
Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment site and on the stage in the process at which the levels are limited. The cost of improved delivery efficiency, in terms of plan quality degradation, increased as the number of intensity levels in the sequencer or optimizer decreased. The degradation was more substantial for the head and neck cases relative to the prostate cases, particularly when fewer than 20 intensity levels were used. Plan quality degradation was less severe when the number of intensity levels was limited in the optimizer rather than the sequencer. Conclusions: Analysis of plan quality degradation allows for a quantitative assessment of the compromises in clinical plan quality as delivery efficiency is improved, in order to determine the optimal delivery settings. The technique is based on physician-determined quality degradation factors and can be extended to other clinical situations where investigation of various tradeoffs is warranted. PMID:23822412
NASA Astrophysics Data System (ADS)
Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao
2014-09-01
This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.
Breast mass segmentation in mammography using plane fitting and dynamic programming.
Song, Enmin; Jiang, Luan; Jin, Renchao; Zhang, Lin; Yuan, Yuan; Li, Qiang
2009-07-01
Segmentation is an important and challenging task in a computer-aided diagnosis (CAD) system. Accurate segmentation could improve the accuracy in lesion detection and characterization. The objective of this study is to develop and test a new segmentation method that aims at improving the performance level of breast mass segmentation in mammography, which could be used to provide accurate features for classification. This automated segmentation method consists of two main steps and combines the edge gradient, the pixel intensity, as well as the shape characteristics of the lesions to achieve good segmentation results. First, a plane fitting method was applied to a background-trend corrected region-of-interest (ROI) of a mass to obtain the edge candidate points. Second, dynamic programming technique was used to find the "optimal" contour of the mass from the edge candidate points. Area-based similarity measures based on the radiologist's manually marked annotation and the segmented region were employed as criteria to evaluate the performance level of the segmentation method. With the evaluation criteria, the new method was compared with 1) the dynamic programming method developed by Timp and Karssemeijer, and 2) the normalized cut segmentation method, based on 337 ROIs extracted from a publicly available image database. The experimental results indicate that our segmentation method can achieve a higher performance level than the other two methods, and the improvements in segmentation performance level were statistically significant. For instance, the mean overlap percentage for the new algorithm was 0.71, whereas those for Timp's dynamic programming method and the normalized cut segmentation method were 0.63 (P < .001) and 0.61 (P < .001), respectively. We developed a new segmentation method by use of plane fitting and dynamic programming, which achieved a relatively high performance level. The new segmentation method would be useful for improving the accuracy of computerized detection and classification of breast cancer in mammography.
Yu, Xue Qin; Luo, Qingwei; Smith, David P; Clements, Mark S; Patel, Manish I; O'Connell, Dianne L
2017-01-01
To develop a method for estimating the future numbers of prostate cancer survivors requiring different levels of care. Analysis of population-based cancer registry data for prostate cancer cases (aged 18-84 years) diagnosed in 1996-2007, and a linked dataset with hospital admission data for men with prostate cancer diagnosed during 2005-2007 in New South Wales (NSW), Australia. Cancer registry data (1996-2007) were used to project complete prostate cancer prevalence in NSW, Australia for 2008-2017, and treatment information from hospital records (2005-2007) was used to estimate the inpatient care needs during the first year after diagnosis. The projected complete prevalence was divided into care needs-based groups. We first divided the cohort into two groups based on patient's age (<75 and 75-84 years). The younger cohort was further divided into initial care and monitoring phases. Cause of death data were used as a proxy for patients requiring last year of life prostate cancer care. Finally, episode data were used to estimate the future number of cases with metastatic progression. Of the estimated total of 60,910 men with a previous diagnosis of prostate cancer in 2017, the largest groups will be older patients (52.0%) and younger men who require monitoring (42.5%). If current treatment patterns continue, in the first year post-diagnosis 41% (1380) of patients (<75 years) will have a radical prostatectomy, and 52.6% (1752) will be likely to have either active surveillance, external beam radiotherapy or androgen deprivation therapy. About 3% will require care for subsequent metastases, and 1288 men with prostate cancer are likely to die from the disease in 2017. This method extends the application of routinely collected population-based data, and can contribute much to the knowledge of the number of men with prostate cancer and their health care requirements. This could be of significant use in planning future cancer care services and facilities in Australia.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Whelan, Brendan; Liney, Gary P; Dowling, Jason A; Rai, Robba; Holloway, Lois; McGarvie, Leigh; Feain, Ilana; Barton, Michael; Berry, Megan; Wilkins, Rob; Keall, Paul
2017-02-01
Conventionally in radiotherapy, a very heavy beam forming apparatus (gantry) is rotated around a patient. From a mechanical perspective, a more elegant approach is to rotate the patient within a stationary beam. Key obstacles to this approach are patient tolerance and anatomical deformation. Very little information on either aspect is available in the literature. The purpose of this work was therefore to design and test an MRI-compatible patient rotation system such that the feasibility of a patient rotation workflow could be tested. A patient rotation system (PRS) was designed to fit inside the bore of a 3T MRI scanner (Skyra, Siemens) such that 3D images could be acquired at different rotation angles. Once constructed, a pelvic imaging study was carried out on a healthy volunteer. T2-weighted MRI images were taken every 45° between 0° and 360°, (with 0° equivalent to supine). The prostate, bladder, and rectum were segmented using atlas-based auto contouring. The images from each angle were registered back to the 0° image in three steps: (a) Rigid registration was based on MRI visible markers on the couch. (b) Rigid registration based on the prostate contour (equivalent to a rigid shift to the prostate). (c) Nonrigid registration. The Dice similarity coefficient (DSC) and mean average surface distance (MASD) were calculated for each organ at each step. The PRS met all design constraints and was successfully integrated with the MRI scanner. Phantom images showed minimal difference in signal or noise with or without the PRS in the MRI scanner. For the MRI images, the DSC (mean ± standard deviation) over all angles in the prostate, rectum, and bladder was 0.60 ± 0.11, 0.56 ± 0.15, and 0.76 ± 0.06 after rigid couch registration, 0.88 ± 0.03, 0.81 ± 0.08, and 0.86 ± 0.03 after rigid prostate guided registration, and 0.85 ± 0.03, 0.88 ± 0.02, 0.87 ± 0.02 after nonrigid registration. An MRI-compatible patient rotation system has been designed, constructed, and tested. A pelvic study was carried out on a healthy volunteer. Rigid registration based on the prostate contour yielded DSC overlap statistics in the prostate superior to interobserver contouring variability reported in the literature. © 2016 American Association of Physicists in Medicine.
Review methods for image segmentation from computed tomography images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik
Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affectmore » the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.« less
Petersen, Lars J.; Nielsen, Julie B.; Dettmann, Katja; Fisker, Rune V.; Haberkorn, Uwe; Stenholt, Louise; Zacho, Helle D.
2017-01-01
Localization of prostate cancer recurrence, particularly in the bones, is a major challenge with standard of care imaging in patients with biochemical recurrence following curatively intended treatment. Gallium-68-labeled prostate specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA PET/CT) is a novel and promising method for imaging in prostate cancer. The present study reports two cases of patients with prostate cancer with biochemical recurrence, with evidence of bone metastases on 68Ga-PSMA PET/CT images and low prostate specific antigen PSA levels (<2 ng/ml) and PSA doubling time >6 months. The bone metastases were verified by supplementary imaging with 18F-sodium fluoride PET/CT and magnetic resonance imaging as well as biochemical responses to androgen deprivation therapy. Therefore, 68Ga-PSMA PET/CT is promising for the restaging of patients with prostate cancer with biochemical recurrence, including patients with low PSA levels and low PSA kinetics. PMID:28685078
Shioshvili, T I; Chokhonelidze, G Z; Shulaia, Ts A; Kazaishvili, E D; Gogoladze, T V
2005-01-01
The aim of the study was elaboration of a new minimally invasive but effective alternative method of BPH treatment. The experiments were carried out on 46 male dogs divided into two equal groups. 10 ml of Prostalyser-1 solution (natrii chloridi 9.5 g, dimethylsulfoxidi 0.5 g, aquae destill. Ad 1000.0 g) was given in a single injection into the prostates of the first group of animals. The same volume of Prostalyser-2 solution (spiritus ethilicus 96% - 76.5 g, DMSO 0.5 g, aq.destill ad 100.0 g)--into the prostates of the other group, respectively. The temperature of the solutions was +80 degrees C. Within the first 2 months, essential disorders were observed in the cellular Na-pump, membrane permeability system, there were lobular and diffusive necroses in prostatic alveolar epithelium and a decrease of the prostate weight by 68-66%. This condition of the prostate persisted for 4-6 months. Prostalyser-1 and Prostalyser-2 solutions can be recommended as very prospective substances for chemical destruction of the prostate in case of BPH.
Prostate Cancer Patients' Refusal of Cancer-Directed Surgery: A Statewide Analysis
Islam, K. M.
2015-01-01
Introduction. Prostate cancer is the most common cancer among men in USA. The surgical outcomes of prostate cancer remain inconsistent. Barriers such as socioeconomic factors may play a role in patients' decision of refusing recommended cancer-directed surgery. Methods. The Nebraska Cancer Registry data was used to calculate the proportion of prostate cancer patients recommended the cancer-directed surgery and the surgery refusal rate. Multivariate logistic regression was applied to analyze the socioeconomic indicators that were related to the refusal of surgery. Results. From 1995 to 2012, 14,876 prostate cancer patients were recommended to undergo the cancer-directed surgery in Nebraska, and 576 of them refused the surgery. The overall refusal rate of surgery was 3.9% over the 18 years. Patients with early-stage prostate cancer were more likely to refuse the surgery. Patients who were Black, single, or covered by Medicaid/Medicare had increased odds of refusing the surgery. Conclusion. Socioeconomic factors were related to the refusal of recommended surgical treatment for prostate cancer. Such barriers should be addressed to improve the utilization of surgical treatment and patients' well-being. PMID:25973276
Analysis of autophagic flux in response to sulforaphane in metastatic prostate cancer cells
Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Palomera-Sanchez, Zoraya; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I; Ho, Emily
2015-01-01
Scope The phytochemical sulforaphane has been shown to decrease prostate cancer metastases in a genetic mouse model of prostate carcinogenesis, though the mechanism of action is not fully known. Sulforaphane has been reported to stimulate autophagy, and modulation of autophagy has been proposed to influence sulforaphane cytotoxicity; however, no conclusions about autophagy can be drawn without assessing autophagic flux, which has not been characterized in prostate cancer cells following sulforaphane treatment. Methods and Results We conducted an investigation to assess the impact of sulforaphane on autophagic flux in two metastatic prostate cancer cell lines at a concentration shown to decrease metastasis in vivo. Autophagic flux was assessed by multiple autophagy related proteins and substrates. We found that sulforaphane can stimulate autophagic flux and cell death only at high concentrations, above what has been observed in vivo. Conclusion These results suggest that sulforaphane does not directly stimulate autophagy or cell death in metastatic prostate cancer cells under physiologically relevant conditions, but instead supports the involvement of in vivo factors as important effectors of sulforaphane- mediated prostate cancer suppression. PMID:26108801
Mihalyo, Marianne A.; Hagymasi, Adam T.; Slaiby, Aaron M.; Nevius, Erin E.; Adler, Adam J.
2010-01-01
BACKGROUND Prostate cancer promotes the development of T cell tolerance towards prostatic antigens, potentially limiting the efficacy of prostate cancer vaccines targeting these antigens. Here, we sought to determine the stage of disease progression when T cell tolerance develops, as well as the role of steady state dendritic cells (DC) and CD4+CD25+ T regulatory cells (Tregs) in programming tolerance. METHODS The response of naïve HA-specific CD4+ T cells were analyzed following adoptive transfer into Pro-HA × TRAMP transgenic mice harboring variably-staged HA-expressing prostate tumors on two genetic backgrounds that display different patterns and kinetics of tumorigenesis. The role of DC and Tregs in programming HA-specific CD4 cell responses were assessed via depletion. RESULTS HA-specific CD4 cells underwent non-immunogenic responses at all stages of tumorigenesis in both genetic backgrounds. These responses were completely dependent on DC, but not appreciably influenced by Tregs. CONCLUSIONS These results suggest that tolerogenicity is an early and general property of prostate tumors. PMID:17221844