Sample records for prostate tramp mice

  1. Deletion of p21/Cdkn1a confers protective effect against prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate model

    PubMed Central

    Jain, Anil K.; Raina, Komal; Agarwal, Rajesh

    2013-01-01

    Cyclin-dependent kinase inhibitors (CDKIs) p21Cip1/Waf1 (p21) and p27Kip1 (p27) play a determining role in cell cycle progression by regulating CDK activity; however, p21 role in prostate cancer (PCa) is controversial. Whereas p21 upregulation by anticancer agents causes cell cycle arrest in various PCa cell lines, elevated p21 levels have been associated with higher Gleason score, poor survival and increased PCa recurrence. These conflicting findings suggest that more studies are needed to examine p21 role in PCa. Herein, employing genetic approach, transgenic mice harboring p21/Cdkn1a homozygous deletion (p21−/−) were crossed with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice to characterize in vivo consequences of p21 deletion on prostate tumorigenesis. Lower urogenital tract weight of p21−/−/TRAMP mice was significantly lower than those of p21+/−/TRAMP and TRAMP mice. Histopathology further supported these observations, showing less aggressiveness in prostates of p21−/−/TRAMP. Furthermore, a significantly higher incidence of low-grade prostatic intraepithelial lesions (PIN) with a concomitant reduction in adenocarcinoma incidence was observed in p21−/−/TRAMP mice compared with TRAMP mice. In addition, whereas TRAMP mice showed the presence of poorly differentiated adenocarcinoma lesions, no such lesions were observed in p21/TRAMP transgenic mice. Specifically, there was a significant reduction in the severity of lesions in both p21−/−/TRAMP and p21+/−/TRAMP mice compared with TRAMP mice. Together, our data showed that p21 deletion reduces prostate tumorigenesis by slowing-down progression of PIN (pre-malignant) to adenocarcinoma (malignant), suggesting that intact p21 expression is associated with PCa aggressiveness, while its decreased levels may in fact confer protection against prostate tumorigenesis. PMID:23624841

  2. 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert W., E-mail: robert.moore@wisc.edu

    It is well established that the prototypical aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can both cause and protect against carcinogenesis in non-transgenic rodents. But because these animals almost never develop prostate cancer with old age or after carcinogen exposure, whether AHR activation can affect cancer of the prostate remained unknown. We used animals designed to develop this disease, Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice, to investigate the potential role of AHR signaling in prostate cancer development. We previously reported that AHR itself has prostate tumor suppressive functions in TRAMP mice; i.e., TRAMP mice in which Ahr wasmore » knocked out developed neuroendocrine prostate carcinomas (NEPC) with much greater frequency than did those with both Ahr alleles. In the present study we investigated effects of AHR activation by three different xenobiotics. In utero and lactational TCDD exposure significantly increased NEPC tumor incidence in TRAMP males, while chronic TCDD treatment in adulthood had the opposite effect, a significant reduction in NEPC incidence. Chronic treatment of adult TRAMP mice with the low-toxicity selective AHR modulators indole-3-carbinol or 3,3′-diindolylmethane did not significantly protect against these tumors. Thus, we demonstrate, for the first time, that ligand-dependent activation of the AHR can alter prostate cancer incidence. The nature of the responses depended on the timing of AHR activation and ligand structures. - Highlights: • TRAMP mice model aggressive neuroendocrine prostate carcinomas in men • In utero/lactational TCDD exposure raised prostate cancer incidence in TRAMP mice. • TCDD treatment in adulthood lowered prostate cancer incidence in TRAMP mice. • No significant protection was seen in TRAMP mice given I3C or DIM in adulthood. • This is the first report that TCDD alters prostate cancer incidence in lab animals.« less

  3. Glutathione Peroxidase 3 Inhibits Prostate Tumorigenesis in TRAMP Mice.

    PubMed

    Chang, Seo-Na; Lee, Ji Min; Oh, Hanseul; Park, Jae-Hak

    2016-11-01

    Glutathione peroxidase 3 (GPx3) is involved in protecting cells from oxidative damage, and down-regulated levels of expression have been found in prostate cancer samples. We hypothesize that loss of the GPx3 increases the rate of prostate carcinogenesis and generated GPx3-deficient transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Prostate cancer incidence and progression were determined in TRAMP, TRAMP/GPx3 (+/-) HET, and TRAMP/GPx3 (-/-) KO mice at 8, 16, and 20 weeks of age. We found that GPx3 expression was decreased in TRAMP mice and not detected in GPx3 KO mice both in mRNA and protein levels. Disruption of GPx3 expression in TRAMP mice increased the GU tract weights and the histopathological scores in each lobes with increased proliferation rates. Moreover, inactivation of one (+/-) or both (-/-) alleles of GPx3 resulted in increase in prostate cancer incidence with activated Wnt/β-catenin pathway. Our results provide the first in vivo molecular genetic evidence that GPx3 does indeed function as a tumor suppressor during prostate carcinogenesis. Prostate 76:1387-1398, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Extra-prostatic Transgene-associated Neoplastic Lesions in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice

    PubMed Central

    Berman-Booty, Lisa D.; Thomas-Ahner, Jennifer M.; Bolon, Brad; Oglesbee, Michael J.; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih; La Perle, Krista

    2014-01-01

    Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of pre-neoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubulo-acinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here we describe the histologic and immunohistochemical features of two novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain, and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice as well as in male TRAMP mice without histologically apparent prostate tumors. In this paper we also calculate the incidences of the urethral carcinomas and renal tubulo-acinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. PMID:24742627

  5. Extra-prostatic transgene-associated neoplastic lesions in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice.

    PubMed

    Berman-Booty, Lisa D; Thomas-Ahner, Jennifer M; Bolon, Brad; Oglesbee, Michael J; Clinton, Steven K; Kulp, Samuel K; Chen, Ching-Shih; La Perle, Krista M D

    2015-02-01

    Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of preneoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubuloacinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here, we describe the histologic and immunohistochemical features of 2 novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice and in male TRAMP mice without histologically apparent prostate tumors. In this article, we also calculate the incidences of the urethral carcinomas and renal tubuloacinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. © 2014 by The Author(s).

  6. Decreased expression of Toll-like receptor 4 and 5 during progression of prostate transformation in transgenic adenocarcinoma of mouse prostate mice.

    PubMed

    Han, Ju-Hee; Park, Jong-Hwan; Kim, Bo-Yeon; Chang, Seo-Na; Kim, Tae-Hyoun; Park, Jae-Hak; Kim, Dong-Jae

    2015-01-01

    Chronic inflammation has been considered an important risk factor for development of prostate cancer. Toll-like receptors (TLRs) recognize microbial moieties or endogenous molecules and play an important role in the triggering and promotion of inflammation. In this study, we examined whether expression of TLR4 and TLR5 was associated with progression of prostate transformation in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The expression of TLR4 and TLR5 was evaluated by immunohistochemisty in formalin-fixed paraffin-embedded prostate tissue from wild-type (WT) and TRAMP mice. Normal prostate tissue from WT mice showed strong expression of TLR4 and TLR5. However, TLR4 expression in the prostate tissue from TRAMP mice gradually decreased as pathologic grade became more aggressive. TLR5 expression in the prostate tissue from TRAMP mice also decreased in low-grade prostate intraepithelial neoplasia (PIN), high-grade PIN and poorly differentiated adenocarcinoma. Overall, our results suggest that decreased expression of TLR4 and TLR5 may contribute to prostate tumorigenesis.

  7. Insulin-Like growth factor 1 related pathways and high-fat diet promotion of transgenic adenocarcinoma mouse prostate (TRAMP) cancer progression.

    PubMed

    Xu, H; Jiang, H W; Ding, Q

    2015-04-01

    We aimed to investigate the role of IGF-1 related pathway in high-fat diet (HFD) promotion of TRAMP mouse PCa progression. TRAMP mice were randomly divided into two groups: HFD group and normal diet group. TRAMP mice of both groups were sacrificed and sampled on the 20th, 24th and 28th week respectively. Serum levels of insulin, IGF-1 and IGF-2 were tested by ELISA. Prostate tissue of TRAMP mice was used for both HE staining and immunohistochemical staining of IGF-1 related pathway proteins, including IGF-1Rα, IGF -1Rβ, IGFBPs and AKT. The mortality of TRAMP mice from HFD group was significantly higher than that of normal diet group (23.81% and 7.14%, p=.035). The tumor incidence of HFD TRAMP mice at 20(th) week was significantly higher than normal diet group (78.57% and 35.71%, p=.022). Serum IGF-1 level of HFD TRAMP mice was significantly higher than that of normal diet TRAMP mice. Serum IGF-1 level tended to increase with HFD TRAMP mice's age. HFD TRAMP mice had higher positive staining rate of IGF-1Rα, IGF-1Rβ, IGFBP3 and Akt than normal diet TRAMP mice. IGF-1 related pathway played an important role in high-fat diet promotion of TRAMP mouse PCa development and progression. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation.

    PubMed

    Sayeed, Aejaz; Lu, Huimin; Liu, Qin; Deming, David; Duffy, Alexander; McCue, Peter; Dicker, Adam P; Davis, Roger J; Gabrilovich, Dmitry; Rodeck, Ulrich; Altieri, Dario C; Languino, Lucia R

    2016-08-16

    Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.

  9. Will metformin postpone high-fat diet promotion of TRAMP mouse prostate cancer development and progression?

    PubMed

    Xu, Hua; Hu, Meng-Bo; Bai, Pei-de; Zhu, Wen-Hui; Ding, Qiang; Jiang, Hao-Wen

    2014-12-01

    We aimed to examine the effect of high-fat diet (HFD) on prostate cancer (PCa) development and progression and to investigate whether metformin would postpone PCa development and progression promoted by HFD. TRAMP mice were randomly divided into three groups: normal diet group, HFD group and metformin-HFD (Met-HFD) group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24(th), and 28th week, respectively. Serum levels of insulin and IGF-1 were tested by ELISA. Prostate tissue of TRAMP mice was used for HE staining. A total of 17 deaths of TRAMP mice were observed, including 3 (10 %) from the normal diet group, 10 (33.33 %) from the HFD group, and 4 (13.33 %) from Met-HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P = 0.028), and metformin could moderately decrease the mortality rate by 60.01 % (P = 0.067). Tumor formation rates were not significantly different among the three groups. Levels of glucose, insulin, and IGF-1 tended to increase with TRAMP mice's age in HFD group. TRAMP mice from HFD group had higher serum insulin and IGF-1 levels. A moderate decrease in IGF-1 was also seen in Met-HFD group. HFD could promote TRAMP mouse PCa development and progression and metformin had moderate effect of reducing PCa mortality rate with a decrease in serum IGF-1 level.

  10. β-carotene 9’,10’ oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model

    PubMed Central

    Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Moran, Nancy E.; Cooperstone, Jessica L.; Erdman, John W.; Young, Gregory S.; Clinton, Steven K.

    2017-01-01

    The hypothesis that dietary tomato consumption or the intake of the carotenoid lycopene inhibits prostate cancer arose from epidemiologic studies and is supported by preclinical rodent experiments and in vitro mechanistic studies. We hypothesize that variation in activity of carotenoid cleavage enzymes, such as β-carotene 9’,10’-oxygenase (BCO2), may alter the impact of dietary tomato and lycopene on prostate carcinogenesis and therefore examined this relationship in the TRAMP model. Starting at three weeks of age, TRAMP:Bco2+/+ and TRAMP:Bco2−/− mice were fed either AIN-93G control, or semi-purified diets containing 10% tomato powder or 0.25% lycopene beadlets until 18 weeks of age. Both tomato- and lycopene-fed TRAMP:Bco2−/− mice had significantly greater serum concentrations of total, 5-cis, other cis, and all-trans lycopene than TRAMP:Bco2+/+ mice. Tomato- and lycopene-fed mice had a lower incidence of prostate cancer compared to the control-fed mice. While Bco2 genotype alone did not significantly change prostate cancer outcome in the control AIN-93G-fed mice, the abilities of lycopene and tomato feeding to inhibit prostate carcinogenesis were significantly attenuated by the loss of Bco2 (interaction p=0.0004 and p=0.0383, respectively). Overall, dietary tomato and lycopene inhibited the progression of prostate cancer in TRAMP in a Bco2 genotype-specific manner, potentially implicating the anticancer activity of lycopene cleavage products. This study suggests that genetic variables impacting carotenoid metabolism and accumulation can impact anti-cancer activity and that future efforts devoted to understanding the interface between tomato carotenoid intake, host genetics, and metabolism will be necessary to clearly elucidate their interactive roles in human prostate carcinogenesis. PMID:27807077

  11. β-Carotene 9',10' Oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model.

    PubMed

    Tan, Hsueh-Li; Thomas-Ahner, Jennifer M; Moran, Nancy E; Cooperstone, Jessica L; Erdman, John W; Young, Gregory S; Clinton, Steven K

    2017-02-01

    The hypothesis that dietary tomato consumption or the intake of the carotenoid lycopene inhibits prostate cancer arose from epidemiologic studies and is supported by preclinical rodent experiments and in vitro mechanistic studies. We hypothesize that variation in activity of carotenoid cleavage enzymes, such as β-carotene 9',10'-oxygenase (BCO2), may alter the impact of dietary tomato and lycopene on prostate carcinogenesis and therefore examined this relationship in the TRAMP model. Starting at 3 weeks of age, TRAMP:Bco2 +/+ and TRAMP:Bco2 -/- mice were fed either AIN-93G control, or semipurified diets containing 10% tomato powder or 0.25% lycopene beadlets until 18 weeks of age. Both tomato- and lycopene-fed TRAMP:Bco2 -/- mice had significantly greater serum concentrations of total, 5-cis, other cis, and all-trans lycopene than TRAMP:Bco2 +/+ mice. Tomato- and lycopene-fed mice had a lower incidence of prostate cancer compared with the control-fed mice. Although Bco2 genotype alone did not significantly change prostate cancer outcome in the control AIN-93G-fed mice, the abilities of lycopene and tomato feeding to inhibit prostate carcinogenesis were significantly attenuated by the loss of Bco2 (P interaction = 0.0004 and 0.0383, respectively). Overall, dietary tomato and lycopene inhibited the progression of prostate cancer in TRAMP in a Bco2 genotype-specific manner, potentially implicating the anticancer activity of lycopene cleavage products. This study suggests that genetic variables impacting carotenoid metabolism and accumulation can impact anticancer activity and that future efforts devoted to understanding the interface between tomato carotenoid intake, host genetics, and metabolism will be necessary to clearly elucidate their interactive roles in human prostate carcinogenesis. Cancer Prev Res; 10(2); 161-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution.

    PubMed

    Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A

    2016-06-14

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.

  13. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    PubMed Central

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  14. Lack of Evidence for Green Tea Polyphenols as DNA Methylation Inhibitors in Murine Prostate

    PubMed Central

    Morey Kinney, Shannon R.; Zhang, Wa; Pascual, Marien; Greally, John M.; Gillard, Bryan M.; Karasik, Ellen; Foster, Barbara A.; Karpf, Adam R.

    2009-01-01

    Green tea polyphenols (GTPs) have been reported to inhibit DNA methylation in cultured cells. Here we tested whether oral consumption of GTPs affects normal or cancer specific DNA methylation in vivo, using mice. Wildtype (WT) and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice were administered 0.3% GTPs in drinking water beginning at 4 weeks of age. To monitor DNA methylation, we measured 5-methyl-deoxycytidine (5mdC) levels, methylation of the B1 repetitive element, and methylation of the Mage-a8 gene. Each of these parameters were unchanged in prostate, gut, and liver from WT mice at both 12 and 24 weeks of age, with the single exception of a decrease of 5mdC in the liver at 12 weeks. In GTP-treated TRAMP mice, 5mdC levels and the methylation status of four loci hypermethylated during tumor progression were unaltered in TRAMP prostates at 12 or 24 weeks. Quite surprisingly, GTP treatment did not inhibit tumor progression in TRAMP mice, although known pharmacodynamic markers of GTPs were altered in both WT and TRAMP prostates. We also administered 0.1%, 0.3%, or 0.6% GTPs to TRAMP mice for 12 weeks and measured 5mdC levels and methylation of B1 and Mage-a8 in prostate, gut, and liver tissues. No dose-dependent alterations in DNA methylation status were observed. Genome-wide DNA methylation profiling using the HELP assay also revealed no significant hypomethylating effect of GTP. These data indicate that oral administration of GTPs does not affect normal or cancer-specific DNA methylation in the murine prostate. PMID:19934341

  15. Role of the TGF-Beta 1 in the Prevention of Prostate Cancer

    DTIC Science & Technology

    2001-04-01

    the prostate or seminal vesicles delayed tumor development in the TRAMP mice through autocrine and paracrine pathways. 14. SUBJECT TERMS 15. NUMBER OF...it imperative to develop prevention strategies against this disease. Modifications in environmental, dietary, endocrine, or genetic factors may play a...This hypothesis is being tested in TRAMP transgenic mice, which develop spontaneous prostate cancer with features similar to that of human prostate

  16. High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice.

    PubMed

    Chang, Seo-Na; Han, Juhee; Abdelkader, Tamer Said; Kim, Tae-Hyoun; Lee, Ji Min; Song, Juha; Kim, Kyung-Sul; Park, Jong-Hwan; Park, Jae-Hak

    2014-09-01

    Prostate cancer is the most frequently diagnosed cancer in Western men, and more men have been diagnosed at younger ages in recent years. A high-fat Western-style diet is a known risk factor for prostate cancer and increases oxidative stress. We evaluated the association between dietary animal fat and expression of antioxidant enzymes, particularly glutathione peroxidase 3 (GPx3), in the early stages of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Six-week-old male nontransgenic and TRAMP mice were placed on high animal fat (45% Kcal fat) or control (10% Kcal fat) diets and sacrificed after 5 or 10 weeks. The histopathological score increased with age and high-fat diet consumption. The histopathological scores in dorsal and lateral lobes increased in the 10-week high-fat diet group (6.2±0.2 and 6.2±0.4, respectively) versus the 10-week control diet group (5.3±0.3 and 5.2±0.2, respectively). GPx3 decreased both at the mRNA and protein levels in mouse prostate. GPx3 mRNA expression decreased (∼36.27% and ∼23.91%, respectively) in the anterior and dorsolateral prostate of TRAMP mice fed a high-fat diet compared to TRAMP mice fed a control diet. Cholesterol treatment increased PC-3 human prostate cancer cell proliferation, decreased GPx3 mRNA and protein levels, and increased H2 O2 levels in culture medium. Moreover, increasing GPx3 mRNA expression by troglitazone in PC-3 cells decreased cell proliferation and lowered H2 O2 levels. Dietary fat enhances prostate cancer progression, possibly by suppressing GPx3 expression and increasing proliferation of prostate intraepithelial neoplasia (PIN) epithelial cells. © 2014 Wiley Periodicals, Inc.

  17. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition.

    PubMed

    Luo, Weijia; Tan, Peng; Rodriguez, Melissa; He, Lian; Tan, Kunrong; Zeng, Li; Siwko, Stefan; Liu, Mingyao

    2017-09-15

    Prostate cancer is a highly penetrant disease among men in industrialized societies, but the factors regulating the transition from indolent to aggressive and metastatic cancer remain poorly understood. We found that men with prostate cancers expressing high levels of the G protein-coupled receptor LGR4 had a significantly shorter recurrence-free survival compared with patients with cancers having low LGR4 expression. LGR4 expression was elevated in human prostate cancer cell lines with metastatic potential. We therefore generated a novel transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model to investigate the role of Lgr4 in prostate cancer development and metastasis in vivo TRAMP Lgr4 -/- mice exhibited an initial delay in prostate intraepithelial neoplasia formation, but the frequency of tumor formation was equivalent between TRAMP and TRAMP Lgr4 -/- mice by 12 weeks. The loss of Lgr4 significantly improved TRAMP mouse survival and dramatically reduced the occurrence of lung metastases. LGR4 knockdown impaired the migration, invasion, and colony formation of DU145 cells and reversed epithelial-mesenchymal transition (EMT), as demonstrated by up-regulation of E-cadherin and decreased expression of the EMT transcription factors ZEB, Twist, and Snail. Overexpression of LGR4 in LNCaP cells had the opposite effects. Orthotopic injection of DU145 cells stably expressing shRNA targeting LGR4 resulted in decreased xenograft tumor size, reduced tumor EMT marker expression, and impaired metastasis, in accord with our findings in TRAMP Lgr4 -/- mice. In conclusion, we propose that Lgr4 is a key protein necessary for prostate cancer EMT and metastasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Mixed Tocotrienols Inhibit Prostate Carcinogenesis in TRAMP Mice

    PubMed Central

    Barve, Avantika; Khor, Tin Oo; Reuhl, Kenneth; Reddy, Bandaru; Newmark, Harold; Kong, Ah-Ng

    2015-01-01

    The biological activities of tocotrienols are receiving increasing attention. Herein, we report the efficacy of a mixed-tocotrienol diet against prostate tumorigenesis in the transgenic adenocarcinoma mouse prostate (TRAMP) mouse model. Male TRAMP mice, 8 wk old, were fed 0.1%, 0.3%, or 1% mixed tocotrienols in AIN-76A diet up to 24 wk old. Likewise, a positive control group consisting of male TRAMP mice and a negative control group consisting of wild-type nontransgenic mice were fed regular AIN-76A diet up to 24 wk old. Our results show that mixed-tocotrienol-fed groups had a lower incidence of tumor formation along with a significant reduction in the average wet weight of genitourinary apparatus. Furthermore, mixed tocotrienols significantly reduced the levels of high-grade neoplastic lesions as compared to the positive controls. This decrease in levels of high-grade neoplastic lesions was found to be associated with increased expression of proapoptotic proteins BAD (Bcl2 antagonist of cell death) and cleaved caspase-3 and cell cycle regulatory proteins cyclin dependent kinase inhibitors p21 and p27. In contrast, the expression of cyclins A and E were found to be decreased in mixed-tocotrienol groups. Taken together, our results show that by modulating cell cycle regulatory proteins and increasing expression of proapoptotic proteins, mixed tocotrienols suppress prostate tumorigenesis in the TRAMP mice. PMID:20661828

  19. Growth and Progression of TRAMP Prostate Tumors in Relationship to Diet and Obesity

    PubMed Central

    Bonorden, Melissa J. L.; Grossmann, Michael E.; Ewing, Sarah A.; Rogozina, Olga P.; Ray, Amitabha; Nkhata, Katai J.; Liao, D. Joshua; Grande, Joseph P.; Cleary, Margot P.

    2012-01-01

    To clarify effects of diet and body weight on prostate cancer development, three studies were undertaken using the TRAMP mouse model of this disease. In the first experiment, obesity was induced by injection of gold thioglucose (GTG). Age of prostate tumor detection (~33 wk) and death (~43 wk) was not significantly different among the groups. In the second study, TRAMP-C2 cells were injected into syngeneic C57BL6 mice and tumor progression was evaluated in mice fed either high-fat or low-fat diets. The high fat fed mice had larger tumors than did the low-fat fed mice. In the third study, tumor development was followed in TRAMP mice fed a high fat diet from 6 weeks of age. There were no significant effects of body weight status or diet on tumor development among the groups. When the tumors were examined for the neuroendocrine marker synaptophysin, there was no correlation with either body weight or diet. However, there was a significant correlation of the expression of synaptophysin with earlier age to tumor detection and death. In summary, TRAMP-C2 cells grew faster when the mice were fed a high-fat diet. Further synaptophysin may be a marker of poor prognosis independent of weight and diet. PMID:23304522

  20. Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed against Prostate Cancer

    DTIC Science & Technology

    2016-08-01

    TRAMP transgenic mice) that lack or preferentially generate pTregs (TRAMP+ mice bred onto Lck-cre; Klf2fl/fl and Smurf1-/- backgrounds, respectively...We have successfully generated TRAMP+; Lck-cre; Klf2fl/fl and TRAMP+; Smurf1-/- breeding lines, which will provide us with the necessary animals to...Aim 1: Determine how blocking pTreg production impacts PCa Major Task 1: Score tumors in TRAMP cohorts that contain or lack pTregs. The breeding

  1. The interactions of dietary tomato powder and soy germ on prostate carcinogenesis in the TRAMP model

    PubMed Central

    Zuniga, Krystle E.; Clinton, Steven K; Erdman, John W.

    2013-01-01

    The interactions between bioactive rich food components within a complex human diet for the inhibition of prostate carcinogenesis (PCa) are largely unknown and difficult to quantify in humans. Tomato and soy products have each shown anti-PCa activity in laboratory studies. The objective of this study was to determine the efficacy of dietary tomato and soy germ, alone and in combination, for the inhibition of prostate carcinogenesis in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. At 4 weeks of age, male C57BL/6 × FVB TRAMP mice (n=119) were randomized to consume: AIN-93G control, 10% whole tomato powder (TP), 2% soy germ powder (SG) or 10% tomato powder with 2% soy germ powder (TP+SG) for 14 weeks. 100% of mice fed the control diet had PCa, while PCa incidence was significantly lower in mice consuming TP (61%, p<0.001), SG (66%, p<0.001) and TP+SG (45%, p<0.001). Although the protection offered by the combination of TP and SG was not synergistic, it was the most effective intervention. TP, SG and TP+SG increased apoptotic index (AI) and modestly reduced the proliferative index (PI) in the prostate epithelium of TRAMP mice exhibiting primarily prostatic intraepithelial neoplasia. The dramatic reduction in the PI/AI ratio by the dietary interventions suggests that the control mice experience a stronger stimulus for malignant progression in the prostate microenvironment. Maximally effective and safe strategies for PCa prevention may result from optimizing combinations of nutrients and bioactives through an orchestration of dietary patterns. PMID:23592738

  2. Combination Therapy with a Second-Generation Androgen Receptor Antagonist and a Metastasis Vaccine Improves Survival in a Spontaneous Prostate Cancer Model

    PubMed Central

    Ardiani, Andressa; Farsaci, Benedetto; Rogers, Connie J.; Protter, Andy; Guo, Zhimin; King, Thomas H.; Apelian, David; Hodge, James W.

    2013-01-01

    Purpose Enzalutamide, a second-generation androgen antagonist, was approved by the FDA for castration-resistant prostate cancer (CRPC) treatment. Immunotherapy has been shown to be a promising strategy for prostate cancer. This study is performed to provide data to support the combination of enzalutamide and immunotherapy for CRPC treatment. Experimental Design Male C57BL/6 or TRAMP prostate cancer model mice were exposed to enzalutamide and/or a therapeutic vaccine targeting Twist, an antigen involved in epithelial-to-mesenchymal transition and metastasis. The physiological and immunological effects of enzalutamide were characterized. The generation of Twist-specific immunity by Twist-vaccine was evaluated. Finally, the combination of enzalutamide and Twist-vaccine to improve TRAMP mice overall survival was evaluated. Results Enzalutamide mediated immunogenic modulation in TRAMP-C2 cells. In vivo, enzalutamide mediated reduced genitourinary tissue weight, enlargement of the thymus, and increased levels of T-cell excision circles. Because no changes were seen in T-cell function, as determined by CD4+ T-cell proliferation and Treg functional assays, enzalutamide was determined to be immune inert. Enzalutamide did not diminish the Twist-vaccine’s ability to generate Twist-specific immunity. Twist was confirmed as a valid tumor antigen in TRAMP mice by immunohistochemistry. The combination of enzalutamide and Twist-vaccine resulted in significantly increased overall survival of TRAMP mice compared to other treatment groups (27.5 vs. 10.3 weeks). Notably, the effectiveness of the combination therapy increased with disease stage, i.e., the greatest survival benefit was seen in mice with advanced-stage prostate tumors. Conclusions These data support the combination of enzalutamide and immunotherapy as a promising treatment strategy for CRPC. PMID:24048332

  3. Iodine Uptake and Prostate Cancer in the TRAMP Mouse Model

    PubMed Central

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-01-01

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I−) and iodine (I2) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. 125I− and 125I2 uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na+/I− symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I− plus 0.062 mg I2/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I− uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I− uptake and support the notion that another transporter mediates I2 uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens. PMID:24306422

  4. Iodine uptake and prostate cancer in the TRAMP mouse model.

    PubMed

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  5. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    PubMed Central

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (P<0.05). In TRAMP, expression of Birc5, Mki67, Aurkb, Ccnb2, Foxm1, and Ccne2 is greater compared to WT and is decreased by castration. In parallel, castration reduces Ki67-positive staining (P<0.0001) compared to intact and testosterone-repleted TRAMP mice. Expression of genes involved in androgen metabolism/signaling pathways are reduced by lycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  6. Chemopreventive effects of Korean Angelica vs. its major pyranocoumarins on two lineages of transgenic adenocarcinoma of mouse prostate carcinogenesis

    PubMed Central

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-01-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Since decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage-treated daily with excipient vehicle, AGN (5 mg per mouse) or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA and their common metabolite decursinol indicated similar retention from AGN vs. D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN-and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN-and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal-transition, invasion-metastasis and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. PMID:26116406

  7. Chemopreventive Effects of Korean Angelica versus Its Major Pyranocoumarins on Two Lineages of Transgenic Adenocarcinoma of Mouse Prostate Carcinogenesis.

    PubMed

    Tang, Su-Ni; Zhang, Jinhui; Wu, Wei; Jiang, Peixin; Puppala, Manohar; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-09-01

    We showed previously that daily gavage of Angelica gigas Nakai (AGN) root ethanolic extract starting 8 weeks of age inhibited growth of prostate epithelium and neuroendocrine carcinomas (NE-Ca) in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Because decursin (D) and its isomer decursinol angelate (DA) are major pyranocoumarins in AGN extract, we tested the hypothesis that D/DA represented active/prodrug compounds against TRAMP carcinogenesis. Three groups of male C57BL/6 TRAMP mice were gavage treated daily with excipient vehicle, AGN (5 mg per mouse), or equimolar D/DA (3 mg per mouse) from 8 weeks to 16 or 28 weeks of age. Measurement of plasma and NE-Ca D, DA, and their common metabolite decursinol indicated similar retention from AGN versus D/DA dosing. The growth of TRAMP dorsolateral prostate (DLP) in AGN- and D/DA-treated mice was inhibited by 66% and 61% at 16 weeks and by 67% and 72% at 28 weeks, respectively. Survival of mice bearing NE-Ca to 28 weeks was improved by AGN, but not by D/DA. Nevertheless, AGN- and D/DA-treated mice had lower NE-Ca burden. Immunohistochemical and mRNA analyses of DLP showed that AGN and D/DA exerted similar inhibition of TRAMP epithelial lesion progression and key cell-cycle genes. Profiling of NE-Ca mRNA showed a greater scope of modulating angiogenesis, epithelial-mesenchymal transition, invasion-metastasis, and inflammation genes by AGN than D/DA. The data therefore support D/DA as probable active/prodrug compounds against TRAMP epithelial lesions, and they cooperate with non-pyranocoumarin compounds to fully express AGN efficacy against NE-Ca. ©2015 American Association for Cancer Research.

  8. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Solly, Emma L; Tran, Linh N K; Sweeney, Christopher J; Klebe, Sonja; Cordes, Nils; Sykes, Pamela J

    2018-06-23

    Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin β1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.

  9. Effect of Dietary Intervention on Prostate Tumor Development in TRAMP Mice

    DTIC Science & Technology

    2007-05-01

    92, 3439-3443. 5. Gingrich,J.R., Barrios ,R.J., Morton,R.A., Boyce,B.F., DeMayo,F.J., Finegold,M.J., Angelopoulou,R., Rosen,J.M., and Greenberg,N.M...increases survival time in TRAMP mice Melissa J.L. Bonorden, Olga P. Rogozina, Michael E. Grossmann, Christina M. Kluczny, Patricia L. Grambsch, Joseph...TRAMP mice Melissa J.L. Bonorden, Olga P. Rogozina, Michael E. Grossmann, Christina M. Kluczny, Anna Lokshin, Patricia L. Grambsch, Joseph P. Grande

  10. TLR7 expression is decreased during tumour progression in transgenic adenocarcinoma of mouse prostate mice and its activation inhibits growth of prostate cancer cells.

    PubMed

    Han, Ju-Hee; Park, Shin-Young; Kim, Jin-Bum; Cho, Sung-Dae; Kim, Bumseok; Kim, Bo-Yeon; Kang, Min-Jung; Kim, Dong-Jae; Park, Jae-Hak; Park, Jong-Hwan

    2013-10-01

    Although various Toll-like receptors (TLRs) have been associated with immune response and tumorigenesis in the prostate cells, little is known about the role of TLR7. Accordingly, we examined the expression of TLR7 during tumour progression of TRMAP (transgenic mouse model for prostate cancer) mice and its role on cell growth. Toll-like receptor7 expression was examined by RT-polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Cell growth was examined by MTT assay. Colony formation was investigated by crystal violet staining. Strong expression of TLR7 was detected in the normal prostate epithelia of Wild-type (WT) mice, but not in TLR7-deficient mice. In contrast, TLR7 expression was weak in transgenic adenocarcinoma of mouse prostate (TRAMP)-C2 cells, as compared with murine bone marrow-derived macrophages (BMDMs). Moreover, TLR7 mRNA was markedly expressed in RWPE-1 cells (non-cancerous prostate epithelial cells), but not in PC3 and DU145 (prostate cancer cells). Immunohistochemically, TLR7 expression gradually decreased in TRAMP mice depending on the pathologic grade of the prostate cells. TLR7 agonists increased both the gene and protein expression of TLR7 and promoted production of proinflammatory cytokines/chemokines and IFN-β gene expression in prostate cancer cell lines. Moreover, loxoribine inhibited the growth and colony formation of TRAMP-C2 cells dependent of TLR7. These findings suggest that TLR7 may participate in tumour suppression in the prostate cells. © 2013 John Wiley & Sons Ltd.

  11. Adoptive cell therapy of prostate cancer using female mice-derived T cells that react with prostate antigens

    PubMed Central

    Yi, Huanfa; Yu, Xiaofei; Guo, Chunqing; Manjili, Masoud H.; Repasky, Elizabeth A.; Wang, Xiang-Yang

    2011-01-01

    In this study, we report a novel treatment strategy that could potentially be used to improve efficacy of adoptive cell therapy for patients with prostate cancer. We show that female C57BL/6 mice are able to effectively reject two syngeneic prostate tumors (TRAMP-C2 and RM1) in a T cell-dependent manner. The protective antitumor immunity appears to primarily involve T cell responses reactive against general prostate tumor/tissue antigens, rather than simply to male-specific H-Y antigen. For the first time we show that adoptive transfer of lymphocytes from TRAMP-C2-primed or naive female mice effectively control prostate tumor growth in male mice, when combined with host pre-conditioning (i.e., non-myeloablative lymphodepletion) and IL-2 administration. No pathological autoimmune response was observed in the treated tumor-bearing male mice. Our studies provide new insights regarding the immune-mediated recognition of male-specific tissue, such as the prostate, and may offer new immunotherapy treatment strategies for advanced prostate cancer. PMID:21088965

  12. Gene signatures distinguish stage-specific prostate cancer stem cells isolated from transgenic adenocarcinoma of the mouse prostate lesions and predict the malignancy of human tumors.

    PubMed

    Mazzoleni, Stefania; Jachetti, Elena; Morosini, Sara; Grioni, Matteo; Piras, Ignazio Stefano; Pala, Mauro; Bulfone, Alessandro; Freschi, Massimo; Bellone, Matteo; Galli, Rossella

    2013-09-01

    The relevant social and economic impact of prostate adenocarcinoma, one of the leading causes of death in men, urges critical improvements in knowledge of the pathogenesis and cure of this disease. These can also be achieved by implementing in vitro and in vivo preclinical models by taking advantage of prostate cancer stem cells (PCSCs). The best-characterized mouse model of prostate cancer is the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. TRAMP mice develop a progressive lesion called prostatic intraepithelial neoplasia that evolves into adenocarcinoma (AD) between 24 and 30 weeks of age. ADs often metastasize to lymph nodes, lung, bones, and kidneys. Eventually, approximately 5% of the mice develop an androgen-independent neuroendocrine adenocarcinoma. Here we report the establishment of long-term self-renewing PCSC lines from the different stages of TRAMP progression by application of the neurosphere assay. Stage-specific prostate cell lines were endowed with the critical features expected from malignant bona fide cancer stem cells, namely, self-renewal, multipotency, and tumorigenicity. Notably, transcriptome analysis of stage-specific PCSCs resulted in the generation of well-defined, meaningful gene signatures, which identify distinct stages of human tumor progression. As such, TRAMP-derived PCSCs represent a novel and valuable preclinical model for elucidating the pathogenetic mechanisms leading to prostate adenocarcinoma and for the identification of molecular mediators to be pursued as therapeutic targets.

  13. Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis.

    PubMed

    Verschoyle, R D; Greaves, P; Cai, H; Edwards, R E; Steward, W P; Gescher, A J

    2007-01-29

    Brown rice is a staple dietary constituent in Asia, whereas rice consumed in the Western world is generally white, obtained from brown rice by removal of the bran. We tested the hypothesis that rice bran interferes with development of tumours in TAg, TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) or Apc(Min) mice, genetic models of mammary, prostate and intestinal carcinogenesis, respectively. Mice received rice bran (30%) in AIN-93G diet throughout their post-weaning lifespan. In TAg and TRAMP mice, rice bran did not affect carcinoma development. In TRAMP or wild-type C57Bl6/J mice, dietary rice bran increased kidney weight by 18 and 20%, respectively. Consumption of rice bran reduced numbers of intestinal adenomas in Apc(Min) mice by 51% (P<0.01), compared to mice on control diet. In parallel, dietary rice bran decreased intestinal haemorrhage in these mice, as reflected by increased haematocrit. At 10% in the diet, rice bran did not significantly retard Apc(Min) adenoma development. Likewise, low-fibre rice bran (30% in the diet) did not affect intestinal carcinogenesis, suggesting that the fibrous constituents of the bran mediate chemopreventive efficacy. The results suggest that rice bran might be beneficially evaluated as a putative chemopreventive intervention in humans with intestinal polyps.

  14. Serum antibodies to huntingtin interacting protein-1: a new blood test for prostate cancer.

    PubMed

    Bradley, Sarah V; Oravecz-Wilson, Katherine I; Bougeard, Gaelle; Mizukami, Ikuko; Li, Lina; Munaco, Anthony J; Sreekumar, Arun; Corradetti, Michael N; Chinnaiyan, Arul M; Sanda, Martin G; Ross, Theodora S

    2005-05-15

    Huntingtin-interacting protein 1 (HIP1) is frequently overexpressed in prostate cancer. HIP1 is a clathrin-binding protein involved in growth factor receptor trafficking that transforms fibroblasts by prolonging the half-life of growth factor receptors. In addition to human cancers, HIP1 is also overexpressed in prostate tumors from the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model. Here we provide evidence that HIP1 plays an important role in mouse tumor development, as tumor formation in the TRAMP mice was impaired in the Hip1null/null background. In addition, we report that autoantibodies to HIP1 developed in the sera of TRAMP mice with prostate cancer as well as in the sera from human prostate cancer patients. This led to the development of an anti-HIP1 serum test in humans that had a similar sensitivity and specificity to the anti-alpha-methylacyl CoA racemase (AMACR) and prostate-specific antigen tests for prostate cancer and when combined with the anti-AMACR test yielded a specificity of 97%. These data suggest that HIP1 plays a functional role in tumorigenesis and that a positive HIP1 autoantibody test may be an important serum marker of prostate cancer.

  15. Long pentraxin-3 as an epithelial-stromal fibroblast growth factor-targeting inhibitor in prostate cancer.

    PubMed

    Ronca, Roberto; Alessi, Patrizia; Coltrini, Daniela; Di Salle, Emanuela; Giacomini, Arianna; Leali, Daria; Corsini, Michela; Belleri, Mirella; Tobia, Chiara; Garlanda, Cecilia; Bonomi, Elisa; Tardanico, Regina; Vermi, William; Presta, Marco

    2013-06-01

    Fibroblast growth factors (FGFs) exert autocrine/paracrine functions in prostate cancer by stimulating angiogenesis and tumour growth. Here dihydrotestosterone (DHT) up-regulates FGF2 and FGF8b production in murine TRAMP-C2 prostate cancer cells, activating a FGF-dependent autocrine loop of stimulation. The soluble pattern recognition receptor long pentraxin-3 (PTX3) acts as a natural FGF antagonist that binds FGF2 and FGF8b via its N-terminal domain. We demonstrate that recombinant PTX3 protein and the PTX3-derived pentapeptide Ac-ARPCA-NH2 abolish the mitogenic response of murine TRAMP-C2 cells and human LNCaP prostate cancer cells to DHT and FGFs. Also, PTX3 hampers the angiogenic activity of DHT-activated TRAMP-C2 cells on the chick embryo chorioallantoic membrane (CAM). Accordingly, human PTX3 overexpression inhibits the mitogenic activity exerted by DHT or FGFs on hPTX3_TRAMP-C2 cell transfectants and their angiogenic activity. Also, hPTX3_TRAMP-C2 cells show a dramatic decrease of their angiogenic and tumourigenic potential when grafted in syngeneic or immunodeficient athymic male mice. A similar inhibitory effect is observed when TRAMP-C2 cells overexpress only the FGF-binding N-terminal PTX3 domain. In keeping with the anti-tumour activity of PTX3 in experimental prostate cancer, immunohistochemical analysis of prostate needle biopsies from primary prostate adenocarcinoma patients shows that parenchymal PTX3 expression, abundant in basal cells of normal glands, is lost in high-grade prostatic intraepithelial neoplasia and in invasive tumour areas. These results identify PTX3 as a potent FGF antagonist endowed with anti-angiogenic and anti-neoplastic activity in prostate cancer. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Evaluation of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal carcinogenesis

    PubMed Central

    Verschoyle, R D; Greaves, P; Cai, H; Edwards, R E; Steward, W P; Gescher, A J

    2007-01-01

    Brown rice is a staple dietary constituent in Asia, whereas rice consumed in the Western world is generally white, obtained from brown rice by removal of the bran. We tested the hypothesis that rice bran interferes with development of tumours in TAg, TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) or ApcMin mice, genetic models of mammary, prostate and intestinal carcinogenesis, respectively. Mice received rice bran (30%) in AIN-93G diet throughout their post-weaning lifespan. In TAg and TRAMP mice, rice bran did not affect carcinoma development. In TRAMP or wild-type C57Bl6/J mice, dietary rice bran increased kidney weight by 18 and 20%, respectively. Consumption of rice bran reduced numbers of intestinal adenomas in ApcMin mice by 51% (P<0.01), compared to mice on control diet. In parallel, dietary rice bran decreased intestinal haemorrhage in these mice, as reflected by increased haematocrit. At 10% in the diet, rice bran did not significantly retard ApcMin adenoma development. Likewise, low-fibre rice bran (30% in the diet) did not affect intestinal carcinogenesis, suggesting that the fibrous constituents of the bran mediate chemopreventive efficacy. The results suggest that rice bran might be beneficially evaluated as a putative chemopreventive intervention in humans with intestinal polyps. PMID:17211473

  17. Leupaxin acts as a mediator in prostate carcinoma progression through deregulation of p120catenin expression.

    PubMed

    Kaulfuss, S; von Hardenberg, S; Schweyer, S; Herr, A M; Laccone, F; Wolf, S; Burfeind, P

    2009-11-12

    Recently, we could show that the focal adhesion protein leupaxin (LPXN) is expressed in human prostate carcinomas (PCa) and induces invasiveness of androgen-independent PCa cells. In this study we show that LPXN enhanced the progression of existing PCa in vivo by breeding transgenic mice with prostate-specific LPXN expression and TRAMP mice (transgenic adenocarcinoma of mouse prostate). Double transgenic LPXN/TRAMP mice showed a significant increase in poorly differentiated PCa and distant metastases as compared with control TRAMP mice. Additional studies on primary PCa cells generated from both transgenic backgrounds confirmed the connection regarding LPXN overexpression and increased motility and invasiveness of PCa cells. One mediator of LPXN-induced invasion was found to be the cell-cell adhesion protein p120catenin (p120CTN). Both in vitro and in vivo experiments revealed that p120CTN expression negatively correlates with LPXN expression, followed by a redistribution of beta-catenin. Downregulation of LPXN using small interfering RNAs (siRNAs) resulted in a membranous localization of beta-catenin, whereas strong nuclear accumulation of beta-catenin was observed in p120CTN knockdown cells leading to enhanced transcription of the beta-catenin target gene matrix metalloprotease-7. In conclusion, the present results indicate that LPXN enhances the progression of PCa through downregulation of p120CTN expression and that LPXN could function as a marker for aggressive PCa in the future.

  18. GPRC6A regulates prostate cancer progression

    PubMed Central

    Pi, Min; Quarles, L. Darryl

    2011-01-01

    BACKGROUND GPRC6A is a nutrient sensing GPCR that is activated in vitro by a variety of ligands, including amino acids, calcium, zinc, osteocalcin (OC) and testosterone. The association between nutritional factors and risk of prostate cancer, the finding of increased expression of OC in prostate cancer cells and the association between GPRC6A and risk of prostate cancer in Japanese men implicates a role of GPRC6A in prostate cancer. METHODS We examined if GPRC6A is expressed in human prostate cancer cell lines and used siRNA-mediated knockdown GPRC6A expression in prostate cancer cells to explore the function of GPRC6A in vitro. To assess the role GPRC6A in prostate cancer progression in vivo we intercrossed Gprc6a−/− mice onto the TRAMP mouse prostate cancer model. RESULTS GPRC6A transcripts were markedly increased in prostate cancer cell lines 22Rv1, PC-3 and LNCaP, compared to the normal prostate RWPE-1 cell line. In addition, a panel of GPRC6A ligands, including calcium, OC, and arginine, exhibited in prostate cancer cell lines a dose-dependent stimulation of ERK activity, cell proliferation, chemotaxis, and prostate specific antigen and Runx 2 gene expression. These responses were inhibited by siRNA-mediated knockdown of GPRC6A. Finally, transfer of Gprc6a deficiency onto a TRAMP mouse model of prostate cancer significantly retarded prostate cancer progression and improved survival of compound Gprc6a−/−/TRAMP mice. CONCLUSIONS GPRC6A is a novel molecular target for regulating prostate growth and cancer progression. Increments in GPRC6A may augment the ability of prostate cancer cells to proliferate in response to dietary and bone derived ligands. PMID:21681779

  19. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway

    PubMed Central

    Gupta, Sanjay

    2014-01-01

    Forkhead box O (FoxO) transcription factors play an important role as tumor suppressor in several human malignancies. Disruption of FoxO activity due to loss of phosphatase and tensin homolog and activation of phosphatidylinositol-3 kinase (PI3K)/Akt are frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits antiproliferative and anticarcinogenic activities through mechanisms, which are not fully defined. In the present study, we show that apigenin suppressed prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice through the PI3K/Akt/FoxO-signaling pathway. Apigenin-treated TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate as well as completely abolished distant organ metastasis. Apigenin treatment resulted in significant decrease in the weight of genitourinary apparatus (P < 0.0001), dorsolateral (P < 0.0001) and ventral prostate (P < 0.028), compared with the control group. Apigenin-treated mice showed reduced phosphorylation of Akt (Ser473) and FoxO3a (Ser253), which correlated with its increased nuclear retention and decreased binding of FoxO3a with 14-3-3. These events lead to reduced proliferation as assessed by Ki-67 and cyclin D1, along with upregulation of FoxO-responsive proteins BIM and p27/Kip1. Complementing in vivo results, similar observations were noted in human prostate cancer LNCaP and PC-3 cells after apigenin treatment. Furthermore, binding of FoxO3a with p27/Kip1 was markedly increased after 10 and 20 μM apigenin treatment resulting in G0/G1-phase cell cycle arrest, which was consistent with the effects elicited by PI3K/Akt inhibitor, LY294002. These results provide convincing evidence that apigenin effectively suppressed prostate cancer progression, at least in part, by targeting the PI3K/Akt/FoxO-signaling pathway. PMID:24067903

  20. ANALYSIS OF TMEFF2 ALLOGRAFTS AND TRANSGENIC MOUSE MODELS REVEALS ROLES IN PROSTATE REGENERATION AND CANCER

    PubMed Central

    Corbin, JM.; Overcash, RF.; Wren, JD.; Coburn, A.; Tipton, GJ.; Ezzell, JA.; McNaughton, KK.; Fung, KM; Kosanke, SD.; Ruiz-Echevarria, MJ

    2015-01-01

    BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel™ cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. PMID:26417683

  1. Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer.

    PubMed

    Corbin, Joshua M; Overcash, Ryan F; Wren, Jonathan D; Coburn, Anita; Tipton, Greg J; Ezzell, Jennifer A; McNaughton, Kirk K; Fung, Kar-Ming; Kosanke, Stanley D; Ruiz-Echevarria, Maria J

    2016-01-01

    Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression. © 2015 Wiley Periodicals, Inc.

  2. The p202 Gene as a Tumor Suppressor in Prostate Cancer Cells

    DTIC Science & Technology

    2005-06-01

    Inst 29. Shibata MA, Ward JM, Devor DE , Liu ML, Green JE. 39. Bagatell R, Khan 0, Paine-Murrieta G, et al. Destabi- 2000;92:1918-25. Progression of...search for treatment options [7, 71]. Therefore, in this study, we will use the autochthonous TRAMP (transgenic adenocarcinoma of murine prostate... adenocarcinoma at 16 weeks of age. Mature 10-and 16-week-old EZC-TRAMP mice (n=5 per group) will be i.v. injected with CMV-BikDD/SN, ATTP-BikDD/SN, ARR2PB

  3. S100A9 Interaction with TLR4 Promotes Tumor Growth

    PubMed Central

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  4. Chemopreventive effect of Korean Angelica root extract on TRAMP carcinogenesis and integrative “omic” profiling of affected neuroendocrine carcinomas

    PubMed Central

    Zhang, Jinhui; Wang, Lei; Zhang, Yong; Li, Li; Tang, Suni; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2016-01-01

    Angelica gigas Nakai (AGN) root ethanol extract exerts anti-cancer activity in several allograft and xenograft models. Here we examined its chemopreventive efficacy through gavage administration against primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Male C57BL/6 TRAMP mice and wild type littermates were given a daily gavage (5 mg/mouse, Monday-Friday) of AGN or vehicle, beginning at 8 weeks of age (WOA). All mice were terminated at 24 WOA, unless earlier euthanasia was necessitated by large tumors. Whereas AGN-treated TRAMP mice decreased dorsolateral prostate lesion growth by 30% (P = 0.009), they developed fewer and smaller neuroendocrine-carcinomas (NE-Ca) (0.12 g/mouse) than vehicle-treated counterparts (0.81g/mouse, P = 0.037). We analyzed the proteome and transcriptome of banked NE-Ca to gain molecular insights. Angiogenesis-antibody array detected a substantial reduction in AGN-treated NE-Ca of basic fibroblast growth factor (FGF2), an angiogenesis stimulator. iTRAQ proteomics plus data mining suggested changes of genes upstream and downstream of FGF2 functionally consistent with AGN inhibiting FGF2/FGFR1 signaling at different levels of the transduction cascade. Moreover, AGN upregulated mRNA of genes related to immune responses, restored expression of many tumor suppressor genes, and prostate function and muscle differentiation genes. On the other hand, AGN down-regulated mRNA of genes related to neuron signaling, oncofetal antigens, inflammation and mast cells, Wnt signaling, embryonic morphogenesis, biosynthesis, cell adhesion, motility, invasion and angiogenesis. These changes suggest not only multiple cancer cell targeting actions of AGN but also impact on the tumor microenvironments such as angiogenesis, inflammation and immune surveillance. PMID:25307620

  5. Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer

    PubMed Central

    Ward-Kavanagh, Lindsay K.; Zhu, Junjia; Cooper, Timothy K.; Schell, Todd D.

    2014-01-01

    Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly non-functional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8+ T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to impact significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progressions observed. Regression was associated with long-term persistence of effector/memory phenotype CD8+ donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells. PMID:24801834

  6. Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice

    PubMed Central

    Shukla, Sanjeev; Shankar, Eswar; Fu, Pingfu; MacLennan, Gregory T.; Gupta, Sanjay

    2015-01-01

    Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway. PMID:26379052

  7. Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages.

    PubMed

    Cha, Ha-Ram; Lee, Joo Hyoung; Hensel, Jonathan A; Sawant, Anandi B; Davis, Brittney H; Lee, Carnellia M; Deshane, Jessy S; Ponnazhagan, Selvarangan

    2016-05-01

    A growing body of evidence indicates a positive correlation between expression of human antimicrobial peptide leucin leucin 37 (LL-37) and progression of epithelial cancers, including prostate cancer (PCa). Although the molecular mechanisms for this correlation has not yet been elucidated, the primary function of LL-37 as a chemotactic molecule for innate immune effector cells suggests its possible association in coordinating protumorigenic mechanisms, mediated by tumor-infiltrating immune cells. To investigate protumorigenic role(s) of cathelicidin-related antimicrobial peptide (CRAMP), a murine orthologue of LL-37, the present study compared tumor growth kinetics between mouse PCa cell lines with and without CRAMP expression (TRAMP-C1 and TRAMP-C1(CRAMP-sh) , respectively) in immunocompetent mice. CRAMP-mediated chemotaxis of different innate immune cell types to the tumor microenvironment (TME) was observed in vivo and confirmed by in vitro chemotaxis assay. The role of CRAMP in differentiation and polarization of immature myeloid progenitors (IMPs) to protumorigenic type 2 macrophages (M2) in TME was determined by adoptive transfer of IMPs into mice bearing CRAMP(+) and CRAMP(-) tumors. To differentiate protumorigenic events mediated by tumor-derived CRAMP from host immune cell-derived CRAMP, tumor challenge study was performed in CRAMP-deficient mice. To identify mechanisms of CRAMP function, macrophage colony stimulating factor (M-CSF) and monocyte chemoattractant protein 1 (MCP-1) gene expression was analyzed by QRT-PCR and STAT3 signaling was determined by immunoblotting. Significantly delayed tumor growth was observed in wild-type (WT) mice implanted with TRAMP-C1(CRAMP-sh) cells compared to mice implanted with TRAMP-C1 cells. CRAMP(+) TME induced increased number of IMP differentiation into protumorigenic M2 macrophages compared to CRAMP(-) TME, indicating tumor-derived CRAMP facilitates differentiation and polarization of IMPs toward M2. Tumor challenge study in CRAMP deficient mice showed comparable tumor growth kinetics with WT mice, suggesting tumor-derived CRAMP plays a crucial role in PCa progression. In vitro study demonstrated that overexpressed M-CSF and MCP-1 in TRAMP-C1 cells through CRAMP-mediated autocrine signaling, involving p65, regulates IMP-to-M2 differentiation/polarization through STAT3 activation. Altogether, the present study suggests that overexpressed CRAMP in prostate tumor initially chemoattracts IMPs to TME and mediates differentiation and polarization of early myeloid progenitors into protumorigenic M2 macrophages during PCa progression. Thus, selective downregulation of CRAMP in tumor cells in situ may benefit overcoming immunosuppressive mechanisms in PCa. © 2016 Wiley Periodicals, Inc.

  8. Preventive and Therapeutic Efficacy of Finasteride and Dutasteride in TRAMP Mice

    PubMed Central

    Opoku-Acheampong, Alexander B.; Unis, Dave; Henningson, Jamie N.; Beck, Amanda P.; Lindshield, Brian L.

    2013-01-01

    Background The prostate cancer prevention trial (PCPT) and Reduction by dutasteride of Prostate Cancer Events (REDUCE) trial found that 5α-reductase (5αR) inhibitors finasteride and dutasteride respectively, decreased prostate cancer prevalence but also increased the incidence of high-grade tumors. 5αR2 is the main isoenzyme in normal prostate tissue; however, most prostate tumors have high 5αR1 and low 5αR2 expression. Because finasteride inhibits only 5αR2, we hypothesized that it would not be as efficacious in preventing prostate cancer development and/or progression in C57BL/6 TRAMP x FVB mice as dutasteride, which inhibits both 5αR1 and 5αR2. Method/Principal Findings Six-week-old C57BL/6 TRAMP x FVB male mice were randomized to AIN93G control or pre- and post- finasteride and dutasteride diet (83.3 mg drug/kg diet) groups (n =30–33) that began at 6 and 12 weeks of age, respectively, and were terminated at 20 weeks of age. The pre- and post- finasteride and dutasteride groups were designed to test the preventive and therapeutic efficacy of the drugs, respectively. Final body weights, genitourinary tract weights, and genitourinary tract weights as percentage of body weights were significantly decreased in the Pre- and Post-dutasteride groups compared with the control. The Post-dutasteride group showed the greatest inhibition of prostatic intraepithelial neoplasia progression and prostate cancer development. Surprisingly, the Post-dutasteride group showed improved outcomes compared with the Pre-dutasteride group, which had increased incidence of high-grade carcinoma as the most common and most severe lesions in a majority of prostate lobes. Consistent with our hypothesis, we found little benefit from the finasteride diets, and they increased the incidence of high-grade carcinoma. Conclusion Our findings have commonalities with previously reported PCPT, REDUCE, and the Reduction by dutasteride of Clinical Progression Events in Expectant Management (REDEEM) trial results. Our results may support the therapeutic use of dutasteride, but not finasteride, for therapeutic or preventive use. PMID:24204943

  9. Effects of dietary saw palmetto on the prostate of transgenic adenocarcinoma of the mouse prostate model (TRAMP).

    PubMed

    Wadsworth, Teri L; Worstell, Teresa R; Greenberg, Norman M; Roselli, Charles E

    2007-05-01

    Several of the proposed mechanisms for the actions of the liposterolic extract of saw palmetto (SPE) are exerted on known risk factors for prostate cancer (CaP). This study investigated whether SPE could prevent the progression of CaP in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Two different doses of SPE designed to deliver 50 mg/kg/day SPE and 300 mg/kg/day SPE were administered in a custom diet to TRAMP mice for 12 or 24 weeks. Body and organ weights were used to evaluate toxicity, and radioimmunoassay was used to measure plasma and tissue androgen levels to monitor effects of SPE on 5alpha reductase activity. Prostate tissues were evaluated histologically to determine the effect of treatment on tumor grade, cell proliferation, and apoptosis. Treatment with 300 mg/kg/day SPE from 4 to 24 weeks of age significantly reduced the concentration of 5alpha-dihydrotestosterone (DHT) in the prostate and resulted in a significant increase in apoptosis and significant decrease in pathological tumor grade and frank tumor incidence. Dietary supplementation with SPE may be effective in controlling CaP tumorigenesis. SPE suppression of prostatic DHT levels lends support to the hypothesis that inhibition of the enzyme 5alpha-reductase is a mechanism of action of this substance. (c) 2007 Wiley-Liss, Inc.

  10. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  11. A high-fat diet containing whole walnuts (Juglans regia) reduces tumour size and growth along with plasma insulin-like growth factor 1 in the transgenic adenocarcinoma of the mouse prostate model

    USDA-ARS?s Scientific Manuscript database

    Dietary fat is linked to prostate cancer (PCa), the most commonly diagnosed male cancer, but the nature and strength of the relationships between total fat, n-6 and n-3 fatty acids and PCa remain incompletely understood. Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice (N=10-12 per grou...

  12. Combinatorial Targeting of Prostate Carcinoma Cells and Tumor Associated Pericytes with Antibody-Based Immunotherapy and Metronomic Chemotherapy

    DTIC Science & Technology

    2011-03-01

    Carcinoma Cells and Tumor Associated Pericytes with Antibody-Based Immunotherapy and Metronomic Chemotherapy. PRINCIPAL INVESTIGATOR: Soldano...Combinatorial Targeting of Prostate Carcinoma Cells and Tumor Associated Pericytes with Antibody-Based Immunotherapy and Metronomic Chemotherapy. 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Seventy seven 10 week old TRAMP mice were enrolled in the study. Administration of metronomic chemotherapy with

  13. Targeting the prostate for destruction through a vascular address

    PubMed Central

    Arap, Wadih; Haedicke, Wolfgang; Bernasconi, Michele; Kain, Renate; Rajotte, Daniel; Krajewski, Stanislaw; Ellerby, H. Michael; Bredesen, Dale E.; Pasqualini, Renata; Ruoslahti, Erkki

    2002-01-01

    Organ specific drug targeting was explored in mice as a possible alternative to surgery to treat prostate diseases. Peptides that specifically recognize the vasculature in the prostate were identified from phage-displayed peptide libraries by selecting for phage capable of homing into the prostate after an i.v. injection. One of the phage selected in this manner homed to the prostate 10–15 times more than to other organs. Unselected phage did not show this preference. The phage bound also to vasculature in the human prostate. The peptide displayed by the prostate-homing phage, SMSIARL (single letter code), was synthesized and shown to inhibit the homing of the phage when co-injected into mice with the phage. Systemic treatment of mice with a chimeric peptide consisting of the SMSIARL homing peptide, linked to a proapoptotic peptide that disrupts mitochondrial membranes, caused tissue destruction in the prostate, but not in other organs. The chimeric peptide delayed the development of the cancers in prostate cancer-prone transgenic mice (TRAMP mice). These results suggest that it may be possible to develop an alternative to surgical prostate resection and that such a treatment may also reduce future cancer risk. PMID:11830668

  14. Prostate Cancer Xenograft Inhibitory Activity and Pharmacokinetics of Decursinol, a Metabolite of Angelica gigas Pyranocoumarins, in Mouse Models.

    PubMed

    Wu, Wei; Tang, Su-Ni; Zhang, Yong; Puppala, Manohar; Cooper, Timothy K; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan

    2017-01-01

    We have previously shown that the ethanol extract of dried Angelica gigas Nakai (AGN) root exerts anticancer activity against androgen receptor (AR)-negative human DU145 and PC-3 prostate cancer xenografts and primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The major pyranocoumarin isomers decursin (D) and decursinol angelate (DA), when provided at equi-molar intake to that provided by AGN extract, accounted for the inhibitory efficacy against precancerous epithelial lesions in TRAMP mice. Since we and others have shown in rodents and humans that D and DA rapidly and extensively convert to decursinol, here we tested whether decursinol might be an in vivo active compound for suppressing xenograft growth of human prostate cancer cells expressing AR. In SCID-NSG mice carrying subcutaneously inoculated human LNCaP/AR-Luc cells overexpressing the wild type AR, we compared the efficacy of 4.5[Formula: see text]mg decursinol per mouse with equi-molar dose of 6[Formula: see text]mg D/DA per mouse. The result showed that decursinol decreased xenograft tumor growth by 75% and the lung metastasis, whereas D/DA exerted a much less effect. Measurement of plasma decursinol concentration, at 3[Formula: see text]h after the last dose of respective dosing regimen, showed higher circulating level in the decursinol-treated NSG mice than in the D/DA-treated mice. In a subsequent single-dose pharmacokinetic experiment, decursinol dosing led to 3.7-fold area under curve (AUC) of plasma decursinol over that achieved by equi-molar D/DA dosing. PK advantage notwithstanding, decursinol represents an active compound to exert in vivo prostate cancer growth and metastasis inhibitory activity in the preclinical model.

  15. Combinational Targeting of Prostate Carcinoma Cells and Tumors Associated Pericytes with Antibody Based Immunotherapy and Metronomic Chemotherapy

    DTIC Science & Technology

    2010-02-01

    Carcinoma Cells and Tumors Associated Pericytes with Antibody Based Immunotherapy and Metronomic Chemotherapy PRINCIPAL INVESTIGATOR......purity and activity. The colony of TRAMP mice has been expanded to test the efficacy of mAb 225.28 plus cyclophosphamide metronomic therapy in the

  16. Effect of Dietary Intervention on Prostate Tumor Development in TRAMP Mice

    DTIC Science & Technology

    2006-05-01

    Proc.Natl.Acad.Sci.USA, 92, 3439-3443. 5. Gingrich,J.R., Barrios ,R.J., Morton,R.A., Boyce,B.F., DeMayo,F.J., Finegold,M.J., Angelopoulou,R., Rosen,J.M...the research effort Margot P. Cleary, Principal Investigator Michael Grossmann, Research Associate Patricia Grambsch, Statistician Olga Rogozin

  17. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.

  18. Role of Obesity in Prostate Cancer Development

    DTIC Science & Technology

    2011-04-01

    Western blot analysis . Representative staining from the immunohistochemistry is shown in Figure 6. Expression of AdipoR1 was found in all prostate tumor...with goat serum instead of primary antibody was negative (Fig 6D). Western blot analysis of frozen tissue from the same mice was also performed and...TRAMP) model. Cancer Res., 57, 3325-3330. 41. Williams,T.M., Hassan,G.S., Li,J., Cohen,A.W., Medina,F., Frank,P.G., Pestell ,R.G., Di Vizio,D., and

  19. Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer.

    PubMed

    Ide, Hisamitsu; Lu, Yan; Noguchi, Takahiro; Muto, Satoru; Okada, Hiroshi; Kawato, Suguru; Horie, Shigeo

    2018-04-01

    Intratumoral androgen biosynthesis has been recognized as an essential factor of castration-resistant prostate cancer. The present study investigated the effects of curcumin on the inhibition of intracrine androgen synthesis in prostate cancer. Human prostate cancer cell lines, LNCaP and 22Rv1 cells were incubated with or without curcumin after which cell proliferation was measured at 0, 24, 48 and 72 hours, respectively. Prostate tissues from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model were obtained after 1-month oral administration of 200 mg/kg/d curcumin. Testosterone and dihydrotestosterone concentrations in LNCaP prostate cancer cells were determined through LC-MS/MS assay. Curcumin inhibited cell proliferation and induced apoptosis of prostate cancer cells in a dose-dependent manner. Curcumin decreased the expression of steroidogenic acute regulatory proteins, CYP11A1 and HSD3B2 in prostate cancer cell lines, supporting the decrease of testosterone production. After 1-month oral administration of curcumin, Aldo-Keto reductase 1C2 (AKR1C2) expression was elevated. Simultaneously, decreased testosterone levels in the prostate tissues were observed in the TRAMP mice. Meanwhile, curcumin treatments considerably increased the expression of AKR1C2 in prostate cancer cell lines, supporting the decrease of dihydrotestosterone. Taken together, these results suggest that curcumin's natural bioactive compounds could have potent anticancer properties due to suppression of androgen production, and this could have therapeutic effects on prostate cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Polyphenois and Prostate Cancer Chemoprevention

    DTIC Science & Technology

    2006-03-01

    The goal of this research is to investigate the potential of resveratrol genistein and (-) epigallocatechin -3- gallate ( EGCG ), alone in combination...to protect against prostate cancer in a transgenic rat model (TRAMP). The specific aims are 1) to investigate the potential of genistein, EGCG and...we have demonstrated that pure resveratrol in the diet, but not EGCG in the water, suppressed spontaneously developing prostate tumors in TRAMPs

  1. Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1.

    PubMed

    Li, Wenji; Pung, Doug; Su, Zheng-Yuan; Guo, Yue; Zhang, Chengyue; Yang, Anne Yuqing; Zheng, Xi; Du, Zhi-Yun; Zhang, Kun; Kong, Ah-Ng

    2016-04-18

    It has previously been shown that curcumin can effectively inhibit prostate cancer proliferation and progression in TRAMP mice, potentially acting through the hypomethylation of the Nrf2 gene promoter and hence activation of the Nrf2 pathway to enhance cell antioxidative defense. FN1 is a synthetic curcumin analogue that shows stronger anticancer activity than curcumin in other reports. We aimed to explore the epigenetic modification of FN1 that restores Nrf2 expression in TRAMP-C1 cells. Stably transfected HepG2-C8 cells were used to investigate the effect of FN1 on the Nrf2- antioxidant response element (ARE) pathway. Real-time quantitative PCR and Western blotting were applied to study the influence of FN1 on endogenous Nrf2 and its downstream genes. Bisulfite genomic sequencing (BGS) and methylated DNA immunoprecipitation (MeDIP) were then performed to examine the methylation profile of the Nrf2 promoter. An anchorage-independent colony-formation analysis was conducted to examine the tumor inhibition activity of FN1. Epigenetic modification enzymes, including DNMTs and HDACs, were investigated by Western blotting. The luciferase reporter assay indicated that FN1 was more potent than curcumin in activating the Nrf2-ARE pathway. FN1 increased the expression of Nrf2 and its downstream detoxifying enzymes. FN1 significantly inhibited the colony formation of TRAMP-C1 cells. BGS and MeDIP assays revealed that FN1 treatment (250 nM for 3 days) reduced the percentage of CpG methylation of the Nrf2 promoter. FN1 also downregulated epigenetic modification enzymes. In conclusion, our results suggest that FN1 is a novel anticancer agent for prostate cancer. In the TRAMP-C1 cell line, FN1 can increase the level of Nrf2 and downstream genes via activating the Nrf2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the Nrf2 promoter. This CpG demethylation effect may come from decreased epigenetic modification enzymes, such as DNMT1, DNMT3a, DNMT3b, and HDAC4.

  2. Sanguinarine: A Novel Agent Against Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    the possibility of treatment- toxicity , the effect of treatments on food/water consumption and body weight was monitored twice weekly throughout the...data not shown). Further, the treatments were not found to have any evident toxic effects (body weight, food/fluid consumption) on the TRAMP mice...c]phenanthridine alkaloids sanguinarine and chelerythrine: biological activities and dental care applications. Acta Univ Palacki Olomuc Fac Med 139:7

  3. Effect of Dietary Intervention on Prostate Tumor Development in Tramp Mice

    DTIC Science & Technology

    2005-05-01

    successful. Dr. Olga Rogozina who has both an MD. and Ph.D. join our research group May of 2004. She is working 50% effort on this project and will be...3443. 5. Gingrich,J.R., Barrios ,R.J., Morton,R.A., Boyce,B.F., DeMayo,F.J., Finegold,M.J., Angelopoulou,R., Rosen,J.M., and Greenberg,N.M. (1996

  4. Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.

    PubMed

    Winter, Jean M; Curry, Natasha L; Gildea, Derek M; Williams, Kendra A; Lee, Minnkyong; Hu, Ying; Crawford, Nigel P S

    2018-06-11

    It is well known that development of prostate cancer (PC) can be attributed to somatic mutations of the genome, acquired within proto-oncogenes or tumor-suppressor genes. What is less well understood is how germline variation contributes to disease aggressiveness in PC patients. To map germline modifiers of aggressive neuroendocrine PC, we generated a genetically diverse F2 intercross population using the transgenic TRAMP mouse model and the wild-derived WSB/EiJ (WSB) strain. The relevance of germline modifiers of aggressive PC identified in these mice was extensively correlated in human PC datasets and functionally validated in cell lines. Aggressive PC traits were quantified in a population of 30 week old (TRAMP x WSB) F2 mice (n = 307). Correlation of germline genotype with aggressive disease phenotype revealed seven modifier loci that were significantly associated with aggressive disease. RNA-seq were analyzed using cis-eQTL and trait correlation analyses to identify candidate genes within each of these loci. Analysis of 92 (TRAMP x WSB) F2 prostates revealed 25 candidate genes that harbored both a significant cis-eQTL and mRNA expression correlations with an aggressive PC trait. We further delineated these candidate genes based on their clinical relevance, by interrogating human PC GWAS and PC tumor gene expression datasets. We identified four genes (CCDC115, DNAJC10, RNF149, and STYXL1), which encompassed all of the following characteristics: 1) one or more germline variants associated with aggressive PC traits; 2) differential mRNA levels associated with aggressive PC traits; and 3) differential mRNA expression between normal and tumor tissue. Functional validation studies of these four genes using the human LNCaP prostate adenocarcinoma cell line revealed ectopic overexpression of CCDC115 can significantly impede cell growth in vitro and tumor growth in vivo. Furthermore, CCDC115 human prostate tumor expression was associated with better survival outcomes. We have demonstrated how modifier locus mapping in mouse models of PC, coupled with in silico analyses of human PC datasets, can reveal novel germline modifier genes of aggressive PC. We have also characterized CCDC115 as being associated with less aggressive PC in humans, placing it as a potential prognostic marker of aggressive PC.

  5. Dendritic cells induce specific cytotoxic T lymphocytes against prostate cancer TRAMP-C2 cells loaded with freeze- thaw antigen and PEP-3 peptide.

    PubMed

    Liu, Xiao-Qi; Jiang, Rong; Li, Si-Qi; Wang, Jing; Yi, Fa-Ping

    2015-01-01

    Prostate cancer is the most common cancer in men. In this study, we investigated immune responses of cytotoxic T lymphocytes (CTLs) against TRAMP-C2 prostate cancer cells after activation by dendritic cells (DCs) loaded with TRAMP-C2 freeze-thaw antigen and/or PEP-3 peptide in vitro. Bone marrow-derived DC from the bone marrow of the C57BL/6 were induced to mature by using the cytokine of rhGM-CSF and rhIL-4, and loaded with either the freeze-thaw antigen or PEP-3 peptide or both of them. Maturation of DCs was detected by flow cytometry. The killing efficiency of the CTLs on TRAMP-C2 cells were detected by flow cytometry, CCK8, colony formation, transwell migration, and wound-healing assay. The levels of the IFN-γ, TNF-β and IL-12 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with the unloaded DCs, the loaded DCs had significantly increased expression of several phenotypes related to DC maturation. CTLs activated by DCs loaded with freeze-thaw antigen and PEP-3 peptide had more evident cytotoxicity against TRAMP-C2 cells in vitro. The secretion levels of IFN-γ, TNF-β and IL-12, secreted by DCs loaded with antigen and PEP-3 and interaction with T cells, were higher than in the other groups. Our results suggest that the CTLs activated by DCs loaded with TRAMP-C2 freeze-thaw antigen and PEP-3 peptide exert a remarkable killing efficiency against TRAMP-C2 cells in vitro.

  6. Reactive stroma in the prostate during late life: The role of microvasculature and antiangiogenic therapy influences.

    PubMed

    Montico, Fabio; Kido, Larissa Akemi; San Martin, Rebeca; Rowley, David R; Cagnon, Valéria H A

    2015-10-01

    Prostate cancer is associated to a reactive stroma microenvironment characterized by angiogenic processes that are favorable for tumor progression. Senescence has been identified as a predisposing factor for prostate malignancies. In turn, the relationships between aging, reactive stroma, and the mechanisms that induce this phenotype are largely unknown. Thus, we investigated the occurrence of reactive stroma in the mouse prostate during advanced age as well as the effects of antiangiogenic and androgen ablation therapies on reactive stroma recruitment. Male mice (52-week-old FVB) were treated with two classes of angiogenesis inhibitors: direct (TNP-470; 15 mg/kg; s.c.) and/or indirect (SU5416; 6 mg/kg; i.p.). Androgen ablation was carried out by finasteride administration (20 mg/kg; s.c.), alone or in association to both inhibitors. The Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model was used as a paradigm of cancer-associated reactive stroma. The dorsolateral prostate was collected for α-actin (αSMA), vimentin (VIM), and transforming growth factor-beta (TGF-β) immunohistochemical and Western blotting analyses as well as for CD34/αSMA and CD34/VIM colocalization. Senescence was associated with increased αSMA, VIM, and TGF-β expression as well as with the recruitment of CD34/αSMA and CD34/VIM dual-positive fibroblasts. These observations were similar to those verified in TRAMP mice. Antiangiogenic treatment promoted the recovery of senescence-associated stromal changes. Hormonal ablation, despite having led to impaired CD34/αSMA and CD34/VIM dual-positive cell recruitment, did not result in decreased stimulus to reactive stroma development, due to enhanced TGF-β expression in relation to the aged controls. Reactive stroma develops in the prostate of non-transgenic mice as a result of aging. The periacinar microvasculature is a candidate source for the recruitment of reactive stroma-associated cells, which may be derived either from perivascular-resident mesenchymal stem cells (MSCs) or from an endothelial-to-mesenchymal transition (EndMT) process. Thus, antiangiogenic therapy is a promising approach for preventing age-associated prostate malignancies by means of its negative interference in the development of reactive stroma phenotype from the vascular wall. © 2015 Wiley Periodicals, Inc.

  7. CDK5 A Novel Role in Prostate Cancer Immunotherapy

    DTIC Science & Technology

    2016-10-01

    Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official...We are now discussing our next steps in pursuing this finding; these may include treatment of TRAMP Cdk5 knockout mice to inhibit the putative...Merck and Bayer have terminated clinical development of these compounds. The compounds are still well suited as “tool compounds,” for the

  8. A novel sulindac derivative lacking COX-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model

    PubMed Central

    Zhang, Yong; Zhang, Jinhui; Wang, Lei; Quealy, Emily; Gary, Bernard D.; Reynolds, Robert C.; Piazza, Gary A.; Lü, Junxuan

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) including sulindac are well-documented to be highly effective for cancer chemoprevention. However, their cyclooxygenase (COX) inhibitory activities cause severe gastrointestinal and cardiovascular toxicities, limiting their chronic use. Recent studies suggest that COX-independent mechanisms may be responsible for the chemopreventive benefits of the NSAIDs, and support the potential for development of a novel generation of sulindac derivatives lacking COX inhibition for cancer chemoprevention. A prototypic sulindac derivative with a N,N-dimethylammonium substitution, referred to as sulindac sulfide amide (SSA) was recently identified to be devoid of COX inhibitory activity yet displays much more potent tumor cell growth inhibitory activity in vitro compared to sulindac sulfide. In this study, we investigated the androgen receptor (AR) signaling pathway as a potential target for its COX-independent antineoplastic mechanism and evaluated its chemopreventive efficacy against prostate carcinogenesis using the TRAMP mouse model. The results showed that SSA significantly suppressed the growth of human and mouse prostate cancer cells expressing AR in strong association with G1 arrest, and decreased AR level and AR-dependent transactivation. Dietary SSA consumption from 6 to 24 weeks of age dramatically attenuated prostatic growth and suppressed AR-dependent glandular epithelial lesion progression via repressing cell proliferation in the TRAMP mice, whereas it did not significantly impact neuroendocrine carcinoma growth. Overall, the results suggest that SSA may be a chemopreventive candidate against prostate glandular epithelial carcinogenesis. PMID:20587701

  9. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis.

    PubMed

    Liu, Ann G; Juvik, John A; Jeffery, Elizabeth H; Berman-Booty, Lisa D; Clinton, Steven K; Erdman, John W

    2014-11-01

    Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P < .05). Male transgenic adenocarcinoma of mouse prostate (TRAMP) mice (n = 99) were randomized into three diet groups at 5-7 weeks of age: AIN-93G control, 10% standard broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies.

  10. Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.-S.; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan; Chen, F.-H.

    2007-06-01

    Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNAmore » expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo.« less

  11. Androgen deprivation and stem cell markers in prostate cancers

    PubMed Central

    Tang, Yao; Hamburger, Anne W; Wang, Linbo; Khan, Mohammad Afnan; Hussain, Arif

    2010-01-01

    In our previous studies using human LNCaP xenografts and TRAMP (transgenic adenocarcinoma of mouse prostate) mice, androgen deprivation therapy (ADT) resulted in a temporary cessation of prostate cancer (PCa) growth, but then tumors grew faster with more malignant behaviour. To understand whether cancer stem cells might play a role in PCa progression in these animal models, we investigated the expressions of stem cell-related markers in tumors at different time points after ADT. In both animal models, enhanced expressions of stem cell markers were observed in tumors of castrated mice, as compared to non-castrated controls. This increased cell population that expressed stem cell markers is designated as stem-like cells (SLC) in this article. We also observed that the SLC peaked at relatively early time points after ADT, before tumors resumed their growth. These results suggest that the SLC population may play a role in tumor re-growth and disease progression, and that targeting the SLC at their peak-expression time point may prevent tumor recurrence following ADT. PMID:20126580

  12. Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    DTIC Science & Technology

    2015-10-01

    the 3-month timeline and details provided in year 1 report. Anti-murine CTLA4 RNA Murine PAP Murine PSMA Murine PAP no signal sequence (mPAP-SS...Murine PSMA no signal sequence (mPSMA-SS) Year 2 (current) report: In addition to what we proposed to do, we wanted to determine if other...PAP, PSCA, PSMA and STEAP in the prostate cell lines TRAMP-C1 and TRAMP-C2. Both are cell lines that have been generated by in vitro propagation of

  13. Dendritic Cells Program Non-Immunogenic Prostate-Specific T Cell Responses Beginning at Early Stages of Prostate Tumorigenesis

    PubMed Central

    Mihalyo, Marianne A.; Hagymasi, Adam T.; Slaiby, Aaron M.; Nevius, Erin E.; Adler, Adam J.

    2010-01-01

    BACKGROUND Prostate cancer promotes the development of T cell tolerance towards prostatic antigens, potentially limiting the efficacy of prostate cancer vaccines targeting these antigens. Here, we sought to determine the stage of disease progression when T cell tolerance develops, as well as the role of steady state dendritic cells (DC) and CD4+CD25+ T regulatory cells (Tregs) in programming tolerance. METHODS The response of naïve HA-specific CD4+ T cells were analyzed following adoptive transfer into Pro-HA × TRAMP transgenic mice harboring variably-staged HA-expressing prostate tumors on two genetic backgrounds that display different patterns and kinetics of tumorigenesis. The role of DC and Tregs in programming HA-specific CD4 cell responses were assessed via depletion. RESULTS HA-specific CD4 cells underwent non-immunogenic responses at all stages of tumorigenesis in both genetic backgrounds. These responses were completely dependent on DC, but not appreciably influenced by Tregs. CONCLUSIONS These results suggest that tolerogenicity is an early and general property of prostate tumors. PMID:17221844

  14. Notch signaling dynamics in the adult healthy prostate and in prostatic tumor development.

    PubMed

    Pedrosa, Ana-Rita; Graça, José L; Carvalho, Sandra; Peleteiro, Maria C; Duarte, António; Trindade, Alexandre

    2016-01-01

    The Notch signaling pathway has been implicated in prostate development, maintenance and tumorigenesis by its key role in cell-fate determination, differentiation and proliferation. Therefore, we proposed to analyze Notch family members transcription and expression, including ligands (Dll1, 3, 4 and Jagged1 and 2), receptors (Notch1-4) and effectors (Hes1, 2, 5 and Hey1, 2, L), in both normal and tumor bearing mouse prostates to better understand the dynamics of Notch signaling in prostate tumorigenesis. Wild type mice and transgenic adenocarcinoma of the mouse prostate model (TRAMP) mice were sacrificed at 18, 24 or 30 weeks of age and the prostates collected and processed for either whole prostate or prostate cell specific populations mRNA analysis and for protein expression analysis by immunohistochemistry and immunofluorescence. We observed that Dll1 and Dll4 are expressed in the luminal compartment of the mouse healthy prostate, whereas Jagged2 expression is restricted to the basal and stromal compartment. Additionally, Notch2 and Notch4 are normally expressed in the prostate luminal compartment while Notch2 and Notch3 are also expressed in the stromal layer of the healthy prostate. As prostate tumor development takes place, there is up-regulation of Notch components. Particularly, the prostate tumor lesions have increased expression of Jagged1 and 2, of Notch3 and of Hey1. We have also detected the presence of activated Notch3 in prostatic tumors that co-express Jagged1 and ultimately the Hey1 effector. Taken together our results point out the Notch axis Jagged1-2/Notch3/Hey1 to be important for prostate tumor development and worthy of additional functional studies and validation in human clinical disease. © 2015 Wiley Periodicals, Inc.

  15. Phenotype-specific CpG island methylation events in a murine model of prostate cancer.

    PubMed

    Camoriano, Marta; Kinney, Shannon R Morey; Moser, Michael T; Foster, Barbara A; Mohler, James L; Trump, Donald L; Karpf, Adam R; Smiraglia, Dominic J

    2008-06-01

    Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.

  16. Walnuts lower TRAMP prostate tumor growth by altering IGF-1, energy and cholesterol metabolism and is not due to their fatty acids

    USDA-ARS?s Scientific Manuscript database

    Dietary changes could potentially reduce prostate cancer morbidity and mortality. Prostate tumor size, gene expression, metabolite and plasma responses to a 100 g of fat/kg diet (whole walnuts, walnut oil and other oils; balanced for macronutrients, tocopherols (a-and ' ) for 18 weeks were assessed ...

  17. Telomerase reverse transcriptase (TERT) is a therapeutic target of oleanane triterpenoid CDDO-Me in prostate cancer.

    PubMed

    Liu, Yongbo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S; Gautam, Subhash C

    2012-12-11

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is an synthetic oleanane triterpenoid with strong antiprolifertive and proapoptotic activities in cancer cells. However, the effect of CDDO-Me on human telomerase reverse transcriptase (hTERT) and its telomerase activity in prostate cancer cells has not been studied. We investigated the role of hTERT in mediating the anticancer activity of CDDO-Me in prostate cancer cells in vitro and in vivo. The inhibition of cell proliferation and induction of apoptosis by CDDO-Me in LNCaP and PC-3 prostate cancer cell lines was associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT transcriptionally and post-translationally. Furthermore, ablation of hTERT protein increased the sensitivity of cancer cells to CDDO-Me, whereas its overexpression rendered them resistant to CDDO-Me. In addition, inhibition of progression of preneoplastic lesions (i.e., low and high-grade prostate intraepithelial neoplasms, PINs) to adenocarcinoma of the prostate by CDDO-Me in TRAMP mice was associated with significant decrease in TERT and its regulatory proteins in the prostate gland. These data provide evidence that telomerase is a potential target of CDDO-Me for the prevention and treatment of prostate cancer.

  18. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate.

    PubMed

    Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean

    2016-09-13

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.

  19. Imaging Prostate Cancer (PCa) Phenotype and Evolution

    DTIC Science & Technology

    2016-10-01

    inhibit growth of some but not all cell lines. 2. Keywords: Deferiprone, aconitase, metabolism, tricarboxylic acid cycle , magnetic resonance 3...TRAMP C2 and MycCaP cell proliferation, migration, and invasiveness. Determine if knockdown of m-acon and Deferiprone inhibit TCA cycle activity...migration and inhibits TCA cycle (metabolism). Similarly in vivo (Aim 2), we 6 Fig. 2: Effect of DFP on in vivo growth of MycCaP (left) and TRAMP C2

  20. Anti-Tumor Effect of the Alphavirus-based Virus-like Particle Vector Expressing Prostate-Specific Antigen in a HLA-DR Transgenic Mouse Model of Prostate Cancer

    PubMed Central

    Riabov, V.; Tretyakova, I.; Alexander, R. B.; Pushko, P.; Klyushnenkova, E. N.

    2015-01-01

    The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1*1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8+ T cells (19.6±7.4%) produced IFNγ in response to the immunodominant peptide PSA65–73. In the blood of vaccinated mice, 18.4±4.1% of CD8+ T cells were PSA-specific as determined by the staining with H-2Db/PSA65–73 dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8 T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. PMID:26319744

  1. Evaluation of high intensity focused ultrasound ablation of prostate tumor with hyperpolarized 13C imaging biomarkers

    NASA Astrophysics Data System (ADS)

    Lee, Jessie E.; Diederich, Chris J.; Salgaonkar, Vasant A.; Bok, Robert; Taylor, Andrew G.; Kurhanewicz, John

    2015-03-01

    Real-time hyperpolarized (HP) 13C MR can be utilized during high-intensity focal ultrasound (HIFU) therapy to improve treatment delivery strategies, provide treatment verification, and thus reduce the need for more radical therapies for lowand intermediate-risk prostate cancers. The goal is to develop imaging biomarkers specific to thermal therapies of prostate cancer using HIFU, and to predict the success of thermal coagulation and identify tissues potentially sensitized to adjuvant treatment by sub-ablative hyperthermic heat doses. Mice with solid prostate tumors received HIFU treatment (5.6 MHz, 160W/cm2, 60 s), and the MR imaging follow-ups were performed on a wide-bore 14T microimaging system. 13C-labeled pyruvate and urea were used to monitor tumor metabolism and perfusion accordingly. After treatment, the ablated tumor tissue had a loss in metabolism and perfusion. In the regions receiving sub-ablative heat dose, a timedependent change in metabolism and perfusion was observed. The untreated regions behaved as a normal untreated TRAMP prostate tumor would. This promising preliminary study shows the potential of using 13C MR imaging as biomarkers of HIFU/thermal therapies.

  2. CDK5-A Novel Role in Prostate Cancer Immunotherapy

    DTIC Science & Technology

    2017-10-01

    of the involvement of a T cell antitumor response in impaired growth of prostate cancer in immunocompetent murine models of prostate cancer, and...of immune system activation by Cdk5 deletion in prostate cancer. We will confirm the involvement of a T cell antitumor response in impaired growth of...project? Major Task 1: Involvement of T cell anticancer immune response in impaired growth of TRAMP Cdk5-/- model. Months 1-10. Completed, month 10

  3. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    PubMed

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes.

    PubMed

    Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin

    2015-02-15

    LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated immunosuppression. Prostate 75:280-291, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  5. Polyphenols and Prostate Cancer Chemoprevention

    DTIC Science & Technology

    2005-03-01

    ABSTRACT (Maximum 200 Words) The goal of this research is to Investigate the potential of (-)- epigallocatechin -3- gallate ( EGCG ), genistein and resveratrol...prostate chemoprevention are the soy isoflavone, genistein, and the tea catechin, (-)- epigallocatechin -3- gallate ( EGCG ). Another polyphenol that has...adenocarcinoma (TRAMP)). The specific aims are 1) to investigate the potential of genistein, EGCG and resveratrol, alone and in combination, to

  6. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes

    PubMed Central

    Yan, Lisa; Da Silva, Diane M.; Verma, Bhavna; Gray, Andrew; Brand, Heike E.; Skeate, Joseph G.; Porras, Tania B.; Kanodia, Shreya; Kast, W. Martin

    2014-01-01

    Background LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown in a virus induced tumor model to activate immune cells and result in tumor regression, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Methods Real Time PCR was used to evaluate expression of forced LIGHT and various other genes in prostate tumors samples. Adenovirus encoding murine LIGHT was injected intratumorally into TRAMP C2 prostate cancer cell tumor bearing mice for in vivo studies. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor specific lymphocytes were quantified via an ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. Results LIGHT expression peaked within 48 hours of infection, recruited effector T cells into the tumor microenvironment that recognized mouse prostate stem cell antigen (PSCA) and inhibited the infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. Conclusion Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated immunosuppression. PMID:25399517

  7. Examination of the Role of DNA Methylation Changes in Prostate Cancer Using the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) Model

    DTIC Science & Technology

    2008-03-01

    overcomes bias in bisulfite PCR methylation analysis. Biotechniques, 42: 48, 50, 52 passim, 2007. 46. Warnecke, P. M., Stirzaker, C., Melki , J. R...overcomes bias in bisulfite PCR methylation analysis. Biotechniques 2007;42:48, 50, 2 passim. 36. Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL

  8. Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy.

    PubMed

    Elia, Angela Rita; Grioni, Matteo; Basso, Veronica; Curnis, Flavio; Freschi, Massimo; Corti, Angelo; Mondino, Anna; Bellone, Matteo

    2018-05-01

    Purpose: Irregular blood flow and endothelial cell anergy, which characterize many solid tumors, hinder tumor infiltration by cytotoxic T lymphocytes (CTL). This confers resistance to cancer immunotherapy with monoclonal antibodies directed against regulatory pathways in T lymphocytes (i.e., immune checkpoint blockade, ICB). We investigated whether NGR-TNF, a TNF derivative capable of targeting the tumor vasculature, and improving intratumor infiltration by activated CTLs, could sensitize tumors to ICB with antibodies specific for the PD-1 and CTLA-4 receptors. Experimental Design: Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice with autochthonous prostate cancer and C57BL/6 mice with orthotopic B16 melanoma were treated with NGR-TNF, adoptive T-cell therapy (ACT), and ICB, and monitored for immune surveillance and disease progression. Results: The combination of ACT, NGR-TNF, and ICB was the most effective in delaying disease progression, and in improving overall survival of mice bearing ICB-resistant prostate cancer or melanoma. Mechanistically, the therapeutic effects were associated with potent tumor infiltration, especially by endogenous but also by adoptively transferred PD-1 + , granzyme B + , and interferon-γ + CTLs. The therapeutic effects were also associated with favorable T-effector/regulatory T cell ratios. Conclusions: Targeting the tumor vasculature with low-dose TNF in association with ACT may represent a novel strategy for enhancing T-cell infiltration in tumors and overcoming resistance to immune checkpoint blockers. Clin Cancer Res; 24(9); 2171-81. ©2018 AACR . ©2018 American Association for Cancer Research.

  9. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer

    PubMed Central

    Caromile, Leslie Ann; Dortche, Kristina; Rahman, M. Mamunur; Grant, Christina L.; Stoddard, Christopher; Ferrer, Fernando A.; Shapiro, Linda H.

    2017-01-01

    Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors. PMID:28292957

  10. Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis.

    PubMed

    Catena, Raul; Muniz-Medina, Vanessa; Moralejo, Beatriz; Javierre, Biola; Best, Carolyn J M; Emmert-Buck, Michael R; Green, Jeffrey E; Baker, Carl C; Calvo, Alfonso

    2007-05-15

    Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis. (c) 2007 Wiley-Liss, Inc.

  11. Comparative Analysis of Vitamin A (Retinol) Regulated Genes in African-American and Caucasian Prostate Cancer Patients

    DTIC Science & Technology

    2007-03-01

    chemoprevention strategies and to the development of novel therapies for this disease. 14. SUBJECT TERMS 15. NUMBER OF PAGES 13Retinoids, Vitamin A...the TRAMP model will ultimately lead to improved chemoprevention strategies and to the development of novel therapies for prostate cancer...Selective retinoids and rexinoids in cancer therapy and chemoprevention. Drug Discov Today, 7: 1165-1174, 2002. 5. Wei, L. N. Retinoid receptors and

  12. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  13. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity

    PubMed Central

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Dhar, Deepanshi; Panigrahi, Gati K.; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P.; Oberlies, Nicholas H.; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  14. Non-Invasive Prostate Cancer Characterization with Diffusion-Weighted MRI: Insight from In silico Studies of a Transgenic Mouse Model

    PubMed Central

    Hill, Deborah K.; Heindl, Andreas; Zormpas-Petridis, Konstantinos; Collins, David J.; Euceda, Leslie R.; Rodrigues, Daniel N.; Moestue, Siver A.; Jamin, Yann; Koh, Dow-Mu; Yuan, Yinyin; Bathen, Tone F.; Leach, Martin O.; Blackledge, Matthew D.

    2017-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) enables non-invasive, quantitative staging of prostate cancer via measurement of the apparent diffusion coefficient (ADC) of water within tissues. In cancer, more advanced disease is often characterized by higher cellular density (cellularity), which is generally accepted to correspond to a lower measured ADC. A quantitative relationship between tissue structure and in vivo measurements of ADC has yet to be determined for prostate cancer. In this study, we establish a theoretical framework for relating ADC measurements with tissue cellularity and the proportion of space occupied by prostate lumina, both of which are estimated through automatic image processing of whole-slide digital histology samples taken from a cohort of six healthy mice and nine transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. We demonstrate that a significant inverse relationship exists between ADC and tissue cellularity that is well characterized by our model, and that a decrease of the luminal space within the prostate is associated with a decrease in ADC and more aggressive tumor subtype. The parameters estimated from our model in this mouse cohort predict the diffusion coefficient of water within the prostate-tissue to be 2.18 × 10−3 mm2/s (95% CI: 1.90, 2.55). This value is significantly lower than the diffusion coefficient of free water at body temperature suggesting that the presence of organelles and macromolecules within tissues can drastically hinder the random motion of water molecules within prostate tissue. We validate the assumptions made by our model using novel in silico analysis of whole-slide histology to provide the simulated ADC (sADC); this is demonstrated to have a significant positive correlation with in vivo measured ADC (r2 = 0.55) in our mouse population. The estimation of the structural properties of prostate tissue is vital for predicting and staging cancer aggressiveness, but prostate tissue biopsies are painful, invasive, and are prone to complications such as sepsis. The developments made in this study provide the possibility of estimating the structural properties of prostate tissue via non-invasive virtual biopsies from MRI, minimizing the need for multiple tissue biopsies and allowing sequential measurements to be made for prostate cancer monitoring. PMID:29250485

  15. The Role of I-kappa-B Kinases in Prostate Carcinogenesis and the Effect of Their Inhibition on Survival of Prostate Tumors

    DTIC Science & Technology

    2007-01-01

    incorporation, which identifies cells undergoing DNA synthesis , was examined 2.5 hrs later. Fewer BrdU-positive cells were present in CaP of IkkαAA/AA/TRAMP...RNA synthesis are inhibited or in NF-κB-deficient cells. NF-κB exerts its pro-survival activity by induc- ing expression of several anti-apoptotic...new protein or RNA  synthesis  is inhibited or in NF-κB–deficient  cells. NF-κB exerts its pro-survival activity through several anti- apoptotic proteins

  16. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    PubMed

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  17. A Small Molecule Polyamine Oxidase Inhibitor Blocks Androgen-Induced Oxidative Stress and Delays Prostate Cancer Progression in the TRAMP Mouse Model

    PubMed Central

    Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George

    2009-01-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data demonstrate that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays prostate cancer progression. PMID:19773450

  18. Characterization of vitamin D insensitive prostate cancer cells

    PubMed Central

    Alagbala, Adebusola A.; Johnson, Candace S.; Trump, Donald L.; Foster, Barbara A.

    2007-01-01

    The antitumor effects of 1,25-dihydroxyvitamin D3 (calcitriol) are being exploited for prevention and treatment of prostate cancer (CaP). These studies examined antitumor effects of calcitriol in primary cell cultures derived from transgenic adenocarcinoma of mouse prostate (TRAMP) mice chronically treated with calcitriol (20μg/kg) or vehicle 3x/week (MWF) from 4 weeks-of-age until palpable tumors developed. This is a report on the response of 2 representative control (vitamin D naïve, naïve) and calcitriol-treated (vitamin D insensitive, VDI) cells to calcitriol. VDI cells were less sensitive to calcitriol based on less cell growth inhibition and less inhibition of DNA synthesis as measured by MTT and BrdU incorporation assays. Similarly, VDI cells were also less sensitive to growth inhibition by the vitamin analog, 19-nor-1α,25-dihydroxyvitamin D2 (paricalcitol). There was no change in apoptosis following treatment of naïve and VDI cells with calcitriol. Vitamin D receptor (VDR) expression was up-regulated by calcitriol in both naïve and VDI cells. Calcitriol induced the vitamin D metabolizing enzyme, 24-hydroxylase (cyp24) mRNA and enzyme activity similarly in naïve and VDI cells as measured by RT-PCR and HPLC respectively. In summary, VDI cells are less responsive to the antiproliferative effects of calcitriol. Understanding vitamin D insensitivity will further clinical development of vitamin D compounds for prevention and treatment of CaP. PMID:17280828

  19. Optoacoustic imaging of an animal model of prostate cancer

    NASA Astrophysics Data System (ADS)

    Patterson, Michelle P.; Arsenault, Michel; Riley, Chris; Kolios, Michael; Whelan, William M.

    2010-02-01

    Prostate cancer is currently the most common cancer among Canadian men. Due to an increase in public awareness and screening, prostate cancer is being detected at earlier stages and in much younger men. This is raising the need for better treatment monitoring approaches. Optoacoustic imaging is a new technique that involves exposing tissues to pulsed light and detecting the acoustic waves generated by the tissue. Optoacoustic images of a tumour bearing mouse and an agematched control were acquired for a 775 nm illumination using a reverse-mode imaging system. A murine model of prostate cancer, TRAMP (transgenetic adenocarcinoma of mouse prostate), was investigated. The results show an increase in optoacoustic signal generated by the tumour compared to that generated by the surrounding tissues with a contrast ratio of 3.5. The dimensions of the tumour in the optoacoustic image agreed with the true tumour dimensions to within 0.5 mm. In this study we show that there are detectable changes in optoacoustic signal strength that arise from the presence of a tumour in the prostate, which demonstrates the potential of optoacoustic imaging for the monitoring of prostate cancer therapy.

  20. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    PubMed

    Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  1. Curcumin Derivative Epigenetically Reactivates Nrf2 Antioxidative Stress Signaling in Mouse Prostate Cancer TRAMP C1 Cells.

    PubMed

    Li, Wenji; Su, Zheng-Yuan; Guo, Yue; Zhang, Chengyue; Wu, Renyi; Gao, Linbo; Zheng, Xi; Du, Zhi-Yun; Zhang, Kun; Kong, Ah-Ng

    2018-02-19

    The carcinogenesis of prostate cancer (PCa) in TRAMP model is highly correlated with hypermethylation in the promoter region of Nrf2 and the accompanying reduced transcription of Nrf2 and its regulated detoxifying genes. We aimed to investigate the effects of (3E,5E)-3,5-bis-(3,4,5-trimethoxybenzylidene)-tetrahydro-thiopyran-4-one (F10) and (3E,5E)-3,5-bis-(3,4,5-trimethoxy-benzylidene)-tetrahydropyran-4-one (E10), two synthetic curcumin derivatives, on restoring Nrf2 activity in TRAMP C1 cells. HepG2-C8 cells transfected with an antioxidant-response element (ARE)-luciferase vector were treated with F10, E10, curcumin, and sulforaphane (SFN) to compare their effects on Nrf2-ARE pathways. We performed real-time quantitative PCR and Western blotting to investigate the effects of F10 and E10 on Nrf2, correlated phase II detoxification genes. We also measured expression and activity of DNMTand HDAC enzymes. Enrichment of H3K27me3 on the promoter region of Nrf2 was explored with a chromatin immunoprecipitation (ChIP) assay. Methylation of the CpG region in Nrf2 promoter was doubly examined by bisulfite genomic sequencing (BGS) and methylation DNA immunoprecipitation (MeDIP). Compared with curcumin and SFN, F10 is more potent in activating Nrf2-ARE pathways. Both F10 and E10 enhanced level of Nrf2 and the correlated phase II detoxifying genes. BGS and MeDIP assays indicated that F10 but not E10 hypomethylated the Nrf2 promoter. F10 also downregulated the protein level of DNMT1, DNMT3a, DNMT3b, HDAC1, HDAC4, and HDAC7 and the activity of DNMTs and HDACs. F10 but not E10 effectively reduced the accumulation of H3k27me3 on the promoter of Nrf2. F10 and E10 can activate the Nrf2-ARE pathway and increase the level of Nrf2 and correlated phase II detoxification genes. The reactivation effect on Nrf2 by F10 in TRAMP C1 may come from demethylation, decrease of HDACs, and inhibition of H3k27me3 accumulation.

  2. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes.

    PubMed

    DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R

    2017-01-01

    It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Radiation Enhances Regulatory T Cell Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +}more » Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.« less

  4. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression

    PubMed Central

    Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R.; Altieri, Dario C.; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the “stemness” marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease. PMID:26107383

  5. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival.

    PubMed

    Rao, Dinesh S; Hyun, Teresa S; Kumar, Priti D; Mizukami, Ikuko F; Rubin, Mark A; Lucas, Peter C; Sanda, Martin G; Ross, Theodora S

    2002-08-01

    Huntingtin-interacting protein 1 (HIP1) is a cofactor in clathrin-mediated vesicle trafficking. It was first implicated in cancer biology as part of a chromosomal translocation in leukemia. Here we report that HIP1 is expressed in prostate and colon tumor cells, but not in corresponding benign epithelia. The relationship between HIP1 expression in primary prostate cancer and clinical outcomes was evaluated with tissue microarrays. HIP1 expression was significantly associated with prostate cancer progression and metastasis. Conversely, primary prostate cancers lacking HIP1 expression consistently showed no progression after radical prostatectomy. In addition, the expression of HIP1 was elevated in prostate tumors from the transgenic mouse model of prostate cancer (TRAMP). At the molecular level, expression of a dominant negative mutant of HIP1 led to caspase-9-dependent apoptosis, suggesting that HIP1 is a cellular survival factor. Thus, HIP1 may play a role in tumorigenesis by allowing the survival of precancerous or cancerous cells. HIP1 might accomplish this via regulation of clathrin-mediated trafficking, a fundamental cellular pathway that has not previously been associated with tumorigenesis. HIP1 represents a putative prognostic factor for prostate cancer and a potential therapy target in prostate as well as colon cancers.

  6. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival

    PubMed Central

    Rao, Dinesh S.; Hyun, Teresa S.; Kumar, Priti D.; Mizukami, Ikuko F.; Rubin, Mark A.; Lucas, Peter C.; Sanda, Martin G.; Ross, Theodora S.

    2002-01-01

    Huntingtin-interacting protein 1 (HIP1) is a cofactor in clathrin-mediated vesicle trafficking. It was first implicated in cancer biology as part of a chromosomal translocation in leukemia. Here we report that HIP1 is expressed in prostate and colon tumor cells, but not in corresponding benign epithelia. The relationship between HIP1 expression in primary prostate cancer and clinical outcomes was evaluated with tissue microarrays. HIP1 expression was significantly associated with prostate cancer progression and metastasis. Conversely, primary prostate cancers lacking HIP1 expression consistently showed no progression after radical prostatectomy. In addition, the expression of HIP1 was elevated in prostate tumors from the transgenic mouse model of prostate cancer (TRAMP). At the molecular level, expression of a dominant negative mutant of HIP1 led to caspase-9–dependent apoptosis, suggesting that HIP1 is a cellular survival factor. Thus, HIP1 may play a role in tumorigenesis by allowing the survival of precancerous or cancerous cells. HIP1 might accomplish this via regulation of clathrin-mediated trafficking, a fundamental cellular pathway that has not previously been associated with tumorigenesis. HIP1 represents a putative prognostic factor for prostate cancer and a potential therapy target in prostate as well as colon cancers. PMID:12163454

  7. LIGHT: A Novel Immunotherapy for Primary and Metastatic Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    and TRAMP-C2 LIGHT expressing cells to examine the frequency of Tregs subsequent to LIGHT interaction . These results reflect on the ability of LIGHT...cells. These data suggest that LIGHT interaction directly affects the induction of Tregs from a naïve CD4+ T cell population but also that this is not... interaction directly affects the induction of Tregs from a naïve CD4+ T cell population.  mPSCA TriVax induces infiltration of NK and MDSCs, whereas

  8. Development and Preclinical Application of an Immunocompetent Transplant Model of Basal Breast Cancer with Lung, Liver and Brain Metastases

    PubMed Central

    Hoenerhoff, Mark; Hixon, Julie A.; Durum, Scott K.; Qiu, Ting-hu; He, Siping; Burkett, Sandra; Liu, Zi-Yao; Swanson, Steven M.; Green, Jeffrey E.

    2016-01-01

    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is associated with a poor prognosis and for which no targeted therapies currently exist. In order to improve preclinical testing for TNBC that relies primarily on using human xenografts in immunodeficient mice, we have developed a novel immunocompetent syngeneic murine tumor transplant model for basal-like triple-negative breast cancer. The C3(1)/SV40-T/t-antigen (C3(1)/Tag) mouse mammary tumor model in the FVB/N background shares important similarities with human basal-like TNBC. However, these tumors or derived cell lines are rejected when transplanted into wt FVB/N mice, likely due to the expression of SV40 T-antigen. We have developed a sub-line of mice (designated REAR mice) that carry only one copy of the C3(1)/Tag-antigen transgene resulting from a spontaneous transgene rearrangement in the original founder line. Unlike the original C3(1)/Tag mice, REAR mice do not develop mammary tumors or other phenotypes observed in the original C3(1)/Tag transgenic mice. REAR mice are more immunologically tolerant to SV40 T-antigen driven tumors and cell lines in an FVB/N background (including prostate tumors from TRAMP mice), but are otherwise immunologically intact. This transplant model system offers the ability to synchronously implant the C3(1)/Tag tumor-derived M6 cell line or individual C3(1)/Tag tumors from various stages of tumor development into the mammary fat pads or tail veins of REAR mice. C3(1)/Tag tumors or M6 cells implanted into the mammary fat pads spontaneously metastasize at a high frequency to the lung and liver. M6 cells injected by tail vein can form brain metastases. We demonstrate that irradiated M6 tumor cells or the same cells expressing GM-CSF can act as a vaccine to retard tumor growth of implanted tumor cells in the REAR model. Preclinical studies performed in animals with an intact immune system should more authentically replicate treatment responses in human patients. PMID:27171183

  9. Beneficial effects of the naturally occurring flavonoid silibinin on the prostate cancer microenvironment: role of monocyte chemotactic protein-1 and immune cell recruitment.

    PubMed

    Ting, Harold; Deep, Gagan; Kumar, Sushil; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh

    2016-06-01

    Tumor microenvironment plays an essential role in prostate carcinogenesis and offers novel opportunities to prevent and treat prostate cancer (PCA). Here, we investigated the ability of cancer-associated fibroblasts (CAFs) to promote PCA progression, and silibinin efficacy to target this response. We collected conditioned media from CAFs treated with vehicle or silibinin, and labeled as control conditioned media (CCM) or silibinin-treatment conditioned media (SBCM), respectively. Next, we characterized the effect of CCM and SBCM treatment in several PCA cell lines (RWPE-1, WPE-1 NA-22, WPE-1 NB-14 and PC3). Result showed that compared with SBCM, CCM significantly reduces E-cadherin expression and increases invasiveness and clonogenicity in PCA cells. Further molecular studies identified monocyte chemotactic protein-1 (MCP-1) as the key component of CCM that promotes PCA invasiveness, whereas silibinin treatment strongly reduced MCP-1 expression in CAFs by inhibiting the DNA-binding activity of MCP-1 transcriptional regulators-nuclear factor-kappaB and AP-1. In vivo, silibinin feeding (200mg/kg body weight) strongly reduced TRAMPC1 allografts growth (by 68%) in syngeneic C57Bl/6 mice. TRAMPC1 tumor analysis showed that silibinin reduced MCP-1 and CAFs' biomarkers (fibroblast activation protein, α-smooth muscle actin, transforming growth factor beta 2, vimentin etc.) and significantly modulated the recruitment of immune cells in the tumor microenvironment. Similar inhibitory effects of silibinin on MCP-1 and immune cells recruitment were also observed in TRAMP PCA tissues with reported silibinin efficacy. Overall, our data suggest that silibinin can target CAF-mediated invasiveness in PCA by inhibiting MCP-1 secretion. This, in turn, was associated with a reduction in immune cell recruitment in vivo along with a marked reduction in tumor growth. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Beneficial effects of the naturally occurring flavonoid silibinin on the prostate cancer microenvironment: role of monocyte chemotactic protein-1 and immune cell recruitment

    PubMed Central

    Ting, Harold; Deep, Gagan; Kumar, Sushil; Jain, Anil K.; Agarwal, Chapla; Agarwal, Rajesh

    2016-01-01

    Tumor microenvironment plays an essential role in prostate carcinogenesis and offers novel opportunities to prevent and treat prostate cancer (PCA). Here, we investigated the ability of cancer-associated fibroblasts (CAFs) to promote PCA progression, and silibinin efficacy to target this response. We collected conditioned media from CAFs treated with vehicle or silibinin, and labeled as control conditioned media (CCM) or silibinin-treatment conditioned media (SBCM), respectively. Next, we characterized the effect of CCM and SBCM treatment in several PCA cell lines (RWPE-1, WPE-1 NA-22, WPE-1 NB-14 and PC3). Result showed that compared with SBCM, CCM significantly reduces E-cadherin expression and increases invasiveness and clonogenicity in PCA cells. Further molecular studies identified monocyte chemotactic protein-1 (MCP-1) as the key component of CCM that promotes PCA invasiveness, whereas silibinin treatment strongly reduced MCP-1 expression in CAFs by inhibiting the DNA-binding activity of MCP-1 transcriptional regulators—nuclear factor-kappaB and AP-1. In vivo, silibinin feeding (200mg/kg body weight) strongly reduced TRAMPC1 allografts growth (by 68%) in syngeneic C57Bl/6 mice. TRAMPC1 tumor analysis showed that silibinin reduced MCP-1 and CAFs’ biomarkers (fibroblast activation protein, α-smooth muscle actin, transforming growth factor beta 2, vimentin etc.) and significantly modulated the recruitment of immune cells in the tumor microenvironment. Similar inhibitory effects of silibinin on MCP-1 and immune cells recruitment were also observed in TRAMP PCA tissues with reported silibinin efficacy. Overall, our data suggest that silibinin can target CAF-mediated invasiveness in PCA by inhibiting MCP-1 secretion. This, in turn, was associated with a reduction in immune cell recruitment in vivo along with a marked reduction in tumor growth. PMID:27207648

  11. Interleukin-17 promotes development of castration-resistant prostate cancer potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment

    PubMed Central

    Zhang, Qiuyang; Liu, Sen; Zhang, Qingsong; Xiong, Zhenggang; Wang, Alun R.; Myers, Leann; Melamed, Jonathan; Tang, Wendell W.; You, Zongbing

    2014-01-01

    BACKGROUND Interleukin-17 (IL-17) has been demonstrated to promote formation and growth of hormone-naïve prostate adenocarcinoma in mice. IL-17’s role in development of castration-resistant prostate cancer is unknown. In the present study, we investigated IL-17’s role in castration-resistant prostate cancer in a mouse model. METHODS IL-17 receptor C (IL-17RC) deficient mice were interbred with Pten conditional mutant mice to produce RC+ mice that maintained IL-17RC expression and RC− mice that were IL-17RC deficient. Male RC+ and RC− mice were Pten-null and were castrated at 16 weeks of age when invasive prostate cancer had already formed. At 30 weeks of age, all male mice were analyzed for the prostate phenotypes. RESULTS RC− mice displayed prostates that were smaller than RC+ mice. Approximately 23% of prostatic glands in RC− mice, in contrast to 65% of prostatic glands in RC+ mice, developed invasive adenocarcinomas. Compared to castrate RC+ mice, castrate RC− mouse prostate had lower rates of cellular proliferation and higher rates of apoptosis as well as lower levels of MMP7, YBX1, MTA1, and UBE2C proteins. In addition, castrate RC− mouse prostate had less angiogenesis, which was associated with decreased levels of COX-2 and VEGF. Moreover, castrate RC− mouse prostate had fewer inflammatory cells including lymphocytes, myeloid-derived suppressor cells, and macrophages. CONCLUSIONS Taken together, our findings suggest that IL-17 promotes development of invasive prostate adenocarcinomas under castrate conditions, potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment. PMID:24691769

  12. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model.

    PubMed

    Wada, Satoshi; Yoshimura, Kiyoshi; Hipkiss, Edward L; Harris, Tim J; Yen, Hung-Rong; Goldberg, Monica V; Grosso, Joseph F; Getnet, Derese; Demarzo, Angelo M; Netto, George J; Anders, Robert; Pardoll, Drew M; Drake, Charles G

    2009-05-15

    To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.

  13. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Motrich, Ruben D; Sanchez, Leonardo R; Rivero, Virginia E

    2017-01-01

    Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration and secretion of inflammatory mediators. Our results corroborate and support the notion that mice with different genetic background have different susceptibility to EAP induction. Prostate 77:94-104, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    PubMed Central

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  15. Prostate anatomy in motheaten viable (me(v)) mice with mutations in the protein tyrosine phosphatase SHP-1.

    PubMed

    García-Tello, A; Angulo, J C; Rodriguez-Ubreva, J; Andrés, G; López, J I; Sánchez-Chapado, M; López-Ruiz, P; Colás, B

    2014-09-01

    To study prostate and seminal vesicle anatomy in viable motheaten (mev) with mutations in PTPN6 gene leading to a severe reduction in the activity of protein tyrosine phosphatase SHP-1. Homozygous mev mice exhibit multiple anomalies that include immunodeficiencies, increased proliferation of macrophage, neutrophil, and erythrocyte progenitors, decreased bone density and sterility. We analyzed macro- and microscopic anatomy of the seminal vesicle and prostate macro- and microscopic anatomy of 5 mev/mev and 8 wt/wt adult 7 week old mice. Computerized morphometric analysis was performed to measure the relative changes appearing in the epithelial volume of the different prostatic lobes. All mice studied revealed normal genital organs (penis, testis, epididymis, vas deferens) and bladder. The seminal vesicle was absent in all mev/mev individuals analyzed, being normal and very noticeable in wt/wt mice. The different glands that compose the prostatic complex (anterior, ventral and dorso-lateral prostate) were atrophied in mev/mev mice: anterior prostate 0.4 times, ventral 0.19 times, dorsal 0.35 times and lateral 0.28 times those of the respective regions in wt/wt mice. Microscopically, mev/mev mice revealed scarce and large prostatic ducts, acini severely atrophic with empty lumen and scarce loose epithelial component forming tufts and infoldings, and hyperplastic changes in fibromuscular stroma. The prostate of mev/mev mice exhibits signs of aberrant differentiation and the resulting phenotype may be related to the loss of function of SHP-1. Prostatic anomalies in these mice affect, together with defects in sperm maduration, for their sterility. These data suggest SHP-1 plays an important role in prostate epithelial morphogenesis. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  16. Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice.

    PubMed

    Huang, Ya; Chen, Huaguo; Zhou, Xin; Wu, Xingdong; Hu, Enming; Jiang, Zhengmeng

    2017-08-15

    This study aimed to evaluate the inhibitory effects and explore mechanisms of chlorogenic acid against testosterone-induced benign prostatic hyperplasia (BPH) in mice. Benign prostatic hyperplasia model was induced in experimental groups by daily subcutaneous injections of testosterone propionate (7.5mg/kg/d) consecutively for 14 d. A total of 60 mice were randomly divided into six groups: (Group 1) normal control group, (Group 2) benign prostatic hyperplasia model control group, (Group 3) benign prostatic hyperplasia mice treated with finasteride at a dose of 1mg/kg, (Group 4) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 0.8mg/kg (low dose group), (Group 5) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 1.6mg/kg (medium dose group) and (Group 6) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 3.2mg/kg (high dose group). Animals were sacrificed on the scheduled termination, pick out the eyeball to get blood, then prostates were weighed and prostatic index were determined. Then the serum acid phosphatase (ACP), prostatic acid phosphatase (PACP) and typeⅡ5-alpha-reductase (SRD5A2) levels were measured and observed morphological changes of the prostate. Comparing with benign prostatic hyperplasia model group, the high and medium dose of chlorogenic acid could significantly reduce prostate index and levels of acid phosphatase, prostatic acid phosphatase and typeⅡ5-alpha-reductase (P<0.05 or P<0.01). These findings were supported by histopathological observations of prostate tissues. Histopathological examination also indicated that chlorogenic acid treatment at the high and medium doses inhibited testosterone-induced prostatic hyperplasia. The results indicated that chlorogenic acid exhibited restraining effect on benign prostatic hyperplasia model animals, and its mechanism might be related to inhibit typeⅡ5-alpha reductase activity. Copyright © 2017. Published by Elsevier B.V.

  17. Behavioral stress accelerates prostate cancer development in mice

    PubMed Central

    Hassan, Sazzad; Karpova, Yelena; Baiz, Daniele; Yancey, Dana; Pullikuth, Ashok; Flores, Anabel; Register, Thomas; Cline, J. Mark; D’Agostino, Ralph; Danial, Nika; Datta, Sandeep Robert; Kulik, George

    2013-01-01

    Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress–prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog–deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling. PMID:23348742

  18. A new serially transplantable human prostatic cancer (HONDA) in nude mice.

    PubMed

    Ito, Y Z; Nakazato, Y

    1984-08-01

    A new serially transplantable human prostatic cancer (HONDA) in nude mice was established from a patient with metastatic prostate carcinoma. The tumor grows well in male nude mice. Doubling time of the tumor weight at passage #13 was 9.5 +/- 0.87 days (mean +/- SD). The tumor retains the original histological features of adenocarcinoma even after 6 years of continuous passage. High levels of human prostatic acid phosphatase were detected by radioimmunoassay in sera from the tumor-bearing mice. The tumor cells contain human prostate specific antigen. Electron microscopy showed particles resembling type A retroviruses in cisterns of endoplasmic reticulum, and particles resembling type C retroviruses in the intercellular space of the tumor cells. The tumor grew well in female mice treated with testosterone, but not in untreated female mice or castrated male mice.

  19. Conditional Deletion of the Pten Gene in the Mouse Prostate Induces Prostatic Intraepithelial Neoplasms at Early Ages but a Slow Progression to Prostate Tumors

    PubMed Central

    Zhu, Chunfang; Lee, Suk Hyung; Ye, Ding-Wei; Luong, Richard; Sun, Zijie

    2013-01-01

    The PTEN tumor suppressor gene is frequently inactivated in human prostate cancer. Using Osr1 (odd skipped related 1)-Cre mice, we generated a novel conditional Pten knockout mouse strain, PtenLoxP:Osr1-Cre. Conditional biallelic and monoallelic Pten knockout mice were viable. Deletion of Pten expression was detected in the prostate of PtenLoxP/LoxP:Osr1-Cre mice as early as 2 weeks of age. Intriguingly, PtenLoxP/LoxP:Osr1-Cre mice develop high-grade prostatic intraepithelial neoplasms (PINs) with high penetrance as early as one-month of age, and locally invasive prostatic tumors after 12-months of age. PtenLoxP/+:Osr1-Cre mice show only mild oncogenic changes after 8-weeks of age. Castration of PtenLoxP/LoxP:Osr1-Cre mice shows no significant regression of prostate tumors, although a shift of androgen receptor (AR) staining from the nuclei to cytoplasm is observed in Pten null tumor cells of castrated mice. Enhanced Akt activity is observed in Pten null tumor cells of castrated PtenLoxP/LoxP:Osr1-Cre. This study provides a novel mouse model that can be used to investigate a primary role of Pten in initiating oncogenic transformation in the prostate and to examine other genetic and epigenetic changes that are required for tumor progression in the mouse prostate. PMID:23308230

  20. Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Fang-Hsin; Fu, Sheng-Yung; Yang, Ying-Chieh

    2013-07-15

    Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumormore » microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.« less

  1. Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model.

    PubMed

    Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Cunningham, David M; Huang, Feng; Ma, Lin; Burris, Thomas P; You, Zongbing

    2017-06-01

    Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected intraperitoneally (i.p.) twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected intravenously (i.v.) once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10 weeks old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. Prostate 77:888-899, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice.

    PubMed

    Akinsete, Juliana A; Ion, Gabriela; Witte, Theodore R; Hardman, W Elaine

    2012-01-01

    Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO-CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO-CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO-CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice.

  3. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice

    PubMed Central

    Ion, Gabriela; Witte, Theodore R.; Hardman, W.Elaine

    2012-01-01

    Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO–CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO–CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO–CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice. PMID:22045025

  4. Targeting Th17-IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model

    PubMed Central

    Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Cunningham, David M.; Huang, Feng; Ma, Lin; Burris, Thomas P.; You, Zongbing

    2017-01-01

    Background Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. Methods The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected i.p. twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected i.v. once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10-week-old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. Results We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. Conclusions These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. PMID:28240383

  5. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    PubMed

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  6. Targeting Therapy Resistant Tumor Vessels

    DTIC Science & Technology

    2008-08-01

    No 6 C8161 s.c. xenografts No 5 K14-HPV16 skin cancer No 4 MDA-MB-435 orthotopic xenografts No 4 AGR TRAMP PIN lesions TRAMP PIN lesions Yes 18 TRAMP...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c...Summary We developed three tumor models under this project: 4T1 mouse breast cancer and MDA-MB-435 human cancer xenograft tumors treated with anti

  7. Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice

    PubMed Central

    Tuomela, Johanna M; Valta, Maija P; Väänänen, Kalervo; Härkönen, Pirkko L

    2008-01-01

    Background Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells in vitro. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis. Methods PC-3 cells (5 × 105) were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c.) or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry. Results Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm3, range: 96–485 mm3, n = 11) in the alendronate-treated mice was 41% of that in the control mice (513 mm3, range: 209–1350 mm3, n = 13) (p < 0.05). In the iliac and sacral lymph nodes of alendronate-treated mice, the proportion of metastatic area was only about 10% of that in control mice (p < 0.001). Immunohistochemical staining of tumor sections showed that alendronate treatment caused a marked decrease in the number of CD34-positive endothelial cells in tumors (p < 0.001) and an increase in that of ISEL positive apoptotic cells in tumors as well as in lymph node metastases (p < 0.05) compared with those in the vehicle-treated mice. The density of m-LYVE-1-stained lymphatic capillaries was not changed. Conclusion Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by decreased angiogenesis and increased apoptosis. The results suggest that bisphosphonates have anti-tumoral and anti-invasive effects on primary prostate cancer. PMID:18371232

  8. Slow Disease Progression in a C57BL/6 Pten-Deficient Mouse Model of Prostate Cancer

    PubMed Central

    Svensson, Robert U.; Haverkamp, Jessica M.; Thedens, Daniel R.; Cohen, Michael B.; Ratliff, Timothy L.; Henry, Michael D.

    2011-01-01

    Prostate-specific deletion of Pten in mice has been reported to recapitulate histological progression of human prostate cancer. To improve on this model, we introduced the conditional ROSA26 luciferase reporter allele to monitor prostate cancer progression via bioluminescence imaging and extensively backcrossed mice onto the albino C57BL/6 genetic background to address variability in tumor kinetics and to enhance imaging sensitivity. Bioluminescence signal increased rapidly in Ptenp−/− mice from 3 to 11 weeks, but was much slower from 11 to 52 weeks. Changes in bioluminescence signal were correlated with epithelial proliferation. Magnetic resonance imaging revealed progressive increases in prostate volume, which were attributed to excessive fluid retention in the anterior prostate and to expansion of the stroma. Development of invasive prostate cancer in 52-week-old Ptenp−/− mice was rare, indicating that disease progression was slowed relative to that in previous reports. Tumors in these mice exhibited a spontaneous inflammatory phenotype and were rapidly infiltrated by myeloid-derived suppressor cells. Although Ptenp−/− tumors responded to androgen withdrawal, they failed to exhibit relapsed growth for up to 1 year. Taken together, these data identify a mild prostate cancer phenotype in C57BL/6 prostate-specific Pten-deficient mice, reflecting effects of the C57BL/6 genetic background on cancer progression. This model provides a platform for noninvasive assessment of how genetic and environmental risk factors may affect disease progression. PMID:21703427

  9. Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease.

    PubMed

    Welsh, Michelle; Moffat, Lindsey; McNeilly, Alan; Brownstein, David; Saunders, Philippa T K; Sharpe, Richard M; Smith, Lee B

    2011-09-01

    Androgen-driven stromal-epithelial interactions play a key role in normal prostate development and function as well as in the progression of common prostatic diseases such as benign prostatic hyperplasia and prostate cancer. However, exactly how, and via which cell type, androgens mediate their effects in the adult prostate remains unclear. This study investigated the role for smooth muscle (SM) androgen signaling in normal adult prostate homeostasis and function using mice in which androgen receptor was selectively ablated from prostatic SM cells. In adulthood the knockout (KO) mice displayed a 44% reduction in prostate weight and exhibited histological abnormalities such as hyperplasia, inflammation, fibrosis, and reduced expression of epithelial, SM, and stem cell identify markers (e.g. p63 reduced by 27% and Pten by 31%). These changes emerged beyond puberty and were not explained by changes in serum hormones. Furthermore, in response to exogenous estradiol, adult KO mice displayed an 8.5-fold greater increase in prostate weight than controls and developed urinary retention. KO mice also demonstrated a reduced response to castration compared with controls. Together these results demonstrate that prostate SM cells are vital in mediating androgen-driven stromal-epithelial interactions in adult mouse prostates, determining cell identity and function and limiting hormone-dependent epithelial cell proliferation. This novel mouse model provides new insight into the possible role for SM androgen action in prostate disease.

  10. Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts.

    PubMed

    Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan

    2012-03-01

    Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.

  11. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  12. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  13. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  14. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  15. In situ vaccination with CD204 gene-silenced dendritic cell, not unmodified dendritic cell, enhances radiation therapy of prostate cancer

    PubMed Central

    Guo, Chunqing; Yi, Huanfa; Yu, Xiaofei; Zuo, Daming; Qian, Jie; Yang, Gary; Foster, Barbara A.; Subjeck, John R.; Sun, Xiaolei; Mikkelsen, Ross B.; Fisher, Paul B.; Wang, Xiang-Yang

    2012-01-01

    Given the complexity of prostate cancer progression and metastasis, multimodalities that target different aspects of tumor biology, e.g., radiotherapy (RT) in conjunction with immunotherapy, may provide the best opportunities for promoting clinical benefits in patients with high risk localized prostate cancer. Here we show that intratumoral administration of unmodified dendritic cells (DCs) failed to synergize with fractionated RT. However, ionizing radiation combined with in situ vaccination with DCs, in which the immunosuppressive scavenger receptor A (SRA/CD204) has been downregulated by lentivirus-mediated gene silencing, profoundly suppressed the growth of two mouse prostate cancers (e.g., RM1 and TRAMP-C2), and prolonged the lifespan of tumor-bearing animals. Treatment of subcutaneous tumors with this novel combinatorial radio-immunotherapeutic regimen resulted in a significant reduction in distant experimental metastases. SRA/CD204-silenced DCs were highly efficient in generating antigen or tumor-specific T cells with increased effector functions (e.g., cytokine production and tumoricidal activity). SRA/CD204 silencing-enhanced tumor cell death was associated with elevated IFN-γ levels in tumor tissue and increased tumor-infiltrating CD8+ cells. IFN-γ neutralization or depletion of CD8+ cells abrogated the SRA/CD204 downregulation-promoted antitumor efficacy, indicating a critical role of IFN-γ-producing CD8+ T cells. Therefore, blocking SRA/CD204 activity significantly enhances the therapeutic potency of local RT combined with in situ DC vaccination by promoting a robust systemic antitumor immunity. Further studies are warranted to test this novel combinatorial approach for translating into improved clinical outcomes in prostate cancer patients. PMID:22896667

  16. Novel Immune Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    DTIC Science & Technology

    2016-10-01

    transgenic mice are taking much longer than we anticipated. This is because the experiments start when mice are 12 weeks old...as they are harder to breed . Importantly, we cannot always stagger the experiments, because data from the preceding experiment is used to plan...description is below. Monitoring autoimmune prostatitis (lymphomononuclear cell infiltrates in prostate gland): Non- transgenic male mice (BL/6)

  17. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology.

    PubMed

    Lin, Yu-Chun; Lin, Gigin; Hong, Ji-Hong; Lin, Yi-Ping; Chen, Fang-Hsin; Ng, Shu-Hang; Wang, Chun-Chieh

    2017-08-01

    To investigate the biological meaning of apparent diffusion coefficient (ADC) values in tumors following radiotherapy. Five mice bearing TRAMP-C1 tumor were half-irradiated with a dose of 15 Gy. Diffusion-weighted images, using multiple b-values from 0 to 3000 s/mm 2 , were acquired at 7T on day 6. ADC values calculated by a two-point estimate and monoexponential fitting of signal decay were compared between the irradiated and nonirradiated regions of the tumor. Pixelwise ADC maps were correlated with histological metrics including nuclear counts, nuclear sizes, nuclear spaces, cytoplasmic spaces, and extracellular spaces. As compared with the nonirradiated region, the irradiated region exhibited significant increases in ADC, extracellular space, and nuclear size, and a significant decrease in nuclear counts (P < 0.001 for all). Optimal ADC to differentiate the irradiated from nonirradiated regions was achieved at a b-value of 800 s/mm 2 by the two-point method and monoexponential curve fitting. ADC positively correlated with extracellular spaces (r = 0.74) and nuclear sizes (r = 0.72), and negatively correlated with nuclear counts (r = -0.82, P < 0.001 for all). As a radiomic biomarker, ADC maps correlating with histological metrics pixelwise could be a means of evaluating tumor heterogeneity and responses to radiotherapy. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:483-489. © 2017 International Society for Magnetic Resonance in Medicine.

  18. LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer.

    PubMed

    Battaglia, Sebastiano; Karasik, Ellen; Gillard, Bryan; Williams, Jennifer; Winchester, Trisha; Moser, Michael T; Smiraglia, Dominic J; Foster, Barbara A

    2017-01-01

    Lysine-specific demethylase 1A (LSD1) is a key regulator of the androgen (AR) and estrogen receptors (ER), and LSD1 levels correlate with tumor aggressiveness. Here, we demonstrate that LSD1 regulates vitamin D receptor (VDR) activity and is a mediator of 1,25(OH) 2 -D 3 (vitamin D) action in prostate cancer (PCa). Athymic nude mice were xenografted with CWR22 cells and monitored weekly after testosterone pellet removal. Expression of LSD1 and VDR (IHC) were correlated with tumor growth using log-rank test. TRAMP tumors and prostates from wild-type (WT) mice were used to evaluate VDR and LSD1 expression via IHC and western blotting. The presence of VDR and LSD1 in the same transcriptional complex was evaluated via immunoprecipitation (IP) using nuclear cell lysate. The effect of LSD1 and 1,25(OH) 2 -D 3 on cell viability was evaluated in C4-2 and BC1A cells via trypan blue exclusion. The role of LSD1 in VDR-mediated gene transcription was evaluated for Cdkn1a , E2f1 , Cyp24a1 , and S100g via qRT-PCR-TaqMan and via chromatin immunoprecipitation assay. Methylation of Cdkn1a TSS was measured via bisulfite sequencing, and methylation of a panel of cancer-related genes was quantified using methyl arrays. The Cancer Genome Atlas data were retrieved to identify genes whose status correlates with LSD1 and DNA methyltransferase 1 (DNMT1). Results were correlated with patients' survival data from two separate cohorts of primary and metastatic PCa. LSD1 and VDR protein levels are elevated in PCa tumors and correlate with faster tumor growth in xenograft mouse models. Knockdown of LSD1 reduces PCa cell viability, and gene expression data suggest a dual coregulatory role of LSD1 for VDR, acting as a coactivator and corepressor in a locus-specific manner. LSD1 modulates VDR-dependent transcription by mediating the recruitment of VDR and DNMT1 at the TSS of VDR-targeted genes and modulates the epigenetic status of transcribed genes by altering H3K4me2 and H3K9Ac and DNA methylation. Lastly, LSD1 and DNMT1 belong to a genome-wide signature whose expression correlates with shorter progression-free survival and overall survival in primary and metastatic patients' samples, respectively. Results demonstrate that LSD1 has a dual coregulatory role as corepressor and coactivator for VDR and defines a genomic signature whose targeting might have clinical relevance for PCa patients.

  19. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    DTIC Science & Technology

    2016-10-01

    Subtask 2: Investigate if NFATc1 promotes the progression of hormone -naïve prostate cancer into castration-resistant prostate cancer 1-18 Drs...combating prostate cancer progression. In order to determine if NFATc1-induced prostate cancer would respond to hormone deprivation therapy, such as...doxycycline (Dox). These tumor cells were then injected to the rear flanks of the nude mice. Recipient mice treated with Dox showed growth of tumor as

  20. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Motrich, Ruben D; Breser, María L; Sánchez, Leonardo R; Godoy, Gloria J; Prinz, Immo; Rivero, Virginia E

    2016-03-01

    Pain and inflammation in the absence of infection are hallmarks in chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) patients. The etiology of CP/CPPS is unclear, and autoimmunity has been proposed as a cause. Experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. Herein, we studied prostate inflammation induction and chronic pelvic pain development in EAP using IL-12p40-KO, IL-4-KO, IL-17-KO, and wild-type (C57BL/6) mice. Prostate antigen (PAg) immunization in C57BL/6 mice induced specific Th1 and Th17 immune responses and severe prostate inflammation and cell infiltration, mainly composed of CD4 T cells and macrophages. Moreover, chronic pelvic pain was evidenced by increased allodynia responses. In immunized IL-17-KO mice, the presence of a prominent PAg-specific Th1 immune response caused similar prostate inflammation and chronic pelvic pain. Furthermore, markedly high PAg-specific Th1 immune responses, exacerbated prostate inflammation, and chronic pelvic pain were detected in immunized IL-4-KO mice. Conversely, immunized IL-12p40-KO mice developed PAg-specific Th2 immune responses, characterized by high IL-4 secretion and neither infiltration nor damage in the prostate. As observed in wild-type control animals, IL12p40-KO mice did not evidence tactile allodynia responses. Our results suggest that, as in patients, chronic pelvic pain is a consequence of prostate inflammation. After PAg immunization, a Th1-associated immune response develops and induces prostate inflammation and chronic pelvic pain. The absence of Th1 or Th2 cytokines, respectively, diminishes or enhances EAP susceptibility. In addition, IL-17 showed not to be essential for pathology induction and chronic pelvic pain development.

  1. Induction of Immune Mediators in Glioma and Prostate Cancer Cells by Non-Lethal Photodynamic Therapy

    PubMed Central

    Kammerer, Robert; Buchner, Alexander; Palluch, Patrick; Pongratz, Thomas; Oboukhovskij, Konstantin; Beyer, Wolfgang; Johansson, Ann; Stepp, Herbert; Baumgartner, Reinhold; Zimmermann, Wolfgang

    2011-01-01

    Background Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. Methodology/Principal Findings Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. Conclusions Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways. PMID:21738796

  2. Vascular Endothelial Growth Factor and Angiopoietin are Required for Prostate Regeneration.

    PubMed Central

    Wang, Gui-min; Kovalenko, Bruce; Huang, Yili; Moscatelli, David

    2007-01-01

    BACKGROUND The regulation of the prostate size by androgens may be partly the result of androgen effects on the prostatic vasculature. We examined the effect of changes in androgen levels on the expression of a variety of angiogenic factors in the mouse prostate and determined if vascular endothelial growth factor (VEGF)-A and the angiopoietins are involved in the vascular response to androgens. METHODS Expression of angiogenic factors in prostate was quantitated using real-time PCR at different times after castration and after administration of testosterone to castrated mice. Angiopoietins were localized in prostate by immunohistochemistry and in situ hybridization. The roles of VEGF and the angiopoietins in regeneration of the prostate were examined in mice inoculated with cells expressing soluble VEGF receptor-2 or soluble Tie-2. RESULTS Castration resulted in a decrease in VEGF-A, VEGF-B, VEGF-C, placenta growth factor, FGF-2, and FGF-8 expression after one day. In contrast, VEGF-D mRNA levels increased. No changes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), hepatocyte growth factor, VEGF receptor-1, VEGF receptor-2 or tie-2 mRNA levels were observed. Administration of testosterone to castrated mice had the opposite effect on expression of these angiogenic factors. Ang-2 was expressed predominately in prostate epithelial cells whereas Ang-1 was expressed in epithelium and smooth muscle. Inoculation of mice with cells expressing soluble VEGF receptor-2 or Tie-2 blocked the increase in vascular density normally observed after administration of testosterone to castrated mice. The soluble receptors also blocked the increase in prostate weight and proliferation of prostatic epithelial cells. CONCLUSION VEGF-A and angiopoietins are required for the vascular response to androgens and for the ability of the prostate to regenerate in response to androgens. PMID:17221843

  3. Conditional Expression of the Androgen Receptor Induces Oncogenic Transformation of the Mouse Prostate*

    PubMed Central

    Zhu, Chunfang; Luong, Richard; Zhuo, Ming; Johnson, Daniel T.; McKenney, Jesse K.; Cunha, Gerald R.; Sun, Zijie

    2011-01-01

    The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting “conditionally” activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hARloxP:Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development. PMID:21795710

  4. A novel murine model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by immunization with a spermine binding protein (p25) peptide

    PubMed Central

    Altuntas, Cengiz Z.; Veizi, Elias; Izgi, Kenan; Bicer, Fuat; Ozer, Ahmet; Grimberg, Kerry O.; Bakhautdin, Bakytzhan; Sakalar, Cagri; Tasdemir, Cemal; Tuohy, Vincent K.

    2013-01-01

    The pathophysiology of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is poorly understood. Inflammatory and autoimmune mechanisms may play a role. We developed a murine model of experimental autoimmune prostatitis (EAP) that mimics the human phenotype of CP/CPPS. Eight-week-old mice were immunized subcutaneously with prostate-specific peptides in an emulsion of complete Freund's adjuvant. Mice were euthanized 10 days after immunization, and lymph node cells were isolated and assessed for recall proliferation to each peptide. P25 99–118 was the most immunogenic peptide. T-cell and B-cell immunity and serum levels of C-reactive protein and nitrate/nitrite levels were evaluated over a 9-wk period. Morphometric studies of prostate, 24-h micturition frequencies, and urine volume per void were evaluated. Tactile referred hyperalgesia was measured using von Frey filaments to the pelvic region. The unpaired Student's t-test was used to analyze differences between EAP and control groups. Prostates from p25 99–118-immunized mice demonstrated elevated gene expression levels of TNF-α, IL-17A, IFN-γ, and IL-1β, not observed in control mice. Compared with controls, p25 99–118-immunized mice had significantly higher micturition frequency and decreased urine output per void, and they demonstrated elevated pelvic pain response. p25 99–118 immunization of male SWXJ mice induced prostate-specific autoimmunity characterized by prostate-confined inflammation, increased micturition frequency, and pelvic pain. This autoimmune prostatitis model provides a useful tool for exploring the pathophysiology and new treatments. PMID:23344231

  5. High-fat Diet-induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling.

    PubMed

    Hayashi, Takuji; Fujita, Kazutoshi; Nojima, Satoshi; Hayashi, Yujiro; Nakano, Kosuke; Ishizuya, Yu; Wang, Cong; Yamamoto, Yoshiyuki; Kinouchi, Toshiro; Matsuzaki, Kyosuke; Jingushi, Kentaro; Kato, Taigo; Kawashima, Atsunari; Nagahara, Akira; Ujike, Takeshi; Uemura, Motohide; Rodriguez Pena, Maria Del Carmen; Gordetsky, Jennifer B; Morii, Eiichi; Tsujikawa, Kazutake; Netto, George J; Nonomura, Norio

    2018-05-18

    High-fat diet (HFD) could induce prostate cancer progression. The aim of this study is to identify mechanisms of HFD-induced prostate cancer progression, focusing on inflammation. We administered HFD and celecoxib to autochthonous immunocompetent Pb-Cre+; Pten(fl/fl) model mice for prostate cancer. Tumor growth was evaluated by tumor weight and Ki67 stain, and local immune cells were assessed by flow cytometry at 22 weeks of age. Cytokines which correlated with tumor growth were identified, and the changes of tumor growth and local immune cells after inhibition of the cytokine signals were evaluated in the mice. Immunohistochemical analyses using prostatectomy specimens of obese patients were performed. HFD accelerated tumor growth, and increased the myeloid-derived suppressor cells (MDSCs) fraction and M2/M1 macrophage ratio in the model mice. Celecoxib suppressed tumor growth, and decreased both local MDSCs and M2/M1 macrophage ratio in HFD-fed mice. HFD-induced tumor growth was associated with IL6 secreted by prostatic macrophages, as were phosphorylated signal transducer and activator of transcription 3 (pSTAT3)-positive tumor cells. Anti-IL6 receptor antibody administration suppressed tumor growth, and decreased local MDSCs and pSTAT3-positive cell fractions in HFD-fed mice. The tumor-infiltrating CD11b-positive cell count was significantly higher in prostatectomy specimens of obese than those of non-obese prostate cancer patients. HFD increased MDSCs and accelerated prostate cancer tumor growth via IL6/pSTAT3 signaling in the mice. This mechanism could exist in obese prostate cancer patients. IL6-mediated inflammation could be a therapeutic target for prostate cancer. Copyright ©2018, American Association for Cancer Research.

  6. Diet and Epigenetic Interactions in Prostate Cancer Prevention

    DTIC Science & Technology

    2011-06-01

    for pathology. In this study, dietary SFN, fed as freeze-dried broccoli sprouts, increased SFN content in the prostate (Figure 5A) and decreased the...and Exercise Sciences seminar (April 2010) “Cancer Prevention with Broccoli – from Cellular to Human Studies” Cancer chemoprevention seminar...mice. (A) Liver, kidney, colon and prostates were collected from mice fed standard diet and mice fed a 15% broccoli diet and processed according to

  7. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  8. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  9. Concurrent Hepsin overexpression and adenomatous polyposis coli deletion causes invasive prostate carcinoma in mice.

    PubMed

    Valkenburg, Kenneth C; Hostetter, Galen; Williams, Bart O

    2015-10-01

    A clinical need to better categorize patients with prostate cancer exists. The Wnt/β-catenin signaling pathway plays important roles in human prostate cancer progression. Deletion of the endogenous Wnt antagonist adenomatous polyposis coli (Apc) in mice causes high grade prostate intraepithelial neoplasia, widely thought to be the precursor to prostate cancer. However, no metastasis occurrs in this model. New mouse models are needed to determine molecular causes of tumorigenesis, progression, and metastasis. To determine whether the overexpression of the prostate oncogene Hepsin could cause prostate cancer progression, we crossed a prostate-specific Hepsin overexpression model to a prostate-specific Apc-deletion model and classified the observed phenotype. When Apc was deleted and Hepsin overexpressed concurrently, mice displayed invasive carcinoma, with loss of membrane characteristics and increase of fibrosis. These tumors had both luminal and basaloid characteristics. Though no metastasis was observed, there was evidence of adenomas and lung necrosis, inflammation, and chronic hemorrhage. This work indicates that the Wnt/β-catenin pathway and the Hepsin pathway act in concert to promote prostate cancer progression. Both of these pathways are up-regulated in human prostate cancer and could represent chemotherapeutic targets. © 2015 Wiley Periodicals, Inc.

  10. Evaluating the Efficacy of ERG Targeted Therapy in vivo for Prostate Tumors

    DTIC Science & Technology

    2016-06-01

    we used may have undergone silencing which is a well characterized phenomenon in transgenic mice.  Re-initiated breeding for novel bitransgenic...a target for prostate cancer therapy by using novel transgenic mice. As many as 50% of prostate cancers possess a chromosomal translocation... breeding of more mice using a different tetO-ERG founder line and are in the midst of processing samples for analysis. Despite these setbacks

  11. Antagonistic effect of Lepidium meyenii (red maca) on prostatic hyperplasia in adult mice.

    PubMed

    Gonzales, G F; Gasco, M; Malheiros-Pereira, A; Gonzales-Castañeda, C

    2008-06-01

    The plants from the Lepidium gender have demonstrated to have effect on the size of the prostate. Lepidium meyenii (Maca) is a Peruvian plant that grows exclusively over 4000 m above sea level. The present study was designed to determine the effect of red maca (RM) in the prostate hyperplasia induced with testosterone enanthate (TE) in adult mice. Prostate hyperplasia was induced by administering TE, and then these animals (n = 6, each group) were treated with RM or Finasteride (positive control) for 21 days. There was an additional group without prostate hyperplasia (vehicle). Mice were killed on days 7, 14 and 21 after treatment with RM. Testosterone and oestradiol levels were measured on the last day of treatment. Prostatic stroma, epithelium and acini were measured histologically. RM reduced prostate weight at 21 days of treatment. Weights of seminal vesicles, testis and epididymis were not affected by RM treatment. The reduction in prostate size by RM was 1.59 times. Histological analysis showed that TE increased 2-fold the acinar area, effect prevented in the groups receiving TE + RM for 14 (P < 0.05) and 21 (P < 0.05) days and the group receiving TE + Finasteride for 21 days (P < 0.05). TE increased prostatic stroma area and this effect was prevented by treatment with RM since 7 days of treatment or Finasteride. The reduction in prostatic stroma area by RM was 1.42 times. RM has an anti-hyperplastic effect on the prostate of adult mice when hyperplasia was induced with TE acting first at prostatic stromal level.

  12. Estrogen signaling is not required for prostatic bud patterning or for its disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgeier, Sarah Hicks; Vezina, Chad M.; Lin, T.-M.

    2009-08-15

    Estrogens play an important role in prostatic development, health, and disease. While estrogen signaling is essential for normal postnatal prostate development, little is known about its prenatal role in control animals. We tested the hypothesis that estrogen signaling is needed for normal male prostatic bud patterning. Budding patterns were examined by scanning electron microscopy of urogenital sinus epithelium from wild-type mice, mice lacking estrogen receptor (ER){alpha}, ER{beta}, or both, and wild-type mice exposed to the antiestrogen ICI 182,780. Budding phenotypes did not detectably differ among any of these groups, strongly suggesting that estrogen signaling is not needed to establish themore » prototypical prostatic budding pattern seen in control males. This finding contributes to our understanding of the effects of low-level estrogen exposure on early prostate development. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can greatly alter the pattern in which prostatic buds form and reduce their number. For several reasons, including a prior observation that inhibitory effects of TCDD on prostatic budding in rats depend heavily on the sex of adjacent fetuses, we tested the hypothesis that estrogen signaling is needed for TCDD to disrupt prostatic budding. However, budding did not detectably differ among wild-type mice, or mice lacking ER{alpha}, ER{beta}, or both, that were exposed prenatally to TCDD (5 {mu}g/kg on embryonic day 13.5). Nor did ICI 182,780 detectably affect the response to TCDD. These results strongly suggest that estrogen signaling is not needed for TCDD to inhibit prostatic epithelial budding.« less

  13. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.

    PubMed

    Lyons, Scott K; Lim, Ed; Clermont, Anne O; Dusich, Joan; Zhu, Lingyun; Campbell, Kenneth D; Coffee, Richard J; Grass, David S; Hunter, John; Purchio, Tony; Jenkins, Darlene

    2006-05-01

    Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applications. We now report the generation of a transgenic reporter mouse that should obviate these limitations by enabling noninvasive in vivo bioluminescence imaging of normal and spontaneously transformed prostate tissue in the mouse. We used an 11-kb fragment of the human prostate-specific antigen (PSA) promoter to achieve specific and robust expression of firefly luciferase in the prostate glands of transgenic mice. Ex vivo bioluminescence imaging and in situ hybridization analysis confirmed that luciferase expression was restricted to the epithelium in all four lobes of the prostate. We also show that PSA-Luc mice exhibit decreased but readily detectable levels of in vivo bioluminescence over extended time periods following androgen ablation. These results suggest that this reporter should enable in vivo imaging of both androgen-dependent and androgen-independent prostate tumor models. As proof-of-principle, we show that we could noninvasively image SV40 T antigen-induced prostate tumorigenesis in mice with PSA-Luc. Furthermore, we show that our noninvasive imaging strategy can be successfully used to image tumor response to androgen ablation in transgenic mice and, as a result, that we can rapidly identify individual animals capable of sustaining tumor growth in the absence of androgen.

  14. High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene.

    PubMed

    Liu, Jehnan; Ramakrishnan, Sadeesh K; Khuder, Saja S; Kaw, Meenakshi K; Muturi, Harrison T; Lester, Sumona Ghosh; Lee, Sang Jun; Fedorova, Larisa V; Kim, Andrea J; Mohamed, Iman E; Gatto-Weis, Cara; Eisenmann, Kathryn M; Conran, Philip B; Najjar, Sonia M

    2015-03-01

    Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

  15. αVβ6 integrin expression is induced in the POET and Ptenpc-/- mouse models of prostatic inflammation and prostatic adenocarcinoma

    PubMed Central

    Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; FitzGerald, TJ; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R

    2012-01-01

    Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The αvβ6 integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of αvβ6 in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, αvβ6 expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of αvβ6 in two in vivo mouse models; the Ptenpc-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the αvβ6 integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. αvβ6 is expressed in all the mice with cancer in the Ptenpc-/- model but not in age-matched wild-type mice. In the POET inflammation model, αvβ6 is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by αvβ6. In conclusion, through in vivo evidence, we conclude that αvβ6 integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma. PMID:22611469

  16. α(V)β(6) integrin expression is induced in the POET and Pten(pc-/-) mouse models of prostatic inflammation and prostatic adenocarcinoma.

    PubMed

    Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; Fitzgerald, Tj; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R

    2012-01-01

    Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The α(v)β(6) integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of α(v)β(6) in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, α(v)β(6) expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of α(v)β(6) in two in vivo mouse models; the Pten(pc)-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the α(v)β(6) integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. α(v)β(6) is expressed in all the mice with cancer in the Pten(pc-/-) model but not in age-matched wild-type mice. In the POET inflammation model, α(v)β(6) is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by α(v)β(6). In conclusion, through in vivo evidence, we conclude that α(v)β(6) integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma.

  17. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.

    PubMed

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M

    2008-08-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.

  18. Androgen receptor–negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms

    PubMed Central

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W.; Zurita, Amado J.; Liu, Jie; Sikes, Charles; Multani, Asha S.; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V.; Prieto, Victor G.; Kundra, Vikas; Vazquez, Elba S.; Troncoso, Patricia; Raymond, Austin K.; Logothetis, Christopher J.; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M.

    2008-01-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor–negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer–induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor–null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells. PMID:18618013

  19. First record of the tramp ant Cardiocondyla obscurior (Hymenoptera: Formicidae) for Mississippi

    USDA-ARS?s Scientific Manuscript database

    Cardiocondyla (Hymenoptera: Formicidae: Myrmicinae) is an old world genus of omnivorous ants native to Africa and Asia. The genus Cardiocondyla includes several common tramp species that have spread globally with human commerce. A single alate female C. obscurior Wheeler was collected by J. M. Stro...

  20. TRAMP; The next generation data acquisition for RTP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Haren, P.C.; Wijnoltz, F.

    1992-04-01

    The Rijnhuizen Tokamak Project RTP is a medium-sized tokamak experiment, which requires a very reliable data-acquisition system, due to its pulsed nature. Analyzing the limitations of an existing CAMAC-based data-acquisition system showed, that substantial increase of performance and flexibility could best be obtained by the construction of an entirely new system. This paper discusses this system, CALLED TRAMP (Transient Recorder and Amoeba Multi Processor), based on tailor-made transient recorders with a multiprocessor computer system in VME running Amoeba. The performance of TRAMP exceeds the performance of the CAMAC system by a factor of four. The plans to increase the flexibilitymore » and for a further increase of performance are presented.« less

  1. An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth.

    PubMed

    Weihua, Zhang; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Ake

    2002-10-15

    Epithelial proliferation of the ventral prostate in rodents peaks between 2 and 4 weeks of age, and by week 8, proliferating cells are rare. We have used ERbeta(-/-) and CYP7B1(-/-) mice to investigate the role of ERbeta and one of its ligands, 5alpha-androstane-3beta,17beta-diol (3betaAdiol), in growth of the ventral prostate. Before puberty, ERbeta was found in quiescent but not in proliferating cells, and proliferating cells occurred more frequently in ventral prostates of ERbeta(-/-) mice than in wild-type littermates. Treatment with 3betaAdiol decreased proliferation in wild-type but not in ERbeta(-/-) mice. In rats, treatment with 3betaAdiol from postnatal day 2 to 28 resulted in reduction in growth of ventral prostates. The prostates of CYP7B1(-/-) mice were hypoproliferative before puberty and smaller than those of their wild-type littermates after puberty. Because CYP7B1 represents the major pathway for inactivating 3betaAdiol in the prostate, we suggest that ERbeta, 3betaAdiol, and CYP7B1 are the components of a pathway that regulates growth of the rodent ventral prostate. In this pathway, ERbeta is an antiproliferative receptor, 3betaAdiol is an ERbeta ligand, and CYP7B1 is the enzyme that regulates ERbeta function by regulating the level of 3betaAdiol.

  2. Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer.

    PubMed

    Adissu, Hibret A; McKerlie, Colin; Di Grappa, Marco; Waterhouse, Paul; Xu, Qiang; Fang, Hui; Khokha, Rama; Wood, Geoffrey A

    2015-12-01

    Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  3. Obesity does not promote tumorigenesis of localized patient-derived prostate cancer xenografts

    PubMed Central

    Ascui, Natasha; Frydenberg, Mark; Risbridger, Gail P.; Taylor, Renea A.; Watt, Matthew J.

    2016-01-01

    There are established epidemiological links between obesity and the severity of prostate cancer. We directly tested this relationship by assessing tumorigenicity of patient-derived xenografts (PDXs) of moderate-grade localized prostate cancer in lean and obese severe combined immunodeficiency (SCID) mice. Mice were rendered obese and insulin resistant by high-fat feeding for 6 weeks prior to transplantation, and PDXs were assessed 10 weeks thereafter. Histological analysis of PDX grafts showed no differences in tumor pathology, prostate-specific antigen, androgen receptor and homeobox protein Nkx-3.1 expression, or proliferation index in lean versus obese mice. Whilst systemic obesity per se did not promote prostate tumorigenicity, we next asked whether the peri-prostatic adipose tissue (PPAT), which covers the prostate anteriorly, plays a role in prostate tumorigenesis. In vitro studies in a cellularized co-culture model of stromal and epithelial cells demonstrated that factors secreted from human PPAT are pro-tumorigenic. Accordingly, we recapitulated the prostate-PPAT spatial relationship by co-grafting human PPAT with prostate cancer in PDX grafts. PDX tissues were harvested 10 weeks after grafting, and histological analysis revealed no evidence of enhanced tumorigenesis with PPAT compared to prostate cancer grafts alone. Altogether, these data demonstrate that prostate cancer tumorigenicity is not accelerated in the setting of diet-induced obesity or in the presence of human PPAT, prompting the need for further work to define the at-risk populations of obesity-driven tumorigenesis and the biological factors linking obesity, adipose tissue and prostate cancer pathogenesis. PMID:27351281

  4. An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate

    PubMed Central

    Haverkamp, Jessica M.; Charbonneau, Bridget; Meyerholz, David K.; Cohen, Michael B.; Snyder, Paul W.; Svensson, Robert U.; Henry, Michael D.; Wang, Hsing- Hui

    2011-01-01

    Background Prostatitis is a poorly understood disease and increasing evidence suggests inflammation is involved in other prostatic diseases, including prostate cancer. Methods The ability of pre-activated CD8 T cells to induce prostatitis was examined by adoptive transfer into POET-3 mice or POET-3/Luc/Pten−/+ mice. Characterization of the inflammatory response was determined by examining leukocyte infiltration by histological analysis, flow cytometry and by evaluating cytokine and chemokine levels in prostate tissue. The impact of inflammation on the prostate was evaluated by monitoring epithelial cell proliferation over time. Results Initiation of inflammation by ovalbumin specific CD8+ T cells (OT-I cells) resulted in development of acute prostatitis in the anterior, dorsolateral and anterior prostate of POET-3 and POET-3/Luc/Pten−/+ mice. Acute prostatitis was characterized by recruitment of adoptively transferred OT-I cells and importantly, autologous CD4+ and CD8+ T cells, myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). In concert with leukocyte infiltration elevated levels of pro-inflammatory cytokines and chemokines were observed. Inflammation also resulted in marked epithelial cell proliferation that was sustained up to 80 days post adoptive-transfer of OT-I cells. Conclusions The POET-3 model represents a novel mouse model to study both acute and chronic prostate inflammation in an antigen-specific system. Further, the POET-3 mouse model can be crossed with other genetic models of disease such as the C57/Luc/Pten−/− model of prostate cancer, allowing the impact of prostatitis on other prostatic diseases to be evaluated. PMID:21656824

  5. Isolation and Characterization of Prostate Cancer Stem Cells

    DTIC Science & Technology

    2012-08-01

    guidelines. Adjacent prostate tissue was snap frozen in liquid Nitrogen or fixed in formalin and paraffin-embedded to evaluate anatomy and glandular...phenotypically normal and fertile [35]. We examined the prostate at 8 and 20 weeks of age and found no difference in gross anatomy and histology among WT...gross anatomy of the prostate of WT and CD1662/2 mice at 8 weeks of age, scale bar: 2 mm. Bottom: HE staining of DLP section from WT and CD1662/2 mice

  6. The inhibiting effects of components of stinging nettle roots on experimentally induced prostatic hyperplasia in mice.

    PubMed

    Lichius, J J; Renneberg, H; Blaschek, W; Aumüller, G; Muth, C

    1999-10-01

    Direct implanting of fetal urogenital sinus (UGS) tissue into the ventral prostate gland of adult mice led to a 4-fold weight increase of the manipulated prostatic lobe. The induced growth could be reduced by the polysaccharide fraction (POLY-M) of the 20% methanolic extract of stinging nettle roots by 33.8%.

  7. Prostate-Specific G-Protein Coupled Receptor, an Emerging Biomarker Regulating Inflammation and Prostate Cancer Invasion.

    PubMed

    Rodriguez, M; Siwko, S; Liu, M

    2016-01-01

    Prostate cancer is highly prevalent among men in developed countries, but a significant proportion of detected cancers remain indolent, never progressing into aggressive carcinomas. This highlights the need to develop refined biomarkers that can distinguish between indolent and potentially dangerous cases. The prostate-specific G-protein coupled receptor (PSGR, or OR51E2) is an olfactory receptor family member with highly specific expression in human prostate epithelium that is highly overexpressed in PIN and prostate cancer. PSGR has been functionally implicated in prostate cancer cell invasiveness, suggesting a potential role in the transition to metastatic PCa. Recently, transgenic mice overexpressing PSGR in the prostate were reported to develop an acute inflammatory response followed by emergence of low grade PIN, whereas mice with compound PSGR overexpression and loss of PTEN exhibited accelerated formation of invasive prostate adenocarcinoma. This article will review recent PSGR findings with a focus on its role as a potential prostate cancer biomarker and regulator of prostate cancer invasion and inflammation.

  8. An endocrine pathway in the prostate, ERβ, AR, 5α-androstane-3β,17β-diol, and CYP7B1, regulates prostate growth

    PubMed Central

    Weihua, Zhang; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Åke

    2002-01-01

    Epithelial proliferation of the ventral prostate in rodents peaks between 2 and 4 weeks of age, and by week 8, proliferating cells are rare. We have used ERβ−/− and CYP7B1−/− mice to investigate the role of ERβ and one of its ligands, 5α-androstane-3β,17β-diol (3βAdiol), in growth of the ventral prostate. Before puberty, ERβ was found in quiescent but not in proliferating cells, and proliferating cells occurred more frequently in ventral prostates of ERβ−/− mice than in wild-type littermates. Treatment with 3βAdiol decreased proliferation in wild-type but not in ERβ−/− mice. In rats, treatment with 3βAdiol from postnatal day 2 to 28 resulted in reduction in growth of ventral prostates. The prostates of CYP7B1−/− mice were hypoproliferative before puberty and smaller than those of their wild-type littermates after puberty. Because CYP7B1 represents the major pathway for inactivating 3βAdiol in the prostate, we suggest that ERβ, 3βAdiol, and CYP7B1 are the components of a pathway that regulates growth of the rodent ventral prostate. In this pathway, ERβ is an antiproliferative receptor, 3βAdiol is an ERβ ligand, and CYP7B1 is the enzyme that regulates ERβ function by regulating the level of 3βAdiol. PMID:12370428

  9. The influence of prostatic anatomy and neurotrophins on basal prostate epithelial progenitor cells.

    PubMed

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Trumpp, Andreas; Sprick, Martin R

    2016-01-01

    Based on findings of surface marker, protein screens as well as the postulated near-urethral location of the prostate stem cell niche, we were interested whether androgen ablation, distinct anatomic regions within the prostate or neurotrophins have an influence on basal prostate epithelial progenitor cells (PESCs). Microdissection of the prostate, enzymatic digestion, and preparation of single cells was performed from murine and human prostates. Adult PESC marker expressions were compared between a group of C57BL/6 mice and a separate group of castrated C57BL/6 mice. Surface markers CD13/CD271 on human prostate epithelial progenitor cells were evaluated by FACS analyses in cells cultured under novel stem cell conditions. The effect of neurotrophins NGF, NT3, and BDNF were evaluated with respect to their influence on proliferation and activation of human basal PESCs in vitro. We demonstrate the highest percentage of CD49f+ and Trop2+ expressing cells in the urethra near prostatic regions of WT mice (Trop2+ proximal: 10% vs. distal to the urethra: 3%, P < 0.001). While a marked increase of Trop2 expressing cells can be measured both in the proximal and distal prostatic regions after castration, the most prominent increase in Trop2+ cells can be measured in the prostatic tissue distant to the urethra. Furthermore, we demonstrate that the proportion of syndecan-1 expressing cells greatly increases in the regions proximal to the urethra after castration (WT: 5% vs. castrated: 40%). We identified heterogeneous CD13 and nerve growth factor receptor (p75(NGFR), CD271) expression on CD49f(+)/TROP2(high) human basal PESCs. Addition of the neurotrophins NT3, BDNF, and NGF to the stem cell media led to a marked temporary increase in the proliferation of human basal PESCs. Our results in mice support the model, in which the proximal urethral region contains the prostate stem cell niche while a stronger androgen-dependent regulation of adult prostate stem cells can be found in the peripheral prostatic tissue. Neutrophin signaling via nerve growth factor receptor is possibly involved in human prostate stem cell homeostasis. © 2015 Wiley Periodicals, Inc.

  10. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    PubMed

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green fluorescent protein positive cells in the epithelial compartment 14 days after injury expressed cytokeratin 5/8, similar to the proportion of green fluorescent protein positive cells in the prostate that no longer expressed the hematopoietic marker CD45. When prostatic degeneration/regeneration was triggered by androgen deprivation and reintroduction, no green fluorescent protein positive prostate epithelial cells were detected. These findings are consistent with a requirement for inflammation associated architectural destruction for the bone marrow derived cell contribution to the regeneration of prostate epithelium.

  11. Knockout AR in Prostate

    DTIC Science & Technology

    2007-10-01

    significance. By week 24 and thereafter, this difference was significant. To determine if pes-ARKO mice contain abnormalities other than enlarged ventral...earlier studies by Donjacour and colleagues (15). To determine whether pes-ARKO mice contain abnormalities other than enlarged VPs, we evaluated...Kid, kidney; U, ureter; AP, anterior prostate; Pr, all lobes of prostate; T, testes; Pe, glans penis . *, P 0.05; ***, P 0.001. Fig. 1

  12. Evidence that insulin-like growth factor I and growth hormone are required for prostate gland development.

    PubMed

    Ruan, W; Powell-Braxton, L; Kopchick, J J; Kleinberg, D L

    1999-05-01

    Insulin-like growth factor I (IGF-I) has been implicated as a factor that may predispose one to prostate cancer. However, no specific relationship between IGF-I and prostate development or cancer in vivo has been established. To determine whether IGF-I was important in prostate development, we examined prostate architecture in IGF-I(-/-) null mice and wild-type littermates. Glands from 44-day-old IGF-I-deficient animals were not only smaller than those from wild-type mice, but also had fewer terminal duct tips and branch points and deficits in tertiary and quaternary branching (P < 0.0001), indicating a specific impairment in gland structure. Administration of des(1-3)-IGF-I for 7 days partially reversed the deficit by increasing those parameters of prostate development (P < 0.006). That IGF-I production probably mediates an effect of GH in this process was indicated by the observations that GH antagonist transgenic mice also had significantly impaired prostate development (P < 0.0002) and that bovine GH had no independent effect on stimulating prostate development in IGF-I null animals. The data indicate that IGF-I deficiency is the proximate cause of impaired prostate development and give credence to the idea that, like testosterone, GH and IGF-I may be involved in prostate cancer growth as an extension of a normal process.

  13. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice.

    PubMed

    Kleinberg, David L; Ruan, Weifeng; Yee, Douglas; Kovacs, Kalman T; Vidal, Sergio

    2007-03-01

    Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both prostate compartments.

  14. Banana peel extract suppressed prostate gland enlargement in testosterone-treated mice.

    PubMed

    Akamine, Kiichiro; Koyama, Tomoyuki; Yazawa, Kazunaga

    2009-09-01

    A methanol extract of banana peel (BPEx, 200 mg/kg, p.o.) significantly suppressed the regrowth of ventral prostates and seminal vesicles induced by testosterone in castrated mice. Further studies in the androgen-responsive LNCaP human prostate cancer cell line showed that BPEx inhibited dose-dependently testosterone-induced cell growth, while the inhibitory activities of BPEx did not appear against dehydrotestosterone-induced cell growth. These results indicate that methanol extract of banana peel can inhibit 5alpha-reductase and might be useful in the treatment of benign prostate hyperplasia.

  15. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Renal Capsule Xenografting and Subcutaneous Pellet Implantation for the Evaluation of Prostate Carcinogenesis and Benign Prostatic Hyperplasia

    PubMed Central

    Nicholson, Tristan M.; Uchtmann, Kristen S.; Valdez, Conrad D.; Theberge, Ashleigh B.; Miralem, Tihomir; Ricke, William A.

    2013-01-01

    New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways. PMID:24022657

  17. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice.

    PubMed

    Chisamore, Michael J; Gentile, Michael A; Dillon, Gregory Michael; Baran, Matthew; Gambone, Carlo; Riley, Sean; Schmidt, Azriel; Flores, Osvaldo; Wilkinson, Hilary; Alves, Stephen E

    2016-10-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT which may provide potent anti-androgenic activity at the prostate yet protective activity on skeletal muscle and behavior in patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene.

    PubMed Central

    Maroulakou, I G; Anver, M; Garrett, L; Green, J E

    1994-01-01

    A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041

  19. Tramping Trail with Elroy in the Early Years of CELP

    ERIC Educational Resources Information Center

    O'Krafka, Karen

    2010-01-01

    The author is sipping tea on the eve of a week-long winter trip--over a decade since she first tramped trail with Mike Elrick into the winter wilderness. This evening holds for her the same electricity that it did in 1997--anxiety and excitement--when Elroy guided a motley crew of teens (his gang) into the woods and frozen waters of Algonquin…

  20. New Strategy for Prostate Cancer Prevention Based on Selenium Suppression of Androgen Receptor Signaling

    DTIC Science & Technology

    2010-04-01

    reductase. The Prostate Cancer Prevention Trial (PCPT) demonstrated that treatment with finasteride , an inhibitor of 5α-reductase, reduced prostate...Statement of Work (SOW). B. BODY Task 1. Determine the optimal dose of finasteride to achieve growth inhibition of tumor xenografts in nude mice... finasteride and we found in the literature doses of finasteride effective in inhibiting the growth of LNCaP xenografts in nude mice inhibiting LNCaP

  1. The Oncogenic Palmitoyi-Protein Network in Prostate Cancer

    DTIC Science & Technology

    2015-06-01

    obesity drug, Ortistat, which inhibits the enzyme fatty acid synthase (FASN), has been shown to slow the growth of human prostate tumors in mice...Orlistat, an FDA-approved anti- obesity drug, suppresses the growth of human prostate tumors in nude mice.5 Despite these advances, the role of lipid...We also tested in vivo whether this network is vulnerable to an intervention that employs a dietary strategy in combination with an FDA-approved

  2. Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population

    PubMed Central

    Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer. PMID:21603625

  3. Chemopreventative Potential of the Cruciferous Vegetable Constituent Phenethyl Isothiocyanate in a Mouse Model of Prostate Cancer

    PubMed Central

    Powolny, Anna A.; Bommareddy, Ajay; Hahm, Eun-Ryeong; Normolle, Daniel P.; Beumer, Jan H.; Nelson, Joel B.

    2011-01-01

    Background This study was undertaken to determine the chemopreventative efficacy of phenethyl isothiocyanate (PEITC), a bioactive constituent of many edible cruciferous vegetables, in a mouse model of prostate cancer, and to identify potential biomarker(s) associated with PEITC response. Methods The chemopreventative activity of dietary PEITC was investigated in Transgenic Adenocarcinoma of Mouse Prostate mice that were fed a control diet or one containing 3 μmol PEITC/g (n = 21 mice per group) for 19 weeks. Dorsolateral prostate tissue sections were stained with hematoxylin and eosin for histopathologic evaluations and subjected to immunohistochemistry for analysis of cell proliferation (Ki-67 expression), autophagy (p62 and LC3 protein expression), and E-cadherin expression. Autophagosomes were visualized by transmission electron microscopy. Apoptotic bodies were detected by terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling. Plasma proteomics was performed by two-dimensional gel electrophoresis followed by mass spectrometry to identify potential biomarkers of PEITC activity. All statistical tests were two-sided. Results Administration of PEITC (3 μmol/g diet) decreased incidence (PEITC diet vs control diet, mean = 21.65 vs 57.58%, difference = −35.93%, 95% confidence interval = −45.48% to −13.10%, P = .04) as well as burden (affected area) (PEITC diet vs control diet, mean = 18.53% vs 45.01%, difference = −26.48%, 95% confidence interval = −49.78% to −3.19%, P = .02) of poorly differentiated tumors in the dorsolateral prostate of transgenic mice compared with control mice, with no toxic effects. PEITC-mediated inhibition of prostate carcinogenesis was associated with induction of autophagy and overexpression of E-cadherin in the dorsolateral prostate. However, PEITC treatment was not associated with a decrease in cellular proliferation, apoptosis induction, or inhibition of neoangiogenesis. Plasma proteomics revealed distinct changes in the expression of several proteins (eg, suppression of clusterin protein) in the PEITC-treated mice compared with control mice. Conclusions In this transgenic model, dietary PEITC suppressed prostate cancer progression by induction of autophagic cell death. Potential biomarkers to assess the response to PEITC treatment in plasma were identified. PMID:21330634

  4. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    PubMed Central

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  5. IV Administered Gadodiamide Enters the Lumen of the Prostatic Glands: X-Ray Fluorescence Microscopy Examination of a Mouse Model

    DOE PAGES

    Mustafi, Devkumar; Gleber, Sophie-Charlotte; Ward, Jesse; ...

    2015-09-01

    In our objective, we descibe how dynamic contrast-enhanced MRI (DCE-MRI) has become a standard component of multiparametric protocols for MRI examination of the prostate, and its use is incorporated into current guidelines for prostate MRI examination. Analysis of DCE-MRI data for the prostate is usually based on the distribution of gadolinium-based agents, such as gadodiamide, into two well-mixed compartments, and it assumes that gadodiamide does not enter into the glandular lumen. However, this assumption has not been directly tested. The purpose of this study was to use x-ray fluorescence microscopy (XFM) imaging in situ to measure the concentration of gadodiamidemore » in the epithelia and lumens of the prostate of healthy mice after IV injection of the contrast agent. For our materials and methods, six C57Bl6 male mice (age, 28 weeks) were sacrificed 10 minutes after IV injection of gadodiamide (0.13 mmol/kg), and three mice were sacrificed after saline injection. Prostate tissue samples obtained from each mouse were harvested and frozen; 7-μm-thick slices were sectioned for XFM imaging, and adjacent 5-μm-thick slices were sectioned for H and E staining. Elemental concentrations were determined from XFM images. Our results show mean (± SD) baseline concentration of gadolinium of 0.01 ± 0.01 mM was determined from XFM measurements of prostatic tissue samples when no gadodiamide was administered, and it was used to determine the measurement error. When gadodiamide was added, the mean concentrations of gadolinium in the epithelia and lumens in 32 prostatic glands from six mice were 1.00 ± 0.13 and 0.36 ± 0.09 mM, respectively. In conclusion, our data suggest that IV administration of gadodiamide results in uptake of contrast agent by the glandular lumens of the mouse prostate. We were able to quantitatively determine gadodiamide distributions in mouse prostatic epithelia and lumens.« less

  6. High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions.

    PubMed

    Bernichtein, Sophie; Pigat, Natascha; Capiod, Thierry; Boutillon, Florence; Verkarre, Virginie; Camparo, Philippe; Viltard, Mélanie; Méjean, Arnaud; Oudard, Stéphane; Souberbielle, Jean-Claude; Friedlander, Gérard; Goffin, Vincent

    2015-01-01

    Epidemiological studies that have investigated whether dairy (mainly milk) diets are associated with prostate cancer risk have led to controversial conclusions. In addition, no existing study clearly evaluated the effects of dairy/milk diets on prostate tumor progression, which is clinically highly relevant in view of the millions of men presenting with prostate pathologies worldwide, including benign prostate hyperplasia (BPH) or high-grade prostatic intraepithelial neoplasia (HGPIN). We report here a unique interventional animal study to address this issue. We used two mouse models of fully penetrant genetically-induced prostate tumorigenesis that were investigated at the stages of benign hyperplasia (probasin-Prl mice, Pb-Prl) or pre-cancerous PIN lesions (KIMAP mice). Mice were fed high milk diets (skim or whole) for 15 to 27 weeks of time depending on the kinetics of prostate tumor development in each model. Prostate tumor progression was assessed by tissue histopathology examination, epithelial proliferation, stromal inflammation and fibrosis, tumor invasiveness potency and expression of various tumor markers relevant for each model (c-Fes, Gprc6a, activated Stat5 and p63). Our results show that high milk consumption (either skim or whole) did not promote progression of existing prostate tumors when assessed at early stages of tumorigenesis (hyperplasia and neoplasia). For some parameters, and depending on milk type, milk regimen could even exhibit slight protective effects towards prostate tumor progression by decreasing the expression of tumor-related markers like Ki-67 and Gprc6a. In conclusion, our study suggests that regular milk consumption should not be considered detrimental for patients presenting with early-stage prostate tumors.

  7. Protective Effects of Lepidium meyenii (Maca) Aqueous Extract and Lycopene on Testosterone Propionate-Induced Prostatic Hyperplasia in Mice.

    PubMed

    Zou, Ying; Aboshora, Waleed; Li, Jing; Xiao, Tiancun; Zhang, Lianfu

    2017-08-01

    The inhibitory effect of maca extractant, lycopene, and their combination was evaluated in benign prostatic hyperplasia (BPH) mice induced by testosterone propionate. Mice were divided into a saline group, solvent control group and testosterone propionate-induced BPH mice [BPH model group, solvent BPH model group, benzyl glucosinolate group (1.44 mg/kg), maca group (60 mg/kg), lycopene treated (15, 5, and 2.5 mg/kg), maca (30 mg/kg) combine lycopene treated (7.5, 2.5, and 1.25 mg/kg), and finasteride treated]. Benzyl glucosinolate was used in order to evaluate its pharmacological activity on BPH to find out whether it is the major active component of maca aqueous extract. Finasteride was used as positive control. The compounds were administered once for 30 successive days. Compared with solvent BPH model group, BPH mice fed with maca (30 mg/kg) and lycopene (7.5 mg/kg) combination exhibited significant reductions in the prostatic index, prostatic acid phospatase, estradiol, testosterone, and dihydrotestosterone levels in serum. They also had similar histological compared with those aspects observed in the mice in the solvent control group. The results indicated that combination of maca and lycopene synergistically inhibits BPH in mice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Evaluation of sulfur isotopic enrichment of urine metabolites for the differentiation of healthy and prostate cancer mice after the administration of 34S labelled yeast.

    PubMed

    Galilea San Blas, Oscar; Moreno Sanz, Fernando; Herrero Espílez, Pilar; Sainz Menéndez, Rosa María; Mayo Barallo, Juan Carlos; Marchante-Gayón, Juan Manuel; García Alonso, José Ignacio

    2017-01-01

    Sulfur isotopic enrichment of urine metabolites in healthy and prostate cancer mice using 34 S enriched yeast and High Performance Liquid Chromatography coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (HPLC-MC-ICP-MS) has been evaluated. A 30 weeks experiment (since the eleventh to the fortieth week of life) was carried out collecting the urine of three healthy mice and three transgenic mice with prostate cancer during 24h after a single oral administration of a 34 S enriched yeast slurry. The isotopic enrichment of different sulphur metabolites was monitored by coupling a C18 reverse phase HPLC column with a multicollector ICP-MS using a membrane desolvating system. Quantification of sulfur in the chromatographic peaks was carried out by post-column isotope dilution using a 33 S enriched spike. Differences between the 34 S enrichment in the urine metabolites of healthy and prostate cancer mice were found from the beginning of the disease. Both populations could be differentiated using a principal component analysis (PCA). Finally, 7 unknown mice were correctly classified in each population using a linear discriminant analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Plumbagin improves the efficacy of androgen deprivation therapy in prostate cancer: A pre-clinical study.

    PubMed

    Abedinpour, Parisa; Baron, Véronique T; Chrastina, Adrian; Rondeau, Gaelle; Pelayo, Jennifer; Welsh, John; Borgström, Per

    2017-12-01

    Plumbagin is a candidate drug for the treatment of prostate cancer. Previous observations indicated that it may improve the efficacy of androgen deprivation therapy (ADT). This study evaluates the effectiveness of treatment with combinations of plumbagin and alternative strategies for ADT in mouse models of prostate cancer to support its clinical use. Plumbagin was administered per oral in a new sesame oil formulation. Standard toxicology studies were performed in rats. For tumor growth studies, mouse prostate cancer cell spheroids were placed on top of grafted prostate tissue in a dorsal chamber and allowed to form tumors. Mice were separated in various treatment groups and tumor size was measured over time by intra-vital microscopy. Survival studies were done in mice after injection of prostate cancer cells in the prostate of male animals. Androgen receptor (AR) levels were analyzed by Western blot from prostate cancer cells treated with plumbagin. Plumbagin caused a decrease in AR levels in vitro. In mice, plumbagin at 1 mg/kg in sesame oil displayed low toxicity and caused a 50% tumor regression when combined with castration. The combination of plumbagin with various forms of chemical ADT including treatment with a GnRH receptor agonist, a GnRH receptor antagonist, or CYP17A1 inhibitors, outperformed ADT alone, increasing mouse survival compared to the standard regimen of castration alone. In contrast, the combination of plumbagin with AR antagonists, such as bicalutamide and enzalutamide, showed no improvement over AR antagonists alone. Thus, plumbagin is effective in combination with drugs that prevent the synthesis of testosterone or its conversion to dihydrotestosterone, but not with drugs that bind to AR. Plumbagin significantly improves the effect of ADT drugs currently used in the clinic, with few side effects in mice. © 2017 Wiley Periodicals, Inc.

  10. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    PubMed

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    PubMed

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  12. Histologic evaluation of human benign prostatic hyperplasia treated by dutasteride: a study by xenograft model with improved severe combined immunodeficient mice.

    PubMed

    Tsujimura, Akira; Fukuhara, Shinichiro; Soda, Tetsuji; Takezawa, Kentaro; Kiuchi, Hiroshi; Takao, Tetsuya; Miyagawa, Yasushi; Nonomura, Norio; Adachi, Shigeki; Tokita, Yoriko; Nomura, Taisei

    2015-01-01

    To evaluate histologic change in human prostate samples treated with dutasteride and to elucidate direct effects of dutasteride on human prostate tissue, the present study was conducted by using a xenograft model with improved severe combined immunodeficient (super-SCID) mice, although it is well known that dutasteride reduces prostate volume. After establishment of a xenograft model of human benign prostatic hyperplasia in morphology and function, samples implanted into super-SCID mice with and without dutasteride were evaluated pathohistologically at 2 and 6 months after initiation of dutasteride administration. The proliferative index evaluated by Ki-67 staining was significantly lower in the dutasteride group than the control at 2 and 6 months after administration. Apoptotic index evaluated by the terminal transferase TdT-mediated dUTP-biotin nick end labeling staining was higher in the dutasteride group than the control at 2 and 6 months after administration. Quick scores in the dutasteride group for staining of both cyclooxygenase-2 (Cox-2) and Ras homolog gene family, member A (RhoA) were significantly lower than those in the control group at 2 and 6 months after administration. Dutasteride inhibits cell proliferation and induces apoptosis of prostatic cells, causing a reduced prostate volume. Furthermore, decreased expression of Cox-2 and RhoA within benign prostatic hyperplasia tissue by dutasteride may induce an early effect on improvement of lower urinary tract symptoms, probably by attenuating inflammation reaction of the prostate and decreasing intraurethral pressure, other than the mechanism of reduced prostate volume. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of Gene Therapy Combined with Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2012-09-01

    for the treatment of prostate tumor-bearing mice using a clinical MRgHIFU device. We performed animal studies for quantitative measurement of the...by measuring the protein expression level of MDM2, p53 and p21 using immunohistochemical staining and west blotting techniques. We also performed...therapy) in implanted prostate tumors in mice in vivo by measuring the protein expression level of MDM, p53 and p21 with time points after treatment

  14. Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy

    DTIC Science & Technology

    2014-04-01

    treated mice compared to vehicle control. A subset of mice was followed by longitudinal MRI imaging for prostate tumor growth. As shown in Figure...treated (N=7) mice were followed by longitudinal MRI imaging for tumor growth (bottom panel). 9 KEY RESEARCH ACCOMPLISHMENTS • Identified...EDTA) containing a tablet of complete protease inhibitors from Roche (Indianapolis, IN). Total protein from each sample was separated on a 4–12% Bis

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustafi, Devkumar; Gleber, Sophie-Charlotte; Ward, Jesse

    In our objective, we descibe how dynamic contrast-enhanced MRI (DCE-MRI) has become a standard component of multiparametric protocols for MRI examination of the prostate, and its use is incorporated into current guidelines for prostate MRI examination. Analysis of DCE-MRI data for the prostate is usually based on the distribution of gadolinium-based agents, such as gadodiamide, into two well-mixed compartments, and it assumes that gadodiamide does not enter into the glandular lumen. However, this assumption has not been directly tested. The purpose of this study was to use x-ray fluorescence microscopy (XFM) imaging in situ to measure the concentration of gadodiamidemore » in the epithelia and lumens of the prostate of healthy mice after IV injection of the contrast agent. For our materials and methods, six C57Bl6 male mice (age, 28 weeks) were sacrificed 10 minutes after IV injection of gadodiamide (0.13 mmol/kg), and three mice were sacrificed after saline injection. Prostate tissue samples obtained from each mouse were harvested and frozen; 7-μm-thick slices were sectioned for XFM imaging, and adjacent 5-μm-thick slices were sectioned for H and E staining. Elemental concentrations were determined from XFM images. Our results show mean (± SD) baseline concentration of gadolinium of 0.01 ± 0.01 mM was determined from XFM measurements of prostatic tissue samples when no gadodiamide was administered, and it was used to determine the measurement error. When gadodiamide was added, the mean concentrations of gadolinium in the epithelia and lumens in 32 prostatic glands from six mice were 1.00 ± 0.13 and 0.36 ± 0.09 mM, respectively. In conclusion, our data suggest that IV administration of gadodiamide results in uptake of contrast agent by the glandular lumens of the mouse prostate. We were able to quantitatively determine gadodiamide distributions in mouse prostatic epithelia and lumens.« less

  16. Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate

    PubMed Central

    Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.

    2015-01-01

    BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731

  17. Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate.

    PubMed

    Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J Mark; Balaji, K C

    2015-06-15

    The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-Ras(G) (12) (D) knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. In vivo XFP signals were observed in prostate of PKD1 knock-out, K-Ras(G) (12) (D) knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. © 2015 Wiley Periodicals, Inc.

  18. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  19. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    PubMed

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  20. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    PubMed Central

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  1. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor.

    PubMed

    Lin, Guiting; Yang, Rong; Banie, Lia; Wang, Guifang; Ning, Hongxiu; Li, Long-Cheng; Lue, Tom F; Lin, Ching-Shwun

    2010-07-01

    Obesity is a risk factor for prostate cancer development, but the underlying mechanism is unknown. The present study tested the hypothesis that stromal cells of the adipose tissue might be recruited by cancer cells to help tumor growth. PC3 prostate cancer cells were transplanted into the subcutaneous space of the right flank of athymic mice. One week later, adipose tissue-derived stromal or stem cells (ADSC) or phosphate-buffered saline (PBS, as control) was transplanted similarly to the left flank. Tumor size was monitored for the next 34 days; afterwards, the mice were sacrificed and their tumors harvested for histological examination. The ability of PC3 cells to attract ADSC was tested by migration assay. The involvement of the CXCL12/CXCR4 axis was tested by migration assay in the presence of a specific inhibitor AMD3100. Throughout the entire course, the average size of PC3 tumors in ADSC-treated mice was larger than in PBS-treated mice. ADSC were identified inside the tumors of ADSC-treated mice; CXCR4 expression was also detected. Migration assay indicated the involvement of the CXCL12/CXCR4 axis in the migration of ADSC toward PC3 cells. Capillary density was twice as high in the tumors of ADSC-treated mice than in the tumors of PBS-treated mice. VEGF expression was similar but FGF2 expression was significantly higher in tumors of ADSC-treated mice than in the tumors of PBS-tread mice. Prostate cancer cells recruited ADSC by the CXCL12/CXCR4 axis. ADSC helps tumor growth by increasing tumor vascularity, and which was mediated by FGF2.

  2. Expression of lnterleukin-8 Correlates with Angiogenesis, Tumorigenicity, and Metastasis of Human Prostate Cancer Cells Implanted Orthotopically in Nude Mice1

    PubMed Central

    Sun, Jin Kim; Uehara, Hisanori; Karashima, Takashi; Mccarty, Marya; Shih, Nancy; Fidler, Isaiah J

    2001-01-01

    Abstract We determined whether the expression of interleukin-8 (IL-8) by human prostate cancer cells correlates with induction of angiogenesis, tumorigenicity, and production of metastasis. Low and high IL-8-producing clones were isolated from the heterogeneous PC-3 human prostate cancer cell line. The secretion of IL-8 protein correlated with transcriptional activity and levels of IL-8 mRNA. All PC-3 cells expressed both IL-8 receptors, CXCR1 and CXCR2. The low and high IL-8-producing clones were injected into the prostate of nude mice. Titration studies indicated that PC-3 cells expressing high levels of IL-8 were highly tumorigenic, producing rapidly growing, highly vascularized prostate tumors with and a 100% incidence of lymph node metastasis. Low IL-8-expressing PC-3 cells were less tumorigenic, producing slower growing and less vascularized primary tumors and a significantly lower incidence of metastasis. In situ hybridization (ISH) analysis of the tumors for expression of genes that regulate angiogenesis and metastasis showed that the expression level of IL-8, matrix metalloproteinases, vascular endothelial growth factor (VEGF), and E-cadherin corresponded with microvascular density and biological behavior of the prostate cancers in nude mice. Collectively, the data show that the expression level of IL-8 in human prostate cancer cells is associated with angiogenesis, tumorigenicity, and metastasis. PMID:11326314

  3. Obesity-Induced Diabetes and Lower Urinary Tract Fibrosis Promote Urinary Voiding Dysfunction in a Mouse Model

    PubMed Central

    Gharaee-Kermani, Mehrnaz; Rodriguez-Nieves, Jose A.; Mehra, Rohit; Vezina, Chad A.; Sarma, Aruna V.; Macoska, Jill A.

    2017-01-01

    BACKGROUND Progressive aging- and inflammation-associated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescence-accelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by diet-induced obesity and concurrent Type 2 Diabetes Mellitus (T2DM). METHODS To accomplish this, SAMP6 and AKR/J background strain mice were fed regular mouse chow, low fat diet chow, or high fat diet chow for 8 months, then subjected to glucose tolerance tests, assessed for plasma insulin levels, evaluated for urinary voiding function, and assessed for lower urinary tract fibrosis. RESULTS The results of these studies show that SAMP6 mice and AKR/J background strain mice develop diet-induced obesity and T2DM concurrent with urinary voiding dysfunction. Moreover, urinary voiding dysfunction was more severe in SAMP6 than AKR/J mice and was associated with pronounced prostatic and urethral tissue fibrosis. CONCLUSIONS Taken together, these studies suggest that obesity, T2DM, lower urinary tract fibrosis, and urinary voiding dysfunction are inextricably and biologically linked. Prostate. PMID:23532836

  4. Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH)

    PubMed Central

    Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan

    2013-01-01

    Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, led to the reduction of prostate size, which could be used in future therapy. PMID:23893956

  5. Establishing Prostate Cancer Patient Derived Xenografts: Lessons Learned From Older Studies

    PubMed Central

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W-C; Williams, Elizabeth D; Raghavan, Derek

    2015-01-01

    Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43–46, XY, dic(1;12)(p11;p11), der(3)t(3:?5)(q13;q13), -5, inv(7)(p15q35) x2, +add(7)(p13), add(8)(p22), add(11)(p14), add(13)(p11), add(20)(p12), -22, +r4[cp8]. Conclusions Xenografts provide a clinically relevant model of prostate cancer, although establishing serially transplantable prostate cancer patient derived xenografts is challenging and requires rigorous characterization and high quality starting material. Xenografting from advanced prostate cancer is more likely to succeed, as xenografting from well differentiated, localized disease has not been achieved in our experience. Strong translational correlations can be demonstrated between the clinical disease state and the xenograft model. Prostate 75: 628–636, 2015. © The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:25560784

  6. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongwei; Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22908; Li Jinzhong

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of themore » luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.« less

  7. When invasive ants meet: effects of outbreeding on queen performance in the tramp ant Cardiocondyla itsukii.

    PubMed

    Heinze, Jürgen; Frohschammer, Sabine; Bernadou, Abel

    2017-08-18

    Most disturbed habitats in the tropics and subtropics harbor numerous species of invasive ants, and occasionally the same species has been introduced repeatedly from multiple geographical sources. We examined how experimental crossbreeding between sexuals from different populations affects the fitness of queens of the tramp ant Cardiocondyla itsukii, which is widely distributed in Asia and the Pacific Islands. Eggs laid by queens that mated with nestmate males had a higher hatching rate than eggs laid by queens mated to males from neighboring (Hawaii × Kauai) or distant introduced populations (Hawaii/Kauai × Okinawa). Furthermore, inbreeding queens had a longer lifespan and produced a less female-biased offspring sex ratio than queens from allopatric mating. This suggests that the genetic divergence between different source populations may already be so large that in case of multiple invasions eventual crossbreeding might negatively affect the fitness of tramp ants. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  8. Prostate Angiogenesis in Development and Inflammation

    PubMed Central

    Wong, Letitia; Gipp, Jerry; Carr, Jason; Loftus, Christopher; Benck, Molly; Lee, Sanghee; Mehta, Vatsal; Vezina, Chad; Bushman, Wade

    2014-01-01

    BACKGROUND Prostatic inflammation is an important factor in development and progression of BPH/LUTS. This study was performed to characterize the normal development and vascular anatomy of the mouse prostate and then examine, for the first time, the effects of prostatic inflammation on the prostate vasculature. METHODS Adult mice were perfused with India ink to visualize the prostatic vascular anatomy. Immunostaining was performed on the E16.5 UGS and the P5, P20 and adult prostate to characterize vascular development. Uropathogenic E. coli 1677 was instilled transurethrally into adult male mice to induce prostate inflammation. RT-PCR and BrdU labeling was performed to assay anigogenic factor expression and endothelial proliferation, respectively. RESULTS An artery on the ventral surface of the bladder trifurcates near the bladder neck to supply the prostate lobes and seminal vesicle. Development of the prostatic vascular system is associated with endothelial proliferation and robust expression of pro-angiogenic factors Pecam1, Tie1, Tek, Angpt1, Angpt2, Fgf2, Vegfa, Vegfc, Figf. Bacterial-induced prostatic inflammation induced endothelial cell proliferation and increased vascular density but surprisingly decreased pro-angiogenic factor expression. CONCLUSIONS The striking decrease in pro-angiogenic factor mRNA expression associated with endothelial proliferation and increased vascular density during inflammation suggests that endothelial response to injury is not a recapitulation of normal development and may be initiated and regulated by different regulatory mechanisms. PMID:24293357

  9. PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers.

    PubMed

    Labbé, David P; Uetani, Noriko; Vinette, Valérie; Lessard, Laurent; Aubry, Isabelle; Migon, Eva; Sirois, Jacinthe; Haigh, Jody J; Bégin, Louis R; Trotman, Lloyd C; Paquet, Marilène; Tremblay, Michel L

    2016-06-01

    Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression.

    PubMed

    Simons, Brian W; Durham, Nicholas M; Bruno, Tullia C; Grosso, Joseph F; Schaeffer, Anthony J; Ross, Ashley E; Hurley, Paula J; Berman, David M; Drake, Charles G; Thumbikat, Praveen; Schaeffer, Edward M

    2015-02-01

    Inflammation is associated with several diseases of the prostate including benign enlargement and cancer, but a causal relationship has not been established. Our objective was to characterize the prostate inflammatory microenvironment after infection with a human prostate-derived bacterial strain and to determine the effect of inflammation on prostate cancer progression. To this end, we mimicked typical human prostate infection with retrograde urethral instillation of CP1, a human prostatic isolate of Escherichia coli. CP1 bacteria were tropic for the accessory sex glands and induced acute inflammation in the prostate and seminal vesicles, with chronic inflammation lasting at least 1 year. Compared to controls, infection induced both acute and chronic inflammation with epithelial hyperplasia, stromal hyperplasia, and inflammatory cell infiltrates. In areas of inflammation, epithelial proliferation and hyperplasia often persist, despite decreased expression of androgen receptor (AR). Inflammatory cells in the prostates of CP1-infected mice were characterized at 8 weeks post-infection by flow cytometry, which showed an increase in macrophages and lymphocytes, particularly Th17 cells. Inflammation was additionally assessed in the context of carcinogenesis. Multiplex cytokine profiles of inflamed prostates showed that distinct inflammatory cytokines were expressed during prostate inflammation and cancer, with a subset of cytokines synergistically increased during concurrent inflammation and cancer. Furthermore, CP1 infection in the Hi-Myc mouse model of prostate cancer accelerated the development of invasive prostate adenocarcinoma, with 70% more mice developing cancer by 4.5 months of age. This study provides direct evidence that prostate inflammation accelerates prostate cancer progression and gives insight into the microenvironment changes induced by inflammation that may accelerate tumour initiation or progression. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Establishing prostate cancer patient derived xenografts: lessons learned from older studies.

    PubMed

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W C; Williams, Elizabeth D; Raghavan, Derek

    2015-05-01

    Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43-46, XY, dic(1;12)(p11;p11), der(3)t(3:?5)(q13;q13), -5, inv(7)(p15q35) x2, +add(7)(p13), add(8)(p22), add(11)(p14), add(13)(p11), add(20)(p12), -22, +r4[cp8]. Xenografts provide a clinically relevant model of prostate cancer, although establishing serially transplantable prostate cancer patient derived xenografts is challenging and requires rigorous characterization and high quality starting material. Xenografting from advanced prostate cancer is more likely to succeed, as xenografting from well differentiated, localized disease has not been achieved in our experience. Strong translational correlations can be demonstrated between the clinical disease state and the xenograft model. © 2015 The Authors. The Prostate published by Wiley Periodicals, Inc.

  12. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  13. A time-course study of long term over-expression of ARR19 in mice

    PubMed Central

    Qamar, Imteyaz; Ahmad, Mohammad Faiz; Narayanasamy, Arul

    2015-01-01

    A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate. PMID:26260329

  14. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer.

    PubMed

    Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng

    2017-01-01

    We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 ( 64 Cu), to evaluate the metabolism, biodistribution, and potential of [ 64 Cu]PSMA-617 for PET imaging of prostate cancer. [ 64 Cu]PSMA-617 was synthesized by heating PSMA-617 with [ 64 Cu]CuCl 2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64 Cu for PSMA-617 yielded [ 64 Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [ 64 Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [ 64 Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [ 64 Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [ 64 Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64 Cu or 67 Cu-labeled PSMA ligands for imaging and radiotherapy.

  15. Electrochemical red-ox therapy of prostate cancer in nude mice.

    PubMed

    Cury, Fabio L; Bhindi, Bimal; Rocha, Joice; Scarlata, Eleonora; El Jurdi, Katia; Ladouceur, Michel; Beauregard, Stéphane; Vijh, Ashok K; Taguchi, Yosh; Chevalier, Simone

    2015-08-01

    Minimally invasive therapies are increasingly in demand for organ-confined prostate tumors. Electrochemical therapy (EChT) is attractive, as it relies on locally-induced reduction-oxidation reactions to kill tumor cells. Its efficacy for prostate cancer was assessed in human PC-3 and LNCaP tumor xenografts growing subcutaneously in nude mice (n = 80) by applying 2 Stainless Steel vs. 4 Platinum-Iridium (Pt-Ir) electrodes to deliver current densities of 10 to 35 mA/cm(2) for 30 or 60 min. The procedure was uneventful in 90% of mice. No difference in tumor vs. body temperature was observed. Changes at electrode-tumor junctions were immediate, with dryness and acidity (pH2-3) at the anode and oedema and alkalinity (pH10-12) at the cathode. This was accompanied by cellular alterations, found more pronounced at the cathode. Such acidic and alkaline conditions were cytotoxic in vitro and dissolved cells at pH>10. In mice, tumor destruction was extensive by 24h with almost undetectable blood prostate specific antigen (LNCaP model) and covered the whole tumor surface by 4 days. EChT was most efficient at 25-30 mA/cm(2) for 60 min, yielding the longest recurrence-free survival and higher cure rates, especially with 4 Pt-Ir electrodes. EChT is a promising option to optimize for organ-confined prostate tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer

    PubMed Central

    Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng

    2017-01-01

    We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 (64Cu), to evaluate the metabolism, biodistribution, and potential of [64Cu]PSMA-617 for PET imaging of prostate cancer. [64Cu]PSMA-617 was synthesized by heating PSMA-617 with [64Cu]CuCl2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64Cu for PSMA-617 yielded [64Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [64Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [64Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [64Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [64Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64Cu or 67Cu-labeled PSMA ligands for imaging and radiotherapy. PMID:28533936

  17. Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner

    PubMed Central

    Taylor, Robert M; Sillerud, Laurel O

    2012-01-01

    Background and methods: Problems with the clinical management of prostate cancer include the lack of both specific detection and efficient therapeutic intervention. We report the encapsulation of superparamagnetic iron platinum nanoparticles (SIPPs) and paclitaxel in a mixture of polyethyleneglycolated, fluorescent, and biotin-functionalized phospholipids to create multifunctional SIPP-PTX micelles (SPMs) that were conjugated to an antibody against prostate-specific membrane antigen (PSMA) for the specific targeting, magnetic resonance imaging (MRI), and treatment of human prostate cancer xenografts in mice. Results: SPMs were 45.4 ± 24.9 nm in diameter and composed of 160.7 ± 22.9 μg/mL iron, 247.0 ± 33.4 μg/mL platinum, and 702.6 ± 206.0 μg/mL paclitaxel. Drug release measurements showed that, at 37°C, half of the paclitaxel was released in 30.2 hours in serum and two times faster in saline. Binding assays suggested that PSMA-targeted SPMs specifically bound to C4-2 human prostate cancer cells in vitro and released paclitaxel into the cells. In vitro, paclitaxel was 2.2 and 1.6 times more cytotoxic than SPMs to C4-2 cells at 24 and 48 hours of incubation, respectively. After 72 hours of incubation, paclitaxel and SPMs were equally cytotoxic. SPMs had MRI transverse relaxivities of 389 ± 15.5 Hz/mM iron, and SIPP micelles with and without drug caused MRI contrast enhancement in vivo. Conclusion: Only PSMA-targeted SPMs and paclitaxel significantly prevented growth of C4-2 prostate cancer xenografts in nude mice. Furthermore, mice injected with PSMA-targeted SPMs showed significantly more paclitaxel and platinum in tumors, compared with nontargeted SPM-injected and paclitaxel-injected mice. PMID:22915856

  18. Chronic Infection of the Prostate by Chlamydia muridarum Is Accompanied by Local Inflammation and Pelvic Pain Development.

    PubMed

    Sanchez, Leonardo R; Breser, Maria L; Godoy, Gloria J; Salazar, Florencia C; Mackern-Oberti, Juan P; Cuffini, Cecilia; Motrich, Ruben D; Rivero, Virginia E

    2017-04-01

    Chlamydia trachomatis urogenital infections are the leading cause of sexually transmitted bacterial infections. Although the prevalence of chlamydial infection is similar in men and women, current research is mainly focused on women, neglecting the study of male genital tract infections. We, therefore, investigated Chlamydia infection in the rodent male genital tract. Male NOD and C57BL/6 mice were inoculated in the meatus urethra with C. muridarum. Bacterial DNA, leukocyte infiltration of male genital tract tissues, pelvic pain, and Chlamydia-specific immune responses were analyzed at different time points. The inoculation of C. muridarum in the meatus urethra of male mice resulted in an ascending and widely disseminated infection of the male genital tract. C. muridarum remained longer and with the highest bacterial burdens in the prostate, thus showing a special tropism for this organ. Infection caused leukocyte infiltration, mainly composed by neutrophils, and also induced early pelvic pain development that rapidly dropped and resolved as the infection became chronic. Bacterial load and leukocyte infiltration was observed in all prostate lobes, although dorsolateral prostate was the most affected lobe. Interestingly, immune responses induced by both mice strains were characterized by the production of high levels of IL-10 during early stages of the infection, with highest and sustained levels observed in NOD mice, which showed to be less efficient in clearing the infection. Chronic infection of the prostate accompanied by local inflammation and pelvic pain development described herein have important implications for the improvement of the diagnosis and for the design of new efficient therapies. Prostate 77:517-529, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Safety and Immunological Efficacy of a DNA Vaccine Encoding the Androgen Receptor Ligand-Binding Domain (AR-LBD).

    PubMed

    Olson, Brian M; Bradley, Eric S; Sawicki, Thomas; Zhong, Weixiong; Ranheim, Erik A; Bloom, Jordan E; Colluru, Viswa T; Johnson, Laura E; Rekoske, Brian T; Eickhoff, Jens C; McNeel, Douglas G

    2017-05-01

    The androgen receptor (AR) is a key oncogenic driver of prostate cancer, and has been the primary focus of prostate cancer treatment for several decades. We have previously demonstrated that the AR is also an immunological target antigen, recognized in patients with prostate cancer, and targetable by means of vaccines in rodent models with delays in prostate tumor growth. The current study was performed to determine the safety and immunological efficacy of a GMP-grade plasmid DNA vaccine encoding the ligand-binding domain (LBD) of the AR, pTVG-AR. Groups of male mice (n = 6-10 per group) were evaluated after four or seven immunizations, using different schedules and inclusion of GM-CSF as a vaccine adjuvant. Animals were assessed for toxicity using gross observations, pathological analysis, and analysis of serum chemistries. Animals were analyzed for evidence of vaccine-augmented immunity by tetramer analysis. Survival studies using different immunization schedules and inclusion of GM-CSF were conducted in an autochthonous genetically engineered mouse model. No significant toxicities were observed in terms of animal weights, histopathology, hematological changes, or changes in serum chemistries, although there was a trend to lower serum glucose in animals treated with the vaccine. There was specifically no evidence of toxicity in other tissues that express AR, including liver, muscle, hematopoietic, and brain. Vaccination was found to elicit AR LBD-specific CD8+ T cells. In a subsequent study of tumor-bearing animals, animals treated with vaccine had prolonged survival compared with control-immunized mice. These studies demonstrate that, in immunocompetent mice expressing the target antigen, immunization with the pTVG-AR vaccine was both safe and effective in eliciting AR-specific cellular immune responses, and prolonged the survival of prostate tumor-bearing mice. These findings support the clinical evaluation of pTVG-AR in patients with recurrent prostate cancer. Prostate 77:812-821, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Orthotopic tumorgrafts in nude mice: A new method to study human prostate cancer.

    PubMed

    Saar, Matthias; Körbel, Christina; Linxweiler, Johannes; Jung, Volker; Kamradt, Jörn; Hasenfus, Andrea; Stöckle, Michael; Unteregger, Gerhard; Menger, Michael D

    2015-10-01

    In vivo model systems in prostate cancer research that authentically reproduce tumor growth are still sparse. While orthotopic implantation is technically difficult, particularly in the mouse, most models favor subcutaneous tumor growth. This however provides little information about natural tumor growth behavior and tumor stroma interaction. Furthermore, established prostate cancer cell lines grown as in vivo xenografts are not able to reflect the variety of tumor specific growth patterns and growth behavior in men. Primary cell cultures are difficult to handle and an induction of orthotopic tumors has not been successful yet. Therefore, a tumorgraft model using tumor tissue from prostatectomy specimens was developed. Balb/c nude mice were used to graft fresh prostate tumor tissue by renal subcapsular and orthotopic implantation. Testosterone propionate was supplemented. Animals were tracked by means of 30 MHz ultrasound to monitor tumor engraftment and growth. Autopsy, histology, PSA measurements as well as immunostaining and PCR for human tissue were performed to confirm orthotopic tumor growth. Renal subcapsular engraftment was seen in 2 of 3 mice. Orthotopic engraftment was observed in 7 of 11 animals (63.6%) with an overall engraftment of 5 out of 9 patient specimens (55.6%). Ultrasound confirmed the tumor growth over time. Of interest, the tumorgrafts not only retained essential features of the parental tumors, but also stained positive for tumor specific markers such as AR, PSA, and AMACR. Tumor positive animals showed highly elevated serum PSA levels with confirmation of a human specific PCR sequence and a human endothelial cell lining in the tumor vessels. Standardized implantation of fresh tumor tissue in nude mice prostates generates tumorgrafts with histological properties of organ-confined prostate cancer. These tumorgrafts display a new approach for an optimized in vivo model of prostate cancer and will allow further investigations on specific pathways of tumor initiation and progression as well as therapeutic response. © 2015 Wiley Periodicals, Inc.

  1. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    PubMed

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  2. Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers.

    PubMed

    Xu, Yi; Dalrymple, Susan L; Becker, Robyn E; Denmeade, Samuel R; Isaacs, John T

    2006-07-01

    Prostatic dihydrotestosterone (DHT) concentration is regulated by precursors from systemic circulation and prostatic enzymes of androgen metabolism, particularly 5alpha-reductases (i.e., SRD5A1 and SRD5A2). Therefore, the levels of expression SRD5A1 and SRD5A2 and the antiprostatic cancer growth response to finasteride, a selective SRD5A2 inhibitor, versus the dual SRD5A1 and SRD5A2 inhibitor, dutasteride, were compared. Real-time PCR and enzymatic assays were used to determine the levels of SRD5A1 and SRD5A2 in normal versus malignant rat and human prostatic tissues. Rats bearing the Dunning R-3327H rat prostate cancer and nude mice bearing LNCaP or PC-3 human prostate cancer xenografts were used as model systems. Tissue levels of testosterone and DHT were determined using liquid chromatography-mass spectrometry. Prostate cancer cells express undetectable to low levels of SRD5A2 but elevated levels of SRD5A1 activity compared with nonmalignant prostatic tissue. Daily oral treatment of rats with the SRD5A2 selective inhibitor, finasteride, reduces prostate weight and DHT content but did not inhibit R-3327H rat prostate cancer growth or DHT content in intact (i.e., noncastrated) male rats. In contrast, daily oral treatment with even a low 1 mg/kg/d dose of the dual SRD5A1 and SRD5A2 inhibitor, dutasteride, reduces both normal prostate and H tumor DHT content and weight in intact rats while elevating tissue testosterone. Daily oral treatment with finasteride significantly (P < 0.05) inhibits growth of LNCaP human prostate cancer xenografts in intact male nude mice, but this inhibition is not as great as that by equimolar oral dosing with dutasteride. This anticancer efficacy is not equivalent, however, to that produced by castration. Only combination of dutasteride and castration produces a greater tumor inhibition (P < 0.05) than castration monotherapy against androgen-responsive LNCaP cancers. In contrast, no response was induced by dutasteride in nude mice bearing androgen-independent PC-3 human prostatic cancer xenografts. These results document that testosterone is not as potent as DHT but does stimulate prostate cancer growth, thus combining castration with dutasteride enhances therapeutic efficacy.

  3. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    PubMed

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.

  4. Intermittent androgen suppression in the LuCaP 23.12 prostate cancer xenograft model.

    PubMed

    Buhler, K R; Santucci, R A; Royai, R A; Whitney, S C; Vessella, R L; Lange, P H; Ellis, W J

    2000-04-01

    Intermittent androgen suppression (IAS) has been proposed as a method of delaying the onset of androgen-independent growth in prostate cancer. While several pilot studies have demonstrated the feasibility of such a treatment, no study to date has defined the effect of IAS on survival. We developed an IAS protocol for mice bearing the LuCaP 23.12 human prostate cancer xenograft, with each cycle consisting of 1 week of androgen replacement with a testosterone pellet followed by 3 weeks of androgen withdrawal. Mice that responded to castration with a 40% or greater decrease in serum prostate-specific antigen (PSA) were randomized to treatment with either continuous androgen suppression (CAS) or IAS. Serum PSA, tumor volume, and overall survival were monitored. A total of 75 mice met the randomization criteria. There was no significant difference of survival between animals treated with CAS or IAS (185 vs. 239 days, P = 0.1835). Serum PSA showed evidence of cycling with hormonal manipulation. No cycling was noted in tumor volume. IAS is not associated with a decrease in survival compared to CAS, yet in patients may offer quality-of-life improvements. Further studies of IAS in the setting of Institutional Review Board (IRB) approved clinical trials should be encouraged. Prostate 43:63-70, 2000. Published 2000 Wiley-Liss, Inc.

  5. High-Fat Diet Linked to Prostate Cancer Metastasis

    Cancer.gov

    A new study in mice has revealed a molecular link between a high-fat diet and the growth and spread of prostate cancer. As this Cancer Currents post explains, researchers also showed that an anti-obesity drug that targets a protein that controls fat synthesis could potentially be used to treat metastatic prostate cance

  6. Lack of Liver X Receptors Leads to Cell Proliferation in a Model of Mouse Dorsal Prostate Epithelial Cell

    PubMed Central

    Dufour, Julie; Pommier, Aurélien; Alves, Georges; De Boussac, Hugues; Lours-Calet, Corinne; Volle, David H.; Lobaccaro, Jean-Marc A.; Baron, Silvère

    2013-01-01

    Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer. PMID:23554947

  7. The polyphosphate–factor XII pathway drives coagulation in prostate cancer-associated thrombosis

    PubMed Central

    Nickel, Katrin F.; Ronquist, Göran; Langer, Florian; Labberton, Linda; Fuchs, Tobias A.; Bokemeyer, Carsten; Sauter, Guido; Graefen, Markus; Mackman, Nigel; Stavrou, Evi X.; Ronquist, Gunnar

    2015-01-01

    Cancer is a leading cause of thrombosis. We identify a new procoagulant mechanism that contributes to thromboembolism in prostate cancer and allows for safe anticoagulation therapy development. Prostate cancer-mediated procoagulant activity was reduced in plasma in the absence of factor XII or its substrate of the intrinsic coagulation pathway factor XI. Prostate cancer cells and secreted prostasomes expose long chain polyphosphate on their surface that colocalized with active factor XII and initiated coagulation in a factor XII-dependent manner. Polyphosphate content correlated with the procoagulant activity of prostasomes. Inherited deficiency in factor XI or XII or high-molecular-weight kininogen, but not plasma kallikrein, protected mice from prostasome-induced lethal pulmonary embolism. Targeting polyphosphate or factor XII conferred resistance to prostate cancer-driven thrombosis in mice, without increasing bleeding. Inhibition of factor XII with recombinant 3F7 antibody reduced the increased prostasome-mediated procoagulant activity in patient plasma. The data illustrate a critical role for polyphosphate/factor XII-triggered coagulation in prostate cancer-associated thrombosis with implications for anticoagulation without therapy-associated bleeding in malignancies. PMID:26153520

  8. Prostate Stem Cell Antigen DNA Vaccination Breaks Tolerance to Self-antigen and Inhibits Prostate Cancer Growth

    PubMed Central

    Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C

    2009-01-01

    Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234

  9. Drug discovery in prostate cancer mouse models.

    PubMed

    Valkenburg, Kenneth C; Pienta, Kenneth J

    2015-01-01

    The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.

  10. A human GRPr-transfected Ace-1 canine prostate cancer model in mice.

    PubMed

    Ding, Haiming; Kothandaraman, Shankaran; Gong, Li; Williams, Michelle M; Dirksen, Wessel P; Rosol, Thomas J; Tweedle, Michael F

    2016-06-01

    A versatile drug screening system was developed to simplify early targeted drug discovery in mice and then translate readily from mice to a dog prostate cancer model that more fully replicates the features of human prostate cancer. We stably transfected human cDNA of the GRPr bombesin (BBN) receptor subtype to canine Ace-1 prostate cancer cells (Ace-1(huGRPr) ). Expression was examined by (125) I-Tyr(4) -BBN competition, calcium stimulation assay, and fluorescent microscopy. A dual tumor nude mouse xenograft model was developed from Ace-1(CMV) (vector transfected Ace-1) and Ace-1(huGRPr) cells. The model was used to explore the in vivo behavior of two new IRDye800-labeled GRPr binding optical imaging agents: 800-G-Abz4-t-BBN, from a GRPr agonist peptide, and 800-G-Abz4-STAT, from a GRPr antagonist peptide, by imaging the tumor mice and dissected organs. Both agents bound Ace-1(huGRPr) and PC-3, a known GRPr-expressing human prostate cancer cell line, with 4-13 nM IC50 against (125) I-Tyr(4) -BBN, but did not bind Ace-1(CMV) cells (vector transfected). Binding was blocked by bombesin. Ca(2+) activation assays demonstrated that Ace-1(huGPRr) expressed biologically active GRPr. Both Ace-1 cell lines grew in the flanks of 100% of the nude mice and formed tumors of ∼0.5 cm diameter in 1 week. In vivo imaging of the mice at 800 nm emission showed GRPr+: GRPr- tumor signal brighter by a factor of two at 24 h post IV administration of 10 nmol of the imaging agents. Blood retention (4-8% ID at 1 h) was greater by a factor >10 and cumulative urine accumulation (28-30% at 4 h) was less by a factor 2 compared to a radioactive analog of the t-BBN containing agent, (177) LuAMBA, probably due to binding to blood albumin, which we confirmed in a mouse serum assay. The dual tumor Ace-1(CMV) /Ace-1(huGRPr) model system provides a rapid test of specific to nonspecific binding of new GRPr avid agents in a model that will extend logically to the known Ace-1 orthotopic canine prostate cancer model. Prostate 76:783-795, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic.

    PubMed

    Irshad, Shazia; Abate-Shen, Cory

    2013-06-01

    More than 15 years ago, the first generation of genetically engineered mouse (GEM) models of prostate cancer was introduced. These transgenic models utilized prostate-specific promoters to express SV40 oncogenes specifically in prostate epithelium. Since the description of these initial models, there have been a plethora of GEM models of prostate cancer representing various perturbations of oncogenes or tumor suppressors, either alone or in combination. This review describes these GEM models, focusing on their relevance for human prostate cancer and highlighting their strengths and limitations, as well as opportunities for the future.

  12. Transrectal Near-Infrared Optical Tomography for Prostate Imaging

    DTIC Science & Technology

    2010-03-01

    valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 31-03-2010 2. REPORT TYPE Annual 3...technology of trans-rectal near-infrared (NIR) optical tomography for accurate, selective prostate biopsy. Prostate cancer is the most common non ...mice and recovered/homogenized for injection into the non -immune suppressed dog’s prostate gland. Under general anesthesia, ~2 cc of TVT cells

  13. COX-2 and Prostate Cancer Angiogenesis

    DTIC Science & Technology

    2001-03-01

    the optimal dosing and timing of a COX-2 inhibitor (NS398) in an animal model of human prostate cancer, (2)and (3) the mechanisms underlying the...cancer tissues (14) and that a COX-2 inhibitor selectively induces apoptosis in a prostate cancer cell line (15). We also demonstrated that treatment of...human prostate tumor-bearing mice with a selective COX-2 inhibitor (NS-398) significantly reduces tumor size, microvessel density and levels of a

  14. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  15. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice.

    PubMed

    Narayanan, Narayanan K; Nargi, Dominick; Randolph, Carla; Narayanan, Bhagavathi A

    2009-07-01

    Increasing interest in the use of phytochemicals to reduce prostate cancer led us to investigate 2 potential agents, curcumin and resveratrol as preventive agents. However, there is concern about the bioavailability of these agents pertinent to the poor absorption and thereby limiting its clinical use. With the view to improve their bioavailability, we used the liposome encapsulated curcumin, and resveratrol individually and in combination in male B6C3F1/J mice. Further, we examined the chemopreventive effect of liposome encapsulated curcumin and resveratrol in combination in prostate-specific PTEN knockout mice. In vitro assays using PTEN-CaP8 cancer cells were performed to investigate the combined effects curcumin with resveratrol on (i) cell growth, apoptosis and cell cycle (ii) impact on activated p-Akt, cyclin D1, m-TOR and androgen receptor (AR) proteins involved in tumor progression. HPLC analysis of serum and prostate tissues showed a significant increase in curcumin level when liposome encapsulated curcumin coadministered with liposomal resveratrol (p < 0.001). Combination of liposomal forms of curcumin and resveratrol significantly decreased prostatic adenocarcinoma in vivo (p < 0.001). In vitro studies revealed that curcumin plus resveratrol effectively inhibit cell growth and induced apoptosis. Molecular targets activated due to the loss of phosphatase and tensin homolog (PTEN) including p-Akt, cyclin D1, mammalian target of rapamycin and AR were downregulated by these agents in combination. Findings from this study for the first time provide evidence on phytochemicals in combination to enhance chemopreventive efficacy in prostate cancer. These findings clearly suggest that phytochemicals in combination may reduce prostate cancer incidence due to the loss of the tumor suppressor gene PTEN.

  16. CPA-7 influences immune profile and elicits anti-prostate cancer effects by inhibiting activated STAT3.

    PubMed

    Liang, Meihua; Zhan, Fei; Zhao, Juan; Li, Qi; Wuyang, Jiazi; Mu, Guannan; Li, Dianjun; Zhang, Yanqiao; Huang, Xiaoyi

    2016-07-19

    Platinum-based chemotherapy is emerging as the first line of treatment for castration resistant prostate cancer. Among the family of platinum (IV)-based compounds, a member known as CPA-7 inhibits the growth of multiple cancer cell lines. However, how and to what extent CPA-7 elicits its anti-prostate cancer effects in vivo is largely unknown. In this study, we firstly assessed the potential toxicity of the synthesized CPA-7 in a prostate cancer model as well as in normal mice. Next, we evaluated the in vitro effects of CPA-7 on the growth of prostate cancer cells using cell counting assay, and calculated the tumor sizes and cumulative survival rate of the tumor bearing mice by Kaplan-Meier method during CPA-7 treatment. Then we measured the expression level of the activated form of STAT3 (one targets of CPA-7) and its transcriptive activity post CPA-7 treatment by synergistically using western blot, IHC, and firefly luciferase reporter assays. Finally, effects of CPA-7 on immune cell trafficking in the tumor draining lymph nodes and in the spleens are evaluated with flow cytometry. Treatment with CPA-7 significantly inhibited growth of prostate cancer cells in vitro, and also in mice resulting in a prolonged survival and a decreased recurrence rate. These therapeutic effects are due, at least in part, to functional depletion of STAT3 in prostate tumor tissue as well as in the surrounding areas of tumor cell invasion. CPA-7 treatment also resulted in a reduced level of regulatory T cells and increased levels of cytotoxic T and T helper cells in the spleen and in tumor infiltrating lymph nodes. This favorable effect on immune cell trafficking may account for the amnestic immune response against recurrent prostate cancer. CPA-7 is a promising new therapeutic agent for prostate cancer that both inhibits tumor cell proliferation and stimulates anti-tumor immunity. It has potential as first line treatment and/or as an adjuvant for refractory prostate cancer.

  17. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses

    PubMed Central

    Saal, Frederick S. vom; Timms, Barry G.; Montano, Monica M.; Palanza, Paola; Thayer, Kristina A.; Nagel, Susan C.; Dhar, Minati D.; Ganjam, V. K.; Parmigiani, Stefano; Welshons, Wade V.

    1997-01-01

    On the basis of results of studies using high doses of estrogens, exposure to estrogen during fetal life is known to inhibit prostate development. However, it is recognized in endocrinology that low concentrations of a hormone can stimulate a tissue, while high concentrations can have the opposite effect. We report here that a 50% increase in free-serum estradiol in male mouse fetuses (released by a maternal Silastic estradiol implant) induced a 40% increase in the number of developing prostatic glands during fetal life; subsequently, in adulthood, the number of prostatic androgen receptors per cell was permanently increased by 2-fold, and the prostate was enlarged by 30% (due to hyperplasia) relative to untreated males. However, as the free serum estradiol concentration in male fetuses was increased from 2- to 8-fold, adult prostate weight decreased relative to males exposed to the 50% increase in estradiol. As a model for fetal exposure to man-made estrogens, pregnant mice were fed diethylstilbestrol (DES) from gestation days 11 to 17. Relative to controls, DES doses of 0.02, 0.2, and 2.0 ng per g of body weight per day increased adult prostate weight, whereas a 200-ng-per-g dose decreased adult prostate weight in male offspring. Our findings suggest that a small increase in estrogen may modulate the action of androgen in regulating prostate differentiation, resulting in a permanent increase in prostatic androgen receptors and prostate size. For both estradiol and DES, prostate weight first increased then decreased with dose, resulting in an inverted-U dose-response relationship. PMID:9050904

  18. Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer.

    PubMed

    Yang, Jiayi; Ning, Jianping; Peng, Linlin; He, Dan

    2015-01-01

    Prostate cancer is a common malignant tumor in urinary system. Curcumin has curative effect on many kinds of cancers and can inhibit prostate cancer (PC)-3 cells proliferation. This study aimed to explore the curcumin induced prostate cancer cell apoptosis and apoptosis related proteins Bcl-2 and Bax expression. PC-3 cells were injected subcutaneously to the nude mice to establish the tumor model. The nude mice were randomly divided into group C (normal saline), group B (6% polyethylene glycol and 6% anhydrous ethanol), group H, M, L (100 mg/kg, 50 mg/kg, and 25 mg/kg curcumin). The tumor volume was measured every 6 days to draw the tumor growth curve. The mice were killed at the 30(th) day after injection to weight the tumor. TUNEL assay was applied to determine cell apoptosis. Immunohistochemistry was used to detect Bcl-2 and Bax expression. The tumor volume and weight in group H, M, L were significantly lower than the control group (C, B) (P<0.05), and the inhibitory rate increased following the curcumin dose increase. Compared with the control group, Bcl-2 expression in group H, M, L gradually decreased, while Bax protein expression increased (P<0.05). The cell apoptosis rate showed no statistical difference between group B and C, while it increased in curcumin group H, M, and L (P<0.05). Curcumin could inhibit PC-3 growth, decrease tumor volume, reduce tumor weight, and induce cell apoptosis under the skin of nude mice by up-regulating Bax and down-regulating Bcl-2.

  19. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer.

    PubMed

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E; Kopečková, Pavla; Kopeček, Jindřich

    2013-12-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.

  20. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer

    PubMed Central

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E.; Kopečková, Pavla; Kopeček, Jindřich

    2015-01-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (–GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer – DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates’ in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice. PMID:24160903

  1. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    PubMed Central

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  2. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    PubMed

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  3. Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis

    USDA-ARS?s Scientific Manuscript database

    The insulin-like growth factor-1 (IGF-1) signaling axis is important for cell growth, differentiation, and survival, and increased serum IGF is a risk factor for prostate and other cancers. To study IGF-1 action on the prostate, we created transgenic (PB-Des) mice that specifically express human IGF...

  4. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Satoshi; Harris, Timothy J.; Tryggestad, Erik

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evidentmore » with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.« less

  5. Enhanced Peptide Radiotherapy of Prostate Cancer Using Targeted Adenoviral Vectors

    DTIC Science & Technology

    2004-06-01

    regard to binding of 64Cu - octreotide. In vitro experiments were performed with DU-145 and PC-3 human prostate cancer cells. Expression levels of SSTR2...were determined using a 64Cu -octreotide saturation binding assay on cell membrane preparations. In vivo experiments were conducted in scid mice bearing...subcutaneous DU-l45 or PC-3 cells. AdSSTR2 was injected intratumorally followed 48 h later by an i.v. injection of 64Cu -octreotide. The mice were

  6. "The Tramp", a blood donation propagandist?

    PubMed

    Lefrère, J-J; Garraud, O

    2016-02-01

    The French pioneer for blood transfusion, who eventually organized the very early blood transfusion centers worldwide, went to imagine a scenario written in purpose for Charlie Chaplin, the unique character of "The Tramp" ("Charlot" in French). The movie Star was offered to feature a blood donation propagandist, and no longer the perpetual, well-known, "loser". This anecdote, besides being amusing, tells a lot on how Arnault Tzank encompassed all the difficulties in collecting blood enough to meet the demand, at all times; his proposal turns out to be extremely modern and questions nowadays marketing for blood donation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis.

    PubMed

    Kaneko, Nagamoto; Katsuyama, You; Kawamura, Kazuo; Fujiwara, Shigeki

    2010-06-01

    The protochordate ascidian Polyandrocarpa misakiensis has a striking ability to regenerate. When the posterior half of the adult body is amputated, the anterior half completely loses the esophagus, stomach and intestine. These organs are reconstituted in a week. Histological observation revealed that the regeneration involves transdifferentiation of the atrial epithelium near the cut surface. The morphological features of the gut primordium were similar to those observed in the developing bud of this species. Inhibitors of the synthesis of retinoic acid (RA) suppressed the formation of the gut. 13-cis RA rescued the regenerates from the inhibitor-induced hypoplasia. These results suggest that RA is required for the regeneration of the gut. A gene encoding the RA receptor (Pm-RAR) and its target gene, TRAMP, were expressed in and around the regenerating gut. Pm-RAR-specific and TRAMP-specific double-stranded RNA molecules inhibited the regeneration of the gut, indicating that the RA signal is mediated at least in part by Pm-RAR and TRAMP. These results suggested that RA triggers the transdifferentiation of the atrial epithelium into the gut in regenerating animals, as it does during asexual reproduction.

  8. Influence of Anti-Mouse Interferon Serum on the Growth and Metastasis of Tumor Cells Persistently Infected with Virus and of Human Prostatic Tumors in Athymic Nude Mice

    NASA Astrophysics Data System (ADS)

    Reid, Lola M.; Minato, Nagahiro; Gresser, Ion; Holland, John; Kadish, Anna; Bloom, Barry R.

    1981-02-01

    Baby hamster kidney or HeLa cells form tumors in 100% of athymic nude mice. When such cells are persistently infected (PI) with RNA viruses, such as mumps or measles virus, the tumor cells either fail to grow or form circumscribed benign nodules. Neither the parental nor the virus PI tumor cells form invasive or metastatic lesions in nude mice. Previous studies have indicated a correlation between the susceptibility of virus-PI tumor cells in vitro and the cytolytic activity of natural killer (NK) cells and their failure to grow in vivo. Because interferon (IF) is the principal regulatory molecule governing the differentiation of NK cells, it was possible to test the relevance of the IF--NK cell system in vivo to restriction of tumor growth by treatment of nude mice with anti-IF globulin. This treatment was shown to reduce both IF production and NK activity in spleen cells. Both parental and virus-PI tumor cells grew and formed larger tumors in nude mice treated with anti-IF globulin than in control nude mice. The viral-PI tumor cells and the uninfected parental cells formed tumors in treated mice that were highly invasive and often metastatic. Some human tumor types have been notoriously difficult to establish as tumor lines in nude mice (e.g., primary human prostatic carcinomas). When transplanted into nude mice treated either with anti-IF globulin or anti-lymphocyte serum, two prostatic carcinomas grew and produced neoplasms with local invasiveness and some metastases. The results are consistent with the view that interferon may be important in restricting the growth, invasiveness, and metastases of tumor cells by acting indirectly through components of the immune system, such as NK cells.

  9. Elevation of SHARPIN Protein Levels in Prostate Adenocarcinomas Promotes Metastasis and Impairs Patient Survivals.

    PubMed

    Huang, Hai; Du, Tao; Zhang, Yiming; Lai, Yiming; Li, Kaiwen; Fan, Xinxing; Zhu, Dingjun; Lin, Tianxin; Xu, Kewei; Huang, Jian; Liu, Leyuan; Guo, Zhenghui

    2017-05-01

    SHARPIN, SHANK-associated RH domain interacting protein, associates with a linear ubiquitin chain assembly complex (LUBAC) to regulate inflammation and immunity. It has been reported that SHARPIN is highly expressed in several human tumors including ovarian cancer and liver cancer. We found that SHARPIN is also highly expressed in prostate cancer cell lines of DU145, LNCAP, and PC-3. Suppression of SHARPIN caused an inhibition of NF-κB signal and decreases in tumorigenesis of cultured cells in NOD/SCID mouse model. Overexpression of SHARPIN in prostate cancer cells promoted cell growth and reduced apoptosis through NF-kB/ERK/Akt pathway and apoptosis-associated proteins. We analyzed the expression of SHARPIN in prostate cancer tissues from 95 patients and its relationship with other clinical characteristics associated with PCA malignancies and patient survivals, and examined the impacts of SHARPIN suppression with siRNA on proliferation, angiogenesis, invasion, and expression levels of MMP-9 of prostate cancer cells and metastasis to lung by these cells in nude mice. High levels of SHARPIN were associated with high malignancies of PCA and predicted shorter survivals of PCA patients. Suppression of SHARPIN impaired cell proliferation, angiogenesis, and invasion and reduced levels of MMP-9 in prostate cancer cells and reduced the size of metastatic lung tumors induced by these cells in mice. SHARPIN enhances the metastasis of prostate cancer and impair patient survivals. Prostate 77:718-728, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Estrogenic Environmental Chemicals and Drugs: Mechanisms for Effects on the Developing Male Urogenital System

    PubMed Central

    Taylor, Julia A.; Richter, Catherine A.; Ruhlen, Rachel L.; vom Saal, Frederick S.

    2011-01-01

    Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures. PMID:21827855

  11. Identification of HLA-DRB1*1501-restricted T-cell epitopes from human prostatic acid phosphatase.

    PubMed

    Klyushnenkova, Elena N; Kouiavskaia, Diana V; Kodak, James A; Vandenbark, Arthur A; Alexander, Richard B

    2007-07-01

    The crucial role of CD4 T-cells in anti-tumor immune response is widely recognized, yet the identification of HLA class II-restricted epitopes derived from tumor antigens has lagged behind compared to class I epitopes. This is particularly true for prostate cancer. Based on the hypothesis that successful cancer immunotherapy will likely resemble autoimmunity, we searched for the CD4 T-cell epitopes derived from prostatic proteins that are restricted by human leukocyte antigen (HLA)-DRB1*1501, an allele associated with granulomatous prostatitis (GP), a disease that may have an autoimmune etiology. One of the antigens implicated in the development of autoimmunity in the prostate is prostatic acid phosphatase (PAP), which is also considered a promising target for prostate cancer immunotherapy. We immunized transgenic (tg) mice engineered to express HLA-DRB1*1501 with human PAP. A library of overlapping 20-mer peptides spanning the entire human PAP sequence was screened in vitro for T-cell recognition by proliferative and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) assays. We identified two 20-mer peptides, PAP (133-152), and PAP (173-192), that were immunogenic and naturally processed from whole PAP in HLA-DRB1*1501 tg mice. These peptides were also capable of stimulating CD4 T lymphocytes from HLA-DRB1*1501-positive patients with GP and normal donors. These peptides can be used for the design of a new generation of peptide-based vaccines against prostate cancer. The study can also be helpful in understanding the role of autoimmunity in the development of some forms of chronic prostatitis.

  12. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    DOE PAGES

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; ...

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle tomore » establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.« less

  13. Evaluation of the adequacy of published studies of low-dose effects of bisphenol A on the rodent prostate for use in human risk assessment.

    PubMed

    Milman, Harry A; Bosland, Maarten C; Walden, Paul D; Heinze, John E

    2002-06-01

    Studies conducted in our laboratories and by others found no consistent correlation between prostate size, prostate pathology, or the development of prostate cancer under a variety of experimental conditions. Furthermore, an evaluation of eight published studies that were conducted in mice and rats following in utero exposure by oral treatment of dams with low levels of bisphenol A (BPA) and that focused on the prostate identified several discrepancies that affect their adequacy for use in human risk assessment. For example, there was inadequate reporting of the purity of BPA and the animal supplier used, and housing of offspring was not the same among the studies. In addition, there were differences between studies with mice and rats in exposure regimen, route of exposure, and numbers of dams or pups used per BPA dose group. Poor inter- and intraspecies correlation (i.e., mouse to rat or between mouse or rat strains) further complicates the ability to use results from these studies to predict potential prostate effects in humans. Thus, we conclude that a finding of increased prostate weight in rodent studies with perinatal exposure in the absence of associated pathologic and/or functional changes is meaningless and not indicative of a potential adverse effect in humans. Copyright 2002 Elsevier Science (USA)

  14. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    PubMed Central

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  15. Natura-Alpha Targets Forkhead Box M1 and Inhibits Androgen-Dependent and -Independent Prostate Cancer Growth and Invasion

    PubMed Central

    Li, Yirong; Ligr, Martin; McCarron, James P; Daniels, Garrett; Zhang, David; Zhao, Xin; Ye, Fei; Wang, Jinhua; Liu, Xiaomei; Osman, Iman; Mencher, Simon K; Lepor, Hebert; Wang, Long G; Lee, Peng

    2011-01-01

    Purpose The development of new effective therapeutic agents with minimal side effects for prostate cancer treatment is much needed. Indirubin, an active molecule identified in the traditional Chinese herbal medicine – Qing Dai (Indigo Naturalis), has been used to treat leukemia for decades. However, the anti-cancer properties of Natura-alpha, an indirubin derivative, are not well studied in solid tumors, particularly in prostate cancer. Experimental Design Human prostate cancer cell lines were treated with or without Natura-alpha followed by cell growth and invasion assays measured. The anti-tumor effects of Natura-alpha were examined in nude mice tumor xenograft models, as well as in a patient with advanced hormone refractory metastatic prostate cancer. Signal network proteins targeted by Natura-alpha were analyzed using Proteomic Pathway Array Analysis (PPAA) on xenografts. Results Natura-alpha inhibited the growth of both androgen-dependent (LNCaP), and androgen-independent (LNCaP-AI, PC-3, and DU145) prostate cancer cells with IC50 between 4 to 10 Μm, also inhibits invasion of androgen-independent prostate cancer cells. Its anti-tumor effects were further evident in vivo tumor reduction in androgen-dependent and -independent nude mice tumor xenograft models as well as reduced tumor volume in the patient with hormone refractory metastatic prostate cancer. PPAA revealed that anti-proliferative and anti-invasive activities of Natura-alpha on prostate cancer might primarily be through its down-regulation of Forkhead box M1 (FOXM1) protein. Forced over-expression of FOXM1 largely reversed the inhibition by Natura-alpha. Conclusion Natura-alpha could serve as a novel and effective therapeutic agent for treatment of both hormone sensitive and hormone refractory prostate cancer with minimal side effects. PMID:21606178

  16. Suppressed prostate epithelial development with impaired branching morphogenesis in mice lacking stromal fibromuscular androgen receptor.

    PubMed

    Lai, Kuo-Pao; Yamashita, Shinichi; Vitkus, Spencer; Shyr, Chih-Rong; Yeh, Shuyuan; Chang, Chawnshang

    2012-01-01

    Using the cre-loxP system, we generated a new mouse model [double stromal androgen receptor knockout (dARKO)] with selectively deleted androgen receptor (AR) in both stromal fibroblasts and smooth muscle cells, and found the size of the anterior prostate (AP) lobes was significantly reduced as compared with those from wild-type littermate controls. The reduction in prostate size of the dARKO mouse was accompanied by impaired branching morphogenesis and partial loss of the infolding glandular structure. Further dissection found decreased proliferation and increased apoptosis of the prostate epithelium in the dARKO mouse AP. These phenotype changes were further confirmed with newly established immortalized prostate stromal cells (PrSC) from wild-type and dARKO mice. Mechanistically, IGF-1, placental growth factor, and secreted phosphoprotein-1 controlled by stromal AR were differentially expressed in PrSC-wt and PrSC-ARKO. Moreover, the conditioned media (CM) from PrSC-wt promoted prostate epithelium growth significantly as compared with CM from PrSC-dARKO. Finally, adding IGF-1/placental growth factor recombinant proteins into PrSC-dARKO CM was able to partially rescue epithelium growth. Together, our data concluded that stromal fibromuscular AR could modulate epithelium growth and maintain cellular homeostasis through identified growth factors.

  17. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise.

    PubMed

    Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H

    2012-01-01

    The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.

  18. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  19. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  20. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.

    PubMed

    Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H

    2016-05-01

    To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.

  1. 78 FR 8410 - Thiacloprid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ...) were noted in dog, rat, and mouse studies. Increased prostate weight and prostatic hypertrophy were... acetylcholine receptors. In the neurotoxicity studies in rats, there was a reduction in motor and locomotor... uterine tumors in rats, thyroid follicular adenomas in rat and ovarian tumors in mice. A cancer slope...

  2. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerse

    With increased industrial utilization of iron oxide nanoparticles (Fe{sub 2}O{sub 3}-NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe{sub 2}O{sub 3}-NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe{sub 2}O{sub 3}-NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe{sub 2}O{sub 3}-NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated ironmore » levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe{sub 2}O{sub 3}-NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe{sub 2}O{sub 3}-NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe{sub 2}O{sub 3}-NPs could be an environmental risk factor for reproductive disease. - Highlights: • Fe{sub 2}O{sub 3}-NPs caused adverse effects on the seminal vesicle and prostate gland of mice • Heat shock proteins (Hsp60, 70 and 90) were modulated by Fe{sub 2}O{sub 3}-NPs exposure • Male accessory organs specific markers expression were altered by Fe{sub 2}O{sub 3}-NPs • Histopathology revealed damage to both the accessory organs on Fe{sub 2}O{sub 3}-NPs exposure.« less

  3. Prostate-Specific Membrane Antigen-Targeted Site-Directed Antibody-Conjugated Apoferritin Nanovehicle Favorably Influences In Vivo Side Effects of Doxorubicin.

    PubMed

    Dostalova, Simona; Polanska, Hana; Svobodova, Marketa; Balvan, Jan; Krystofova, Olga; Haddad, Yazan; Krizkova, Sona; Masarik, Michal; Eckschlager, Tomas; Stiborova, Marie; Heger, Zbynek; Adam, Vojtech

    2018-06-11

    Herein, we describe the in vivo effects of doxorubicin (DOX) encapsulated in ubiquitous protein apoferritin (APO) and its efficiency and safety in anti-tumor treatment. APODOX is both passively (through Enhanced Permeability and Retention effect) and actively targeted to tumors through prostate-specific membrane antigen (PSMA) via mouse antibodies conjugated to the surface of horse spleen APO. To achieve site-directed conjugation of the antibodies, a HWRGWVC heptapeptide linker was used. The prostate cancer-targeted and non-targeted nanocarriers were tested using subcutaneously implanted LNCaP cells in athymic mice models, and compared to free DOX. Prostate cancer-targeted APODOX retained the high potency of DOX in attenuation of tumors (with 55% decrease in tumor volume after 3 weeks of treatment). DOX and non-targeted APODOX treatment caused damage to liver, kidney and heart tissues. In contrast, no elevation in liver or kidney enzymes and negligible changes were revealed by histological assessment in prostate cancer-targeted APODOX-treated mice. Overall, we show that the APO nanocarrier provides an easy encapsulation protocol, reliable targeting, high therapeutic efficiency and very low off-target toxicity, and is thus a promising delivery system for translation into clinical use.

  4. Imaging technique predicts efficacy of targeting prostate tumor metabolism in mice | Center for Cancer Research

    Cancer.gov

    Disrupting glycolysis, a metabolic process tumors often rely on to feed their growth by partially breaking down sugars and not requiring oxygen, has emerged as a promising approach to treating metastatic prostate cancer in a study by Center for Cancer Research investigators. 

  5. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    PubMed

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Non-invasive imaging of prostate cancer progression in nude mice using iRFP gene reporter

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Wu, Grace; Robinson, Holly; Wilganowski, Nathaniel; Sevick-Muraca, Eva M.

    2013-03-01

    Prostate cancer (PCa) is the second most common cancer in US men. Metastasis is the final step of tumor progression and remains the primary cause of PCa death. Hence preclinical, orthotopic models of PCa metastasis are necessary to develop new therapeutics against metastatic disease. Yet unlike irrelevant subcutaneous tumor models, the deployment of orthotopic models of cancer metastasis in drug research and development is limited by the inability to longitudinally monitor cancer progression/regression in response to administration of experimental pharmaceuticals. Recently, a nearinfrared fluorescent protein (iRFP) was created for deeper imaging [1]. Imaging prostate tumor growth and lymph node metastasis in nude mice therefore becomes possible using this new fluorescent gene reporter. In this study, we first developed an intensified CCD (ICCD)-based iRFP fluorescence imaging device. Then human PCa PC3 cell lines expressing iRFP gene reporter were orthotopically implanted in male Nu/Nu mice at 8-10 weeks old. After 6-10 weeks, in vivo, in situ and ex vivo fluorescence imaging was performed. In vivo iRFP fluorescence imaging showed that the detected fluorescence concentrated at the prostate and became stronger over time, indicating the growth of implanted PCa. Fluorescence was non-invasively detected at locations of prostate-draining lymph nodes as early as 5 weeks post implantation, indicating the metastasis to lymph nodes. In situ and ex vivo fluorescence imaging demonstrated that the detected signals from PCa and lymph nodes were correlated with cancer positive status of tissues as assessed through standard pathology.

  7. Inhibitory mechanisms of Agaricus blazei Murill on the growth of prostate cancer in vitro and in vivo.

    PubMed

    Yu, Ching-Han; Kan, Shu-Fen; Shu, Chin-Hang; Lu, Ting-Jang; Sun-Hwang, Lucy; Wang, Paulus S

    2009-10-01

    Agaricus blazei Murill (A. blazei) has been conventionally used as a health food for the prevention of cancer. However, little is known about the direct effects and action mechanisms of A. blazei on human prostate cancer. In the present study, the effects of A. blazei on the growth of human prostate cancer were examined in vitro and in vivo. A. blazei, especially the broth fraction, inhibited cell proliferation in both androgen-dependent and androgen-independent prostate cancer cell lines. The broth of A. blazei induced lactate dehydrogenase leakage in three cancer cell lines, whereas the activities of caspase 3 and the DNA fragmentation were enhanced the most in androgen-independent PC3 cells. The protein expressions of apoptosis-related molecules were elevated by the broth of A. blazei in PC3 cells. Oral supplementation with the broth of A. blazei (with the higher ratio of beta-glucan) significantly suppressed tumor growth without inducing adverse effects in severe combined immunodeficient mice with PC3 tumor xenograft. Tumor xenografts from A. blazei-fed mice showed decreased proliferating cell nuclear antigen-positive cells and reduced tumor microvessel density. Based on these results, we found that the broth of A. blazei may directly inhibit the growth of prostate cancer cell via an apoptotic pathway and suppress prostate tumor growth via antiproliferative and antiangiogenic mechanisms. We therefore suggest that A. blazei might have potential therapeutic use in the prevention and treatment of human prostate cancer.

  8. WE-FG-BRA-02: Docetaxel Eluting Brachytherapy Spacers for Local Chemo-Radiation Therapy in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belz, J; Kumar, R; Sridhar, S

    Purpose: We propose an innovative combinatorial treatment strategy of Local ChemoRadiation Therapy (LCRT) using a sustained drug delivery platform in the form of a spacer to locally radio-sensitize the prostate with Docetaxel (DTX) enabling a synergistic cure with the use of lower radiation doses. These biodegradable spacers are physically similar to the inert spacers routinely used in prostate brachytherapy but are now loaded with formulations of DTX. Methods: Spacers were loaded with ∼500µg Docetaxel (DTX) for prostate cancer studies. The implants were characterized in vitro using SEM and HPLC. The release kinetic studies were carried out in buffer (pH 6.0)more » at 37°C. Subcutaneous PC3 tumors were xenografted in nude mice. Prostate cancer studies were done with and without radiation using SARRP at 5Gy, 10Gy, and 15Gy. Drug-loaded implants were injected once intratumorally using an 18G brachytherapy needle. Results: The release study in vitro showed a highly sustained release for multiple weeks at therapeutically relevant doses. The monotherapy with local DTX spacer showed sustained tumor inhibition compared to empty implants and an equivalent DTX dose given systemically. At 40 days, 89% survival was observed for mice treated with DTX implants compared with 0% in all other treatment groups. The combined treatment with local DTX spacer and radiation (10Gy) showed the highest degree of tumor suppression (significant tumor growth inhibition by day 90). The control mice showed continuous tumor growth and were scarified by day 56. Groups of mice treated with DTX-spacer or radiation alone showed initial tumor suppression but growth continued after day 60. A larger experiment is ongoing. Conclusion: This approach provides localized delivery of the chemotherapeutic sensitizer directly to the tumor and avoids the toxicities associated with both brachytherapy and current systemic delivery of docetaxel. Sustained release of DTX is an effective chemotherapy option alone or in combination with radiation therapy.« less

  9. Antitumor activity of IL-32β through the activation of lymphocytes, and the inactivation of NF-κB and STAT3 signals.

    PubMed

    Yun, H-M; Oh, J H; Shim, J-H; Ban, J O; Park, K-R; Kim, J-H; Lee, D H; Kang, J-W; Park, Y H; Yu, D; Kim, Y; Han, S B; Yoon, D-Y; Hong, J T

    2013-05-23

    Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8(+)) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.

  10. Studying the Role of Eukaryotic Translation Initiation Factor 4E (eIF4E) Phosphorylation by MNK1/2 Kinases in Prostate Cancer Development and Progression

    DTIC Science & Technology

    2012-06-01

    preclinical mouse model. J Clin Invest 118: 3051–3064. 49. Le Bacquer O, et al. (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in...Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest 117:387–396. 7. Frederickson RM...that knock-in mice expressing a nonphosphorylatable form of eIF4E are resistant to tumorigenesis in a prostate cancer model. By using a genome-wide

  11. Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone.

    PubMed

    Roca, Hernan; Jones, Jacqueline D; Purica, Marta C; Weidner, Savannah; Koh, Amy J; Kuo, Robert; Wilkinson, John E; Wang, Yugang; Daignault-Newton, Stephanie; Pienta, Kenneth J; Morgan, Todd M; Keller, Evan T; Nör, Jacques E; Shea, Lonnie D; McCauley, Laurie K

    2018-01-02

    During tumor progression, immune system phagocytes continually clear apoptotic cancer cells in a process known as efferocytosis. However, the impact of efferocytosis in metastatic tumor growth is unknown. In this study, we observed that macrophage-driven efferocytosis of prostate cancer cells in vitro induced the expression of proinflammatory cytokines such as CXCL5 by activating Stat3 and NF-κB(p65) signaling. Administration of a dimerizer ligand (AP20187) triggered apoptosis in 2 in vivo syngeneic models of bone tumor growth in which apoptosis-inducible prostate cancer cells were either coimplanted with vertebral bodies, or inoculated in the tibiae of immunocompetent mice. Induction of 2 pulses of apoptosis correlated with increased infiltration of inflammatory cells and accelerated tumor growth in the bone. Apoptosis-induced tumors displayed elevated expression of the proinflammatory cytokine CXCL5. Likewise, CXCL5-deficient mice had reduced tumor progression. Peripheral blood monocytes isolated from patients with bone metastasis of prostate cancer were more efferocytic compared with normal controls, and CXCL5 serum levels were higher in metastatic prostate cancer patients relative to patients with localized prostate cancer or controls. Altogether, these findings suggest that the myeloid phagocytic clearance of apoptotic cancer cells accelerates CXCL5-mediated inflammation and tumor growth in bone, pointing to CXCL5 as a potential target for cancer therapeutics.

  12. FOXA1 and SOX9 Expression in the Developing Urogenital Sinus of the Tammar Wallaby (Macropus eugenii).

    PubMed

    Gamat, Melissa; Chew, Keng Yih; Shaw, Geoffrey; Renfree, Marilyn B

    2015-01-01

    The mammalian prostate is a compact structure in humans but multi-lobed in mice. In humans and mice, FOXA1 and SOX9 play pivotal roles in prostate morphogenesis, but few other species have been examined. We examined FOXA1 and SOX9 in the marsupial tammar wallaby, Macropus eugenii, which has a segmented prostate more similar to human than to mouse. In males, prostatic budding in the urogenital epithelium (UGE) was initiated by day 24 postpartum (pp), but in the female the UGE remained smooth and had begun forming the marsupial vaginal structures. FOXA1 was upregulated in the male urogenital sinus (UGS) by day 51 pp, whilst in the female UGS FOXA1 remained basal. FOXA1 was localised in the UGE in both sexes between day 20 and 80 pp. SOX9 was upregulated in the male UGS at day 21-30 pp and remained high until day 51-60 pp. SOX9 protein was localised in the distal tips of prostatic buds which were highly proliferative. The persistent upregulation of the transcription factors SOX9 and FOXA1 after the initial peak and fall of androgen levels suggest that in the tammar, as in other mammals, these factors are required to sustain prostate differentiation, development and proliferation as androgen levels return to basal levels. © 2015 S. Karger AG, Basel.

  13. STS-69 Flight Day 9 Video File

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  14. STS-69 flight day 9 highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  15. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis.

    PubMed

    Lall, Rahul K; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Gong, Yuansheng; Lucey, John A; Mukhtar, Hasan

    2016-09-01

    We and others have shown previously that fisetin, a plant flavonoid, has therapeutic potential against many cancer types. Here, we examined the probable mechanism of its action in prostate cancer (PCa) using a global metabolomics approach. HPLC-ESI-MS analysis of tumor xenografts from fisetin-treated animals identified several metabolic targets with hyaluronan (HA) as the most affected. Efficacy of fisetin on HA was then evaluated in vitro and also in vivo in the transgenic TRAMP mouse model of PCa. Size exclusion chromatography-multiangle laser light scattering (SEC-MALS) was performed to analyze the molar mass (Mw) distribution of HA. Fisetin treatment downregulated intracellular and secreted HA levels both in vitro and in vivo Fisetin inhibited HA synthesis and degradation enzymes, which led to cessation of HA synthesis and also repressed the degradation of the available high-molecular-mass (HMM)-HA. SEC-MALS analysis of intact HA fragment size revealed that cells and animals have more abundance of HMM-HA and less of low-molecular-mass (LMM)-HA upon fisetin treatment. Elevated HA levels have been shown to be associated with disease progression in certain cancer types. Biological responses triggered by HA mainly depend on the HA polymer length where HMM-HA represses mitogenic signaling and has anti-inflammatory properties whereas LMM-HA promotes proliferation and inflammation. Similarly, Mw analysis of secreted HA fragment size revealed less HMM-HA is secreted that allowed more HMM-HA to be retained within the cells and tissues. Our findings establish that fisetin is an effective, non-toxic, potent HA synthesis inhibitor, which increases abundance of antiangiogenic HMM-HA and could be used for the management of PCa. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mechanism of Prostate Cancer Prevention by Down-Regulation of the GH/IGF Axis

    DTIC Science & Technology

    2012-07-01

    apoptosis. Recent clinical trials indicate that elevated circulating IGF-I confers an increased risk for the development of prostate cancer. Our...hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci U S A 1990;87:5061-5. [6] Kopchick JJ, Parkinson C, Stevens EC, Trainer PJ. Growth

  17. Humanized Androgen Receptor Mice: A Genetic Model for Differential Response to Prostate Cancer Therapy

    DTIC Science & Technology

    2011-06-01

    tract length to male fertility (Davis-Dao et al., 2007) and in hypogonadal men to response to testosterone replacement (Zitzmann et al., 2004...changing, as occurs in development and aging, or clinically, as when hormone is replaced in hypogonadal men or ablated in prostate cancer treatment

  18. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    PubMed

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  19. STAMP2 increases oxidative stress and is critical for prostate cancer

    PubMed Central

    Jin, Yang; Wang, Ling; Qu, Su; Sheng, Xia; Kristian, Alexandr; Mælandsmo, Gunhild M; Pällmann, Nora; Yuca, Erkan; Tekedereli, Ibrahim; Gorgulu, Kivanc; Alpay, Neslihan; Sood, Anil; Lopez-Berestein, Gabriel; Fazli, Ladan; Rennie, Paul; Risberg, Bjørn; Wæhre, Håkon; Danielsen, Håvard E; Ozpolat, Bulent; Saatcioglu, Fahri

    2015-01-01

    The six transmembrane protein of prostate 2 (STAMP2) is an androgen-regulated gene whose mRNA expression is increased in prostate cancer (PCa). Here, we show that STAMP2 protein expression is increased in human PCa compared with benign prostate that is also correlated with tumor grade and treatment response. We also show that STAMP2 significantly increased reactive oxygen species (ROS) in PCa cells through its iron reductase activity which also depleted NADPH levels. Knockdown of STAMP2 expression in PCa cells inhibited proliferation, colony formation, and anchorage-independent growth, and significantly increased apoptosis. Furthermore, STAMP2 effects were, at least in part, mediated by activating transcription factor 4 (ATF4), whose expression is regulated by ROS. Consistent with in vitro findings, silencing STAMP2 significantly inhibited PCa xenograft growth in mice. Finally, therapeutic silencing of STAMP2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in two established preclinical PCa models in mice. These data suggest that STAMP2 is required for PCa progression and thus may serve as a novel therapeutic target. PMID:25680860

  20. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs.

    PubMed

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe 2 O 3 -NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe 2 O 3 -NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe 2 O 3 -NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe 2 O 3 -NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe 2 O 3 -NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe 2 O 3 -NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe 2 O 3 -NPs could be an environmental risk factor for reproductive disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice

    PubMed Central

    Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi

    2012-01-01

    Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574

  2. Castration Induced Neuroendocrine Mediated Progression of Prostate Cancer

    DTIC Science & Technology

    2008-09-01

    neoplasia in NRP-152 and NRP-154 rat prostatic epithelial cells. BMC Cancer 1, 19. [104] Flowers LO, Subramaniam PS, and Johnson HM (2005). A SOCS-1...metastases without effects on cell motility or growth. EMBO J 21: 6289–6302. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP et al. (2006). N...Knocking down Etk expression with its specific siRNA inhibits LNCaP cell proliferation (29, 42), and prostates from Etk transgenic mice exhibit

  3. Androgen Receptor Gene Polymorphisms and Alterations in Prostate Cancer: Of Humanized Mice and Men

    PubMed Central

    Robins, Diane M.

    2011-01-01

    Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners. PMID:21689727

  4. Analysis of spatial heterogeneity in normal epithelium and preneoplastic alterations in mouse prostate tumor models

    PubMed Central

    Valkonen, Mira; Ruusuvuori, Pekka; Kartasalo, Kimmo; Nykter, Matti; Visakorpi, Tapio; Latonen, Leena

    2017-01-01

    Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity. PMID:28317907

  5. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    PubMed Central

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  6. Interaction of the androgen receptor, ETV1 and PTEN pathways in mouse prostate varies with pathological stage and predicts cancer progression

    PubMed Central

    Higgins, Jake; Brogley, Michele; Palanisamy, Nallasivam; Mehra, Rohit; Ittmann, Michael M.; Li, Jun Z.; Tomlins, Scott A.; Robins, Diane M.

    2015-01-01

    To examine the impact of common somatic mutations in prostate cancer (PCa) on androgen receptor (AR) signaling, mouse models were designed to perturb sequentially the AR, ETV1 and PTEN pathways. Mice with "humanized" AR (hAR) alleles that modified AR transcriptional strength by varying polyglutamine tract (Q-tract) length were crossed with mice expressing a prostate-specific, AR-responsive ETV1 transgene (ETV1Tg). While hAR allele did not grossly affect ETV1-induced neoplasia, ETV1 strongly antagonized global AR regulation and repressed critical androgen-induced differentiation and tumor suppressor genes, such as Nkx3-1 and Hoxb13. When Pten was varied to determine its impact on disease progression, mice lacking one Pten allele (Pten+/−) developed more frequent prostatic intraepithelial neoplasia (PIN). Yet only those with the ETV1 transgene progressed to invasive adenocarcinoma. Furthermore, progression was more frequent with the short Q-tract (stronger) AR, suggesting that the AR, ETV1 and PTEN pathways cooperate in aggressive disease. On the Pten+/− background, ETV1 had markedly less effect on AR target genes. However, a strong inflammatory gene expression signature, notably upregulation of Cxcl16, was induced by ETV1. Comparison of mouse and human patient data stratified by presence of ETS fusion genes highlighted additional factors, some not previously associated with prostate cancer but for which targeted therapies are in development for other diseases. In sum, concerted use of these mouse models illuminates the complex interplay of AR, ETV1 and PTEN pathways in pre-cancerous neoplasia and early tumorigenesis, disease stages difficult to analyze in man. PMID:25631336

  7. Regulated Apoptosis and Immunogene Therapy for Prostate Cancer

    DTIC Science & Technology

    2006-04-01

    was sutured. The castrated mice were put on a heating pad until recovery and were given injectable Buprenex (buprenorphine hydrochloride; Reckitt ... Benckiser Healthcare UK, Ltd., England, United Kingdom). Sham-operated, age-matched males were used as controls. The orchiectomized mice were imaged

  8. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  9. The Function of Neuroendocrine Cells in Prostate Cancer

    DTIC Science & Technology

    2014-04-01

    cells were sorted based on HLA + RFP+ GFP+ and further divided into CD56+/- fractions and transplanted into recipient mice. (C) Tumors formed...in Prostate Cancer PRINCIPAL INVESTIGATOR: Jiaoti Huang CONTRACTING ORGANIZATION : REPORT DATE: April 2014 TYPE OF REPORT... ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of California Los Angeles Los Angeles, CA 90095

  10. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  11. Insulin-like growth factor-I induces CLU expression through Twist1 to promote prostate cancer growth.

    PubMed

    Takeuchi, Ario; Shiota, Masaki; Beraldi, Eliana; Thaper, Daksh; Takahara, Kiyoshi; Ibuki, Naokazu; Pollak, Michael; Cox, Michael E; Naito, Seiji; Gleave, Martin E; Zoubeidi, Amina

    2014-03-25

    Clusterin (CLU) is cytoprotective molecular chaperone that is highly expressed in castrate-resistant prostate cancer (CRPC). CRPC is also characterized by increased insulin-like growth factor (IGF)-I responsiveness which induces prostate cancer survival and CLU expression. However, how IGF-I induces CLU expression and whether CLU is required for IGF-mediated growth signaling remain unknown. Here we show that IGF-I induced CLU via STAT3-Twist1 signaling pathway. In response to IGF-I, STAT3 was phosphorylated, translocated to the nucleus and bound to the Twist1 promoter to activate Twist1 transcription. In turn, Twist1 bound to E-boxes on the CLU promoter and activated CLU transcription. Inversely, we demonstrated that knocking down Twist1 abrogated IGF-I induced CLU expression, indicating that Twist1 mediated IGF-I-induced CLU expression. When PTEN knockout mice were crossed with lit/lit mice, the resultant IGF-I deficiency suppressed Twist1 as well as CLU gene expression in mouse prostate glands. Moreover, both Twist1 and CLU knockdown suppressed prostate cancer growth accelerated by IGF-I, suggesting the relevance of this signaling not only in an in vitro, but also in an in vivo. Collectively, this study indicates that IGF-I induces CLU expression through sequential activation of STAT3 and Twist1, and suggests that this signaling cascade plays a critical role in prostate cancer pathogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells.

    PubMed

    Price, R S; Cavazos, D A; De Angel, R E; Hursting, S D; deGraffenried, L A

    2012-06-01

    Obesity is associated with larger tumors, shorter time to PSA failure, and higher Gleason scores. However, the mechanism(s) by which obesity promotes aggressive prostate cancer remains unknown. We hypothesize that circulating factors related to obesity promote prostate cancer progression by modulating components of the metastatic cascade. Male C57BL/6 mice (6 weeks) were fed an ad libitum diet-induced obesity (60% fat) or control diet (10% fat) for 12 weeks. Serum was collected, metabolic and inflammatory proteins were measured by an antibody array. Sera were used to measure, in vitro, characteristics of a metastatic phenotype. Comparable to obese men, obese sera contained higher levels or leptin, vascular endothelial growth factor, PAI-1, interleukin-6 (IL-6) and lower levels of testosterone. In prostate cells, serum was used to assess: proliferation, invasion, migration, epithelial-mesenchymal-transition (EMT) and matrix metalloproteinase (MMP) activity. LNCaP and PacMetUT1 cells exposed to obese sera increased proliferation, whereas PrEC and DU145 were unaffected. LNCaP, PacMetUT1 and DU145 cancer cells exposed to obese sera resulted in increased invasion, migration and MMP-9 activity. Prostate cancer cells exposed to obese sera showed increased vimentin, dispersion of e-cadherin and β-catenin from the plasma membrane. We report, prostate cancer cells exposed to sera from obese mice increases proliferation, invasion, migration, MMP activity and induces changes in proteins critical for EMT.

  13. Effects of curcumin analogues for inhibiting human prostate cancer cells and the growth of human PC-3 prostate xenografts in immunodeficient mice.

    PubMed

    Zhou, Dai-Ying; Ding, Ning; Van Doren, Jeremiah; Wei, Xing-Chuan; Du, Zhi-Yun; Conney, Allan H; Zhang, Kun; Zheng, Xi

    2014-01-01

    Four curcumin analogues ((2E,6E)-2,6-bis(thiophen-3-methylene) cyclohexanone (AS), (2E,5E)-2,5-bis(thiophen-3-methylene) cyclopentanone (BS), (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydropyran-4-one (ES) and (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydrothiopyran-4-one (FS) as shown in Fig. 1) with different linker groups were investigated for their effects in human prostate cancer CWR-22Rv1 and PC-3 cells. Compounds FS and ES had stronger inhibitory effects than curcumin, AS and BS on the growth of cultured CWR-22Rv1 and PC-3 cells, as well as on the androgen receptor (AR) and nuclear factor kappa B (NF-κB) activity. The strong activities of ES and FS may be correlated with a heteroatom linker. In animal studies, severe combined immunodeficient (SCID) mice were injected subcutaneously (s.c.) with PC-3 cells in Matrigel. After 4 to 6 weeks, mice with PC-3 tumors (about 0.6 cm wide and 0.6 cm long) received daily intraperitoneal (i.p.) injections of vehicle, ES and FS (10 µg/g body weight) for 31 d. FS had a potent effect in inhibiting the growth and progression of PC-3 tumors. Our results indicate that FS may be useful for inhibiting human prostate tumors growth.

  14. Activin C Antagonizes Activin A in Vitro and Overexpression Leads to Pathologies in Vivo

    PubMed Central

    Gold, Elspeth; Jetly, Niti; O'Bryan, Moira K.; Meachem, Sarah; Srinivasan, Deepa; Behuria, Supreeti; Sanchez-Partida, L. Gabriel; Woodruff, Teresa; Hedwards, Shelley; Wang, Hong; McDougall, Helen; Casey, Victoria; Niranjan, Birunthi; Patella, Shane; Risbridger, Gail

    2009-01-01

    Activin A is a potent growth and differentiation factor whose synthesis and bioactivity are tightly regulated. Both follistatin binding and inhibin subunit heterodimerization block access to the activin receptor and/or receptor activation. We postulated that the activin-βC subunit provides another mechanism regulating activin bioactivity. To test our hypothesis, we examined the biological effects of activin C and produced mice that overexpress activin-βC. Activin C reduced activin A bioactivity in vitro; in LNCaP cells, activin C abrogated both activin A-induced Smad signaling and growth inhibition, and in LβT2 cells, activin C antagonized activin A-mediated activity of an follicle-stimulating hormone-β promoter. Transgenic mice that overexpress activin-βC exhibited disease in testis, liver, and prostate. Male infertility was caused by both reduced sperm production and impaired sperm motility. The livers of the transgenic mice were enlarged because of an imbalance between hepatocyte proliferation and apoptosis. Transgenic prostates showed evidence of hypertrophy and epithelial cell hyperplasia. Additionally, there was decreased evidence of nuclear Smad-2 localization in the testis, liver, and prostate, indicating that overexpression of activin-βC antagonized Smad signaling in vivo. Underlying the significance of these findings, human testis, liver, and prostate cancers expressed increased activin-βC immunoreactivity. This study provides evidence that activin-βC is an antagonist of activin A and supplies an impetus to examine its role in development and disease. PMID:19095948

  15. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.

    PubMed

    Chen, Jayson X; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C; Yang, Chung S

    2016-02-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice

    PubMed Central

    Chen, Jayson X.; Li, Guangxun; Wang, Hong; Liu, Anna; Lee, Mao-Jung; Reuhl, Kenneth; Suh, Nanjoo; Bosland, Maarten C.; Yang, Chung S.

    2015-01-01

    Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer. PMID:26582657

  17. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice

    PubMed Central

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-01-01

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5–0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner. PMID:28282880

  18. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice.

    PubMed

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-03-08

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5-0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner.

  19. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Studies of rhodamine-123: effect on rat prostate cancer and human prostate cancer cells in vitro.

    PubMed

    Arcadi, J A; Narayan, K S; Techy, G; Ng, C P; Saroufeem, R M; Jones, L W

    1995-06-01

    The effect of the lipophilic, cationic dye, Rhodamine-123 (Rh-123), on prostate cancer in rats, and on three tumor cell lines in vitro is reported here. The general toxicity of Rh-123 in mice has been found to be minimal. Lobund-Wistar (L-W) rats with the autochthonous prostate cancer of Pollard were treated for six doses with Rh-123 at a dose of 15 mg/kg subcutaneously every other day. Microscopic examination of the tumors revealed cellular and acinar destruction. The effectiveness of Rh-123 as a cytotoxic agent was tested by clonogenic and viability assays in vitro with three human prostate cancer cell lines. Severe (60-95%) growth inhibition was observed following Rh-123 exposure for 2-5 days at doses as low as 1.6 micrograms/ml in all three prostate cancer cell lines.

  1. Preclinical Evaluation of the Supercritical Extract of Azadirachta Indica (Neem) Leaves In Vitro and In Vivo on Inhibition of Prostate Cancer Tumor Growth

    PubMed Central

    Wu, Qiang; Kohli, Manish; Bergen, H. Robert; Cheville, John C.; Karnes, R. Jeffrey; Cao, Hong; Young, Charles Y.F.; Tindall, Donald J.; McNiven, Mark A.; Donkena, Krishna Vanaja

    2015-01-01

    Azadirachta indica, commonly known as neem, has gained worldwide prominence because of its medical properties, namely antitumor, antiviral, anti-inflammatory, antihyperglycemic, antifungal, and antibacterial activities. Despite these promising results, gaps remain in our understanding of the molecular mechanism of action of neem compounds and their potential for use in clinical trials. We investigated supercritical extract of neem leaves (SENL) for the following: molecular targets in vitro, in vivo efficacy to inhibit tumor growth, and bioactive compounds that exert antitumor activity. Treatment of LNCaP-luc2 prostate cancer cells with SENL suppressed dihydrotestosterone-induced androgen receptor and prostate-specific antigen levels. SENL inhibited integrin β1, calreticulin, and focal adhesion kinase activation in LNCaP-luc2 and PC3 prostate cancer cells. Oral administration of SENL significantly reduced LNCaP-luc2 xenograft tumor growth in mice with the formation of hyalinized fibrous tumor tissue, reduction in the prostate-specific antigen, and increase in AKR1C2 levels. To identify the active anticancer compounds, we fractionated SENL by high-pressure liquid chromatography and evaluated 16 peaks for cytotoxic activity. Four of the 16 peaks exhibited significant cytotoxic activity against prostate cancer cells. Mass spectrometry of the isolated peaks suggested the compounds with cytotoxic activity were nimbandiol, nimbolide, 2′,3′-dihydronimbolide, and 28-deoxonim-bolide. Analysis of tumor tissue and plasma samples from mice treated with SENL indicated 28-deoxonim-bolide and nimbolide as the bioactive compounds. Overall, our data revealed the bioactive compounds in SENL and suggested that the anticancer activity could be mediated through alteration in androgen receptor and calreticulin levels in prostate cancer. PMID:24674886

  2. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.

    PubMed

    Seiler, Daniel; Zheng, Junying; Liu, Gentao; Wang, Shunyou; Yamashiro, Joyce; Reiter, Robert E; Huang, Jiaoti; Zeng, Gang

    2013-09-01

    Prostate cancer stem cells (PCSC) offer theoretical explanations to many clinical and biological behaviors of the disease in human. In contrast to approaches of using side populations and cell-surface markers to isolate and characterize the putative PCSC, we hypothesize that androgen deprivation leads to functional enrichment of putative PCSC. Human prostate cancer lines LNCaP, LAPC4 and LAPC9 were depleted of androgen in cell cultures and in castrated SCID mice. The resultant androgen deprivation-resistant or castration-resistant populations, in particular in LNCaP and its derivative cell lines, displayed increased expression of pluripotency transactivators and significantly higher tumorigenicity. Individual tumor cell clones were isolated from castration-resistant bulk cultures of LNCaP (CR-LNCaP) and tested for tumorigenicity in male SCID mice under limiting dilution conditions. As few as 200 cells were able to form spheres in vitro, and generate tumors with similar growth kinetics as 10(6) LNCaP or 10(4) CR-LNCaP cells in vivo. These putative PCSC were CD44(+) /CD24(-) and lack the expression of prostate lineage proteins. When transplanted into the prostate of an intact male SCID mouse, these putative PCSC seemed to show limited differentiation into Ck5(+) , Ck8(+) , Ck5(+) /Ck8(+) , and AR(+) cells. On the other hand, stable transduction of LNCaP with retrovirus encoding Sox2 led to androgen-deprivation resistant growth and down-regulation of major prostate lineage gene products in vitro. Concurrence of overexpression of pluripotency transactivators and resistance to androgen deprivation supported the role of putative PCSC in the emergence of prostate cancer resistant to androgen deprivation. © 2013 Wiley Periodicals, Inc.

  3. Methylseleninic acid super-activates p53-senescence cancer progression barrier in prostate lesions of Pten-knockout mouse

    PubMed Central

    Wang, Lei; Guo, Xiaolan; Wang, Ji; Jiang, Cheng; Bosland, Maarten C.; Lü, Junxuan; Deng, Yibin

    2015-01-01

    Monomethylated selenium (MM-Se) forms that are precursors of methylselenol such as methylseleninic acid (MSeA) differ in metabolism and anti-cancer activities in preclinical cell and animal models from seleno-methionine that had failed to exert preventive efficacy against prostate cancer (PCa) in North American men. Given that human PCa arises from precancerous lesions such as high-grade prostatic intraepithelial neoplasia (HG-PIN) which frequently have lost PTEN tumor suppressor permitting AKT oncogenic signaling, we tested the efficacy of MSeA to inhibit HG-PIN progression in Pten prostate specific knockout (KO) mice and assessed the mechanistic involvement of p53-mediated cellular senescence and of the androgen receptor (AR). We observed that short-term (4 weeks) oral MSeA treatment significantly increased expression of P53 and P21Cip1 proteins and senescence-associated-β-galactosidase staining, and reduced Ki-67 cell proliferation index in Pten KO prostate epithelium. Long-term (25 weeks) MSeA administration significantly suppressed HG-PIN phenotype, tumor weight, and prevented emergence of invasive carcinoma in Pten KO mice. Mechanistically, the long-term MSeA treatment not only sustained P53-mediated senescence, but also markedly reduced AKT phosphorylation and AR abundance in the Pten KO prostate. Importantly, these cellular and molecular changes were not observed in the prostate of wild type littermates which were similarly treated with MSeA. Since p53 signaling is likely to be intact in HG-PIN compared to advanced PCa, the selective super-activation of p53-mediated senescence by MSeA suggests a new paradigm of cancer chemoprevention by strengthening a cancer progression barrier through induction of irreversible senescence with additional suppression of AR and AKT oncogenic signaling. PMID:26511486

  4. Chinese Red Yeast Rice Inhibition of Prostate Tumor Growth in SCID mice

    PubMed Central

    Hong, Mee Young; Henning, Susanne; Moro, Aune; Seeram, Navindra P.; Zhang, Yanjun; Heber, David

    2011-01-01

    Prostate cancer is a slowly developing but very common cancer in males that may be amenable to preventive strategies that are not toxic. Chinese red yeast rice (RYR), a food herb made by fermenting Monascus purpureus Went yeast on white rice, contains a mixture of eight different monacolins that inhibit cholesterogenesis in addition to red pigments with antioxidant properties. Monacolin K is identical to lovastatin (LV), but lovastatin unlike RYR can be used in individuals intolerant to statins due to muscle pain. Both LV and RYR inhibit de novo cholesterogenesis, which is critical to the growth of tumor cells. Long-term use of statin drugs has been associated with a reduced risk of prostate cancer. We have previously shown that RYR inhibited androgen-dependent and AR-overexpressing androgen-independent prostate cancer cell proliferation in vitro. The present study was designed to determine whether RYR and LV inhibit prostate tumor growth in SCID mice. RYR significantly reduced tumor volumes of androgen-dependent and androgen-independent prostate xenograft tumors compared to animals receiving vehicle alone (P<0.05). Inhibition by RYR was greater than that observed with LV at the dose found in RYR demonstrating that other compounds in RYR contributed to the antiproliferative effect. There was a significant correlation of tumor volume to serum cholesterol (P<0.001). RYR decreased gene expression of androgen synthesizing enzymes (HSD3B2, AKR1C3 and SRD5A1) in both type of tumors (P<0.05). Clinical studies of RYR for prostate cancer prevention in the increasing population of men undergoing active surveillance should be considered. PMID:21278313

  5. Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate Cancer1

    PubMed Central

    Hu, Yunping; Sun, Haiguo; Owens, Rick T; Gu, Zhennan; Wu, Jansheng; Chen, Yong Q; O'Flaherty, Joseph T; Edwards, Iris J

    2010-01-01

    Evidence indicates that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFAs) reduce the risk of prostate cancer, but biochemical mechanisms are unclear. Syndecan-1 (SDC-1), a transmembrane heparan sulfate proteoglycan, supports the integrity of the epithelial compartment. In tumor cells of epithelial lineage, SDC-1 is generally downregulated. This may result in perturbation of homeostasis and lead to progression of malignancy. Our studies have shown that the n-3 PUFA species, docosahexaenoic acid (DHA), increases SDC-1 expression in prostate tissues of Pten knockout (PtenP-/-) mice/cells and human prostate cancer cells. We have now determined that DHA-mediated up-regulation of SDC-1 induces apoptosis. Bovine serum albumin-bound DHA and exogenous human recombinant SDC-1 ecotodomain were delivered to PC3 and LNCaP cells in the presence or absence of SDC-1 small interfering (si)RNA. In the presence of control siRNA, both DHA and SDC-1 ectodomain induced apoptosis, whereas SDC-1 silencing blocked DHA-induced but not SDC-1 ectodomain-induced apoptosis. Downstream effectors of SDC-1 signaling linked to n-3 PUFA-induced apoptosis involved the 3′-phosphoinositide-dependent kinase 1 (PDK1)/Akt/Bad integrating network. A diet enriched in n-3 PUFA decreased phosphorylation of PDK1, Akt (T308), and Bad in prostates of PtenP-/- mice. Similar results were observed in human prostate cancer cells in response to DHA and SDC-1 ectodomain. The effect of DHA on PDK1/Akt/Bad signaling was abrogated by SDC-1 siRNA. These findings define a mechanism by which SDC-1-dependent suppression of phosphorylation of PDK1/Akt/Bad mediates n-3 PUFA-induced apoptosis in prostate cancer. PMID:20927321

  6. GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer

    PubMed Central

    Karantanos, Theodoros; Thompson, Timothy C.

    2013-01-01

    Summary Androgen deprivation therapy (ADT) for advanced prostate cancer inexorably leads to resistance, and clinically useful biomarkers are lacking. The value of genetically engineered mice for co-clinical studies is clearly demonstrated in a recent publication that reveals XAF1, XIAP, and SRD5A1 as novel predictive biomarkers and therapeutic targets for ADT resistance. PMID:23845440

  7. Rice Hull Extract Suppresses Benign Prostate Hyperplasia by Decreasing Inflammation and Regulating Cell Proliferation in Rats.

    PubMed

    Kim, Chae-Yun; Chung, Kyung-Sook; Cheon, Se-Yun; Lee, Jong-Hyun; Park, Youn-Bum; An, Hyo-Jin

    2016-08-01

    Even though rice hull has various physiological functions with high antioxidant potential, the molecular mechanism(s) underlying the effects of rice hull on benign prostatic hyperplasia (BPH) have not been evaluated. The aim of this study was to determine the protective effect of rice hull water extract (RHE) against BPH, which is a common disorder in elderly men and involves inflammation that induces an imbalance between cell proliferation and cell death. In this study, RHE-treated mice exhibited lower prostate weights and ratios of prostate weight to body weight compared to those for the BPH-induced group. In addition, RHE-treated mice had lower serum levels of dihydrotestosterone, mRNA expression of 5α-reductase2, and protein expressions of proliferating cell nuclear antigen (PCNA). Furthermore, RHE treatment significantly decreased cell proliferation by regulating the expression levels of inflammatory-related proteins (iNOS and COX-2) and apoptosis-associated proteins (Fas, FADD, procaspase-8, -3, and Bcl-2 family proteins). These results suggest that RHE could protect against the development of BPH through its anti-inflammatory and apoptotic properties and has good potential as a treatment for BPH.

  8. BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone

    DTIC Science & Technology

    2012-10-01

    the upper back of nude mice. Recombinant human BMP7 was peritumorally injected daily after implantation. Tumor growth was monitored weekly by...of BMP7 was administrated daily through i.v. after intracardiac injection of CSCs from PC3mm or C4-2B cells to the mice. As shown in Figure 5A...mice, and then BMP7 was administrated daily . BLI of representative mice in each group six weeks after implantation (A). Normalized BLI signals

  9. Prostate Cancer Metastases Alter Bone Mineral and Matrix Composition Independent of Effects on Bone Architecture in Mice A Quantitative Study Using microCT and Raman Spectroscopy

    PubMed Central

    Bi, Xiaohong; Sterling, Julie A.; Merkel, Alyssa R.; Perrien, Daniel S.; Nyman, Jeffry; Mahadevan-Jansen, Anita

    2013-01-01

    Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8 weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions.. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment. PMID:23867219

  10. MLN8054, A Small Molecule Inhibitor of Aurora Kinase A, Sensitizes Androgen-Resistant Prostate Cancer to Radiation;Aurora kinase A; MLN8054; Prostate cancer; Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, Luigi; Department of Radiation Oncology, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels; Niermann, Kenneth

    2011-07-15

    Purpose: To determine whether MLN8054, an Aurora kinase A (Aurora-A) inhibitor causes radiosensitization in androgen-insensitive prostate cancer cells in vitro and in vivo. Methods and Materials: In vitro studies consisted of culturing PC3 and DU145 prostate cancer cells and then immunoblotting Aurora A and phospho-Aurora A after radiation and/or nocodazole with MLN8054. Phases of the cell cycle were measured with flow cytometry. PC3 and DU145 cell lines were measured for survival after treatment with MLN8054 and radiation. Immunofluorescence measured {gamma}-H2AX in the PC3 and DU145 cells after treatment. In vivo studies looked at growth delay of PC3 tumor cells inmore » athymic nude mice. PC3 cells grew for 6 to 8 days in mice treated with radiation, MLN8054, or combined for 7 more days. Tumors were resected and fixed on paraffin and stained for von Willebrand factor, Ki67, and caspase-3. Results: In vitro inhibition of Aurora-A by MLN8054 sensitized prostate cancer cells, as determined by dose enhancement ratios in clonogenic assays. These effects were associated with sustained DNA double-strand breaks, as evidenced by increased immunofluorescence for {gamma}-H2AX and significant G2/M accumulation and polyploidy. In vivo, the addition of MLN8054 (30 mg/kg/day) to radiation in mouse prostate cancer xenografts (PC3 cells) significantly increased tumor growth delay and apoptosis (caspase-3 staining), with reduction in cell proliferation (Ki67 staining) and vascular density (von Willebrand factor staining). Conclusion: MLN8054, a novel small molecule Aurora-A inhibitor showed radiation sensitization in androgen-insensitive prostate cancer in vitro and in vivo. This warrants the clinical development of MLN8054 with radiation for prostate cancer patients.« less

  11. Preclinical Evaluation of 18F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging.

    PubMed

    Cardinale, Jens; Schäfer, Martin; Benešová, Martina; Bauder-Wüst, Ulrike; Leotta, Karin; Eder, Matthias; Neels, Oliver C; Haberkorn, Uwe; Giesel, Frederik L; Kopka, Klaus

    2017-03-01

    In recent years, several radiotracers targeting the prostate-specific membrane antigen (PSMA) have been introduced. Some of them have had a high clinical impact on the treatment of patients with prostate cancer. However, the number of 18 F-labeled tracers addressing PSMA is still limited. Therefore, we aimed to develop a radiofluorinated molecule resembling the structure of therapeutic PSMA-617. Methods: The nonradioactive reference compound PSMA-1007 and the precursor were produced by solid-phase chemistry. The radioligand 18 F-PSMA-1007 was produced by a 2-step procedure with the prosthetic group 6- 18 F-fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester. The binding affinity of the ligand for PSMA and its internalization properties were evaluated in vitro with PSMA-positive LNCaP (lymph node carcinoma of the prostate) cells. Further, organ distribution studies were performed with mice bearing LNCaP and PC-3 (prostate cancer cell line; PSMA-negative) tumors. Finally, small-animal PET imaging of an LNCaP tumor-bearing mouse was performed. Results: The identified ligand had a binding affinity of 6.7 ± 1.7 nM for PSMA and an exceptionally high internalization ratio (67% ± 13%) in vitro. In organ distribution studies, high and specific tumor uptake (8.0 ± 2.4 percentage injected dose per gram) in LNCaP tumor-bearing mice was observed. In the small-animal PET experiments, LNCaP tumors were clearly visualized. Conclusion: The radiofluorinated PSMA ligand showed promising characteristics in its preclinical evaluation, and the feasibility of prostate cancer imaging was demonstrated by small-animal PET studies. Therefore, we recommend clinical transfer of the radioligand 18 F-PSMA-1007 for use as a diagnostic PET tracer in prestaging and monitoring of prostate cancer. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. PKC Epsilon: A Novel Oncogenic Player in Prostate Cancer

    DTIC Science & Technology

    2015-11-01

    control laboratory diet . Group 2 mice were fed with rofecoxib diet . Protein expression of (A) Akt, phospho-Akt, mTOR, phospho-mTOR, (B) Stat3 and...DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Protein kinase C epsilon (PKC...mechanisms orchestrating prostate cancer development and progression. Studies have recognized protein kinase C (PKC) isozymes as eminent players of cancer

  13. Targeting human prostate cancer with 111In-labeled D2B IgG, F(ab')2 and Fab fragments in nude mice with PSMA-expressing xenografts.

    PubMed

    Lütje, Susanne; van Rij, Catharina M; Franssen, Gerben M; Fracasso, Giulio; Helfrich, Wijnand; Eek, Annemarie; Oyen, Wim J; Colombatti, Marco; Boerman, Otto C

    2015-01-01

    D2B is a new monoclonal antibody directed against an extracellular domain of prostate-specific membrane antigen (PSMA), which is overexpressed in prostate cancer. The potential of D2B IgG, and F(ab')2 and Fab fragments of this antibody for targeting prostate cancer was determined in mice bearing subcutaneous prostate cancer xenografts. The optimal time point for imaging was determined in biodistribution and microSPECT imaging studies with (111)In-D2B IgG, (111)In-capromab pendetide, (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments in mice with PSMA-expressing LNCaP and PSMA-negative PC3 tumors at several time points after injection. All (111)In-labeled antibody formats specifically accumulated in the LNCaP tumors, with highest uptake of (111)In-D2B IgG and (111)In-capromab pendetide at 168 h p.i. (94.8 ± 19.2% injected dose per gram (ID/g) and 16.7 ± 2.2% ID/g, respectively), whereas uptake of (111)In-D2B F(ab')2 and (111)In-D2B Fab fragments peaked at 24 h p.i. (12.1 ± 3.0% ID/g and 15.1 ± 2.9% ID/g, respectively). Maximum LNCaP tumor-to-blood ratios were 13.0 ± 2.3 (168 h p.i.), 6.2 ± 0.7 (24 h p.i.), 23.0 ± 4.0 (24 h p.i.) and 4.5 ± 0.6 (168 h p.i.) for (111)In-D2B IgG, (111)In-F(ab')2, (111)In-Fab and (111)In-capromab pendetide, respectively. LNCaP tumors were clearly visualized with microSPECT with all antibody formats. This study demonstrates the feasibility of D2B IgG, F(ab')2 and Fab fragments for targeting PSMA-expressing prostate cancer xenografts. Copyright © 2014 John Wiley & Sons, Ltd.

  14. The Effect of a Histone Deacetylase Inhibitor (AR-42) on Canine Prostate Cancer Growth and Metastasis.

    PubMed

    Elshafae, Said M; Kohart, Nicole A; Altstadt, Lucas A; Dirksen, Wessel P; Rosol, Thomas J

    2017-05-01

    Canine prostate cancer (PCa) is an excellent preclinical model for human PCa. AR-42 is a histone deacetylase inhibitor (HDACi) developed at The Ohio State University that inhibits the proliferation of several cancers, including multiple myeloma, lung, and hepatocellular cancer. In this study, we investigated whether AR-42 would prevent or decrease. The growth and metastasis of a canine PCa (Ace-1 cells) to bone in vitro and in vivo. Proliferation, cell viability, invasion, and metastasis of a canine prostate cancer cell line (Ace-1) were measured following treatment with AR-42. Expression of anoikis resistance, epithelial-to-mesenchymal transition (EMT), and stem cell-related markers were also evaluated. To assess the efficacy of AR-42 on prevention of PCa metastasis to bone, Ace-1 cells were injected in the left cardiac ventricle of nude mice, mice were treated with AR-42, and the incidence and growth of bone metastasis were measured. Bioluminescence was performed to monitor the bone metastases in nude mice. AR-42 inhibited the in vitro proliferation of Ace-1 cells in a time- and dose-dependent manner. The IC 50 concentration of AR-42 for Ace-1 cells was 0.42 μM after 24 hr of treatment. AR-42 induced apoptosis, decreased cell migration, and increased the stem cell properties of Ace-1 cells in vitro. AR-42 downregulated E-cadherin, N-cadherin, TWIST, MYOF, anoikis resistance, and osteomimicry genes, while it upregulated SNAIL, PTEN, FAK, and ZEB1 gene expression in Ace-1 cells. Importantly, AR-42 decreased the bioluminescence and incidence of bone metastasis in nude mice. In addition, AR-42 induced apoptosis and altered the tumor cell morphology to an irregular cell phenotype with condensed chromatin in the bone metastases. AR-42 decreased PCa growth and bone metastasis, induced apoptosis, and downregulated osteomimicry genes in PCa cells in the bone microenvironment. Prostate 77:776-793, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis

    PubMed Central

    Quick, Marsha L.; Mukherjee, Soumi; Rudick, Charles N.; Done, Joseph D.; Schaeffer, Anthony J.

    2012-01-01

    Experimental autoimmune prostatitis (EAP) is a murine model of chronic prostatitis/chronic pelvic pain syndrome (CPPS) in men, a syndrome characterized by chronic pelvic pain. We have demonstrated that chemokine ligands CCL2 and CCL3 are biomarkers that correlate with pelvic pain symptoms. We postulated that CCL2 and CCL3 play a functional role in CPPS and therefore examined their expression in EAP. Upon examination of the prostate 5 days after induction of EAP, CCL2 mRNA was elevated 2- to 3-fold, CCL8 by 15-fold, CCL12 by 12- to 13-fold, and CXCL9 by 2- to 4-fold compared with control mice. At 10 days the major chemokines were CXCL13 and CXCL2; at 20 days CCL2 (1- to 2-fold), CCL3 (2- to 3-fold) and CCL11 (2- to 3-fold); and at 30 days, CCL12 (20- to 35-fold) and smaller increases in CCL2, CCL3, and XCL1. Chemokine elevations were accompanied by increases in mast cells and B cells at 5 days, monocytes and neutrophils at day 10, CD4+ T cells at day 20, and CD4+ and CD8+ T cells at day 30. Anti-CCL2 and anti-CCL3 neutralizing antibodies administered at EAP onset attenuated pelvic pain development, but only anti-CCL2 antibodies were effective therapeutically. CCL2- and its cognate receptor CCR2-deficient mice were completely protected from development of pain symptoms but assumed susceptibility after reconstitution with wild-type bone marrow. CCL3-deficient mice showed resistance to the maintenance of pelvic pain while CCR5-deficient mice did not show any lessening of pelvic pain severity. These results suggest that the CCL2-CCR2 axis and CCL3 are important mediators of chronic pelvic pain in EAP. PMID:22814670

  16. Nociceptive and Inflammatory Mediator Upregulation in a Mouse Model of Chronic Prostatitis

    PubMed Central

    Schwartz, Erica S.; Xie, Amy; La, Jun-Ho; Gebhart, G.F.

    2015-01-01

    Chronic nonbacterial prostatitis, characterized by genitourinary pain in the pelvic region in the absence of an identifiable cause, is common in adult males. Surprisingly, the sensory innervation of the prostate and mediators that sensitize its innervation have received little attention. We thus characterized a mouse model of chronic prostatitis, focusing on the prostate innervation and how organ inflammation affects gene expression of putative nociceptive markers in prostate afferent somata in dorsal root ganglia (DRG) and mediators in the prostate. Retrograde tracing (fast blue, FB) from the prostate revealed that thoracolumbar (TL) and lumbosacral (LS) DRG are the principal sources of somata of prostate afferents. Nociceptive markers (e.g., TRP, TREK and P2X channels) were upregulated in FB-labeled TL and LS somata for up to four weeks after inflaming the prostate (intra-prostate injection of zymosan). Prostatic inflammation was evident histologically, by monocyte infiltration and a significant increase in mast cell tryptase activity 14, 21 and 28 days after zymosan injection. Interleukin-10 and NGF were also significantly upregulated in the prostate throughout the four weeks of inflammation. Open field pain-related behaviors (e.g., rearing) were unchanged in prostate-inflamed mice, suggesting the absence of ongoing nociception, but withdrawal thresholds to lower abdominal pressure were significantly reduced. The increases in IL-10, mast cell tryptase and NGF in the inflamed prostate were cotemporaneous with reduced thresholds to probing of the abdomen and upregulation of nociceptive markers in DRG somata innervating the prostate. The results provide insight and direction for study of mechanisms underlying pain in chronic prostatitis. PMID:25915147

  17. Role of IKKalpha and STAT3 in the Emergence of Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2012-06-01

    luciferase activity was measured. The results are averages ± s.d. of three independent experiments normalized to renilla activity, produced by a co...transfected renilla expression vector. Figure 7: FVB mice bearing myc-CaP tumors were castrated. Starting one day before castration, the mice (n=10 per

  18. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  19. ANX7 as a Bio-Marker in Prostate and Breast Cancer Progression

    PubMed Central

    Srivastava, Meera; Bubendorf, Lukas; Nolan, Lisa; Glasman, Mirta; Leighton, Ximena; Miller, Georgina; Fehrle, Wilfred; Raffeld, Mark; Eidelman, Ofer; Kallioniemi, Olli P.; Srivastava, Shiv; Pollard, Harvey B.

    2001-01-01

    The ANX7 gene codes for a Ca2+-activated GTPase, which has been implicated in both exocytotic secretion in cells and control of growth. In this review, we summarize information regarding increased tumor frequency in the Anx7 knockout mice, ANX7 growth suppression of human cancer cell lines, and ANX7 expression in human tumor tissue micro-arrays. The loss of ANX7 is significant in metastatic and hormone refractory prostate cancer compared to benign prostatic hyperplasia. In addition, ANX7 expression has prognostic value for predicting survival of breast cancer patients. PMID:11673658

  20. Comparison of [¹¹C]choline ([¹¹C]CHO) and S(+)-β-methyl-[¹¹C]choline ([¹¹C]SMC) as imaging probes for prostate cancer in a PC-3 prostate cancer xenograft model.

    PubMed

    Schwarzenböck, Sarah Marie; Gertz, Jana; Souvatzoglou, Michael; Kurth, Jens; Sachs, David; Nawroth, Roman; Treiber, Uwe; Schuster, Tibor; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Ziegler, Sibylle Ilse; Henriksen, Gjermund; Wester, Hans-Jürgen; Krause, Bernd Joachim

    2015-04-01

    Carbon-11- and fluorine-18-labeled choline derivatives have been introduced as promising tracers for prostate cancer imaging. However, due to limited specificity and sensitivity, there is a need for new tracers with higher sensitivity and specificity for diagnosing prostate cancer to improve tracer uptake and enhance imaging contrast. The aim of this study was to compare the properties of [(11)C]choline ([(11)C]CHO) with S(+)-β-methyl-[(11)C]choline ([(11)C]SMC) as tracer for prostate cancer imaging in a human prostate tumor mouse xenograft model by small-animal positron emission tomography/X-ray computed tomography (PET/CT). We carried out a dual-tracer small-animal PET/CT study comparing [(11)C]CHO and [(11)C]SMC. The androgen-independent human prostate tumor cell line PC3 was implanted subcutaneously in the flanks of Naval Medical Research Institute (NMRI) (nu/nu) mice (n = 11). Mice-6 weeks post-xenograft implantation-were injected with 37 MBq [(11)C]CHO via the tail vein. On a separate day, the mice were injected with 37 MBq [(11)C]SMC. Dynamic imaging was performed for 60 min with the Inveon animal PET/CT scanner (Siemens Medical Solutions) on two separate days (randomizing the sequence of the tracers). The dynamic PET images were acquired in list mode. Regions of interest (5 × 5 × 5 mm) were placed in transaxial slices in tumor, muscle (thigh), liver, kidney, and blood. Image analysis was performed calculating tumor to muscle (T/M) ratios based on summed images as well as dynamic data. For [(11)C]SMC, the mean T/M ratio was 2.24 ± 0.56 while the corresponding mean [(11)C]CHO T/M ratio was 1.35 ± 0.28. The T/M ratio for [(11)C]SMC was significant higher compared to [(11)C]CHO (p < 0.001). The time course of T/M ratio (T/Mdyn ratio) of [(11)C]SMC was higher compared to [(11)C]CHO with a statistically significant difference between the magnitudes of the T/M ratios and a significant different change of the T/M ratios over time between [(11)C]CHO and [(11)C]SMC. Our results demonstrate that [(11)C]SMC is taken up by the tumor in the PC-3 prostate cancer xenograft model. [(11)C]SMC uptake was significantly higher compared to the clinically utilized [(11)C]CHO tracer with a higher contrast allowing imaging of a prostate cancer xenograft.

  1. Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer

    PubMed Central

    Timofeeva, Olga A.; Palechor-Ceron, Nancy; Li, Guanglei; Yuan, Hang; Krawczyk, Ewa; Zhong, Xiaogang; Liu, Geng; Upadhyay, Geeta; Dakic, Aleksandra; Yu, Songtao; Fang, Shuang; Choudhury, Sujata; Zhang, Xueping; Ju, Andrew; Lee, Myeong-Seon; Dan, Han C.; Ji, Youngmi; Hou, Yong; Zheng, Yun-Ling; Albanese, Chris; Rhim, Johng; Schlegel, Richard; Dritschilo, Anatoly; Liu, Xuefeng

    2017-01-01

    Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer. PMID:28009986

  2. Cyclooxygenase inhibitors are potent sensitizers of prostate tumours to hyperthermia and radiation.

    PubMed

    Asea, A; Mallick, R; Lechpammer, S; Ara, G; Teicher, B A; Fiorentino, S; Stevenson, M A; Calderwood, S K

    2001-01-01

    It has previously been demonstrated that hyperthermia can activate prostaglandin synthesis and that prostaglandins are protective against hyperthermia. This study examined the use of inhibitors of prostaglandin synthesis on the response of prostate tumours to hyperthermia. The non-steroidal anti-inflammatory drugs (NSAID) ibuprofen and sulindac, known cyclooxygenase inhibitors that inhibit prostaglandin production, were effective hyperthermia sensitizers and augmented growth delay of DU-145 and PC-3 prostate tumours to combined radiation and hyperthermia treatment protocols. Pre-treatment of mice with ibuprofen and sulindac at hyperthermia sensitizing doses resulted in significant (p < 0.01) inhibition of hyperthemia-induced serum prostaglandin E2. These findings indicate that NSAID may have both sensitizing effects on prostate tumour growth and may function by inhibiting prostaglandin synthesis.

  3. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    PubMed

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis.

    PubMed

    Schwartz, Erica S; Xie, Amy; La, Jun-Ho; Gebhart, G F

    2015-08-01

    Chronic nonbacterial prostatitis, characterized by genitourinary pain in the pelvic region in the absence of an identifiable cause, is common in adult males. Surprisingly, the sensory innervation of the prostate and mediators that sensitize its innervation have received little attention. We thus characterized a mouse model of chronic prostatitis, focusing on the prostate innervation and how organ inflammation affects gene expression of putative nociceptive markers in prostate afferent somata in dorsal root ganglia (DRG) and mediators in the prostate. Retrograde tracing (fast blue) from the prostate revealed that thoracolumbar and lumbosacral DRG are the principal sources of somata of prostate afferents. Nociceptive markers (eg, transient receptor potential, TREK, and P2X channels) were upregulated in fast blue-labeled thoracolumbar and lumbosacral somata for up to four weeks after inflaming the prostate (intraprostate injection of zymosan). Prostatic inflammation was evident histologically, by monocyte infiltration and a significant increase in mast cell tryptase activity 14, 21, and 28 days after zymosan injection. Interleukin 10 and NGF were also significantly upregulated in the prostate throughout the 4 weeks of inflammation. Open-field pain-related behaviors (eg, rearing) were unchanged in prostate-inflamed mice, suggesting the absence of ongoing nociception, but withdrawal thresholds to lower abdominal pressure were significantly reduced. The increases in IL-10, mast cell tryptase, and NGF in the inflamed prostate were cotemporaneous with reduced thresholds to probing of the abdomen and upregulation of nociceptive markers in DRG somata innervating the prostate. The results provide insight and direction for the study of mechanisms underlying pain in chronic prostatitis.

  5. GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer.

    PubMed

    Karantanos, Theodoros; Thompson, Timothy C

    2013-07-08

    Androgen deprivation therapy (ADT) for advanced prostate cancer inexorably leads to resistance, and clinically useful biomarkers are lacking. The value of genetically engineered mice for coclinical studies is clearly demonstrated in a recent publication that reveals XAF1, XIAP, and SRD5A1 as novel predictive biomarkers and therapeutic targets for ADT resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. MR-guided pulsed high intensity focused ultrasound enhancement of docetaxel combined with radiotherapy for prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Mu, Zhaomei; Ma, C.-M.; Chen, Xiaoming; Cvetkovic, Dusica; Pollack, Alan; Chen, Lili

    2012-01-01

    The purpose of this study is to evaluate the efficacy of the enhancement of docetaxel by pulsed focused ultrasound (pFUS) in combination with radiotherapy (RT) for treatment of prostate cancer in vivo. LNCaP cells were grown in the prostates of male nude mice. When the tumors reached a designated volume by MRI, tumor bearing mice were randomly divided into seven groups (n = 5): (1) pFUS alone; (2) RT alone; (3) docetaxel alone; (4) docetaxel + pFUS (5) docetaxel + RT (6) docetaxel + pFUS + RT, and (7) control. MR-guided pFUS treatment was performed using a focused ultrasound treatment system (InSightec ExAblate 2000) with a 1.5T GE MR scanner. Animals were treated once with pFUS, docetaxel, RT or their combinations. Docetaxel was given by i.v. injection at 5 mg kg-1 before pFUS. RT was given 2 Gy after pFUS. Animals were euthanized 4 weeks after treatment. Tumor volumes were measured on MRI at 1 and 4 weeks post-treatment. Results showed that triple combination therapies of docetaxel, pFUS and RT provided the most significant tumor growth inhibition among all groups, which may have potential for the treatment of prostate cancer due to an improved therapeutic ratio.

  7. Autonomic nerve development contributes to prostate cancer progression.

    PubMed

    Magnon, Claire; Hall, Simon J; Lin, Juan; Xue, Xiaonan; Gerber, Leah; Freedland, Stephen J; Frenette, Paul S

    2013-07-12

    Nerves are a common feature of the microenvironment, but their role in tumor growth and progression remains unclear. We found that the formation of autonomic nerve fibers in the prostate gland regulates prostate cancer development and dissemination in mouse models. The early phases of tumor development were prevented by chemical or surgical sympathectomy and by genetic deletion of stromal β2- and β3-adrenergic receptors. Tumors were also infiltrated by parasympathetic cholinergic fibers that promoted cancer dissemination. Cholinergic-induced tumor invasion and metastasis were inhibited by pharmacological blockade or genetic disruption of the stromal type 1 muscarinic receptor, leading to improved survival of the mice. A retrospective blinded analysis of prostate adenocarcinoma specimens from 43 patients revealed that the densities of sympathetic and parasympathetic nerve fibers in tumor and surrounding normal tissue, respectively, were associated with poor clinical outcomes. These findings may lead to novel therapeutic approaches for prostate cancer.

  8. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP).

    PubMed

    Murphy, Stephen F; Schaeffer, Anthony J; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  9. Monoamine Oxidase Deficiency Causes Prostate Atrophy and Reduces Prostate Progenitor Cell Activity.

    PubMed

    Yin, Lijuan; Li, Jingjing; Liao, Chun-Peng; Jason Wu, Boyang

    2018-04-10

    Monoamine oxidases (MAOs) degrade a number of biogenic and dietary amines, including monoamine neurotransmitters, and play an essential role in many biological processes. Neurotransmitters and related neural events have been shown to participate in the development, differentiation, and maintenance of diverse tissues and organs by regulating the specialized cellular function and morphological structures of innervated organs such as the prostate. Here we show that mice lacking both MAO isoforms, MAOA and MAOB, exhibit smaller prostate mass and develop epithelial atrophy in the ventral and dorsolateral prostates. The cellular composition of prostate epithelium showed reduced CK5 + or p63 + basal cells, accompanied by lower Sca-1 expression in p63 + basal cells, but intact differentiated CK8 + luminal cells in MAOA/B-deficient mouse prostates. MAOA/B ablation also decreased epithelial cell proliferation without affecting cell apoptosis in mouse prostates. Using a human prostate epithelial cell line, we found that stable knockdown of MAOA and MAOB impaired the capacity of prostate stem cells to form spheres, coinciding with a reduced CD133 + /CD44 + /CD24 - stem cell population and less expression of CK5 and select stem cell markers, including ALDH1A1, TROP2, and CD166. Alternative pharmacological inhibition of MAOs also repressed prostate cell stemness. In addition, we found elevated expression of MAOA and MAOB in epithelial and/or stromal components of human prostate hyperplasia samples compared with normal prostate tissues. Taken together, our findings reveal critical roles for MAOs in the regulation of prostate basal progenitor cells and prostate maintenance. Stem Cells 2018. © AlphaMed Press 2018.

  10. Altered prostate epithelial development and IGF-1 signal in mice lacking the androgen receptor in stromal smooth muscle cells.

    PubMed

    Yu, Shengqiang; Zhang, Caixia; Lin, Chiu-Chun; Niu, Yuanjie; Lai, Kuo-Pao; Chang, Hong-chiang; Yeh, Shauh-Der; Chang, Chawnshang; Yeh, Shuyuan

    2011-04-01

    Androgens and the androgen receptor (AR) play critical roles in the prostate development via mesenchymal-epithelial interactions. Smooth muscle cells (SMC), differentiated from mesenchyme, are one of the basic components of the prostate stroma. However, the roles of smooth muscle AR in prostate development are still obscure. We established the smooth muscle selective AR knockout (SM-ARKO) mouse model using the Cre-loxP system, and confirmed the ARKO efficiency at RNA, DNA and protein levels. Then, we observed the prostate morphology changes, and determined the epithelial proliferation, apoptosis, and differentiation. We also knocked down the AR in a prostate smooth muscle cell line (PS-1) to confirm the in vivo findings and to probe the mechanism. The AR was selectively and efficiently knocked out in the anterior prostates of SM-ARKO mouse. The SM-ARKO prostates have defects with loss of infolding structures, and decrease of epithelial proliferation, but with little change of apoptosis and differentiation. The mechanism studies showed that IGF-1 expression level decreased in the SM-ARKO prostates and AR-knockdown PS-1 cells. The decreased IGF-1 expression might contribute to the defective development of SM-ARKO prostates. The AR in SMCs plays important roles in the prostate development via the regulation of IGF-1 signal. Copyright © 2010 Wiley-Liss, Inc.

  11. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaojie; Taizhou Polytechnic College, Taizhou; Zhang, Ling

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated themore » effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed decreased expressions of MMP-2 and MMP-9 at the mRNA and protein levels. Taken together, the present findings suggest that Neu3 is a promising molecular target for the prevention of prostate cancer metastasis.« less

  12. NPM1 Silencing Reduces Tumour Growth and MAPK Signalling in Prostate Cancer Cells

    PubMed Central

    Loubeau, Gaëlle; Boudra, Rafik; Maquaire, Sabrina; Lours-Calet, Corinne; Beaudoin, Claude; Verrelle, Pierre; Morel, Laurent

    2014-01-01

    The chaperone nucleophosmin (NPM1) is over-expressed in the epithelial compartment of prostate tumours compared to adjacent healthy epithelium and may represent one of the key actors that support the neoplastic phenotype of prostate adenocarcinoma cells. Yet, the mechanisms that underlie NPM1 mediated phenotype remain elusive in the prostate. To better understand NPM1 functions in prostate cancer cells, we sought to characterize its impact on prostate cancer cells behaviour and decipher the mechanisms by which it may act. Here we show that NPM1 favors prostate tumour cell migration, invasion and colony forming. Furthermore, knockdown of NPM1 leads to a decrease in the growth of LNCaP-derived tumours grafted in Nude mice in vivo. Such oncogenic-like properties are found in conjunction with a positive regulation of NPM1 on the ERK1/2 (Extracellular signal-Regulated Kinases 1/2) kinase phosphorylation in response to EGF (Epidermal Growth Factor) stimulus, which is critical for prostate cancer progression following the setting of an autonomous production of the growth factor. NPM1 could then be a target to switch off specifically ERK1/2 pathway activation in order to decrease or inhibit cancer cell growth and migration. PMID:24796332

  13. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is known to regulate carcinogenesis and immunity at nutritional and 26 supranutritional levels. Because the immune system provides critical defenses against 27 cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop 28 CD8+ and CD4+ T cells extrathymicall...

  14. Amino-terminal enhancer of split gene AES encodes a tumor and metastasis suppressor of prostate cancer.

    PubMed

    Okada, Yoshiyuki; Sonoshita, Masahiro; Kakizaki, Fumihiko; Aoyama, Naoki; Itatani, Yoshiro; Uegaki, Masayuki; Sakamoto, Hiromasa; Kobayashi, Takashi; Inoue, Takahiro; Kamba, Tomomi; Suzuki, Akira; Ogawa, Osamu; Taketo, M Mark

    2017-04-01

    A major cause of cancer death is its metastasis to the vital organs. Few effective therapies are available for metastatic castration-resistant prostate cancer (PCa), and progressive metastatic lesions such as lymph nodes and bones cause mortality. We recently identified AES as a metastasis suppressor for colon cancer. Here, we have studied the roles of AES in PCa progression. We analyzed the relationship between AES expression and PCa stages of progression by immunohistochemistry of human needle biopsy samples. We then performed overexpression and knockdown of AES in human PCa cell lines LNCaP, DU145 and PC3, and determined the effects on proliferation, invasion and metastasis in culture and in a xenograft model. We also compared the PCa phenotypes of Aes/Pten compound knockout mice with those of Pten simple knockout mice. Expression levels of AES were inversely correlated with clinical stages of human PCa. Exogenous expression of AES suppressed the growth of LNCaP cells, whereas the AES knockdown promoted it. We also found that AES suppressed transcriptional activities of androgen receptor and Notch signaling. Notably, AES overexpression in AR-defective DU145 and PC3 cells reduced invasion and metastasis to lymph nodes and bones without affecting proliferation in culture. Consistently, prostate epithelium-specific inactivation of Aes in Pten flox/flox mice increased expression of Snail and MMP9, and accelerated growth, invasion and lymph node metastasis of the mouse prostate tumor. These results suggest that AES plays an important role in controlling tumor growth and metastasis of PCa by regulating both AR and Notch signaling pathways. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Soft agar-based selection of spontaneously transformed rat prostate epithelial cells with highly tumorigenic characteristics.

    PubMed

    Gajdošik, Martina Šrajer; Hixson, Douglas C; Brilliant, Kate E; Yang, DongQin; De Paepe, Monique E; Josić, Djuro; Mills, David R

    2018-05-29

    The critical molecular and cellular mechanisms involved in the development and progression of prostate cancer remain elusive. In this report, we demonstrate that normal rat prostate epithelial cells (PEC) undergo spontaneous transformation at high passage (p > 85) evidenced by the acquisition of anchorage independent growth when plated on soft agar and tumorigenicity when injected into immunodeficient mice. In addition, we also report the discovery of a minor subpopulation of spontaneously transformed PEC derived from high passage PEC with the ability to migrate through a layer of 1% agar and form expanding colonies on the underlying plastic substratum. Comparison of these soft agar invasive (SAI) cells with low (p < 35), mid (p36-84) and high passage (p > 85) PEC identified marked differences in cell morphology, proliferation and motility. The SAI subpopulation was more tumorigenic than the high passage anchorage independent cultures from which they were isolated, as manifested by a decreased latency period and an increase in the size of tumors arising in immunodeficient mice. In contrast, low and mid passage cells were unable to grow on soft agar and failed to form tumors when injected into immunodeficient mice. Screening with antibody-based signaling arrays identified several differences in the altered expression levels of signaling proteins between SAI-derived cells and low or high passage PEC, including the up-regulation of EGFR and MAPK-related signaling pathways in SAI-selected cells. In summary, these studies suggest that the SAI assay selects for a novel, highly tumorigenic subpopulation of transformed cells that may represent an early step in the progression of slow growing prostatic carcinomas into more rapidly growing and aggressive tumors. Copyright © 2017. Published by Elsevier Inc.

  16. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent

    PubMed Central

    Chatalic, Kristell L.S.; Heskamp, Sandra; Konijnenberg, Mark; Molkenboer-Kuenen, Janneke D.M.; Franssen, Gerben M.; Clahsen-van Groningen, Marian C.; Schottelius, Margret; Wester, Hans-Jürgen; van Weerden, Wytske M.; Boerman, Otto C.; de Jong, Marion

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics—they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. 111In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of 111In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during 177Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with 177Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with 177Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA. PMID:27162555

  17. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  18. The Effect of Finasteride and Dutasteride on the Growth of WPE1-NA22 Prostate Cancer Xenografts in Nude Mice

    PubMed Central

    Opoku-Acheampong, Alexander B.; Nelsen, Michelle K.; Unis, Dave; Lindshield, Brian L.

    2012-01-01

    Background 5α-reductase 1 (5αR1) and 5α-reductase 2 (5αR2) convert testosterone into the more potent androgen dihydrotestosterone. 5αR2 is the main isoenzyme in normal prostate tissue; however, most prostate tumors have increased 5αR1 and decreased 5αR2 expression. Previously, finasteride (5αR2 inhibitor) treatment begun 3 weeks post-tumor implantation had no effect on Dunning R3327-H rat prostate tumor growth. We believe the tumor compensated for finasteride treatment by increasing tumor 5αR1 expression or activity. We hypothesize that finasteride treatment would not significantly alter tumor growth even if begun before tumor implantation, whereas dutasteride (5αR1 and 5αR2 inhibitor) treatment would decrease tumor growth regardless of whether treatment was initiated before or after tumor implantation. Methodology/Principal Findings Sixty 8-week-old male nude mice were randomized to Control, Pre- and Post-Finasteride, and Pre- and Post-Dutasteride (83.3 mg drug/kg diet) diet groups. Pre- and post-groups began their treatment diets 1–2 weeks prior to or 3 weeks after subcutaneous injection of 1×105 WPE1-NA22 human prostate cancer cells, respectively. Tumors were allowed to grow for 22 weeks; tumor areas, body weights, and food intakes were measured weekly. At study's conclusion, prostate and seminal vesicle weights were significantly decreased in all treatment groups versus the control; dutasteride intake significantly decreased seminal vesicle weights compared to finasteride intake. No differences were measured in final tumor areas or tumor weights between groups, likely due to poor tumor growth. In follow-up studies, proliferation of WPE1-NA22 prostate cancer cells and parent line RWPE-1 prostate epithelial cells were unaltered by treatment with testosterone, dihydrotestosterone, or mibolerone, suggesting that these cell lines are not androgen-sensitive. Conclusion The lack of response of WPE1-NA22 prostate cancer cells to androgen treatment may explain the inadequate tumor growth observed. Additional studies are needed to determine whether finasteride and dutasteride are effective in decreasing prostate cancer development/growth. PMID:22242155

  19. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells.

    PubMed

    Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong

    2011-12-15

    Hydrogen sulfide (H(2)S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H(2)S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H(2)S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H(2)S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H(2)S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H(2)S-producing enzyme in prostate. CSE overexpression enhanced H(2)S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H(2)S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H(2)S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H(2)S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Inhibition of CHOP accentuates the apoptotic effect of α-mangostin from the mangosteen fruit (Garcinia mangostana) in 22Rv1 prostate cancer cells.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Nonn, Larisa; Johnson, Jeremy J

    2014-10-10

    The mangosteen (Garcinia mangostana) fruit has been a popular food in Southeast Asia for centuries and is increasing in popularity in Western countries. We identified α-Mangostin as a primary phytochemical modulating ER stress proteins in prostate cancer cells and propose that α-Mangostin is responsible for exerting a biological effect in prostate cancer cells. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two patients undergoing radical prostatectomy were treated with α-Mangostin and evaluated by RT-PCR, Western blot, fluorescent microscopy and siRNA transfection to evaluate ER stress. Next, we evaluated α-Mangostin for microsomal stability, pharmacokinetic parameters, and anti-cancer activity in nude mice. α-Mangostin significantly upregulated ER stress markers in prostate cancer cells. Interestingly, α-Mangostin did not promote ER stress in prostate epithelial cells (PrECs) from prostate cancer patients. CHOP knockdown enhanced α-Mangostin-induced apoptosis in prostate cancer cells. α-Mangostin significantly suppressed tumor growth in a xenograft tumor model without obvious toxicity. Our study suggests that α-Mangostin is not the only active constituent from the mangosteen fruit requiring further work to understand the complex chemical composition of the mangosteen. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. PTK6 activation at the membrane regulates epithelial-mesenchymal transition in prostate cancer.

    PubMed

    Zheng, Yu; Wang, Zebin; Bie, Wenjun; Brauer, Patrick M; Perez White, Bethany E; Li, Jing; Nogueira, Veronique; Raychaudhuri, Pradip; Hay, Nissim; Tonetti, Debra A; Macias, Virgilia; Kajdacsy-Balla, André; Tyner, Angela L

    2013-09-01

    The intracellular tyrosine kinase protein tyrosine kinase 6 (PTK6) lacks a membrane-targeting SH4 domain and localizes to the nuclei of normal prostate epithelial cells. However, PTK6 translocates from the nucleus to the cytoplasm in human prostate tumor cells. Here, we show that while PTK6 is located primarily within the cytoplasm, the pool of active PTK6 in prostate cancer cells localizes to membranes. Ectopic expression of membrane-targeted active PTK6 promoted epithelial-mesenchymal transition in part by enhancing activation of AKT, thereby stimulating cancer cell migration and metastases in xenograft models of prostate cancer. Conversely, siRNA-mediated silencing of endogenous PTK6 promoted an epithelial phenotype and impaired tumor xenograft growth. In mice, PTEN deficiency caused endogenous active PTK6 to localize at membranes in association with decreased E-cadherin expression. Active PTK6 was detected at membranes in some high-grade human prostate tumors, and PTK6 and E-cadherin expression levels were inversely correlated in human prostate cancers. In addition, high levels of PTK6 expression predicted poor prognosis in patients with prostate cancer. Our findings reveal novel functions for PTK6 in the pathophysiology of prostate cancer, and they define this kinase as a candidate therapeutic target. Cancer Res; 73(17); 5426-37. ©2013 AACR.

  2. Oxytocin: its role in benign prostatic hyperplasia via the ERK pathway.

    PubMed

    Xu, Huan; Fu, Shi; Chen, Yanbo; Chen, Qi; Gu, Meng; Liu, Chong; Qiao, Zhiguang; Zhou, Juan; Wang, Zhong

    2017-04-01

    The aim of the present study was to evaluate oxytocin and benign prostatic hyperplasia (BPH), and study the cell signalling mechanism. Investigation was performed in patients about the correlation between oxytocin level and BPH. Mice were injected with oxytocin or oxytocin antagonist for 2 weeks and the prostate morphology was studied after their sacrifice. Furthermore, in vitro experiments were performed to evaluate the oxytocin effect through the MEK/ERK/RSK pathway. Oxytocin was significantly elevated in the serum and prostate tissue of patients with BPH, and a positive correlation with prostate volume indicated. In the animal experiments, prostate enlargement was observed in the oxytocin-treated group, whereas oxytocin antagonist reduced prostate hyperplasia. The in vitro study confirmed this result and also revealed activation of the MEK/ERK/RSK pathway. Oxytocin is highly expressed in the serum and prostate tissue of patients with BPH. In addition, oxytocin aggravates BPH and the oxytocin-induced proliferative effect on prostatic cells is mediated through the MEK/ERK/RSK pathway, at least partly. Thus, the hypothalamic regulation may be involved in development of BPH, which may open a new door to more medications for BPH in the future. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Yongpeng; Li Hongzhen; Miki, Jun

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferativemore » capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.« less

  4. Treatment with a GnRH receptor agonist, but not the GnRH receptor antagonist degarelix, induces atherosclerotic plaque instability in ApoE(-/-) mice.

    PubMed

    Knutsson, Anki; Hsiung, Sabrina; Celik, Selvi; Rattik, Sara; Mattisson, Ingrid Yao; Wigren, Maria; Scher, Howard I; Nilsson, Jan; Hultgårdh-Nilsson, Anna

    2016-05-18

    Androgen-deprivation therapy (ADT) for prostate cancer has been associated with increased risk for development of cardiovascular events and recent pooled analyses of randomized intervention trials suggest that this primarily is the case for patients with pre-existing cardiovascular disease treated with gonadotropin-releasing hormone receptor (GnRH-R) agonists. In the present study we investigated the effects of the GnRH-R agonist leuprolide and the GnRH-R antagonist degarelix on established atherosclerotic plaques in ApoE(-/-) mice. A shear stress modifier was used to produce both advanced and more stable plaques in the carotid artery. After 4 weeks of ADT, increased areas of necrosis was observed in stable plaques from leuprolide-treated mice (median and IQR plaque necrotic area in control, degarelix and leuprolide-treated mice were 0.6% (IQR 0-3.1), 0.2% (IQR 0-4.4) and 11.0% (IQR 1.0-19.8), respectively). There was also evidence of increased inflammation as assessed by macrophage immunohistochemistry in the plaques from leuprolide-treated mice, but we found no evidence of such changes in plaques from control mice or mice treated with degarelix. Necrosis destabilizes plaques and increases the risk for rupture and development of acute cardiovascular events. Destabilization of pre-existing atherosclerotic plaques could explain the increased cardiovascular risk in prostate cancer patients treated with GnRH-R agonists.

  5. The Function of Neuroendocrine Cells in Prostate Cancer

    DTIC Science & Technology

    2012-04-01

    high profile article describing the technology developed by our group (Goldstein et al. Nat Protoc. 2011; 6:656-67). We explored the utility of...UGSM cells and transplanted in vivo into immune-deficient mice. We utilize an activated form of AKT (myristoylated rendering it membrane-bound) which... utilized for research can vary greatly. The second possibility is that the SV40 T-antigen is toxic to naïve benign primary human prostate cells when

  6. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    DTIC Science & Technology

    2015-12-01

    xenograft tumors. The results from these studies will reveal whether targeting PTEN-deficient human tumors with WEE1 inhibitors can induce specific... xenograft tumors formed by PTEN- PSAlo PCSCs in castrated male immunocompromised mice. What was accomplished under these goals? Aim 1. Examine...prostate cancer stem cells. Aim 3. Investigate the cytotoxicity of WEE1 inhibitors against recalcitrant xenograft tumors formed by PTEN- CSCs in

  7. Intervention of Prostate Cancer by a Flavonoid Antioxidant Silymarin

    DTIC Science & Technology

    2001-04-01

    effect of silymarin on PCA tumor growth in nude mice. Treatment of LNCaP and DUl45 human prostate carcinoma cells with silibinin (the pure form of...dimerization. These inhibitory effects of silibinin also corroborate with its inhibitory effect on both cellular and released expression of TGFalpha in...these two cell lines. In cytoplasmic signaling, silibinin showed strong decrease in ERKl/2 phosphorylation in both LNCaP and DUl45 cells and inhibition in

  8. Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

    DTIC Science & Technology

    2010-01-01

    flavonoid found in grapes, green vegetables, and onions, induced apoptosis of PC-3 cells (240). This was accompanied with a decrease in IGF-1 and -2 and...stabilized integrin receptor complexes (27). In vivo. GROWTH INHIBITION. Mice bearing human prostate 22RV1 tumor xenografts were fed apigenin, a flavonoid ...the active component of flavonoid antioxidant silymarin (milk thistle extract) significantly inhib- ited tumor volume in DU145 tumor xenograft nude

  9. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    PubMed Central

    Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng

    2016-01-01

    Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767

  10. Testosterone inhibits the growth of prostate cancer xenografts in nude mice.

    PubMed

    Song, Weitao; Soni, Vikram; Soni, Samit; Khera, Mohit

    2017-09-07

    Traditional beliefs of androgen's stimulating effects on the growth of prostate cancer (PCa) have been challenged in recent years. Our previous in vitro study indicated that physiological normal levels of androgens inhibited the proliferation of PCa cells. In this in vivo study, the ability of testosterone (T) to inhibit PCa growth was assessed by testing the tumor incidence rate and tumor growth rate of PCa xenografts on nude mice. Different serum testosterone levels were manipulated in male nude/nude athymic mice by orchiectomy or inserting different dosages of T pellets subcutaneously. PCa cells were injected subcutaneously to nude mice and tumor incidence rate and tumor growth rate of PCa xenografts were tested. The data demonstrated that low levels of serum T resulted in the highest PCa incidence rate (50%). This PCa incidence rate in mice with low T levels was significantly higher than that in mice treated with higher doses of T (24%, P < 0.01) and mice that underwent orchiectomy (8%, P < 0.001). Mice that had low serum T levels had the shortest tumor volume doubling time (112 h). This doubling time was significantly shorter than that in the high dose 5 mg T arm (158 h, P < 0.001) and in the orchiectomy arm (468 h, P < 0.001). These results indicated that low T levels are optimal for PCa cell growth. Castrate T levels, as seen after orchiectomy, are not sufficient to support PCa cell growth. Higher levels of serum T inhibited PCa cell growth.

  11. The Utility of [18F]DASA-23 for Molecular Imaging of Prostate Cancer with Positron Emission Tomography.

    PubMed

    Beinat, Corinne; Haywood, Tom; Chen, Yun-Sheng; Patel, Chirag B; Alam, Israt S; Murty, Surya; Gambhir, Sanjiv Sam

    2018-05-07

    There is a strong, unmet need for superior positron emission tomography (PET) imaging agents that are able to measure biochemical processes specific to prostate cancer. Pyruvate kinase M2 (PKM2) catalyzes the concluding step in glycolysis and is a key regulator of tumor growth and metabolism. Elevation of PKM2 expression was detected in Gleason 8-10 tumors compared to Gleason 6-7 carcinomas, indicating that PKM2 may potentially be a marker of aggressive prostate cancer. We have recently reported the development of a PKM2-specific radiopharmaceutical [ 18 F]DASA-23 and herein describe its evaluation in cell culture and preclinical models of prostate cancer. The cellular uptake of [ 18 F]DASA-23 was evaluated in a panel of prostate cancer cell lines and compared to that of [ 18 F]FDG. The specificity of [ 18 F]DASA-23 to measure PKM2 levels in cell culture was additionally confirmed through the use of PKM2-specific siRNA. PET imaging studies were then completed utilizing subcutaneous prostate cancer xenografts using either PC3 or DU145 cells in mice. [ 18 F]DASA-23 uptake values over 60-min incubation period in PC3, LnCAP, and DU145 respectively were 23.4 ± 4.5, 18.0 ± 2.1, and 53.1 ± 4.6 % tracer/mg protein. Transient reduction in PKM2 protein expression with siRNA resulted in a 50.1 % reduction in radiotracer uptake in DU145 cells. Small animal PET imaging revealed 0.86 ± 0.13 and 1.6 ± 0.2 % ID/g at 30 min post injection of radioactivity in DU145 and PC3 subcutaneous tumor bearing mice respectively. Herein, we evaluated a F-18-labeled PKM2-specific radiotracer, [ 18 F]DASA-23, for the molecular imaging of prostate cancer with PET. [ 18 F]DASA-23 revealed rapid and extensive uptake levels in cellular uptake studies of prostate cancer cells; however, there was only modest tumor uptake when evaluated in mouse subcutaneous tumor models.

  12. Enhancing Therapeutic Cellular Prostate Cancer Vaccines

    DTIC Science & Technology

    2012-06-01

    oxygen -mediated mobilization of mesenchymal stem cell and progenitors (MSCs)”, Division of Preventive, Occupational, And Aerospace Medicine...postdoctoral fellow Completed: Tittle: Hyperbaric oxygen as mobilizer of stem cells and progenitors in senescent mice (Stanimir Vuk-Pavlovic, P.I.). Co... stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) from bone marrow into circulation of old mice were explored. Specific Aims:

  13. Mechanisms of Radiation-Induced Bone Loss and Effect on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2012-06-01

    Develop intravital multiphoton fluorescence microscopy (IVFM) for real-time imaging of osteocytes in calvariae of transgenic mice using i) GFP to...OT, OB counting) and in vivo bone imaging (months 6-10) 8 20 week old female C57Bl/6 mice (n=30) were used in this experiment. The mice were...divided into 2 groups. One group (group A, n=15) was imaged twice by microCT during the experiment that included a baseline microCT that was given 2 days

  14. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer.

    PubMed

    Bandari, Rajendra Prasad; Jiang, Zongrun; Reynolds, Tamila Stott; Bernskoetter, Nicole E; Szczodroski, Ashley F; Bassuner, Kurt J; Kirkpatrick, Daniel L; Rold, Tammy L; Sieckman, Gary L; Hoffman, Timothy J; Connors, James P; Smith, Charles J

    2014-04-01

    Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin, a GRPr-specific peptide targeting probe. The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with (64)CuCl2 and (nat)CuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-((nat)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18h p.i. with collateral, background radiation also being observed in non-target tissue. DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] targeting vector, as described herein, is the first example of a dual GRPr-/PSMA-targeting radioligand for molecular of imaging prostate tumors. Detailed in vitro studies and microPET molecular imaging investigations of [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2 in tumor-bearing mice indicate that further studies are necessary to optimize uptake and retention of tracer in GRPr- and PSMA-positive tissues. Published by Elsevier Inc.

  15. Synthesis and Biological Evaluation of Copper-64 Radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a Novel Bivalent Targeting Vector Having Affinity for Two Distinct Biomarkers (GRPr/PSMA) of Prostate Cancer

    PubMed Central

    Bandari, Rajendra Prasad; Jiang, Zongrun; Reynolds, Tamila Stott; Bernskoetter, Nicole E.; Szczodroski, Ashley F.; Bassuner, Kurt J.; Kirkpatrick, Daniel L.; Rold, Tammy L.; Sieckman, Gary L.; Hoffman, Timothy J.; Connors, James P.; Smith, Charles J.

    2014-01-01

    Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-(64Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = 2-[3-(1,3-Bis-tertbutoxycarbonylpropyl)-ureido]pentanedioic acid, a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin or BBN, a GRPr-specific peptide targeting probe. Methods The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with 64CuCl2 and natCuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). Results Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-(natCu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18 h p.i. with collateral, background radiation also being observed in non-target tissue. Conclusions [DUPA-6-Ahx-(64Cu-NODAGA)-5-Ava-BBN(7-14)NH2] targeting vector, as described herein, is the first example of a dual GRPr-/PSMA-targeting radioligand for molecular imaging prostate tumors. Detailed in vitro studies and microPET molecular imaging investigations of [DUPA-6-Ahx-(64Cu-NODAGA)-5-Ava-BBN(7-14)NH2] in tumor-bearing mice indicates that further studies are necessary to optimize uptake and retention of tracer in GRPr- and PSMA-positive tissues. PMID:24508213

  16. EDB Fibronectin Specific Peptide for Prostate Cancer Targeting.

    PubMed

    Han, Zheng; Zhou, Zhuxian; Shi, Xiaoyue; Wang, Junpeng; Wu, Xiaohui; Sun, Da; Chen, Yinghua; Zhu, Hui; Magi-Galluzzi, Cristina; Lu, Zheng-Rong

    2015-05-20

    Extradomain-B fibronectin (EDB-FN), one of the oncofetal fibronectin (onfFN) isoforms, is a high-molecular-weight glycoprotein that mediates cell adhesion and migration. The expression of EDB-FN is associated with a number of cancer-related biological processes such as tumorigenesis, angiogenesis, and epithelial-to-mesenchymal transition (EMT). Here, we report the development of a small peptide specific to EDB-FN for targeting prostate cancer. A cyclic nonapeptide, CTVRTSADC (ZD2), was identified using peptide phage display. A ZD2-Cy5 conjugate was synthesized to accomplish molecular imaging of prostate cancer in vitro and in vivo. ZD2-Cy5 demonstrated effective binding to up-regulated EDB-FN secreted by TGF-β-induced PC3 cancer cells following EMT. Following intravenous injections, the targeted fluorescent probe specifically bound to and delineated PC3-GFP prostate tumors in nude mice bearing the tumor xenografts. ZD2-Cy5 also showed stronger binding to human prostate tumor specimens with a higher Gleason score (GS9) compared to those with a lower score (GS 7), with no binding in benign prostatic hyperplasia (BPH). Thus, the ZD2 peptide is a promising strategy for molecular imaging and targeted therapy of prostate cancer.

  17. Enhanced Peptide of Prostate Cancer Using Targeted Adenoviral Vectors

    DTIC Science & Technology

    2005-06-01

    receptor subtype 2 has been constructed and evaluated in-human prostate cancer cells with regard to binding: of 64Cu - octreotide. In vivo experiments...of 64CU -octreotide.. The mice wer.e. sacrificed 1. h after peptide injection for biodistribution analysis. In vivo biodistribution studies showed...similar uptake of 64Cu - octreotide in both DU-145 and PC-3 tumors after infection with-AdSSTR2. (2.5. and 2.7% ID/g, respectively). This uptake was

  18. Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer

    DTIC Science & Technology

    2008-04-01

    Nano-Encapsulated Contrast for Enhancing Magnetic Resonance Imaging of Prostate Cancer PRINCIPAL INVESTIGATOR: Joel W. Slaton, M.D...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of a Tumor Histologic-Specific, Nano-Encapsulated Contrast for Enhancing Magnetic...carry a contrast agent to human CaP cells growing in mice to enhance MR detection of cancer. Our work in the first year has focused on in vitro

  19. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  20. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice.

    PubMed

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-12-26

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.

  1. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice

    PubMed Central

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-01-01

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine–polyethyleneglycol (PEI–PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use. PMID:29229829

  2. Next generation patient-derived prostate cancer xenograft models

    PubMed Central

    Lin, Dong; Xue, Hui; Wang, Yuwei; Wu, Rebecca; Watahiki, Akira; Dong, Xin; Cheng, Hongwei; Wyatt, Alexander W; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2014-01-01

    There is a critical need for more effective therapeutic approaches for prostate cancer. Research in this area, however, has been seriously hampered by a lack of clinically relevant, experimental in vivo models of the disease. This review particularly focuses on the development of prostate cancer xenograft models based on subrenal capsule grafting of patients’ tumor tissue into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This technique allows successful development of transplantable, patient-derived cancer tissue xenograft lines not only from aggressive metastatic, but also from localized prostate cancer tissues. The xenografts have been found to retain key biological properties of the original malignancies, including histopathological and molecular characteristics, tumor heterogeneity, response to androgen ablation and metastatic ability. As such, they are highly clinically relevant and provide valuable tools for studies of prostate cancer progression at cellular and molecular levels, drug screening for personalized cancer therapy and preclinical drug efficacy testing; especially when a panel of models is used to cover a broader spectrum of the disease. These xenograft models could therefore be viewed as next-generation models of prostate cancer. PMID:24589467

  3. Mithramycin A induces apoptosis by regulating the mTOR/Mcl-1/tBid pathway in androgen-independent prostate cancer cells

    PubMed Central

    Choi, Eun-Sun; Chung, Taeho; Kim, Jun-Sung; Lee, Hakmo; Kwon, Ki Han; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is an aureolic acid-type polyketide produced by various soil bacteria of the genus Streptomyces. Mith inhibits myeloid cell leukemia-1 (Mcl-1) to induce apoptosis in prostate cancer, but the molecular mechanism underlying this process has not been fully elucidated. The aim of this study was therefore to investigate the detailed molecular mechanism related to Mith-induced apoptosis in prostate cancer cells. Mith decreased the phosphorylation of mammalian target of rapamycin (mTOR) in both cell lines overexpressing phospho-mTOR compared to RWPE-1 human normal prostate epithelial cells. Mith significantly induced truncated Bid (tBid) and siRNA-mediated knock-down of Mcl-1 increased tBid protein levels. Moreover, Mith also inhibited the phosphorylation of mTOR on serine 2448 and Mcl-1, and increased tBid protein in prostate tumors in athymic nude mice bearing DU145 cells as xenografts. Thus, Mith acts as an effective tumor growth inhibitor in prostate cancer cells through the mTOR/Mcl-1/tBid signaling pathway. PMID:24062605

  4. Definition of molecular determinants of prostate cancer cell bone extravasation.

    PubMed

    Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J

    2013-01-15

    Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.

  5. Expression of Pleiotrophin in the Prostate is Androgen Regulated and it Functions as an Autocrine Regulator of Mesenchyme and Cancer Associated Fibroblasts and as a Paracrine Regulator of Epithelia

    PubMed Central

    Orr, Brigid; Vanpoucke, Griet; Grace, O Cathal; Smith, Lee; Anderson, Richard A; Riddick, Antony CP; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2011-01-01

    BACKGROUND Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn). METHODS Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. RESULTS During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female. CONCLUSIONS Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels. Prostate 71:305–317, 2011. © 2010 Wiley-Liss, Inc. PMID:20812209

  6. Pyranocoumarin Tissue Distribution, Plasma Metabolome and Prostate Transcriptome Impacts of Sub-Chronic Exposure to Korean Angelica Supplement in Mice.

    PubMed

    Zhang, Jinhui; Li, Li; Tang, Suni; Zhang, Yong; Markiewski, Maciej; Xing, Chengguo; Jiang, Cheng; Lü, Junxuan

    2016-01-01

    Herbal products containing Korean Angelica gigas Nakai (AGN) root extract are marketed as dietary supplements for memory enhancement, pain killing, and female menopausal symptom relief. We have shown the anticancer activities of AGN supplements in mouse models. To facilitate human anticancer translational research, we characterized the tissue distribution of AGN marker pyranocoumarin compounds decursin (D) and decursinol angelate (DA) ([Formula: see text]% in AGN) and their metabolite decursinol (DOH), assessed the safety of sub-chronic AGN dietary exposure in mice, and explored its impact on plasma aqueous metabolites and the prostate transcriptome. The data show that after a gavage dose, plasma contained readily detectable DOH, but little D and DA, mirroring patterns in the liver. Extra-hepatic tissues retained greater levels of DA and D than the liver did. For sub-chronic exposures, male mice were provided ad libitum AIN93M-pellet diets with 0.5 and 1% AGN for six weeks. No adverse effects were observed on the plasma biochemistry markers of liver and kidney integrity in spite of their enlargement. Histopathological examinations of the liver, kidney and other visceral organs did not reveal tissue abnormalities. Metabolomic assessment of plasma from mice fed the 1%-AGN diet suggested metabolic shifts of key amino acids especially in the methionine-cysteine cycle, purine cycle, and glycolysis-citrate cycle. Prostate transcriptomic profiling identified gene signature changes in the metabolisms of drugs, lipids and cellular energetics, neuro-muscular features, immunity and inflammation, and tumor suppressor/oncogene balance. The safety profile was corroborated with a daily [Formula: see text] injection of AGN extract (100-300[Formula: see text]mg/kg) for four weeks, which resulted in much greater systemic pyranocoumarin exposure than the dietary route did.

  7. Pyranocoumarin tissue distribution, and plasma metabolome and prostate transcriptome impacts of sub-chronic exposure to Korean Angelica supplement in mice

    PubMed Central

    ZHANG, Jinhui; LI, Li; TANG, Suni; ZHANG, Yong; MARKIEWSKI, Maciej; XING, Chengguo; JIANG, Cheng; LÜ, Junxuan

    2016-01-01

    Herbal products containing Korean Angelica gigas Nakai (AGN) root extract are marketed as dietary supplements for memory enhancement, pain killing, and female menopausal symptom relief. We have shown anti-cancer activity of AGN supplement in mouse models. To facilitate human anti-cancer translational research, we characterized the tissue distribution of AGN marker pyranocoumarin compounds decursin (D) and decursinol angelate (DA) (~50% in AGN) and their metabolite decursinol (DOH), assessed safety of sub-chronic AGN dietary exposure in mice, and explored the impacts on the plasma aqueous metabolites and prostate transcriptome. The data show that after a gavage dose, plasma contained readily detectable DOH, but little D and DA, mirroring patterns in the liver. Extra-hepatic tissues retained greater level of DA and D than liver. For sub-chronic exposures, male mice were provided ad libitum AIN93M-pellet diet with 0.5 and 1% AGN for 6 weeks. No adverse effect was observed on plasma biochemistry markers of liver and kidney integrity in spite of their enlargement. Histopathological examination of liver, kidney and other visceral organs did not reveal tissue abnormalities. Metabolomic assessment of plasma from the mice fed 1%-AGN diet suggested metabolic shifts of key amino acids especially methionine-cysteine cycle, purine cycle and glycolysis-citrate cycle. Prostate transcriptomic profiling identified gene signature changes of metabolisms of drugs, lipids and cellular energetics, neuro-muscular features, immunity and inflammation, and tumor suppressor/oncogene balance. The safety profile was corroborated with daily i.p. injection of AGN extract (200 mg/kg) for 4 weeks, which resulted in much greater systemic pyranocoumarin exposure than dietary route. PMID:27080944

  8. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development.

    PubMed

    Dobrenis, Kostantin; Gauthier, Laurent R; Barroca, Vilma; Magnon, Claire

    2015-02-15

    The hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) has a role in proliferation, differentiation and migration of the myeloid lineage and in mobilizing hematopoietic stem and progenitor cells into the bloodstream. However, G-CSF has been newly characterized as a neurotrophic factor in the brain. We recently uncovered that autonomic nerve development in the tumor microenvironment participates actively in prostate tumorigenesis and metastasis. Here, we found that G-CSF constrains cancer to grow and progress by, respectively, supporting the survival of sympathetic nerve fibers in 6-hydroxydopamine-sympathectomized mice and also, promoting the aberrant outgrowth of parasympathetic nerves in transgenic or xenogeneic prostate tumor models. This provides insight into how neurotrophic growth factors may control tumor neurogenesis and may lead to new antineurogenic therapies for prostate cancer. © 2014 UICC.

  9. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer.

    PubMed

    Wu, Meng; Wang, Ying; Wang, Yiru; Zhang, Mingbo; Luo, Yukun; Tang, Jie; Wang, Zhigang; Wang, Dong; Hao, Lan; Wang, Zhibiao

    2017-01-01

    In the current study, we synthesized prostate cancer-targeting poly(lactide- co -glycolic acid) (PLGA) nanobubbles (NBs) modified using A10-3.2 aptamers targeted to prostate-specific membrane antigen (PSMA) and encapsulated paclitaxel (PTX). We also investigated their impact on ultrasound (US) imaging and therapy of prostate cancer. PTX-A10-3.2-PLGA NBs were developed using water-in-oil-in-water (water/oil/water) double emulsion and carbodiimide chemistry approaches. Fluorescence imaging together with flow cytometry verified that the PTX-A10-3.2-PLGA NBs were successfully fabricated and could specifically bond to PSMA-positive LNCaP cells. We speculated that, in vivo, the PTX-A10-3.2-PLGA NBs would travel for a long time, efficiently aim at prostate cancer cells, and sustainably release the loaded PTX due to the improved permeability together with the retention impact and US-triggered drug delivery. The results demonstrated that the combination of PTX-A10-3.2-PLGA NBs with low-frequency US achieved high drug release, a low 50% inhibition concentration, and significant cell apoptosis in vitro. For mouse prostate tumor xenografts, the use of PTX-A10-3.2-PLGA NBs along with low-frequency US achieved the highest tumor inhibition rate, prolonging the survival of tumor-bearing nude mice without obvious systemic toxicity. Moreover, LNCaP xenografts in mice were utilized to observe modifications in the parameters of PTX-A10-3.2-PLGA and PTX-PLGA NBs in the contrast mode and the allocation of fluorescence-labeled PTX-A10-3.2-PLGA and PTX-PLGA NBs in live small animals and laser confocal scanning microscopy fluorescence imaging. These results demonstrated that PTX-A10-3.2-PLGA NBs showed high gray-scale intensity and aggregation ability and showed a notable signal intensity in contrast mode as well as aggregation ability in fluorescence imaging. In conclusion, we successfully developed an A10-3.2 aptamer and loaded PTX-PLGA multifunctional theranostic agent for the purpose of obtaining US images of prostate cancer and providing low-frequency US-triggered therapy of prostate cancer that was likely to constitute a strategy for both prostate cancer imaging and chemotherapy.

  10. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer

    PubMed Central

    Wu, Meng; Wang, Ying; Wang, Yiru; Zhang, Mingbo; Luo, Yukun; Tang, Jie; Wang, Zhigang; Wang, Dong; Hao, Lan; Wang, Zhibiao

    2017-01-01

    In the current study, we synthesized prostate cancer-targeting poly(lactide-co-glycolic acid) (PLGA) nanobubbles (NBs) modified using A10-3.2 aptamers targeted to prostate-specific membrane antigen (PSMA) and encapsulated paclitaxel (PTX). We also investigated their impact on ultrasound (US) imaging and therapy of prostate cancer. PTX-A10-3.2-PLGA NBs were developed using water-in-oil-in-water (water/oil/water) double emulsion and carbodiimide chemistry approaches. Fluorescence imaging together with flow cytometry verified that the PTX-A10-3.2-PLGA NBs were successfully fabricated and could specifically bond to PSMA-positive LNCaP cells. We speculated that, in vivo, the PTX-A10-3.2-PLGA NBs would travel for a long time, efficiently aim at prostate cancer cells, and sustainably release the loaded PTX due to the improved permeability together with the retention impact and US-triggered drug delivery. The results demonstrated that the combination of PTX-A10-3.2-PLGA NBs with low-frequency US achieved high drug release, a low 50% inhibition concentration, and significant cell apoptosis in vitro. For mouse prostate tumor xenografts, the use of PTX-A10-3.2-PLGA NBs along with low-frequency US achieved the highest tumor inhibition rate, prolonging the survival of tumor-bearing nude mice without obvious systemic toxicity. Moreover, LNCaP xenografts in mice were utilized to observe modifications in the parameters of PTX-A10-3.2-PLGA and PTX-PLGA NBs in the contrast mode and the allocation of fluorescence-labeled PTX-A10-3.2-PLGA and PTX-PLGA NBs in live small animals and laser confocal scanning microscopy fluorescence imaging. These results demonstrated that PTX-A10-3.2-PLGA NBs showed high gray-scale intensity and aggregation ability and showed a notable signal intensity in contrast mode as well as aggregation ability in fluorescence imaging. In conclusion, we successfully developed an A10-3.2 aptamer and loaded PTX-PLGA multifunctional theranostic agent for the purpose of obtaining US images of prostate cancer and providing low-frequency US-triggered therapy of prostate cancer that was likely to constitute a strategy for both prostate cancer imaging and chemotherapy. PMID:28794625

  11. LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells.

    PubMed

    González-Chavarría, I; Fernandez, E; Gutierrez, N; González-Horta, E E; Sandoval, F; Cifuentes, P; Castillo, C; Cerro, R; Sanchez, O; Toledo, Jorge R

    2018-02-01

    Obesity is related to an increased risk of developing prostate cancer with high malignancy stages or metastasis. Recent results demonstrated that LOX-1, a receptor associated with obesity and atherosclerosis, is overexpressed in advanced and metastatic prostate cancer. Furthermore, high levels of oxLDL, the main ligand for LOX-1, have been found in patients with advanced prostate cancer. However, the role of LOX-1 in prostate cancer has not been unraveled completely yet. Here, we show that LOX-1 is overexpressed in prostate cancer cells and its activation by oxLDL promotes an epithelial to mesenchymal transition, through of lowered expression of epithelial markers (E-cadherin and plakoglobin) and an increased expression of mesenchymal markers (vimentin, N-cadherin, snail, slug, MMP-2 and MMP-9). Consequently, LOX-1 activation by oxLDL promotes actin cytoskeleton restructuration and MMP-2 and MMP-9 activity inducing prostate cancer cell invasion and migration. Additionally, LOX-1 increased the tumorigenic potential of prostate cancer cells and its expression was necessary for tumor growth in nude mice. In conclusion, our results suggest that oxLDL/LOX-1 could be ones of mechanisms that explain why obese patients with prostate cancer have an accelerated tumor progression and a greater probability of developing metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sca-1 Identifies a Distinct Androgen-Independent Murine Prostatic Luminal Cell Lineage with Bipotent Potential

    PubMed Central

    Kwon, Oh-Joon; Zhang, Li; Xin, Li

    2016-01-01

    Recent lineage tracing studies support the existence of prostate luminal progenitors that possess extensive regenerative capacity, but their identity remains unknown. We show that Sca-1 (Stem Cell Antigen-1) identifies a small population of murine prostate luminal cells that reside in the proximal prostatic ducts adjacent to the urethra. Sca-1+ luminal cells do not express Nkx3.1. They do not carry the secretory function, although they express the androgen receptor. These cells are enriched in the prostates of castrated mice. In the in vitro prostate organoid assay, a small fraction of the Sca-1+ luminal cells are capable of generating budding organoids that are morphologically distinct from those derived from other cell lineages. Histologically, this type of organoid is composed of multiple inner layers of luminal cells surrounded by multiple outer layers of basal cells. When passaged, these organoids retain their morphological and histological features. Finally, the Sca-1+ luminal cells are capable of forming small prostate glands containing both basal and luminal cells in an in vivo prostate regeneration assay. Collectively, our study establishes the androgen-independent and bipotent organoid-forming Sca-1+ luminal cells as a functionally distinct cellular entity. These cells may represent a putative luminal progenitor population and serve as a cellular origin for castration resistant prostate cancer. PMID:26418304

  13. TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer

    PubMed Central

    Shi, Changhong; Hu, Peizhen; Yan, Wei; Wang, Zhe; Duan, Qiuhong; Lu, Fan; Qin, Lipeng; Lu, Tao; Xiao, Juanjuan; Wang, Yingmei; Zhu, Feng; Shao, Chen

    2015-01-01

    Circulating tumor cells (CTCs) are important for metastasis in prostate cancer. T-LAK cell-originated protein kinase (TOPK) is highly expressed in cancer cells. Herein, we established a xenograft animal model, isolated and cultured the CTCs, and found CTCs have significantly greater migratory capacity than parental cells. TOPK is more highly expressed in the CTCs than in parental cells and is also highly expressed in the metastatic nodules caused by CTCs in mice. Knocking down TOPK decreased the migration of CTCs both in vitro and in vivo. TOPK was modulated by the PI3K/PTEN and ERK pathways during the metastasis of prostate cancer. High levels of TOPK in the tumors of patients were correlated with advanced stages of prostate cancer, especially for high-risk patients of Gleason score≥8, PSA>20ng/ml. In summary, TOPK was speculated to be one of a potential marker and therapeutic target in advanced prostate cancer. PMID:25881543

  14. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar.

    PubMed

    Nagabhushan, M; Miller, C M; Pretlow, T P; Giaconia, J M; Edgehouse, N L; Schwartz, S; Kung, H J; de Vere White, R W; Gumerlock, P H; Resnick, M I; Amini, S B; Pretlow, T G

    1996-07-01

    Most patients' prostate cancers respond to androgen deprivation but relapse after periods of several months to years. Only two prostate cancer xenografts, LNCaP and PC-346, have been reported to be responsive to androgen deprivation and to relapse subsequently. Both of these tumors shrink slightly, if at all, and relapse less than 5 weeks after androgen withdrawal. After androgen withdrawal, the human primary prostate cancer xenograft CWR22 regresses markedly, and prostate-specific antigen (PSA) falls up to 3000-fold in the blood of mice. PSA usually returns to normal. In some animals, the tumor relapses and is then designated CWR22R. In these animals, PSA starts to rise approximately 2-7 months, and tumor begins to grow 3-10 months after castration. Animals with CWR22 need to be euthanized because of large tumors 6-12 weeks after the transplantation of CWR22. Androgen withdrawal prolongs life approximately 3-4-fold.

  15. Summer Prostate Cancer Research Training Program

    DTIC Science & Technology

    2017-09-01

    Biology, and Human Toxicology Graduate Programs. Michael Henry, PhD; Associate Professor, Department of Physiology & Biophysics (319-335- 7886) http...addition, PSA has also been demonstrated to be antigenic and capable of inducing specific immune responses in both humans and mice. However, up to...for animal immunization. Both BCG and Ad microbes have been demonstrated to be safe and effective for antigen delivery in humans and mice. Since

  16. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrois, Martin; Jablonski, Paul D.

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficialmore » to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.« less

  17. Humanized Androgen Receptor Mice: A Genetic Model for Differential Response to Prostate Cancer Therapy

    DTIC Science & Technology

    2012-07-01

    prostate lobes were dissected free of fat and connective tissue and weighed separately. 2.3. Hormone assays All assays were performed in a single batch...Ferrell, R.E., Roth, S.M., 2005. Androgen receptor CAG repeat polymorphism is associated with fat -free mass in men. J. Appl. Physiol. 98, 132–137. Wu, C.T...S., Kennemer, M.I., Mohan, S., Nazarenko, I., Watanabe, C., Sparks, A.B., Shames , D.S., Gentleman, R., de Sauvage, F.J., Stern, H., Pandita, A

  18. GIT2 Gene: Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

    DTIC Science & Technology

    2014-05-01

    survival of growth factor–expressing ASCs, which enter the systemic circulation and promote PCa progression. An important note is that the prostate...surgical castration and systemic GLIPR1-ΔTM in vivo using VCaP xenograft model: 1. Generate orthotopic VCaP tumors in athymic nude male mice and...effects of systemic GLIPR1-ΔTM on orthotopic VCaP tumor growth and ASCs infiltration profiles ± surgical castration at acute (3d), intermediate (14d

  19. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yanxi; College of Life Science, Shanxi University, Taiyuan; Wu, Bo

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability ofmore » PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Black-Right-Pointing-Pointer Cystathionine gamma-lyase is a major H{sub 2}S-producing enzyme in prostate tissues. Black-Right-Pointing-Pointer p38 MAPK and JNK contribute to H{sub 2}S and sulforaphane-reduced viability in prostate cancer cells.« less

  20. Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames.

    PubMed

    Choo, C K; Ling, M T; Chan, K W; Tsao, S W; Zheng, Z; Zhang, D; Chan, L C; Wong, Y C

    1999-08-01

    The exact pathogenesis for prostate cancer is not known. Progress made in prostate cancer research has been slow, largely due to the lack of suitable in vitro models. Here, we report our work on the immortalization of a human prostate epithelial cell line and show that it can be used as a model to study prostate tumorigenesis. Replication-defective retrovirus harboring the human papillomavirus (HPV) type 16 E6 and E7 open reading frames was used to infect primary human prostate epithelial cells. Polymerase chain reaction, followed by Southern hybridization for the HPV 16 E6/E7, Western blot for prostatic acid phosphatase, telomeric repeat amplification protocol assay for telomerase activity, two-dimensional gels for cytokeratins, and cytogenetic analysis were undertaken to characterized the infected cells. The retrovirus-infected cell line, HPr-1, continued to grow in culture for more than 80 successive passages. Normal primary cells failed to proliferate after passage 6. HPr-1 cells bore close resemblance to normal primary prostate epithelial cells, both morphologically and biochemically. However, they possessed telomerase activity and proliferated indefinitely. Cytogenetic analysis of HPr-1 cells revealed a human male karyotype with clonal abnormalities and the appearance of multiple double minutes. The HPr-1 cells expressed prostatic acid phosphatase and cytokeratins K8 and K18, proving that they were prostate epithelial cells. They were benign in nude mice tumor formation and soft agar colony formation assay. The HPr-1 cell line is an in vitro representation of early prostate neoplastic progression. Copyright 1999 Wiley-Liss, Inc.

  1. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating prostatic bud induction, and are required for the expression of a subset of prostatic developmental regulatory genes including Notch1 and Nkx3.1. PMID:26426536

  2. Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography.

    PubMed

    Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu

    2013-05-01

    Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.

  3. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP)

    PubMed Central

    Murphy, Stephen F.; Schaeffer, Anthony J.; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90–95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17’s role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS. PMID:25933188

  4. Inhibition of growth of PC-82 human prostate cancer line xenografts in nude mice by bombesin antagonist RC-3095 or combination of agonist [D-Trp6]-luteinizing hormone-releasing hormone and somatostatin analog RC-160.

    PubMed

    Milovanovic, S R; Radulovic, S; Groot, K; Schally, A V

    1992-01-01

    The effects of treatment with a bombesin receptor antagonist [D-Tpi6, Leu13 psi (CH2NH) Leu14]BN(6-14)(RC-3095) and the combination of an agonist of luteinizing hormone-releasing hormone [D-Trp6]-LH-RH and somatostatin analog D-Phe-Cys-Tyr-D-Trp-Lys-Val- Cys-Trp-NH2 (RC-160) were studied in nude mice bearing xenografts of the hormone-dependent human prostate tumor PC-82. During the 5 weeks of treatment, tumor growth was decreased in all treated groups compared with controls. Bombesin antagonist RC-3095 and the combination of [D-Trp6]-LH-RH and RC-160 caused a greater inhibition of tumor growth than [D-Trp6]-LH-RH or RC-160 alone as based on measurement of tumor volume and percentage change in tumor volume. The largest decrease in tumor weight was also seen in the groups treated with the bombesin antagonist and with the combination of RC-160 and [D-Trp6]-LH-RH. Serum prostatic-specific antigen levels were greatly decreased, and insulin-like growth factor I (IGF-I) as well as growth hormone levels were reduced in all treated groups. Specific binding sites for [D-Trp6]-LH-RH, epidermal growth factor (EGF), IGF-I, and somatostatin (SS-14) were found in the tumor membranes. Receptors for EGF were significantly down-regulated by treatment with the bombesin antagonist or RC-160. Combination of LH-RH agonists with somatostatin analog RC-160 might be considered for improvement of hormonal therapy for prostate cancer. The finding that bombesin antagonist RC-3095 inhibits the growth of PC-82 prostate cancer suggests the merit of further studies to evaluate the possible usefulness of antagonists of bombesin in the management of prostatic carcinoma.

  5. Low dose combinations of 2-methoxyestradiol and docetaxel block prostate cancer cells in mitosis and increase apoptosis.

    PubMed

    Reiner, Teresita; de las Pozas, Alicia; Gomez, Lourdes A; Perez-Stable, Carlos

    2009-04-08

    Clinical trials have shown that chemotherapy with docetaxel (Doc) combined with prednisone can improve survival of patients with androgen-independent prostate cancer (AI-PC). It is likely that the combination of Doc with other novel agents would also improve the survival of AI-PC patients. We investigated whether the combination of Doc and 2-methoxyestradiol (2ME2), an endogenous metabolite of estradiol promising for cancer therapy, can increase apoptotic cell death in prostate cancer cells. Low concentration 2ME2 (0.5-1 microM)+Doc (0.05-0.1 nM) combinations inhibit cell growth, increase G2/M cell cycle arrest, and increase apoptosis more effectively than the single concentrations in a variety of human AI-PC cells. Effects on apoptosis were associated with an increase in p53 protein and a decrease in cyclin A-dependent kinase activity. We then investigated whether the combination of 2ME2+Doc can increase apoptotic cell death and inhibit the growth of prostate tumors in the FG/Tag transgenic mouse model of AI-PC. Doses of 2ME2 and Doc that increase mitotic cell cycle arrest result in an increase in apoptosis and lower primary prostate tumor weights in FG/Tag mice. High dose 2ME2+Doc combinations did not increase G2/M cell cycle arrest or apoptosis in AI-PC cell lines and in the FG/Tag mice more than the single drugs. Overall, our data indicate that low dose 2ME2+Doc combinations may provide a treatment strategy that can improve therapeutic efficacy against AI-PC while reducing toxicity often seen in patients treated with Doc.

  6. MicroRNAs Are Mediators of Androgen Action in Prostate and Muscle

    PubMed Central

    Narayanan, Ramesh; Jiang, Jinmai; Gusev, Yuriy; Jones, Amanda; Kearbey, Jeffrey D.; Miller, Duane D.; Schmittgen, Thomas D.; Dalton, James T.

    2010-01-01

    Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3′ UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues. PMID:21048966

  7. 2007 SB14 Source Reduction Plan/Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L

    2007-07-24

    Aqueous solutions (mixed waste) generated from various LLNL operations, such as debris washing, sample preparation and analysis, and equipment maintenance and cleanout, were combined for storage in the B695 tank farm. Prior to combination the individual waste streams had different codes depending on the particular generating process and waste characteristics. The largest streams were CWC 132, 791, 134, 792. Several smaller waste streams were also included. This combined waste stream was treated at LLNL's waste treatment facility using a vacuum filtration and cool vapor evaporation process in preparation for discharge to sanitary sewer. Prior to discharge, the treated waste streammore » was sampled and the results were reviewed by LLNL's water monitoring specialists. The treated solution was discharged following confirmation that it met the discharge criteria. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. Quarterly waste generation data prepared by the Environmental Protection Department's P2 Team are regularly provided to engineering shops as well as other facilities so that generators can track the effectiveness of their waste minimization efforts.« less

  8. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    PubMed

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  9. The p27Kip1 Tumor Suppressor and Multi-Step Tumorigenesis

    DTIC Science & Technology

    2001-08-01

    Breast Cancer , Cell cycle, tumor suppressor 33 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...in many cancers , including carcinomas of the breast , colon, lung and prostate, and lymphoma. Although these studies of p27 expression in primary...of DMBA-induced pituitary tumors in p27-/- mice precluded determination of breast cancer risk in these mice. Nevertheless, the extensive mammary tissue

  10. Therapeutic efficacy and molecular mechanisms of snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer- and prostate cancer-bearing experimental mouse models.

    PubMed

    Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M

    2013-12-01

    The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,-8, and -9 in both breast and prostate cancer cells. In addition, treatment of breast and prostate cancer cells with WEV+NP or WEV alone revealed that the combination of WEV with NP robustly decreased the phosphorylation of AKT, ERK, and IκBα; decreased the expression of cyclin D1, surviving, and the antiapoptotic Bcl-2 family members Bcl-2, Bcl-XL, and Mcl-1; markedly increased the expression of cyclin B1 and the proapoptotic Bcl-2 family members Bak, Bax, and Bim; altered the mitochondrial membrane potential; and subsequently sensitized tumor cells to growth arrest. Our data reveal the therapeutic potential of the nanoparticle-sustained delivery of snake venom against different cancer cell types. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. Low Testosterone Alters the Activity of Mouse Prostate Stem Cells.

    PubMed

    Zhou, Ye; Copeland, Ben; Otto-Duessel, Maya; He, Miaoling; Markel, Susan; Synold, Tim W; Jones, Jeremy O

    2017-04-01

    Low serum testosterone (low T) has been repeatedly linked to worse outcomes in men with newly diagnosed prostate cancer (PC). How low T contributes to these outcomes is unknown. Here we demonstrate that exposure to low T causes significant changes in the mouse prostate and prostate stem cells. Mice were castrated and implanted with capsules to achieve castrate, normal, or sub-physiological levels of T. After 6 weeks of treatment, LC-MS/MS was used to quantify the levels of T and dihydrotestosterone (DHT) in serum and prostate tissue. FACS was used to quantify the percentages of purported prostate stem and transit amplifying (TA) cells in mouse prostates. Prostate tissues were also stained for the presence of CD68+ cells and RNA was extracted from prostate tissue or specific cell populations to measure changes in transcript levels with low T treatment. Despite having significantly different levels of T and DHT in the serum, T and DHT concentrations in prostate tissue from different T treatment groups were similar. Low T treatment resulted in significant alterations in the expression of androgen biosynthesis genes, which may be related to maintaining prostate androgen levels. Furthermore, the expression of androgen-regulated genes in the prostate was similar among all T treatment groups, demonstrating that the mouse prostate can maintain functional levels of androgens despite low serum T levels. Low T increased the frequency of prostate stem and TA cells in adult prostate tissue and caused major transcriptional changes in those cells. Gene ontology analysis suggested that low T caused inflammatory responses and immunofluorescent staining indicated that low T treatment led to the increased presence of CD68+ macrophages in prostate tissue. Low T alters the AR signaling axis which likely leads to maintenance of functional levels of prostate androgens. Low T also induces quantitative and qualitative changes in prostate stem cells which appear to lead to inflammatory macrophage infiltration. These changes are proposed to lead to an aggressive phenotype once cancers develop and may contribute to the poor outcomes in men with low T. Prostate 77:530-541, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer.

    PubMed

    Moselhy, Jim; Suman, Suman; Alghamdi, Mohammed; Chandarasekharan, Balaji; Das, Trinath P; Houda, Alatassi; Ankem, Murali; Damodaran, Chendil

    2017-06-01

    We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45 weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate cancer in a mouse model with strong potential for translation to human disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist--from mice to men.

    PubMed

    Wieser, Gesche; Mansi, Rosalba; Grosu, Anca L; Schultze-Seemann, Wolfgang; Dumont-Walter, Rebecca A; Meyer, Philipp T; Maecke, Helmut R; Reubi, Jean Claude; Weber, Wolfgang A

    2014-01-01

    Ex vivo studies have shown that the gastrin releasing peptide receptor (GRPr) is overexpressed on almost all primary prostate cancers, making it a promising target for prostate cancer imaging and targeted radiotherapy. Biodistribution, dosimetry and tumor uptake of the GRPr antagonist ⁶⁴Cu-CB-TE2A-AR06 [(⁶⁴Cu-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane)-PEG₄-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-LeuNH₂] were studied by PET/CT in four patients with newly diagnosed prostate cancer (T1c-T2b, Gleason 6-7). No adverse events were observed after injection of ⁶⁴Cu-CB-TE2A-AR06. Three of four tumors were visualized with high contrast [tumor-to-prostate ratio > 4 at 4 hours (h) post injection (p.i.)], one small tumor (T1c, < 5% tumor on biopsy specimens) showed moderate contrast (tumor-to-prostate ratio at 4 h: 1.9). Radioactivity was cleared by the kidneys and only the pancreas demonstrated significant accumulation of radioactivity, which rapidly decreased over time. ⁶⁴Cu-CB-TE2A-AR06 shows very favorable characteristics for imaging prostate cancer. Future studies evaluating ⁶⁴Cu-CB-TE2A-AR06 PET/CT for prostate cancer detection, staging, active surveillance, and radiation treatment planning are necessary.

  14. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    PubMed Central

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  15. Influence of the neural microenvironment on prostate cancer.

    PubMed

    Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J; Ayala, Gustavo

    2018-02-01

    Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non-neoplastic epithelial cells. Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.

  16. Active Sonic Hedgehog Signaling between Androgen Independent Human Prostate Cancer Cells and Normal/Benign but Not Cancer-Associated Prostate Stromal Cells

    PubMed Central

    Shigemura, Katsumi; Huang, Wen-Chin; Li, Xiangyan; Zhau, Haiyen E.; Zhu, Guodong; Gotoh, Akinobu; Fujisawa, Masato; Xie, Jingwu; Marshall, Fray F.; Chung, Leland W. K.

    2012-01-01

    BACKGROUND Sonic hedgehog (Shh) signaling plays a pivotal role in stromal-epithelial interaction during normal development but its role in tumor-stromal interaction during carcinogenic progression is less well defined. Since hormone refractory prostate cancer with bone metastasis is difficult to treat, it is crucial to investigate how androgen independent (AI) human prostate cancer cells communicate with their associated stroma. METHODS Shh and its target transcription factor, Gli1 mRNA, were assessed by RT-PCR and/or quantitative RT-PCR in co-cultured cell recombinants comprised of AI C4-2 either with NPF (prostate fibroblasts from normal/benign prostate gland) or CPF cancer-associated stromal fibroblasts) under Shh/cyclopamine (a hedgehog signaling inhibitor) treatment. Human bone marrow stromal (HS27A) cells were used as controls. In vivo investigation was performed by checking serum PSA and immunohistochemical staining for the apoptosis-associated M30 gene in mice bearing chimeric C4-2/NPF tumors. RESULTS CONCLUSIONS Based on co-culture and chimeric tumor models, active Shh-mediated signaling was demonstrated between AI prostate cancer and NPF in a paracrine- and tumor progression-dependent manner. Our study suggests that drugs like cyclopamine that interfere with Shh signaling could be beneficial in preventing AI progression in prostate cancer cells. PMID:21520153

  17. Imaging Axl expression in pancreatic and prostate cancer xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmagadda, Sridhar, E-mail: snimmag1@jhmi.edu; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287; Pullambhatla, Mrudula

    2014-01-10

    Highlights: •Axl is overexpressed in a variety of cancers. •Axl overexpression confers invasive phenotype. •Axl imaging would be useful for therapeutic guidance and monitoring. •Axl expression imaging is demonstrated in pancreatic and prostate cancer xenografts. •Graded levels of Axl expression imaging is feasible. -- Abstract: The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeledmore » anti-human Axl (Axl mAb) and control IgG1 antibodies with {sup 125}I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axl{sup high}) and Panc1 (Axl{sup low}) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [{sup 125}I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axl{sup low}) or DU145 (Axl{sup high}) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [{sup 125}I]Axl mAb in Axl{sup high} (CFPAC and DU145) expression tumors compared to the Axl{sup low} (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [{sup 125}I]IgG1 antibody in the Axl{sup high} and Axl{sup low} expression tumors. These data demonstrate the feasibility of imaging Axl expression in pancreatic and prostate tumor xenografts.« less

  18. In vivo inhibition of PC-3 human androgen-independent prostate cancer by a targeted cytotoxic bombesin analogue, AN-215.

    PubMed

    Plonowski, A; Nagy, A; Schally, A V; Sun, B; Groot, K; Halmos, G

    2000-11-15

    The effectiveness of chemotherapy targeted to bombesin (BN) receptors was evaluated in nude mice bearing PC-3 human androgen-independent prostate cancers. Cytotoxic BN analogue AN-215, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to BN-like carrier peptide RC-3094, was injected i.v. at 150 nmol/kg on days 1, 11 and 21. After treatment with AN-215, tumor volume was 69% (p < 0.01) smaller than that in controls and tumor doubling time was extended from 8.5 +/- 0.7 days to 20.3 +/- 3.5 days (p < 0.05). Cytotoxic radical AN-201, carrier RC-3094 and their unconjugated mixture administered at the same dosage were ineffective. The mortality rate was 12.5% in the AN-201 group and 16.7% in the group treated with the mixture, but no deaths occurred in mice receiving AN-215. Because the ester bond linking AN-201 to the carrier molecule is hydrolyzed much faster in mouse serum than in human serum, in the second experiment we investigated the tolerance to AN-215 and its effect in nude mice bearing PC-3 tumors after pharmacological inhibition of serum carboxylesterases. Two applications of AN-201 at 200 nmol/kg were lethal, whereas no mortality was observed after 4 injections of AN-215 at the same dose. Administration of 200 nmol/kg AN-215 on days 1, 7, 17 and 26 again produced 69% tumor inhibition. BN receptors on membranes of PC-3 tumors were detected by (125)I-[Tyr(4)]BN binding, and expression of mRNA for BRS-3 and GRP-R subtypes was also found. AN-215 showed a high affinity to PC-3 tumors, displacing the radioligand at an IC(50) of 12.95 +/- 0.35 nM. Because BN receptors are present on primary and metastatic prostate cancer, targeted chemotherapy with AN-215 might benefit patients with advanced prostatic carcinoma who relapsed androgen ablation. Copyright 2000 Wiley-Liss, Inc.

  19. Systemic Delivery of Oncolytic Adenoviruses Targeting Transforming Growth Factor-β Inhibits Established Bone Metastasis in a Prostate Cancer Mouse Model

    PubMed Central

    Hu, Zebin; Gupta, Janhavi; Zhang, Zhenwei; Gerseny, Helen; Berg, Arthur; Chen, Yun Ju; Zhang, Zhiling; Du, Hongyan; Brendler, Charles B.; Xiao, Xianghui; Pienta, Kenneth J.; Guise, Theresa; Lee, Chung; Stern, Paula H.; Stock, Stuart

    2012-01-01

    Abstract We have examined whether Ad.sTβRFc and TAd.sTβRFc, two oncolytic viruses expressing soluble transforming growth factor-β receptor II fused with human Fc (sTGFβRIIFc), can be developed to treat bone metastasis of prostate cancer. Incubation of PC-3 and DU-145 prostate tumor cells with Ad.sTβRFc and TAd.sTβRFc produced sTGFβRIIFc and viral replication; sTGFβRIIFc caused inhibition of TGF-β-mediated SMAD2 and SMAD3 phosphorylation. Ad(E1-).sTβRFc, an E1– adenovirus, produced sTGFβRIIFc but failed to replicate in tumor cells. To examine the antitumor response of adenoviral vectors, PC-3-luc cells were injected into the left heart ventricle of nude mice. On day 9, mice were subjected to whole-body bioluminescence imaging (BLI). Mice bearing hind-limb tumors were administered viral vectors via the tail vein on days 10, 13, and 17 (2.5×1010 viral particles per injection per mouse, each injection in a 0.1-ml volume), and subjected to BLI and X-ray radiography weekly until day 53. Ad.sTβRFc, TAd.sTβRFc, and Ad(E1-).sTβRFc caused significant inhibition of tumor growth; however, Ad.sTβRFc was the most effective among all the vectors. Only Ad.sTβRFc and TAd.sTβRFc inhibited tumor-induced hypercalcemia. Histomorphometric and synchrotron micro-computed tomographic analysis of isolated bones indicated that Ad.sTβRFc induced significant reduction in tumor burden, osteoclast number, and trabecular and cortical bone destruction. These studies suggest that Ad.sTβRFc and TAd.sTβRFc can be developed as potential new therapies for prostate cancer bone metastasis. PMID:22551458

  20. The Inhibition of the Highly Expressed Mir-221 and Mir-222 Impairs the Growth of Prostate Carcinoma Xenografts in Mice

    PubMed Central

    Mercatelli, Neri; Coppola, Valeria; Bonci, Desirée; Miele, Francesca; Costantini, Arianna; Guadagnoli, Marco; Bonanno, Elena; Muto, Giovanni; Frajese, Giovanni Vanni; De Maria, Ruggero; Spagnoli, Luigi Giusto; Farace, Maria Giulia; Ciafrè, Silvia Anna

    2008-01-01

    Background MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro, underlying the role of miR-221/222 as inducers of proliferation and tumorigenicity. Methodology/Principal Findings Here we describe a number of in vivo approaches confirming our previous data. The ectopic overexpression of miR-221 is able, per se, to confer a high growth advantage to LNCaP-derived tumors in SCID mice. Consistently, the anti-miR-221/222 antagomir treatment of established subcutaneous tumors derived from the highly aggressive PC3 cell line, naturally expressing high levels of miR-221/222, reduces tumor growth by increasing intratumoral p27 amount; this effect is long lasting, as it is detectable as long as 25 days after the treatment. Furthermore, we provide evidence in favour of a clinical relevance of the role of miR-221/222 in prostate carcinoma, by showing their general upregulation in patient-derived primary cell lines, where we find a significant inverse correlation with p27 expression. Conclusions/Significance These findings suggest that modulating miR-221/222 levels may have a therapeutic potential in prostate carcinoma. PMID:19107213

  1. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity.

    PubMed

    Chanda, Nripen; Kattumuri, Vijaya; Shukla, Ravi; Zambre, Ajit; Katti, Kavita; Upendran, Anandhi; Kulkarni, Rajesh R; Kan, Para; Fent, Genevieve M; Casteel, Stan W; Smith, C Jeffrey; Boote, Evan; Robertson, J David; Cutler, Cathy; Lever, John R; Katti, Kattesh V; Kannan, Raghuraman

    2010-05-11

    Development of cancer receptor-specific gold nanoparticles will allow efficient targeting/optimum retention of engineered gold nanoparticles within tumors and thus provide synergistic advantages in oncology as it relates to molecular imaging and therapy. Bombesin (BBN) peptides have demonstrated high affinity toward gastrin-releasing peptide (GRP) receptors in vivo that are overexpressed in prostate, breast, and small-cell lung carcinoma. We have synthesized a library of GRP receptor-avid nanoplatforms by conjugating gold nanoparticles (AuNPs) with BBN peptides. Cellular interactions and binding affinities (IC(50)) of AuNP-BBN conjugates toward GRP receptors on human prostate cancer cells have been investigated in detail. In vivo studies using AuNP-BBN and its radiolabeled surrogate (198)AuNP-BBN, exhibiting high binding affinity (IC(50) in microgram ranges), provide unequivocal evidence that AuNP-BBN constructs are GRP-receptor-specific showing accumulation with high selectivity in GRP-receptor-rich pancreatic acne in normal mice and also in tumors in prostate-tumor-bearing, severe combined immunodeficient mice. The i.p. mode of delivery has been found to be efficient as AuNP-BBN conjugates showed reduced RES organ uptake with concomitant increase in uptake at tumor targets. The selective uptake of this new generation of GRP-receptor-specific AuNP-BBN peptide analogs has demonstrated realistic clinical potential in molecular imaging via x-ray computed tomography techniques as the contrast numbers in prostate tumor sites are severalfold higher as compared to the pretreatment group (Hounsfield unit = 150).

  2. In-depth investigation of archival and prospectively collected samples reveals no evidence for XMRV infection in prostate cancer.

    PubMed

    Lee, Deanna; Das Gupta, Jaydip; Gaughan, Christina; Steffen, Imke; Tang, Ning; Luk, Ka-Cheung; Qiu, Xiaoxing; Urisman, Anatoly; Fischer, Nicole; Molinaro, Ross; Broz, Miranda; Schochetman, Gerald; Klein, Eric A; Ganem, Don; Derisi, Joseph L; Simmons, Graham; Hackett, John; Silverman, Robert H; Chiu, Charles Y

    2012-01-01

    XMRV, or xenotropic murine leukemia virus (MLV)-related virus, is a novel gammaretrovirus originally identified in studies that analyzed tissue from prostate cancer patients in 2006 and blood from patients with chronic fatigue syndrome (CFS) in 2009. However, a large number of subsequent studies failed to confirm a link between XMRV infection and CFS or prostate cancer. On the contrary, recent evidence indicates that XMRV is a contaminant originating from the recombination of two mouse endogenous retroviruses during passaging of a prostate tumor xenograft (CWR22) in mice, generating laboratory-derived cell lines that are XMRV-infected. To confirm or refute an association between XMRV and prostate cancer, we analyzed prostate cancer tissues and plasma from a prospectively collected cohort of 39 patients as well as archival RNA and prostate tissue from the original 2006 study. Despite comprehensive microarray, PCR, FISH, and serological testing, XMRV was not detected in any of the newly collected samples or in archival tissue, although archival RNA remained XMRV-positive. Notably, archival VP62 prostate tissue, from which the prototype XMRV strain was derived, tested negative for XMRV on re-analysis. Analysis of viral genomic and human mitochondrial sequences revealed that all previously characterized XMRV strains are identical and that the archival RNA had been contaminated by an XMRV-infected laboratory cell line. These findings reveal no association between XMRV and prostate cancer, and underscore the conclusion that XMRV is not a naturally acquired human infection.

  3. Role of Desumoylation in the Development of Prostate Cancer1

    PubMed Central

    Cheng, Jinke; Bawa, Tasneem; Lee, Peng; Gong, Limin; Yeh, Edward T. H

    2006-01-01

    Abstract SUMO is a novel ubiquitin-like protein that can covalently modify a large number of nuclear proteins. SUMO modification has emerged as an important regulatory mechanism for protein function and localization. Sumoylation is a dynamic process that is mediated by activating (E1), conjugating (E2), and ligating (E3) enzymes and is readily reversed by a family of SUMO-specific proteases (SENPs). Since SUMO was discovered 10 years ago, the biologic contribution of this posttranslational modification has remained unclear. In this review, we report that SENP1, a member of the SENP family, is overexpressed in human prostate cancer specimens. The induction of SENP1 is observed with the chronic exposure of prostate cancer cells to androgen and/or interleukin (IL) 6. SENP1 upregulation modulates the transcriptional activity of androgen receptors (ARs) and c-Jun, as well as cyclin D1 expression. Initial in vivo data from transgenic mice indicate that overexpression of SENP1 in the prostate leads to the development of prostatic intraepithelial neoplasia at an early age. Collectively, these studies indicate that overexpression of SENP1 is associated with prostate cancer development. PMID:16925949

  4. Magnetically-actuated drug delivery device (MADDD) for minimally invasive treatment of prostate cancer: An in vivo animal pilot study.

    PubMed

    Struss, Werner J; Tan, Zheng; Zachkani, Payam; Moskalev, Igor; Jackson, John K; Shademani, Ali; D'Costa, Ninadh M; Raven, Peter A; Frees, Sebastian; Chavez-Munoz, Claudia; Chiao, Mu; So, Alan I

    2017-05-01

    The vast majority of prostate cancer presents clinically localized to the prostate without evidence of metastasis. Currently, there are several modalities available to treat this particular disease. Despite radical prostatectomy demonstrating a modest prostate cancer specific mortality benefit in the PIVOT trial, several novel modalities have emerged to treat localized prostate cancer in patients that are either not eligible for surgery or that prefer an alternative approach. Athymic nude mice were subcutaneously inoculated with prostate cancer cells. The mice were divided into four cohorts, one cohort untreated, two cohorts received docetaxel (10 mg/kg) either subcutaneously (SC) or intravenously (IV) and the fourth cohort was treated using the magnetically-actuated docetaxel delivery device (MADDD), dispensing 1.5 μg of docetaxel per 30 min treatment session. Treatment in all three therapeutic arms (SC, IV, and MADDD) was administered once weekly for 6 weeks. Treatment efficacy was measured once a week according to tumor volume using ultrasound. In addition, calipers were used to assess tumor volume. Animals implanted with the device demonstrated no signs of distress or discomfort, neither local nor systemic symptoms of inflammation and infection. Using an independent sample t-test, the tumor growth rate of the treated tumors was significant when compared to the control. Post hoc Tukey HSD test results showed that the mean tumor growth rate of our device cohort was significantly lower than SC and control cohorts. Moreover, IV cohort showed slight reduction in mean tumor growth rates than the ones from the device cohort, however, there was no statistical significance in tumor growth rate between these two cohorts. Furthermore, immunohistochemistry demonstrated an increased cellular apoptosis in the MADDD treated tumors and a decreased proliferation when compared to the other cohorts. In addition, IV cohort showed increased treatment side effects (weight loss) when compared to the device cohort. Finally, MADDD showed minimal expression of CD45 comparable to the control cohort, suggesting no signs of chronic inflammation. In conclusion, this study showed for the first time that MADDD, clearly suppressed tumor growth in local prostate cancer tumors. This could potentially be a novel clinical treatment approach for localized prostate cancer. © 2017 Wiley Periodicals, Inc.

  5. Effects of homeopathic preparations on human prostate cancer growth in cellular and animal models.

    PubMed

    MacLaughlin, Brian W; Gutsmuths, Babett; Pretner, Ewald; Jonas, Wayne B; Ives, John; Kulawardane, Don Victor; Amri, Hakima

    2006-12-01

    The use of dietary supplements for various ailments enjoys unprecedented popularity. As part of this trend, Sabal serrulata (saw palmetto) constitutes the complementary treatment of choice with regard to prostate health. In homeopathy, Sabal serrulata is commonly prescribed for prostate problems ranging from benign prostatic hyperplasia to prostate cancer. The authors' work assessed the antiproliferative effects of homeopathic preparations of Sabal serrulata, Thuja occidentalis, and Conium maculatum, in vivo, on nude mouse xenografts, and in vitro, on PC-3 and DU-145 human prostate cancer as well as MDA-MB-231 human breast cancer cell lines. Treatment with Sabal serrulata in vitro resulted in a 33% decrease of PC-3 cell proliferation at 72 hours and a 23% reduction of DU-145 cell proliferation at 24 hours (P<.01). The difference in reduction is likely due to the specific doubling time of each cell line. No effect was observed on MDA-MB-231 human breast cancer cells. Thuja occidentalis and Conium maculatum did not have any effect on human prostate cancer cell proliferation. In vivo, prostate tumor xenograft size was significantly reduced in Sabal serrulata-treated mice compared to untreated controls (P=.012). No effect was observed on breast tumor growth. Our study clearly demonstrates a biologic response to homeopathic treatment as manifested by cell proliferation and tumor growth. This biologic effect was (i)significantly stronger to Sabal serrulata than to controls and (ii)specific to human prostate cancer. Sabal serrulata should thus be further investigated as a specific homeopathic remedy for prostate pathology.

  6. Molecular Validation of PACE4 as a Target in Prostate Cancer12

    PubMed Central

    D'Anjou, François; Routhier, Sophie; Perreault, Jean-Pierre; Latil, Alain; Bonnel, David; Fournier, Isabelle; Salzet, Michel; Day, Robert

    2011-01-01

    Prostate cancer remains the single most prevalent cancer in men. Standard therapies are still limited and include androgen ablation that initially causes tumor regression. However, tumor cells eventually relapse and develop into a hormone-refractory prostate cancer. One of the current challenges in this disease is to define new therapeutic targets, which have been virtually unchanged in the past 30 years. Recent studies have suggested that the family of enzymes known as the proprotein convertases (PCs) is involved in various types of cancers and their progression. The present study examined PC expression in prostate cancer and validates one PC, namely PACE4, as a target. The evidence includes the observed high expression of PACE4 in all different clinical stages of human prostate tumor tissues. Gene silencing studies targeting PACE4 in the DU145 prostate cancer cell line produced cells (cell line 4-2) with slower proliferation rates, reduced clonogenic activity, and inability to grow as xenografts in nude mice. Gene expression and proteomic profiling of the 4-2 cell line reveals an increased expression of known cancer-related genes (e.g., GJA1, CD44, IGFBP6) that are downregulated in prostate cancer. Similarly, cancer genes whose expression is decreased in the 4-2 cell line were upregulated in prostate cancer (e.g., MUC1, IL6). The direct role of PACE4 in prostate cancer is most likely through the upregulated processing of growth factors or through the aberrant processing of growth factors leading to sustained cancer progression, suggesting that PACE4 holds a central role in prostate cancer. PMID:21633671

  7. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    PubMed

    Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W K; Hsieh, Chia-Ling

    2016-01-01

    Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  8. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.

    PubMed

    Liu, Can; Kelnar, Kevin; Liu, Bigang; Chen, Xin; Calhoun-Davis, Tammy; Li, Hangwen; Patrawala, Lubna; Yan, Hong; Jeter, Collene; Honorio, Sofia; Wiggins, Jason F; Bader, Andreas G; Fagin, Randy; Brown, David; Tang, Dean G

    2011-02-01

    Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.

  9. Gastrin-releasing peptide receptor (GRPr) promotes EMT, growth, and invasion in canine prostate cancer.

    PubMed

    Elshafae, Said M; Hassan, Bardes B; Supsavhad, Wachiraphan; Dirksen, Wessel P; Camiener, Rachael Y; Ding, Haiming; Tweedle, Michael F; Rosol, Thomas J

    2016-06-01

    The gastrin-releasing peptide receptor (GRPr) is upregulated in early and late-stage human prostate cancer (PCa) and other solid tumors of the mammary gland, lung, head and neck, colon, uterus, ovary, and kidney. However, little is known about its role in prostate cancer. This study examined the effects of a heterologous GRPr agonist, bombesin (BBN), on growth, motility, morphology, gene expression, and tumor phenotype of an osteoblastic canine prostate cancer cell line (Ace-1) in vitro and in vivo. The Ace-1 cells were stably transfected with the human GRPr and tumor cells were grown in vitro and as subcutaneous and intratibial tumors in nude mice. The effect of BBN was measured on cell proliferation, cell migration, tumor growth (using bioluminescence), tumor cell morphology, bone tumor phenotype, and epithelial-mesenchymal transition (EMT) and metastasis gene expression (quantitative RT-PCR). GRPr mRNA expression was measured in primary canine prostate cancers and normal prostate glands. Bombesin (BBN) increased tumor cell proliferation and migration in vitro and tumor growth and invasion in vivo. BBN upregulated epithelial-to-mesenchymal transition (EMT) markers (TWIST, SNAIL, and SLUG mRNA) and downregulated epithelial markers (E-cadherin and β-catenin mRNA), and modified tumor cell morphology to a spindle cell phenotype. Blockade of GRPr upregulated E-cadherin and downregulated VIMENTIN and SNAIL mRNA. BBN altered the in vivo tumor phenotype in bone from an osteoblastic to osteolytic phenotype. Primary canine prostate cancers had increased GRPr mRNA expression compared to normal prostates. These data demonstrated that the GRPr is important in prostate cancer growth and progression and targeting GRPr may be a promising strategy for treatment of prostate cancer. Prostate 76:796-809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway.

    PubMed

    Sun, Shuben; Gong, Fanger; Liu, Ping; Miao, Qilong

    2018-04-17

    The aim of present study was to examine whether metformin in association with quercetin has any synergistically anti-tumor effects on prostate cancer. Our findings showed that metformin in combination with quercetin synergistically inhibited the growth, migration and invasion of both PC-3 and LNCaP cells. Co-treatment of these two agents induced more apoptosis than single agent treatment. The co-treatment-induced apoptosis was caspase-dependent and accompanied by the down-regulation of Bcl-2 family members. Our data also indicated that co-treatment of metformin and quercetin strongly inhibited the VEGF/Akt/PI3K pathway. Moreover, these two agents acted synergistically to repress the growth of human prostate cancer cell xenograft in vivo in nude mice. In conclusion, our findings indicate that the combination therapy of metformin and quercetin exerted synergistic antitumor effects in prostate cancers via inhibition of VEGF/Akt/PI3K pathway. Thus, combination treatment of metformin and quercetin would be a promising therapeutic strategy for prostate cancer patients. Copyright © 2017. Published by Elsevier B.V.

  11. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  12. Adipose Stem Cell-Based Therapeutic Targeting of Residual Androgens in African Americans With Bone-Metastatic Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    survival rate than CA males [3-7]. Socioeconomic and environmental factors, such as diet , access to care, and screening, have been cited as factors...cDNA clone coding for 3α-hydroxysteroid dehydrogenase (3α-HSD) was obtained from Origene. The 3α-HSD, also known as aldo- keto reductase family 1 member...growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet . J Natl Cancer Inst 87: 1456–1462 17. Aronson WJ et al. (1999

  13. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate.

    PubMed

    Bak, S Peter; Barnkob, Mike Stein; Wittrup, K Dane; Chen, Jianzhu

    2013-12-01

    Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells. ©2013 AACR.

  14. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    PubMed

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  15. A Tramp Abroad Chronicles Motivation, Self-Efficacy, and Attempts to Theorize Culture and Creativity

    ERIC Educational Resources Information Center

    Crutcher, Paul A.; Dodge, Autumn M.

    2014-01-01

    The paper works organically from unique experiences the authors have teaching abroad with other trained teachers and scholars and in diverse contexts. It considers the culture and creativity literature, fundamental and relevant mechanisms in Teaching English to Speakers of Other Languages and educational psychology, and suggests a relational…

  16. How High Is the Tramping Track? Mathematising and Applying in a Calculus Model-Eliciting Activity

    ERIC Educational Resources Information Center

    Yoon, Caroline; Dreyfus, Tommy; Thomas, Michael O. J.

    2010-01-01

    Two complementary processes involved in mathematical modelling are mathematising a realistic situation and applying a mathematical technique to a given realistic situation. We present and analyse work from two undergraduate students and two secondary school teachers who engaged in both processes during a mathematical modelling task that required…

  17. Amylose Phase Composition As Analyzed By FTIR In A Temperature Ramp: Influence Of Short Range Order On The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Delmas, Genevieve

    1998-03-01

    Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.

  18. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  19. Selective Modulation of Endoplasmic Reticulum Stress Markers in Prostate Cancer Cells by a Standardized Mangosteen Fruit Extract

    PubMed Central

    Li, Gongbo; Petiwala, Sakina M.; Pierce, Dana R.; Nonn, Larisa; Johnson, Jeremy J.

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation. PMID:24367485

  20. Influence of the neural microenvironment on prostate cancer

    PubMed Central

    Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J.

    2017-01-01

    Background Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. Method We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Result Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non‐neoplastic epithelial cells. Conclusion Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. PMID:29131367

  1. Therapeutic targeting of SPINK1-positive prostate cancer.

    PubMed

    Ateeq, Bushra; Tomlins, Scott A; Laxman, Bharathi; Asangani, Irfan A; Cao, Qi; Cao, Xuhong; Li, Yong; Wang, Xiaoju; Feng, Felix Y; Pienta, Kenneth J; Varambally, Sooryanarayana; Chinnaiyan, Arul M

    2011-03-02

    Gene fusions involving ETS (erythroblastosis virus E26 transformation-specific) family transcription factors are found in ~50% of prostate cancers and as such can be used as a basis for the molecular subclassification of prostate cancer. Previously, we showed that marked overexpression of SPINK1 (serine peptidase inhibitor, Kazal type 1), which encodes a secreted serine protease inhibitor, defines an aggressive molecular subtype of ETS fusion-negative prostate cancers (SPINK1+/ETS⁻, ~10% of all prostate cancers). Here, we examined the potential of SPINK1 as an extracellular therapeutic target in prostate cancer. Recombinant SPINK1 protein (rSPINK1) stimulated cell proliferation in benign RWPE as well as cancerous prostate cells. Indeed, RWPE cells treated with either rSPINK1 or conditioned medium from 22RV1 prostate cancer cells (SPINK1+/ETS⁻) significantly increased cell invasion and intravasation when compared with untreated cells. In contrast, knockdown of SPINK1 in 22RV1 cells inhibited cell proliferation, cell invasion, and tumor growth in xenograft assays. 22RV1 cell proliferation, invasion, and intravasation were attenuated by a monoclonal antibody (mAb) to SPINK1 as well. We also demonstrated that SPINK1 partially mediated its neoplastic effects through interaction with the epidermal growth factor receptor (EGFR). Administration of antibodies to SPINK1 or EGFR (cetuximab) in mice bearing 22RV1 xenografts attenuated tumor growth by more than 60 and 40%, respectively, or ~75% when combined, without affecting PC3 xenograft (SPINK1⁻/ETS⁻) growth. Thus, this study suggests that SPINK1 may be a therapeutic target in a subset of patients with SPINK1+/ETS⁻ prostate cancer. Our results provide a rationale for both the development of humanized mAbs to SPINK1 and evaluation of EGFR inhibition in SPINK1+/ETS⁻ prostate cancers.

  2. Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate-tolerant cells.

    PubMed

    Porter, Laura H; Hashimoto, Kohei; Lawrence, Mitchell G; Pezaro, Carmel; Clouston, David; Wang, Hong; Papargiris, Melissa; Thorne, Heather; Li, Jason; Ryan, Andrew; Norden, Sam; Moon, Daniel; Bolton, Damien M; Sengupta, Shomik; Frydenberg, Mark; Murphy, Declan G; Risbridger, Gail P; Taylor, Renea A

    2018-06-01

    To determine the relevance of intraductal carcinoma of the prostate (IDC-P) in advanced prostate cancer by first examining whether IDC-P was originally present in patients who later developed advanced prostate cancer and then using patient-derived xenografts (PDXs) to investigate the response of IDC-P to androgen deprivation therapy (ADT). We conducted a retrospective pathology review of IDC-P in primary prostate biopsy or surgery specimens from 38 men who subsequently developed advanced prostate cancer. Overall survival was calculated using the Kaplan-Meier method. To demonstrate the response of IDC-P to ADT, we established PDXs from seven patients with familial and/or high-risk sporadic prostate cancer. After castration and testosterone restoration of host mice, we measured the volume and proliferation of IDC-P within PDX grafts. We found that IDC-P was a prominent feature in the primary prostate specimens, present in 63% of specimens and often co-existing with poorly differentiated adenocarcinoma. Overall survival was similar in patients with or without IDC-P. In the PDXs from all seven patients, IDC-P was identified and present at a similar volume to adenocarcinoma. Residual IDC-P lesions persisted after host castration and, similar to castrate-tolerant adenocarcinoma, testosterone restoration led to tumour regeneration. The study showed that IDC-P is prevalent in aggressive prostate cancer and contains cells that can withstand androgen deprivation. Thus, IDC-P appears functionally relevant in advanced prostate cancer. The presence of IDC-P may be a trigger to develop innovative clinical management plans. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  3. Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer.

    PubMed

    Le, Bao; Powers, Ginny L; Tam, Yu Tong; Schumacher, Nicholas; Malinowski, Rita L; Steinke, Laura; Kwon, Glen; Marker, Paul C

    2017-01-01

    Advanced prostate cancers that are resistant to all current therapies create a need for new therapeutic strategies. One recent innovative approach to cancer therapy is the simultaneous use of multiple FDA-approved drugs to target multiple pathways. A challenge for this approach is caused by the different solubility requirements of each individual drug, resulting in the need for a drug vehicle that is non-toxic and capable of carrying multiple water-insoluble antitumor drugs. Micelles have recently been shown to be new candidate drug solubilizers for anti cancer therapy. This study set out to examine the potential use of multi-drug loaded micelles for prostate cancer treatment in preclinical models including cell line and mouse models for prostate cancers with Pten deletions. Specifically antimitotic agent docetaxel, mTOR inhibitor rapamycin, and HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin were incorporated into the micelle system (DR17) and tested for antitumor efficacy. In vitro growth inhibition of prostate cancer cells was greater when all three drugs were used in combination compared to each individual drug, and packaging the drugs into micelles enhanced the cytotoxic effects. At the molecular level DR17 targeted simultaneously several molecular signaling axes important in prostate cancer including androgen receptor, mTOR, and PI3K/AKT. In a mouse genetic model of prostate cancer, DR17 treatment decreased prostate weight, which was achieved by both increasing caspase-dependent cell death and decreasing cell proliferation. Similar effects were also observed when DR17 was administered to nude mice bearing prostate cancer cells xenografts. These results suggest that combining these three cancer drugs in multi-drug loaded micelles may be a promising strategy for prostate cancer therapy.

  4. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1.

    PubMed

    Johnen, Heiko; Lin, Shu; Kuffner, Tamara; Brown, David A; Tsai, Vicky Wang-Wei; Bauskin, Asne R; Wu, Liyun; Pankhurst, Greg; Jiang, Lele; Junankar, Simon; Hunter, Mark; Fairlie, W Douglas; Lee, Nicola J; Enriquez, Ronaldo F; Baldock, Paul A; Corey, Eva; Apple, Fred S; Murakami, Maryann M; Lin, En-Ju; Wang, Chuansong; During, Matthew J; Sainsbury, Amanda; Herzog, Herbert; Breit, Samuel N

    2007-11-01

    Anorexia and weight loss are part of the wasting syndrome of late-stage cancer, are a major cause of morbidity and mortality in cancer, and are thought to be cytokine mediated. Macrophage inhibitory cytokine-1 (MIC-1) is produced by many cancers. Examination of sera from individuals with advanced prostate cancer showed a direct relationship between MIC-1 abundance and cancer-associated weight loss. In mice with xenografted prostate tumors, elevated MIC-1 levels were also associated with marked weight, fat and lean tissue loss that was mediated by decreased food intake and was reversed by administration of antibody to MIC-1. Additionally, normal mice given systemic MIC-1 and transgenic mice overexpressing MIC-1 showed hypophagia and reduced body weight. MIC-1 mediates its effects by central mechanisms that implicate the hypothalamic transforming growth factor-beta receptor II, extracellular signal-regulated kinases 1 and 2, signal transducer and activator of transcription-3, neuropeptide Y and pro-opiomelanocortin. Thus, MIC-1 is a newly defined central regulator of appetite and a potential target for the treatment of both cancer anorexia and weight loss, as well as of obesity.

  5. Targeting Neuroendocrine Differentiation for Prostate Cancer Radiosensitization

    DTIC Science & Technology

    2014-10-01

    tumorigenicity in nude mice by lymphoblastoid cell line derived from patients with xeroderma pigmentosum group A. (2). Subtractive isolation of genes...contributing to the acquisition of tumorigenicity by lymphoblastoid cell line derived from xeroderma pigmentosum group A patient. 4/1994-3/1997

  6. A One-Year Inhalation Toxicity Study of Otto Fuel 2

    DTIC Science & Technology

    1985-12-01

    plus marrow) Thymus Spleen Gallbladder Kidneys Pancreas Bladder Seminal vesicles Nasal cavity Prostate Brain Testes Bone marrow smear Ovaries Uterus...mice than in the exposed subjects. Hyaline degeneration of gallbladder epithelium was also noted frequently in control mice. Hepatocellular fatty change...c 53/87 (6 1 )b Uterus Adenocarcinoma - - - 24/81 (30) 3/65 ( 5 )c 6/85 ( 7 )c Endometrial stromal polyp - - 3/81 (4) 7/65 (11) 12/85 (14) a Number

  7. Extracellular Hsp90 as a Novel Epigenetic of EMT and Metastatic Risk in Prostate Cancer

    DTIC Science & Technology

    2015-12-01

    kidney from each experiment were xenografted in three mice (total of six repli- cates). Mice were sacrificed after 7– 8 weeks, and grafts were harvested...Histological assessment of xenografts was performed by H&E staining. Calculation of xenograft vol- umes was performed using the following formula: volume... xenograft tumors originat- ing from the indicated ARCaPE derivatives 7– 8 weeks after implantation. Bottom, quantified analysis of corresponding tumors (n

  8. Protective effects of seahorse extracts in a rat castration and testosterone-induced benign prostatic hyperplasia model and mouse oligospermatism model.

    PubMed

    Xu, Dong-Hui; Wang, Li-Hong; Mei, Xue-Ting; Li, Bing-Ji; Lv, Jun-Li; Xu, Shi-Bo

    2014-03-01

    This study investigated the effects of seahorse (Hippocampus spp.) extracts in a rat model of benign prostatic hyperplasia (BPH) and mouse model of oligospermatism. Compared to the sham operated group, castration and testosterone induced BPH, indicated by increased penile erection latency; decreased penis nitric oxide synthase (NOS) activity; reduced serum acid phosphatase (ACP) activity; increased prostate index; and epithelial thickening, increased glandular perimeter, increased proliferating cell nuclear antigen (PCNA) index and upregulation of basic fibroblast growth factor (bFGF) in the prostate. Seahorse extracts significantly ameliorated the histopathological changes associated with BPH, reduced the latency of penile erection and increased penile NOS activity. Administration of seahorse extracts also reversed epididymal sperm viability and motility in mice treated with cyclophosphamide (CP). Seahorse extracts have potential as a candidate marine drug for treating BPH without inducing the side effects of erectile dysfunction (ED) or oligospermatism associated with the BPH drug finasteride. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. DUPA conjugation of a cytotoxic indenoisoquinoline topoisomerase I inhibitor for selective prostate cancer cell targeting.

    PubMed

    Roy, Jyoti; Nguyen, Trung Xuan; Kanduluru, Ananda Kumar; Venkatesh, Chelvam; Lv, Wei; Reddy, P V Narasimha; Low, Philip S; Cushman, Mark

    2015-04-09

    Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancer cells while being present at low or undetectable levels in normal cells. This difference provides an opportunity to selectively deliver cytotoxic drugs to prostate cancer cells while sparing normal cells that lack PSMA, thus improving potencies and reducing toxicities. PSMA has high affinity for 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) (Ki = 8 nM). After binding to a DUPA-drug conjugate, PSMA internalizes, unloads the conjugate, and returns to the surface. In the present studies, an indenoisoquinoline topoisomerase I inhibitor was conjugated to DUPA via a peptide linker and a drug-release segment that facilitates intracellular cleavage to liberate the drug cargo. The DUPA-indenoisoquinoline conjugate exhibited an IC50 in the low nanomolar range in 22RV1 cell cultures and induced a complete cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice.

  10. In vivo trans-rectal ultrasound coupled trans-rectal near-infrared optical tomography of canine prostate bearing transmissible venereal tumor

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Holyoak, G. Reed; Bartels, Kenneth E.; Ritchey, Jerry W.; Xu, Guan; Bunting, Charles F.; Slobodov, Gennady; Krasinski, Jerzy S.; Piao, Daqing

    2009-02-01

    In vivo trans-rectal near-infrared (NIR) optical tomography is conducted on a tumor-bearing canine prostate with the assistance of trans-rectal ultrasound (TRUS). The canine prostate tumor model is made possible by a unique round cell neoplasm of dogs, transmissible venereal tumor (TVT) that can be transferred from dog to dog regardless of histocompatibility. A characterized TVT cell line was homogenized and passed twice in subcutaneous tissue of NOD/SCID mice. Following the second passage, the tumor was recovered, homogenized and then inoculated by ultrasound guidance into the prostate gland of a healthy dog. The dog was then imaged with a combined trans-rectal NIR and TRUS imager using an integrated trans-rectal NIR/US applicator. The image was taken by NIR and US modalities concurrently, both in sagittal view. The trans-rectal NIR imager is a continuous-wave system that illuminates 7 source channels sequentially by a fiber switch to deliver sufficient light power to the relatively more absorbing prostate tissue and samples 7 detection channels simultaneously by a gated intensified high-resolution CCD camera. This work tests the feasibility of detecting prostate tumor by trans-rectal NIR optical tomography and the benefit of augmenting TRUS with trans-rectal NIR imaging.

  11. Solution formulation development and efficacy of MJC13 in a preclinical model of castration-resistant prostate cancer.

    PubMed

    Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C; Neckers, Leonard M; Cox, Marc B; Xie, Huan

    2016-01-01

    MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castration-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), highly lipophilic (logP = 6.49), poorly soluble in water (0.28 µg/mL), and highly plasma protein bound (>98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for four consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls.

  12. Solution Formulation Development and Efficacy of MJC13 in a Preclinical Model of Castrate-Resistant Prostate Cancer

    PubMed Central

    Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C.; Neckers, Leonard M.; Cox, Marc B.; Xie, Huan

    2015-01-01

    MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castrate-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), very lipophilic (logP = 6.49), poorly soluble in water (0.28 μg/mL), and highly plasma protein bound (> 98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for 4 consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls. PMID:25380396

  13. Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer.

    PubMed

    Hurwitz, Mark D; Kaur, Punit; Nagaraja, Ganachari M; Bausero, Maria A; Manola, Judith; Asea, Alexzander

    2010-06-01

    Hsp72 found in the extracellular milieu has been shown to play an important role in immune regulation. The impact of common cancer therapies on extracellular release of Hsp72 however, has been to date undefined. Serum from 13 patients undergoing radiation therapy (XRT) for prostate cancer with or without hormonal therapy (ADT) was measured for levels of circulating serum Hsp72 and pro-inflammatory cytokines (IL-6 and TNF-alpha) using the classical sandwich ELISA technique and the relative expression of CD8(+) T lymphocytes and natural killer (NK) cells was measured using flow cytometry. Mouse orthotopic xenograft of human prostate cancer tumors (DU-145 and PC-3) were used to validate and further characterize the response noted in the clinical setting. The biological significance of tumor released Hsp72 was studied in human dendritic cells (DC) in vitro. Circulating serum Hsp72 levels increased an average of 3.5-fold (median per patient 4.8-fold) with XRT but not with ADT (p=0.0002). Increases in IL-6 (3.3-fold), TNF-alpha (1.8-fold), CD8(+) CTL (2.1-fold) and NK cells (3.2-fold) also occurred. Using PC-3 and DU-145 human prostate cancer xenograft models in mice, we confirmed that XRT induces Hsp72 release primarily from implanted tumors. In vitro studies using supernatant recovered from irradiated human prostate cancer cells point to exosomes containing Hsp72 as a possible stimulator of pro-inflammatory cytokine production and costimulatory molecules expression in human DC. The current study confirms for the first time in an actual clinical setting elevation of circulating serum Hsp72 with XRT. The accompanying studies in mice and in vitro identify the released exosomes containing Hsp72 as playing a pivotal role in stimulating pro-inflammatory immune responses. These findings, if validated, may lead to new treatment paradigms for common human malignancies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer

    PubMed Central

    Hurwitz, Mark D.; Kaur, Punit; Nagaraja, Ganachari M.; Bausero, Maria A.; Manola, Judith; Asea, Alexzander

    2010-01-01

    Background and purpose Hsp72 found in the extracellular milieu has been shown to play an important role in immune regulation. The impact of common cancer therapies on extracellular release of Hsp72 however, has been to date undefined. Materials and methods Serum from 13 patients undergoing radiation therapy (XRT) for prostate cancer with or without hormonal therapy (ADT) was measured for levels of circulating serum Hsp72 and pro-inflammatory cytokines (IL-6 and TNF-α) using the classical sandwich ELISA technique and the relative expression of CD8+ T lymphocytes and natural killer (NK) cells was measured using flow cytometry. Mouse orthotopic xenograft of human prostate cancer tumors (DU145 and PC3) were used to validate and further characterize the response noted in the clinical setting. The biological significance of tumor released Hsp72 was studied in human dendritic cells (DC) in vitro. Results Circulating serum Hsp72 levels increased an average of 3.5-fold (median per patient 4.8-fold) with XRT but not with ADT (p = 0.0002). Increases in IL-6 (3.3-fold), TNF-α (1.8-fold), CD8+ CTL (2.1-fold) and NK cells (3.2-fold) also occurred. Using PC3 and DU145 human prostate cancer xenograft models in mice, we confirmed that XRT induces Hsp72 release primarily from implanted tumors. In vitro studies using supernatant recovered from irradiated human prostate cancer cells point to exosomes containing Hsp72 as a possible stimulator of pro-inflammatory cytokine production and costimulatory molecules expression in human DC. Conclusions The current study confirms for the first time in an actual clinical setting elevation of circulating serum Hsp72 with XRT. The accompanying studies in mice and in vitro identify the released exosomes containing Hsp72 as playing a pivotal role in stimulating pro-inflammatory immune responses. These findings, if validated, may lead to new treatment paradigms for common human malignancies. PMID:20430459

  15. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis

    PubMed Central

    Henning, Susanne M.; Wang, Piwen; Said, Jonathan; Magyar, Clara; Castor, Brandon; Doan, Ngan; Tosity, Carmen; Moro, Aune; Gao, Kun; Li, Luyi; Heber, David

    2011-01-01

    It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis, and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi (GSTp1) to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 (DNMT1) mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice. PMID:22405694

  16. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    PubMed Central

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  17. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice.

    PubMed

    Kim, Sun-Jin; Uehara, Hisanori; Karashima, Takashi; Shepherd, David L; Killion, Jerald J; Fidler, Isaiah J

    2003-03-01

    We determined whether blockade of the epidermal growth factor receptor (EGF-R) signaling pathway by oral administration of the EGF-R tyrosine kinase inhibitor (PKI 166) alone or in combination with injectable Taxol inhibits the growth of PC-3MM2 human prostate cancer cells in the bone of nude mice. Male nude mice implanted with PC-3MM2 cells in the tibia were treated with oral administrations of PKI 166 or PKI 166 plus injectable Taxol beginning 3 days after implantation. The incidence and size of bone tumors and destruction of bone were determined by digitalized radiography. Expression of epidermal growth factor (EGF), EGF-R, and activated EGF-R in tumor cells and tumor-associated endothelial cells was determined by immunohistochemistry. Oral administration of PKI 166 or PKI 166 plus injectable Taxol reduced the incidence and size of bone tumors and destruction of bone. Immunohistochemical analysis revealed that PC-3MM2 cells growing adjacent to the bone expressed high levels of EGF and activated EGF-R, whereas tumor cells in the adjacent musculature did not. Moreover, endothelial cells within the bone tumor lesions, but not in uninvolved bone or tumors in the muscle, expressed high levels of activated EGF-R. Treatment with PKI 166 and more so with PKI 166 plus Taxol significantly inhibited phosphorylation of EGF-R on tumor and endothelial cells and induced significant apoptosis and endothelial cells within tumor lesions. These data indicate that endothelial cells exposed to EGF produced by tumor cells express activated EGF-R and that targeting EGF-R can produce significant therapeutic effects against prostate cancer bone metastasis.

  18. In Vivo Activity of Insulin-Like Growth Factor Binding Protein-3 in Prevention of Prostate Cancer Progression

    DTIC Science & Technology

    2008-10-01

    cell metastasis and survival through level of expression and differential phosphorylation. Phospho- HSP27 modulates cell motility; blocking...Phospho Hsp27 expression in prostate Compared to wt mice 0 10 20 30 40 50 60 9wk 11wk 13wk 15wk 17wk 19wk LPB-Tag LPB-Tag x PGKBP-3 LPB-Tag x PGKBP...3mut     Figure 7 Relative change in expression of phoshorylated HSP27 by immunoblot analyses using anti-pHSP27 (Santa Cruz; pHSP27(ser78): sc-16568

  19. Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

    DTIC Science & Technology

    2015-08-01

    compared to shamed mice but much higher level in ASC from Glipr1-/- than ASC from Glipr1+/+ male mice. Thus, concluding that the castrated Glipr1...mRNA for each ASC to the shamed Glipr1+/+ (ShWT). The amount of Glipr1 mRNA reduced approximately 40% after the castration. The amount of PLF mRNA in...Received 2 June 2011 Accepted 5 July 2011 Available online 12 July 2011 Keywords: Castration Regular diet High- fat diet Epididymal white adipose tissue

  20. TCDD Inhibition of Canonical Wnt Signaling Disrupts Prostatic Bud Formation in Mouse Urogenital Sinus

    PubMed Central

    Peterson, Richard E.

    2013-01-01

    In mice, in utero exposure to 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD) reduces the number of dorsolateral prostatic buds resulting in a smaller dorsolateral prostate and prevents formation of ventral buds culminating in ventral prostate agenesis. The genes and signaling pathways affected by TCDD that are responsible for disrupting prostate development are largely unknown. Here we show that treatment of urogenital sinus (UGS) organ cultures with known inhibitors of canonical Wnt signaling also inhibits prostatic bud formation. In support of the hypothesis that TCDD decreases canonical Wnt signaling, we identify inhibitory effects of TCDD on multiple components of the canonical Wnt signaling pathway in the UGS that temporally coincide with the inhibitory effect of TCDD on prostatic bud formation: (1) expression of R-spondins (Rspo2 and Rspo3) that promote canonical Wnt signaling is reduced; (2) expression of Lef1, Tcf1, and Wif1, established canonical Wnt target genes, is decreased; (3) expression of Lgr5, a RSPO receptor that activates canonical Wnt signaling, is reduced; and (4) expression of Dickkopfs (Dkks), inhibitors of canonical Wnt signaling, is not increased by TCDD. Thus, the TCDD-induced reduction in canonical Wnt signaling is associated with a decrease in activators (Rspo2 and Rspo3) rather than an increase in inhibitors (Dkk1 and Dkk2) of the pathway. This study focuses on determining whether treatment of TCDD-exposed UGS organ cultures with RSPO2 and/or RSPO3 is capable of rescuing the inhibitory effects of TCDD on canonical Wnt signaling and prostatic bud formation. We discovered that each RSPO alone or in combination partially rescues TCDD inhibition of both canonical Wnt signaling and prostatic bud formation. PMID:23429912

  1. TCDD inhibition of canonical Wnt signaling disrupts prostatic bud formation in mouse urogenital sinus.

    PubMed

    Branam, Amanda M; Davis, Nicole M; Moore, Robert W; Schneider, Andrew J; Vezina, Chad M; Peterson, Richard E

    2013-05-01

    In mice, in utero exposure to 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD) reduces the number of dorsolateral prostatic buds resulting in a smaller dorsolateral prostate and prevents formation of ventral buds culminating in ventral prostate agenesis. The genes and signaling pathways affected by TCDD that are responsible for disrupting prostate development are largely unknown. Here we show that treatment of urogenital sinus (UGS) organ cultures with known inhibitors of canonical Wnt signaling also inhibits prostatic bud formation. In support of the hypothesis that TCDD decreases canonical Wnt signaling, we identify inhibitory effects of TCDD on multiple components of the canonical Wnt signaling pathway in the UGS that temporally coincide with the inhibitory effect of TCDD on prostatic bud formation: (1) expression of R-spondins (Rspo2 and Rspo3) that promote canonical Wnt signaling is reduced; (2) expression of Lef1, Tcf1, and Wif1, established canonical Wnt target genes, is decreased; (3) expression of Lgr5, a RSPO receptor that activates canonical Wnt signaling, is reduced; and (4) expression of Dickkopfs (Dkks), inhibitors of canonical Wnt signaling, is not increased by TCDD. Thus, the TCDD-induced reduction in canonical Wnt signaling is associated with a decrease in activators (Rspo2 and Rspo3) rather than an increase in inhibitors (Dkk1 and Dkk2) of the pathway. This study focuses on determining whether treatment of TCDD-exposed UGS organ cultures with RSPO2 and/or RSPO3 is capable of rescuing the inhibitory effects of TCDD on canonical Wnt signaling and prostatic bud formation. We discovered that each RSPO alone or in combination partially rescues TCDD inhibition of both canonical Wnt signaling and prostatic bud formation.

  2. Carbidopa abrogates L-dopa decarboxylase coactivation of the androgen receptor and delays prostate tumor progression.

    PubMed

    Wafa, Latif A; Cheng, Helen; Plaa, Nathan; Ghaidi, Fariba; Fukumoto, Takahiro; Fazli, Ladan; Gleave, Martin E; Cox, Michael E; Rennie, Paul S

    2012-06-15

    The androgen receptor (AR) plays a central role in prostate cancer progression to the castration-resistant (CR) lethal state. L-Dopa decarboxylase (DDC) is an AR coactivator that increases in expression with disease progression and is coexpressed with the receptor in prostate adenocarcinoma cells, where it may enhance AR activity. Here, we hypothesize that the DDC enzymatic inhibitor, carbidopa, can suppress DDC-coactivation of AR and retard prostate tumor growth. Treating LNCaP prostate cancer cells with carbidopa in transcriptional assays suppressed the enhanced AR transactivation seen with DDC overexpression and decreased prostate-specific antigen (PSA) mRNA levels. Carbidopa dose-dependently inhibited cell growth and decreased survival in LNCaP cell proliferation and apoptosis assays. The inhibitory effect of carbidopa on DDC-coactivation of AR and cell growth/survival was also observed in PC3 prostate cancer cells (stably expressing AR). In vivo studies demonstrated that serum PSA velocity and tumor growth rates elevated ∼2-fold in LNCaP xenografts, inducibly overexpressing DDC, were reverted to control levels with carbidopa administration. In castrated mice, treating LNCaP tumors, expressing endogenous DDC, with carbidopa delayed progression to the CR state from 6 to 10 weeks, while serum PSA and tumor growth decreased 4.3-fold and 5.4-fold, respectively. Our study is a first time demonstration that carbidopa can abrogate DDC-coactivation of AR in prostate cancer cells and tumors, decrease serum PSA, reduce tumor growth and delay CR progression. Since carbidopa is clinically approved, it may be readily used as a novel therapeutic strategy to suppress aberrant AR activity and delay prostate cancer progression. Copyright © 2011 UICC.

  3. Human Prostate Sphere-Forming Cells Represent a Subset of Basal Epithelial Cells Capable of Glandular Regeneration in Vivo

    PubMed Central

    Garraway, Isla P; Sun, Wenyi; Tran, Chau P; Perner, Sven; Zhang, Bao; Goldstein, Andrew S; Hahm, Scott A; Haider, Maahum; Head, Christian S; Reiter, Robert E; Rubin, Mark A; Witte, Owen N

    2010-01-01

    BACKGROUND Prostate stem/progenitor cells function in glandular development and maintenance. They may be targets for tumor initiation, so characterization of these cells may have therapeutic implications. Cells from dissociated tissues that form spheres in vitro often represent stem/progenitor cells. A subset of human prostate cells that form prostaspheres were evaluated for self-renewal and tissue regeneration capability in the present study. METHODS Prostaspheres were generated from 59 prostatectomy specimens. Lineage marker expression and TMPRSS-ERG status was determined via immunohistochemistry and fluorescence in situ hybridization (FISH). Subpopulations of prostate epithelial cells were isolated by cell sorting and interrogated for sphere-forming activity. Tissue regeneration potential was assessed by combining sphere-forming cells with rat urogenital sinus mesenchyme (rUGSM) subcutaneously in immunocompromised mice. RESULTS Prostate tissue specimens were heterogeneous, containing both benign and malignant (Gleason 3–5) glands. TMPRSS-ERG fusion was found in approximately 70% of cancers examined. Prostaspheres developed from single cells at a variable rate (0.5–4%) and could be serially passaged. A basal phenotype (CD44+CD49f+CK5+p63+CK8−AR−PSA−) was observed among sphere-forming cells. Subpopulations of prostate cells expressing tumor-associated calcium signal transducer 2 (Trop2), CD44, and CD49f preferentially formed spheres. In vivo implantation of sphere-forming cells and rUGSM regenerated tubular structures containing discreet basal and luminal layers. The TMPRSS-ERG fusion was absent in prostaspheres derived from fusion-positive tumor tissue, suggesting a survival/growth advantage of benign prostate epithelial cells. CONCLUSION Human prostate sphere-forming cells self-renew, have tissue regeneration capability, and represent a subpopulation of basal cells. Prostate 70: 491–501, 2010. © 2009 Wiley-Liss, Inc. PMID:19938015

  4. Implications of pleiotrophin in human PC3 prostate cancer cell growth in vivo.

    PubMed

    Tsirmoula, Sotiria; Dimas, Kostas; Hatziapostolou, Maria; Lamprou, Margarita; Ravazoula, Panagiota; Papadimitriou, Evangelia

    2012-10-01

    Pleiotrophin (PTN) is a heparin-binding growth factor with diverse functions related to tumor growth, angiogenesis, and metastasis. Pleiotrophin seems to have a significant role in prostate cancer cell growth and to mediate the stimulatory actions of other factors that affect prostate cancer cell functions. However, all studies carried out up to date are in vitro, using different types of human prostate cancer cell lines. The aim of the present work was to study the role of endogenous PTN in human prostate cancer growth in vivo. For this purpose, human prostate cancer PC3 cells were stably transfected with a plasmid vector, bearing the antisense PTN sequence, in order to inhibit PTN expression (AS-PC3). Migration, apoptosis, and adhesion on osteoblastic cells were measured in vitro. In vivo, PC3 cells were s.c. injected into male NOD/SCID mice, and tumor growth, survival rates, angiogenesis, apoptosis, and the number of metastasis were estimated. Pleiotrophin depletion resulted in a decreased migration capability of AS-PC3 cells compared with the corresponding mock-transfected or the non-transfected PC3 cells, as well as increased apoptosis and decreased adhesiveness to osteoblastic cells in vitro. In prostate cancer NOD/SCID mouse xenografts, PTN depletion significantly suppressed tumor growth and angiogenesis and induced apoptosis of cancer cells. In addition, PTN depletion decreased the number of metastases, providing a survival benefit for the animals bearing AS-PC3 xenografts. Our data suggest that PTN is implicated in human prostate cancer growth in vivo and could be considered a potential target for the development of new therapeutic approaches for prostate cancer. © 2012 Japanese Cancer Association.

  5. Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate

    PubMed Central

    Karpf, Adam R; Omilian, Angela R; Bshara, Wiam; Tian, Lili; Tangrea, Michael A; Morrison, Carl D; Johnson, Candace S

    2011-01-01

    Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p < 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 promoter methylation remained unchanged in two patient samples. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment. PMID:21725204

  6. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  7. Tumor formation of prostate cancer cells influenced by stromal cells from the transitional or peripheral zones of the normal prostate

    PubMed Central

    Zhao, Fu-Jun; Han, Bang-Min; Yu, Sheng-Qiang; Xia, Shu-Jie

    2009-01-01

    This study was designed to investigate the different involvements of prostatic stromal cells from the normal transitional zone (TZ) or peripheral zone (PZ) in the carcinogenesis of prostate cancer (PCa) epithelial cells (PC-3) in vitro and in vivo co-culture models. Ultra-structures and gene expression profiles of primary cultures of human prostatic stromal cells from the normal TZ or PZ were analyzed by electron microscopy and microarray analysis. In vitro and in vivo co-culture models composed of normal TZ or PZ stromal cells and human PCa PC-3 cells were established. We assessed tumor growth and weight in the in vivo nude mice model. There are morphological and ultra-structural differences in stromal cells from TZ and PZ of the normal prostate. In all, 514 differentially expressed genes were selected by microarray analysis; 483 genes were more highly expressed in stromal cells from TZ and 31 were more highly expressed in those from PZ. Co-culture with PZ stromal cells and transforming growth factor-β1 (TGF-β1) increased the tumor growth of PC-3 cells in vitro and in vivo, as well as Bcl-2 expression. On the other hand, stromal cells of TZ suppressed PC-3 cell tumor growth in the mouse model. We conclude that ultra-structures and gene expression differ between the stromal cells from TZ or PZ of the normal prostate, and stroma–epithelium interactions from TZ or PZ might be responsible for the distinct zonal localization of prostate tumor formation. PMID:19122679

  8. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells.

    PubMed

    Li, Tianyu; Zhao, Xinge; Mo, Zengnan; Huang, Weihua; Yan, Haibiao; Ling, Zhian; Ye, Yu

    2014-01-01

    Formononetin is an O-methylated isoflavone isolated from the root of Astragalus membranaceus. It has already been reported that formononetin could inhibit cell proliferation and induce cell apoptosis in several cancers, including prostate cancer. This study aimed to further investigate whether cell cycle arrest is involved in formononetin-mediated antitumor effect in human prostate cancer cells, along with the underlying molecular mechanism. Human prostate cancer cells PC-3 and DU145 were respectively treated with various concentrations of formononetin. The inhibitory effect of formononetin on proliferation of prostate cancer cells was determined using MTT assays and flow cytometry. Next, formononetin-induced alterations in cyclin D1, CDK4 and Akt expression in PC-3 cells were detected by real-time PCR and western blot. Formononetin dose-dependently inhibited prostate cancer cell proliferation via the induction of cell cycle arrest at G0/G1 phase in vitro, which was more evident in PC-3 cells. Meanwhile, concomitant with reduced phosphorylation of Akt in PC-3 cells, formononetin remarkably downregulated expression levels of cyclin D1 and CDK4 in a dose-dependent manner. More interestingly, in the in vivo studies, formononetin showed a noticeable inhibition of tumor growth in recipient mice. Formononetin could exhibit inhibitory activity against human prostate cancer cells in vivo and in vitro, which is associated with G1 cell cycle arrest by inactivation of Akt/cyclin D1/CDK4. Therefore, formononetin may be used as a candidate agent for clinical treatment of prostate cancer in the future.

  9. Bradykinin-related compounds as new drugs for cancer and inflammation.

    PubMed

    Stewart, John M; Gera, Lajos; Chan, Daniel C; Bunn, Paul A; York, Eunice J; Simkeviciene, Vitalija; Helfrich, Barbara

    2002-04-01

    Bradykinin (BK) (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) is an important growth factor for small-cell lung cancer (SCLC) and prostate cancer (PC). These cancers have cells of neuroendocrine origin and express receptors for a variety of neuropeptides. BK receptors are expressed on almost all lung cancer cell lines and on many PC cells. Our very potent BK antagonist B9430 (D-Arg-Arg-Pro-Hyp-Gly-lgl-Ser-D-Igl-Oic-Arg) (Hyp, trans-4-hydroxy-L-proline; Ig1, alpha-2-indanylglycine; Oic, octahydroindole-2-carboxylic acid) is a candidate anti-inflammatory drug but does not inhibit growth of SCLC or PC. When B9430 is dimerized by N-terminal cross-linking with a suberimide linker, the product B9870 is a potent growth inhibitor for SCLC both in vitro and in vivo in athymic nude mice. Daily i.p. injection at 5 mg x kg(-1) day(-1) beginning on day 8 after SCLC SHP-77 cell implantation gave 65% inhibition of tumor growth. B9870 stimulates apoptosis in SCLC by a novel "biased agonist" action. We have also developed new small mimetic antagonists. BKM-570 (F5C-OC2Y-Atmp) (F5C, pentafluorocinnamic acid; OC2Y, O-2,6-dichlorobenzyl tyrosine; Atmp, 4-amino-2,2,6,6-tetramethylpiperidine) is very potent for inhibition of SHP-77 growth in nude mice. When injected daily i.p. at 5 mg x kg(-1), M-570 gave 90% suppression of tumor growth. M-570 is more potent than the well-known anticancer drug cisPlatin (60% inhibition) or the recently developed SU5416 (40% inhibition) in this model. M-570 also showed activity against various other cancer cell lines in vitro (SCLC, non-SCLC, lung, prostate, colon, cervix) and inhibited growth of prostate cell line PC3 in nude mice. M-570 and related compounds evidently act in vivo through pathways other than BK receptors. These compounds have clinical potential for treatment of human lung and prostate cancers.

  10. Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors.

    PubMed

    Calvo, Alfonso; Xiao, Nianqing; Kang, Jason; Best, Carolyn J M; Leiva, Isabel; Emmert-Buck, Michael R; Jorcyk, Cheryl; Green, Jeffrey E

    2002-09-15

    To identify molecular changes that occur during prostate tumor progression, we have characterized a series of prostate cancer cell lines isolated at different stages of tumorigenesis from C3(1)/Tag transgenic mice. Cell lines derived from low- and high-grade prostatic intraepithelial neoplasia, invasive carcinoma, and a lung metastasis exhibited significant differences in cell growth, tumorigenicity, invasiveness, and angiogenesis. cDNA microarray analysis of 8700 features revealed correlations between the tumorigenicity of the C3(1)/Tag-Pr cells and changes in the expression levels of genes regulating cell growth, angiogenesis, and invasion. Many changes observed in transcriptional regulation in this in vitro system are similar to those reported for human prostate cancer, as well as other types of human tumors. This analysis of expression patterns has also identified novel genes that may be involved in mechanisms of prostate oncogenesis or serve as potential biomarkers or therapeutic targets for prostate cancer. Examples include the L1-cell adhesion molecule, metastasis-associated gene (MTA-2), Rab-25, tumor-associated signal transducer-2 (Trop-2), and Selenoprotein-P, a gene that binds selenium and prevents oxidative stress. Many genes identified in the Pr-cell line model have been shown to be altered in human prostate cancer. The comprehensive microarray data provides a rational basis for using this model system for studies where alterations of specific genes or pathways are of particular interest. Quantitative real-time reverse transcription-PCR for Selenoprotein-P demonstrated a similar down-regulation of the transcript of this gene in a subset of human prostate tumors, mouse tumors, and prostate carcinoma cell lines. This work demonstrates that expression profiling in animal models may lead to the identification of novel genes involved in human prostate cancer biology.

  11. Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.

    PubMed

    Lin, Song-Chang; Lee, Yu-Chen; Yu, Guoyu; Cheng, Chien-Jui; Zhou, Xin; Chu, Khoi; Murshed, Monzur; Le, Nhat-Tu; Baseler, Laura; Abe, Jun-Ichi; Fujiwara, Keigi; deCrombrugghe, Benoit; Logothetis, Christopher J; Gallick, Gary E; Yu-Lee, Li-Yuan; Maity, Sankar N; Lin, Sue-Hwa

    2017-06-05

    Prostate cancer (PCa) bone metastasis is frequently associated with bone-forming lesions, but the source of the osteoblastic lesions remains unclear. We show that the tumor-induced bone derives partly from tumor-associated endothelial cells that have undergone endothelial-to-osteoblast (EC-to-OSB) conversion. The tumor-associated osteoblasts in PCa bone metastasis specimens and patient-derived xenografts (PDXs) were found to co-express endothelial marker Tie-2. BMP4, identified in PDX-conditioned medium, promoted EC-to-OSB conversion of 2H11 endothelial cells. BMP4 overexpression in non-osteogenic C4-2b PCa cells led to ectopic bone formation under subcutaneous implantation. Tumor-induced bone was reduced in trigenic mice (Tie2 cre /Osx f/f /SCID) with endothelial-specific deletion of osteoblast cell-fate determinant OSX compared with bigenic mice (Osx f/f /SCID). Thus, tumor-induced EC-to-OSB conversion is one mechanism that leads to osteoblastic bone metastasis of PCa. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells

    PubMed Central

    Veeramani, S; Yuan, T-C; Lin, F-F; Lin, M-F

    2009-01-01

    p66Shc is shown to negatively regulate the life span in mice through reactive oxygen species (ROS) production. Recent reports, however, revealed that p66Shc protein level is significantly elevated in several human cancer tissues and growth-stimulated carcinoma cells, suggesting a mitogenic and carcinogenic role for p66Shc. In this communication, we demonstrate for the first time that p66Shc mediates androgenic growth signals in androgen-sensitive human prostate cancer cells through mitochondrial ROS production. Growth stimulation of prostate cancer cells with 5α-dihydrotestosterone (DHT) is accompanied by increased p66Shc level and ROS production, which is abolished by antioxidant treatments. However, antioxidant treatments do not affect the transcriptional activity of androgen receptor (AR) as observed by its inability to block DHT-induced prostate-specific antigen expression, an AR-dependent correlate of prostate cancer progression. Elevated expression of p66Shc by cDNA transfection increases the basal cell proliferation and, thus, reduces additional DHT-induced cell proliferation. Furthermore, DHT increases the translocation of p66Shc into mitochondria and its interaction with cytochrome c. Conversely, both redox-negative p66Shc mutant (W134F), which is deficient in cytochrome c interaction, and p66Shc small interfering RNA decrease DHT-induced cell proliferation. These results collectively reveal a novel role for p66Shc–ROS pathway in androgen-induced prostate cancer cell proliferation and, thus, may play a role in early prostate carcinogenesis. PMID:18504439

  13. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp; Tanaka, Kimitaka; Wang, Lixiang

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancermore » cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.« less

  14. SU-F-J-225: Histology Study of MR Guided Pulsed Focused Ultrasound On Treatment of Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Cvetkovic, D; Chen, X

    Purpose: Our previous study demonstrated significant tumor growth delay in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. The temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized atmore » pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level using the DAB analysis software. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality may synergize with PARP inhibitors to achieve better therapeutic result.« less

  15. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Chen, X; Cvetkovic, D

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals weremore » euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.« less

  16. Selective and augmented β-glucuronidase expression combined with DOX-GA3 application elicits the potent suppression of prostate cancer.

    PubMed

    Wang, Longxin; Dong, Jie; Wei, Ming; Wen, Weihong; Gao, Jianping; Zhang, Zhengyu; Qin, Weijun

    2016-03-01

    The present study was carried out to evaluate the specific and amplified β-glucuronidase (βG) expression in prostate cancer cells by using a prostate‑specific antigen (PSA) promoter-controlled bicistronic adenovirus and to evaluate the specific killing of prostate cancer cells after the application of the prodrug DOX‑GA3. Bicistronic adenoviral expression vectors were constructed, and the effectiveness of specific and amplified expression was evaluated using luciferase and EGFP as reporter genes. βG expression was detected in LNCaP cells after they were infected with the βG‑expressing PSA promoter-controlled bicistronic adenovirus. MTT assays were conducted to evaluate the cytoxicity on the infected cells after the application of the prodrug DOX‑GA3. Tumor growth inhibition was also evaluated in nude mice after treatment with the βG‑expressing adenovirus and DOX‑GA3. Selective and amplified expression was observed in the PSA-producing LNCaP cells, but not in the PSA‑non‑producing DU145 cells. Potent cytotoxity and a strong bystander effect were observed in the LNCaP cells after infection with the βG‑expressing adenovirus and the application of DOX‑GA3. Intravenous injection of a GAL4 regulated bicistronic adenovirus vector constructed to express βG under the control of the PSA promoter (Ad/PSAP‑GV16‑βG) and the application of DOX‑GA3 strongly inhibited tumor growth and prolonged the survival time of tumor‑bearing nude mice. Selective and amplified βG expression together with the prodrug DOX‑GA3 had an increased antitumor effect, showing great potential for prostate cancer therapy.

  17. M-HIFU Inhibits Tumor Growth, Suppresses STAT3 Activity and Enhances Tumor Specific Immunity in a Transplant Tumor Model of Prostate Cancer

    PubMed Central

    Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L.; Robertson, Cary; Zhong, Pei

    2012-01-01

    Objective In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. Methods RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. Results No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. Conclusion Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers. PMID:22911830

  18. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo

    PubMed Central

    WU, CUNZAO; HUANG, WEIPING; GUO, YONG; XIA, PENG; SUN, XIANBIN; PAN, XIAODONG; HU, WEILIE

    2015-01-01

    Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens. PMID:25672672

  19. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2006-02-01

    urogenital sinus mesenchyme and urothelium from normal or androgen-insen- sitive mice. Endocrinology 1993;132(6):2342–2350. 4. Cunha GR, Donjacour AA...706–714. 17. Cunha GR, Chung LW. Stromal-epithelial interactions–I. Induc- tion of prostatic phenotype in urothelium of testicular feminized (Tfm/y

  20. Targeting PRMT5 as a Novel Radiosensitization Approach for Primary and Recurrent Prostate Cancer Treatment

    DTIC Science & Technology

    2014-08-01

    acquisition of tumorigenicity in nude mice by lymphoblastoid cell line derived from patients with xeroderma pigmentosum group A. (2). Subtractive...isolation of genes contributing to the acquisition of tumorigenicity by lymphoblastoid cell line derived from xeroderma pigmentosum group A patient

  1. Maintenance of human hyperplastic prostate implants at different sites in athymic mice.

    PubMed

    Soós, G; Debiec-Rychter, M; Jones, R F; Zukowski, K; Haas, G P; Wang, C Y

    1995-01-01

    The present study determined the influence of implantation sites, androgens, and the graft's fibrovascular elements on the maintenance of epithelial elements of human benign hyperplastic prostate tissue (BPH) in the nude mouse. BPH fragments prepared from fresh surgical specimens were implanted subcutaneously (s.c.), intraperitoneally (i.p.), or under the renal capsules (r.c.) into male Beige nude mice, which had been implanted s.c. with a Silastic tube filled with 4-dihydrotestosterone (DHT) or cholesterol. Two weeks later the BPH tissues were removed from the mouse and examined microscopically. The implants from all three sites maintained a comparable morphology, with epithelial and/or angio-leiomyomatous stromal hyperplastic appearance, without striking signs of atrophy, irrespective of supplementation with DHT. Expression of proliferating cell nuclear antigen in the implants was comparable, indicating that there was no significant influence of implantation site on the proliferative ability of either epithelia or the stromal fibroblasts. The PCNA-positive cells in the implants, including the vascular and myofibrous elements, hybridized in situ to a human-specific repeated-sequence DNA probe, indicating that these proliferating cells were of human origin. Our data suggest that during the early phases of the adaptation and maintenance of BPH implants, survival of epithelial cells is actively supported by fibro-vascular mesenchymal elements of the prostate grafts in a manner apparently unaffected by DHT supplements.

  2. Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis.

    PubMed

    Meng, Xiangqi; Vander Ark, Alexandra; Daft, Paul; Woodford, Erica; Wang, Jie; Madaj, Zachary; Li, Xiaohong

    2018-04-01

    TGF-β plays a central role in prostate cancer (PCa) bone metastasis, and it is crucial to understand the bone cell-specific role of TGF-β signaling in this process. Thus, we used knockout (KO) mouse models having deletion of the Tgfbr2 gene specifically in osteoblasts (Tgfbr2 Col1CreERT KO) or in osteoclasts (Tgfbr2 LysMCre KO). We found that PCa-induced bone lesion development was promoted in the Tgfbr2 Col1CreERT KO mice, but was inhibited in the Tgfbr2 LysMCre KO mice, relative to their respective control Tgfbr2 FloxE2 littermates. Since metastatic PCa cells attach to osteoblasts when colonized in the bone microenvironment, we focused on the mechanistic studies using the Tgfbr2 Col1CreERT KO mouse model. We found that bFGF was upregulated in osteoblasts from PC3-injected tibiae of Tgfbr2 Col1CreERT KO mice and correlated with increased tumor cell proliferation, angiogenesis, amounts of cancer-associated fibroblasts and osteoclasts. In vitro studies showed that osteoblastogenesis was inhibited, osteoclastogenesis was stimulated, but PC3 viability was not affected, by bFGF treatments. Lastly, the increased PC3-induced bone lesions in Tgfbr2 Col1CreERT KO mice were significantly attenuated by blocking bFGF using neutralizing antibody, suggesting bFGF is a promising target inhibiting bone metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging.

    PubMed

    Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J

    2012-07-01

    A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.

  4. Understanding the Virtualization of the Backpacker Culture and the Emergence of the Flashpacker: A Mixed-Method

    ERIC Educational Resources Information Center

    Paris, Cody Morris

    2010-01-01

    Backpackers are pioneers of mobility, who provide a unique domain for critical tourism research. The lineage of backpacker ideals, including pursuit of authentic experiences, independence, escape and social interaction, can be traced back to the "tramps" of the 1880s and the "drifters" of the 1970s. The recent emergence of the…

  5. Expression of a model gene in prostate cancer cells lentivirally transduced in vitro and in vivo.

    PubMed

    Bastide, C; Maroc, N; Bladou, F; Hassoun, J; Maitland, N; Mannoni, P; Bagnis, C

    2003-01-01

    In a preclinical model for prostate cancer gene therapy, we have tested lentiviral vectors as a practical possibility for the transfer and long-term expression of the EGFP gene both in vitro and in vivo. The human prostate cancer cell lines DU145 and PC3 were transduced using experimental conditions which permitted analysis of the expression from a single proviral vector per cell. The transduced cells stably expressed the EGFP transgene for 4 months. After injection of the transduced cell populations into Nod-SCID mice a decrease in EGFP was only observed in a minority of cases, while the majority of tumors maintained transgene expression at in vitro levels. In vivo injection of viral vector preparations directly into pre-established subcutaneous or orthotopic tumor masses, obtained by implantation of untransduced PC3 and DU145 cells led to a high transduction efficiency. While the efficiency of direct intratumoral transduction was proportional to the dose of virus injected, the results indicated some technical limitations inherent in these approaches to prostate cancer gene therapy.

  6. Apoptosis induction in prostate cancer cells by a novel gene product, pHyde, involves caspase-3.

    PubMed

    Zhang, X; Steiner, M S; Rinaldy, A; Lu, Y

    2001-09-20

    A novel gene, pHyde, was recently cloned from Dunning rat prostate cancer cells. A recombinant adenovirus containing pHyde cDNA gene (AdpHyde) was generated to investigate the biological function of pHyde protein. AdpHyde inhibited the growth of human prostate cancer cells. Apoptosis was induced in AdpHyde transduced cells as demonstrated by DAPI (4', 6-diamino-2-phenylindole), TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling) staining, and flow cytometry assays. Apoptosis was also induced in human xenograft prostate cancer tumors growing in nude mice following treatment with AdpHyde. AdpHyde transduction resulted in a dose-dependent stimulation of caspase-3 activity in DU145 cells which was blocked by DEVD (succinyl-Asp-Glu-Val-Asp-aldehyde) and VAD (benzyloxycarbonyl - Val - Ala - Asp -fluoromethylketone), inhibitors specifically against caspase-3. Moreover, cancer cells that lacked expression of endogenous caspase-3 were not or barely inhibited by pHyde. These results taken together suggest that pHyde inhibits cancer growth by inducing apoptosis through a caspase-3 dependent pathway.

  7. Intra-tumoral delivery of functional ID4 protein via PCL/maltodextrin nano-particle inhibits prostate cancer growth

    PubMed Central

    Morton, Derrick; Sharma, Pankaj; Gorantla, Yamini; Joshi, Jugal; Nagappan, Perri; Pallaniappan, Ravi; Chaudhary, Jaideep

    2016-01-01

    ID4, a helix loop helix transcriptional regulator has emerged as a tumor suppressor in prostate cancer. Epigenetic silencing of ID4 promotes prostate cancer whereas ectopic expression in prostate cancer cell lines blocks cancer phenotype. To directly investigate the anti-tumor property, full length human recombinant ID4 encapsulated in biodegradable Polycaprolactone/Maltodextrin (PCL-MD) nano-carrier was delivered to LNCaP cells in which the native ID4 was stably silenced (LNCaP(-)ID4). The cellular uptake of ID4 resulted in increased apoptosis, decreased proliferation and colony formation. Intratumoral delivery of PCL-MD ID4 into growing LNCaP(-)ID4 tumors in SCID mice significantly reduced the tumor volume compared to the tumors treated with chemotherapeutic Docetaxel. The study supports the feasibility of using nano-carrier encapsulated ID4 protein as a therapeutic. Mechanistically, ID4 may assimilate multiple regulatory pathways for example epigenetic re-programming, integration of multiple AR co-regulators or signaling pathways resulting in tumor suppressor activity of ID4. PMID:27487149

  8. Synthesis of Poly[APMA]-DOTA-64Cu conjugates for interventional radionuclide therapy of prostate cancer: assessment of intratumoral retention by micro-positron emission tomography.

    PubMed

    Yuan, Jianchao; You, Yezi; Lu, Xin; Muzik, Otto; Oupicky, David; Peng, Fangyu

    2007-01-01

    To develop new radiopharmaceuticals for interventional radionuclide therapy of locally recurrent prostate cancer, poly[N-(3-aminopropyl)methacrylamide] [poly(APMA)] polymers were synthesized by free radical precipitation polymerization in acetone-dimethylsulfoxide using N,N'-azobis(isobutyronitrile) as the initiator. The polymers were characterized with nuclear magnetic resonance, size exclusion chromatography, and dynamic light scattering (M(n) = 2.40 x 10(4), M(w)/M(n) = 1.87). Subsequently, poly[APMA] was coupled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride as an activator, followed by conjugation with (64)Cu radionuclide. Prolonged retention of poly[APMA]-DOTA-(64)Cu conjugates within the tumor tissues was demonstrated by micro-positron emission tomography at 24 hours following intra-tumoral injection of the conjugates to human prostate xenografts in mice. The data suggest that the poly[APMA]-DOTA-(64)Cu conjugates might be useful for interventional radionuclide therapy of locally recurrent prostate cancer in humans.

  9. Prodrug Strategy for PSMA-targeted Delivery of TGX-221 to Prostate Cancer Cells

    PubMed Central

    Zhao, Yunqi; Duan, Shaofeng; Zeng, Xing; Liu, Chunjing; Davies, Neal M.; Li, Benyi; Forrest, M. Laird

    2013-01-01

    TGX-221 is a potent, selective, and cell membrane permeable inhibitor of the PI3K p110β catalytic subunit. Recent studies showed that TGX-221 has anti-proliferative activity against PTEN-deficient tumor cell lines including prostate cancers. The objective of this study was to develop an encapsulation system for parenterally delivering TGX-221 to the target tissue through a prostate-specific membrane aptamer (PSMAa10) with little or no side effects. In this study, PEG-PCL micelles were formulated to encapsulate the drug, and a prodrug strategy was pursued to improve the stability of the carrier system. Fluorescence imaging studies demonstrated that the cellular uptake of both drug and nanoparticles were significantly improved by targeted micelles in a PSMA positive cell line. The area under the plasma concentration time curve of the micelle formulation in nude mice was 2.27-fold greater than the naked drug, and the drug clearance rate was 17.5-fold slower. These findings suggest a novel formulation approach for improving site-specific drug delivery of a molecular-targeted prostate cancer treatment. PMID:22494444

  10. Somatostatin Derivate (smsDX) Attenuates the TAM-Stimulated Proliferation, Migration and Invasion of Prostate Cancer via NF-κB Regulation.

    PubMed

    Guo, Zhaoxin; Xing, Zhaoquan; Cheng, Xiangyu; Fang, Zhiqing; Jiang, Chao; Su, Jing; Zhou, Zunlin; Xu, Zhonghua; Holmberg, Anders; Nilsson, Sten; Liu, Zhaoxu

    2015-01-01

    Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa.

  11. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice.

    PubMed

    Buschemeyer, W Cooper; Klink, Joseph C; Mavropoulos, John C; Poulton, Susan H; Demark-Wahnefried, Wendy; Hursting, Stephen D; Cohen, Pinchas; Hwang, David; Johnson, Tracy L; Freedland, Stephen J

    2010-07-01

    Caloric restriction (CR) delays cancer growth in animals, though translation to humans is difficult. We hypothesized intermittent fasting (i.e., intermittent extreme CR), may be better tolerated and prolong survival of prostate cancer (CaP) bearing mice. We conducted a pilot study by injecting 105 male individually-housed SCID mice with LAPC-4 cells. When tumors reached 200 mm(3), 15 mice/group were randomized to one of seven diets and sacrificed when tumors reached 1,500 mm(3): Group 1: ad libitum 7 days/week; Group 2: fasted 1 day/week and ad libitum 6 days/week; Group 3: fasted 1 day/week and fed 6 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 4: 14% CR 7 days/week; Group 5: fasted 2 days/week and ad libitum 5 days/week; Group 6: fasted 2 day/week and fed 5 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 7: 28% CR 7 days/week. Sera from mice at sacrifice were analyzed for IGF-axis hormones. There were no significant differences in survival among any groups. However, relative to Group 1, there were non-significant trends for improved survival for Groups 3 (HR 0.65, P = 0.26), 5 (0.60, P = 0.18), 6 (HR 0.59, P = 0.16), and 7 (P = 0.59, P = 0.17). Relative to Group 1, body weights and IGF-1 levels were significantly lower in Groups 6 and 7. This exploratory study found non-significant trends toward improved survival with some intermittent fasting regimens, in the absence of weight loss. Larger appropriately powered studies to detect modest, but clinically important differences are necessary to confirm these findings.

  12. Croton membranaceus Improves Some Biomarkers of Cardiovascular Disease and Diabetes in Genetic Animal Models.

    PubMed

    Asare, George Awuku; Adjei, Samuel; Afriyie, Daniel; Appiah-Danquah, Akua Bempomaa; Asia, Jonas; Asiedu, Bernice; Santa, Sheila; Doku, Derek

    2015-12-01

    Cardiovascular disease (CVD) accounts for 17.3 million deaths per year globally. In Ghana, CVD accounts for 22.2% of deaths. Croton membranaceus (CM) Mull. Arg. (Euphorbiaceae), a medicinal plant in Ghana is mainly used traditionally for the treatment of benign prostatic hyperplasia and measles. However, some hypoglycaemic and hypotensive effects have recently been reported but not scientifically examined. The study aimed at establishing whether Croton membranaceus (CM) used for prostatitis had any effect on CVD markers. In experiment 1, lipid profile changes were determined. Twenty four male Spontaneously Hypertensive Rats (SHR) were divided into 4 groups. Low (LD), intermediate (ID) and high dose (HD) groups received 25, 50 and 100 mg/kg b.wt. CM aqueous root extracts (CMARE) for 60 days, respectively, the controls received distilled water. In experiment 2, blood glucose levels (BGL) were determined. 21 db/db mice were divided into 3 groups of 7 mice each alongside db/+ mice (7) (negative control). Groups 1 and 2 received 250 mg/kg b.wt CMARE and metformin, respectively. Group 3 (positive control) and db/+ mice (negative control) received distilled water. Mice were monitored for 15 hours. Data collected were analysed using SPSS version 20. Hypotriglyceridaemic effect was observed (p=0.005). High Density Lipoprotein cholesterol (HDL) and Low Density Lipoprotein cholesterol (LDL) showed significant increases (p=0.013) and decreases (p=0.003), respectively. A significant CRP reduction was observed for ID and HD groups (p = 0.010, p = 0.011, respectively). BGL was reduced in Metformin and Croton groups (p=0.000; p= 0.006, respectively) after 3 hours. In conclusion, CMARE has positive effects on some CVD biomarkers and a hypoglycaemic effect.

  13. Croton membranaceus Improves Some Biomarkers of Cardiovascular Disease and Diabetes in Genetic Animal Models

    PubMed Central

    Adjei, Samuel; Afriyie, Daniel; Appiah-Danquah, Akua Bempomaa; Asia, Jonas; Asiedu, Bernice; Santa, Sheila; Doku, Derek

    2015-01-01

    Introduction Cardiovascular disease (CVD) accounts for 17.3 million deaths per year globally. In Ghana, CVD accounts for 22.2% of deaths. Croton membranaceus (CM) Mull. Arg. (Euphorbiaceae), a medicinal plant in Ghana is mainly used traditionally for the treatment of benign prostatic hyperplasia and measles. However, some hypoglycaemic and hypotensive effects have recently been reported but not scientifically examined. Aim The study aimed at establishing whether Croton membranaceus (CM) used for prostatitis had any effect on CVD markers. Materials and Methods In experiment 1, lipid profile changes were determined. Twenty four male Spontaneously Hypertensive Rats (SHR) were divided into 4 groups. Low (LD), intermediate (ID) and high dose (HD) groups received 25, 50 and 100 mg/kg b.wt. CM aqueous root extracts (CMARE) for 60 days, respectively, the controls received distilled water. In experiment 2, blood glucose levels (BGL) were determined. 21 db/db mice were divided into 3 groups of 7 mice each alongside db/+ mice (7) (negative control). Groups 1 and 2 received 250 mg/kg b.wt CMARE and metformin, respectively. Group 3 (positive control) and db/+ mice (negative control) received distilled water. Mice were monitored for 15 hours. Data collected were analysed using SPSS version 20. Results Hypotriglyceridaemic effect was observed (p=0.005). High Density Lipoprotein cholesterol (HDL) and Low Density Lipoprotein cholesterol (LDL) showed significant increases (p=0.013) and decreases (p=0.003), respectively. A significant CRP reduction was observed for ID and HD groups (p = 0.010, p = 0.011, respectively). BGL was reduced in Metformin and Croton groups (p=0.000; p= 0.006, respectively) after 3 hours. Conclusion In conclusion, CMARE has positive effects on some CVD biomarkers and a hypoglycaemic effect. PMID:26816938

  14. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias.

    PubMed

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-05-01

    PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.

  15. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias

    PubMed Central

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917

  16. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells.

    PubMed

    Xie, Jinhan; Mølck, Christina; Paquet-Fifield, Sophie; Butler, Lisa; Sloan, Erica; Ventura, Sabatino; Hollande, Frédéric

    2016-07-12

    Progression of castration-resistant tumors is frequent in prostate cancer. Current systemic treatments for castration-resistant prostate cancer only produce modest increases in survival time and self-renewing Tumor-Initiating Cells (TICs) are suspected to play an important role in resistance to these treatments. However it remains unclear whether the same TICs display both chemo-resistance and self-renewing abilities throughout progression from early stage lesions to late, castration resistant tumors. Here, we found that treatment of mice bearing LNCaP-derived xenograft tumors with cytotoxic (docetaxel) and anti-androgen (flutamide) compounds enriched for cells that express TROP2, a putative TIC marker. Consistent with a tumor-initiating role, TROP2high cells from androgen-sensitive prostate cancer cell lines displayed an enhanced ability to re-grow in culture following treatment with taxane-based chemotherapy with or without androgen blockade. TROP2 down-regulation in these cells reduced their ability to recur after treatment with docetaxel, in the presence or absence of flutamide. Accordingly, in silico analysis of published clinical data revealed that prostate cancer patients with poor prognosis exhibit significantly elevated TROP2 expression level compared to low-risk patients, particularly in the case of patients diagnosed with early stage tumors. In contrast, in androgen-independent prostate cancer cell lines, TROP2high cells did not exhibit a differential treatment response but were characterized by their high self-renewal ability. Based on these findings we propose that high TROP2 expression identifies distinct cell sub-populations in androgen-sensitive and androgen-independent prostate tumors and that it may be a predictive biomarker for prostate cancer treatment response in androgen-sensitive tumors.

  17. Immunoendocrine abnormalities in the male reproductive system during experimental pulmonary tuberculosis.

    PubMed

    Ramos Robles, Brenda; Valdez, Ricardo A; Hernández, Uriel Juárez; Marquina Castillo, Brenda; Mata Espinosa, Dulce; Barrios Payan, Jorge; Hernández Pando, Rogelio; Romano, Marta C

    2018-03-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that mainly affects the lungs. Along the course of pulmonary TB there are remarkable changes in the production of cytokines that cause endocrine changes. So far, it is not known the physiological and histological changes in the male reproductive system during pulmonary TB. To investigate whether pulmonary TB produces histological alterations of the BALB/c mice reproductive organs, as well as abnormalities in spermatogenesis, serum testosterone concentrations and expression of testicular cytokines. BALB/c mice were infected intratracheally with high dose Mtb strain H37Rv. Groups of six non infected and infected animals were euthanized on days 1, 3, 7, 14, 21, 28, 60, 90 and 120 post-infection. Bacillary loads were determined by counting colony forming units (CFUs) in lungs, testes, prostate and seminal vesicles. Histological sections were obtained from the same organs. Spermatozoids number and quality were assessed by spermatobioscopy. Serum testosterone concentrations were determined by radioimmunoanalysis (RIA) in control and infected mice in each time of sacrifice. Mtb only grew in lung tissue. Serum androgens showed a trend to decrease in the infected mice compared to the healthy animals, the difference turn into statistically significance at post infection day 120. The weight of the testis was not modified throughout the study, and no histopathological changes were found. However, we detected a significant decrease in the weight of the seminal vesicles and prostate starting at 28 days post-infection. Atrophy of the seminal vesicles and prostate epithelia were significant, beginning after 60 days of infection. Spermatobioscopy revealed hypospermia in the later stages of the disease. We have observed in the testes a local significant disbalance on the cytokine profile (increase of IL-6 and decrease of IL-10 and TGF-b levels) together with a very significant reduction of the body weight during late pulmonary TB. Pulmonary TB affects the histophysiology of the male reproductive system due to hormonal changes, an imbalance of pro-inflammatory cytokine profile, and a wasting syndrome during late disease. Copyright © 2018. Published by Elsevier Ltd.

  18. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells

    PubMed Central

    Li, Dongli; He, Yan; Li, Yu; Du, Zhiyun; Zhang, Kun; DiPaola, Robert; Goodin, Susan; Zheng, Xi

    2015-01-01

    α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer. PMID:26630272

  19. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells

    PubMed Central

    Jilg, Cordula A.; Ketscher, Anett; Metzger, Eric; Hummel, Barbara; Willmann, Dominica; Rüsseler, Vanessa; Drendel, Vanessa; Imhof, Axel; Jung, Manfred; Franz, Henriette; Hölz, Stefanie; Krönig, Malte; Müller, Judith M.; Schüle, Roland

    2014-01-01

    The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Statement of significance Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer. PMID:25504435

  20. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.

    PubMed

    Herroon, Mackenzie K; Rajagurubandara, Erandi; Hardaway, Aimalie L; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-11-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease.

  1. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms

    PubMed Central

    Herroon, Mackenzie K.; Rajagurubandara, Erandi; Hardaway, Aimalie L.; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-01-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  2. Suppression of Prostate Tumors by INK4C and PTEN

    DTIC Science & Technology

    2007-12-01

    or Pten/ single mutant mice developed tumors in both lobes (Fig. 2). Pheochromocytomas developed in the adrenals of 84% of p18/ Pten/ mice...0 1 (13) 14 (74) Adrenal Normal 14 6 8 3 5 4 4 3 1 Medullary hyperplasia 1 0 4 4 2 2 1 1 2 Pheochromocytoma 0 0 2 (14)e 2 (22) 13 (65)f 2 (25) 12 (71...Hematoxylin and eosin staining of adrenal glands from different genotypes. Hyperplasia (H) and pheochromocytoma (T) of the adrenal medulla (AM

  3. Deregulation of an imprinted gene network in prostate cancer

    PubMed Central

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-01-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes. PMID:24513574

  4. Deregulation of an imprinted gene network in prostate cancer.

    PubMed

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-05-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.

  5. Genes involved in prostate cancer progression determine MRI visibility

    PubMed Central

    Li, Ping; You, Sungyong; Nguyen, Christopher; Wang, Yanping; Kim, Jayoung; Sirohi, Deepika; Ziembiec, Asha; Luthringer, Daniel; Lin, Shih-Chieh; Daskivich, Timothy; Wu, Jonathan; Freeman, Michael R; Saouaf, Rola; Li, Debiao; Kim, Hyung L.

    2018-01-01

    MRI is used to image prostate cancer and target tumors for biopsy or therapeutic ablation. The objective was to understand the biology of tumors not visible on MRI that may go undiagnosed and untreated. Methods: Prostate cancers visible or invisible on multiparametric MRI were macrodissected and examined by RNAseq. Differentially expressed genes (DEGs) based on MRI visibility status were cross-referenced with publicly available gene expression databases to identify genes associated with disease progression. Genes with potential roles in determining MRI visibility and disease progression were knocked down in murine prostate cancer xenografts, and imaged by MRI. Results: RNAseq identified 1,654 DEGs based on MRI visibility status. Comparison of DEGs based on MRI visibility and tumor characteristics revealed that Gleason score (dissimilarity test, p<0.0001) and tumor size (dissimilarity test, p<0.039) did not completely determine MRI visibility. Genes in previously reported prognostic signatures significantly correlated with MRI visibility suggesting that MRI visibility was prognostic. Cross-referencing DEGs with external datasets identified four genes (PHYHD1, CENPF, ALDH2, GDF15) that predict MRI visibility, progression free survival and metastatic deposits. Genetic modification of a human prostate cancer cell line to induce miR-101 and suppress CENPF decreased cell migration and invasion. As prostate cancer xenografts in mice, these cells had decreased visibility on diffusion weighted MRI and decreased perfusion, which correlated with immunostaining showing decreased cell density and proliferation. Conclusions: Genes involved in prostate cancer prognosis and metastasis determine MRI visibility, indicating that MRI visibility has prognostic significance. MRI visibility was associated with genetic features linked to poor prognosis. PMID:29556354

  6. DNA Methyl Transferase 1 Reduces Expression of SRD5A2 in the Aging Adult Prostate

    PubMed Central

    Ge, Rongbin; Wang, Zongwei; Bechis, Seth K.; Otsetov, Alexander G.; Hua, Shengyu; Wu, Shulin; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F.

    2016-01-01

    5-α Reductase type 2 (SRD5A2) is a critical enzyme for prostatic development and growth. Inhibition of SRD5A2 by finasteride is used commonly for the management of urinary obstruction caused by benign prostatic hyperplasia. Contrary to common belief, we have found that expression of SRD5A2 is variable and absent in one third of benign adult prostates. In human samples, absent SRD5A2 expression is associated with hypermethylation of the SRD5A2 promoter, and in vitro SRD5A2 promoter activity is suppressed by methylation. We show that methylation of SRD5A2 is regulated by DNA methyltransferase 1, and inflammatory mediators such as tumor necrosis factor α, NF-κB, and IL-6 regulate DNA methyltransferase 1 expression and thereby affect SRD5A2 promoter methylation and gene expression. Furthermore, we show that increasing age in mice and humans is associated with increased methylation of the SRD5A2 promoter and concomitantly decreased protein expression. Artificial induction of inflammation in prostate primary epithelial cells leads to hypermethylation of the SRD5A2 promoter and silencing of SRD5A2, whereas inhibition with tumor necrosis factor α inhibitor reactivates SRD5A2 expression. Therefore, expression of SRD5A2 is not static and ubiquitous in benign adult prostate tissues. Methylation and expression of SRD5A2 may be used as a gene signature to tailor therapies for more effective treatment of prostatic diseases. PMID:25700986

  7. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongzhen; Zhou Jianjun; Miki, Jun

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetalmore » bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.« less

  8. In vivo preservation of steroid specificity in CWR22 xenografts having a mutated androgen receptor.

    PubMed

    Shao, Tsang C; Li, Huiling; Eid, Wael; Ittmann, Michael; Unni, Emmanual; Cunningham, Glenn R

    2003-09-15

    In vitro studies of CWR22 tumor cells lack steroid specificity. We sought to determine if CWR22 xenografts also lack steroid specificity. We injected castrated nude mice with CWR22 tumor cells (6 x 10(6) cells) and implanted Alzet osmotic pumps that delivered approximately 1 mg steroid/kg body weight/day. Serum PSA levels were detectable in intact mice and castrated mice treated with testosterone (T), but not in those treated with estradiol (E(2)), progesterone (P), or flutamide (F). T maintained mean tumor weight similar to that in intact mice (P = NS). We observed no tumors in castrated mice or mice treated with E(2), P, or F, and tumor histology was consistent with weights. The mutation of the androgen receptor (H874Y) that occurs in the CWR22 xenograft model of human prostate cancer does not significantly affect in vivo steroid specificity for E(2), P, or F. Copyright 2003 Wiley-Liss, Inc.

  9. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    PubMed

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. "Who Are These Men?" A Study of the Tramps of Downtown Stockton (And the Agencies That Serve Them). Research Monograph No. 10.

    ERIC Educational Resources Information Center

    Adelman, Lester C.; Durant, Bill E.

    A series of research and service projects designed to better the condition of single male farmworkers in Stockton and Sacramento were sponsored by the Department of Applied Behavioral Sciences at the University of California, Davis. The Stockton Singlemen's Project, begun in January 1971, had two basic elements: (1) research and (2) community…

  11. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    PubMed

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Vitamin K epoxide reductase regulation of androgen receptor activity

    PubMed Central

    Tew, Ben Yi; Hong, Teresa B.; Otto-Duessel, Maya; Elix, Catherine; Castro, Egbert; He, Miaoling; Wu, Xiwei; Pal, Sumanta K.; Kalkum, Markus; Jones, Jeremy O.

    2017-01-01

    Long-term use of warfarin has been shown to be associated with a reduced risk of prostate cancer. Warfarin belongs to the vitamin K antagonist class of anticoagulants, which inhibit vitamin K epoxide reductase (VKOR). The vitamin K cycle is primarily known for its role in γ-carboxylation, a rare post-translational modification important in blood coagulation. Here we show that warfarin inhibits the transcriptional activity of the androgen receptor (AR), an important driver of prostate cancer development and progression. Warfarin treatment or knockdown of its target VKOR inhibits the activity of AR both in cell lines and in mouse prostate tissue. We demonstrate that AR can be γ-carboxylated, and mapped the γ-carboxylation to glutamate residue 2 (E2) using mass spectrometry. However, mutation of E2 and other glutamates on AR failed to suppress the effects of warfarin on AR suggesting that inhibition of AR is γ-carboxylation independent. To identify pathways upstream of AR signaling that are affected by warfarin, we performed RNA-seq on prostates of warfarin-treated mice. We found that warfarin inhibited peroxisome proliferator-activated receptor gamma (PPARγ) signaling, which in turn, inhibited AR signaling. Although warfarin is unfit for use as a chemopreventative due to its anticoagulatory effects, our data suggest that its ability to reduce prostate cancer risk is independent of its anticoagulation properties. Furthermore, our data show that warfarin inhibits PPARγ and AR signaling, which suggests that inhibition of these pathways could be used to reduce the risk of developing prostate cancer. PMID:28099154

  13. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    PubMed Central

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application. PMID:29062885

  14. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    PubMed

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  15. Male contraceptive Adjudin is a potential anti-cancer drug

    PubMed Central

    Xie, Qian Reuben; Liu, Yewei; Shao, Jiaxiang; Yang, Jian; Liu, Tengyuan; Zhang, Tingting; Wang, Boshi; Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan; Xia, Weiliang

    2014-01-01

    Adjudin, also known as AF-2364 and an analog of lonidamine (LND), is a male contraceptive acting through the induction of premature sperm depletion from the seminiferous epithelium when orally administered to adult rats, rabbits or dogs. It is also known that LND can target mitochondria and block energy metabolism in tumor cells. However, whether Adjudin exhibits any anti-cancer activity remains to be elucidated. Herein we described the anti-proliferative activity of Adjudin on cancer cells in vitro and on lung and prostate tumors inoculated in nude mice. We found that Adjudin induced apoptosis in cancer cells through a Caspase-3-dependent pathway. Further experiments revealed that Adjudin could trigger mitochondrial dysfunction in cancer cells, apparently affecting the mitochondrial mass, inducing the loss of mitochondrial membrane potential and reducing cellular ATP levels. Intraperitoneal administration of Adjudin to tumor-bearing athymic nude mice also significantly suppressed the lung and prostate tumor growth. When used in combination with cisplatin, Adjudin enhances the sensitivity to cisplatin-induced cancer cell cytotoxicity. Taken together, these findings have demonstrated that Adjudin may be a potential drug for cancer therapy. PMID:23178657

  16. Taxane-Grafted Metal-Oxide Nanoparticles as a New Theranostic Tool against Cancer: The Promising Example of Docetaxel-Functionalized Titanate Nanotubes on Prostate Tumors.

    PubMed

    Loiseau, Alexis; Boudon, Julien; Mirjolet, Céline; Créhange, Gilles; Millot, Nadine

    2017-08-01

    The combination of anticancer drugs and metal oxide nanoparticles is of great interest in cancer nanomedicine. Here, the development of a new nanohybrid, titanate nanotube-docetaxel (TiONts-DTX) is reported, the two parts of which are conjugated by covalent linkages. Unlike most nanoparticles currently being developed for biomedical purposes, TiONts present a needle-shaped morphology. The surface of TiONts is linked with 3-aminopropyl triethoxysilane and with a hetero-bifunctional polymer (polyethylene glycol) to create well-dispersed and biocompatible nanovectors. The prefunctionalized surface of this scaffold has valuable attachments to graft therapeutic agents (DTX in our case) as well as chelating agents (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to monitor the nanohybrids. To evaluate drug efficacy, in vitro tests have demonstrated that the association between TiONts and DTX shows cytotoxic activity against a hormone-refractory prostate cancer cell line (22Rv1) whereas TiONts without DTX do not. Finally, the first in vivo tests with intratumoral injections show that more than 70% of TiONts nanovectors are retained within the tumor for at least 7 d. Moreover, tumor growth in mice receiving TiONts-DTX is significantly slower than that in mice receiving free DTX. This nanohybrid can thus become a promising new tool in biomedicine to fight against prostate cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model.

    PubMed

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-09-26

    Here, we report that it's feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64 Cu. 64 Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro . The specificity of 64 Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated ( n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64 Cu-PSMA-617. All those results suggested 64 Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer.

  18. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model

    PubMed Central

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-01-01

    Here, we report that it’s feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64Cu. 64Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro. The specificity of 64Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated (n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64Cu-PSMA-617. All those results suggested 64Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer. PMID:29088775

  19. Synthesis and evaluation of a novel urea-based 68Ga-complex for imaging PSMA binding in tumor.

    PubMed

    Zha, Zhihao; Ploessl, Karl; Choi, Seok Rye; Wu, Zehui; Zhu, Lin; Kung, Hank F

    2018-04-01

    Prostate specific membrane antigen (PSMA) is a well-established target for diagnostic and therapeutic applications for prostate cancer. It is know that [ 68 Ga]PSMA 11 ([ 68 Ga]Glu-NH-CO-NH-Lys(Ahx)-HBED-CC) is the most well studied PET imaging agent for detecting over expressed PSMA binding sites of tumors in humans. In an effort to provide new agents with improved characteristics for PET imaging, we report a novel [ 68 Ga]-Glu-NH-CO-NH-Lys(Ahx)-linker-HBED-CC conjugate with a novel O-(carboxymethyl)-L-tyrosine, as the linker group. Radiosynthesis was performed by a direct method. In vitro binding and cell internalization of [ 68 Ga]10 was investigated in PSMA positive LNCaP cell lines. Biodistribution and MicroPET imaging studies were performed in LNCaP tumor bearing mice. In vitro binding to LNCaP cells showed that nat Ga labeled O-(carboxymethyl)-L-tyrosine conjugate, [ nat Ga]10, displayed excellent affinity and specificity (IC 50  = 16.5 nM) a value comparable to that of PSMA 11. In vitro cell binding and internalization showed excellent uptake and retention; [ 68 Ga]10 displayed significantly higher cellular internalization than [ 68 Ga]PSMA 11 (12.5 vs 7.4% ID/10 6 cells at 1 h). Biodistribution studies in LNCaP tumor-bearing mice exhibited a high specific uptake in PSMA expressing tumors and fast clearance in normal organs (19.7 tumor/blood; 20.7 tumor/muscle at 1 h after iv injection). MicroPET imaging studies in mice confirmed that [ 68 Ga]10 displayed excellent uptake and distinctive tumor localization, which was blocked by iv injection of a competing drug, 2-PMPA. The preliminary results strongly suggest that [ 68 Ga]10 may be promising candidates as a PET imaging radiotracer for detecting PSMA expression in prostate cancer. Copyright © 2018. Published by Elsevier Inc.

  20. CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease.

    PubMed

    Porretti, Juliana; Dalton, Guillermo N; Massillo, Cintia; Scalise, Georgina D; Farré, Paula L; Elble, Randolph; Gerez, Esther N; Accialini, Paula; Cabanillas, Ana M; Gardner, Kevin; De Luca, Paola; De Siervi, Adriana

    2018-03-14

    Prostate cancer (PCa) is the most common cancer among men. Metabolic syndrome (MeS) is associated with increased PCa aggressiveness and recurrence. Previously, we proposed C-terminal binding protein 1 (CTBP1), a transcriptional co-repressor, as a molecular link between these two conditions. Notably, CTBP1 depletion decreased PCa growth in MeS mice. The aim of this study was to investigate the molecular mechanisms that explain the link between MeS and PCa mediated by CTBP1. We found that CTBP1 repressed chloride channel accessory 2 (CLCA2) expression in prostate xenografts developed in MeS animals. CTBP1 bound to CLCA2 promoter and repressed its transcription and promoter activity in PCa cell lines. Furthermore, we found that CTBP1 formed a repressor complex with ZEB1, EP300 and HDACs that modulates the CLCA2 promoter activity. CLCA2 promoted PCa cell adhesion inhibiting epithelial-mesenchymal transition (EMT) and activating CTNNB1 together with epithelial marker (CDH1) induction, and mesenchymal markers (SNAI2 and TWIST1) repression. Moreover, CLCA2 depletion in PCa cells injected subcutaneously in MeS mice increased the circulating tumor cells foci compared to control. A microRNA (miRNA) expression microarray from PCa xenografts developed in MeS mice, showed 21 miRNAs modulated by CTBP1 involved in angiogenesis, extracellular matrix organization, focal adhesion and adherents junctions, among others. We found that miR-196b-5p directly targets CLCA2 by cloning CLCA2 3'UTR and performing reporter assays. Altogether, we identified a new molecular mechanism to explain PCa and MeS link based on CLCA2 repression by CTBP1 and miR-196b-5p molecules that might act as key factors in the progression onset of this disease. © 2018 UICC.

Top