Science.gov

Sample records for prostate tumor cell

  1. Immunological Targeting of Tumor Initiating Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    AD Award Number: W81XWH-13-1-0369 TITLE: Immunological Targeting of Tumor Initiating Prostate Cancer Cells PRINCIPAL...5a. CONTRACT NUMBER Immunological Targeting of Tumor Initiating Prostate Cancer Cells 5b. GRANT NUMBER W81XWH13-1-0369 5c... prostate cancer . In two specific aims, we proposed to first identify novel antigenic targets on these castrate resistant luminal epithelial cells (CRLEC

  2. Circulating tumor cells in prostate cancer: beyond enumeration.

    PubMed

    Chen, Jie-Fu; Lu, Yi-Tsung; Cheng, Shirley; Tseng, Hsian-Rong; Figlin, Robert A; Posadas, Edwin M

    2017-01-01

    Circulating tumor cells (CTCs) are a population of rare cancer cells that have detached from the primary tumor and/or metastatic lesions and entered the peripheral circulation. Enumeration of CTCs has demonstrated value as a prognostic biomarker, and newer studies have pointed to information beyond enumeration that is of critical importance in prostate cancer. Technologic advances that permit examination of the morphology, function, and molecular content of CTCs have made it possible to measure these factors as part of liquid biopsy. These advances provide a way to study tumor evolution and the development of resistance to therapy. Recent breakthroughs have created new applications for CTCs that will affect the care of patients with prostate cancer.

  3. Radiosensitization of Prostate Tumor Cells by Prenyltransferase Inhibitors

    DTIC Science & Technology

    1999-10-01

    and predicts a positive effect on the response to radiotherapy. Reportable Outcomes: 1. Development of new cell lines derived from immortalized human ...548-552. 14 Employment 1993 - 1996 Biologist, Laboratory of Mammalian Genes and Development , National Institute of Child Health and Human ...the use of prenyltransferase inhibitors. We have examined both rodent and human prostate tumor cell lines in vitro and determined that radiation

  4. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  5. Perioperative Search for Circulating Tumor Cells in Patients Undergoing Prostate Brachytherapy for Clinically Nonmetastatic Prostate Cancer

    PubMed Central

    Tsumura, Hideyasu; Satoh, Takefumi; Ishiyama, Hiromichi; Tabata, Ken-ichi; Takenaka, Kouji; Sekiguchi, Akane; Nakamura, Masaki; Kitano, Masashi; Hayakawa, Kazushige; Iwamura, Masatsugu

    2017-01-01

    Despite the absence of local prostate cancer recurrence, some patients develop distant metastases after prostate brachytherapy. We evaluate whether prostate brachytherapy procedures have a potential risk for hematogenous spillage of prostate cancer cells. Fifty-nine patients who were undergoing high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy participated in this prospective study. Thirty patients with high-risk or locally advanced cancer were treated with HDR brachytherapy after neoadjuvant androgen deprivation therapy (ADT). Twenty-nine patients with clinically localized cancer were treated with LDR brachytherapy without neoadjuvant ADT. Samples of peripheral blood were drawn in the operating room before insertion of needles (preoperative) and again immediately after the surgical manipulation (intraoperative). Blood samples of 7.5 mL were analyzed for circulating tumor cells (CTCs) using the CellSearch System. While no preoperative samples showed CTCs (0%), they were detected in intraoperative samples in 7 of the 59 patients (11.8%; preoperative vs. intraoperative, p = 0.012). Positive CTC status did not correlate with perioperative variables, including prostate-specific antigen (PSA) at diagnosis, use of neoadjuvant ADT, type of brachytherapy, Gleason score, and biopsy positive core rate. We detected CTCs from samples immediately after the surgical manipulation. Further study is needed to evaluate whether those CTCs actually can survive and proliferate at distant sites. PMID:28085051

  6. HLA Class II Antigen Presentation in Prostate Cancer Cells: A Novel Approach to Prostate Tumor Immunotherapy.

    PubMed

    Doonan, Bently Patrick; Haque, Azizul

    2010-01-01

    Prostate cancer is a deadly disease that is in drastic need of new treatment strategies for late stage and metastatic prostate cancer. Immunotherapy has emerged as a viable option to fill this void. Clinical trials have been conducted that induce tumor clearance through cytotoxic T lymphocyte (CTL) activation, these studies have had mixed outcomes with the overlying problem being the lack of a complete immune response with sustained killing and the formation of tumor specific memory cells. To overcome this, we have outlined the need for activating the HLA class II pathway in inducing a sustained CD8+ T cell response and the development of effective memory. We have also discussed the ability of prostate cancer cells to express stable HLA class II molecules that can be manipulated for tumor antigen (Ag) processing and presentation. This review also sets to outline new directions that exist for the use of class II-restricted Ags/peptides in devising cancer vaccines as well as combined chemoimmunotherapy. A better understanding of these concepts will improve future cancer vaccine studies and further the field of cancer immunobiology.

  7. [Frequent allelic losses in tumor-associated stromal cells and tumor epitelium of prostate cancer].

    PubMed

    Kekeeva, T V; Popova, O P; Shegaĭ, P V; Zavalishina, L E; Andreeva, Iu Iu; Zaletaev, D V; Nemtsova, M V

    2008-01-01

    It has become increasingly clear that tumor microenvironment plays a critical role in carcinogenesis. Accumulation of genetic alterations is typical not only for cancer epithelial cells but tumor-associated fibroblasts as well. Tumor epithelia, tumor-associated stroma from prostatectomy specimens of patients with prostate cancer and cells from prostatic intraepithelial neoplasia (PIN) and adjacent stroma from males with PIN were isolated by using laser capture microdissection. Microsatellite allelotyping was evaluated using 4 highly polymorphic markers for chromosomal regions 8p22, 16q23-24 and 13q14. Incidences of alterations (loss of heterozygosity or allelic imbalance) were 48% for region 8p22, 72% for 16q23 and 37% for 13q14. The LOH frequencies in tumor-associated stroma cells were very similar. Alterations at chromosome 13q were significantly associated with advanced tumor stage, whereas AI at 16q was also associated with high Gleason score and lymph node metastasis. We find some incidences of allelic imbalance in premalignant lesions in epithelial (16-27%) and stromal (7-22%) components. Our results show that the frequencies of genetic aberrations are as high in stromal cells as in tumor cells.

  8. Optical Strategies for Studying Metastatic Mechanisms, Tumor Cell Detection and Treatment of Prostate Cancer

    DTIC Science & Technology

    2005-10-01

    undesirable side effects. The objective of this proposal is to evaluate the effect of photodynamic therapy ( PDT ) on prostate tumors in order to design...optimal treatment regimens. We have established subcurative PDT conditions in 2 prostate cancer cell lines. Using these conditions we observed a transient...Ab to detect circulating prostate cancer cells. The results obtained establishes that PDT alters cellular-molecular processes such as cell adhesion

  9. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2008-05-01

    Kim, Y., Dubey, P., and Witte , O. N. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital...R. U., Cheng, D., and Witte , O. N. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A, 2006. 34...of Medicine Flow Sorting Facility) for their expert assistance and Jessica Hicks and Yuko Konishi (Johns Hopkins Department of Pathology) for the

  10. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2006-12-01

    Comparison of the prognostic potential of hyaluronic acid , hyaluronidase (HYAL-1), CD44v6 and microvessel density for prostate cancer. Int J Cancer, 2004...112(1): p. 121-9. 22. Posey, J.T., et al., Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate... hyaluronic acid and CD44. Mol Cell Biol, 2000. 20(10): p. 3482-96. 29. Gao, A.C., et al., CD44 is a metastasis suppressor gene for prostatic cancer

  11. Rat Prostate Tumor Cells Progress in the Bone Microenvironment to a Highly Aggressive Phenotype1

    PubMed Central

    Bergström, Sofia Halin; Rudolfsson, Stina H; Bergh, Anders

    2016-01-01

    Prostate cancer generally metastasizes to bone, and most patients have tumor cells in their bone marrow already at diagnosis. Tumor cells at the metastatic site may therefore progress in parallel with those in the primary tumor. Androgen deprivation therapy is often the first-line treatment for clinically detectable prostate cancer bone metastases. Although the treatment is effective, most metastases progress to a castration-resistant and lethal state. To examine metastatic progression in the bone microenvironment, we implanted androgen-sensitive, androgen receptor–positive, and relatively slow-growing Dunning G (G) rat prostate tumor cells into the tibial bone marrow of fully immune-competent Copenhagen rats. We show that tumor establishment in the bone marrow was reduced compared with the prostate, and whereas androgen deprivation did not affect tumor establishment or growth in the bone, this was markedly reduced in the prostate. Moreover, we found that, with time, G tumor cells in the bone microenvironment progress to a more aggressive phenotype with increased growth rate, reduced androgen sensitivity, and increased metastatic capacity. Tumor cells in the bone marrow encounter lower androgen levels and a higher degree of hypoxia than at the primary site, which may cause high selective pressures and eventually contribute to the development of a new and highly aggressive tumor cell phenotype. It is therefore important to specifically study progression in bone metastases. This tumor model could be used to increase our understanding of how tumor cells adapt in the bone microenvironment and may subsequently improve therapy strategies for prostate metastases in bone. PMID:26992916

  12. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-08-01

    Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than

  13. TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer

    PubMed Central

    Shi, Changhong; Hu, Peizhen; Yan, Wei; Wang, Zhe; Duan, Qiuhong; Lu, Fan; Qin, Lipeng; Lu, Tao; Xiao, Juanjuan; Wang, Yingmei; Zhu, Feng; Shao, Chen

    2015-01-01

    Circulating tumor cells (CTCs) are important for metastasis in prostate cancer. T-LAK cell-originated protein kinase (TOPK) is highly expressed in cancer cells. Herein, we established a xenograft animal model, isolated and cultured the CTCs, and found CTCs have significantly greater migratory capacity than parental cells. TOPK is more highly expressed in the CTCs than in parental cells and is also highly expressed in the metastatic nodules caused by CTCs in mice. Knocking down TOPK decreased the migration of CTCs both in vitro and in vivo. TOPK was modulated by the PI3K/PTEN and ERK pathways during the metastasis of prostate cancer. High levels of TOPK in the tumors of patients were correlated with advanced stages of prostate cancer, especially for high-risk patients of Gleason score≥8, PSA>20ng/ml. In summary, TOPK was speculated to be one of a potential marker and therapeutic target in advanced prostate cancer. PMID:25881543

  14. Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone

    PubMed Central

    Delliaux, Carine; Gervais, Manon; Kan, Casina; Benetollo, Claire; Pantano, Francesco; Vargas, Geoffrey; Bouazza, Lamia; Croset, Martine; Bala, Yohann; Leroy, Xavier; Rosol, Thomas J; Rieusset, Jennifer; Bellahcène, Akeila; Castronovo, Vincent; Aubin, Jane E; Clézardin, Philippe; Duterque-Coquillaud, Martine; Bonnelye, Edith

    2016-01-01

    Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFβ1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated with ERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events. PMID:27776343

  15. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2009-05-01

    RU, Cheng D, and Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 2006; 29. Cunha GR...Hopkins School of Medicine Flow Sorting Facility) for their expert assistance and Jessica Hicks and Yuko Konishi (Johns Hopkins Department of...P. Mouse urogenital development: a practical approach. Differentiation 2003;71:402–13. 29. Xin L, Ide H, Kim Y, Dubey P, Witte ON. In vivo

  16. BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone

    DTIC Science & Technology

    2011-10-01

    by activation of the tumor metastasis suppressor gene, N-myc downstream regulated gene 1 ( NDRG1 ). These results strongly suggest that the BMP7...cells and that this induction is mediated by activation of the tumor metastasis suppressor gene, NDRG1 (N-myc downstream regulated gene 1...Therefore, we hypothesize that a prostatic tumor stem cell becomes dormant in the bone through the BMP7-mediated activation of p38 and NDRG1 . BODY

  17. Downregulation of key regulatory proteins in androgen dependent prostate tumor cells by oncolytic reovirus.

    PubMed

    Gupta-Saraf, Pooja; Meseke, Tyler; Miller, Cathy L

    2015-11-01

    As prostate tumor cell growth depends on hormones, androgen ablation is an effective therapy for prostate cancer (PCa). However, progression of PCa cells to androgen independent growth (castrate resistant prostate cancer, CRPC) results in relapse and mortality. Hypoxia, a microenvironment of low oxygen that modifies the activity of PCa regulatory proteins including the androgen receptor (AR), plays a critical role in progression to CRPC. Therapies targeting hypoxia and the AR may lengthen the time to CRPC progression thereby increasing survival time of PCa patients. Mammalian Orthoreovirus (MRV) has shown promise for the treatment of prostate tumors in vitro and in vivo. In this study, we found that MRV infection induces downregulation of proteins implicated in CRPC progression, interferes with hypoxia-induced AR activity, and induces apoptosis in androgen dependent cells. This suggests MRV possesses traits that could be exploited to create novel therapies for the inhibition of progression to CRPC.

  18. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways

    PubMed Central

    Coleman, Ilsa; Lakely, Bryce; Coleman, Roger; Larson, Sandy; Aguirre-Ghiso, Julio A.; Xia, Jing; Gulati, Roman; Nelson, Peter S.; Montgomery, Bruce; Lange, Paul; Snyder, Linda A.; Vessella, Robert L.; Morrissey, Colm

    2014-01-01

    Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM+/CD45− cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention. PMID:25301725

  19. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression.

    PubMed

    Chen, Xiaowan; Li, Chenli; He, Tiantian; Mao, Jiating; Li, Chunmei; Lyu, Jianxin; Meng, Qing H

    2016-05-03

    Metformin has been reported to inhibit the growth of various types of cancers, including prostate cancer. Yet the mode of anti-cancer action of metformin and the underlying mechanisms remain not fully elucidated. We hypothesized that the antitumorigenic effects of metformin are mediated through upregulation of pigment epithelium-derived factor (PEDF) expression in prostate cancer cells. In this report, metformin treatment significantly inhibited the proliferation and colony formation of prostate cancer cells, in a dose- and time-dependent manner. Meanwhile, Metformin markedly suppressed migration and invasion and induced apoptosis of both LNCaP and PC3 cancer cells. Metformin also reduced PC3 tumor growth in BALB/c nude mice in vivo. Furthermore, metformin treatment was associated with higher PEDF expression in both prostate cancer cells and tumor tissue. Taken together, metformin inhibits prostate cancer cell proliferation, migration, invasion and tumor growth, and these activities are mediated by upregulation of PEDF expression. These findings provide a novel insight into the molecular functions of metformin as an anticancer agent.

  20. The p75{sup NTR} tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    SciTech Connect

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel . E-mail: djakiewd@georgetown.edu

    2006-03-24

    The p75 neurotrophin receptor (p75{sup NTR}) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75{sup NTR} retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted ({delta}DD) dominant-negative antagonist of p75{sup NTR} showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75{sup NTR}-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75{sup NTR} expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75{sup NTR} rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75{sup NTR} was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75{sup NTR}-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75{sup NTR} expressing prostate cancer cells.

  1. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage

  2. Single Cell Characterization of Prostate Cancer-Circulating Tumor Cells

    DTIC Science & Technology

    2013-09-01

    Ribonuclease Inhibitor (Life Technolo- gies)/0.2% Triton X-100 (10% solution, Sigma) prepared in nuclease free water . Collected cells were flash frozen on dry...CellSearch analysis. Clin Cancer Res 16: 5233–5243. 39. Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, et al. (2004) Polo - like kinase 1 is

  3. Single Cell Characterization of Prostate Cancer Circulating Tumor Cells

    DTIC Science & Technology

    2011-08-01

    single cell sequencing protocol for CTCs (Figure 3). So far, using their protocol we have done whole transcriptome amplification and mRNA seq on 6 single...perform additional single cell sequencing profiles. In our application we also hypothesized that there would be heterogeneity in gene expression

  4. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression

    PubMed Central

    St. John, Jason; Powell, Katelyn; Conley-LaComb, M. Katie; Chinni, Sreenivasa R.

    2012-01-01

    TMPRSS2-Ets gene fusions were identified in prostate cancers where the promoter of transmembrane protease, serine 2 (TMPRSS2) fused with coding sequence of the erythroblastosis virus E26 (Ets) gene family members. TMPRSS2 is an androgen responsive transmembrane serine protease. Ets family members are oncogenic transcription factors that contain a highly conserved Ets DNA binding domain and an N-terminal regulatory domain. Fusion of these gene results in androgen dependent transcription of Ets factor in prostate tumor cells. The ERG is the most common fusion partner with TMPRSS2 promoter in prostate cancer patients. The high prevalence of these gene fusions, in particular TMPRSS2-ERG, makes them attractive as potential diagnostic and prognostic indicators, as well as making them a potential target for tailored therapies. This review focuses on the clinical and biological significance of TMPRSS2-ERG fusions and their role in PC development and progression. PMID:23264855

  5. BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone

    DTIC Science & Technology

    2012-10-01

    suppressor gene, N-myc downstream regulated gene 1 ( NDRG1 ). These results strongly suggest that the BMP7-NDRG1axis plays a critical role in dormancy...induction is mediated by activation of the tumor metastasis suppressor gene, NDRG1 (N-myc downstream regulated gene 1). Therefore, we hypothesize that a...prostatic tumor stem cell becomes dormant in the bone through the BMP7-mediated activation of p38 and NDRG1 . BODY Task 1. To clarify the

  6. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2009-12-01

    Score (Figure 2B). Elevated levels of both HA (Figure 3A) and Hyal- 1(Figure 3B) were also observed in both BPH and prostate cancer, with a...elevated in BPH , and most strongly elevated in prostate carcinomas (Figure 2B). The intensity of RHAMM staining increased as a function of Gleason...by co-precipitation. Studies are currently underway to test this model in the prostate cancer model. 2. RHAMM expression should enhance the level of

  7. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature.

    PubMed

    Salmanzadeh, Alireza; Romero, Lina; Shafiee, Hadi; Gallo-Villanueva, Roberto C; Stremler, Mark A; Cramer, Scott D; Davalos, Rafael V

    2012-01-07

    In this study, the dielectrophoretic response of prostate tumor initiating cells (TICs) was investigated in a microfluidic system utilizing contactless dielectrophoresis (cDEP). The dielectrophoretic response of prostate TICs was observed to be distinctively different than that for non-TICs, enabling them to be sorted using cDEP. Culturing the sorted TICs generated spheroids, indicating that they were indeed initiating cells. This study presents the first marker-free TIC separation from non-TICs utilizing their electrical fingerprints through dielectrophoresis.

  8. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  9. The same and not the same: heterogeneous functional activation of prostate tumor cells by TLR ligation

    PubMed Central

    2014-01-01

    Background Many types of tumors are organized in a hierarchy of heterogeneous cell populations with different molecular signature. Such heterogeneity may be associated with different responsiveness to microenvironment stimuli. In the present study, the effects of lipopolysaccharide (LPS) and lipoteichoic acid (LTA), as well-known mediators of inflammation, on cancerous behavior of three prostate tumor cells, LNCaP, PC3 and DU145, were investigated. Methods Expression of TLR1-10, CD14 and MyD88 transcripts was investigated by RT-PCR. Protein expression of TLR2 and 4 was scrutinized by flow cytometry, immunofluorescent staining and Western blotting. Experiments were set up to assess the effects of LPS and LTA at different concentrations and times on cell proliferation, extracellular matrix invasion, adhesion and cytokine production. Results We showed that prostate cancer cell lines differentially express TLR1-10, MyD88 and CD14 transcripts. DU145 failed to express TLR4 gene. Positively-identified TLR2 protein in all prostate cancer cells and TLR4 protein in PC3 and LNCaP by Western blotting was not accompanied by cell surface expression, as judged by flow cytometry. Immunofluorescent staining clearly demonstrated predominantly perinuclear localization of TLR2 and TLR4. LTA activation of all prostate cancer cells significantly increased cell proliferation. Regardless of lacking TLR4, DU145 cells proliferated in response to LPS treatment. While LPS caused increased invasiveness of LNCaP, invasive capacity of PC3 was significantly reduced after LPS or LTA stimulation. Stimulation of all prostate tumor cells with LTA was associated with increased cell adhesion and IL-8 production. IL-6 production, however, was differentially regulated by LPS stimulation in prostate tumor cells. Conclusion The data shows that cancer cells originated from the same histologically origin exhibit heterogeneous response to the same TLR ligand. Therefore, a thorough and comprehensive judgment

  10. A human novel gene DERPC on 16q22.1 inhibits prostate tumor cell growth and its expression is decreased in prostate and renal tumors.

    PubMed Central

    Sun, Mei; Ma, Lanfeng; Xu, Linda; Li, Jia; Zhang, Wei; Petrovics, Gyorgy; Makarem, Mazen; Sesterhenn, Isabell; Zhang, Mei; Blanchette-Mackie, E. Joan; Moul, Judd; Srivastava, Shiv; Zou, Zhiqiang

    2002-01-01

    BACKGROUND: Deletion of chromosome 16q is frequently associated with diverse tumors. Numerous studies strongly suggest the presence of one or more tumor suppressor genes on chromosome 16q22 to 16qter including the widely studied cadherin gene family. However, the specific tumor suppressor genes residing in this region need better definition and characterization. MATERIAL AND METHODS: Standard molecular biology approaches have been used to clone and characterize the DERPC cDNA and its protein product on chromosome 16q22.1. Northern blotting was used to define the expression pattern in a multiple human tissue blots. DERPC expression was examined in multi-tumor array (Clontech, CA, USA) dot blot as well as in laser capture microdissection (LCM) derived prostate cancer (CaP) specimens by quantitative RT-PCR. Western blot analysis and a fluorescent microscopy were used to characterize the molecular size and the cellular location of green fluorescent protein (GFP)-tagged DERPC fusion proteins. A colony formation assay was conducted to determine the effects of DERPC expression on tumor cell growth. RESULTS: A novel gene DERPC (Decreased Expression in Renal and Prostate Cancer) was identified and characterized. DERPC encoded a strong basic, proline- and glycine-rich nuclear protein. DERPC was ubiquitously expressed, with abundant expression in kidney, skeletal muscle, testis, liver, ovary, and heart and moderate expression in prostate. DERPC expression was reduced in renal (67%) and prostate tumors (33%). Expression of DERPC has inhibitory potential on CaP cell growth. Further, overexpression of DERPC in LNCaP cells caused alterations of nuclear morphology. CONCLUSION: This study suggests that decreased expression of DERPC may be implicated in tumorigenesis of renal and CaPs. PMID:12477976

  11. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2013-10-01

    5min adherent a2b1hi/CD44hi cells, and 20min non-adherent a2b1low/CD44low cells were trans- planted , and fish were monitored at 33°C. Prostate TICs...8B):2236–2252. 26. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharma - col 1989;24(3

  12. [Abberant methylation of p16, HIC1, N33 and GSTP1 genes in tumor epitelium and tumor-associated stromal cells of prostate cancer].

    PubMed

    Kekeeva, T V; Popova, O P; Shegaĭ, P V; Alekseev, B Ia; Adnreeva, Iu Iu; Zaletaev, D V; Nemtsova, M V

    2007-01-01

    The methylation status of four genes significant in prostate carcinogenesis p16, HIC1, N33 and GSTP1, were evaluated using quantitative methylationsensitive polymerase chain reaction. Tumor epithelia, tumor-associated stroma, normal epithelia, foci of PIN and benign prostate hyperplasia, and stroma adjacent to tumor tissues were isolated from whole-mount prostatectomy specimens of patients with localized prostate cancer by using laser capture microdissection. We found high levels of gene methylation in the tumor epithelium and tumor-associated stromal cells and some methylation in both hyperplastic epithelium and stromal cells in normal-appearing tissues located adjacent to tumors. Promoter methylation in the non-neoplastic cells of the prostate tumor microenvironment may play an important role in cancer development and progression. We examined the promoter methylation status of pl6, HIC1, N33 and GSTP1 in prostate biopsy fragments and prostate tissues after radical prostatectomy from patients with adenocarcinoma without laser capture microdissection. Methylation frequencies of all genes in tumor samples were considerably lower than frequencies in microdissected tumour samples (HIC1, 71 versus 89%; p16, 22 versus 78%; GSTP1, 32 versus 100%; N33, 20 versus 33%). The laser capture microdissection is required procedure in methylation studies taking into account multifocality and heterogenity of prostate cancer tissue.

  13. Using circulating tumor cells to inform on prostate cancer biology and clinical utility

    PubMed Central

    Li, Jing; Gregory, Simon G.; Garcia-Blanco, Mariano A.; Armstrong, Andrew J.

    2016-01-01

    Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer. PMID:26079252

  14. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  15. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    DTIC Science & Technology

    2005-02-01

    Craig A. Hauser , Ph.D. Gabriele Foos, Ph.D. CONTRACTING ORGANIZATION: The Burnham Institute La Jolla, California 92037 REPORT DATE: February 2005 TYPE...NUMBERS Gene Targets in Prostate Tumor Cells that Mediate DAMD17-02-1-0019 Aberrant Growth and Invasiveness 6. AUTHOR(S) Craig A. Hauser , Ph.D. Gabriele...REPORTABLE OUTCOMES Foos G, Hauser CA (2004) The role of Ets transcription factors in mediating cellular transformation. In: Handbook of Experimental

  16. Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression

    DTIC Science & Technology

    2015-10-01

    RNA -sequencing data that we are part way through processing, but suggests so far significant activation of non-coding RNA sequences derived from RNA ...metastasis tumor tissues in the UTHSCSA tissue bank, however the RNA was not considered of sufficient quality to submit for RNA sequencing. We did RNA ...sequencing of LNCaP cell line RNA as this is derived from a prostate cancer lymph node metastatic deposit, although the bioinformatics analysis has

  17. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells.

    PubMed

    González-Chavarría, Iván; Cerro, Rita P; Parra, Natalie P; Sandoval, Felipe A; Zuñiga, Felipe A; Omazábal, Valeska A; Lamperti, Liliana I; Jiménez, Silvana P; Fernandez, Edelmira A; Gutiérrez, Nicolas A; Rodriguez, Federico S; Onate, Sergio A; Sánchez, Oliberto; Vera, Juan C; Toledo, Jorge R

    2014-01-01

    Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.

  18. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  19. CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells.

    PubMed

    Olson, Brian M; McNeel, Douglas G

    2011-06-01

    The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.

  20. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells.

    PubMed

    Labrecque, Mark P; Takhar, Mandeep K; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J; Massah, Shabnam; Haegert, Anne; Bell, Robert H; Altamirano-Dimas, Manuel; Collins, Colin C; Lee, Frank J S; Prefontaine, Gratien G; Cox, Michael E; Beischlag, Timothy V

    2016-04-26

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies.

  1. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    PubMed Central

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  2. Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice.

    PubMed

    Lee, Hong Jun; Doo, Seung Whan; Kim, Dae Hong; Cha, Young Joo; Kim, Jae Heon; Song, Yun Seob; Kim, Seung U

    2013-07-10

    Prostate cancer is the most common malignancy among men. Prostate cancer-related deaths are largely attributable to the development of hormone resistance in the tumor. No effective chemotherapy has yet been developed for advanced prostate cancer. It is desirable if a drug can be delivered directly and specifically to prostate cancer cells. Stem cells have selective migration ability toward cancer cells and therapeutic genes can be easily transduced into stem cells. In one form of gene therapy for cancer, the stem cells carry a gene encoding an enzyme that transforms an inert prodrug into a toxic product. Cytosine deaminase (CD) transforms the pro-drug 5-fluorocytosine into highly cytotoxic 5-fluorouracil (5-FU). The migration of the genetically modified stem cells was monitored by molecular magnetic resonance imaging, after labeling the stem cells with fluorescent magnetic nanoparticles (MNPs). Human neural stem cells encoding CD (HB1.F3.CD) were prepared and labeled with MNP. In tumor-bearing C57B mice, systemically transplanted HB1.F3.CD stem cells migrated toward the tumor and in combination with prodrug 5-FC, the volume of tumor implant was significantly reduced. These findings may contribute to development of a new selective chemotherapeutic strategy against prostate cancer.

  3. Keratin 13 Is Enriched in Prostate Tubule-Initiating Cells and May Identify Primary Prostate Tumors that Metastasize to the Bone

    PubMed Central

    Zhang, Baohui; Huo, Lihong; Lai, Kevin; Li, Xinmin; Galet, Colette; Grogan, Tristan R.; Elashoff, David; Freedland, Stephen J.; Rettig, Matthew; Aronson, William J.; Knudsen, Beatrice S.; Lewis, Michael S.; Garraway, Isla P.

    2016-01-01

    Background Benign human prostate tubule-initiating cells (TIC) and aggressive prostate cancer display common traits, including tolerance of low androgen levels, resistance to apoptosis, and microenvironment interactions that drive epithelial budding and outgrowth. TIC can be distinguished from epithelial and stromal cells that comprise prostate tissue via cell sorting based upon Epcam, CD44, and CD49f antigenic profiles. Fetal prostate epithelial cells (FC) possess a similar antigenic profile to adult TIC and are capable of inducing tubule formation. To identify the TIC niche in human prostate tissue, differential keratin (KRT) expression was evaluated. Results Gene expression data generated from Affymetrix Gene Chip human U133 Plus 2.0 array of sorted adult and fetal epithelial cells revealed KRT13 to be significantly enriched in FC and TIC compared to basal cells (BC) and luminal cells (LC) (p<0.001). Enriched KRT13 expression was confirmed by RT-PCR and cytospin immunostaining. Immunohistochemical analysis of KRT13 expression revealed rare KRT13+ epithelia throughout prostatic ducts/acini in adult tissue specimens and differentiated tubules in 24-week recombinant grafts, In contrast, abundant KRT13 expression was observed in developing ducts/acini in fetal prostate and cord-like structures composing 8-week recombinant grafts. Immunostaining of a prostate tissue microarray revealed KRT13+ tumor foci in approximately 9% of cases, and this subset displayed significantly shorter time to recurrence (p = 0.031), metastases (p = 0.032), and decreased overall survival (p = 0.004). Diagnostic prostate needle biopsies (PNBX) from untreated patients with concurrent bone metastases (clinical stage M1) displayed KRT13+ tumor foci, as did bone metastatic foci. Conclusions The expression profile of KRT13 in benign fetal and adult prostate tissue and in recombinant grafts, as well as the frequency of KRT13 expression in primary and metastatic prostate cancer indicates that it

  4. CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer

    PubMed Central

    Li, Chong; Liu, Shengwu; Yan, Ruping; Han, Ning; Wong, Kwok-Kin; Li, Lei

    2017-01-01

    Cancer stem cells (CSCs) are considered one of the key contributors to chemoresistance and tumor recurrence. Therefore, the precise identification of reliable CSC markers and clarification of the intracellular signaling involved in CSCs remains a great challenge in fields relating to cancer biology. Here, we implemented a novel chemoresistant prostate cancer patient-derived xenograft (PDX) model in NOD/SCID mice and identified CD54 as a candidate gene among the most highly enriched gene expression profiles in prostate tumors exposed to chronic cisplatin administration. Additional in vitro and in vivo assays showed that CD54 played a critical role in the self-renewal and tumorigenesis of prostate CSCs. Moreover, silencing CD54 greatly reduced the tumorigenesis of prostate cancers both in vitro and in vivo and significantly extended the survival time of tumor-bearing mice in a prostate cancer xenograft model. Dissection of the molecular mechanism revealed that the p38-Notch1 axis was the main downstream signaling pathway in CD54-mediated regulation of CSCs in prostate cancers. Together, these results established that CD54 could be a novel reliable prostate CSC marker and provided a new potential therapeutic target in prostate cancer via CD54-Notch1 signaling. PMID:28042317

  5. [State of the art about new therapeutic vaccines in prostate cancer: dendritic cells, engineered tumor cells and recombinant virus].

    PubMed

    Eymard, Jean-Christophe; Gervais, Alban; Jarcau, Rosana; Bernard, Jacky

    2007-07-01

    Therapeutic vaccines for prostate cancer were initially reported as limited with low immunological responses and uncertain clinical benefit. Recently, new methods become available, such preparations of well-characterized autologous dendritic cells, and use of gene therapy tools to increase whole-tumor cells or host tissue immunogenicity. These are able to enhance and diversify therapeutic options. Indeed, several vaccinal approaches are being investigated, including optimized mature dendritic cells, allogeneic genetically modified tumor cells, or viral vectors. Due to the description of immunological and clinical responses, large phase III randomized trials are now conducted. After summarizing the mechanistic basis for these approaches, this review describes the experience with the most recent and promising clinical studies and introduces short-term perspectives that could lead to improvement in healthcare offer for prostate cancer patients.

  6. CCR 20th Anniversary Commentary: Circulating Tumor Cells in Prostate Cancer.

    PubMed

    Mehra, Niven; Zafeiriou, Zafeiris; Lorente, David; Terstappen, Leon W M M; de Bono, Johann S

    2015-11-15

    Circulating tumor cells (CTC) have substantial promise for multipurpose biomarker studies in prostate cancer. The IMMC-38 trial conducted by de Bono and colleagues, which was published in the October 1, 2008, issue of Clinical Cancer Research, demonstrated for the first time that CTCs are the most accurate and independent predictor of overall survival in metastatic prostate cancer. Since the publication of prospective trials demonstrating prognostic utility, CTCs have been utilized for nucleic acid analyses, for protein analyses, and in intermediate endpoint studies. CTC studies are also now facilitating the analysis of intrapatient heterogeneity. See related article by de Bono et al., Clin Cancer Res 2008;14(19) October 1, 2008;6302-9.

  7. Inhibiting Vimentin or beta 1-integrin Reverts Prostate Tumor Cells in IrECM and Reduces Tumor Growth

    SciTech Connect

    Zhang, Xueping; Fournier, Marcia V.; Ware, Joy L.; Bissell, Mina J.; Zehner, Zendra E.

    2009-07-27

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphological changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional (3D) lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the parental prostate epithelial P69 cell line by selection in nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin or {alpha}6-, {beta}4- and {beta}1-integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via siRNA interference or {beta}1-integrin expression by the addition of the blocking antibody, AIIB2, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by subcutaneous injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in 3D lrECM gels. These studies suggest that the levels of vimentin and {beta}1-integrin play a key role in the homeostasis of the normal acini in prostate and that their dysregulation may lead to tumorigenesis.

  8. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  9. Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for Treatment of Prostate Cancer

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0450 TITLE: Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta- Insensitive CD8+ T Cells for...CONTRACT NUMBER Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta- Insensitive CD8+ T Cells for Treatment of Prostate...that adoptive transfer of tumor-reactive TGF-beta- insensitive CD8+ T cells to hosts bearing mouse prostate tumors resulted in a complete rejection

  10. Regulation of the Prostate Cancer Tumor Microenvironment

    DTIC Science & Technology

    2013-04-01

    epithelium , stroma, as well as immune system, and the fixed nature of the prostate model with expression of the large T antigen, which may have limited...cancer glandular architecture formed (Figure 8). Figure 8. Subcutanous TRAMP Model to Recapitulate Prostate Cancer. TRAMP C2 cells with and...model to be able to alter the aggressiveness of the tumor and specifically modulate the TLR signaling pathway in prostate epithelium , stroma, and immune

  11. Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses

    PubMed Central

    Jachetti, Elena; Mazzoleni, Stefania; Grioni, Matteo; Ricupito, Alessia; Brambillasca, Chiara; Generoso, Luca; Calcinotto, Arianna; Freschi, Massimo; Mondino, Anna; Galli, Rossella; Bellone, Matteo

    2013-01-01

    According to the cancer stem cell (CSC) theory, therapies that do not target the CSC compartment have limited, if any, chances to eradicate established tumors. While cytotoxic T lymphocytes (CTLs) have the potential to recognize and kill single neoplastic cells within a tissue, whether CSCs can be targeted by the immune system during spontaneous or vaccination-elicited responses is poorly defined. Here, we provide experimental evidence showing that CSC lines established from the prostate of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice expressed prostate cancer-associated antigens, MHC Class I and II molecules as well as ligands for natural killer (NK) cell receptors. Indeed, CSC were targets for both NK cell- and CTL-mediated cytotoxicity, both in vitro and in vivo. The administration of dendritic cells pulsed with irradiated CSCs induced a tumor-specific immune response that was more robust than that induced by dendritic cells pulsed with differentiated tumor cells, delayed tumor growth in mice challenged with prostate CSCs and caused tumor regression in TRAMP mice. Thus, CSC are targeted by both innate and adaptive immune responses and might be exploited for the design of novel immunotherapeutic approaches against cancer. PMID:23762811

  12. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells.

    PubMed

    Kikuno, Nobuyuki; Shiina, Hiroaki; Urakami, Shinji; Kawamoto, Ken; Hirata, Hiroshi; Tanaka, Yuichiro; Majid, Shahana; Igawa, Mikio; Dahiya, Rajvir

    2008-08-01

    Genistein is a phytoestrogen that has been reported to suppress the AKT signaling pathway in several malignancies. However, the molecular mechanism of genistein action is not known. We tested the hypothesis that genistein activates expression of several aberrantly silenced tumor suppressor genes (TSGs) that have unmethylated promoters such as PTEN, CYLD, p53 and FOXO3a. We report here that genistein activates TSGs through remodeling of the heterochromatic domains at promoters in prostate cancer cells by modulating histone H3-Lysine 9 (H3-K9) methylation and deacetylation. Genistein activation involved demethylation and acetylation of H3-K9 at the PTEN and the CYLD promoter, while acetylation of H3-K9 at the p53 and the FOXO3a promoter occurred through reduction of endogenous SIRT1 activity. There was a decrease of SIRT1 expression and accumulation of SIRT1 in the cytoplasm from the nucleus. Increased expression of these TSGs was also reciprocally related to attenuation of phosphorylated-AKT and NF-kappaB binding activity in prostate cancer cells. This is the first report describing a novel epigenetic pathway that activates TSGs by modulating either histone H3-Lysine 9 (H3-K9) methylation or deacetylation at gene promoters leading to inhibition of the AKT signaling pathway. These findings strengthen the understanding of how genistein may be chemoprotective in prostate cancer.

  13. Dormant Circulating Tumor Cells in Prostate Cancer: Therapeutic, Clinical and Biological Implications.

    PubMed

    Alvarez-Cubero, Maria J; Vázquez-Alonso, Fernando; Puche-Sanz, Ignacio; Ortega, F Gabriel; Martin-Prieto, M; Garcia-Puche, José L; Pascual-Geler, Manrique; Lorente, José A; Cozar-Olmo, José M; Serrano, Maria J

    2016-01-01

    Circulating Tumor Cells (CTCs) are a valuable prognostic factor in several solid tumors. By understanding the biological characteristics of CTCs we could better understand the biology of metastasis. CTCs usually adopt a dormant state that is believed to be a strategy to survive in extreme conditions. To enter a dormant state, CTCs undergo numerous phenotypic, genetic and functional mutations that significantly affect the efficacy of the therapies used to kill dormant CTCs. Hence, understanding the biological events involved in the dormancy process of CTCs would allow the identification of new therapeutic targets. Some experimental studies or preclinical models have explored these biological events, as well as the molecular factors that contribute to the maintenance of and release from dormancy. However, few studies have assessed the effects of anticancer therapies on dormant cells. This study reviews current the data currently available on cell dormancy mechanisms in prostate cancer, with a special focus on the functional, genetic and phenotypic plasticity of CTCs and their potential implications in the clinical and therapeutic management of prostate cancer.

  14. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients

    PubMed Central

    Kuske, Andra; Gorges, Tobias M.; Tennstedt, Pierre; Tiebel, Anne-Kathrin; Pompe, Raisa; Preißer, Felix; Prues, Sandra; Mazel, Martine; Markou, Athina; Lianidou, Evi; Peine, Sven; Alix-Panabières, Catherine; Riethdorf, Sabine; Beyer, Burkhard; Schlomm, Thorsten; Pantel, Klaus

    2016-01-01

    The relevance of blood-based assays to monitor minimal residual disease (MRD) in non-metastatic prostate cancer (PCa) remains unclear. Proving that clinically relevant circulating tumor cells (CTCs) can be detected with available technologies could address this. This study aimed to improve CTC detection in non-metastatic PCa patients by combining three independent CTC assays: the CellSearch system, an in vivo CellCollector and the EPISPOT. Peripheral blood samples from high-risk PCa patients were screened for CTCs before and three months after radical prostatectomy (RP). Combining the results of both time points, CTCs were detected in 37%, 54.9% and 58.7% of patients using CellSearch, CellCollector and EPISPOT, respectively. The cumulative positivity rate of the three CTC assays was 81.3% (87/107) with 21.5% (23/107) of patients harboring ≥5 CTCs/7.5 ml blood. Matched pair analysis of 30 blood samples taken before and after surgery indicated a significant decrease in CTCs captured by the CellCollector from 66% before RP to 34% after therapy (p = 0.031). CTC detection by EPISPOT before RP significantly correlated with PSA serum values (p < 0.0001) and clinical tumor stage (p = 0.04), while the other assays showed no significant correlations. In conclusion, CTC-based liquid biopsies have the potential to monitor MRD in patients with non-metastatic prostate cancer. PMID:28000772

  15. Influence of Anti-Mouse Interferon Serum on the Growth and Metastasis of Tumor Cells Persistently Infected with Virus and of Human Prostatic Tumors in Athymic Nude Mice

    NASA Astrophysics Data System (ADS)

    Reid, Lola M.; Minato, Nagahiro; Gresser, Ion; Holland, John; Kadish, Anna; Bloom, Barry R.

    1981-02-01

    Baby hamster kidney or HeLa cells form tumors in 100% of athymic nude mice. When such cells are persistently infected (PI) with RNA viruses, such as mumps or measles virus, the tumor cells either fail to grow or form circumscribed benign nodules. Neither the parental nor the virus PI tumor cells form invasive or metastatic lesions in nude mice. Previous studies have indicated a correlation between the susceptibility of virus-PI tumor cells in vitro and the cytolytic activity of natural killer (NK) cells and their failure to grow in vivo. Because interferon (IF) is the principal regulatory molecule governing the differentiation of NK cells, it was possible to test the relevance of the IF--NK cell system in vivo to restriction of tumor growth by treatment of nude mice with anti-IF globulin. This treatment was shown to reduce both IF production and NK activity in spleen cells. Both parental and virus-PI tumor cells grew and formed larger tumors in nude mice treated with anti-IF globulin than in control nude mice. The viral-PI tumor cells and the uninfected parental cells formed tumors in treated mice that were highly invasive and often metastatic. Some human tumor types have been notoriously difficult to establish as tumor lines in nude mice (e.g., primary human prostatic carcinomas). When transplanted into nude mice treated either with anti-IF globulin or anti-lymphocyte serum, two prostatic carcinomas grew and produced neoplasms with local invasiveness and some metastases. The results are consistent with the view that interferon may be important in restricting the growth, invasiveness, and metastases of tumor cells by acting indirectly through components of the immune system, such as NK cells.

  16. Mechanosensitive Ca(2+) permeant cation channels in human prostate tumor cells.

    PubMed

    Maroto, Rosario; Kurosky, Alexander; Hamill, Owen P

    2012-01-01

    The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca(2+)-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd(3+) or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca(2+)](i). Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca(2+) channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca(2+) influx to a small Ca(2+)-activated K(+) channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics--while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca(2+) signaling that may play a role in tumor progression.

  17. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    SciTech Connect

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-05-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and {beta}-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  18. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2015-10-01

    exponentially and docetaxel exerted a 15 minimal effect on xenografts growth , C-209-treated tumors were significantly inhibited (Figure 16 7B). Additionally...1 expression. Our goal is to identify and subsequently develop a new class of bioavailable small molecules that inhibit tumor growth by selectively...prostate xenografts in mice (Bertino Lab). The TICs that were isolated from the Kim lab and given to us were examined for tumor growth characterization

  19. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    DTIC Science & Technology

    2014-10-01

    Genome-wide association studies ( GWAS ) have linked human chromosome 8q24.21 region with increased risk for prostatic carcinoma but the how this region...not. Further studies should scrutinize the functional differences between these POU5F1B variants. GWAS studies and the evidence of POU5F1B

  20. Optical Strategies for Studying Metastatic Mechanisms, Tumor Cell Detection and Treatment of Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    study we have used 2 prostate cancer cell lines. The LNCaP human prostate cancer cells initially isolated from a lymph node biopsy are useful for...cell line is fast growing, poorly differentiated, and metastatic to the lungs and lymph nodes. To determine if this subcurative PDT- induced decrease in...5 – PDT increases the fraction of animals with lymph node metastases. At the time of sacrifice the lungs, pelvic lymph nodes, liver and spines

  1. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo

    PubMed Central

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-01-01

    ABSTRACT Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA+ tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy PMID:26954374

  2. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer.

    PubMed

    Cann, Gordon M; Gulzar, Zulfiqar G; Cooper, Samantha; Li, Robin; Luo, Shujun; Tat, Mai; Stuart, Sarah; Schroth, Gary; Srinivas, Sandhya; Ronaghi, Mostafa; Brooks, James D; Talasaz, Amirali H

    2012-01-01

    Circulating tumor cells (CTC) mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.

  3. Recombinant disintegrin domain of human ADAM9 inhibits migration and invasion of DU145 prostate tumor cells

    PubMed Central

    Martin, Ana Carolina Baptista Moreno; Cardoso, Ana Carolina Ferreira; Selistre-de-Araujo, Heloisa Sobreiro; Cominetti, Márcia Regina

    2015-01-01

    One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer. PMID:26211476

  4. Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis.

    PubMed

    Heidegger, Isabel; Kern, Johann; Ofer, Philipp; Klocker, Helmut; Massoner, Petra

    2014-05-15

    We scrutinized the effect of insulin receptor (INSR) in addition to IGF1R in PCa using in vitro and in vivo models. In-vitro overexpression of IGF1R and INSRA, but not INSRB increased cell proliferation, colony formation, migration, invasion and resistance to apoptosis in prostate cancer cells (DU145, LNCaP, PC3). Opposite effects were induced by downregulation of IGF1R and total INSR, but not INSRB. In contrast to tumor cells, non-cancerous epithelial cells of the prostate (EP156T, RWPE-1) were inhibited on overexpression and stimulated by knockdown of receptors. In-vivo analyses using the chicken allantoic membrane assay confirmed the tumorigenic effects of IGF1R and INSR. Apart of promoting tumor growth, IGF1R and INSR overexpression also enhanced angiogenesis indicated by higher vessel density and increased number of desmin-immunoreactive pericytes. Our study underscores the oncogenic impact of IGF1R including significant effects on tumor growth, cell migration, sensitivity to apoptotic/chemotherapeutic agents and angiogenesis, and characterizes the INSR, in particular the isoform INSRA, as additional cancer-promoting receptor in prostate cancer. Both, the insulin-like growth factor receptor 1 and the insulin receptor exert oncogenic functions, thus proposing that both receptors need to be considered in therapeutic settings.

  5. Combinatorial Targeting of Prostate Carcinoma Cells and Tumor Associated Pericytes with Antibody-Based Immunotherapy and Metronomic Chemotherapy

    DTIC Science & Technology

    2011-03-01

    4 ( CSPG4 ). This antigen has a restricted distribution in normal tissues, but has high expression in malignant lesions with limited inter-and intra...mesothelioma, melanoma and sarcoma. Relevant to this proposal AN-2 and CSPG4 are expressed in mouse and human prostate cancer cell lines, respectively...Fig. 1). Furthermore AN-2 and CSPG4 expression is upregulated on activated pericytes in the tumor microenvironment (Fig.2). As to the function of

  6. Stem Cells in Prostate

    DTIC Science & Technology

    2005-03-01

    disease upon aging, specifically prostate cancer and benign prostatic hyperplasia . In order to study the cell differentiation lineage associated with...specifically prostate cancer and benign prostatic hyperplasia . In order to study the cell differentiation lineage associated with normal and diseased prostate

  7. A convenient and effective strategy for the enrichment of tumor-initiating cell properties in prostate cancer cells.

    PubMed

    Zhang, Yiming; Huang, Yiqiang; Jin, Zhong; Li, Xiezhao; Li, Bingkun; Xu, Peng; Huang, Peng; Liu, Chunxiao

    2016-09-01

    Stem-like prostate cancer (PrCa) cells, also called PrCa stem cells (PrCSCs) or PrCa tumor-initiating cells (PrTICs), are considered to be involved in the mediation of tumor metastasis and may be responsible for the poor prognosis of PrCa patients. Currently, the methods for PrTIC sorting are mainly based on cell surface marker or side population (SP). However, the rarity of these sorted cells limits the investigation of the molecular mechanisms and therapeutic strategies targeting PrTICs. For PrTIC enrichment, we induced cancer stem cell (CSC) properties in PrCa cells by transducing three defined factors (OCT3/4, SOX2, and KLF4), followed by culture with conventional serum-containing medium. The CSC properties in the transduced cells were evaluated by proliferation, cell cycle, SP assay, drug sensitivity technology, in vivo tumorigenicity, and molecular marker analysis of PrCSCs compared with parental cells and spheroids. After culture with serum-containing medium for 8 days, the PrCa cells transduced with the three factors showed significantly enhanced CSC properties in terms of marker gene expression, sphere formation, chemoresistance to docetaxel, and tumorigenicity. The percentage of CD133(+)/CD44(+) cells was ninefold higher in the transduced cell population than in the adherent PC3 cell population (2.25 ± 0.62 vs. 0.25 ± 0.12 %, respectively), and the SP increased to 1.22 ± 0.18 % in the transduced cell population, but was undetectable in the adherent population. This method can be used to obtain abundant PrTIC material and enables a complete understanding of PrTIC biology and development of novel therapeutic agents targeting PrTICs.

  8. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    PubMed

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer.

  9. ANX7, a candidate tumor suppressor gene for prostate cancer

    PubMed Central

    Srivastava, Meera; Bubendorf, Lukas; Srikantan, Vasantha; Fossom, Linda; Nolan, Lisa; Glasman, Mirta; Leighton, Ximena; Fehrle, Wilfred; Pittaluga, Stefania; Raffeld, Mark; Koivisto, Pasi; Willi, Niels; Gasser, Thomas C.; Kononen, Juha; Sauter, Guido; Kallioniemi, Olli P.; Srivastava, Shiv; Pollard, Harvey B.

    2001-01-01

    The ANX7 gene is located on human chromosome 10q21, a site long hypothesized to harbor a tumor suppressor gene(s) (TSG) associated with prostate and other cancers. To test whether ANX7 might be a candidate TSG, we examined the ANX7-dependent suppression of human tumor cell growth, stage-specific ANX7 expression in 301 prostate specimens on a prostate tissue microarray, and loss of heterozygosity (LOH) of microsatellite markers at or near the ANX7 locus. Here we report that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145. Consistently, analysis of ANX7 protein expression in human prostate tumor microarrays reveals a significantly higher rate of loss of ANX7 expression in metastatic and local recurrences of hormone refractory prostate cancer as compared with primary tumors (P = 0.0001). Using four microsatellite markers at or near the ANX7 locus, and laser capture microdissected tumor cells, 35% of the 20 primary prostate tumors show LOH. The microsatellite marker closest to the ANX7 locus showed the highest rate of LOH, including one homozygous deletion. We conclude that the ANX7 gene exhibits many biological and genetic properties expected of a TSG and may play a role in prostate cancer progression. PMID:11287641

  10. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in normal prostate epithelial cells.

    PubMed

    Nesterov, Alexandre; Ivashchenko, Yuri; Kraft, Andrew S

    2002-02-07

    TRAIL is a pro-apoptotic cytokine believed to selectively kill cancer cells without harming normal ones. However, we found that in normal human prostate epithelial cells (PrEC) TRAIL is capable of inducing apoptosis as efficiently as in some tumor cell lines. At the same time, TRAIL did not cause apoptosis in several other human primary cell lines: aorta smooth muscle cells, foreskin fibroblasts, and umbilical vein endothelial cells. Compared to these primary cells, PrEC were found to contain significantly fewer TRAIL receptors DcR1 and DcR2 which are not capable of conducting the apoptotic signal. This result suggests that the unusual sensitivity of PrEC to TRAIL may result from their deficiency in anti-apoptotic decoy receptors. The protein synthesis inhibitor cycloheximide significantly enhanced TRAIL toxicity toward PrEC as measured by tetrazolium conversion but had little or no effect on other TRAIL-induced apoptotic responses. Although cycloheximide did not further accelerate the processing of caspases 3 and 8, it significantly enhanced cleavage of the caspase 3 substrate gelsolin, indicating that in PrEC a protein(s) with a short half-life may inhibit the activity of the executioner caspases toward specific substrates. As the majority of prostate cancers are derived from epithelial cells, our data suggest the possibility that TRAIL could be a useful treatment for the early stages of prostate cancer.

  11. Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice.

    PubMed

    Venè, Roberta; Benelli, Roberto; Minghelli, Simona; Astigiano, Simonetta; Tosetti, Francesca; Ferrari, Nicoletta

    2012-12-06

    Despite recent advances in understanding the biological basis of prostate cancer, management of the disease, especially in the phase resistant to androgen ablation, remains a significant challenge. The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention to prevent or eradicate prostate malignancies. In this study, we have used human hormone-resistant prostate cancer cells, DU145 and PC3, as an in vitro model to assess the efficacy of xanthohumol (XN) against cell growth, motility and invasion. We observed that treatment of prostate cancer cells with low micromolar doses of XN inhibits proliferation and modulates focal adhesion kinase (FAK) and AKT phosphorylation leading to reduced cell migration and invasion. Oxidative stress by increased production of reactive oxygen species (ROS) was associated with these effects. Transgenic adenocarcinoma of the mouse prostate (TRAMP) transgenic mice were used as an in vivo model of prostate adenocarcinoma. Oral gavage of XN, three times per week, beginning at 4 wks of age, induced a decrease in the average weight of the urogenital (UG) tract, delayed advanced tumor progression and inhibited the growth of poorly differentiated prostate carcinoma. The ability of XN to inhibit prostate cancer in vitro and in vivo suggests that XN may be a novel agent for the management of prostate cancer.

  12. A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands.

    PubMed

    Qin, Tai; Barron, Lindsey; Xia, Lu; Huang, Haojie; Villarreal, Maria M; Zwaagstra, John; Collins, Cathy; Yang, Junhua; Zwieb, Christian; Kodali, Ravindra; Hinck, Cynthia S; Kim, Sun Kyung; Reddick, Robert L; Shu, Chang; O'Connor-McCourt, Maureen D; Hinck, Andrew P; Sun, Lu-Zhe

    2016-12-27

    The effects of transforming growth factor beta (TGF-β) signaling on prostate tumorigenesis has been shown to be strongly dependent on the stage of development, with TGF-β functioning as a tumor suppressor in early stages of disease and as a promoter in later stages. To study in further detail the paradoxical tumor-suppressive and tumor-promoting roles of the TGF-β pathway, we investigated the effect of systemic treatment with a TGF-β inhibitor on early stages of prostate tumorigenesis. To ensure effective inhibition, we developed and employed a novel trivalent TGF-β receptor trap, RER, comprised of domains derived from the TGF-β type II and type III receptors. This trap was shown to completely block TβRII binding, to antagonize TGF-β1 and TGF-β3 signaling in cultured epithelial cells at low picomolar concentrations, and it showed equal or better anti-TGF-β activities than a pan TGF-β neutralizing antibody and a TGF-β receptor I kinase inhibitor in various prostate cancer cell lines. Systemic administration of RER inhibited prostate tumor cell proliferation as indicated by reduced Ki67 positive cells and invasion potential of tumor cells in high grade prostatic intraepithelial neoplasia (PIN) lesions in the prostate glands of Pten conditional null mice. These results provide evidence that TGF-β acts as a promoter rather than a suppressor in the relatively early stages of this spontaneous prostate tumorigenesis model. Thus, inhibition of TGF-β signaling in early stages of prostate cancer may be a novel therapeutic strategy to inhibit the progression as well as the metastatic potential in patients with prostate cancer.

  13. A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands

    PubMed Central

    Qin, Tai; Barron, Lindsey; Xia, Lu; Huang, Haojie; Villarreal, Maria M.; Zwaagstra, John; Collins, Cathy; Yang, Junhua; Zwieb, Christian; Kodali, Ravindra; Hinck, Cynthia S.; Kim, Sun Kyung; Reddick, Robert L.; Shu, Chang; O’Connor-McCourt, Maureen D.; Hinck, Andrew P.; Sun, Lu-Zhe

    2016-01-01

    The effects of transforming growth factor beta (TGF-β) signaling on prostate tumorigenesis has been shown to be strongly dependent on the stage of development, with TGF-β functioning as a tumor suppressor in early stages of disease and as a promoter in later stages. To study in further detail the paradoxical tumor-suppressive and tumor-promoting roles of the TGF-β pathway, we investigated the effect of systemic treatment with a TGF-β inhibitor on early stages of prostate tumorigenesis. To ensure effective inhibition, we developed and employed a novel trivalent TGF-β receptor trap, RER, comprised of domains derived from the TGF-β type II and type III receptors. This trap was shown to completely block TβRII binding, to antagonize TGF-β1 and TGF-β3 signaling in cultured epithelial cells at low picomolar concentrations, and it showed equal or better anti-TGF-β activities than a pan TGF-β neutralizing antibody and a TGF-β receptor I kinase inhibitor in various prostate cancer cell lines. Systemic administration of RER inhibited prostate tumor cell proliferation as indicated by reduced Ki67 positive cells and invasion potential of tumor cells in high grade prostatic intraepithelial neoplasia (PIN) lesions in the prostate glands of Pten conditional null mice. These results provide evidence that TGF-β acts as a promoter rather than a suppressor in the relatively early stages of this spontaneous prostate tumorigenesis model. Thus, inhibition of TGF-β signaling in early stages of prostate cancer may be a novel therapeutic strategy to inhibit the progression as well as the metastatic potential in patients with prostate cancer. PMID:27863384

  14. A cytomegalovirus-based vaccine expressing a single tumor-specific CD8+ T-cell epitope delays tumor growth in a murine model of prostate cancer.

    PubMed

    Klyushnenkova, Elena N; Kouiavskaia, Diana V; Parkins, Christopher J; Caposio, Patrizia; Botto, Sara; Alexander, Richard B; Jarvis, Michael A

    2012-06-01

    Cytomegalovirus (CMV) is a highly immunogenic virus that results in a persistent, life-long infection in the host typically with no ill effects. Certain unique features of CMV, including its capacity to actively replicate in the presence of strong host CMV-specific immunity, may give CMV an advantage compared with other virus-based vaccine delivery platforms. In the present study, we tested the utility of mouse CMV (mCMV)-based vaccines expressing human prostate-specific antigen (PSA) for prostate cancer immunotherapy in double-transgenic mice expressing PSA and HLA-DRB1*1501 (DR2bxPSA F1 mice). We assessed the capacity of 2 mCMV-based vectors to induce PSA-specific CD8 T-cell responses and affect the growth of PSA-expressing Transgenic Adenocarcinoma of the Mouse Prostate tumors (TRAMP-PSA). In the absence of tumor challenge, immunization with mCMV vectors expressing either a H2-D(b)-restricted epitope PSA(65-73) (mCMV/PSA(65-73)) or the full-length gene for PSA (mCMV/PSA(FL)) induced comparable levels of CD8 T-cell responses that increased (inflated) with time. Upon challenge with TRAMP-PSA tumor cells, animals immunized with mCMV/PSA(65-73) had delay of tumor growth and increased PSA-specific CD8 T-cell responses, whereas animals immunized with mCMV/PSA(FL) showed progressive tumor growth and no increase in number of splenic PSA(65-73)-specific T cells. The data show that a prototype CMV-based prostate cancer vaccine can induce an effective antitumor immune response in a "humanized" double-transgenic mouse model. The observation that mCMV/PSA(FL) is not effective against TRAMP-PSA is consistent with our previous findings that HLA-DRB1*1501-restricted immune responses to PSA are associated with suppression of effective CD8 T-cell responses to TRAMP-PSA tumors.

  15. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  16. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers.

    PubMed

    Armstrong, Andrew J; Marengo, Matthew S; Oltean, Sebastian; Kemeny, Gabor; Bitting, Rhonda L; Turnbull, James D; Herold, Christina I; Marcom, Paul K; George, Daniel J; Garcia-Blanco, Mariano A

    2011-08-01

    During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.

  17. The antitumor activity of an anti-CD54 antibody in SCID mice xenografted with human breast, prostate, non-small cell lung, and pancreatic tumor cell lines.

    PubMed

    Brooks, Kimberly J; Coleman, Elaine J; Vitetta, Ellen S

    2008-11-15

    We have previously described the development and testing of a monoclonal anti-human CD54 antibody (UV3) in SCID mice xenografted with human multiple myeloma, lymphoma, and melanoma cell lines. In all 3 cases, UV3 was highly effective at slowing the growth of tumors and/or prolonging survival. Since CD54 (ICAM-1) is up-regulated on many different types of cancer cells, we have now investigated the anti-tumor activity of UV3 in several other CD54(+) epithelial tumors. A panel of 16 human breast, prostate, non-small cell (NSC) lung, and pancreatic tumor cell lines was examined for reactivity with UV3, and 13 were positive. A representative CD54(+) cell line from each cancer was grown subcutaneously in SCID mice. Once the tumors were established, UV3 was administered using different dose regimens. UV3 slowed the growth of all 4 tumors, although it was not curative. When UV3 or gemcitabine were administered to SCID mice xenografted with a NSC lung tumor cell line or a pancreatic tumor cell line, UV3 was as effective as the chemotherapy alone. When gemcitabine and UV3 were administered together, the best anti-tumor responses were observed. UV3 has been chimerized (cUV3) and both toxicology studies and clinical trials are planned to assess the safety and activity of cUV3 in patients with one or more of these tumors.

  18. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer.

    PubMed

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-02-13

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation.

  19. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer

    PubMed Central

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-01-01

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation. DOI: http://dx.doi.org/10.7554/eLife.20183.001 PMID:28191869

  20. Loss of Keap1 Function in Prostate Cancer Cells Causes Chemo- and Radio-resistance and Promotes Tumor Growth

    PubMed Central

    Zhang, Ping; Singh, Anju; Yegnasubramanian, Srinivasan; Esopi, David; Kombairaju, Ponvijay; Bodas, Manish; Wu, Hailong; Bova, G. Steven; Biswal, Shyam

    2010-01-01

    Loss-of-function mutations in the nuclear factor erythroid-2 related factor-2 (Nrf2) inhibitor, Kelch-like-ECH-associated protein (Keap1), result in increased Nrf2 activity in non–small-cell lung cancer (NSCLC) and confer therapeutic resistance. We detected point mutations in Keap1 gene leading to non-conservative amino acid substitutions in prostate cancer cells. We found novel transcriptional and post-transcriptional mechanisms of Keap1 inactivation such as promoter CpG island hypermethylation and aberrant splicing of Keap1 in DU-145 cells. Very low levels of Keap1 mRNA were detected in DU-145 cells, which significantly increased by treatment with DNA methyltransferase inhibitor 5-aza-cytidine. The loss of Keap1 function led to an enhanced activity of Nrf2 and its downstream electrophile/drug detoxification pathway. Inhibition of Nrf2 expression in DU-145 cells by RNAi attenuated the expression of glutathione, thioredoxin, and the drug efflux pathways involved in counteracting electrophiles, oxidative stress, and detoxification of a broad spectrum of drugs. DU-145 cells expressing Nrf2-shRNA had lower levels of total glutathione and higher levels of intracellular reactive oxygen species. Attenuation of Nrf2 function in DU-145 cells enhanced sensitivity to chemotherapeutic drugs and radiation-induced cell death. In addition, Inhibition of Nrf2 greatly suppressed in vitro and in vivo tumor growth of DU-145 prostate cancer cells. Thus, targeting Nrf2 pathway in prostate cancer cells may provide a novel strategy to enhance chemo- and radio-therapy responsiveness and ameliorate the growth and tumorigenecity leading to improved clinical outcomes. PMID:20124447

  1. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    SciTech Connect

    Guo, Jia; Liu, Xiuheng Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  2. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationresistant prostate cancer: a report from the PETRUS prospective study

    PubMed Central

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-01-01

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs. Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients. PMID:27391263

  3. Defining the Recruitment of Reactive Stroma Progenitor Cells to the Tumor Microenvironment of Human Prostate Cancer

    DTIC Science & Technology

    2009-02-01

    AD Award Number: W81XWH-08-1-0059 TITLE: Defining the Recruitment of Reactive Stroma Progenitor Cells to the Tumor Microenvironment of Human...2008 - 6 Jan 2009 4. TITLE AND SUBTITLE Defining the Recruitment of Reactive Stroma Progenitor Cells to the Tumor Microenvironment of Human...Symposium on Stem Cells , Cancer, and Aging in Singapore RESEARCH EXPERIENCE 2001 Baylor College of Medicine, Department of Pulmonary and Critical

  4. Cell density in prostate histopathology images as a measure of tumor distribution

    NASA Astrophysics Data System (ADS)

    Reynolds, Hayley M.; Williams, Scott; Zhang, Alan M.; Ong, Cheng Soon; Rawlinson, David; Chakravorty, Rajib; Mitchell, Catherine; Haworth, Annette

    2014-03-01

    We have developed an automatic technique to measure cell density in high resolution histopathology images of the prostate, allowing for quantification of differences between tumour and benign regions of tissue. Haemotoxylin and Eosin (H&E) stained histopathology slides from five patients were scanned at 20x magnification and annotated by an expert pathologist. Colour deconvolution and a radial symmetry transform were used to detect cell nuclei in the images, which were processed as a set of small tiles and combined to produce global maps of cell density. Kolmogorov-Smirnov tests showed a significant difference in cell density distribution between tumour and benign regions of tissue for all images analyzed (p < 0.05), suggesting that cell density may be a useful feature for segmenting tumour in un-annotated histopathology images. ROC curves quantified the potential utility of cell density measurements in terms of specificity and sensitivity and threshold values were investigated for their classification accuracy. Motivation for this work derives from a larger study in which we aim to correlate ground truth histopathology with in-vivo multiparametric MRI (mpMRI) to validate tumour location and tumour characteristics. Specifically, cell density maps will be registered with T2-weighted MRI and ADC maps from diffusion-weighted MRI. The validated mpMRI data will then be used to parameterise a radiobiological model for designing focal radiotherapy treatment plans for prostate cancer patients.

  5. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer.

    PubMed

    Futakuchi, Mitsuru; Fukamachi, Katsumi; Suzui, Masumi

    2016-04-01

    Bone is the most common target organ of metastasis of prostate and breast cancers. This produces considerable morbidity due to skeletal-related events, SREs, including bone pain, hypercalcemia, pathologic fracture, and compression of the spinal cord. The mechanism of bone metastasis is complex and involves cooperative reciprocal interaction among tumor cells, osteoblasts, osteoclasts, and the mineralized bone matrix. The interaction between the metastatic tumor and bone stromal cells has been commonly referred to as the "vicious cycle". Tumor cells stimulate osteoblasts, which in turn stimulate osteoclasts through the secretion of cytokines such as the TNF family member receptor activator of nuclear κB ligand (RANKL). Activated osteoclasts degrade the bone matrix by producing strong acid and proteinases. Bone degradation by osteoclasts releases TGFβ and other growth factors stored in the bone matrix, that further stimulate tumor cells. Bone modifying agents, targeting osteoclast activity, such as bisphosphonate and RANKL antibodies are considered as the standard of care for reducing SREs of patients with bone metastatic diseases. These agents decrease osteoclast activity and delay worsening of skeletal pain and aggravation of bone metastatic diseases. While the management of SREs by these agents may improve patients' lives, this treatment does not address the specific issues of the patients with bone metastasis such as tumor dormancy, drug resistance, or improvement of survival. Here, we review the mechanisms of bone metastasis formation, tumor heterogeneity in the bone microenvironment, and conventional therapy for bone metastatic diseases and discuss the potential development of new therapies targeting tumor heterogeneity in the bone microenvironment.

  6. Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies.

    PubMed

    Epel, Malka; Carmi, Irit; Soueid-Baumgarten, Sharon; Oh, Sang Kon; Bera, Tapan; Pastan, Ira; Berzofsky, Jay; Reiter, Yoram

    2008-06-01

    MHC class I molecules are important components of immune surveillance. There are no available methods to directly visualize and determine the quantity and distribution of MHC/peptide complexes on individual cells or to detect such complexes on antigen-presenting cells in tissues. MHC-restricted recombinant antibodies with the same specificity of T cell receptors (TCR) may become a valuable tool to address these questions. They may also serve as valuable targeting molecules that mimic the specificity of cytotoxic T cells. We isolated by phage display a panel of human recombinant Fab antibodies with peptide-specific, MHC-restricted TCR-like reactivity directed toward HLA-A2-restricted T cell epitopes derived from a novel antigen termed TCRgamma alternative reading frame protein (TARP) which is expressed on prostate and breast cancer cells. We have characterized one of these recombinant antibodies and demonstrated its capacity to directly detect specific HLA-A2/TARP T cell epitopes on antigen-presenting cells that have complexes formed by naturally occurring active intracellular processing of the antigen, as well as on the surface of tumor cells. Moreover, by genetic fusion we armed the TCR-like antibody with a potent toxin and demonstrated that it can serve as a targeting moiety killing tumor cells in a peptide-specific, MHC-restricted manner similar to cytotoxic T lymphocytes.

  7. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumor metastasis by suppressing neuropilin 1

    PubMed Central

    Li, Xin; Fan, Shengjun; Pan, Xueyang; Xiaokaiti, Yilixiati; Duan, Jianhui; Shi, Yundi; Pan, Yan; Tie, Lu; Wang, Xin; Li, Yuhua; Li, Xuejun

    2016-01-01

    Tumor metastasis is a major cause leading to the deaths of cancer patients. Nordihydroguaiaretic acid (NDGA) is a natural product that has been demonstrated to show therapeutic values in multiple diseases. In this study, we report that NDGA can inhibit cell migration and tumor metastasis via a novel mechanism. NDGA suppresses NRP1 function by downregulating its expression, which leads to attenuated cell motility, cell adhesion to ECM and FAK signaling in cancer cells. Moreover, due to its cross-cell type activity on NRP1 suppression, NDGA also impairs angiogenesis function of endothelial cells and fibronectin assembly by fibroblasts, both of which are critical to promote metastasis. Based on these comprehensive effects, NDGA effectively suppresses tumor metastasis in nude mice model. Our findings reveal a novel mechanism underlying the anti-metastasis function of NDGA and indicate the potential value of NDGA in NRP1 targeting therapy for selected subtypes of cancer. PMID:27863391

  8. Inhibition of vimentin or B1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

    SciTech Connect

    Zhang, Xueping; Fournier, Marcia V; Ware, Joy L; Bissell, Mina J; Yacoub, Adly; Zehner, Zendra E

    2008-06-12

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin, or {alpha}6 and {beta}1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of {alpha}6 and {beta}1 integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and {beta}1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499-508].

  9. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models.

    PubMed

    Parray, Aijaz; Siddique, Hifzur R; Kuriger, Jacquelyn K; Mishra, Shrawan K; Rhim, Johng S; Nelson, Heather H; Aburatani, Hiroyuki; Konety, Badrinath R; Koochekpour, Shahriar; Saleem, Mohammad

    2014-12-01

    High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans.

  10. ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: Study in African-American and Caucasian prostate cancer models

    PubMed Central

    Parray, Aijaz; Siddique, Hifzur R.; Kuriger, Jacquelyn K.; Mishra, Shrawan K.; Rhim, Johng S.; Nelson, Heather H.; Aburatani, Hiroyuki; Konety, Badrinath R.; Koochekpour, Shahriar; Saleem, Mohammad

    2015-01-01

    High-risk populations exhibit early transformation of localized prostate cancer (CaP) disease to metastasis which results in the mortality of such patients. The paucity of knowledge about the molecular mechanism involved in acquiring of metastatic behavior by primary tumor cells and non-availability of reliable phenotype-discriminating biomarkers are stumbling blocks in the management of CaP disease. Here, we determine the role and translational relevance of ROBO1 (an organogenesis-associated gene) in human CaP. Employing CaP-progression models and prostatic tissues of Caucasian and African-American patients, we show that ROBO1 expression is localized to cell-membrane and significantly lost in primary and metastatic tumors. While Caucasians exhibited similar ROBO1 levels in primary and metastatic phenotype, a significant difference was observed between tumor phenotypes in African-Americans. Epigenetic assays identified promoter methylation of ROBO1 specific to African-American metastatic CaP cells. Using African-American CaP models for further studies, we show that ROBO1 negatively regulates motility and invasiveness of primary CaP cells, and its loss causes these cells to acquire invasive trait. To understand the underlying mechanism, we employed ROBO1-expressing/ROBO1-C2C3-mutant constructs, immunoprecipitation, confocal-microscopy and luciferase-reporter techniques. We show that ROBO1 through its interaction with DOCK1 (at SH3-SH2-domain) controls the Rac-activation. However, loss of ROBO1 results in Rac1-activation which in turn causes E-Cadherin/β-catenin cytoskeleton destabilization and induction of cell migration. We suggest that ROBO1 is a predictive biomarker that has potential to discriminate among CaP types, and could be exploited as a molecular target to inhibit the progression of disease as well as treat metastasis in high-risk populations such as African-Americans. PMID:24752651

  11. Adenovirus E2F1 Overexpression Sensitizes LNCaP and PC3 Prostate Tumor Cells to Radiation In Vivo

    SciTech Connect

    Udayakumar, Thirupandiyur S.; Stoyanova, Radka; Hachem, Paul; Ahmed, Mansoor M.; Pollack, Alan

    2011-02-01

    Purpose: We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. Methods and Materials: Ad-E2F1 was injected intratumorally in LNCaP (3 x 10{sup 8} plaque-forming units [PFU]) and PC3 (5 x 10{sup 8} PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. Results: Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm{sup 3}) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm{sup 3}; p <0.05). This effect was significantly enhanced by radiation therapy (compare: Ad-E2F1+RT/PSA, 16 ng/ml, and TV, 55 mm{sup 3} to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm{sup 3}, respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. Conclusions: We show here for the first time that

  12. Human CTLs to wild-type and enhanced epitopes of a novel prostate and breast tumor-associated protein, TARP, lyse human breast cancer cells.

    PubMed

    Oh, SangKon; Terabe, Masaki; Pendleton, C David; Bhattacharyya, Anu; Bera, Tapan K; Epel, Malka; Reiter, Yoram; Phillips, John; Linehan, W Marston; Kasten-Sportes, Claude; Pastan, Ira; Berzofsky, Jay A

    2004-04-01

    Vaccine therapy for prostate and breast cancer may have potential for treating these major causes of death in males and females, respectively. Critical to the development of tumor-specific vaccines is finding and characterizing novel antigens to be recognized by CD8(+) T cells. To define new CD8(+) T-cell tumor antigens, we determined two wild-type HLA-A2 epitopes from a recently found tumor-associated protein, TARP (T-cell receptor gamma alternate reading frame protein), expressed in prostate and breast cancer cells. We were also able to engineer epitope-enhanced peptides by sequence modifications. Both wild-type and enhanced epitopes induced peptide-specific CD8(+) T-cell responses in A2K(b) transgenic mice. In vitro restimulation of human CD8(+) T cells from a prostate cancer patient resulted in CD8(+) T cells reactive to the peptide epitopes that could lyse HLA-A2(+) human breast cancer cells (MCF-7) expressing TARP. Epitope-specific human CD8(+) T cells were also enumerated in patients' peripheral blood by tetramer staining. Our data suggest that HLA-A2-binding TARP epitopes and enhanced epitopes discovered in this study could be incorporated into a potential vaccine for both breast and prostate cancer.

  13. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    PubMed

    Ingersoll, Matthew A; Lyons, Anastesia S; Muniyan, Sakthivel; D'Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G; Bu, Xiu R; Batra, Surinder K; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  14. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells

    PubMed Central

    Muniyan, Sakthivel; D’Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G.; Bu, Xiu R.; Batra, Surinder K.; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents. PMID:26121643

  15. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  16. Detection of circulating prostate tumor cells: alternative spliced variant of PSM induced false-positive result.

    PubMed

    Hisatomi, Hisashi; Nagao, Kumi; Kawakita, Mutsuji; Matsuda, Tadashi; Hirata, Hiroyuki; Yamamoto, Shigeki; Nakamoto, Takaaki; Harasawa, Hiroshi; Kaneko, Noboru; Hikiji, Kazumasa; Tsukada, Yutaka

    2002-11-01

    RT-nested PCR has been introduced as a highly specific and sensitive assay method to detect the prostate-specific membrane antigen (PSM) mRNA in peripheral blood. However, appreciable percentages of false-positive cases have been reported. Additionally, primer sets reported previously could not discriminate between PSM and PSM', an alternatively spliced variant, mRNA. These isoforms can be produced from a single gene. Switches in alternative splicing patterns are often controlled with strict cell-type or developmental-stage specificity. Therefore, it is most important to discriminate between PSM mRNA and PSM' mRNA. Using our highly specific primer sets, PSM mRNA was detected in 3 of 24 peripheral blood samples of normal male volunteers (12.5%) and was not detected in peripheral blood of 11 normal female volunteers. PSM' mRNA was detected in 5 of 24 peripheral blood samples of normal male volunteers (20.8%) and in 4 of 11 of normal female volunteers (36.4%). PSM' mRNA induced false-positive results, it is important for genetic diagnosis of prostate cancer to discriminate between PSM and PSM' using our primer sets with high specificity. The advances in the uniquely designed primer sets may allow researchers to detect a real PSM mRNA without PSM' mRNA.

  17. Immunotherapy of Prostate Cancer With Genetically Enhanced Tumor-Specific T-Cell Precursors

    DTIC Science & Technology

    2011-06-01

    thymus into mature T cells, that is capable of lysing tumors. The overall objective of this project is to develop an effective ‘off the shelf...transplanted mice demonstrated that the transduced Pz1+ preT cells traffic to the thymus for further development (Figure 3). Pz1+ preT cells are also...preT cells in irradiated nude mice. Nude mice lack the Foxn1 gene and do not have a functional thymus . We found that mature T cells derived from ex

  18. Peptide Agonists of Vasopressin V2 Receptor Reduce Expression of Neuroendocrine Markers and Tumor Growth in Human Lung and Prostate Tumor Cells

    PubMed Central

    Pifano, Marina; Garona, Juan; Capobianco, Carla S.; Gonzalez, Nazareno; Alonso, Daniel F.; Ripoll, Giselle V.

    2017-01-01

    Neuroendocrine tumors (NETs) comprise a heterogeneous group of malignancies that express neuropeptides as synaptophysin, chromogranin A (CgA), and specific neuronal enolase (NSE), among others. Vasopressin (AVP) is a neuropeptide with an endocrine, paracrine, and autocrine effect in normal and pathological tissues. AVP receptors are present in human lung, breast, pancreatic, colorectal, and gastrointestinal tumors. While AVP V1 receptors are associated with stimulation of cellular proliferation, AVP V2 receptor (V2r) is related to antiproliferative effects. Desmopressin (dDAVP) is a synthetic analog of AVP that acts as a selective agonist for the V2r, which shows antitumor properties in breast and colorectal cancer models. Recently, we developed a derivative of dDAVP named [V4Q5]dDAVP, which presents higher antitumor effects in a breast cancer model compared to the parental compound. The goal of present work was to explore the antitumor properties of the V2r agonist dDAVP and its novel analog [V4Q5]dDAVP on aggressive human lung (NCI-H82) and prostate cancer (PC-3) cell lines with neuroendocrine (NE) characteristics. We study the presence of specific NE markers (CgA and NSE) and V2r expression in NCI-H82 and PC-3. Both cell lines express high levels of NE markers NSE and CgA but then incubation with dDAVP diminished expression levels of both markers. DDAVP and [V4Q5]dDAVP significantly reduced proliferation, doubling time, and migration in both tumor cell cultures. [V4Q5]dDAVP analog showed a higher cytostatic effect than dDAVP, on cellular proliferation in the NCI-H82 cell line. Silencing of V2r using small interfering RNA significantly attenuated the inhibitory effects of [V4Q5]dDAVP on NCI-H82 cell proliferation. We, preliminarily, explored the in vivo effect of dDAVP and [V4Q5]dDAVP on NCI-H82 small cell lung cancer xenografts. Treated tumors (0.3 μg kg−1, thrice a week) grew slower in comparison to vehicle-treated animals. In this work, we demonstrated

  19. RGS17, an Overexpressed Gene in Human Lung and Prostate Cancer, Induces Tumor Cell Proliferation Through the Cyclic AMP-PKA-CREB Pathway

    PubMed Central

    James, Michael A.; Lu, Yan; Liu, Yan; Vikis, Haris G.; You, Ming

    2009-01-01

    We have identified RGS17 as a commonly induced gene in lung and prostate tumors. Through microarray and gene expression analysis, we show that expression of RGS17 is up-regulated in 80% of lung tumors, and also up-regulated in prostate tumors. Through knockdown and overexpression of RGS17 in tumor cells, we show that RGS17 confers a proliferative phenotype and is required for the maintenance of the proliferative potential of tumor cells. We show through exon microarray, transcript analysis, and functional assays that RGS17 promotes cyclic AMP (cAMP)-responsive element binding protein (CREB)-responsive gene expression, increases cAMP levels, and enhances forskolin-mediated cAMP production. Furthermore, inhibition of cAMP-dependent kinase prevents tumor cell proliferation, and proliferation is partially rescued by RGS17 overexpression. In the present study, we show a role for RGS17 in the maintenance of tumor cell proliferation through induction of cAMP signaling and CREB phosphorylation. The prevalence of the induction of RGS17 in tumor tissues of various types further implicates its importance in the maintenance of tumor growth. PMID:19244110

  20. Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces.

    PubMed

    Caley, Matthew P; King, Helen; Shah, Neel; Wang, Kai; Rodriguez-Teja, Mercedes; Gronau, Julian H; Waxman, Jonathan; Sturge, Justin

    2016-02-01

    The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded 'amoeboid-like' mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar 'mesenchymal-like' mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer.

  1. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer

    PubMed Central

    Chen, Jie-Fu; Lin, Millicent; Li, Fuqiang; Wu, Kui; Wu, Hanjie; Lichterman, Jake; Wan, Haolei; Lu, Chia-Lun; OuYang, William; Ni, Ming; Wang, Linlin; Li, Guibo; Lee, Tom; Zhang, Xiuqing; Yang, Jonathan; Rettig, Matthew; Chung, Leland W.K.; Yang, Huanming; Li, Ker-Chau; Hou, Yong; Tseng, Hsian-Rong; Hou, Shuang; Xu, Xun; Wang, Jun; Posadas, Edwin M.

    2015-01-01

    Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history. PMID:26575023

  2. The p202 Gene as a Tumor Suppressor in Prostate Cancer Cells

    DTIC Science & Technology

    2005-06-01

    prostate for advanced prostate cancer patients after hormone cancer, but this study points out that finasteride also increases the deprivation. A growing...prostate outcome may have resulted from the fact that finasteride reduced cancer phenotype. Notably, androgen receptor (AR) not only ntraprostatic... finasteride survival of C3(1)/SV40 transgenic mice in vivo. Emodin as a preventive agent due to the potential high risk for treatment resulted in

  3. TGF-β signal rewiring sustains epithelial-mesenchymal transition of circulating tumor cells in prostate cancer xenograft hosts

    PubMed Central

    Huang, Guangcun; Osmulski, Pawel A.; Bouamar, Hakim; Mahalingam, Devalingam; Lin, Chun-Lin; Liss, Michael A.; Kumar, Addanki Pratap; Chen, Chun-Liang; Thompson, Ian M.; Sun, Lu-Zhe; Gaczynska, Maria E.; Huang, Tim H.-M.

    2016-01-01

    Activation of TGF-β signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-β signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-β signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-β and its backup partner ERK represents an attractive strategy for treating mCRPC patients. PMID:27780930

  4. Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer.

    PubMed

    Ward-Kavanagh, Lindsay K; Zhu, Junjia; Cooper, Timothy K; Schell, Todd D

    2014-08-01

    Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly nonfunctional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8(+) T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB, Gzmb)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to affect significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progression observed. Regression was associated with long-term persistence of effector/memory phenotype CD8(+) donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells.

  5. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2015-10-01

    subsequently develop a new class of bioavailable small molecules that inhibit tumor growth by selectively reducing BMI-1 production. The following...central player in PCa progression as it controls growth signals10-15, regulates oncogenic microRNAs16, and induces metastasis markers 17. BMI-1 is...advanced PCa, and targeting BMI-1 is a compelling therapeutic approach. Knockdown of BMI-1 inhibits cell proliferation and results in growth arrest11

  6. BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone

    DTIC Science & Technology

    2013-07-01

    vation of p38 led to abnormal proliferation of lung epithelial cells followed by hypersensitivity to Kras-mediated tumor induction, suggesting an...lineages. hBMSCs were maintained in minimum essential medium with 20% fetal bovine serum, 100 µg/ml streptomycin, and 100 U/ml penicillin . hFOB1.19 was... penicillin at 34°C, and it was differentiated into mature phenotype at 39°C for 24 h. Other cells were grown in RPMI 1640 medium with 10% fetal bovine serum

  7. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    PubMed

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  8. Regulation of the Prostate Cancer Tumor Microenvironment

    DTIC Science & Technology

    2014-04-01

    epithelium , stroma, as well as immune system, and the fixed nature of the prostate model with expression of the large T antigen, which may have...prostate cancer glandular architecture formed (Figure 10). Figure 10. Subcutanous TRAMP Model to Recapitulate Prostate Cancer. TRAMP C2 cells...specifically modulate the TLR signaling pathway in prostate epithelium , stroma, and immune system. To parse out the role of TLR signaling in

  9. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

    PubMed Central

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  10. Heterogeneous PSMA expression on circulating tumor cells - a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer

    PubMed Central

    Gorges, Tobias M.; Riethdorf, Sabine; von Ahsen, Oliver; Nastały, Paulina; Röck, Katharina; Boede, Marcel; Peine, Sven; Kuske, Andra; Schmid, Elke; Kneip, Christoph; König, Frank; Rudolph, Marion; Pantel, Klaus

    2016-01-01

    The prostate specific membrane antigen (PSMA) is the only clinically validated marker for therapeutic decisions in prostate cancer (PC). Characterization of circulating tumor cells (CTCs) obtained from the peripheral blood of PC patients might provide an alternative to tissue biopsies called “liquid biopsy”. The aim of this study was to develop a reliable assay for the determination of PSMA on CTCs. PSMA expression was analyzed on tissue samples (cohort one, n = 75) and CTCs from metastatic PC patients (cohort two, n = 29). Specific signals for the expression of PSMA could be seen for different prostate cancer cell line cells (PC3, LaPC4, 22Rv1, and LNCaP) by Western blot, immunohistochemistry (IHC), immunocytochemistry (ICC), and FACS. PSMA expression was found to be significantly increased in patients with higher Gleason grade (p = 0.0011) and metastases in lymph nodes (p = 0.0000085) or bone (p = 0.0020) (cohort one). In cohort two, CTCs were detectable in 20 out of 29 samples (69 %, range from 1 - 1000 cells). Twelve out of 20 CTC-positive patients showed PSMA-positive CTCs (67 %, score 1+ to 3+). We found intra-patient heterogeneity regarding the PSMA status between CTCs and the corresponding primary tumors. The results of our study could help to address the question whether treatment decisions based on CTC PSMA profiling will lead to a measurable benefit in clinical outcome for prostate cancer patients in the near future. PMID:27145459

  11. Systemic interleukin 2 therapy for human prostate tumors in a nude mouse model.

    PubMed

    Triest, J A; Grignon, D J; Cher, M L; Kocheril, S V; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J E; Hillman, G G

    1998-08-01

    Once the regional lymph nodes become involved in prostate carcinoma, 85% of patients develop distant metastases within 5 years, and metastatic disease is difficult to treat. We have investigated the effect of systemic interleukin 2 (IL-2) treatment on metastatic prostate carcinoma using a xenograft tumor model. Cells from a PC-3/IF cell line, produced by intrafemoral injection of human PC-3 prostate carcinoma cells, were injected in the prostate of Balb/c nude mice. Prostate tumors and para-aortic lymph nodes were resected, and tumor cells were recultured and passaged in the prostate in vivo to produce new cell lines. On day 6 following prostatic injection of these cell lines, mice were treated with i.p. injections of IL-2 at 25,000-50,000 units/ day for 5 consecutive days. The effect of IL-2 on tumor progression was assessed, and histological studies were performed on prostate tumor and lymph node sections. The tumor cell lines generated by serial prostate injection were tumorigenic and metastasized to regional para-aortic lymph nodes. Tumors of 0.4 cm were obtained by day 16 and grew to 1-1.5 cm by day 40 with metastasis to para-aortic lymph nodes. Following two to three weekly courses of 5 days of 25,000-40,000 units/day of IL-2, the growth of prostate tumors was inhibited by 94%. Higher doses of 50,000 units/ day were toxic. Histologically, prostate sections showed vascular damage manifested by multifocal hemorrhages and an influx of lymphocytes and polymorphonuclear cells into disintegrating tumors and areas of necrosis containing numerous apoptotic cells. In contrast to control mice, para-aortic lymph nodes were not enlarged in responding mice. These findings suggest that systemic IL-2 therapy can induce an antitumor response in prostate tumors and control their growth and metastasis.

  12. Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for Treatment of Prostate Cancer

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0450 TITLE: Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for...CONTRACT NUMBER Preparation for a Clinical Trial Using Adoptive Transfer of Tumor-Reactive TGF_Beta-Insensitive CD8+ T Cells for Treatment of Prostate...technology to clinical trial. At present, I have submitted a R21/R33 application to NCI for a combination of pre-clinical and clinical trial for the use of

  13. Solitary Fibrous Tumor of the Prostate Which Was Initially Misdiagnosed as Prostate Cancer

    PubMed Central

    Osamu, Soma; Murasawa, Hiromi; Yoneyama, Takahiro; Koie, Takuya; Ohyama, Chikara

    2017-01-01

    Solitary fibrous tumor (SFT) of the prostate is a very rare tumor. We report a case of 65-year-old man with SFT of the prostate which was initially misdiagnosed as prostate cancer. Finally, we performed total prostatectomy and the tumor was histologically diagnosed as SFT of the prostate. The patient's clinical course has progressed favorably with no obvious recurrence 18 months postoperatively.

  14. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes

    PubMed Central

    Yan, Lisa; Da Silva, Diane M.; Verma, Bhavna; Gray, Andrew; Brand, Heike E.; Skeate, Joseph G.; Porras, Tania B.; Kanodia, Shreya; Kast, W. Martin

    2014-01-01

    Background LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown in a virus induced tumor model to activate immune cells and result in tumor regression, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Methods Real Time PCR was used to evaluate expression of forced LIGHT and various other genes in prostate tumors samples. Adenovirus encoding murine LIGHT was injected intratumorally into TRAMP C2 prostate cancer cell tumor bearing mice for in vivo studies. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor specific lymphocytes were quantified via an ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. Results LIGHT expression peaked within 48 hours of infection, recruited effector T cells into the tumor microenvironment that recognized mouse prostate stem cell antigen (PSCA) and inhibited the infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. Conclusion Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  15. Positron emission tomographic imaging of iodine 124 anti-prostate stem cell antigen-engineered antibody fragments in LAPC-9 tumor-bearing severe combined immunodeficiency mice.

    PubMed

    Fonge, Humphrey; Leyton, Jeffrey V

    2013-05-01

    The humanized antibody (hu1G8) has been shown to localize to prostate stem cell antigen (PSCA) and image PSCA-positive xenografts. We previously constructed hu1G8 anti-PSCA antibody fragments and tested them for tumor targeting and the ability to image prostate cancer at early and late time points postinjection by positron emission tomography (PET). We now then compare the PET imaging and the radioactivity accumulation properties in prostate cancer tumors and nontarget tissues to determine the superior 124I-labeled hu1G8 antibody format. 124I-labeled diabody, minibody, scFv-Fc, scFv-Fc double mutant (DM), and parental IgG were administered into severe combined immunodeficiency (SCID) mice bearing LAPC-9 xenografts and followed by whole-body PET imaging of mice at preselected time points. Regions of interest were manually drawn around tumor and nontarget tissues and evaluated for radioactivity accumulation. The 124I-hu1G8 IgG has its best time point for tumor high-contrast imaging at 168 hours postinjection. The 124I-hu1G8 minibody at 44 hours postinjection results in superior tumor high-contrast imaging compared to the other antibody formats. The 124I-hu1G8 minibody at 44 hours postinjection also has comparable percent tumor radioactivity compared to 124I-hu1G8 IgG at 168 hours postinjection. The 124I-hu1G8 minibody is the best engineered hu1G8 antibody format for imaging prostate cancer.

  16. Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer

    DTIC Science & Technology

    2013-07-01

    Cancer Center 2011 – 2012 Research Career Development Award, Federal Share of the Proton Beam, NCI/MGH 2012 – 2017 Physician Research Training Award...Miyamoto (PI) 07/01/2012 – 06/30/ 2017 Physician Research Training Award, Prostate Cancer Research Program Probing androgen receptor...interval between the start of therapy and the date of death or censor. Serum PSA response was defi ned as a maxi - mal decline of 50% or more in serum PSA

  17. MicroRNA Regulation of CD44+ Prostate Tumor Stem/Progenitor Cells and Prostate Cancer Development/Metastasis

    DTIC Science & Technology

    2013-05-01

    luciferase internal normalization plasmid (phRL-CMV). We determined the ratio of firefly to Renilla luciferase activity with a dual luciferase assay...stem cells, also forms a negative feedback loop with the let-7 family miRNAs to precisely control each other’s levels. Lin-28 regulates the expression of

  18. Detection of Live Circulating Tumor Cells by a Class of Near-Infrared Heptamethine Carbocyanine Dyes in Patients with Localized and Metastatic Prostate Cancer

    PubMed Central

    Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H. T.; Ng, Christopher S.; Josephson, David Y.; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L.; Zhau, Haiyen E.; Chung, Leland W. K.; Wang, Ruoxiang; Posadas, Edwin M.

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR+) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population. PMID:24551200

  19. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  20. Quantitative [Fe]MRI of PSMA-targeted SPIONs specifically discriminates among prostate tumor cell types based on their PSMA expression levels

    PubMed Central

    Sillerud, Laurel O

    2016-01-01

    We report the development, experimental verification, and application of a general theory called [Fe]MRI (pronounced fem-ree) for the non-invasive, quantitative molecular magnetic resonance imaging (MRI) of added magnetic nanoparticles or other magnetic contrast agents in biological tissues and other sites. [Fe]MRI can easily be implemented on any MRI instrument, requiring only measurements of the background nuclear magnetic relaxation times (T1, T2) of the tissue of interest, injection of the magnetic particles, and the subsequent acquisition of a pair of T1-weighted and T2-weighted images. These images, converted into contrast images, are subtracted to yield a contrast difference image proportional to the absolute nanoparticle, iron concentration, ([Fe]) image. [Fe]MRI was validated with the samples of superparamagnetic iron oxide nanoparticles (SPIONs) both in agarose gels and bound to human prostate tumor cells. The [Fe]MRI measurement of the binding of anti-prostate specific membrane antigen (PSMA) conjugated SPIONs to PSMA-positive LNCaP and PSMA-negative DU145 cells in vitro allowed a facile discrimination among prostate tumor cell types based on their PSMA expression level. The low [Fe] detection limit of ~2 μM for SPIONs allows sensitive MRI of added iron at concentrations considerably below the US Food and Drug Administration’s human iron dosage guidelines (<90 μM, 5 mg/kg). PMID:26855574

  1. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    SciTech Connect

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  2. Modulation of Adhesion Molecule Expression on Prostate Tumor Cells after Co-Culture with Eosinophilic Cell Lines

    DTIC Science & Technology

    2001-10-01

    and/or regulate eosinophil activity(8 ). Eosinophils have been traditionally known as anti- helminthic effector cells and inflammatory agents in...the monolayer assay. In order to quantitate the inhibitory activity observed in the monolayer assays, we utilized a Chemi- Imager 4000 (alpha Innotech...experiments, eosinophil:tumor cell clusters were observed. This thus- created high density values which were readily detected by the Chemi- Imager

  3. Regulation of Prostate Tumor Cell Line Proliferation and Tumorigenicity by ErbB4

    DTIC Science & Technology

    2005-02-01

    family of tyrosine kinases, which tumors of the thyroid , breast, and gastrointestinal tract (11- includes EGFR/ErbB1, ErbB2/HER2/Neu, and ErbB3/ 14...ErbB2 is observed medulloblastoma (one of the most common solid tumors of in many human malignancies. In contrast, the roles childhood), patients...Prognostic significance of HER2 and HER4 coexpression in resentative of three independent experiments, childhood medulloblastoma . Cancer Res., 57

  4. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species.

    PubMed

    Alcayaga-Miranda, Francisca; González, Paz L; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-07-12

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies.

  5. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species

    PubMed Central

    Alcayaga-Miranda, Francisca; González, Paz L.; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-01-01

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies. PMID:27286448

  6. MAOA-Dependent Activation of Shh-IL6-RANKL Signaling Network Promotes Prostate Cancer Metastasis by Engaging Tumor-Stromal Cell Interactions.

    PubMed

    Wu, Jason Boyang; Yin, Lijuan; Shi, Changhong; Li, Qinlong; Duan, Peng; Huang, Jen-Ming; Liu, Chunyan; Wang, Fubo; Lewis, Michael; Wang, Yang; Lin, Tzu-Ping; Pan, Chin-Chen; Posadas, Edwin M; Zhau, Haiyen E; Chung, Leland W K

    2017-03-13

    Metastasis is a predominant cause of death for prostate cancer (PCa) patients; however, the underlying mechanisms are poorly understood. We report that monoamine oxidase A (MAOA) is a clinically and functionally important mediator of PCa bone and visceral metastases, activating paracrine Shh signaling in tumor-stromal interactions. MAOA provides tumor cell growth advantages in the bone microenvironment by stimulating interleukin-6 (IL6) release from osteoblasts, and triggers skeletal colonization by activating osteoclastogenesis through osteoblast production of RANKL and IL6. MAOA inhibitor treatment effectively reduces metastasis and prolongs mouse survival by disengaging the Shh-IL6-RANKL signaling network in stromal cells in the tumor microenvironment. These findings provide a rationale for targeting MAOA and its associated molecules to treat PCa metastasis.

  7. Invariant NKT Cell Ligands for Prostate Cancer Vaccines

    DTIC Science & Technology

    2011-06-01

    NUMBER Invariant NKT Cell Ligands for Prostate Cancer Vaccines 5b. GRANT NUMBER W81XWH-09-1-0156 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...efficacy in tumor bearing mice. 15. SUBJECT TERMS prostate cancer , immunotherapy, NKT cells 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...proposal have shown that mice bearing prostate cancers in the TRAMP model ( prostate specific expression on SV40 T antigen, Tag, oncogene) do not respond

  8. Combination of circulating tumor cell enumeration and tumor marker detection in predicting prognosis and treatment effect in metastatic castration-resistant prostate cancer.

    PubMed

    Chang, Kun; Kong, Yun-Yi; Dai, Bo; Ye, Ding-Wei; Qu, Yuan-Yuan; Wang, Yue; Jia, Zhong-Wei; Li, Gao-Xiang

    2015-12-08

    Although circulating tumor cell (CTC) enumeration in peripheral blood has already been validated as a reliable biomarker in predicting prognosis in metastatic castration-resistant prostate cancer (mCRPC), patients with favorable CTC counts (CTC < 5/7.5 ml) still experience various survival times. Assays that can reduce patients' risks are urgently needed. In this study, we set up a real-time quantitative polymerase chain reaction (RT-qPCR) method to detect epithelial-mesenchymal transition (EMT) and stem cell gene expression status in peripheral blood to validate whether they could complement CTC enumeration. From January 2013 to June 2014 we collected peripheral blood from 70 mCRPC patients and enumerated CTC in these blood samples using CellSearch system. At the same time, stem cell-related genes (ABCG2, PROM1 and PSCA) and EMT-related genes (TWIST1 and vimentin) were detected in these peripheral blood samples using an RT-qPCR assay. Patient overall survival (OS) and treatment methods were recorded in the follow-up. For patients who received first-line chemotherapy, docetaxel plus prednisone, PSA progression-free survival (PSA-PFS) and PSA response rate were recorded. At the time of analysis, 35 patients had died of prostate cancer with a median follow-up of 16.0 months. Unfavorable CTC enumerations (CTC ≥5/7.5 ml) were predictive of shorter OS (p = 0.01). Also, positive stem cell gene expression indicated poor prognosis in mCRPC patients (p = 0.01). However, EMT gene expression status failed to show any prognostic value in OS (p = 0.78). A multivariate analysis indicated that serum albumin (p = 0.04), ECOG performance status (p < 0.01), CTC enumeration (p = 0.02) and stem cell gene expression status (p = 0.01) were independent prognostic factors for OS. For the 40 patients categorized into the favorable CTC enumeration group, positive stem cell gene expression also suggested poor prognosis (p < 0.01). A combined prognostic model consisting of stem cell gene

  9. Synergistic antineoplastic effect of DLC1 tumor suppressor protein and histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), on prostate and liver cancer cells: perspectives for therapeutics.

    PubMed

    Zhou, Xiaoling; Yang, Xu-Yu; Popescu, Nicholas C

    2010-04-01

    Inactivation of tumor suppressor genes is a major contributing alteration in the initiation or progression of cancer. The human tumor suppressor gene DLC1 (deleted in liver cancer 1) is frequently downregulated or silenced in multiple cancers, predominantly by epigenetic mechanisms. With the current considerable interest and progress in epigenetic therapy, a number of promising antineoplastic agents, particularly histone deacetylase (HDAC) inhibitors, have been developed and used successfully in clinical trials. Both DLC1 and HDAC inhibitors exert antineoplastic functions, and their combined action could be exploited for a more effective cancer therapy. To evaluate the potential benefits of this approach, we examined the antineoplastic effects of adenoviral (Ad)-DLC1-mediated transduction and exposure to suberoylanilide hydroxamic acid (SAHA), a powerful HDAC inhibitor, in two human cancer cell lines that lack intrinsic DLC1 expression, 22Rv1 prostate cancer cells and 7703K human hepatocellular carcinoma cells. Consistent with the oncosuppressive function of DLC1 in several cancers, including prostate and liver cancer, transduction of 22Rv1 and 7703K cells with an Ad-DLC1 expression vector resulted in alterations of cell morphology, induction of apoptosis, and inhibition of cell proliferation, migration, and anchorage-independent growth. A low concentration of SAHA (5 microM) efficiently restored the expression of DLC1 in 22Rv1 cells that lack DLC1 expression due to histone deacetylation but had a minimal effect in 7703K cells in which silencing of the DLC1 gene is due mainly to promoter hypermethylation. Regardless of the epigenetic mechanism of DLC1 inactivation, SAHA treatment of DLC1-transduced cells had a synergistic inhibitory effect on tumor cell proliferation and tumorigenesis in both cell lines. In 22Rv1 cells, this combination regimen nearly abolished the formation of colonies in semisolid media as a measure of tumorigenicity in vitro. Current in vitro

  10. Targeting the Adipocyte-Tumor Cell Interaction in Prostate Cancer Treatment

    DTIC Science & Technology

    2014-10-01

    cell types, including fibroblasts (Figure 4P) (Bannai and Tateishi, 1986; Gout et al., 1997). Finally, we observed significant decreases in labeling of...factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32, 699–712. Gout , P.W., Kang, Y.J., Buckley, D.J

  11. Secondary Signet Ring Cell Carcinoma of Prostate

    PubMed Central

    Khan, Kalyan; Bandyopadhyay, Arghya; Gangopadhyay, Mimi; Chakraborty, Subrata; Bera, Pranati

    2012-01-01

    True metastases to prostate from solid tumors are reported only in 0.2% of all surgical prostatic specimens and 2.9% of all male postmortems. Clinical context, morphological features, and immunohistochemical localization of prostate specific antigen (PSA) are supposed to clarify the differential diagnosis between a secondary and a primary tumor. We report an unusual and rare case of secondary signet ring cell carcinoma (SRCC) of prostate in which the clinical data and signet ring cell morphology pointed toward the diagnosis of a primary SRCC. Immunohistochemistry (IHC) for PSA not only proved the case to be a secondary SRCC but also initiated the process for diagnosis of the occult primary malignancy in the patient′s stomach. PMID:24027389

  12. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2014-10-01

    or AMACR (in pink ) showing co-expression pattern of both tumor markers (arrows). (h-k) Histological sections from a representative zebrafish...Colonies/spheres Migra6on b h c i d j k l m n o Erg/AMACR AMACRErge f g H&E H&E PSA 1ry  PCa   1ry  PCa  graL 1ry  PCa  graL Do ce tax el...FISH (not shown) demonstrates overexpression of Erg (brown) by IHC. (b) Co-localization of Erg (brown) and AMACR ( pink ) in PCa glands demonstrated by

  13. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2014-10-01

    in brown) or AMACR (in pink ) showing co-expression pattern of both tumor markers (arrows). (h-k) Histological sections from a representative...ce tax el a Control 1ry  PCa 1ry  PCa 1ry  PCa g h d e b c Fig. 6 DMSO C-­‐209 DMSO C-­‐209 DMSO C-­‐209 Rx    22/25  (88)    10/22...fusion by FISH (not shown) demonstrates overexpression of Erg (brown) by IHC. (b) Co-localization of Erg (brown) and AMACR ( pink ) in PCa glands

  14. The TORC1/TORC2 inhibitor, Palomid 529, reduces tumor growth and sensitizes to docetaxel and cisplatin in aggressive and hormone-refractory prostate cancer cells.

    PubMed

    Gravina, Giovanni Luca; Marampon, Francesco; Petini, Foteini; Biordi, Leda; Sherris, David; Jannini, Emmanuele A; Tombolini, Vincenzo; Festuccia, Claudio

    2011-08-01

    One of the major obstacles in the treatment of hormone-refractory prostate cancer (HRPC) is the development of chemo-resistant tumors. The aim of this study is to evaluate the role of Palomid 529 (P529), a novel TORC1/TORC2 inhibitor, in association with docetaxel (DTX) and cisplatin (CP). This work utilizes a wide panel of prostatic cancer cell lines with or without basal activation of Akt as well as two in vivo models of aggressive HRPC. The blockade of Akt/mTOR activity was associated to reduced cell proliferation and induction of apoptosis. Comparison of IC50 values calculated for PTEN-positive and PTEN-negative cell lines as well as the PTEN transfection in PC3 cells or PTEN silencing in DU145 cells revealed that absence of PTEN was indicative for a better activity of the drug. In addition, P529 synergized with DTX and CP. The strongest synergism was achieved when prostate cancer (PCa) cells were sequentially exposed to CP or DTX followed by treatment with P529. Treatment with P529 before the exposure to chemotherapeutic drugs resulted in a moderate synergism, whereas intermediated values of combination index were found when drugs were administered simultaneously. In vivo treatment of a combination of P529 with DTX or CP increased the percentage of complete responses and reduced the number of mice with tumor progression. Our results provide a rationale for combinatorial treatment using conventional chemotherapy and a Akt/mTOR inhibitor as promising therapeutic approach for the treatment of HRPC, a disease largely resistant to conventional therapies.

  15. Therapeutic Roles of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2013-10-01

    zebrafish as recipients. DU145 parental cells, 5min adherent a2b1hi/CD44hi cells, and 20min non-adherent a2b1low/CD44low cells were trans- planted ...nude) mice. Cancer Chemother Pharma - col 1989;24(3):148–154. 27. Kramer J, Granier CJ, Davis S, Piso K, Hand J, Rabson AB, Sabaawy HE. Pdcd2 controls

  16. The Mechanosensitive Ca2+ Channel as a Central Regular of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2011-04-01

    1011 94. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor pressure by... Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS...Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor pressure by activation of MscS and MscL

  17. Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer

    DTIC Science & Technology

    2014-07-01

    Membrane Microfilter (University of Miami, USA)63 Dielectric field flow fractionation (DFFF) Application of electric field to isolate cells...immunofluorescence for tumour-specific markers ApoStream® (ApoCell, USA)60 Other approaches Fibre-optic array scanning technology (FAST) cytometry RBC lysis...scanning cytometry RBC lysis; immunofluorescence for EpCAM+/CD45– cells Maintrac® (Simfo, Germany)72 Functionalized nanodetector inserted into patient’s

  18. A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration In Vitro and Prostate Cancer Metastasis In Vivo

    PubMed Central

    Guo, Hong; Miao, Hui; Tochtrop, Gregory P.; Hsieh, Jer-Tsong; Page, Phillip; Liu, Lili; Lindner, Daniel J.; Acharya, Chayan; MacKerell, Alexander D.; Ficker, Eckhard; Song, Jianxing; Wang, Bingcheng

    2012-01-01

    During tumor progression, EphA2 receptor can gain ligand-independent pro-oncogenic functions due to Akt activation and reduced ephrin-A ligand engagement. The effects can be reversed by ligand stimulation, which triggers the intrinsic tumor suppressive signaling pathways of EphA2 including inhibition of PI3/Akt and Ras/ERK pathways. These observations argue for development of small molecule agonists for EphA2 as potential tumor intervention agents. Through virtual screening and cell-based assays, we report here the identification and characterization of doxazosin as a novel small molecule agonist for EphA2 and EphA4, but not for other Eph receptors tested. NMR studies revealed extensive contacts of doxazosin with EphA2/A4, recapitulating both hydrophobic and electrostatic interactions recently found in the EphA2/ephrin-A1 complex. Clinically used as an α1-adrenoreceptor antagonist (Cardura®) for treating hypertension and benign prostate hyperplasia, doxazosin activated EphA2 independent of α1-adrenoreceptor. Similar to ephrin-A1, doxazosin inhibited Akt and ERK kinase activities in an EphA2-dependent manner. Treatment with doxazosin triggered EphA2 receptor internalization, and suppressed haptotactic and chemotactic migration of prostate cancer, breast cancer, and glioma cells. Moreover, in an orthotopic xenograft model, doxazosin reduced distal metastasis of human prostate cancer cells and prolonged survival in recipient mice. To our knowledge, doxazosin is the first small molecule agonist of a receptor tyrosine kinase that is capable of inhibiting malignant behaviors in vitro and in vivo. PMID:22916121

  19. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth.

    PubMed

    Zhang, Ping; Singh, Anju; Yegnasubramanian, Srinivasan; Esopi, David; Kombairaju, Ponvijay; Bodas, Manish; Wu, Hailong; Bova, Steven G; Biswal, Shyam

    2010-02-01

    Loss-of-function mutations in the nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor Kelch-like ECH-associated protein 1 (Keap1) result in increased Nrf2 activity in non-small cell lung cancer and confer therapeutic resistance. We detected point mutations in Keap1 gene, leading to nonconservative amino acid substitutions in prostate cancer cells. We found novel transcriptional and posttranscriptional mechanisms of Keap1 inactivation, such as promoter CpG island hypermethylation and aberrant splicing of Keap1, in DU-145 cells. Very low levels of Keap1 mRNA were detected in DU-145 cells, which significantly increased by treatment with DNA methyltransferase inhibitor 5-aza-deoxycytidine. The loss of Keap1 function led to an enhanced activity of Nrf2 and its downstream electrophile/drug detoxification pathway. Inhibition of Nrf2 expression in DU-145 cells by RNA interference attenuated the expression of glutathione, thioredoxin, and the drug efflux pathways involved in counteracting electrophiles, oxidative stress, and detoxification of a broad spectrum of drugs. DU-145 cells constitutively expressing Nrf2 short hairpin RNA had lower levels of total glutathione and higher levels of intracellular reactive oxygen species. Attenuation of Nrf2 function in DU-145 cells enhanced sensitivity to chemotherapeutic drugs and radiation-induced cell death. In addition, inhibition of Nrf2 greatly suppressed in vitro and in vivo tumor growth of DU-145 prostate cancer cells. Thus, targeting the Nrf2 pathway in prostate cancer cells may provide a novel strategy to enhance chemotherapy and radiotherapy responsiveness and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes.

  20. The Mechanosensitive Ca2+ Channel as a Central Regulator of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2010-01-01

    Use time-lapse videomicroscopy and patch-clamp techniques to characterize the motility of eGFP-transfected PC-3 cells in which MScCa/TRPC1 has been...except for GsmTx-4 (Peptides International, Louisville, KY) and fluorescent agents (Invitrogen/Molecular Probes, Carlsbad, CA). Videomicroscopy ...and Ca2+-imaging. Cell migration was monitored at 37oC by time-lapse videomicroscopy using Nomarski optics with an Epifluorescent microscope (Nikon

  1. Pulmonary tumor thrombotic microangiopathy caused by prostate carcinoma

    PubMed Central

    Kuriyama, Keiko; Kinoshita, Tatsuya; Nagai, Keisuke; Hongyo, Hidenari; Kishimoto, Kentaro; Inoue, Atsuo; Takamura, Manabu; Choi, Soomi

    2016-01-01

    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal malignancy-related condition that involves rapidly progressing hypoxia and pulmonary hypertension. We report a case of PTTM caused by prostate carcinoma, which was diagnosed before autopsy in an 81-year-old man. Computed tomography showed diffuse ground-glass opacities, consolidation, and small nodules in the peripheral regions of the lung. Autopsy showed adenocarcinoma cells embolizing small pulmonary arteries with fibrocellular intimal proliferation, which was consistent with PTTM caused by prostate carcinoma. PMID:27635254

  2. The Mechanosensory Ca2+ Channel as a Central Regulator of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2008-01-01

    aquaporin‐1 gene disruption. Nature 434, 786–792. Sachs, F., and Morris, C . E. (1998). Mechanosensitive ion channels in nonspecialized cells. Revs. Physiol...Happle,K.,Malchow,D., andSchlatterer, C . (2005). Ca2þ regulation in the absence of the iplA gene product inDictyostelium discoideum. BMC Cell Biol. 6...Chalfie M (1995) A stomatin-like protein necessary for mechano- sensation in C . elegans . Nature 378:292–295 Huber TB, Scherner B, Müller RU, Höhne M

  3. Tumor Specific Regulation of C-CAM Cell Adhesion Molecule in Prostate Cancer Carcinogenesis

    DTIC Science & Technology

    2002-08-01

    692 9. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M., Davidson, N. E., and Baylin, S. B...2001) 115-123 www.elsevier.com/locate/mce Androgen regulation of the cell-cell adhesion molecule-1 (Ceacam i) gene Dillon Phan a, Xiaomei Sui b, Dung...Nature Medicine, 1: 686-692, 1995. 27 34. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M

  4. Understanding the Potential Role of Circulating Tumor Cells in Prostate Cancer Metastasis

    DTIC Science & Technology

    2012-08-01

    debulking of whole blood, precise cell positioning using inertial forces , and highly sensitive magnetophoresis. As demonstrated, this system can be...method to form conformal hydrogels. By successively depositing polymers with opposing charges, a hydrogel may be formed as electrostatic forces hold the...Characterization. Hydrogel thickness was measured using a noncontact profilometer (Olympus LEXT OLS3100) after films were formed and dried. To

  5. The Mechanosensitive Ca2+ Channel as a Central Regular of Prostate Tumor Cell Migration and Invasiveness

    DTIC Science & Technology

    2009-01-01

    S. (2005). Impairmant of angiogeneisis and cell migration by targeted aquaporin‐1 gene disruption. Nature 434, 786–792. Sachs, F., and Morris, C . E...necessary for mechano- sensation in C . elegans . Nature 378:292–295 Huber TB, Scherner B, Müller RU, Höhne M, Bartram M, Calixto A, Hagmann H...Drosophila trp gene . FEBS Lett 373:193–198 Zitt C , Zobei A, Obukhov AG, Harteneck C , Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional

  6. CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors

    PubMed Central

    Vogel, Rachel I.; Shaughnessy, Daniel P.; Nacusi, Lucas; Korman, Vicci L.; Li, Yingming; Dehm, Scott M.; Zimmerman, Cheryl L.; Niehans, Gloria A.; Unger, Gretchen M.; Trembley, Janeen H.

    2016-01-01

    CK2, a protein serine/threonine kinase, promotes cell proliferation and suppresses cell death. This essential-for-survival signal demonstrates elevated expression and activity in all cancers examined, and is considered an attractive target for cancer therapy. Here, we present data on the efficacy of a tenfibgen (TBG) coated nanocapsule which delivers its cargo of siRNA (siCK2) or single stranded RNA/DNA oligomers (RNAi-CK2) simultaneously targeting CK2α and α′ catalytic subunits. Intravenous administration of TBG-siCK2 or TBG-RNAi-CK2 resulted in significant xenograft tumor reduction at low doses in PC3-LN4 and 22Rv1 models of prostate cancer. Malignant cell uptake and specificity in vivo was verified by FACS analysis and immunofluorescent detection of nanocapsules and PCR detection of released oligomers. Dose response was concordant with CK2αα′ RNA transcript levels and the tumors demonstrated changes in CK2 protein and in markers of proliferation and cell death. Therapeutic response corresponded to expression levels for argonaute and GW proteins, which function in oligomer processing and translational repression. No toxicity was detected in non-tumor tissues or by serum chemistry. Tumor specific delivery of anti-CK2 RNAi via the TBG nanoencapsulation technology warrants further consideration of translational potential. PMID:27557516

  7. HLA class II antigen presentation by prostate cancer cells.

    PubMed

    Younger, A R; Amria, S; Jeffrey, W A; Mahdy, A E M; Goldstein, O G; Norris, J S; Haque, A

    2008-01-01

    Prostate cancer is the second most commonly diagnosed cancer in men. Recent evidence suggests that reduced expression of target protein antigens and human leukocyte antigen (HLA) molecules is the predominant immune escape mechanism of malignant prostate tumor cells. The purpose of this study was to investigate the prospect of antigen specific immunotherapy against prostate cancer via the HLA class II pathway of immune recognition. Here, we show for the first time that prostate cancer cells express HLA class II proteins that are recognized by CD4+ T cells. Prostate tumor cells transduced with class II molecules efficiently presented tumor-associated antigens/peptides to CD4+ T cells. This data suggests that malignant prostate tumors can be targeted via the HLA class II pathway, and that class II-positive tumors could be employed for direct antigen presentation, and CD4+ T-cell mediated tumor immunotherapy.Prostate Cancer and Prostatic Diseases (2008) 11, 334-341; doi:10.1038/sj.pcan.4501021; published online 16 October 2007.

  8. Necrosis in DU145 prostate cancer spheroids induces COX-2/mPGES-1-derived PGE2 to promote tumor growth and to inhibit T cell activation.

    PubMed

    Sha, Weixiao; Olesch, Catherine; Hanaka, Hiromi; Rådmark, Olof; Weigert, Andreas; Brüne, Bernhard

    2013-10-01

    Cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2 ) supports the growth of a spectrum of cancers. The potential benefit of COX-2-inhibiting non-steroidal anti-inflammatory drugs (NSAIDs) for cancer treatment is however limited by their well-known cardiovascular side-effects. Therefore, targeting microsomal PGE synthase 1 (mPGES-1), the downstream enzyme in the COX-2-dependent pathway of PGE2 production might be attractive, although conflicting data regarding a potential tumor-supporting function of mPGES-1 were reported. We determined the impact of mPGES-1 in human DU145 prostate cancer cell growth. Surprisingly, knockdown of mPGES-1 did not alter growth of DU145 monolayer cells, but efficiently inhibited the growth of DU145 multicellular tumor spheroids (MCTS). Opposed to MCTS, monolayer cells did not secrete PGE2 due to a lack of COX-2 expression, which was induced during spheroid formation. Pharmacological inhibition of COX-2 and mPGES-1 supported the crucial role of PGE2 for growth of MCTS. The functionality of spheroid-derived PGE2 was demonstrated by its ability to inhibit cytotoxic T cell activation. When investigating mechanisms of spheroid-induced COX-2 induction, we observed that among microenvironmental factors neither glucose deprivation, hypoxia nor tumor cell apoptosis enhanced COX-2 expression. Interestingly, interfering with apoptosis in spheroids triggered a shift towards necrosis, thus augmenting COX-2 expression. We went on to demonstrate that necrotic cells induced COX-2 mRNA expression and PGE2 secretion from live tumor cells. In conclusion, necrosis-dependent COX-2 upregulation in MCTS promoted PGE2 -dependent tumor growth and inhibited activated cytotoxic T cells. Hence, blocking mPGES-1 as a therapeutic option may be considered for COX-2/mPGES-1-positive solid cancers.

  9. Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells.

    PubMed

    Yu, Xinpei; Ai, Junkui; Cai, Liquan; Jing, Yifeng; Wang, Dan; Dong, Jun; Pascal, Laura E; Zhang, Jian; Luo, Rongcheng; Wang, Zhou

    2016-05-17

    RNA Polymerase II Elongation Factor (ELL)-associated factor 2 (EAF2) is a tumor suppressor frequently down-regulated in human prostate cancer. We previously reported that its binding partner ELL1 can enhance EAF2 protein stability and activity. Here we show that EAF2 can be polyubiquitinated and its degradation blocked by proteasome inhibitor. Co-immunoprecipitation detected EAF2 binding to SIAH2, an E3 ligase, and SIAH2 overexpression enhanced polyubiquitination of EAF2. Co-transfection of EAF2 binding partner ELL1 blocked EAF2 ubiquitination, providing a mechanism for EAF2 stabilization. Finally, EAF2K81R mutant, which exhibits reduced polyubiquitination and increased stability, was more potent than wild-type EAF2 in apoptosis induction. These findings suggest that SIAH2 is an E3 ligase for EAF2 polyubiquitination and ELL1 can enhance EAF2 level and function by blocking its polyubiquitination.

  10. Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells

    PubMed Central

    Yu, Xinpei; Ai, Junkui; Cai, Liquan; Jing, Yifeng; Wang, Dan; Dong, Jun; Pascal, Laura E.; Zhang, Jian; Luo, Rongcheng; Wang, Zhou

    2016-01-01

    RNA Polymerase II Elongation Factor (ELL)-associated factor 2 (EAF2) is a tumor suppressor frequently down-regulated in human prostate cancer. We previously reported that its binding partner ELL1 can enhance EAF2 protein stability and activity. Here we show that EAF2 can be polyubiquitinated and its degradation blocked by proteasome inhibitor. Co-immunoprecipitation detected EAF2 binding to SIAH2, an E3 ligase, and SIAH2 overexpression enhanced polyubiquitination of EAF2. Co-transfection of EAF2 binding partner ELL1 blocked EAF2 ubiquitination, providing a mechanism for EAF2 stabilization. Finally, EAF2K81R mutant, which exhibits reduced polyubiquitination and increased stability, was more potent than wild-type EAF2 in apoptosis induction. These findings suggest that SIAH2 is an E3 ligase for EAF2 polyubiquitination and ELL1 can enhance EAF2 level and function by blocking its polyubiquitination. PMID:27058417

  11. Molecular Heterogeneity in Primary and Metastatic Prostate Tumor Tissue

    DTIC Science & Technology

    2015-06-01

    AWARD NUMBER: W81XWH-12-1-0072 TITLE: Molecular Heterogeneity in Primary and Metastatic Prostate Tumor Tissue PRINCIPAL INVESTIGATOR: Dr. Julie...Molecular Heterogeneity in Primary and Metastatic Prostate Tumor Tissue 5a. CONTRACT NUMBER W81XWH-12-1-0072 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...heterogeneity in PTEN loss in tumor tissue and prostate cancer prognosis. Aim 2 aimed to compare gene expression profiles between primary and lymph

  12. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  13. Use of macrophages to target therapeutic adenovirus to human prostate tumors.

    PubMed

    Muthana, Munitta; Giannoudis, Athina; Scott, Simon D; Fang, Hsin-Yu; Coffelt, Seth B; Morrow, Fiona J; Murdoch, Craig; Burton, Julian; Cross, Neil; Burke, Bernard; Mistry, Roshna; Hamdy, Freddie; Brown, Nicola J; Georgopoulos, Lindsay; Hoskin, Peter; Essand, Magnus; Lewis, Claire E; Maitland, Norman J

    2011-03-01

    New therapies are required to target hypoxic areas of tumors as these sites are highly resistant to conventional cancer therapies. Monocytes continuously extravasate from the bloodstream into tumors where they differentiate into macrophages and accumulate in hypoxic areas, thereby opening up the possibility of using these cells as vehicles to deliver gene therapy to these otherwise inaccessible sites. We describe a new cell-based method that selectively targets an oncolytic adenovirus to hypoxic areas of prostate tumors. In this approach, macrophages were cotransduced with a hypoxia-regulated E1A/B construct and an E1A-dependent oncolytic adenovirus, whose proliferation is restricted to prostate tumor cells using prostate-specific promoter elements from the TARP, PSA, and PMSA genes. When such cotransduced cells reach an area of extreme hypoxia, the E1A/B proteins are expressed, thereby activating replication of the adenovirus. The virus is subsequently released by the host macrophage and infects neighboring tumor cells. Following systemic injection into mice bearing subcutaneous or orthotopic prostate tumors, cotransduced macrophages migrated into hypoxic tumor areas, upregulated E1A protein, and released multiple copies of adenovirus. The virus then infected neighboring cells but only proliferated and was cytotoxic in prostate tumor cells, resulting in the marked inhibition of tumor growth and reduction of pulmonary metastases. This novel delivery system employs 3 levels of tumor specificity: the natural "homing" of macrophages to hypoxic tumor areas, hypoxia-induced proliferation of the therapeutic adenovirus in host macrophages, and targeted replication of oncolytic virus in prostate tumor cells.

  14. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells.

    PubMed

    Esmaeili, Mohsen; Jennek, Susanne; Ludwig, Susann; Klitzsch, Alexandra; Kraft, Florian; Melle, Christian; Baniahmad, Aria

    2016-06-01

    The androgen receptor (AR) signaling is critical for prostate cancer (PCa) progression to the castration-resistant stage with poor clinical outcome. Altered function of AR-interacting factors may contribute to castration-resistant PCa (CRPCa). Inhibitor of growth 1 (ING1) is a tumor suppressor that regulates various cellular processes including cell proliferation. Interestingly, ING1 expression is upregulated in senescent primary human prostate cells; however, its role in AR signaling in PCa was unknown. Using a proteomic approach by surface-enhanced laser desorption ionization-mass spectrometry (SELDI-MS) combined with immunological techniques, we provide here evidence that ING1b interacts in vivo with the AR. The interaction was confirmed by co-immunoprecipitation, in vitro GST-pull-down, and quantitative intracellular colocalization analyses. Functionally, ING1b inhibits AR-responsive promoters and endogenous key AR target genes in the human PCa LNCaP cells. Conversely, ING1b knockout (KO) mouse embryonic fibroblasts (MEFs) exhibit enhanced AR activity, suggesting that the interaction with ING1b represses the AR-mediated transcription. Also, data suggest that ING1b expression is downregulated in CRPCa cells compared with androgen-dependent LNCaP cells. Interestingly, its ectopic expression induces cellular senescence and reduces cell migration in both androgen-dependent and CRPCa cells. Intriguingly, ING1b can also inhibit androgen-induced growth in LNCaP cells in a similar manner as AR antagonists. Moreover, ING1b upregulates different cell cycle inhibitors including p27(KIP1), which is a novel target for ING1b. Taken together, our findings reveal a novel corepressor function of ING1b on various AR functions, thereby inhibiting PCa cell growth.

  15. Maspin expression in prostate tumor elicits host anti-tumor immunity

    PubMed Central

    Dzinic, Sijana H.; Chen, Kang; Thakur, Archana; Kaplun, Alexander; Daniel Bonfil, R.; Li, Xiaohua; Liu, Jason; Margarida Bernardo, M.; Saliganan, Allen; Back, Jessica B.; Yano, Hiroshi; Schalk, Dana L.; Tomaszewski, Elyse N.; Beydoun, Ahmed S.; Dyson, Gregory; Mujagic, Adelina; Krass, David; Dean, Ivory; Mi, Qing-Sheng; Heath, Elisabeth; Sakr, Wael; Lum, Lawrence G.; Sheng, Shijie

    2014-01-01

    The goal of the current study is to examine the biological effects of epithelial-specific tumor suppressor maspin on tumor host immune response. Accumulated evidence demonstrates an anti-tumor effect of maspin on tumor growth, invasion and metastasis. The molecular mechanism underlying these biological functions of maspin is thought to be through histone deacetylase inhibition, key to the maintenance of differentiated epithelial phenotype. Since tumor-driven stromal reactivities co-evolve in tumor progression and metastasis, it is not surprising that maspin expression in tumor cells inhibits extracellular matrix degradation, increases fibrosis and blocks hypoxia-induced angiogenesis. Using the athymic nude mouse model capable of supporting the growth and progression of xenogeneic human prostate cancer cells, we further demonstrate that maspin expression in tumor cells elicits neutrophil- and B cells-dependent host tumor immunogenicity. Specifically, mice bearing maspin-expressing tumors exhibited increased systemic and intratumoral neutrophil maturation, activation and antibody-dependent cytotoxicity, and decreased peritumoral lymphangiogenesis. These results reveal a novel biological function of maspin in directing host immunity towards tumor elimination that helps explain the significant reduction of xenograft tumor incidence in vivo and the clinical correlation of maspin with better prognosis of several types of cancer. Taken together, our data raised the possibility for novel maspin-based cancer immunotherapies. PMID:25373490

  16. Down-regulation of protein kinase Ceta potentiates the cytotoxic effects of exogenous tumor necrosis factor-related apoptosis-inducing ligand in PC-3 prostate cancer cells.

    PubMed

    Sonnemann, Jürgen; Gekeler, Volker; Sagrauske, Antje; Müller, Cornelia; Hofmann, Hans-Peter; Beck, James F

    2004-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a highly promising candidate for the treatment of cancer because it elicits cell death in the majority of tumor cells while sparing most normal cells. Some cancers, however, display resistance to TRAIL, suggesting that treatment with TRAIL alone may be insufficient for cancer therapy. In the present study, we explored whether the apoptotic responsiveness of PC-3 prostate cancer cells to TRAIL could be enhanced by targeting the novel protein kinase C (PKC) isoform eta. Transfection of PC-3 cells with second-generation chimeric antisense oligonucleotides against PKCeta caused a time- and dose-dependent knockdown of PKCeta, as revealed by real-time RT-PCR and Western blot analyses. Knockdown of PKCeta resulted in a marked amplification of TRAIL's cytotoxic activity. Cell killing could be substantially prevented by the pan-caspase inhibitor z-VAD-fmk. In addition, PKCeta knockdown and administration of TRAIL significantly synergized in activation of caspase-3 and internucleosomal DNA fragmentation. Knockdown of PKCeta augmented TRAIL-induced dissipation of the mitochondrial transmembrane potential and release of cytochrome c from mitochondria into the cytosol, indicating that PKCeta acts upstream of mitochondria. We conclude that PKCeta represents a considerable resistance factor with respect to TRAIL and a promising target to exploit the therapeutic potential of TRAIL.

  17. Regulation of the Prostate Cancer Tumor Microenvironment

    DTIC Science & Technology

    2015-04-01

    are interested in understanding the mechanisms for development of TILs and how they modulate prostate cancer. Our hypothesis is that the innate ...growth can be altered through modulating the composition of TILs through innate immunity. Body Pathogens or cancerous cells alike can produce danger... innate immunity, including Toll-like receptors (TLRs). Thirteen mammalian TLRs have been identified to date with ligands ranging from

  18. Basal cell carcinoma of the prostate: unusual subtype of prostatic carcinoma.

    PubMed

    Komura, Kazumasa; Inamoto, Teruo; Tsuji, Motomu; Ibuki, Naokazu; Koyama, Kohei; Ubai, Takanobu; Azuma, Haruhito; Katsuoka, Yoji

    2010-12-01

    Basal cell carcinoma of the prostate, which has been generally considered to be indolent, is an unusual histological type of prostatic carcinoma and is extremely rare. This tumor has been classified according to the prevalent pattern of growth as adenoid cystic carcinoma or basaloid cell carcinoma (BCC), with the former growth pattern being considered to be the main feature of this entity. A 67-year-old Japanese man was admitted to a general hospital with obstructive urinary symptoms. His prostate was slightly enlarged, stony hard, and with a rough surface on digital rectal examination, while serum prostate-specific antigen and prostatic acid phosphatase concentrations were within the normal ranges (0.007 and 0.9 ng/mL, respectively). 2-Fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) exhibited multiple accumulations suspicious for cancer metastases. Specimens obtained by prostatic needle biopsy showed immunohistochemical reactivity for cytokeratin 34βE12 and P63, findings that were identical to those seen in basal cell carcinoma. Basal cell carcinoma of the prostate is a rare tumor, reported in 56 cases so far, and among all these, the pure form of BCC is extremely rare. Immunohistochemistry is indispensable to distinguish this neoplasm from other unusual histological types of prostatic carcinomas. Our findings reveal that tumors with a basaloid cell-predominant pattern have significant potential for a poor prognosis, in contrast with the conventional understanding regarding this neoplasm.

  19. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    SciTech Connect

    Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T.

    2012-05-17

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  20. Osteopontin is a tumor autoantigen in prostate cancer patients

    PubMed Central

    TILLI, TATIANA M.; SILVA, ELOÍSIO A.; MATOS, LÍVIA C.; FAGET, DOUGLAS V.; DIAS, BIANCA F.P.; VASCONCELOS, JULIANA S.P.; YOKOSAKI, YASUYUKI; GIMBA, ETEL R.P.

    2011-01-01

    Anti-tumor antibodies act as biomarkers for the early diagnosis of prostate cancer (PCa). Osteopontin (OPN) is overexpressed in PCa cells and contributes to the progression of the disease. This study aimed to evaluate whether OPN evokes a humoral immune response in PCa patients and whether the reactivity levels of anti-OPN antibodies may be used to better differentiate PCa from benign and healthy donor plasma samples. Plasma samples from biopsy-proven PCa patients (29), benign prostate hyperplasia (BPH) (18) and control healthy donors (HD) (30) were tested by immunoblots using the recombinant human OPN. The frequency of anti-OPN antibodies was significantly higher in PCa (66%) plasma samples as compared to BPH (33%) and HD controls (10%). Anti-OPN antibodies were detected in a high proportion of plasma samples from patients with a Gleason score of less than 6 (57%), prostate-specific antigen levels lower than 10 ng/ml (67%) and pT2 organ-confined disease (70%), suggesting that anti-OPN antibodies may be used as an early serum marker for PCa. To the best of our knowledge, this is the first description of OPN as a tumor autoantigen and one of the most reactive individual autoantigens described thus far. These data support the inclusion of OPN in a multiplex of tumor antigens in order to perform antibody profiling in PCa as well as in other malignancies overexpressing OPN. PMID:22870138

  1. Osteopontin is a tumor autoantigen in prostate cancer patients.

    PubMed

    Tilli, Tatiana M; Silva, Eloísio A; Matos, Lívia C; Faget, Douglas V; Dias, Bianca F P; Vasconcelos, Juliana S P; Yokosaki, Yasuyuki; Gimba, Etel R P

    2011-01-01

    Anti-tumor antibodies act as biomarkers for the early diagnosis of prostate cancer (PCa). Osteopontin (OPN) is overexpressed in PCa cells and contributes to the progression of the disease. This study aimed to evaluate whether OPN evokes a humoral immune response in PCa patients and whether the reactivity levels of anti-OPN antibodies may be used to better differentiate PCa from benign and healthy donor plasma samples. Plasma samples from biopsy-proven PCa patients (29), benign prostate hyperplasia (BPH) (18) and control healthy donors (HD) (30) were tested by immunoblots using the recombinant human OPN. The frequency of anti-OPN antibodies was significantly higher in PCa (66%) plasma samples as compared to BPH (33%) and HD controls (10%). Anti-OPN antibodies were detected in a high proportion of plasma samples from patients with a Gleason score of less than 6 (57%), prostate-specific antigen levels lower than 10 ng/ml (67%) and pT2 organ-confined disease (70%), suggesting that anti-OPN antibodies may be used as an early serum marker for PCa. To the best of our knowledge, this is the first description of OPN as a tumor autoantigen and one of the most reactive individual autoantigens described thus far. These data support the inclusion of OPN in a multiplex of tumor antigens in order to perform antibody profiling in PCa as well as in other malignancies overexpressing OPN.

  2. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    SciTech Connect

    Cai, Liquan; Wang, Dan; Fisher, Alfred L.; Wang, Zhou

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  3. Prostate cancer stem/progenitor cells: identification, characterization, and implications.

    PubMed

    Tang, Dean G; Patrawala, Lubna; Calhoun, Tammy; Bhatia, Bobby; Choy, Grace; Schneider-Broussard, Robin; Jeter, Collene

    2007-01-01

    Several solid tumors have now been shown to contain stem cell-like cells called cancer stem cells (CSC). These cells, although generally rare, appear to be highly tumorigenic and may be the cells that drive tumor formation, maintain tumor homeostasis, and mediate tumor metastasis. In this Perspective, we first provide our insight on how a CSC should be defined. We then summarize our current knowledge of stem/progenitor cells in the normal human prostate (NHP), an organ highly susceptible to hyperproliferative diseases such as benign prostate hyperplasia (BPH) and prostate cancer (PCa). We further review the evidence that cultured PCa cells, xenograft prostate tumors, and patient tumors may contain stem/progenitor cells. Along with our discussion, we present several methodologies that can be potentially used to identify putative tumor-reinitiating CSC. Finally, we present a hypothetical model for the hierarchical organization of human PCa cells and discuss the implications of this model in helping understand prostate carcinogenesis and design novel diagnostic, prognostic, and therapeutic approaches.

  4. Immunohistological analysis of ABCD3 expression in Caucasian and African American prostate tumors.

    PubMed

    Reams, R Renee; Jones-Triche, Jacqueline; Chan, Owen T M; Hernandez, Brenda Y; Soliman, Karam F A; Yates, Clayton

    2015-01-01

    In a previously published study, we showed that expression of the ABCD3 gene increased with increasing metastatic potential in a panel of prostate cancer cell lines derived from African American and Caucasian American men. Given importance of identifying biomarker(s) that can distinguish indolent versus aggressive prostate tumors, we conducted an immunohistochemical analysis of ABCD3 expression Caucasian and African American prostate tumors. ABCD3 expression in each patient population was compared with clinicopathologic characteristics, Gleason score, and age. ABCD3 expression increased with increasing Gleason score (P = 0.0094), age (P = 0.0014), and pathology grade (P = 0.0007) in Caucasian patients. Interestingly, in the AA patients, ABCD3 expression highly increased to the same degree in both low and high Gleason score tumors. Similarly, ABCD3 expression was elevated to the same degree in BPH derived from AA. Our findings demonstrate that increased ABCD3 expression correlates with Gleason Score in CA prostate tumors. However, in AA prostate tumors, ABCD3 expression was higher and was sustained in both low Gleason and high Gleason AA tumors. While the functional role of ABCD3 in prostate cancer is not completely elucidated, this gene warrants further study as a potential biomarker for aggressive prostate.

  5. Penta-1,2,3,4,6-O-galloyl-beta-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo.

    PubMed

    Hu, Hongbo; Lee, Hyo-Jeong; Jiang, Cheng; Zhang, Jinhui; Wang, Lei; Zhao, Yan; Xiang, Qiu; Lee, Eun-Ok; Kim, Sung-Hoon; Lü, Junxuan

    2008-09-01

    Penta-1,2,3,4,6-O-galloyl-beta-D-glucose (PGG) is a naturally occurring gallotannin from some Oriental herbs. Several cell culture studies suggested a potential for PGG as a novel agent for the chemoprevention and treatment of cancer. Here, we investigated the cell death signaling mechanisms induced by PGG in human prostate cancer cells of different p53 functional status. We observed the induction of G(1)- and S-phase arrests and caspase-mediated apoptosis in the androgen-dependent human LNCaP cells, which express wild-type p53, and in the androgen-independent, p53-mutant DU145 cells. In LNCaP cells, caspase-mediated apoptosis induction by PGG was associated with and mediated in major part by activation of p53 as established through small interfering RNA knockdown and dominant-negative mutant approaches. Intracellular reactive oxygen species production by PGG was found to be crucial for these molecular and cellular actions. In DU145 cells, which harbor constitutively active signal transducer and activator of transcription 3 (STAT3), caspase-mediated apoptosis induction by PGG was associated with an inhibition of STAT3 Tyr705 phosphorylation and the down-regulation of STAT3 transcriptional targets Bcl-XL and Mcl-1. Overexpression of Bcl-XL or knockdown of its binding partner Bak attenuated apoptosis induction. Furthermore, we provide, for the first time, in vivo data that PGG significantly inhibited DU145 xenograft growth in an athymic nude mouse model in association with an inhibition of pSTAT3. Our data support PGG as a multitargeting agent for chemoprevention and therapy of prostate cancer by activating the p53 tumor suppressor pathway and by inhibiting STAT3 oncogenic signaling.

  6. Circulating tumor cells

    PubMed Central

    Raimondi, Cristina; Nicolazzo, Chiara; Gradilone, Angela; Giannini, Giuseppe; De Falco, Elena; Chimenti, Isotta; Varriale, Elisa; Hauch, Siegfried; Plappert, Linda; Cortesi, Enrico; Gazzaniga, Paola

    2014-01-01

    The hypothesis of the “liquid biopsy” using circulating tumor cells (CTCs) emerged as a minimally invasive alternative to traditional tissue biopsy to determine cancer therapy. Discordance for biomarkers expression between primary tumor tissue and circulating tumor cells (CTCs) has been widely reported, thus rendering the biological characterization of CTCs an attractive tool for biomarkers assessment and treatment selection. Studies performed in metastatic colorectal cancer (mCRC) patients using CellSearch, the only FDA-cleared test for CTCs assessment, demonstrated a much lower yield of CTCs in this tumor type compared with breast and prostate cancer, both at baseline and during the course of treatment. Thus, although attractive, the possibility to use CTCs as therapy-related biomarker for colorectal cancer patients is still limited by a number of technical issues mainly due to the low sensitivity of the CellSearch method. In the present study we found a significant discordance between CellSearch and AdnaTest in the detection of CTCs from mCRC patients. We then investigated KRAS pathway activating mutations in CTCs and determined the degree of heterogeneity for KRAS oncogenic mutations between CTCs and tumor tissues. Whether KRAS gene amplification may represent an alternative pathway responsible for KRAS activation was further explored. KRAS gene amplification emerged as a functionally equivalent and mutually exclusive mechanism of KRAS pathway activation in CTCs, possibly related to transcriptional activation. The serial assessment of CTCs may represent an early biomarker of treatment response, able to overcome the intrinsic limit of current molecular biomarkers represented by intratumor heterogeneity. PMID:24521660

  7. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    SciTech Connect

    Zhang, Jing; Shen, Chengwu; Wang, Lin; Ma, Quanping; Xia, Pingtian; Qi, Mei; Yang, Muyi; Han, Bo

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  8. New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy.

    PubMed

    Cereda, Vittore; Poole, Diane J; Palena, Claudia; Das, Sudipto; Bera, Tapan K; Remondo, Cinzia; Gulley, James L; Arlen, Philip M; Yokokawa, Junko; Pastan, Ira; Schlom, Jeffrey; Tsang, Kwong Y

    2010-01-01

    New gene expressed in prostate (NGEP) is a prostate-specific gene encoding either a small cytoplasmic protein (NGEP-S) or a larger polytopic membrane protein (NGEP-L). NGEP-L expression is detectable only in prostate cancer, benign prostatic hyperplasia and normal prostate. We have identified an HLA-A2 binding NGEP epitope (designated P703) which was used to generate T cell lines from several patients with localized and metastatic prostate cancer. These T cell lines were able to specifically lyse HLA-A2 and NGEP-expressing human tumor cells. NGEP-P703 tetramer binding assays demonstrated that metastatic prostate cancer patients had a higher frequency of NGEP-specific T cells when compared with healthy donors. Moreover, an increased frequency of NGEP-specific T cells was detected in the peripheral blood mononuclear cells of prostate cancer patients post-vaccination with a PSA-based vaccine, further indicating the immunogenicity of NGEP. These studies thus identify NGEP as a potential target for T cell-mediated immunotherapy of prostate cancer.

  9. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  10. Tumor clone dynamics in lethal prostate cancer.

    PubMed

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; S de Bono, Johann; Demichelis, Francesca; Attard, Gerhardt

    2014-09-17

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers.

  11. Tumor clone dynamics in lethal prostate cancer

    PubMed Central

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; de Bono, Johann S.; Demichelis, Francesca; Attard, Gerhardt

    2015-01-01

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers. PMID:25232177

  12. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo.

    PubMed

    Saha, Achinto; Blando, Jorge; Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-05-03

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer.

  13. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo

    PubMed Central

    Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-01-01

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer. PMID:26910370

  14. Role of the ARF Tumor Suppressor in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    currently understudied . Our preliminary data using human samples from Washington University indicates that prostate adenocarcinomas typically...In addition, we have used several media formulations for epithelial and prostate cell culture. These have not helped to promote the specific growth

  15. Origin and Properties of Prostatic Stem Cells

    DTIC Science & Technology

    2006-02-01

    treating prostate cancer and benign prostatic hyperplasia . prostate 6 integrin Bcl-2 S tem cell biology and tumorigenesis may be closely linked...In addition to being a source of carcinomas, stem cells may also give rise to benign prostatic hyperplasia (7). The isolation and characterization of...expression may contribute to the etiology of prostatic diseases such as benign prostatic hyperplasia (48), proliferative inflam- matory atrophy, which

  16. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.

  17. Epidermal Growth Factor Receptor Status in Circulating Tumor Cells as a Predictive Biomarker of Sensitivity in Castration-Resistant Prostate Cancer Patients Treated with Docetaxel Chemotherapy

    PubMed Central

    Okegawa, Takatsugu; Itaya, Naoshi; Hara, Hidehiko; Tambo, Mitsuhiro; Nutahara, Kikuo

    2016-01-01

    Objective: We examined whether epidermal growth factor receptor (EGFR) expression in circulating tumor cells (CTCs) can be used to predict survival in a population of bone-metastatic castration-resistant prostate cancer (mCRPC) patients treated with docetaxel chemotherapy. Methods: All patients with mCRPC who had experienced treatment failure with androgen-deprivation therapy and had received docetaxel chemotherapy were eligible. CTCs and EGFR expression in CTCs were enumerated with the CellSearch System in whole blood. This system is a semi-automated system that detects and enriches epithelial cells from whole blood using an EpCAM antibody-based immunomagnetic capture. In addition, the EGFR-positive CTCs were assessed using CellSearch® Tumor Phenotyping Reagent EGFR. Results: The median CTC count at baseline before starting trial treatment was eight CTCs per 7.5 mL of blood (range 0–184). There were 37 patients (61.7%) who had ≥5 CTCs, with median overall survival of 11.5 months compared with 20.0 months for 23 patients (38.3%) with <5 CTCs (p < 0.001). A total of 15 patients (40.5%, 15/37) with five or more CTCs were subjected to automated immunofluorescence staining and cell sorting for EGFR protein. Patients with EGFR-positive CTCs had a shorter overall survival (OS) (5.5 months) than patients with EGFR-negative CTCs (20.0 months). CTCs, EGFR-positive CTCs, and alkaline phosphatase (ALP) were independent predictors of overall survival time (p = 0.002, p < 0.001, and p = 0.017, respectively). Conclusion: CTCs may be an independent predictor of OS in CRPC treated with docetaxel chemotherapy. The EGFR expression detected in CTCs was important for assessing the response to chemotherapy and predicting disease outcome. PMID:27916908

  18. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism

    PubMed Central

    Tomkova, Veronika; Korenkova, Vlasta; Langerova, Lucie; Simonova, Ekaterina; Zjablovskaja, Polina; Alberich-Jorda, Meritxell; Neuzil, Jiri; Truksa, Jaroslav

    2017-01-01

    The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy. PMID:28031527

  19. Stromal prostatic sarcoma: a rare tumor with rare clinical and imaging presentation

    PubMed Central

    Rojas-Jiménez, Anamaría; Otero-Garcia, Milagros; Mateos-Martin, Alejandro

    2013-01-01

    Adult prostatic stromal sarcoma is a rare malignant tumor. The main presenting symptom is urinary retention secondary to bladder outlet obstruction. Prostatic Specific Antigen level can be normal. Imaging features show a prostate mass with or without pelvic organ invasion depending on the aggressiveness of the tumor. We present a patient with prostatic stromal sarcoma who debuted with urinary obstruction, leukocytosis and neutrophilia, prostate enlargement, and hypodense prostate areas on CT images, simulating prostatitis with abscess formation. PMID:24421945

  20. Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses.

    PubMed

    Ahmed, Maryam; Cramer, Scott D; Lyles, Douglas S

    2004-12-05

    Because of its potent ability to induce apoptosis, vesicular stomatitis virus (VSV) is an attractive candidate as an oncolytic virus for tumor therapy. Previous studies have suggested that VSV selectively infects tumor cells due to defects in their antiviral responses making them more susceptible to VSV infection than normal cells. We tested this hypothesis in the prostate tumor system by comparing LNCaP and PC-3 prostate tumor cells to benign human prostatic epithelial cells from patient prostatectomy specimens. We compared the cell killing ability of a recombinant virus containing a wild-type (wt) M protein (rwt) and an isogenic M protein mutant virus (rM51R-M) that induces interferon (IFN) in infected cells and should display a greater selectivity for tumor cells. Our results showed that in single-cycle infection experiments, LNCaP cells were sensitive to killing by both wt and mutant viruses, while PC-3 cells were highly resistant to VSV-induced cell killing. LNCaP and benign prostate cells were similarly susceptible to both viruses, indicating that normal prostate cells are not inherently resistant to killing by VSV. In each of the cell lines, the rM51R-M virus induced similar levels of apoptosis to rwt virus, showing that the M protein does not play a significant role in apoptosis induction by VSV in these cells. In multiple-cycle infection experiments, LNCaP cells were more sensitive than benign prostatic epithelial cells to virus-induced cell killing by rM51R-M virus, but not rwt virus. Both viruses were equally effective at reducing LNCaP tumor volume in vivo following intratumoral and intravenous inoculation in nude mice, while PC-3 tumors were resistant to VSV treatment. None of the mice treated with rM51R-M virus died as a result of virus infection, while 50-71% of mice treated with rwt virus succumbed to virus infection. Similarly, when inoculated by the more sensitive intranasal route, the rM51R-M virus was less pathogenic than the rwt virus from

  1. An immune-inflammation gene expression signature in prostate tumors of smokers

    PubMed Central

    Yi, Ming; Tang, Wei; Luo, Jun; Dorsey, Tiffany H.; Stagliano, Katherine E.; Gillespie, John W.; Hudson, Robert S.; Terunuma, Atsushi; Shoe, Jennifer L.; Haines, Diana C.; Yfantis, Harris G.; Han, Misop; Martin, Damali N.; Jordan, Symone V.; Borin, James F.; Naslund, Michael J.; Alexander, Richard B.; Stephens, Robert M.; Loffredo, Christopher A.; Lee, Dong H.; Putluri, Nagireddy; Sreekumar, Arun; Hurwitz, Arthur A.; Ambs, Stefan

    2016-01-01

    Smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor is driving metastatic progression. To identify smoking-induced alterations in human prostate cancer, we analyzed gene and protein expression patterns in tumors collected from current, past, and never smokers. By this route, we elucidated a distinct pattern of molecular alterations characterized by an immune and inflammation signature in tumors from current smokers that were either attenuated or absent in past and never smokers. Specifically, this signature included elevated immunoglobulin expression by tumor-infiltrating B cells, NF-κB activation, and increased chemokine expression. In an alternate approach to characterize smoking-induced oncogenic alterations, we also explored the effects of nicotine in human prostate cancer cells and prostate cancer-prone TRAMP mice. These investigations showed that nicotine increased glutamine consumption and invasiveness of cancer cells in vitro and accelerated metastatic progression in tumor-bearing TRAMP mice. Overall, our findings suggested that nicotine was sufficient to induce a phenotype resembling the epidemiology of smoking-associated prostate cancer progression, illuminating a novel candidate driver underlying metastatic prostate cancer in current smokers. PMID:26719530

  2. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation

    PubMed Central

    Diedrich, Jonathan D.; Rajagurubandara, Erandi; Herroon, Mackenzie K.; Mahapatra, Gargi; Hüttemann, Maik; Podgorski, Izabela

    2016-01-01

    Metabolic adaptation is increasingly recognized as a key factor in tumor progression, yet its involvement in metastatic bone disease is not understood. Bone is as an adipocyte-rich organ, and a major site of metastasis from prostate cancer. Bone marrow adipocytes are metabolically active cells capable of shaping tumor metabolism via lipolysis and lipid transfer. In this study, using in vitro and in vivo models of marrow adiposity, we demonstrate that marrow fat cells promote Warburg phenotype in metastatic prostate cancer cells. We show increased expression of glycolytic enzymes, increased lactate production, and decreased mitochondrial oxidative phosphorylation in tumor cells exposed to adipocytes that require paracrine signaling between the two cell types. We also reveal that prostate cancer cells are capable of inducing adipocyte lipolysis as a postulated mechanism of sustenance. We provide evidence that adipocytes drive metabolic reprogramming of tumor cells via oxygen-independent mechanism of HIF-1α activation that can be reversed by HIF-1α downregulation. Importantly, we also demonstrate that the observed metabolic signature in tumor cells exposed to adipocytes mimics the expression patterns seen in patients with metastatic disease. Together, our data provide evidence for a functional relationship between marrow adipocytes and tumor cells in bone that has likely implications for tumor growth and survival within the metastatic niche. PMID:27588494

  3. Molecular Heterogeneity in Primary and Metastatic Prostate Tumor Tissue

    DTIC Science & Technology

    2013-10-01

    PSMA ) and prostate cancer-specific mortality, Kasperzyk et al. found that PSMA was positively correlated with...expressed  in  prostate  tissue:  prostate  specific   membrane  antigen  ( PSMA ).  Utilizing  archival  prostate  tumor  tissue...from  two  US-­‐based  cohort   studies,  Kasperzyk  et  al.  found  that   PSMA  protein  expression  measured

  4. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer

    PubMed Central

    Lowes, Lori E.; Goodale, David; Xia, Ying; Postenka, Carl; Piaseczny, Matthew M.; Paczkowski, Freeman; Allan, Alison L.

    2016-01-01

    Metastasis is the cause of most prostate cancer (PCa) deaths and has been associated with circulating tumor cells (CTCs). The presence of ≥5 CTCs/7.5mL of blood is a poor prognosis indicator in metastatic PCa when assessed by the CellSearch® system, the “gold standard” clinical platform. However, ~35% of metastatic PCa patients assessed by CellSearch® have undetectable CTCs. We hypothesize that this is due to epithelial-to-mesenchymal transition (EMT) and subsequent loss of necessary CTC detection markers, with important implications for PCa metastasis. Two pre-clinical assays were developed to assess human CTCs in xenograft models; one comparable to CellSearch® (EpCAM-based) and one detecting CTCs semi-independent of EMT status via combined staining with EpCAM/HLA (human leukocyte antigen). In vivo differences in CTC generation, kinetics, metastasis and EMT status were determined using 4 PCa models with progressive epithelial (LNCaP, LNCaP-C42B) to mesenchymal (PC-3, PC-3M) phenotypes. Assay validation demonstrated that the CellSearch®-based assay failed to detect a significant number (~40-50%) of mesenchymal CTCs. In vivo, PCa with an increasingly mesenchymal phenotype shed greater numbers of CTCs more quickly and with greater metastatic capacity than PCa with an epithelial phenotype. Notably, the CellSearch®-based assay captured the majority of CTCs shed during early-stage disease in vivo, and only after establishment of metastases were a significant number of undetectable CTCs present. This study provides important insight into the influence of EMT on CTC generation and subsequent metastasis, and highlights that novel technologies aimed at capturing mesenchymal CTCs may only be useful in the setting of advanced metastatic disease. PMID:27764810

  5. Cell Cycle Dependence of TRAIL Sensitivity in Prostate Cancer Cells

    DTIC Science & Technology

    2006-11-01

    or presence of proteasome inhibitors and measured HIF-1α levels by immunoblotting. We also incubated cells in cobalt chloride (to mimic hypoxia) in...Indistinguishable results were obtained in cells exposed to cobalt chloride . Figure 5: Effects of proteasome inhibitors on HIF- 1α promoter activity (LNCaP...havegenerated luciferase-transduced variants of our human prostate cancer cell lines in order touse them to generate orthotopic tumors in nude mice that can

  6. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  7. Foxm1 expression in prostate epithelial cells is essential for prostate carcinogenesis.

    PubMed

    Cai, Yuqi; Balli, David; Ustiyan, Vladimir; Fulford, Logan; Hiller, Andrea; Misetic, Vinko; Zhang, Yufang; Paluch, Andrew M; Waltz, Susan E; Kasper, Susan; Kalin, Tanya V

    2013-08-02

    The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11β-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11β-Hsd2 promoter through the -892/-879 region, indicating that 11β-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for

  8. Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells--A Key Role for Heat-Shock Protein 70 and Receptor CD91.

    PubMed

    Salimu, Josephine; Spary, Lisa K; Al-Taei, Saly; Clayton, Aled; Mason, Malcolm D; Staffurth, John; Tabi, Zsuzsanna

    2015-06-01

    Immune responses contribute to the success of radiotherapy of solid tumors; however, the mechanism of triggering CD8(+) T-cell responses is poorly understood. Antigen cross-presentation from tumor cells by dendritic cells (DC) is a likely dominant mechanism to achieve CD8(+) T-cell stimulation. We established a cross-presentation model in which DCs present a naturally expressed oncofetal tumor antigen (5T4) from irradiated DU145 prostate cancer cells to 5T4-specific T cells. The aim was to establish which immunogenic signals are important in radiation-induced cross-presentation. Radiation (12 Gy) caused G2-M cell-cycle arrest and cell death, increased cellular 5T4 levels, high-mobility protein group-B1 (HMGB1) release, and surface calreticulin and heat-shock protein-70 (Hsp70) expression in DU145 cells. DCs phagocytosed irradiated tumor cells efficiently, followed by upregulation of CD86 on phagocytic DCs. CD8(+) 5T4-specific T cells, stimulated with these DCs, proliferated and produced IFNγ. Inhibition of HMGB1 or the TRIF/MyD88 pathway only had a partial effect on T-cell stimulation. Unlike previous investigators, we found no evidence that DCs carrying Asp299Gly Toll-like receptor-4 (TLR4) single-nucleotide polymorphism had impaired ability to cross-present tumor antigen. However, pretreatment of tumor cells with Hsp70 inhibitors resulted in a highly statistically significant and robust prevention of antigen cross-presentation and CD86 upregulation on DCs cocultured with irradiated tumor cells. Blocking the Hsp70 receptor CD91 also abolished cross-presentation. Together, the results from our study demonstrate that irradiation induces immunologically relevant changes in tumor cells, which can trigger CD8(+) T-cell responses via a predominantly Hsp70-dependent antigen cross-presentation process.

  9. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review

    PubMed Central

    CEBOTARU, CRISTINA LIGIA; OLTEANU, ELENA DIANA; ANTONE, NICOLETA ZENOVIA; BUIGA, RARES; NAGY, VIORICA

    2016-01-01

    Analysis of circulating tumor cells from patients with different types of cancer is nowadays a fascinating new tool of research and their number is proven to be useful as a prognostic factor in metastatic breast, colon and prostate cancer patients. Studies are going beyond enumeration, exploring the circulating tumor cells to better understand the mechanisms of tumorigenesis, invasion and metastasis and their value for characterization, prognosis and tailoring of treatment. Few studies investigated the prognostic significance of circulating tumor cells in germ cell tumors. In this review, we examine the possible significance of the detection of circulating tumor cells in this setting. PMID:27152069

  10. Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1.

    PubMed

    Marqués, N; Sesé, M; Cánovas, V; Valente, F; Bermudo, R; de Torres, I; Fernández, Y; Abasolo, I; Fernández, P L; Contreras, H; Castellón, E; Celià-Terrassa, T; Méndez, R; Ramón Y Cajal, S; Thomson, T M; Paciucci, R

    2014-02-27

    Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease.

  11. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1β) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects.

  12. Inhibitory effects of megakaryocytic cells in prostate cancer skeletal metastasis.

    PubMed

    Li, Xin; Koh, Amy J; Wang, Zhengyan; Soki, Fabiana N; Park, Serk In; Pienta, Kenneth J; McCauley, Laurie K

    2011-01-01

    Prostate cancer cells commonly spread through the circulation, but few successfully generate metastatic foci in bone. Osteoclastic cellular activity has been proposed as an initiating event for skeletal metastasis. Megakaryocytes (MKs) inhibit osteoclastogenesis, which could have an impact on tumor establishment in bone. Given the location of mature MKs at vascular sinusoids, they may be the first cells to physically encounter cancer cells as they enter the bone marrow. Identification of the interaction between MKs and prostate cancer cells was the focus of this study. K562 (human MK precursors) and primary MKs derived from mouse bone marrow hematopoietic precursor cells potently suppressed prostate carcinoma PC-3 cells in coculture. The inhibitory effects were specific to prostate carcinoma cells and were enhanced by direct cell-cell contact. Flow cytometry for propidium iodide (PI) and annexin V supported a proapoptotic role for K562 cells in limiting PC-3 cells. Gene expression analysis revealed reduced mRNA levels for cyclin D1, whereas mRNA levels of apoptosis-associated specklike protein containing a CARD (ASC) and death-associated protein kinase 1 (DAPK1) were increased in PC-3 cells after coculture with K562 cells. Recombinant thrombopoietin (TPO) was used to expand MKs in the marrow and resulted in decreased skeletal lesion development after intracardiac tumor inoculation. These novel findings suggest a potent inhibitory role of MKs in prostate carcinoma cell growth in vitro and in vivo. This new finding, of an interaction of metastatic tumors and hematopoietic cells during tumor colonization in bone, ultimately will lead to improved therapeutic interventions for prostate cancer patients.

  13. SPOCK1 promotes tumor growth and metastasis in human prostate cancer

    PubMed Central

    Chen, Qi; Yao, Yuan-ting; Xu, Huan; Chen, Yan-bo; Gu, Meng; Cai, Zhi-kang; Wang, Zhong

    2016-01-01

    Prostate cancer is the most diagnosed noncutaneous cancer and ranks as the second leading cause of cancer-related deaths in American males. Metastasis is the primary cause of prostate cancer mortality. Survival rate is only 28% for metastatic patients, but is nearly 100% for patients with localized prostate cancers. Molecular mechanisms that underlie this malignancy remain obscure, and this study investigated the role of SPARC/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) in prostate cancer progression. Initially, we found that SPOCK1 expression was significantly higher in prostate cancer tissues relative to noncancerous tissues. In particular, SPOCK1 expression was also markedly high in metastatic tissues compared with nonmetastatic cancerous tissues. SPOCK1 expression knockdown by specific short hairpin RNA in PC3 cells was significantly inhibited, whereas SPOCK1 overexpression in RWPE-1 cells promoted cell viability, colony formation in vitro, and tumor growth in vivo. Moreover, the SPOCK1 knockdown in PC3 cells was associated with cell cycle arrest in G0/G1 phase, while the SPOCK1 overexpression in RWPE-1 cells induced cell cycle arrest in S phase. The SPOCK1 knockdown in PC3 cells even increased cell apoptosis. SPOCK1 modulation was also observed to affect cancerous cell proliferation and apoptotic processes in the mouse model of prostate cancer. Additionally, the SPOCK1 knockdown decreased, whereas the SPOCK1 overexpression increased cell migration and invasion abilities in vitro. Injection of SPOCK1-depleted PC3 cells significantly decreased metastatic nodules in mouse lungs. These findings suggest that SPOCK1 is a critical mediator of tumor growth and metastasis in prostate cancer. PMID:27486308

  14. SPOCK1 promotes tumor growth and metastasis in human prostate cancer.

    PubMed

    Chen, Qi; Yao, Yuan-Ting; Xu, Huan; Chen, Yan-Bo; Gu, Meng; Cai, Zhi-Kang; Wang, Zhong

    2016-01-01

    Prostate cancer is the most diagnosed noncutaneous cancer and ranks as the second leading cause of cancer-related deaths in American males. Metastasis is the primary cause of prostate cancer mortality. Survival rate is only 28% for metastatic patients, but is nearly 100% for patients with localized prostate cancers. Molecular mechanisms that underlie this malignancy remain obscure, and this study investigated the role of SPARC/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) in prostate cancer progression. Initially, we found that SPOCK1 expression was significantly higher in prostate cancer tissues relative to noncancerous tissues. In particular, SPOCK1 expression was also markedly high in metastatic tissues compared with nonmetastatic cancerous tissues. SPOCK1 expression knockdown by specific short hairpin RNA in PC3 cells was significantly inhibited, whereas SPOCK1 overexpression in RWPE-1 cells promoted cell viability, colony formation in vitro, and tumor growth in vivo. Moreover, the SPOCK1 knockdown in PC3 cells was associated with cell cycle arrest in G0/G1 phase, while the SPOCK1 overexpression in RWPE-1 cells induced cell cycle arrest in S phase. The SPOCK1 knockdown in PC3 cells even increased cell apoptosis. SPOCK1 modulation was also observed to affect cancerous cell proliferation and apoptotic processes in the mouse model of prostate cancer. Additionally, the SPOCK1 knockdown decreased, whereas the SPOCK1 overexpression increased cell migration and invasion abilities in vitro. Injection of SPOCK1-depleted PC3 cells significantly decreased metastatic nodules in mouse lungs. These findings suggest that SPOCK1 is a critical mediator of tumor growth and metastasis in prostate cancer.

  15. Prostate stem cell antigen: Identification of immunogenic peptides and assessment of reactive CD8+ T cells in prostate cancer patients.

    PubMed

    Kiessling, Andrea; Schmitz, Marc; Stevanovic, Stefan; Weigle, Bernd; Hölig, Kristina; Füssel, Monika; Füssel, Susanne; Meye, Axel; Wirth, Manfred P; Rieber, Ernst Peter

    2002-12-01

    Identification of TAAs recognized by CD8(+) CTLs paved the way for new concepts in cancer therapy. In view of the heterogeneity of tumors and their diverse escape mechanisms, CTL-based cancer therapy largely depends on an appropriate number of TAAs. In prostate cancer, the number of antigens defined as suitable targets of CTLs remains rather limited. PSCA is widely distributed in prostate cancer. In this report, we define immunogenic peptides of PSCA which are recognized by circulating CD8(+) T cells from prostate cancer patients and able to activate CTLs in vitro. Screening the amino acid sequence of PSCA for peptides containing a binding motif for HLA-A*0201 resulted in 8 candidate peptides. Specificity and affinity of peptide binding were verified in a competition assay. Frequencies of CD8(+) T lymphocytes reactive against selected epitopes were determined in the blood of prostate cancer patients using the ELISPOT assay. Increased frequencies were revealed for CD8(+) T cells recognizing the peptides ALQPGTALL and AILALLPAL. CTLs from prostate cancer patients were raised against these 2 peptides in vitro when presented by autologous DCs. They specifically recognized peptide-pulsed T2 target cells and prostate cancer cells that were HLA-A*0201- and PSCA-positive, indicating that these peptides were naturally generated by tumor cells. These data suggest that PSCA is a promising target for the immunotherapy of prostate cancer.

  16. Development of a locally advanced orthotopic prostate tumor model in rats for assessment of combined modality therapy

    PubMed Central

    TUMATI, VASU; MATHUR, SANJEEV; SONG, KWANG; HSIEH, JER-TSONG; ZHAO, DAWEN; TAKAHASHI, MASAYA; DOBIN, TIMOTHY; GANDEE, LEAH; SOLBERG, TIMOTHY D.; HABIB, AMYN A.; SAHA, DEBABRATA

    2013-01-01

    The purpose of this study was to develop an aggressive locally advanced orthotopic prostate cancer model for assessing high-dose image-guided radiation therapy combined with biological agents. For this study, we used a modified human prostate cancer (PCa) cell line, PC3, in which we knocked down a tumor suppressor protein, DAB2IP (PC3-KD). These prostate cancer cells were implanted into the prostate of nude or Copenhagen rats using either open surgical implantation or a minimally invasive procedure under ultrasound guidance. We report that: i) these DAB2IP-deficient PCa cells form a single focus of locally advanced aggressive tumors in both nude and Copenhagen rats; ii) the resulting tumors are highly aggressive and are poorly controlled after treatment with radiation alone; iii) ultrasound-guided tumor cell implantation can be used successfully for tumor development in the rat prostate; iv) precise measurement of the tumor volume and the treatment planning for radiation therapy can be obtained from ultrasound and MRI, respectively; and v) the use of a fiducial marker for enhanced radiotherapy localization in the rat orthotopic tumor. This model recapitulates radiation-resistant prostate cancers which can be used to demonstrate and quantify therapeutic response to combined modality treatments. PMID:23525451

  17. Development of a locally advanced orthotopic prostate tumor model in rats for assessment of combined modality therapy.

    PubMed

    Tumati, Vasu; Mathur, Sanjeev; Song, Kwang; Hsieh, Jer-Tsong; Zhao, Dawen; Takahashi, Masaya; Dobin, Timothy; Gandee, Leah; Solberg, Timothy D; Habib, Amyn A; Saha, Debabrata

    2013-05-01

    The purpose of this study was to develop an aggressive locally advanced orthotopic prostate cancer model for assessing high-dose image-guided radiation therapy combined with biological agents. For this study, we used a modified human prostate cancer (PCa) cell line, PC3, in which we knocked down a tumor suppressor protein, DAB2IP (PC3‑KD). These prostate cancer cells were implanted into the prostate of nude or Copenhagen rats using either open surgical implantation or a minimally invasive procedure under ultrasound guidance. We report that: i) these DAB2IP-deficient PCa cells form a single focus of locally advanced aggressive tumors in both nude and Copenhagen rats; ii) the resulting tumors are highly aggressive and are poorly controlled after treatment with radiation alone; iii) ultrasound-guided tumor cell implantation can be used successfully for tumor development in the rat prostate; iv) precise measurement of the tumor volume and the treatment planning for radiation therapy can be obtained from ultrasound and MRI, respectively; and v) the use of a fiducial marker for enhanced radiotherapy localization in the rat orthotopic tumor. This model recapitulates radiation-resistant prostate cancers which can be used to demonstrate and quantify therapeutic response to combined modality treatments.

  18. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice

    PubMed Central

    Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi

    2012-01-01

    Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574

  19. Improved delivery of polymer therapeutics to prostate tumors using plasmonic photothermal therapy

    NASA Astrophysics Data System (ADS)

    Gormley, Adam Joseph

    When a patient is presented with locally advanced prostate cancer, it is possible to provide treatment with curative intent. However, once the disease has formed distant metastases, the chances of survival drops precipitously. For this reason, proper management of the disease while it remains localized is of critical importance. Treating these malignant cells with cytotoxic agents is effective at cell killing; however, the nonspecific toxicity profiles of these drugs often limit their use until the disease has progressed and symptom palliation is required. Incorporation of these drugs in nanocarriers such as polymers help target them to tumors with a degree of specificity, though major vascular barriers limit their effective delivery. In this dissertation, it is shown that plasmonic photothermal therapy (PPTT) can be used to help overcome some of these barriers and improve delivery to prostate tumors. First, the concept of using PPTT to improve the delivery of macromolecules to solid tumors was validated. This was done by measuring the tumor uptake of albumin. Next, the concept of targeting gold nanorods (GNRs) directly to the tumor's vasculature to better modulate vascular response to heating was tested. Surface conjugation of cyclic RGD (Arg-Gly-Asp) to GNRs improved their binding and uptake to endothelial cells in vitro, but not in vivo. Nontargeted GNRs and PPTT were then utilized to guide the location of polymer therapeutic delivery to prostate tumors. N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, which were designed to be targeted to cells previously exposed to heat shock, were used in this study. Treatment of tumors with PPTT facilitated a burst accumulation of the copolymers over 4 hours, and heat shock targeting to cells allowed them to be retained for an extended period of time. Finally, the tumor localization of the HPMA copolymers following PPTT was evaluated by magnetic resonance imaging (MRI). These results show that PPTT may be a useful tool

  20. The Function of Neuroendocrine Cells in Prostate Cancer

    DTIC Science & Technology

    2013-04-01

    common malignancy in men and the second leading cause of cancer-related deaths (Cooperberg et al. 2004). Normal prostate epithelium contains luminal...www.endocrinology-journals.org including glandular formation and expression of androgen receptor (AR) and prostate-specific antigen (PSA...adenocarcinoma, which usually shows glandular formation, SCNC has a solid, sheet-like growth pattern but no glandular formation. Tumor cells are small with

  1. Anti-tumor immunological response induced by cryoablation and anti-CTLA-4 antibody in an in vivo RM-1 cell prostate cancer murine model.

    PubMed

    Li, F; Guo, Z; Yu, H; Zhang, X; Si, T; Liu, C; Yang, X; Qi, L

    2014-01-01

    Cryoablation combination therapy with blockade of the T-cell inhibitory receptor CTL-associated antigen-4 (CTLA-4) may augment the anti-tumor immune response (ATIR). It is crucial to determine the duration of ATIR after cryoablation and anti-CTLA-4 antibody therapy to determine the most appropriate treatment interval of therapy. To investigate the characteristics of ATIR induced by cryoablation and anti-CTLA-4 antibody therapy, we developed a prostate cancer model system to test the capacity of cryoablation and anti -CTLA-4 antibody to generate ATIR. Mice were randomly assigned to receive no treatment (group A), cryoablation only (group B), cryoablation plus anti-CTLA-4 antibody (group C), or anti-CTLA-4 antibody only (group D). We collected specimens on days 0, 7, 14 and 21 to study the ATIR through different techniques. Our results indicated that cryoablation induced ATIR and further enhanced this effect and reduced the number of distant metastases through combination with anti-CTLA-4 antibody. ATIR induced by cryoablation was achieved through decreasing regulatory T cell (Treg) number. The number of Tregs induced by cryoablation was lowest on day 14 but then returned to preoperative levels on day 21, indicating that ATIR induced by cryoablation was time-dependent. However, ATIR induced by anti-CTLA-4 antibody might be mainly achieved through influencing Treg function, which was exactly not by decreasing Treg number and still maintain its ATIR effect on day 21 after therapy. In conclusion, ATIR induced by cryoablation was achieved through decreasing Treg number and is time-dependent, whereas ATIR caused by anti-CTLA-4 antibody was achieved exactly not by decreasing Treg number and not time-dependent in the first 21 days after therapy.

  2. Detection of circulating prostatic cells during radical prostatectomy.

    PubMed

    Planz, B; Szyska, P; Valdor, M; Boeckmann, W; Füzesi, L; Jakse, G

    1997-01-01

    The detection of micrometastasis of prostate cancer could help to decide more appropriate therapeutic strategies in an individual patient. We have developed a flow cytometric method for detecting cytokeratin-positive cells in the peripheral blood before, during and after radical prostatectomy in patients with prostatic carcinoma. By means of this technique we were able to detect a higher number of cytokeratin-positive cells in the intraoperative blood sample than in the pre- and postoperative blood sample in 15 patients with prostate cancer (P < 0.05). Our results show an increase in the number of cytokeratin-positive cells with increasing tumor stage and grade, as well a good correlation of prostate-specific antigen (PSA) value with the number of cytokeratin-positive cells (r > 0.6). Our results underline the importance of no-touch techniques at prostatectomy to minimize release of tumor cells into the circulation during surgery. In the light of our results we consider that the indication for cell savers during radical prostatectomy should be reevaluated. The possibility of detecting single metastatic cells in peripheral blood will enable better individual patient management, and open up new modalities for diagnosing early prostate cancer and enhancing patient monitoring in relapse and tumor progression.

  3. Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment.

    PubMed

    Lubik, Amy A; Nouri, Mannan; Truong, Sarah; Ghaffari, Mazyar; Adomat, Hans H; Corey, Eva; Cox, Michael E; Li, Na; Guns, Emma S; Yenki, Parvin; Pham, Steven; Buttyan, Ralph

    2017-01-15

    Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.

  4. Engineering chemically modified viruses for prostate cancer cell recognition.

    PubMed

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.

  5. Bone Matrix Osteonectin Limits Prostate Cancer Cell Growth and Survival

    PubMed Central

    Kapinas, Kristina; Lowther, Katie M.; Kessler, Catherine B.; Tilbury, Karissa; Lieberman, Jay R.; Tirnauer, Jennifer S.; Campagnola, Paul; Delany, Anne M.

    2012-01-01

    There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases. PMID:22525512

  6. High expression of prostate-specific membrane antigen in the tumor-associated neo-vasculature is associated with worse prognosis in squamous cell carcinoma of the oral cavity.

    PubMed

    Haffner, Michael C; Laimer, Johannes; Chaux, Alcides; Schäfer, Georg; Obrist, Peter; Brunner, Andrea; Kronberger, Irmgard E; Laimer, Klaus; Gurel, Bora; Koller, Johann-Benedikt; Seifarth, Christof; Zelger, Bettina; Klocker, Helmut; Rasse, Michael; Doppler, Wolfgang; Bander, Neil H

    2012-08-01

    Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed in prostate cancer as well as in the neo-vasculature of nonprostatic solid tumors. Here, we determined the expression pattern of PSMA in the vasculature of oral squamous cell carcinoma. Using a previously validated antibody, PSMA staining distribution and cyclooxygenase 2 (COX2) expression status was evaluated in a cohort of patients with squamous cell carcinoma of the oral cavity (n=96) using immunohistochemistry and was correlated with clinicopathological features as well as outcome. Twenty-four (25%) cases showed no detectable PSMA staining, 48 (50%) demonstrated positive immunoreactivity for PSMA in less than 50% of microvessels and 24 (25%) cases showed strong endothelial PSMA expression in more than 50% of tumor-associated microvessels. High endothelial PSMA expression was associated with greatly reduced survival (18.2 vs 77.3 months; P=0.0001) and maintained prognostic significance after adjusting for grade and stage in multivariate analysis (hazard ratio=2.19, P=0.007). Furthermore, we observed a strong association between endothelial PSMA and cancer cell-specific COX2 expression. In conclusion, we provide the first evidence for the prognostic significance of endothelial PSMA expression in oral squamous cell carcinoma and, suggest a potential interaction between arachidonic acid metabolites and endothelial PSMA expression in the tumor neo-vasculature.

  7. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol-A Natural Compound Present in Humulus lupulus L.

    PubMed

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-06-22

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.

  8. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    PubMed Central

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. PMID:27338375

  9. Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells.

    PubMed

    Frame, Fiona M; Pellacani, Davide; Collins, Anne T; Maitland, Norman J

    2016-01-01

    In order to fully explore the biology of a complex solid tumor such as prostate cancer, it is desirable to work with patient tissue. Only by working with cells from a tissue can we take into account patient variability and tumor heterogeneity. Cell lines have long been regarded as the workhorse of cancer research and it could be argued that they are of most use when considered within a panel of cell lines, thus taking into account specified mutations and variations in phenotype between different cell lines. However, often very different results are obtained when comparing cell lines to primary cells cultured from tissue. It stands to reason that cells cultured from patient tissue represents a close-to-patient model that should and does produce clinically relevant data. This chapter aims to illustrate the methods of processing, storing and culturing cells from prostate tissue, with a description of potential uses.

  10. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  11. The Added Value of Circulating Tumor Cell Enumeration to Standard Markers in Assessing Prognosis in a Metastatic Castration-Resistant Prostate Cancer Population.

    PubMed

    Heller, Glenn; Fizazi, Karim; McCormack, Robert; Molina, Arturo; MacLean, David; Webb, Iain J; Saad, Fred; de Bono, Johann S; Scher, Howard I

    2016-09-27

    Purpose: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease for which better prognostic models for survival are needed. We examined the added value of circulating tumor cell (CTC) enumeration relative to common prognostic laboratory measures from patients with CRPC.Methods: Utility of CTC enumeration as a baseline and postbaseline prognostic biomarker was examined using data from two prospective randomized registration-directed trials (COU-AA-301 and ELM-PC4) within statistical models used to estimate risk for survival. Discrimination and calibration were used to measure model predictive accuracy and the added value for CTC enumeration in the context of a Cox model containing albumin, lactate dehydrogenase (LDH), PSA, hemoglobin, and alkaline phosphatase (ALK). Discrimination quantifies how accurately a risk model predicts short-term versus long-term survivors. Calibration measures the closeness of actual survival time to the predicted survival time.Results: Adding CTC enumeration to a model containing albumin, LDH, PSA, hemoglobin, and ALK ("ALPHA") improved its discriminatory power. The weighted c-index for ALPHA without CTCs was 0.72 (SE, 0.02) versus 0.75 (SE, 0.02) for ALPHA + CTCs. The increase in discrimination was restricted to the lower-risk cohort. In terms of calibration, adding CTCs produced a more accurate model-based prediction of patient survival. The absolute prediction error for ALPHA was 3.95 months (SE, 0.28) versus 3.75 months (SE, 0.22) for ALPHA + CTCs.Conclusion: Addition of CTC enumeration to standard measures provides more accurate assessment of patient risk in terms of baseline and postbaseline prognosis in the mCRPC population. Clin Cancer Res; 1-7. ©2016 AACR.

  12. Investigation of the In Vitro and In Vivo efficiency of RM-532-105, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, in LAPC-4 prostate cancer cell and tumor models

    PubMed Central

    Kenmogne, Lucie Carolle; Roy, Jenny; Maltais, René; Rouleau, Mélanie; Neveu, Bertrand; Pouliot, Frédéric; Poirier, Donald

    2017-01-01

    In the fight against androgen-sensitive prostate cancer, the enzyme 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an attractive therapeutic target considering its key role in the formation of androgenic steroids. In this study, we attempted to assess the in vivo efficacy of the compound RM-532-105, an androsterone derivative developed as an inhibitor of 17β-HSD3, in the prostate cancer model of androgen-sensitive LAPC-4 cells xenografted in nude mice. RM-532-105 did not inhibit the tumor growth induced by 4-androstene-3,17-dione (4-dione); rather, the levels of the androgens testosterone (T) and dihydrotestosterone (DHT) increased within the tumors. In plasma, however, DHT levels increased but T levels did not. In troubleshooting experiments, the non-androgenic potential of RM-532-105 was confirmed by two different assays (LAPC-4 proliferation and androgen receptor transcriptional activity assays). The enzyme 5α-reductase was also revealed to be the predominant enzyme metabolizing 4-dione in LAPC-4 cells, yielding 5α-androstane-3,17-dione and not T. Other 17β-HSDs than 17β-HSD3 seem responsible in the androgen synthesis. From experiments with LAPC-4 cells, we fortuitously came across the interesting finding that 17β-HSD3 inhibitor RM-532-105 is concentrated inside tumors. PMID:28182747

  13. Combination Therapy with Epigallocatechin-3-Gallate and Doxorubicin in Human Prostate Tumor Modeling Studies

    PubMed Central

    Stearns, Mark E.; Amatangelo, Michael D.; Varma, Devika; Sell, Chris; Goodyear, Shaun M.

    2010-01-01

    The polyphenol epigallocatechin-3-gallate (EGCG) in combination with doxorubicin (Dox) exhibits a synergistic activity in blocking the growth and colony-forming ability of human prostate cell lines in vitro. EGCG has been found to disrupt the mitochondrial membrane potential, induce vesiculation of mitochondria, and induce elevated poly (ADP-ribose) polymerase (PARP) cleavage and apoptosis. EGCG in combination with low levels of Dox had a synergistic effect in blocking tumor cell growth. In vivo tumor modeling studies with a highly metastatic tumor line, PC-3ML cells, revealed that EGCG (228 mg/kg or 200 μmol/L) appeared to sensitize tumors to Dox. EGCG combined with low levels of Dox (0.14 mg/kg or 2 μmol/L) blocked tumor growth by PC-3ML cells injected intraperitoneally (ie, in CB17 severe combined immunodeficiencies) and significantly increased mouse survival rates. Similarly, relatively low levels of EGCG (57 mg/kg or 50 μmol/L) plus Dox (0.07 mg/kg or 1 μmol/L) eradicated established tumors (ie, in nonobese diabetic–severe combined immunodeficiencies) that were derived from CD44hi tumor-initiating cells isolated from PCa-20a cells. Flow cytometry results showed that EGCG appeared to enhance retention of Dox by tumor cells to synergistically inhibit tumor growth and eradicate tumors. These data suggest that localized delivery of high dosages of EGCG combined with low levels of Dox may have significant clinical application in the treatment of metastatic prostate and/or eradication of primary tumors derived from tumor-initiating cells. PMID:20971741

  14. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer

    PubMed Central

    Watkins, Stephanie K.; Zhu, Ziqiang; Riboldi, Elena; Shafer-Weaver, Kim A.; Stagliano, Katherine E.R.; Sklavos, Martha M.; Ambs, Stefan; Yagita, Hideo; Hurwitz, Arthur A.

    2011-01-01

    The limited success of cancer immunotherapy is often attributed to the loss of antigen-specific T cell function in situ. However, the mechanism for this loss of function is unknown. In this study, we describe a population of tumor-associated DCs (TADCs) in both human and mouse prostate cancer that tolerizes and induces suppressive activity in tumor-specific T cells. In tumors from human prostate cancer patients and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, TADCs expressed elevated levels of FOXO3 and Foxo3, respectively, which correlated with expression of suppressive genes that negatively regulate T cell function. Silencing FOXO3 and Foxo3 with siRNAs abrogated the ability of human and mouse TADCs, respectively, to tolerize and induce suppressive activity by T cells. Silencing Foxo3 in mouse TADCs was also associated with diminished expression of tolerogenic mediators, such as indoleamine-2,3-dioxygenase, arginase, and TGF-β, and upregulated expression of costimulatory molecules and proinflammatory cytokines. Importantly, transfer of tumor-specific CD4+ Th cells into TRAMP mice abrogated TADC tolerogenicity, which was associated with reduced Foxo3 expression. These findings demonstrate that FOXO3 may play a critical role in mediating TADC-induced immune suppression. Moreover, our results identify what we believe to be a novel target for preventing CTL tolerance and enhancing immune responses to cancer by modulating the immunosuppressive activity of TADCs found in the tumor microenvironment. PMID:21436588

  15. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    DTIC Science & Technology

    2013-10-01

    that transmissible ER stress (TERS) promotes the Epithelial to Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming...tumorigenesis. Through the work performed during the last year, we have been able to demonstrate a link between prostate tumor ER stress, EMT , and enhanced...Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming cancer towards a different phenotype and greater invasive

  16. Inhibition of Granzyme B by PI-9 protects prostate cancer cells from apoptosis

    PubMed Central

    Ray, Manisha; Hostetter, Daniel R.; Loeb, Carly RK; Simko, Jeffry; Craik, Charles S.

    2012-01-01

    Background In order for tumors to grow and proliferate, they must avoid recognition by immune cells and subsequent death by apoptosis. Granzyme B, a protease located in natural killer cells, initiates apoptosis in target cells. Inhibition of Granzyme B by PI-9, its natural inhibitor, can prevent apoptosis. Here we investigate whether PI-9 protects prostate cancer cells from apoptosis. Methods The expression of PI-9 was quantified by qPCR in several prostate cancer cell lines, and Granzyme B activity was tested in each cell line. PI-9 was overexpressed in LNCaP cells, which lack endogenous PI-9. Apoptosis was induced by natural killer cells in LNCaP cells that either contained or lacked PI-9, and the percent cell death in was quantified. Lastly, PI-9 levels were examined by qPCR and immunohistochemistry in prostate tumor tissue. Results Prostate cancer cell lines that expressed PI-9 could inhibit Granzyme B. Overexpression of PI-9 protected LNCaP cells from natural killer cell-mediated apoptosis. Examination of the levels of PI-9 in tissue from prostate tumors showed that PI-9 could be upregulated in low grade tumors and stochastically dysregulated in high grade tumors. Additionally, PI-9 is found consistently in high grade prostatic intraepithelial neoplasia and atrophic lesions. Conclusions These results indicate that overexpression of PI-9 can protect prostate cancer cells from apoptosis, and this effect may occur in human prostate tumors. These findings imply that early prostatic inflammation may trigger this increase in PI-9. This suggests that PI-9 upregulation is needed early in tumor progression, before additional protective mechanisms are in place. PMID:21919028

  17. Superoxide Dismutase and Transcription Factor sox9 as Mediators of Tumor Suppression by mac25 (IGFBP-rp1) in Prostate Cancer Cells

    DTIC Science & Technology

    2006-10-01

    NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14 ...counted and measured weekly. * Significant difference from control (Po0.005) SOX9 in prostate cancer cells R Drivdahl et al 4589 Oncogene 14 (Vleminckx and...selective medium containing 400 mg/ml G418 and cultured for 10 days . Individual colonies were isolated from the plate by trypsinization in cloning rings

  18. Immunotherapy for Prostate Cancer: Lessons from Responses to Tumor-Associated Antigens

    PubMed Central

    Westdorp, Harm; Sköld, Annette E.; Snijer, Berit A.; Franik, Sebastian; Mulder, Sasja F.; Major, Pierre P.; Foley, Ronan; Gerritsen, Winald R.; de Vries, I. Jolanda M.

    2014-01-01

    Prostate cancer (PCa) is the most common cancer in men and the second most common cause of cancer-related death in men. In recent years, novel therapeutic options for PCa have been developed and studied extensively in clinical trials. Sipuleucel-T is the first cell-based immunotherapeutic vaccine for treatment of cancer. This vaccine consists of autologous mononuclear cells stimulated and loaded with an immunostimulatory fusion protein containing the prostate tumor antigen prostate acid posphatase. The choice of antigen might be key for the efficiency of cell-based immunotherapy. Depending on the treatment strategy, target antigens should be immunogenic, abundantly expressed by tumor cells, and preferably functionally important for the tumor to prevent loss of antigen expression. Autoimmune responses have been reported against several antigens expressed in the prostate, indicating that PCa is a suitable target for immunotherapy. In this review, we will discuss PCa antigens that exhibit immunogenic features and/or have been targeted in immunotherapeutic settings with promising results, and we highlight the hurdles and opportunities for cancer immunotherapy. PMID:24834066

  19. Extracellular vesicles such as prostate cancer cell fragments as a fluid biopsy for prostate cancer.

    PubMed

    Brett, S I; Kim, Y; Biggs, C N; Chin, J L; Leong, H S

    2015-09-01

    Extracellular vesicles (EVs) are cell-derived vesicles generated through a process of cell membrane shedding or storage vesicle release, as occurs during apoptosis, necrosis or exocytosis. Initially perceived as cellular by-products or 'dust' of insignificant biological importance, recent research has shed light on the role of EVs as mediators of intercellular communication, blood coagulation and disease progression. The prostate is a source of EVs and their abundance in complex biological fluids such as plasma, serum and urine make them compelling entities for a 'fluid biopsy'. As such, prostate cancer cell fragments (PCCF) are EVs generated by the tumor resident within the prostate and are also present in blood, expressing a portion of biomarkers representative of the primary tumor. High-throughput analytical techniques to determine biomarker expression on EVs is the last hurdle towards translating the full potential of prostate EVs for clinical use. We describe current state-of-the-art methods for the analysis of prostate-derived EVs in patient fluids such as plasma and the challenges that lie ahead in this emerging field of translational research.

  20. Prostate Stem Cell Antigen DNA Vaccination Breaks Tolerance to Self-antigen and Inhibits Prostate Cancer Growth

    PubMed Central

    Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C

    2009-01-01

    Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234

  1. Role of the ARF Tumor Suppressor in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    literature. We asked Dr. Jeff Arbeit in the department of Surgery here at Washington University for his expertise in mouse prostate tumor development...18070929 6. Lu, Z.H., Wright, J.D., Belt, B., Cardiff, R.D. & Arbeit , J.M. Hypoxia-inducible factor-1 facilitates cervical cancer progression in human

  2. Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro.

    PubMed

    Zolochevska, Olga; Diaz-Quiñones, Adriana O; Ellis, Jayne; Figueiredo, Marxa L

    2013-05-01

    Prostate cancer is frequently associated with bone metastases, where the crosstalk between tumor cells and key cells of the bone microenvironment (osteoblasts, osteoclasts, immune cells) amplifies tumor growth. We have explored the potential of a novel cytokine, interleukin-27 (IL-27), for inhibiting this malignant crosstalk, and have examined the effect of autocrine IL-27 on prostate cancer cell gene expression, as well as the effect of paracrine IL-27 on gene expression in bone and T cells. In prostate tumor cells, IL-27 upregulated genes related to its signaling pathway while downregulating malignancy-related receptors and cytokine genes involved in gp130 signaling, as well as several protease genes. In both undifferentiated and differentiated osteoblasts, IL-27 modulated upregulation of genes related to its own signaling pathway as well as pro-osteogenic genes. In osteoclasts, IL-27 downregulated several genes typically involved in malignancy and also downregulated osteoclastogenesis-related genes. Furthermore, an osteogenesis-focused real-time PCR array revealed a more extensive profile of pro-osteogenic gene changes in both osteoblasts and osteoclasts. In T-lymphocyte cells, IL-27 upregulated several activation-related genes and also genes related to the IL-27 signaling pathway and downregulated several genes that could modulate osteoclastogenesis. Overall, our results suggest that IL-27 may be able to modify interactions between prostate tumor and bone microenvironment cells and thus could be used as a multifunctional therapeutic for restoring bone homeostasis while treating metastatic prostate tumors.

  3. Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Anti-Tumor Innate Immunity.

    PubMed

    Patnaik, Akash; Swanson, Kenneth D; Csizmadia, Eva; Solanki, Aniruddh; Landon-Brace, Natalie; Gehring, Marina P; Helenius, Katja; Olson, Brian M; Pyzer, Athalia R; Wang, Lily C; Elemento, Olivier; Novak, Jesse; Thornley, Thomas B; Asara, John M; Montaser, Laleh; Timmons, Joshua J; Morgan, Todd M; Wang, Yugang; Levantini, Elena; Clohessy, John G; Kelly, Kathleen; Pandolfi, Pier Paolo; Rosenblatt, Jacalyn M; Avigan, David E; Ye, Huihui; Karp, Jeffrey M; Signoretti, Sabina; Balk, Steven P; Cantley, Lewis C

    2017-03-08

    Several kinase inhibitors that target aberrant signaling pathways in tumor cells have been deployed in cancer therapy. However, their impact on the tumor immune microenvironment remains poorly understood. The tyrosine kinase inhibitor cabozantinib showed striking responses in cancer clinical trial patients across several malignancies. Here we show that cabozantinib rapidly eradicates invasive, poorly-differentiated PTEN/p53 deficient murine prostate cancer. This was associated with enhanced release of neutrophil chemotactic factors from tumor cells, including CXCL12 and HMGB1, resulting in robust infiltration of neutrophils into the tumor. Critically, cabozantinib-induced tumor clearance in mice was abolished by antibody-mediated granulocyte depletion or HMGB1 neutralization or blockade of neutrophil chemotaxis with the CXCR4 inhibitor, plerixafor. Collectively, these data demonstrate that cabozantinib triggers a neutrophil-mediated anti-cancer innate immune response, resulting in tumor clearance.

  4. [Markers of prostate cancer stem cells: research advances].

    PubMed

    Wang, Shun-Qi; Huang, Sheng-Song

    2013-12-01

    Prostate cancer is one of the most seriously malignant diseases threatening men's health, and the mechanisms of its initiation and progression are not yet completely understood. Recent years have witnessed distinct advances in researches on prostate cancer stem cells in many aspects using different sources of materials, such as human prostate cancer tissues, human prostate cancer cell lines, and mouse models of prostate cancer. Prostate cancer stem cell study offers a new insight into the mechanisms of the initiation and progression of prostate cancer and contributes positively to its treatment. This article presents an overview on the prostate cancer stem cell markers utilized in the isolation and identification of prostate cancer stem cells.

  5. Vitamin D, intermediary metabolism and prostate cancer tumor progression

    PubMed Central

    Wang, Wei-Lin W.; Tenniswood, Martin

    2014-01-01

    Epidemiological data have demonstrated an inverse association between serum vitamin D3 levels, cancer incidence and related mortality. However, the effects of vitamin D on prostate cancer biology and its utility for prevention of prostate cancer progression are not as well-defined. The data are often conflicting: some reports suggest that vitamin D3 induces apoptosis in androgen dependent prostate cancer cell lines, while others suggest that vitamin D3 only induces cell cycle arrest. Recent molecular studies have identified an extensive synergistic crosstalk between the vitamin D- and androgen-mediated mRNA and miRNA expression, adding an additional layer of post-transcriptional regulation to the known VDR- and AR-regulated gene activation. The Warburg effect, the inefficient metabolic pathway that converts glucose to lactate for rapid energy generation, is a phenomenon common to many different types of cancer. This process supports cell proliferation and promotes cancer progression via alteration of glucose, glutamine and lipid metabolism. Prostate cancer is a notable exception to this general process since the metabolic switch that occurs early during malignancy is the reverse of the Warburg effect. This “anti-Warburg effect” is due to the unique biology of normal prostate cells that harbor a truncated TCA cycle that is required to produce and secret citrate. In prostate cancer cells, the TCA cycle activity is restored and citrate oxidation is used to produce energy for cancer cell proliferation. 1,25(OH)2D3 and androgen together modulates the TCA cycle via transcriptional regulation of zinc transporters, suggesting that 1,25(OH)2D3 and androgen maintain normal prostate metabolism by blocking citrate oxidation. These data demonstrate the importance of androgens in the anti-proliferative effect of vitamin D in prostate cancer and highlight the importance of understanding the crosstalk between these two signaling pathways. PMID:24860512

  6. Nonfunctioning Juxtaglomerular Cell Tumor

    PubMed Central

    Sakata, Ryoko; Shimoyamada, Hiroaki; Yanagisawa, Masahiro; Murakami, Takayuki; Makiyama, Kazuhide; Nakaigawa, Noboru; Inayama, Yoshiaki; Ohashi, Kenichi; Nagashima, Yoji; Yao, Masahiro; Kubota, Yoshinobu

    2013-01-01

    The juxtaglomerular cell tumor (JGCT) is a rare renal tumor characterized by excessive renin secretion causing intractable hypertension and hypokalemia. However, asymptomatic nonfunctioning JGCT is extremely rare. Here, we report a case of nonfunctioning JGCT in a 31-year-old woman. The patient presented with a left renal tumor without hypertension or hypokalemia. Under a clinical diagnosis of renal cell carcinoma, radical nephrectomy was performed. The tumor was located in the middle portion adjacent to the renal pelvis, measuring 2 cm in size. Pathologically, the tumor was composed of cuboidal cells forming a solid arrangement, immunohistochemically positive for renin. Based on these findings, the tumor was diagnosed as JGCT. In cases with hyperreninism, preoperative diagnosis of JGCT is straightforward but difficult in nonfunctioning case. Generally, JGCT presents a benign biological behavior. Therefore, we should take nonfunctioning JGCT into the differential diagnoses for renal tumors, especially in younger patients to avoid excessive surgery. PMID:23607027

  7. Tumor cell metabolism

    PubMed Central

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  8. Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population.

    PubMed

    Luk, Sze-Ue; Lee, Terence Kin-Wah; Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer.

  9. Tumor expression of adiponectin receptor 2 and lethal prostate cancer

    PubMed Central

    Fiorentino, Michelangelo; Kelly, Rachel; Gerke, Travis; Jordahl, Kristina; Sinnott, Jennifer A.; Giovannucci, Edward L.; Loda, Massimo; Mucci, Lorelei A.; Finn, Stephen

    2015-01-01

    To investigate the role of adiponectin receptor 2 (AdipoR2) in aggressive prostate cancer we used immunohistochemistry to characterize AdipoR2 protein expression in tumor tissue for 866 men with prostate cancer from the Physicians’ Health Study and the Health Professionals Follow-up Study. AdipoR2 tumor expression was not associated with measures of obesity, pathological tumor stage or prostate-specific antigen (PSA) at diagnosis. However, AdipoR2 expression was positively associated with proliferation as measured by Ki-67 expression quartiles (P-trend < 0.0001), with expression of fatty acid synthase (P-trend = 0.001), and with two measures of angiogenesis (P-trend < 0.1). An inverse association was observed with apoptosis as assessed by the TUNEL assay (P-trend = 0.006). Using Cox proportional hazards regression and controlling for age at diagnosis, Gleason score, year of diagnosis category, cohort and baseline BMI, we identified a statistically significant trend for the association between quartile of AdipoR2 expression and lethal prostate cancer (P-trend = 0.02). The hazard ratio for lethal prostate cancer for the two highest quartiles, as compared to the two lowest quartiles, of AdipoR2 expression was 1.9 (95% confidence interval [CI]: 1.2–3.0). Results were similar when additionally controlling for categories of PSA at diagnosis and Ki-67 expression quartiles. These results strengthen the evidence for the role of AdipoR2 in prostate cancer progression. PMID:25863129

  10. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  11. Diagnosis and treatment of gastrointestinal stromal tumor extending to prostate

    PubMed Central

    Xu, Huan; Liu, Chong; Chen, Yanbo; Gu, Meng; Cai, Zhikang; Chen, Qi; Wang, Zhong

    2016-01-01

    Abstract Rationale: Gastrointestinal stromal tumor (GIST) is the neoplasm of gastrointestinal tract. Patient concerns: The patient complained about the retention of urinary. Diagnoses: GIST. Interventions: radical prostatectomy and the imatinib therapy. Outcomes: No recurrence and metastasis have been found during a 14-month follow-up. Lessons: comprehensive treatment is necessary for the GIST treatment. Furthermore, we summarize a review of the literature of GIST occurring in the prostate gland treated by different methods and 4 kinds of rare diseases in prostate. PMID:27861390

  12. XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors.

    PubMed

    Schlaberg, Robert; Choe, Daniel J; Brown, Kristy R; Thaker, Harshwardhan M; Singh, Ila R

    2009-09-22

    Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered in human prostate cancers and is the first gammaretrovirus known to infect humans. While gammaretroviruses have well-characterized oncogenic effects in animals, they have not been shown to cause human cancers. We provide experimental evidence that XMRV is indeed a gammaretrovirus with protein composition and particle ultrastructure highly similar to Moloney murine leukemia virus (MoMLV), another gammaretrovirus. We analyzed 334 consecutive prostate resection specimens, using a quantitative PCR assay and immunohistochemistry (IHC) with an anti-XMRV specific antiserum. We found XMRV DNA in 6% and XMRV protein expression in 23% of prostate cancers. XMRV proteins were expressed primarily in malignant epithelial cells, suggesting that retroviral infection may be directly linked to tumorigenesis. XMRV infection was associated with prostate cancer, especially higher-grade cancers. We found XMRV infection to be independent of a common polymorphism in the RNASEL gene, unlike results previously reported. This finding increases the population at risk for XMRV infection from only those homozygous for the RNASEL variant to all individuals. Our observations provide evidence for an association of XMRV with malignant cells and with more aggressive tumors.

  13. Leydig cell tumor

    MedlinePlus

    ... the cells in the testicles that release the male hormone, testosterone . ... seem to be linked to undescended testes . Leydig cell tumors make up a very small number of all testicular tumors. They are most often found in men between 30 and 60 years of age. This ...

  14. Sodwanone and Yardenone Triterpenes from a South African Species of the Marine Sponge Axinella Inhibit Hypoxia-Inducible Factor-1 (HIF-1) Activation in both Breast and Prostate Tumor Cells

    PubMed Central

    Dai, Jingqiu; Fishback, James A.; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that promotes tumor cell adaptation and survival under hypoxic conditions. HIF-1 is currently recognized as an important molecular target for anti-cancer drug discovery. A T47D breast tumor cell-based reporter assay was used to evaluate the NCI Open Repository of marine invertebrates and algae lipid extracts for HIF-1 inhibitory activity. Bioassay-guided fractionation and isolation of an active extract from Axinella sp. yielded seven new sodwanone triterpenoids [3-epi-sodwanone K (1), 3-epi-sodwanone K 3-acetate (2), 10,11-dihydrosodwanone B (4), sodwanones T–W (3, 7, 8, 9), the new yardenone triterpene 12R-hydroxyyardenone (10), and the previously reported compounds sodwanone A (5), sodwanone B (6), and yardenone (11). The structures and relative configurations of these Axinella metabolites were determined spectroscopically. The absolute configuration of 1 was determined by the modified Mosher ester procedure. Sodwanone V (8) inhibited both hypoxia-induced and iron chelator (1,10-phenanthroline)-induced HIF-1 activation in T47D breast tumor cells (IC50 15 μM) and 8 was the only sodwanone that inhibited HIF-1 activation in PC-3 prostate tumor cells (IC50 15 μM). Compounds 1, 3, 4, and 5 inhibited hypoxia-induced HIF-1 activation in T47D cells (IC50 values 20-25 μM). Compound 2 was cytotoxic to T47D cells (IC50 22 μM) and 8 showed cytotoxicity to MDA-MB-231 breast tumor cells (IC50 23 μM). PMID:17190448

  15. Regulation of the Prostate Cancer Tumor Microenvironment

    DTIC Science & Technology

    2012-04-01

    infiltrating macrophage lineage in the absence of MyD88. We are in the process of understanding the activation of signaling pathways , local and...development, growth, and metastasis is unclear. We are interested in understanding the mechanisms for development of TILs and how they modulate prostate...chromatin component HMG-B1. Activation of these receptors leads to induction of multiple inflammatory pathways , including nuclear factor-kappa B (NF

  16. Laser immunotherapy in treatment of metastatic prostate tumors in rats

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Ritchey, Jerry W.; Bartles, Kenneth E.; Lucroy, Michael D.; Liu, Hong; Nordquist, Robert E.

    2002-07-01

    Laser immunotherapy is a special cancer treatment modality using an intratumor injection of a special formulation consisting of a novel immunoadjuvant and a laser-absorbing dye, followed by a non-invasive near-IR laser irradiation. Our early experiments using a metastatic mammary rat tumor model showed that laser immunotherapy could cause acute selective photothermal tumor destruction and induce a systemic, long-term specific anti-tumor immunity. In the current study, laser immunotherapy was used to treat metastatic prostate tumors in Copenhagen male rats. The transplantable tumors metastasize mainly to the lung and the lung cancer is usually the cause of death. Two experimental were performed in our study. The first was to study the effect of laser immunotherapy on the tumor burdens, both the primary and the metastasis in the lung. The second was to study the effect of laser immunotherapy on the long-term survival of the tumor-bearing rats. For comparison, some rat tumors were also treated by the laser-dye combination to study the photothermal effect. Tour results showed that both the photothermal effect and the laser immunotherapy could slow the growth of primary tumors and the metastatic tumors. The laser-dye-immunoadjuvant treatment resulted in more than 20 percent long-term survival rate in tumor-bearing rats. Our experimental results indicate that the laser immunotherapy has a great potential in treating metastatic tumors.

  17. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  18. Selenite Treatment Inhibits LAPC-4 Tumor Growth and Prostate-Specific Antigen Secretion in a Xenograft Model of Human Prostate Cancer

    SciTech Connect

    Bhattacharyya, Rumi S.; Husbeck, Bryan; Feldman, David; Knox, Susan J.

    2008-11-01

    Purpose: Selenium compounds have known chemopreventive effects on prostate cancer. However selenite, an inorganic form of selenium, has not been extensively studied as a treatment option for prostate cancer. Our previous studies have demonstrated the inhibition of androgen receptor expression and androgen stimulated prostate-specific antigen (PSA) expression by selenite in human prostate cancer cell lines. In this study, we investigated the in vivo effects of selenite as a therapy to treat mice with established LAPC-4 tumors. Methods and Materials: Male mice harboring androgen-dependent LAPC-4 xenograft tumors were treated with selenite (2 mg/kg intraperitoneally three times per week) or vehicle for 42 days. In addition, androgen-independent LAPC-4 xenograft tumors were generated in female mice over 4 to 6 months. Once established, androgen-independent LAPC-4 tumor fragments were passaged into female mice and were treated with selenite or vehicle for 42 days. Changes in tumor volume and serum PSA levels were assessed. Results: Selenite significantly decreased androgen-dependent LAPC-4 tumor growth in male mice over 42 days (p < 0.001). Relative tumor volume was decreased by 41% in selenite-treated animals compared with vehicle-treated animals. The inhibition of LAPC-4 tumor growth corresponded to a marked decrease in serum PSA levels (p < 0.01). In the androgen-independent LAPC-4 tumors in female mice, selenite treatment decreased tumor volume by 58% after 42 days of treatment (p < 0.001). Conclusions: These results suggest that selenite may have potential as a novel therapeutic agent to treat both androgen-dependent and androgen-independent prostate cancer.

  19. Bioengineered viral vectors for targeting and killing prostate cancer cells.

    PubMed

    Zhang, Kai-xin; Jia, William; Rennie, Paul S

    2010-01-01

    Enabling the transduction of therapeutic gene expression exclusively in diseased sites is the key to developing more effective treatments for advanced prostate cancer using viral-based therapy. While prostate cancers that express high levels of HER-2 are resistant to the killing effects of trastuzumab, they can be targeted for selective gene expression and destruction by lentiviruses with envelope proteins engineered to bind to this therapeutic antibody. More importantly, after intravenous injection, this trastuzumab-bound lentivirus is able to target castration-resistant prostate tumor xenografts, albeit with low efficiency. This proof of principle opens up multiple possibilities for the prevention and treatment of prostate cancer using a viral-based therapy. However, to be safe and more effective, the viral vectors must target prostate cancer cells more selectively and efficiently. A higher degree of specificity and efficiency of cancer cell targeting can be achieved by engineering viral vectors to bind to a specific cell surface marker and by controlling the expression of the therapeutic payload at transcriptional level, with a tissue-specific promoter, and at the translational level, with a regulatory sequences inserted into either the 5'UTR or 3'UTR regions of the therapeutic gene(s). The latter would be designed to ensure that translation of this mRNA occurs exclusively in malignant cells. Furthermore, in order to obtain a potent anti-tumor effect, viral vectors would be engineered to express pro-apoptotic genes, intra-cellar antibodies/nucleotide aptamers to block critical proteins, or siRNAs to knockdown essential cellular mRNAs. Alternatively, controlled expression of an essential viral gene would restore replication competence to the virus and enable selective oncolysis of tumor cells. Successful delivery of such bioengineered viruses may provide a more effective way to treat advanced prostate cancer.

  20. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.

    PubMed

    Abd Elmageed, Zakaria Y; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M; Moparty, Krishnarao; Sikka, Suresh C; Sartor, Oliver; Abdel-Mageed, Asim B

    2014-04-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to downregulation of the large tumor suppressor homolog2 and the programmed cell death protein 4, a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients.

  1. TRPM8 Ion Channels Differentially Modulate Proliferation and Cell Cycle Distribution of Normal and Cancer Prostate Cells

    PubMed Central

    Valero, María Ll.; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A.

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells. PMID:23251635

  2. Merkel cell tumor.

    PubMed

    Kitazawa, M; Watanabe, H; Kobayashi, H; Ohnishi, Y; Shitara, A; Nitto, H

    1987-06-01

    A Merkel cell tumor appeared on the left cheek of an 83-year-old female was reported. The tumor was located mainly in the dermis and infiltrated to the subcutaneous adipose tissue with an involvement of the blood vessels and lymphatics at the periphery. Electron-microscopically, few of the dense-cored granules and the single globular aggregates of intermediate filaments at the nuclear indentations were observed. Electron-microscopic uranaffin reaction proved positive reaction on the dense-cored granules. Half of the cytoplasmic border was smooth, while the rest had short projections. Desmosomes or junctional complexes were not detected among the tumor cells. Immunohistochemically, the cytoplasm of tumor cell showed positive reaction to both neuron-specific enolase (NSE) and keratin. The single globular positive spots of the latter were localized in accordance with the aggregates of intermediate filaments. These findings suggested a neurogenic origin with double differentiation, epithelial and neuroendocrine, of the Merkel cell tumor.

  3. ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer

    PubMed Central

    Holzmann, Christian; Kilch, Tatiana; Kappel, Sven; Armbrüster, Andrea; Jung, Volker; Stöckle, Michael; Bogeski, Ivan; Schwarz, Eva C.; Peinelt, Christine

    2013-01-01

    Labelled 5α-dihydrotestosterone (DHT) binding experiments have shown that expression levels of (yet unidentified) membrane androgen receptors (mAR) are elevated in prostate cancer and correlate with a negative prognosis. However, activation of these receptors which mediate a rapid androgen response can counteract several cancer hallmark functions such as unlimited proliferation, enhanced migration, adhesion and invasion and the inability to induce apoptosis. Here, we investigate the downstream signaling pathways of mAR and identify rapid DHT induced activation of store-operated Ca2+ entry (SOCE) in primary cultures of human prostate epithelial cells (hPEC) from non-tumorous tissue. Consequently, down-regulation of Orai1, the main molecular component of Ca2+ release-activated Ca2+ (CRAC) channels results in an almost complete loss of DHT induced SOCE. We demonstrate that this DHT induced Ca2+ influx via Orai1 is important for rapid androgen triggered prostate specific antigen (PSA) release. We furthermore identified alterations of the molecular components of CRAC channels in prostate cancer. Three lines of evidence indicate that prostate cancer cells down-regulate expression of the Orai1 homolog Orai3: First, Orai3 mRNA expression levels are significantly reduced in tumorous tissue when compared to non-tumorous tissue from prostate cancer patients. Second, mRNA expression levels of Orai3 are decreased in prostate cancer cell lines LNCaP and DU145 when compared to hPEC from healthy tissue. Third, the pharmacological profile of CRAC channels in prostate cancer cell lines and hPEC differ and siRNA based knock-down experiments indicate changed Orai3 levels are underlying the altered pharmacological profile. The cancer-specific composition and pharmacology of CRAC channels identifies CRAC channels as putative targets in prostate cancer therapy. PMID:24240085

  4. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements.

    PubMed

    Hwang, Ji-Eun; Joung, Jae Young; Shin, Seung-Phil; Choi, Moon-Kyung; Kim, Jeong Eun; Kim, Yon Hui; Park, Weon Seo; Lee, Sang-Jin; Lee, Kang Hyun

    2016-03-01

    Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker.

  5. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling.

    PubMed

    Schroeder, Anne; Herrmann, Andreas; Cherryholmes, Gregory; Kowolik, Claudia; Buettner, Ralf; Pal, Sumanta; Yu, Hua; Müller-Newen, Gerhard; Jove, Richard

    2014-02-15

    Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.

  6. Androgen deprivation and stem cell markers in prostate cancers

    PubMed Central

    Tang, Yao; Hamburger, Anne W; Wang, Linbo; Khan, Mohammad Afnan; Hussain, Arif

    2010-01-01

    In our previous studies using human LNCaP xenografts and TRAMP (transgenic adenocarcinoma of mouse prostate) mice, androgen deprivation therapy (ADT) resulted in a temporary cessation of prostate cancer (PCa) growth, but then tumors grew faster with more malignant behaviour. To understand whether cancer stem cells might play a role in PCa progression in these animal models, we investigated the expressions of stem cell-related markers in tumors at different time points after ADT. In both animal models, enhanced expressions of stem cell markers were observed in tumors of castrated mice, as compared to non-castrated controls. This increased cell population that expressed stem cell markers is designated as stem-like cells (SLC) in this article. We also observed that the SLC peaked at relatively early time points after ADT, before tumors resumed their growth. These results suggest that the SLC population may play a role in tumor re-growth and disease progression, and that targeting the SLC at their peak-expression time point may prevent tumor recurrence following ADT. PMID:20126580

  7. TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway

    PubMed Central

    Qi, Li; Lu, Zhong; Sun, Yong-Hong; Song, Hai-Tao; Xu, Wei-Kang

    2016-01-01

    Prostate carcinoma is a devastating disease which is characterized by insidious early symptoms, rapid progression and a poor prognosis. Tripartite motif-containing protein 16 (TRIM16) was identified as an estrogen- and antiestrogen-regulated gene in epithelial cells stably expressing estrogen receptors. The protein encoded by this gene contains two B-box domains and a coiled-coiled region that are characteristic of the B-box zinc finger protein family. Proteins belonging to this family have been reported to be involved in a variety of biological processes including cell growth, differentiation and pathogenesis. TRIM16 expression has been detected in most tissues. However, the funtions of this gene remain to be elucidated. In the present study, immunohistochemical staining revealed that the expression of TRIM16 was decreased in prostate adenocarcinoma compared with that in normal prostate tissues. The patients with high TRIM16-expressing tumors had a significantly greater survival than those with low TRIM16-expressing tumors. Western blot analysis showed that TRIM16 was downregulated in distant metastatic cancer tissues compared with that in non-distant metastatic cancer tissues. The overexpression of TRIM16 inhibited the migration and invasion of prostate cancer cells as well as inhibiting the epithelial-to-mesenchymal transition process, whereas TRIM16 depletion enhanced these processes. Moreover, TRIM16 inhibited the Snail signaling pathway. The silencing of Snail by small interfering RNA was performed in order to determine the role of Snail in the TRIM16-mediated tumor phenotype. Taken together, these findings suggest that TRIM16 may be an important molecular target which may aid in the design of novel therapeutic agents for prostate cancer. PMID:27748839

  8. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity.

    PubMed

    Oltean, Sebastian; Sorg, Brian S; Albrecht, Todd; Bonano, Vivian I; Brazas, Robert M; Dewhirst, Mark W; Garcia-Blanco, Mariano A

    2006-09-19

    In epithelial cells, alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts leads to the expression of the FGFR2(IIIb) isoform, whereas in mesenchymal cells, the same process results in the synthesis of FGFR2(IIIc). Expression of the FGFR2(IIIc) isoform during prostate tumor progression suggests a disruption of the epithelial character of these tumors. To visualize the use of FGFR2 exon IIIc in prostate AT3 tumors in syngeneic rats, we constructed minigene constructs that report on alternative splicing. Imaging these alternative splicing decisions revealed unexpected mesenchymal-epithelial transitions in these primary tumors. These transitions were observed more frequently where tumor cells were in contact with stroma. Indeed, these transitions were frequently observed among lung micrometastases in the organ parenchyma and immediately adjacent to blood vessels. Our data suggest an unforeseen relationship between epithelial mesenchymal plasticity and malignant fitness.

  9. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    DTIC Science & Technology

    2007-11-01

    features of the mesenchymal-epithelial interactions of development may play a critical role in the development of benign prostatic hyperplasia and in the...proceeds (Hayward et al., 1996). Myofibroblasts are present in the adult prostate at sites of benign prostatic hyperplasia (BPH) and in prostate...Wang, S.Y., Vazquez, D.V., C, C.X., Zhang, S., and Tang, L. (2007) Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess

  10. Tyrosine Kinase Display of Prostate Cancer Cells

    DTIC Science & Technology

    2001-10-01

    transdifferentiation . The fact that some prostate cancer cell lines, such as LNCaP, can undergo NE differentiation suggests that at least a subset of NE cells is...Katz, C. A. Olsson, and R. Buttyan. 1997. Transdifferentiation of cultured human prostate cells to a neuroendocrine cell phenotype in a hormone...in the above-mentioned cases 3), and some of these cells can be induced to transdifferentiate are tyrosine kinases, which are known initiators of

  11. Isolation of cancer stem cells from human prostate cancer samples.

    PubMed

    Vidal, Samuel J; Quinn, S Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-03-14

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice.

  12. SU-E-J-95: Predicting Treatment Outcomes for Prostate Cancer: Irradiation Responses of Prostate Cancer Stem Cells

    SciTech Connect

    Wang, K

    2014-06-01

    Purpose: Most prostate cancers are slow-growing diseases but normally require much higher doses (80Gy) with conventional fractionation radiotherapy, comparing to other more aggressive cancers. This study is to disclose the radiobiological basis of this discrepancy by proposing the concept of prostate cancer stem cells (CSCs) and examining their specific irradiation responses. Methods: There are overwhelming evidences that CSC may keep their stemness, e.g. the competency of cell differentiation, in hypoxic microenvironments and hence become radiation resistive, though the probability is tiny for aggressiveness cancers. Tumor hypoxia used to be considered as an independent reason for poor treatment outcomes, and recent evidences showed that even prostate cancers were also hypoxic though they are very slow-growing. In addition, to achieve comparable outcomes to other much more aggressive cancers, much higher doses (rather than lower doses) are always needed for prostate cancers, regardless of its non-aggressiveness. All these abnormal facts can only be possibly interpreted by the irradiation responses characteristics of prostate CSCs. Results: Both normal cancer cells (NCCs) and CSCs exiting in tumors, in which NCCs are mainly for symptoms whereas killing all CSCs achieves disease-free. Since prostate cancers are slow-growing, the hypoxia in prostate cancers cannot possibly from NCCs, thus it is caused by hypoxic CSCs. However, single hypoxic cell cannot be imaged due to limitation of imaging techniques, unless a large group of hypoxic cells exist together, thus most of CSCs in prostate cancers are virtually hypoxic, i.e. not in working mode because CSCs in proliferating mode have to be normoxic, and this explains why prostate cancers are unaggressive. Conclusion: The fractional dose in conventional radiotherapy (∼2Gy) could only kill NCCs and CSCs in proliferating modes, whereas most CSCs survived fractional treatments since they were hypoxic, thus to eliminate all

  13. The Prostate Tumor Microenvironment Exhibits differentially expressed Genes Useful for Diagnosis — EDRN Public Portal

    Cancer.gov

    To develop a multi-site prospective clinical validation trial of the multigene diagnostic signature for the diagnosis of prostate cancer from non tumor containing biopsy tissue. Prostate cancer now affects one in five men in the U.S. It is diagnosed by examination of a biopsy sample of the prostate gland by a pathologist and treatment decisions such as the choice of surgery are usually not made without direct visualization of the presence of cancer by a pathologist. There are about one million such biopsy procedures in the U.S. every year. However about 1-200,000 are ambiguous owing to the absence of tumor but the presence of small changes such as atypical small acinar proliferations (ASAP) or proliferations within otherwise normal glands (PIN, prostate intraepithelial neoplasia) that are highly suspicious for cancer. Studies by the UCI/NCI SPECS project on prostate cancer have led to a new way to diagnosis the presence of prostate cancer in these ambiguous changes. Researchers of the UCI/NCI SPECS project observed that the tissue around a tumor called stroma has many altered gene activities that are caused by molecules secreted by the tumor cells. Indeed these studies revealed that 114 genes exhibited altered activity in stroma near tumor compared to normal stroma. These changes can be used as a “signature” to examine new samples to determine the “presence of-tumor”. Such a test has many applications. Currently ambiguous cases are asked to return for a repeat biopsy in 3 to 12 months – an agonizing period for patients during which they receive no guidance and during which any tumor may continue to grow and spread. Thus, the new test would detect tumor 3 to 12 months prior to conventional practice. This will avoid repeated biopsy procedures. Patients who are positive by the new test may consider whether immediate medical treatment or neo adjuvant treatment is appropriate. In addition the ability to detect presence-of-tumor early will avoid the necessity

  14. Sertoli-Leydig cell tumor

    MedlinePlus

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  15. Proepithelin Regulates Prostate Cancer Cell Biology by Promoting Cell Growth, Migration, and Anchorage-Independent Growth

    PubMed Central

    Monami, Giada; Emiliozzi, Velia; Bitto, Alessandro; Lovat, Francesca; Xu, Shi-Qiong; Goldoni, Silvia; Fassan, Matteo; Serrero, Ginette; Gomella, Leonard G.; Baffa, Raffaele; Iozzo, Renato V.; Morrione, Andrea

    2009-01-01

    The growth factor proepithelin has recently emerged as an important regulator of transformation in several physiological and pathological systems. In this study, we determined the biological roles of proepithelin in prostate cancer cells using purified human recombinant proepithelin as well as proepithelin-depletion strategies. Proepithelin promoted the migration of androgen-dependent and -independent human prostate cancer cells; androgen-independent DU145 cells were the more responsive. In these cells, proepithelin additionally stimulated wound closure, invasion, and promotion of cell growth in vitro. These effects required the activation of both the Akt and mitogen-activated protein kinase pathways. We have analyzed proepithelin expression levels in different available prostate cancer microarray studies using the Oncomine database and found a statistically significant increase in proepithelin mRNA expression levels in prostate cancers compared with nonneoplastic controls. Notably, depletion of endogenous proepithelin by siRNA and antisense strategies impaired the ability of DU145 cells to grow and migrate after serum withdrawal and inhibited anchorage-independent growth. Our results provide the first evidence for a role of proepithelin in stimulating the migration, invasion, proliferation, and anchorage-independent growth of prostate cancer cells. This study supports the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and initial progression of prostate cancer. Furthermore, proepithelin may prove to be a useful clinical marker for the diagnosis of prostate tumors. PMID:19179604

  16. MicroRNAs 221/222 and Genistein mediated regulation of ARHI tumor suppressor gene in prostate cancer

    PubMed Central

    Chen, Yi; Zaman, Mohd Saif; Deng, Guoren; Majid, Shahana; Saini, Shranjot; Liu, Jan; Tanaka, Yuichiro; Dahiya, Rajvir

    2010-01-01

    INTRODUCTION ARHI, an imprinted tumor suppressor gene, is expressed in normal immortalized prostate epithelial cells, but is dramatically down-regulated in prostate cancer cell lines. Here we investigated the mechanisms of ARHI silencing in prostate cancer through miRNA and genistein mediated pathways. EXPERIMENTAL PROCEDURE We evaluated ARHI mRNA and protein levels by real time PCR and immunostaining of prostate tissue array. Then, ARHI was over-expressed in prostate cancer PC-3 cells followed by functional studies. Finally, miRNA inhibitor studies and dual luciferase pMIR-REPORT assay were performed to prove the direct target of miR-221&222 to ARHI. RESULTS Both ARHI mRNA and protein levels were down regulated in prostate cancer tissues compared to adjacent normal tissues. Over-expression of ARHI can inhibit cell proliferation, colony formation, invasion and induced apoptosis. Further studies on a new mechanism of ARHI down regulation showed a significant inverse relationship between ARHI and miR-221 & 222 which were up-regulated in cancer cell lines. Transfection of miR-221 & 222 inhibitors into PC-3 cells caused a significant induction of ARHI expression. A direct interaction of miR-221 or 222 with a target site on the 3’UTR of ARHI was confirmed by a dual luciferase pMIR-REPORT assay. CONCLUSIONS ARHI is a tumor suppressor gene down regulated in prostate cancer and over-expression of ARHI can inhibit cell proliferation, colony formation and invasion. This study demonstrates for the first time that prostate cancer cells have decreased level of ARHI which could be caused by direct targeting of 3’UTR of ARHI by miR221/222. PMID:21071579

  17. [Testicular germ cell tumors].

    PubMed

    Dourthe, L M; Ouachet, M; Fizazi, K; Droz, J P

    1998-09-01

    Testicle germ cells tumors are the most common young men neoplasm. The incidence is maximal in Scandinavian countries. Cryptorchidism is a predisposing factor. Diagnosis is clinic, first treatment is radical orchidectomy by inguinal incision, after study of tumor markers. Histology shows seminoma or non seminomatous tumor. Carcinoma in situ is the precursor of invasive germ cell tumors. Germ cell tumors have no p53 mutation, and have isochrome of the short arm of chromosome 12 as a specific marker. With the results of histological, biochemical and radiographic evaluation, patient are classified as follows: good, intermediate and poor risk prognosis. Standard treatment of stage I seminoma is prophylactic irradiation. Stage II with less than 3 cm lymph node too. Other situations need a cisplatin based chemotherapy. In case of metastatic residuals masses more than 3 cm, surgery need to be discussed. Stage I non seminomatous germ cell tumors are treated by retroperitoneal lymphadenectomy, by surveillance or by two cycles of adjuvant chemotherapy with cisplatin, etoposide and bleomycin (BEP). Standard treatment of good prognosis stage II and III is three cycles of BEP, four for poor prognosis. Residual mass need surgery, adjuvant chemotherapy is necessary in presence of viable germ cell. Standard treatment for relapses is chemotherapy with cisplatin, ifosfamide and vinblastine with a 30% remission rate. The place of high dose chemotherapy with autologous stem cell transplantation is not yet standardised. New drugs, as paclitaxel, are under studies.

  18. Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects.

    PubMed

    Sheikh, Nadeem; Cham, Jason; Zhang, Li; DeVries, Todd; Letarte, Simon; Pufnock, Jeff; Hamm, David; Trager, James; Fong, Lawrence

    2016-07-01

    Sipuleucel-T is an autologous cellular therapy for asymptomatic, or minimally symptomatic, metastatic castrate-resistant prostate cancer, designed to stimulate an immune response against prostate cancer. In a recent clinical trial (NCT00715104), we found that neoadjuvant sipuleucel-T increased the number of activated T cells within the tumor microenvironment. The current analysis examined whether sipuleucel-T altered adaptive T-cell responses by expanding pre-existing T cells or by recruiting new T cells to prostate tissue. Next-generation sequencing of the T-cell receptor (TCR) genes from blood or prostate tissue was used to quantitate and track T-cell clonotypes in these treated subjects with prostate cancer. At baseline, there was a significantly greater diversity of circulating TCR sequences in subjects with prostate cancer compared with healthy donors. Among healthy donors, circulating TCR sequence diversity remained unchanged over the same time interval. In contrast, sipuleucel-T treatment reduced circulating TCR sequence diversity versus baseline as measured by the Shannon index. Interestingly, sipuleucel-T treatment resulted in greater TCR sequence diversity in resected prostate tissue in sipuleucel-T-treated subjects versus tissue of nonsipuleucel-T-treated subjects with prostate cancer. Furthermore, sipuleucel-T increased TCR sequence commonality between blood and resected prostate tissue in treated versus untreated subjects with prostate cancer. The broadening of the TCR repertoire within the prostate tissue supports the hypothesis that sipuleucel-T treatment facilitates the recruitment of T cells into the prostate. Our results highlight the importance of assessing T-cell response to immunotherapy both in the periphery and in tumor tissue. Cancer Res; 76(13); 3711-8. ©2016 AACR.

  19. Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression.

    PubMed

    Fan, Rong; Kumaravel, Tirukalikundram S; Jalali, Farid; Marrano, Paula; Squire, Jeremy A; Bristow, Robert G

    2004-12-01

    Together with cell cycle checkpoint control, DNA repair plays a pivotal role in protecting the genome from endogenous and exogenous DNA damage. Although increased genetic instability has been associated with prostate cancer progression, the relative role of DNA double-strand break repair in malignant versus normal prostate epithelial cells is not known. In this study, we determined the RNA and protein expression of a series of DNA double-strand break repair genes in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145, and PC-3) prostate cultures. Expression of genes downstream of ATM after ionizing radiation-induced DNA damage reflected the p53 status of the cell lines. In the malignant prostate cell lines, mRNA and protein levels of the Rad51, Xrcc3, Rad52, and Rad54 genes involved in homologous recombination were elevated approximately 2- to 5-fold in comparison to normal PrEC cells. The XRCC1, DNA polymerase-beta and -delta proteins were also elevated. There were no consistent differences in gene expression relating to the nonhomologous end-joining pathway. Despite increased expression of DNA repair genes, malignant prostate cancer cells had defective repair of DNA breaks, alkali-labile sites, and oxidative base damage. Furthermore, after ionizing radiation and mitomycin C treatment, chromosomal aberration assays confirmed that malignant prostate cells had defective DNA repair. This discordance between expression and function of DNA repair genes in malignant prostate cancer cells supports the hypothesis that prostate tumor progression may reflect aberrant DNA repair. Our findings support the development of novel treatment strategies designed to reinstate normal DNA repair in prostate cancer cells.

  20. Cell Lineage Analysis of Mouse Prostate Carcinogenesis

    DTIC Science & Technology

    2015-09-01

    epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences of the United States of...America 2010, 107(6):2610-2615. 4. Dor Y, Brown J, Martinez OI, Melton DA: Adult pancreatic beta- cells are formed by self- duplication rather than stem ...Shen C, Shen MM: A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 2009, 461(7263):495-500. 6. Liu J, Pascal LE

  1. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    DTIC Science & Technology

    2015-10-01

    SUBJECT TERMS Prostate cancer, myeloid-derived suppressor cell (MDSC), Pten, Smad4, genetically engineered mouse model, Gr-1, peptide-Fc fusion protein...KEYWORDS Prostate cancer, myeloid-derived suppressor cell (MDSC), Pten, Smad4, genetically engineered mouse model, Gr-1, peptide-Fc fusion protein 3...which should provide a genetic method for MDSC functional evaluation. Currently, the compound mouse Ptenpc-/- Smad4pc-/- CD11b-DTR+ are still in

  2. Regulation of the Prostate Cancer Tumor Microenvironment

    DTIC Science & Technology

    2016-04-01

    produce danger signals that elicit the activation of immune responses. These signals in the form of conserved molecules termed pathogen-associated...molecular patterns (PAMPs) or danger -associated molecular patterns (DAMPs) can be discriminated from self-antigens by a family of pattern-recognition...to our initial aims using TRAMP Tg+/- animals , namely the length of time for development of tumors from 24 to 30 weeks of age, the ubiquitous

  3. [Neuroendocrine features of prostatic tumors: state of the art].

    PubMed

    Turitto, Giacinto; Frattolillo, Adele; Iodice, Patrizia; Auriemma, Annunziata; Tortoriello, Annamaria; di Grazia, Maria; Iaffaioli, Rosario Vincenzo

    2003-12-01

    Neuroendocrine (NE) differentiation in prostate cancer has received much attention recently because it has been found to be associated with androgen independence and shortened patient survival in some studies. The present review focuses on morphogenics origins of NE cells, growth properties and the androgen receptor status and relationship between NE-secreted products and regulation of angiogenesis and apoptosis.

  4. Mouse Orthotopic Xenographs of Human Prostate Primary Tumors

    DTIC Science & Technology

    2006-11-01

    prostatic hyperplasia (BPH) and 4 from cancer) were isolated from multiple samples of 4 radical prostatectomy surgical specimens, two of which belonged...pellet (12.5 mg, 90 day- release) was implanted subcutaneously in all mice. 5 PI: Loda, Massimo b) Eight primary cell cultures (4 from benign

  5. Hypoxic tumor kinase signaling mediated by STAT5A in development of castration-resistant prostate cancer.

    PubMed

    Røe, Kathrine; Bratland, Åse; Vlatkovic, Ljiljana; Ragnum, Harald Bull; Saelen, Marie Grøn; Olsen, Dag Rune; Marignol, Laure; Ree, Anne Hansen

    2013-01-01

    In this study, we hypothesized that androgen-deprivation therapy (ADT) in prostate cancer, although initially efficient, induces changes in the tumor kinome, which subsequently promote development of castration-resistant (CR) disease. Recognizing the correlation between tumor hypoxia and poor prognosis in prostate cancer, we further hypothesized that such changes might be influenced by hypoxia. Microarrays with 144 kinase peptide substrates were applied to analyze CWR22 prostate carcinoma xenograft samples from ADT-naïve, androgen-deprived (AD), long-term AD (ADL), and CR disease stages. The impact of hypoxia was assessed by matching the xenograft kinase activity profiles with those acquired from hypoxic and normoxic prostate carcinoma cell cultures, whereas the clinical relevance was evaluated by analyzing prostatectomy tumor samples from patients with locally advanced disease, either in ADT-naïve or early CR disease stages. By using this novel peptide substrate microarray method we revealed high kinase activity mediated by signal transducer and activator of transcription 5A (STAT5A) in CR prostate cancer. Additionally, we uncovered high STAT5A kinase activity already in regressing ADL xenografts, before renewed CR growth was evidenced. Finally, since increased STAT5A kinase activity also was detected after exposing prostate carcinoma cells to hypoxia, we propose long-term ADT to induce tumor hypoxia and stimulate STAT5A kinase activity, subsequently leading to renewed CR tumor growth. Hence, the study detected STAT5A as a candidate to be further investigated for its potential as marker of advanced prostate cancer and as possible therapeutic target protein.

  6. Suppression of human prostate cancer cell growth by alpha1-adrenoceptor antagonists doxazosin and terazosin via induction of apoptosis.

    PubMed

    Kyprianou, N; Benning, C M

    2000-08-15

    Recent evidence from our laboratory has demonstrated that alpha1-adrenoceptor antagonists doxazosin and terazosin induced apoptosis in prostate epithelial and smooth muscle cells in patients with benign prostatic hypertrophy (BPH; J. Urol., 159: 1810-1815, 1998; J. Urol., 161: 2002-2007, 1999). In this study, we investigated the biological action of three alpha1-adrenoceptor antagonists, doxazosin, terazosin, and tamsulosin, against prostate cancer cell growth. The antigrowth effect of the three alpha1-adrenoceptor antagonists was examined in two human prostate cancer cell lines, PC-3 and DU-145, and a prostate smooth muscle cell primary culture, SMC-1, on the basis of: (a) cell viability assay; (b) rate of DNA synthesis; and (c) induction of apoptosis. Our results indicate that treatment of prostate cancer cells with doxazosin or terazosin results in a significant loss of cell viability, via induction of apoptosis in a dose-dependent manner, whereas tamsulosin had no effect on prostate cell growth. Neither doxazosin nor terazosin exerted a significant effect on the rate of cell proliferation in prostate cancer cells. Exposure to phenoxybenzamine, an irreversible inhibitor of alpha1-adrenoceptors, does not abrogate the apoptotic effect of doxazosin or terazosin against human prostate cancer or smooth muscle cells. This suggests that the apoptotic activity of doxazosin and terazosin against prostate cells is independent of their capacity to antagonize alpha1-adrenoceptors. Furthermore, an in vivo efficacy trial demonstrated that doxazosin administration (at tolerated pharmacologically relevant doses) in SCID mice bearing PC-3 prostate cancer xenografts resulted in a significant inhibition of tumor growth. These findings demonstrate the ability of doxazosin and terazosin (but not tamsulosin) to suppress prostate cancer cell growth in vitro and in vivo by inducing apoptosis without affecting cell proliferation. This evidence provides the rationale for targeting both

  7. Synchronous Malignant Peripheral Nerve Sheath Tumor and Adenocarcinoma of the Prostate: Case Report and Literature Review

    PubMed Central

    Bouropoulos, Konstantinos; Farmakis, Antonios

    2016-01-01

    Malignant Peripheral Nerve Sheath Tumors (MPNSTs) of the prostate are extremely rare. A very unusual case of simultaneous adenocarcinoma and MPNST of the prostate is reported. A 60-year-old Caucasian male presented for annual urologic examination. Digital rectal examination revealed a painless, toughish, and asymmetrically enlarged prostate. Serum prostate-specific antigen was 1 ng/mL. Radiologic examinations demonstrated a large mass, which was arising from the left peripheral lobe of the prostate. The patient underwent transrectal ultrasound-guided biopsy of the prostate which revealed a smooth muscle tumor of uncertain malignant potential. Radical retropubic prostatectomy with en bloc removal of the mass and the seminal vesicles was performed and histology demonstrated low-grade MPNST and adenocarcinoma of the prostate. To the best of our knowledge, this is the first report of simultaneous prostatic adenocarcinoma and MPNST in the English literature. PMID:27872787

  8. Frequently rearranged in advanced T-cell lymphomas-1 demonstrates oncogenic properties in prostate cancer

    PubMed Central

    Zhang, Wei; Xiong, Hua; Zou, Yanmei; Xu, Sanpeng; Quan, Lanping; Yuan, Xianglin; Xu, Ningzhi; Wang, Yihua

    2016-01-01

    Prostate cancer is the fifth most common cause of cancer-associated mortality for males worldwide. Although dysregulation of the β-catenin/T-cell factor (TCF) pathway has been previously reported in prostate cancer, the mechanisms underlying this process remain unknown. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) functions as a positive regulator of the β-catenin/TCF signaling pathway. However, to the best of our knowledge, the molecular association between FRAT1 and the β-catenin/TCF pathway in prostate cancer has not been investigated. In the present study, FRAT1 expression was analyzed in normal prostate tissues and prostate adenocarcinoma samples using publicly available databases, a commercial tissue microarray and immunohistochemistry techniques. In addition, FRAT1 expression levels were altered by overexpression or RNA interference-mediated depletion in prostate cancer cells. The effects of FRAT1 expression on tumor growth were determined using cell growth curves in vitro and xenografts in nude mice in vivo. The effects of FRAT1 on β-catenin/TCF activity were measured using the TOPFLASH reporter assay. FRAT1 was expressed exclusively in the nuclei of normal prostate basal cells, and nuclear FRAT1 was detected in 68% (40/59) of prostate adenocarcinoma samples. In addition, FRAT1 activated the TCF luciferase reporter gene promoter in prostate cancer cells, and was observed to promote the growth of prostate cancer cells in vitro. Furthermore, FRAT1 expression was sufficient to transform NIH3T3 mouse embryonic fibroblast cells and lead to tumor formation in vivo. These results suggest that FRAT1 demonstrates oncogenic properties in prostate cancer, potentially by suppressing the inhibitory effect of nuclear glycogen synthase 3β against β-catenin/TCF activity, thus activating the Wnt/β-catenin signaling pathway and promoting cell growth. PMID:27599661

  9. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents.

    PubMed

    Uzzo, Robert G; Leavis, Paul; Hatch, William; Gabai, Vladimir L; Dulin, Nickolai; Zvartau, Nadezhda; Kolenko, Vladimir M

    2002-11-01

    Prostate carcinogenesis involves transformation of zinc-accumulating normal epithelial cells to malignant cells, which do not accumulate zinc. In this study, we demonstrate by immunoblotting and immunohistochemistry that physiological levels of zinc inhibit activation of nuclear factor (NF)-kappa B transcription factor in PC-3 and DU-145 human prostate cancer cells, reduce expression of NF-kappa B-controlled antiapoptotic protein c-IAP2, and activate c-Jun NH(2)-terminal kinases. Preincubation of PC-3 cells with physiological concentrations of zinc sensitized tumor cells to tumor necrosis factor (TNF)-alpha, and paclitaxel mediated cell death as defined by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. These results suggest one possible mechanism for the inhibitory effect of zinc on the development and progression of prostate malignancy and might have important consequences for the prevention and treatment of prostate cancer.

  10. Multiplexed Analysis of Circulating Prostate Tumor and Host Response Markers

    DTIC Science & Technology

    2005-04-01

    patients with benign prostatic hyperplasia , organ-confined prostate cancer, "metastatic prostate cancer, and no disease. Further development of high...organ-confined prostate cancer, non-organ-confined prostate cancer, benign prostatic hyperplasia , and no disease. These experiments were performed on

  11. A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2010-04-01

    This paper extends Jackson’s model describing the growth of a prostate tumor with hormone therapy to a new one with hypothetical mutation inhibitors. The new model not only considers the mutation by which androgen-dependent (AD) tumor cells mutate into androgen-independent (AI) ones but also introduces inhibition which is assumed to change the mutation rate. The tumor consists of two types of cells (AD and AI) whose proliferation and apoptosis rates are functions of androgen concentration. The mathematical model represents a free-boundary problem for a nonlinear system of parabolic equations, which describe the evolution of the populations of the above two types of tumor cells. The tumor surface is a free boundary, whose velocity is equal to the cell’s velocity there. Global existence and uniqueness of solutions of this model is proved. Furthermore, explicit formulae of tumor volume at any time t are found in androgen-deprived environment under the assumption of radial symmetry, and therefore the dynamics of tumor growth under androgen-deprived therapy could be predicted by these formulae. Qualitative analysis and numerical simulation show that controlling the mutation may improve the effect of hormone therapy or delay a tumor relapse.

  12. Osteoclast derived matrix metalloproteinase-9 directly impacts angiogenesis in the prostate tumor-bone microenvironment

    PubMed Central

    Bruni-Cardoso, Alexandre; Johnson, Lindsay C.; Vessella, Robert L.; Peterson, Todd E.; Lynch, Conor C.

    2010-01-01

    In human prostate to bone metastases and in a novel rodent model that recapitulates prostate tumor induced-osteolytic and osteogenic responses, we found that osteoclasts are a major source of the proteinase, MMP-9. Since MMPs are important mediators of tumor-host communication, we tested the impact of host derived MMP-9 on prostate tumor progression in bone. To this end, immunocompromised mice that were wild type or null for MMP-9 received transplants of osteolytic/osteogenic inducing prostate adenocarcinoma tumor tissue to the calvaria. Surprisingly, we found that that host MMP-9 significantly contributed to prostate tumor growth without impacting prostate tumor induced osteolytic or osteogenic change as determined by μCT, μSPECT and histomorphometry. Subsequent studies aimed at delineating the mechanism of MMP-9 action on tumor growth focused on angiogenesis since MMP-9 and osteoclasts have been implicated in this process. We observed; 1) significantly fewer and smaller blood vessels in the MMP-9 null group by CD-31 immunohistochemistry; 2) MMP-9 null osteoclasts had significantly lower levels of bioavailable VEGF-A164 and; 3) using an aorta sprouting assay, conditioned media derived from wild type osteoclasts was significantly more angiogenic than conditioned media derived from MMP-9 null osteoclasts. In conclusion, these studies demonstrate that osteoclast derived MMP-9 impacts prostate tumor growth in the bone microenvironment by contributing to angiogenesis without altering prostate tumor induced osteolytic or osteogenic changes. PMID:20332212

  13. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense

    PubMed Central

    2011-01-01

    Background Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. Methods The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors Results We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in

  14. Expression and initial promoter characterization of PCAN1 in retinal tissue and prostate cell lines.

    PubMed

    Cross, D; Reding, D J; Salzman, S A; Zhang, K Q; Catalona, W J; Burke, J; Burmester, J K

    2004-01-01

    Prostate cancer is the most frequently diagnosed neoplasia in men and one of the leading causes of cancer-related deaths in men over 60. In an effort to understand the molecular events leading to prostate cancer, we have identified PCAN1 (prostate cancer gene 1) (also known as GDEP), a gene that is highly expressed in prostate epithelial tissue and frequently mutated in prostate tumors. Here we demonstrate its expression in neural retina, and retinoblastoma cell culture but not retinal pigment epithelial cell culture. We further characterize PCAN1 expression in the prostate cell lines RWPE1, RWPE2, and LnCAP FGC. We demonstrate an increase in expression when the cells are grown in the presence of Matrigel, an artificial extracellular basement membrane. Expression was time dependent, with expression observed on d 6 and little or no expression on d 12. Testosterone was not found to increase PCAN1 expression in this culture system. In addition, normal prostate epithelial cells co-cultured with normal prostate stromal cells did not exhibit PCAN1 expression at any time. To definitively locate the transcription initiation sites, we performed restriction-ligase-mediated 5' RACE, to selectively amplify only mRNA with a 5' cap. An initial characterization of the sequence upstream of the initiation sites determined six possible binding sites for the prostate specific regulatory protein NKX3.1 and four potential binding sites for the PPAR/RXR heterodimer that is involved in the control of cell differentiation and apoptosis.

  15. CCR5 receptor antagonists block metastasis to bone of v-Src-oncogene-transformed metastatic prostate cancer cell lines

    PubMed Central

    Sicoli, Daniela; Jiao, Xuanmao; Ju, Xiaoming; Velasco-Velazquez, Marco; Ertel, Adam; Addya, Sankar; Li, Zhiping; Ando, Sebastiano; Fatatis, Alessandro; Paudyal, Bishnuhari; Cristofanilli, Massimo; Thakur, Mathew L.; Lisanti, Michael P; Pestell, Richard G.

    2014-01-01

    Src family kinases (SFKs) integrate signal transduction for multiple receptors, regulating cellular proliferation invasion and metastasis in human cancer. Although Src is rarely mutated in human prostate cancer, SFK activity is increased in the majority of human prostate cancers. In order to determine the molecular mechanisms governing prostate cancer bone metastasis, FVB murine prostate epithelium was transduced with oncogenic v-Src. The prostate cancer cell lines metastasized in FVB mice to brain and bone. Gene expression profiling of the tumors identified activation of a CCR5 signaling module when the prostate epithelial cells (PEC) lines were grown in vivo vs. tissue cultures. The whole body, bone and brain metastatic prostate cancer burden was reduced by oral CCR5 antagonist. Clinical trials of CCR5 inhibitors may warrant consideration in patients with CCR5 activation in their tumors. PMID:25452256

  16. Prostate Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Prostate Cancer What is Prostate Cancer? How Tumors Form The body is made up ... the Escape (Esc) button on your keyboard.) How Prostate Cancer Occurs Prostate cancer occurs when a tumor forms ...

  17. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice

    PubMed Central

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-01-01

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5–0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner. PMID:28282880

  18. Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels.

    PubMed

    Nimmanapalli, R; Perkins, C L; Orlando, M; O'Bryan, E; Nguyen, D; Bhalla, K N

    2001-01-15

    We have demonstrated that Apo-2 ligand (Apo-2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of human prostate cancer PC-3, DU145, and LNCaP cells in a dose-dependent manner, with PC-3 cells displaying the greatest sensitivity to Apo-2L/TRAIL. Susceptibility of the prostate cancer cell types to Apo-2L/TRAIL-induced apoptosis did not appear to correlate with the levels of the Apo-2L/TRAIL receptors death receptor (DR) 4 (TRAIL receptor 1) or DR5 (TRAIL receptor 2), decoy receptor (DcR) 1 and DcR2, Flame-1, or the inhibitors of apoptosis proteins family of proteins. Apo-2L/TRAIL-induced apoptosis of PC-3 cells was associated with the processing of caspase-8, caspase-10, and the proapoptotic Bid protein, resulting in the cytosolic accumulation of cytochrome c as well as the processing of procaspase-9 and procaspase-3. Cotreatment with the caspase-8 inhibitor z-IETD-fmk or DR4:Fc significantly inhibited Apo-2L/TRAIL-induced apoptosis. Treatment with paclitaxel or taxotere increased DR4 and/or DR5 protein levels (up to 8-fold) without affecting the protein levels of DcR1 and DcR2, Apo-2L/TRAIL, Fas, or Fas ligand. Up-regulation of DR4 and DR5 was not preceded by the induction of their mRNA levels but was inhibited by cotreatment with cycloheximide. Importantly, sequential treatment of PC-3, DU145, and LNCaP cells with paclitaxel followed by Apo-2L/TRAIL induced significantly more apoptosis than Apo-2L/TRAIL treatment alone (P < 0.01). This was also associated with greater processing of procaspase-8 and Bid, as well as greater cytosolic accumulation of cytochrome c and the processing of caspase-3. These findings indicate that up-regulation of DR4 and DR5 protein levels by treatment with paclitaxel enhances subsequent Apo-2L/TRAIL-induced apoptosis of human prostate cancer cells.

  19. Prostate Tumor Antigen Discovery: Development of a Novel Genetic Approach

    DTIC Science & Technology

    2001-12-01

    processing and transport genes 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF...expression of genes that encode products that generate peptides and those that transport peptides to compartments of cells where they are loaded into...these genes (LMP and TAP) were expressed in cultured cell lines established from primary and metastatic prostate cancer as well as in long-term

  20. [PSAP expression in a primary presacral neuroendocrine tumor. Potential for confusion with prostate cancer].

    PubMed

    Menter, T; Fischmann, A; Glatz, K

    2014-05-01

    Primary presacral neuroendocrine tumors are a rare entity with less than 30 cases described in the literature so far. Here we report of a primary presacral neuroendocrine tumor diagnosed at autopsy which was wrongly diagnosed as metastasized prostate cancer before. Misdiagnosis was due to the localization of the tumor, its morphology and its positivity for prostate-specific acid phosphatase (PSAP) when the patient was alive. This is the first report of PSAP and somatostatin receptor expression in this type of tumor.

  1. Vatuximab(Trademark): Optimizing Therapeutic Strategies for Prostate Cancer Based on Dynamic MR Tumor Oximetry

    DTIC Science & Technology

    2010-01-01

    being developed by Peregrine Pharmaceuticals for clinical trials. Investigations of tumor hypoxia indicated that non-invasive oxygen sensitive 1H MRI ...waiting versus aggressive therapy. 15. SUBJECT TERMS Vascular targeting; MRI ; bioluminescent imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...prostate tumor growth delay. MRI was used to assess the onset and distribution of tumor vascular damage in a series of Dunning prostate rat tumors (R3327

  2. The Relationship between Obesity, Prostate Tumor Infiltrating Lymphocytes and Macrophages, and Biochemical Failure

    PubMed Central

    Zeigler-Johnson, Charnita; Morales, Knashawn H.; Lal, Priti; Feldman, Michael

    2016-01-01

    Background Obesity reflects a chronic inflammatory environment that may contribute to prostate cancer progression and poor treatment outcomes. However, it is not clear which mechanisms drive this association within the tumor microenvironment. The aim of this pilot study was to examine prostatic inflammation via tumor infiltrating lymphocytes and macrophages characterized by obesity and cancer severity. Methods We studied paraffin-embedded prostatectomy tissue from 99 participants (63 non-obese and 36 obese) from the Study of Clinical Outcomes, Risk and Ethnicity (University of Pennsylvania). Pathologists analyzed the tissue for type and count of lymphocytes and macrophages, including CD3, CD8, FOXP3, and CD68. Pathology data were linked to clinical and demographic variables. Statistical analyses included frequency tables, Kruskal-Wallis tests, Spearman correlations, and multivariable models. Results We observed positive univariate associations between the number of CD68 cells and tumor grade (p = 0.019). In multivariable analysis, CD8 counts were associated with time to biochemical failure (HR = 1.09, 95% CI = 1.004–1.192, p-value = 0.041.) There were no differences in lymphocytes or macrophages by obesity status or BMI. Conclusions The number of lymphocytes and macrophages in the tumor microenvironment did not differ by obesity status. However, these inflammation markers were associated with poor prostate cancer outcomes. Further examination of underlying mechanisms that influence obesity-related effects on prostate cancer outcomes is warranted. Such research will guide immunotherapy protocols and weight management as they apply to diverse patient populations and phenotypes. PMID:27487262

  3. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Castration-resistant Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK...Annual Progress Report W81XWH-13-1-0163 Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer

  4. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  5. Depletion kinetics of circulating prostate cancer cells studied by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Guo, Jin; Li, Yan; Chen, Yun; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2010-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  6. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model

    PubMed Central

    Kazmierczak, Robert A.; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  7. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

  8. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth

    PubMed Central

    Tsai, Yuh-Shyan; Lai, Chen-Li; Lai, Chih-Ho; Chang, Kai-Hsiung; Wu, Kaijie; Tseng, Shu-Fen; Fazli, Ladan; Gleave, Martin; Xiao, Guanghua; Gandee, Leah; Sharifi, Nima; Moro, Loredana; Tzai, Tzong-Shin; Hsieh, Jer-Tsong

    2014-01-01

    Altered DAB2IP gene expression often detected in prostate cancer (PCa) is due to epigenetic silencing. In this study, we unveil a new mechanism leading to the loss of DAB2IP protein; an oncogenic S-phase kinase-associated protein-2 (Skp2) as E3 ubiquitin ligase plays a key regulator in DAB2IP degradation. In order to unveil the role of Skp2 in the turnover of DAB2IP protein, both prostate cell lines and prostate cancer specimens with a variety of molecular and cell biologic techniques were employed. We demonstrated that DAB2IP is regulated by Skp2-mediated proteasome degradation in the prostate cell lines. Further analyses identified the N-terminal DAB2IP containing the ubiquitination site. Immunohistochemical study exhibited an inverse correlation between DAB2IP and Skp2 protein expression in the prostate cancer tissue microarray. In contrast, DAB2IP can suppress Skp2 protein expression is mediated through Akt signaling. The reciprocal regulation between DAB2IP and Skp2 can impact on the growth of PCa cells. This reciprocal regulation between DAB2IP and Skp2 protein represents a unique homeostatic balance between tumor suppressor and oncoprotein in normal prostate epithelia, which is apparently altered in cancer cells. The outcome of this study has identified new potential targets for developing new therapeutic strategy for PCa. PMID:25115390

  9. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells.

    PubMed

    Moreira, Ângela; Pereira, Sofia S; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.

  10. Adipocyte Secreted Factors Enhance Aggressiveness of Prostate Carcinoma Cells

    PubMed Central

    Moreira, Ângela; Pereira, Sofia S.; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P.

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade. PMID:25928422

  11. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    PubMed

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  12. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  13. Prostate Cancer Skeletal Metastases: Pathobiology and Interventions

    DTIC Science & Technology

    2005-02-01

    in higher levels in prostate carcinoma than in benign prostatic hyperplasia [35, 36], and is found in human metastatic lesions in bone [37]. However...compared to normal controls, benign prostatic hyperplasia , prostatitis, and localized or recurrent disease. In an animal model, prostate tumor cells...Malakouti S, Antar S, Kukreja S. Enhanced expression of parathyroid hormone-related protein in prostate cancer as compared with benign prostatic hyperplasia . Hum

  14. Ghost Cell Tumors.

    PubMed

    Sheikh, Jason; Cohen, Molly D; Ramer, Naomi; Payami, Ali

    2017-04-01

    Ghost cell tumors are a family of lesions that range in presentation from cyst to solid neoplasm and in behavior from benign to locally aggressive or metastatic. All are characterized by the presence of ameloblastic epithelium, ghost cells, and calcifications. This report presents the cases of a 14-year-old girl with a calcifying cystic odontogenic tumor (CCOT) and a 65-year-old woman with a peripheral dentinogenic ghost cell tumor (DGCT) with dysplastic changes, a rare locally invasive tumor of odontogenic epithelium. The first patient presented with a 1-year history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph displayed a mixed radiolucent and radiopaque lesion. An incisional biopsy yielded a diagnosis of CCOT. Decompression of the mass was completed; after 3 months, it was enucleated and immediately grafted with bone harvested from the anterior iliac crest. The second patient presented with a 3-month history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph depicted a mixed radiolucent and radiopaque lesion with saucerization of the buccal mandibular cortex. An incisional biopsy examination suggested a diagnosis of DGCT because of the presence of ghost cells, dentinoid, and islands of ameloblastic epithelium. Excision of the mass with peripheral ostectomy was completed. At 6 and 12 months of follow-up, no evidence of recurrence was noted.

  15. Evidence for a Proapoptotic Role of Matrix Metalloproteinase-26 in Human Prostate Cancer Cells and Tissues

    PubMed Central

    Khamis, Zahraa I.; Iczkowski, Kenneth A.; Man, Yan-Gao; Bou-Dargham, Mayassa J.; Sang, Qing-Xiang Amy

    2016-01-01

    Matrix metalloproteinases (MMPs) play intricate roles in cancer progression; some promote invasion and angiogenesis while others suppress tumor growth. For example, human MMP-26/endometase/matrilysin-2 was reported to be either protective or pro-tumorigenic. Our previous reports suggested pro-invasion and anti-inflammation properties in prostate cancer. Here, we provide evidence for a protective role of MMP-26 in the prostate. MMP-26 expression levels in androgen-repressed human prostate cancer (ARCaP) cells, transfected with sense or anti-sense MMP-26 cDNA, are directly correlated with those of the pro-apoptotic marker Bax. Immunohistochemical staining of prostate cancer tissue samples shows similar protein expression patterns, correlating the expression levels of MMP-26 and Bax in benign, neoplastic, and invasive prostate cancer tissues. The MMP-26 protein levels were upregulated in high grade prostate intraepithelial neoplasia (HGPIN) and decreased during the course of disease progression. Further analysis using an indirect terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that many tumor cells expressing MMP-26 were undergoing apoptosis. This study showed that the high level of MMP-26 expression is positively correlated with the presence of apoptotic cells. This pro-apoptotic role of MMP-26 in human prostate cancer cells and tissues may enhance our understanding of the paradoxical roles of MMP-26 in tumor invasion and progression. PMID:26722363

  16. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  17. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    PubMed Central

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  18. Transcriptional Activation by NFκB Increases Perlecan/HSPG2 Expression in the Desmoplastic Prostate Tumor Microenvironment

    PubMed Central

    Warren, Curtis R.; Grindel, Brian J.; Francis, Lewis; Carson, Daniel D.; Farach-Carson, Mary C.

    2014-01-01

    Perlecan/HSPG2, a heparan sulfate proteoglycan typically found at tissue borders including those separating epithelia and connective tissue, increases near sites of invasion of primary prostatic tumors as previously shown for other proteins involved in desmoplastic tissue reaction. Studies of prostate cancer cells and stromal cells from both prostate and bone, the major site for prostate cancer metastasis, showed that cancer cells and a subset of stromal cells increased production of perlecan in response to cytokines present in the tumor microenvironment. In silico analysis of the HSPG2 promoter revealed two conserved NFκB binding sites, in addition to the previously reported SMAD3 binding sites. By systematically transfecting cells with a variety of reporter constructs including sequences up to 2.6 kb from the start site of transcription, we identified an active cis element in the distal region of the HSPG2 promoter, and showed that it functions in regulating transcription of HSPG2. Treatment with TNF-α and/or TGFβ1 identified TNF-α as a major cytokine regulator of perlecan production. TNF-α treatment also triggered p65 nuclear translocation and binding to the HSPG2 regulatory region in stromal cells and cancer cells. In addition to stromal induction of perlecan production in the prostate, we identified a matrix-secreting bone marrow stromal cell type that may represent the source for increases in perlecan in the metastatic bone marrow environment. These studies implicate perlecan in cytokine-mediated, innate tissue responses to cancer cell invasion, a process we suggest reflects a modified wound healing tissue response co-opted by prostate cancer cells. PMID:24700612

  19. Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling.

    PubMed

    Chung, Woonbok; Kwabi-Addo, Bernard; Ittmann, Michael; Jelinek, Jaroslav; Shen, Lanlan; Yu, Yinhua; Issa, Jean-Pierre J

    2008-04-30

    DNA hypermethylation is a common epigenetic abnormality in cancer and may serve as a useful marker to clone cancer-related genes as well as a marker of clinical disease activity. To identify CpG islands methylated in prostate cancer, we used methylated CpG island amplification (MCA) coupled with representational difference analysis (RDA) on prostate cancer cell lines. We isolated 34 clones that corresponded to promoter CpG islands, including 5 reported targets of hypermethylation in cancer. We confirmed the data for 17 CpG islands by COBRA and/or pyrosequencing. All 17 genes were methylated in at least 2 cell lines of a 21-cancer cell line panel containing prostate cancer, colon cancer, leukemia, and breast cancer. Based on methylation in primary tumors compared to normal adjacent tissues, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS and NSE1 are candidate biomarkers for prostate cancer (methylation range 50%-85%). The combination of NSE1 or SPOCK2 hypermethylation showed a sensitivity of 80% and specificity of 95% in differentiating cancer from normal. Similarly NKX2-5, SPOCK2, SLC16A12, DPYS and GALR2 are candidate biomarkers for colon cancer (methylation range 60%-95%) and GALR2 hypermethylation showed a sensitivity of 85% and specificity of 95%. Finally, SLC16A12, GALR2, TOX, SPOCK2, EGFR5 and DPYS are candidate biomarkers for breast cancer (methylation range 33%-79%) with the combination of EGFR5 or TOX hypermethylation showing a sensitivity of 92% and specificity of 92%. Expression analysis for eight genes that had the most hypermethylation confirmed the methylation associated silencing and reactivation with 5-aza-2'-deoxycytidine treatment. Our data identify new targets of transcriptional silencing in cancer, and provide new biomarkers that could be useful in screening for prostate cancer and other cancers.

  20. Systematic identification and characterization of RNA editing in prostate tumors.

    PubMed

    Mo, Fan; Wyatt, Alexander W; Sun, Yue; Brahmbhatt, Sonal; McConeghy, Brian J; Wu, Chunxiao; Wang, Yuzhuo; Gleave, Martin E; Volik, Stanislav V; Collins, Colin C

    2014-01-01

    RNA editing modifies the sequence of primary transcripts, potentially resulting in profound effects to RNA structure and protein-coding sequence. Recent analyses of RNA sequence data are beginning to provide insights into the distribution of RNA editing across the entire transcriptome, but there are few published matched whole genome and transcriptome sequence datasets, and designing accurate bioinformatics methodology has proven highly challenging. To further characterize the RNA editome, we analyzed 16 paired DNA-RNA sequence libraries from prostate tumor specimens, employing a comprehensive strategy to rescue low coverage sites and minimize false positives. We identified over a hundred thousand putative RNA editing events, a third of which were recurrent in two or more samples, and systematically characterized their type and distribution across the genome. Within genes the majority of events affect non-coding regions such as introns and untranslated regions (UTRs), but 546 genes had RNA editing events predicted to result in deleterious amino acid alterations. Finally, we report a potential association between RNA editing of microRNA binding sites within 3' UTRs and increased transcript expression. These results provide a systematic characterization of the landscape of RNA editing in low coverage sequence data from prostate tumor specimens. We demonstrate further evidence for RNA editing as an important regulatory mechanism and suggest that the RNA editome should be further studied in cancer.

  1. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells.

    PubMed

    Huo, Wei; Jin, Ning; Fan, Li; Wang, Weihua

    2014-03-01

    Prostate carcinoma is the most common cancer for men and among the leading cancer-related causes. Many evidences have shown that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in cancer cells, and thus, is a promising biologic agent for prostate carcinoma therapy. However, TRAIL expression mediated by the current vectors lacks tumor specificity, thereby exerting cytotoxicity to normal cells. To solve this problem, we inserted miRNA response elements (MREs), miR-143 and miR-145, expression levels of which were reduced in prostate carcinoma, as well as that of miR-122, which is specifically expressed in hepatic cells, into adenoviral vectors to control TRAIL expression (Ad-TRAIL-M3). qPCR data confirmed that miR-143, miR-145, and miR-122 levels were all decreased in prostate carcinoma cell lines and prostate cancer samples from patients. Luciferase assays showed that MREs-regulated luciferase expression was potently suppressed in normal cells, but not in prostate cancer cells. Ad-TRAIL-M3, which expresses TRAIL in a MREs-regulated manner, produced high level of TRAIL and suppressed the survival of prostate cancer cells by inducing apoptosis, while Ad-TRAIL-M3 had no TRAIL expression in normal cells and thus exerted no cytotoxicity to them. The studies on PC-3 tumor xenograft in mice further confirmed that Ad-TRAIL-M3 was able to inhibit the growth of tumors and possessed high biosafety. In conclusion, we successfully generated an adenoviral vector that expresses TRAIL in miRNA-regulated mechanism. This miRNA-based gene therapy may be promising for prostate carcinoma treatment.

  2. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    PubMed

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  3. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI

    PubMed Central

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C.; Corum, Curt; Martinez, Gary V.; Garwood, Michael; Gillies, Robert J.

    2013-01-01

    Introduction The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers since it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as CT. The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. Methods A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week old immunocompromised male mice. Tumor growth was assessed weekly for three weeks prior to euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4T and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. Results SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. Conclusions SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of non-exposure to ionizing radiation, quietness and speed. PMID:24155275

  4. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  5. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  6. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-05-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  7. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    SciTech Connect

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-05-09

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  8. ROCK has a crucial role in regulating prostate tumor growth through interaction with c-Myc.

    PubMed

    Zhang, C; Zhang, S; Zhang, Z; He, J; Xu, Y; Liu, S

    2014-12-04

    Rho-associated kinase (ROCK) has an essential role in governing cell morphology and motility, and increased ROCK activity contributes to cancer cell invasion and metastasis. Burgeoning data suggest that ROCK is also involved in the growth regulation of tumor cells. However, thus far, the molecular mechanisms responsible for ROCK-governed tumor cell growth have not been clearly elucidated. Here we showed that inhibition of ROCK kinase activity, either by a selective ROCK inhibitor Y27632 or by specific ROCK small interfering RNA (siRNA) molecules, attenuated not only motility but also the proliferation of PC3 prostate cancer cells in vitro and in vivo. Importantly, mechanistic investigation revealed that ROCK endowed cancer cells with tumorigenic capability, mainly by targeting c-Myc. ROCK could increase the transcriptional activity of c-Myc by promoting c-Myc protein stability, and ROCK inhibition reduced c-Myc-mediated expression of mRNA targets (such as HSPC111) and microRNA targets (such as miR-17-92 cluster). We provided evidence demonstrating that ROCK1 directly interacted with and phosphorylated c-Myc, resulting in stabilization of the protein and activation of its transcriptional activity. Suppression of ROCK-c-Myc downstream molecules, such as c-Myc-regulated miR-17, also impaired tumor cell growth in vitro and in vivo. In addition, c-Myc was shown to exert a positive feedback regulation on ROCK by increasing RhoA mRNA expression. Therefore, inhibition of ROCK and its stimulated signaling might prove to be a promising strategy for restraining tumor progression in prostate cancer.

  9. Juxtaglomerular cell tumor: MR findings.

    PubMed

    Agrawal, R; Jafri, S Z; Gibson, D P; Bis, K G; Ali-Reza

    1995-01-01

    Juxtaglomerular (JG) cell tumor is a rare benign neoplasm of the kidney that typically presents with hypertension, secondary hyperaldosteronism, hypocalcemia, and hyperreninism. We describe a case of JG cell tumor diagnosed with MRI.

  10. Convergent Effects of Resveratrol and PYK2 on Prostate Cells

    PubMed Central

    Conte, Andrea; Kisslinger, Annamaria; Procaccini, Claudio; Paladino, Simona; Oliviero, Olimpia; de Amicis, Francesca; Faicchia, Deriggio; Fasano, Dominga; Caputo, Marilena; Matarese, Giuseppe; Pierantoni, Giovanna Maria; Tramontano, Donatella

    2016-01-01

    Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans. PMID:27649143

  11. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy

    PubMed Central

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S.; Corey, Eva; Snyder, Linda A.; Vessella, Robert L.; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis. PMID:26090669

  12. Detection of disseminated tumor cells in peripheral blood.

    PubMed

    Zieglschmid, V; Hollmann, C; Böcher, O

    2005-01-01

    Metastases are the major cause of cancer-related deaths in patients with solid epithelial malignancies, such as breast, colorectal and prostate carcinomas. Hematogenous spreading of tumor cells from a primary tumor can be considered as a crucial step in the metastasis cascade leading eventually to the formation of clinically manifest metastases. Consequently, as shown in recent studies, the detection of disseminated tumor cells in peripheral blood might be of clinical relevance with respect to individual patient prognosis and staging or monitoring of therapy. However, the rarity of disseminated tumor cells in peripheral blood renders the application of sensitive techniques mandatory for their detection. The emergence of highly sophisticated reverse transciptase-polymerase chain reaction (RT-PCR) assays, combining a preanalytical enrichment step with the assessment of multiple molecular tumor markers expressed in disseminated tumor cells, provides a powerful tool in detecting disseminated tumor cells with high sensitivity and specificity. This review will discuss currently used tumor markers as well as experimental means to enhance the sensitivity and specificity of RT-PCR assays to detect disseminated tumor cells in the peripheral blood of patients with breast, colorectal, and prostate cancers, and their clinical relevance assessed in recent studies.

  13. Implications of pleiotrophin in human PC3 prostate cancer cell growth in vivo.

    PubMed

    Tsirmoula, Sotiria; Dimas, Kostas; Hatziapostolou, Maria; Lamprou, Margarita; Ravazoula, Panagiota; Papadimitriou, Evangelia

    2012-10-01

    Pleiotrophin (PTN) is a heparin-binding growth factor with diverse functions related to tumor growth, angiogenesis, and metastasis. Pleiotrophin seems to have a significant role in prostate cancer cell growth and to mediate the stimulatory actions of other factors that affect prostate cancer cell functions. However, all studies carried out up to date are in vitro, using different types of human prostate cancer cell lines. The aim of the present work was to study the role of endogenous PTN in human prostate cancer growth in vivo. For this purpose, human prostate cancer PC3 cells were stably transfected with a plasmid vector, bearing the antisense PTN sequence, in order to inhibit PTN expression (AS-PC3). Migration, apoptosis, and adhesion on osteoblastic cells were measured in vitro. In vivo, PC3 cells were s.c. injected into male NOD/SCID mice, and tumor growth, survival rates, angiogenesis, apoptosis, and the number of metastasis were estimated. Pleiotrophin depletion resulted in a decreased migration capability of AS-PC3 cells compared with the corresponding mock-transfected or the non-transfected PC3 cells, as well as increased apoptosis and decreased adhesiveness to osteoblastic cells in vitro. In prostate cancer NOD/SCID mouse xenografts, PTN depletion significantly suppressed tumor growth and angiogenesis and induced apoptosis of cancer cells. In addition, PTN depletion decreased the number of metastases, providing a survival benefit for the animals bearing AS-PC3 xenografts. Our data suggest that PTN is implicated in human prostate cancer growth in vivo and could be considered a potential target for the development of new therapeutic approaches for prostate cancer.

  14. Neoadjuvant therapy for localized prostate cancer: Examining mechanism of action and efficacy within the tumor

    PubMed Central

    Lou, David Y.; Fong, Lawrence

    2015-01-01

    Objectives Efforts to improve the clinical outcome for patients with localized high-risk prostate cancer have led to the development of neoadjuvant systemic therapies. We review the different modalities of neoadjuvant therapies for localized prostate cancer and highlight emerging treatment approaches including immunotherapy and targeted therapy. Methods We performed a PubMed search of clinical trials evaluating preoperative systemic therapies for treating high-risk prostate cancer published after 2000, and those studies with the highest clinical relevance to current treatment approaches were selected for review. The database at clinicaltrials.gov was queried for neoadjuvant studies in high-risk prostate cancer, and those evaluating novel targeted therapies and immunotherapies are spotlighted here. Results Neoadjuvant chemotherapy has become standard of care for treating some malignancies, including breast and bladder cancers. In prostate cancer, preoperative hormonal therapy or chemotherapy has failed to demonstrate improvements in overall survival. Nevertheless, the emergence of novel treatment modalities such as targeted small molecules and immunotherapy has spawned neoadjuvant clinical trials that provide a unique vantage from which to study mechanism of action and biological potency. Tissue-based biomarkers are being developed to elucidate the biological efficacy of these treatments. With targeted therapy, these can include phospho-proteomic signatures of target pathway activation and deactivation. With immunotherapies, including sipuleucel-T and ipilimumab, recruitment of immune cells to the tumor microenvironment can also be used as robust markers of a biological effect. Such studies can provide insight not only into mechanism of action for these therapies but can also provide paths forward to improving clinical efficacy like with rationally designed combinations and dose selection. Conclusions The use of neoadjuvant androgen-deprivation therapy and

  15. Intra-tumoral delivery of functional ID4 protein via PCL/maltodextrin nano-particle inhibits prostate cancer growth

    PubMed Central

    Morton, Derrick; Sharma, Pankaj; Gorantla, Yamini; Joshi, Jugal; Nagappan, Perri; Pallaniappan, Ravi; Chaudhary, Jaideep

    2016-01-01

    ID4, a helix loop helix transcriptional regulator has emerged as a tumor suppressor in prostate cancer. Epigenetic silencing of ID4 promotes prostate cancer whereas ectopic expression in prostate cancer cell lines blocks cancer phenotype. To directly investigate the anti-tumor property, full length human recombinant ID4 encapsulated in biodegradable Polycaprolactone/Maltodextrin (PCL-MD) nano-carrier was delivered to LNCaP cells in which the native ID4 was stably silenced (LNCaP(-)ID4). The cellular uptake of ID4 resulted in increased apoptosis, decreased proliferation and colony formation. Intratumoral delivery of PCL-MD ID4 into growing LNCaP(-)ID4 tumors in SCID mice significantly reduced the tumor volume compared to the tumors treated with chemotherapeutic Docetaxel. The study supports the feasibility of using nano-carrier encapsulated ID4 protein as a therapeutic. Mechanistically, ID4 may assimilate multiple regulatory pathways for example epigenetic re-programming, integration of multiple AR co-regulators or signaling pathways resulting in tumor suppressor activity of ID4. PMID:27487149

  16. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    PubMed

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  17. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  18. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins.

    PubMed

    Peracaula, Rosa; Tabarés, Glòria; Royle, Louise; Harvey, David J; Dwek, Raymond A; Rudd, Pauline M; de Llorens, Rafael

    2003-06-01

    Prostate-specific antigen (PSA) is a glycoprotein secreted by prostate epithelial cells. PSA is currently used as a marker of prostate carcinoma because high levels of PSA are indicative of a tumor situation. However, PSA tests still suffer from a lack of specificity to distinguish between benign prostate hyperplasia and prostate cancer. To determine whether PSA glycosylation could provide a means of differentiating between PSA from normal and tumor origins, N-glycan characterization of PSA from seminal fluid and prostate cancer cells (LNCaP cell line) by sequencing analysis and mass spectrometry was carried out. Glycans from normal PSA (that correspond to low and high pI PSA fractions) were sialylated biantennary complex structures, half of them being disialylated in the low pI PSA fraction and mostly monosialylated in the high pI PSA. PSA from LNCaP cells was purified to homogeneity, and its glycan analysis showed a significantly different pattern, especially in the outer ends of the biantennary complex structures. In contrast to normal PSA glycans, which were sialylated, LNCaP PSA oligosaccharides were all neutral and contained a higher fucose content. In 10-15% of the structures fucose was linked alpha1-2 to galactose, forming the H2 epitope absent in normal PSA. GalNAc was increased in LNCaP glycans to 65%, whereas in normal PSA it was only present in 25% of the structures. These carbohydrate differences allow a distinction to be made between PSA from normal and tumor origins and suggest a valuable biochemical tool for diagnosis and follow-up purposes.

  19. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  20. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.

  1. Prostate cancer stem cells: the role of androgen and estrogen receptors

    PubMed Central

    Di Zazzo, Erika; Galasso, Giovanni; Giovannelli, Pia; Di Donato, Marzia; Di Santi, Annalisa; Cernera, Gustavo; Rossi, Valentina; Abbondanza, Ciro; Moncharmont, Bruno; Sinisi, Antonio Agostino; Castoria, Gabriella; Migliaccio, Antimo

    2016-01-01

    Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy. PMID:26506594

  2. The Multifaceted Roles of B Cells in Solid Tumors: Emerging Treatment Opportunities.

    PubMed

    Flynn, Nicole J; Somasundaram, Rajasekharan; Arnold, Kimberly M; Sims-Mourtada, Jennifer

    2017-04-01

    The influence of tumor infiltrating lymphocytes on tumor growth and response to therapy is becoming increasingly apparent. While much work has focused on the role of T cell responses in anti-tumor immunity, the role of B cells in solid tumors is much less understood. Tumor infiltrating B cells have been found in a variety of solid tumors, including breast, ovarian, prostate, melanoma, and colorectal cancer. The function of B cells in solid tumors is controversial, with many studies reporting a pro-tumor effect, while other studies demonstrate a role for B cells in the anti-tumor immune response. In this review, we discuss the prognostic ability of B cells in solid tumors as well as the mechanisms by which B cells can either promote or suppress anti-tumor immunity. Additionally, we review current therapeutic strategies that may target both pro- and anti-tumor B cells.

  3. The gastrin/cholecystokinin-B receptor on prostate cells--a novel target for bifunctional prostate cancer imaging.

    PubMed

    Sturzu, Alexander; Klose, Uwe; Sheikh, Sumbla; Echner, Hartmut; Kalbacher, Hubert; Deeg, Martin; Nägele, Thomas; Schwentner, Christian; Ernemann, Ulrike; Heckl, Stefan

    2014-02-14

    The means of identifying prostate carcinoma and its metastases are limited. The contrast agents used in magnetic resonance imaging clinical diagnostics are not taken up into the tumor cells, but only accumulate in the interstitial space of the highly vasculated tumor. We examined the gastrin/cholecystokinin-B receptor as a possible target for prostate-specific detection using the C-terminal seven amino acid sequence of the gastrin peptide hormone. The correct sequence and a scrambled control sequence were coupled to the fluorescent dye rhodamine and the magnetic resonance imaging contrast agent gadolinium (Gd)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Expression analysis of the gastrin receptor mRNA was performed by reverse transcriptase polymerase chain reaction on PC3 prostate carcinoma cells, U373 glioma, U2OS osteosarcoma and Colo205 colon carcinoma cells. After having confirmed elevated expression of gastrin receptor in PC3 cells and very low expression of the receptor in Colo205 cells, these two cell lines were used to create tumor xenografts on nude mice for in vivo experiments. Confocal lasers scanning microscopy and magnetic resonance imaging showed a high specificity of the correct conjugate for the PC3 xenografts. Staining of the PC3 xenografts was much weaker with the scrambled conjugate while the Colo205 xenografts showed no marked staining with any of the conjugates. In vitro experiments comparing the correct and scrambled conjugates on PC3 cells by magnetic resonance relaxometry and fluorescence-activated cell sorting confirmed markedly higher specificity of the correct conjugate. The investigations show that the gastrin receptor is a promising tumor cell surface target for future prostate-cancer-specific imaging applications.

  4. ERG Oncoprotein Expression in Prostate Cancer: Clonal Progression of ERG-Positive Tumor Cells and Potential for ERG-Based Stratification

    DTIC Science & Technology

    2010-01-01

    Amina Ali, Mr Zhe Chang and Ms Lakshmi Ravindranath for outstanding medical infor- matics, biospecimen banking and technical assistance. This research was...multifocal prostate cancer: clinical and biologic implications. Urology 2007; 70: 630–633. 14 Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ et al

  5. High Throughput Sequencing of Germline and Tumor from Men With Early-Onset Metastatic Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    challenge, Dr. Tomlins has continued to develop state of the art technologies to use formalin-fixed paraffin-embedded (FFPE) prostate cancer specimens...men with early-onset, metastatic prostate cancer PRINCIPAL INVESTIGATOR: Kathleen A. Cooney, M.D. CONTRACTING ORGANIZATION...High-Throughput Sequencing of Germline and Tumor From Men with Early-Onset Metastatic Prostate Cancer 5b. GRANT NUMBER W81XWH-13-1-0371 5c

  6. Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth

    PubMed Central

    Mainetti, Leandro E.; Zhe, Xiaoning; Diedrich, Jonathan; Saliganan, Allen D.; Cho, Won Jin; Cher, Michael L.; Heath, Elisabeth; Fridman, Rafael; Kim, Hyeong-Reh Choi; Bonfil, R. Daniel

    2014-01-01

    Loss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored. Here, we show that c-kit expression promotes migration and invasion of PCa cells. Alongside, we found that c-kit expression in PCa cells parallels BRCA2 downregulation. Gene rescue experiments with human BRCA2 transgene in c-kit-transfected PCa cells resulted in reduction of c-kit protein expression and migration and invasion, suggesting a functional significance of BRCA2 downregulation by c-kit. The inverse association between c-kit and BRCA2 gene expressions in PCa cells was confirmed using laser capture microdissection in experimental intraosseous tumors and bone metastases of PCa patients. Inhibition of bone-induced c-kit expression in PCa cells transduced with lentiviral short hairpin RNA reduced intraosseous tumor incidence and growth. Overall, our results provide evidence of a novel pathway that links bone-induced c-kit expression in PCa cells to BRCA2 downregulation and supports bone metastasis. PMID:24798488

  7. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    PubMed

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K; Boling, Susan; Carroll, Jennifer L; Li, Xiao-Lin; Rogers, Donna L; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V; Curiel, David T; Mathis, J Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  8. Granular cell tumor of trachea.

    PubMed

    Bekteshi, Edgar; Toth, Jennifer W; Benninghoff, Michael G; Kang, Jason; Betancourt, Manuel

    2009-01-01

    Granular cell tumors of the tracheobronchial tree are rare benign lesions of neurogenic origin. These benign tumors mostly involve the skin, oral cavity, or esophagus. There is no consensus regarding treatment of granular cell tumors. Treatment varies from simple observation to different bronchoscopic interventions, such as laser therapy or fulguration to surgical resection.

  9. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18.

    PubMed

    Bello, D; Webber, M M; Kleinman, H K; Wartinger, D D; Rhim, J S

    1997-06-01

    Prostate cancer and benign tumors of the prostate are the two most common neoplastic diseases in men in the United States, however, research on their causes and treatment has been slow because of the difficulty in obtaining fresh samples of human tissue and a lack of well characterized cell lines which exhibit growth and differentiation characteristics of normal prostatic epithelium. Non-neoplastic adult human prostatic epithelial cells from a white male donor were immortalized with human papillomavirus 18 which resulted in the establishment of the RWPE-1 cell line. Cells from the RWPE-1 cell line were further transformed by v-Ki-ras to establish the RWPE-2 cell line. The objectives of this study were to: (1) establish the prostatic epithelial origin and androgen responsiveness of RWPE-1 and RWPE-2 cell lines; (2) examine their response to growth factors; and (3) establish the malignant characteristics of the RWPE-2 cell line. Immunoperoxidase staining showed that both RWPE-1 and RWPE-2 cells express cytokeratins 8 and 18, which are characteristic of luminal prostatic epithelial cells, but they also coexpress basal cell cytokeratins. These cell lines show growth stimulation and prostate specific antigen (PSA) and androgen receptor (AR) expression in response to the synthetic androgen mibolerone, which establishes their prostatic epithelial origin. Both cell lines also show a dose-dependent growth stimulation by EGF and bFGF and growth inhibition when exposed to TGF-beta, however, the transformed RWPE-2 cells are less responsive. RWPE-1 cells neither grow in agar nor form tumors when injected into nude mice with or without Matrigel. However, RWPE-2 cells form colonies in agar and tumors in nude mice. In the in vitro invasion assay, RWPE-1 cells are not invasive whereas RWPE-2 cells are invasive. Nuclear expression of p53 and Rb proteins was heterogeneous but detectable by immunostaining in both cell lines. The RWPE-1 cells, which show many normal cell

  10. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis

    PubMed Central

    Liu, Gang; Lu, Shengjun; Wang, Xuanjun; Page, Stephanie T.; Higano, Celestia S.; Plymate, Stephen R.; Greenberg, Norman M.; Sun, Shaoli; Li, Zihai; Wu, Jennifer D.

    2013-01-01

    The activating receptor NK cell group 2 member D (NKG2D) mediates antitumor immunity in experimental animal models. However, whether NKG2D ligands contribute to tumor suppression or progression clinically remains controversial. Here, we have described 2 novel lines of “humanized” bi-transgenic (bi-Tg) mice in which native human NKG2D ligand MHC class I polypeptide-related sequence B (MICB) or the engineered membrane-restricted MICB (MICB.A2) was expressed in the prostate of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous carcinogenesis. Bi-Tg TRAMP/MICB mice exhibited a markedly increased incidence of progressed carcinomas and metastasis, whereas TRAMP/MICB.A2 mice enjoyed long-term tumor-free survival conferred by sustained NKG2D-mediated antitumor immunity. Mechanistically, we found that cancer progression in TRAMP/MICB mice was associated with loss of the peripheral NK cell pool owing to high serum levels of tumor-derived soluble MICB (sMICB). Prostate cancer patients also displayed reduction of peripheral NK cells and high sMIC levels. Our study has not only provided direct evidence in “humanized” mouse models that soluble and membrane-restricted NKG2D ligands pose opposite impacts on cancer progression, but also uncovered a mechanism of sMIC-induced impairment of NK cell antitumor immunity. Our findings suggest that the impact of soluble NKG2D ligands should be considered in NK cell–based cancer immunotherapy and that our unique mouse models should be valuable for therapy optimization. PMID:24018560

  11. Sub-classification of prostate cancer circulating tumor cells (CTCs) by nuclear size reveals very-small nuclear CTCs in patients with visceral metastases

    PubMed Central

    Chen, Jie-Fu; Ho, Hao; Lichterman, Jake; Lu, Yi-Tsung; Zhang, Yang; Garcia, Mitch A.; Chen, Shang-Fu; Liang, An-Jou; Hodara, Elisabeth; Zhau, Haiyen E.; Hou, Shuang; Ahmed, Rafi S.; Luthringer, Daniel J.; Huang, Jiaoti; Li, Ker-Chau; Chung, Leland W.K.; Ke, Zunfu; Tseng, Hsian-Rong; Posadas, Edwin M.

    2015-01-01

    Background While enumeration of circulating tumor cells (CTCs) has shown some clinical value, the pool of CTCs contains a mixture of cells which contains additional information that can be extracted. Our group sub-classified CTCs by shape features focusing on nuclear size and related this to clinical information. Methods A total of 148 blood samples were obtained from 57 PC patients across the spectrum of metastatic states: no metastasis, non-visceral metastasis, and visceral metastasis. CTCs captured and enumerated on NanoVelcro Chips were subjected to pathologic review including nuclear size. The distribution of nuclear sizes was analyzed using a Gaussian Mixture Model. Correlations were made between CTC subpopulations and metastatic status. Results Statistical modeling of nuclear size distribution revealed 3 distinct subpopulations: large-nuclear (lnCTC), small-nuclear (snCTC), and very-small-nuclear CTCs (vsnCTCs). snCTC + vsnCTC identified patients with metastatic disease. vsnCTC counts alone, however, were elevated in patients with visceral metastases when compared to those without (0.36 ± 0.69 vs. 1.95 ± 3.77 cells/mL blood, p < 0.001). Serial enumerations suggested the emergence of vsnCTCs occurred prior to the detection of visceral metastases. Conclusions There are morphologic subsets of CTCs that can be identified by fundamental pathologic approaches, such as nuclear size measurement. This observational study strongly suggests that they contain relevant information on disease status. In particular, the detection of vsnCTCs correlated with the presence of visceral metastases and should be formally explored as a putative blood-borne biomarker to identify patients at risk for developing this clinical evolution of PC. PMID:25975562

  12. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer

    PubMed Central

    Ottman, Richard; Levy, Jenna; Grizzle, William E.; Chakrabarti, Ratna

    2016-01-01

    miR-17-92a cluster miRNAs are transcribed from a polycistronic transcription unit C13orf25 that generates six mature miRNAs, miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a that are overexpressed in lung and colon cancers. Here we show that the expression of miR-17-92a miRNAs are reduced in cancerous prostate tissues compared to uninvolved areas and also in aggressive prostate cancer cells. Restoration of expression of all members of miR-17-92a cluster showed, decreased expression of cell cycle regulatory proteins cyclin D1 and SSH1; and LIMK1 and FGD4 of RhoGTPase signaling pathway. Expression of miR-17-92a miRNAs caused decreased cell proliferation, reduced activation of AKT and MAP kinases, delayed tumorigenicity and reduced tumor growth in animals. Expression of miR-17-92a miRNAs inhibited EMT via reduced cell migration and expression of mesenchymal markers while elevating expression and surface localization of the epithelial marker E-Cadherin. Expression of miR-17-92a miRNAs improved sensitivity of androgen dependent LNCaP 104-S prostate cancer cells to anti-androgen drug Casodex, AKT inhibitor MK-2206 2HCl, and docetaxel. The androgen refractory PC-3 cells also showed increased sensitivity to docetaxel, MK-2206 2HCl and Aurora kinase inhibitor VX680 upon ectopic expression of miR-17-92a cluster miRNAs. Our data demonstrate a tumor suppressor effect of miR-17-92a cluster miRNAs in prostate cancer cells and restoration of expression of these miRNAs has a therapeutic benefit for both androgen-dependent and -independent prostate cancer cells. PMID:27650539

  13. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine.

    PubMed

    Stafford, Jason H; Hao, Guiyang; Best, Anne M; Sun, Xiankai; Thorpe, Philip E

    2013-01-01

    Phosphatidylserine (PS) is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab')2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab')2 was labeled with the positron-emitting isotope iodine-124 ((124)I) and the resulting probe was injected into nude mice bearing subcutaneous or orthotopic human PC3 prostate tumors. Biodistribution studies showed that (124)I-PGN635 F(ab')2 localized with remarkable specificity to the tumors with little uptake in other organs, including the liver and kidneys. Clear delineation of the tumors was achieved by PET 48 hours after injection. Radiation of the tumors with 15 Gy or systemic treatment of the mice with 10 mg/kg docetaxel increased localization in the tumors. Tumor-to-normal (T/N) ratios were inversely correlated with tumor growth measured over 28 days. These data indicate that (124)I-PGN635 F(ab')2 is a promising new imaging agent for predicting tumor response to therapy.

  14. The Androgen-Regulated Protease TMPRSS2 Activates aProteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis

    PubMed Central

    Lucas, Jared M.; Heinlein, Cynthia; Kim, Tom; Hernandez, Susana A.; Malik, Muzdah S.; True, Lawrence D.; Morrissey, Colm; Corey, Eva; Montgomery, Bruce; Mostaghel, Elahe; Clegg, Nigel; Coleman, Ilsa; Brown, Christopher M.; Schneider, Eric L.; Craik, Charles; Simon, Julian; Bedalov, Tony; Nelson, Peter S.

    2014-01-01

    TMPRSS2 is an androgen-regulated cell surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastasis. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-Met receptor tyrosine kinase signaling, and initiated a pro-invasive EMT phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling programs and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. PMID:25122198

  15. XB130 is overexpressed in prostate cancer and involved in cell growth and invasion

    PubMed Central

    Liu, Feiye; Zeng, Qinsong; Wang, Wei; Liu, Jun; Hou, Jianing; Yu, Xinpei; Liu, Jian

    2016-01-01

    XB130 is a cytosolic adaptor protein involved in various physiological processes and oncogenesis of certain malignancies, but its role in the development of prostate cancer remains unclear. In current study, we examined XB130 expression in prostate cancer tissues and found that XB130 expression was remarkably increased in prostate cancer tissues and significantly correlated with increased prostate specific antigen (PSA), free PSA (f-PSA), prostatic acid phosphatase (PAP) and T classification. Patients with highly expressed XB130 had significantly decreased survival, which suggested XB130 as a possible prognostic indicator for prostate cancer. In vitro experiments showed that reduced XB130 expression restrained tumor growth both in vitro and in vivo. Furthermore, XB130 knockdown hindered transition of G1 to S phase in prostate cancer cell line DU145 and LNCap, which might contribute to the inhibition of cellular proliferation. Results from transwell assay demonstrated that downregulation of XB130 may attenuate invasion and metastasis of prostate cancer. Semiquantitative analysis of Western blot suggested that decreased XB130 expression was accompanied by diminished Akt signaling and EMT process. Thus, above observations suggest that XB130 may be a novel molecular marker and potent therapeutic target for prostate cancer. PMID:27509056

  16. Vitamin D Receptor Protein Expression in Tumor Tissue and Prostate Cancer Progression

    PubMed Central

    Hendrickson, Whitney K.; Flavin, Richard; Kasperzyk, Julie L.; Fiorentino, Michelangelo; Fang, Fang; Lis, Rosina; Fiore, Christopher; Penney, Kathryn L.; Ma, Jing; Kantoff, Philip W.; Stampfer, Meir J.; Loda, Massimo; Mucci, Lorelei A.; Giovannucci, Edward

    2011-01-01

    Purpose Data suggest that circulating 25-hydroxyvitamin D [25(OH)D] interacts with the vitamin D receptor (VDR) to decrease proliferation and increase apoptosis for some malignancies, although evidence for prostate cancer is less clear. How VDR expression in tumor tissue may influence prostate cancer progression has not been evaluated in large studies. Patients and Methods We examined protein expression of VDR in tumor tissue among 841 patients with prostate cancer in relation to risk of lethal prostate cancer within two prospective cohorts, the Physicians' Health Study and Health Professionals Follow-Up Study. We also examined the association of VDR expression with prediagnostic circulating 25(OH)D and 1,25-dihydroxyvitamin D levels and with two VDR single nucleotide polymorphisms, FokI and BsmI. Results Men whose tumors had high VDR expression had significantly lower prostate-specific antigen (PSA) at diagnosis (P for trend < .001), lower Gleason score (P for trend < .001), and less advanced tumor stage (P for trend < .001) and were more likely to have tumors harboring the TMPRSS2:ERG fusion (P for trend = .009). Compared with the lowest quartile, men whose tumors had the highest VDR expression had significantly reduced risk of lethal prostate cancer (hazard ratio [HR], 0.17; 95% CI, 0.07 to 0.41). This association was only slightly attenuated after adjustment for Gleason score and PSA at diagnosis (HR, 0.33; 95% CI, 0.13 to 0.83) or, additionally, for tumor stage (HR, 0.37; 95% CI, 0.14 to 0.94). Neither prediagnostic plasma vitamin D levels nor VDR polymorphisms were associated with VDR expression. Conclusion High VDR expression in prostate tumors is associated with a reduced risk of lethal cancer, suggesting a role of the vitamin D pathway in prostate cancer progression. PMID:21537045

  17. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    PubMed

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes.

  18. The Roles of Ik(Beta) Kinases in Prostate Carcinogenesis and the Effect of Their Inhibition on Survival of Prostate Tumors

    DTIC Science & Technology

    2005-01-01

    activity (23). Interestingly, inhibition of NF-KcB activity in such cells was achieved by treatment with ibuprofen , a non-steroidal anti-inflammatory drug...the renal capsule of SCID mice (5 mice for each cell combination). Two months later, mice will be sacrificed, and the size and weight of each tumor...kinase alpha and NF-KB in prostate cancer cells is inhibited by ibuprofen ., Oncogene. 18: 7389-7394, 1999. 24. Gasparian, A. V., Yao, Y. J., Kowalczyk

  19. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer

    PubMed Central

    Stuart, Robert O.; Wachsman, William; Berry, Charles C.; Wang-Rodriguez, Jessica; Wasserman, Linda; Klacansky, Igor; Masys, Dan; Arden, Karen; Goodison, Steven; McClelland, Michael; Wang, Yipeng; Sawyers, Anne; Kalcheva, Iveta; Tarin, David; Mercola, Dan

    2004-01-01

    Prostate tumors are complex entities composed of malignant cells mixed and interacting with nonmalignant cells. However, molecular analyses by standard gene expression profiling are limited because spatial information and nontumor cell types are lost in sample preparation. We scored 88 prostate specimens for relative content of tumor, benign hyperplastic epithelium, stroma, and dilated cystic glands. The proportions of these cell types were then linked in silico to gene expression levels determined by microarray analysis, revealing unique cell-specific profiles. Gene expression differences for malignant and nonmalignant epithelial cells (tumor versus benign hyperplastic epithelium) could be identified without being confounded by contributions from stroma that dominate many samples or sacrificing possible paracrine influences. Cell-specific expression of selected genes was validated by immunohistochemistry and quantitative PCR. The results provide patterns of gene expression for these three lineages with relevance to pathogenetic, diagnostic, and therapeutic considerations. PMID:14722351

  20. Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells.

    PubMed

    de Thonel, A; Hazoumé, A; Kochin, V; Isoniemi, K; Jego, G; Fourmaux, E; Hammann, A; Mjahed, H; Filhol, O; Micheau, O; Rocchi, P; Mezger, V; Eriksson, J E; Rangnekar, V M; Garrido, C

    2014-01-23

    The proapoptotic protein, prostate apoptosis response-4 (Par-4), acts as a tumor suppressor in prostate cancer cells. The serine/threonine kinase casein kinase 2 (CK2) has a well-reported role in prostate cancer resistance to apoptotic agents or anticancer drugs. However, the mechanistic understanding on how CK2 supports survival is far from complete. In this work, we demonstrate both in rat and humans that (i) Par-4 is a new substrate of the survival kinase CK2 and (ii) phosphorylation by CK2 impairs Par-4 proapoptotic functions. We also unravel different levels of CK2-dependent regulation of Par-4 between species. In rats, the phosphorylation by CK2 at the major site, S124, prevents caspase-mediated Par-4 cleavage (D123) and consequently impairs the proapoptotic function of Par-4. In humans, CK2 strongly impairs the apoptotic properties of Par-4, independently of the caspase-mediated cleavage of Par-4 (D131), by triggering the phosphorylation at residue S231. Furthermore, we show that human Par-4 residue S231 is highly phosphorylated in prostate cancer cells as compared with their normal counterparts. Finally, the sensitivity of prostate cancer cells to apoptosis by CK2 knockdown is significantly reversed by parallel knockdown of Par-4. Thus, Par-4 seems a critical target of CK2 that could be exploited for the development of new anticancer drugs.

  1. Ubenimex inhibits cell proliferation, migration and invasion by inhibiting the expression of APN and inducing autophagic cell death in prostate cancer cells.

    PubMed

    Wang, Xiaoqing; Niu, Zhihong; Jia, Yang; Cui, Meng; Han, Liping; Zhang, Yongfei; Liu, Zheng; Bi, Dongbin; Liu, Shuai

    2016-04-01

    Prostate cancer is the second most frequently diagnosed cancer in males worldwide and is commonly associated with metastasis. Moreover, in prostate cancer, aminopeptidase N (APN) expression is closely correlated with metastasis. Ubenimex, an APN inhibitor, is widely used as an adjunct therapy for cancer, enhancing the function of immunocompetent cells and conferring antitumor effects. However, due to the low expression of APN, it is rarely used to treat prostate cancer. Recently, the induction of autophagy as a molecular mechanism has been strongly connected with tumor cell death. Thus, we investigated whether ubenimex could inhibit cell proliferation, migration and invasion by downregulating APN expression to induce autophagic cell death in prostate cancer cells. The LNCaP and PC-3 cell lines were treated with different doses of ubenimex. Cell viability was measured using growth curve analysis and WST-8 proliferation assay. Autophagic cell death was assessed using fluorescence microscopy and acridine orange/ethidium bromide (AO/EB) staining. Protein expression was assessed by immunofluorescence and western blot analyses. Autophagosomes were evaluated using transmission electron microscopy. Wound-healing migration assays were performed to determine the migratory ability of the PC-3 cells. In addition, nude mice were used in the present study to examine PC-3 cell proliferation in vivo. The results revealed that APN expression differed between the metastatic and non-metastatic prostate cancer cells. In addition, ubenimex inhibited APN expression in the prostate cancer cells. Ubenimex increased prostate cancer cell death, as determined using the lactate dehydrogenase (LDH) cytotoxicity assay. This effect was accompanied by increased levels of LC3B. Furthermore, ubenimex inhibited PC-3 cell proliferation in vivo and in vitro. Ubenimex inhibited the cell migration and invasion in prostate cancer cells by downregulating APN expression. Finally, ubenimex induced

  2. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation.

    PubMed

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A; Day, Robert

    2015-02-28

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer.

  3. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation

    PubMed Central

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A.; Day, Robert

    2015-01-01

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer. PMID:25682874

  4. Molecular Heterogeneity in Primary and Metastatic Prostate Tumor Tissue

    DTIC Science & Technology

    2014-10-01

    melatonin levels, sleep disruption, and risk of prostate cancer in elderly men. European Urology 2014 Advance online publication. doi: 10.1016/j.eururo...multi-focal and metastatic prostate cancer . Aim 1 focuses on a 4-gene signature of prostate cancer prognosis, and whether the signature differs...involved in metastatic progression of prostate cancer . Scope: In year 1, Dr. Batista has received IRB approval, completed a series of courses to augment

  5. Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells.

    PubMed

    Yu, Hsin-Shan; Wang, Shih-Wei; Chang, An-Chen; Tai, Huai-Ching; Yeh, Hung-I; Lin, Yu-Min; Tang, Chih-Hsin

    2014-01-15

    Prostate cancer is the most commonly diagnosed malignancy in men and shows a tendency for metastasis to distant organs. Angiogenesis is required for metastasis. Bradykinin (BK) is an inflammatory mediator involved in tumor growth and metastasis, but its role in vascular endothelial growth factor (VEGF) expression and angiogenesis in human prostate cancer remains unknown. The aim of this study was to examine whether BK promotes prostate cancer angiogenesis via VEGF expression. We found that exogenous BK increased VEGF expression in prostate cancer cells and further promoted tube formation in endothelial progenitor cells and human umbilical vein endothelial cells. Pretreatment of prostate cancer with B2 receptor antagonist or small interfering RNA (siRNA) reduced BK-mediated VEGF production. The Akt and mammalian target of rapamycin (mTOR) pathways were activated after BK treatment, and BK-induced VEGF expression was abolished by the specific inhibitor and siRNA of the Akt and mTOR cascades. BK also promoted nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) activity. Importantly, BK knockdown reduced VEGF expression and abolished prostate cancer cell conditional medium-mediated angiogenesis. Taken together, these results indicate that BK operates through the B2 receptor, Akt, and mTOR, which in turn activate NF-κB and AP-1, activating VEGF expression and contributing to angiogenesis in human prostate cancer cells.

  6. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    DTIC Science & Technology

    2013-04-01

    catenin, we have begun to pursue if Wnt signaling occurs during TERS driven EMT . Given that this signaling process has tumor implicated roles in...hypothesis that transmissible ER stress (TERS) promotes Epithelial to Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming...tumorigenesis. Through the work performed during the last year, we have been able to demonstrate a link between prostate tumor ER stress and EMT . The

  7. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.

    PubMed

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep

    2016-09-09

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function.

  8. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression

    SciTech Connect

    Han, Guangye Fan, Maochuan Zhang, Xinjun

    2015-01-16

    Highlights: • miR-218 expression is downregulated in prostate cancer. • miR-218 inhibits prostate tumor cells proliferation partially through promoting apoptosis. • miR-218 targets TPD52 by binding to its 3′-UTR. • miR-218 suppresses prostate cancer cell growth through inhibiting TPD52 expression. - Abstract: The tumor protein D52 (TPD52) is an oncogene overexpressed in prostate cancer (PC) due to gene amplification. Although the oncogenic effect of TPD52 is well recognized, how its expression is regulated is still not clear. This study tried to explore the regulative role of miR-218, a tumor suppressing miRNA on TPD52 expression and prostate cancer cell proliferation. We found the expression of miR-218 was significantly lower in PC specimens. Based on gain and loss of function analysis, we found miR-218 significantly inhibit cancer cell proliferation by inducing apoptosis. These results strongly suggest that miR-218 plays a tumor suppressor role in PC cells. In addition, our data firstly demonstrated that miR-218 directly regulates oncogenic TPD52 in PC3 cells and the miR-218-TPD52 axis can regulate growth of this prostate cancer cell line. Knockdown of TPD52 resulted in significantly increased cancer cell apoptosis. Clearly understanding of oncogenic TPD52 pathways regulated by miR-218 might be helpful to reveal new therapeutic targets for PC.

  9. Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines.

    PubMed

    Chakrabarti, Ratna; Robles, Liza D; Gibson, Jane; Muroski, Megan

    2002-12-01

    To understand the phenotypic changes associated with prostate cancer development and metastasis, we investigated differential gene expression in primary and established prostate cell lines used as models. We have used a differential display of messenger RNA (DDRT-PCR) technique using 168 primer combinations and total RNA from BPH-1, LNCaP, and PC3 cells to identify filter-based cDNA microarrays containing 18,376 nonredundant clones of genes and expressed sequence tags (EST) using mRNA from PrEC and MDAPCa2a cells to identify genes that are differentially expressed in normal, benign, and cancerous prostate cell lines. Twenty-five cDNA with a significant difference in expression of 76 candidate cDNA, as identified by DDRT-PCR and confirmed by slot-blot analysis, were selected for sequence analysis. Of these, 14 cDNA were further confirmed by Northern blot analysis. Analysis of the cDNA microarray data showed that a variety of genes/EST were up- or down-regulated in the metastatic prostate tumor cells and a majority of these genes encode cytoskeletal proteins and proteins with regulatory function. Expression profile of two EST was confirmed by reverse transcription polymerase chain reaction. We also have identified a number of genes exhibiting differential expression in prostate cancer cells, which were not known earlier to be involved in prostate cancer. This report provides a comparative analysis of differential gene expression between normal prostatic epithelial cells and prostate cancer cells, and a foundation to facilitate in-depth studies on the mechanism of prostate cancer development and metastasis.

  10. Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution.

    PubMed

    Lin, Xiukun; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Romero, Mirna Azalea; Tabassum, Sobia; Ismail, Muhammad

    2016-06-01

    It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with "stem cell" like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as "cancer stem cells". Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.

  11. Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer.

    PubMed

    Collazo, Joanne; Zhu, Beibei; Larkin, Spencer; Martin, Sarah K; Pu, Hong; Horbinski, Craig; Koochekpour, Shahriar; Kyprianou, Natasha

    2014-04-15

    Cofilin (CFL) is an F-actin-severing protein required for the cytoskeleton reorganization and filopodia formation, which drives cell migration. CFL binding and severing of F-actin is controlled by Ser3 phosphorylation, but the contributions of this step to cell migration during invasion and metastasis of cancer cells are unclear. In this study, we addressed the question in prostate cancer cells, including the response to TGF-β, a critical regulator of migration. In cells expressing wild-type CFL, TGF-β treatment increased LIMK-2 activity and cofilin phosphorylation, decreasing filopodia formation. Conversely, constitutively active CFL (SerAla) promoted filipodia formation and cell migration mediated by TGF-β. Notably, in cocultures of prostate cancer epithelial cells and cancer-associated fibroblasts, active CFL promoted invasive migration in response to TGF-β in the microenvironment. Further, constitutively active CFL elevated the metastatic ability of prostate cancer cells in vivo. We found that levels of active CFL correlated with metastasis in a mouse model of prostate tumor and that in human prostate cancer, CFL expression was increased significantly in metastatic tumors. Our findings show that the actin-severing protein CFL coordinates responses to TGF-β that are needed for invasive cancer migration and metastasis.

  12. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Aebi, Johannes D; Hyder, Salman M

    2016-01-01

    Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4′-[6-(allylmethylamino)hexyloxy]-4-bromo-2′-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells

  13. MRI-directed cognitive fusion-guided biopsy of the anterior prostate tumors

    PubMed Central

    Murphy, Ian G.; NiMhurchu, Elaine; Gibney, Robert G.; McMahon, Colm J.

    2017-01-01

    PURPOSE We aimed to evaluate the efficacy of magnetic resonance imaging (MRI)-directed cognitive fusion transrectal ultrasonography (TRUS)-guided anterior prostate biopsy for diagnosis of anterior prostate tumors and to illustrate this technique. METHODS A total of 39 patients with previous negative TRUS biopsy, but high clinical suspicion of occult prostate cancer, prospectively underwent prostate MRI including diffusion-weighted imaging (DWI). Patients with a suspicious anterior lesion on MRI underwent targeted anterior gland TRUS-guided biopsy with cognitive fusion technique using sagittal probe orientation. PIRADS version 1 scores (T2, DWI, and overall), lesion size, prostate-specific antigen (PSA), PSA density, and prostate gland volume were compared between positive and negative biopsy groups and between clinically significant cancer and remaining cases. Logistic regression analysis of imaging parameters and prostate cancer diagnosis was performed. RESULTS Anterior gland prostate adenocarcinoma was diagnosed in 18 patients (46.2%) on targeted anterior gland TRUS-guided biopsy. Clinically significant prostate cancer was diagnosed in 13 patients (33.3%). MRI lesion size, T2, DWI, and overall PIRADS scores were significantly higher in patients with positive targeted biopsies and those with clinically significant cancer (P < 0.05). Biopsies were positive in 90%, 33%, and 29% of patients with overall PIRADS scores of 5, 4, and 3 respectively. Overall PIRADS score was an independent predictor of all prostate cancer diagnosis and of clinically significant prostate cancer diagnosis. CONCLUSION Targeted anterior gland TRUS-guided biopsy with MRI-directed cognitive fusion enables accurate sampling and may improve tumor detection yield of anterior prostate cancer. PMID:28074780

  14. Visualization of early prostatic adenocarcinoma as a stem cell disease

    PubMed Central

    Jiang, Maggie Y.; Lee, Tammy L.; Hao, Su-Shin; Mahooti, Sepi; Baird, Stephen M.; Donoghue, Daniel J.; Haas, Martin

    2016-01-01

    Prostate Cancer represents the second leading cause of cancer death among men in the United States, and the third leading cause of cancer death among men in Europe. We have previously shown that cells possessing Cancer Stem Cell (CSC) characteristics can be grown from human PrCa tissue harvested at the time of prostatectomy. However, the cellular origin of these CSCs was not previously known. In most cases, simple hematoxylin and eosin (H&E) stained sections are sufficient to make a definitive diagnosis of prostatic adenocarcinoma (PrCa) in needle biopsy samples. We utilized six different antibodies specific for stem cell antigens to examine paraffin sections of PrCa taken at the time of needle-biopsy diagnosis. These antisera were specific for CD44, CD133, ALDH7A1, LGR-5, Oct-4 and NANOG. We demonstrate specific staining of tumor cells with all six antisera specific for stem cell antigens. Some of these antibodies also react with cells of hyperplastic glands, but the patterns of reactivity differ from those of malignant glands. These findings demonstrate that at the time of diagnosis, PrCa consists of cells exhibiting properties of CSCs and consistent with the possibility that PrCa is a stem cell disease. PMID:27764770

  15. Visualization of early prostatic adenocarcinoma as a stem cell disease.

    PubMed

    Jiang, Maggie Y; Lee, Tammy L; Hao, Su-Shin; Mahooti, Sepi; Baird, Stephen M; Donoghue, Daniel J; Haas, Martin

    2016-11-15

    Prostate Cancer represents the second leading cause of cancer death among men in the United States, and the third leading cause of cancer death among men in Europe. We have previously shown that cells possessing Cancer Stem Cell (CSC) characteristics can be grown from human PrCa tissue harvested at the time of prostatectomy. However, the cellular origin of these CSCs was not previously known. In most cases, simple hematoxylin and eosin (H&E) stained sections are sufficient to make a definitive diagnosis of prostatic adenocarcinoma (PrCa) in needle biopsy samples. We utilized six different antibodies specific for stem cell antigens to examine paraffin sections of PrCa taken at the time of needle-biopsy diagnosis. These antisera were specific for CD44, CD133, ALDH7A1, LGR-5, Oct-4 and NANOG. We demonstrate specific staining of tumor cells with all six antisera specific for stem cell antigens. Some of these antibodies also react with cells of hyperplastic glands, but the patterns of reactivity differ from those of malignant glands. These findings demonstrate that at the time of diagnosis, PrCa consists of cells exhibiting properties of CSCs and consistent with the possibility that PrCa is a stem cell disease.

  16. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy.

    PubMed

    Ceder, Jens; Elgqvist, Jörgen

    2016-01-01

    Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody-drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs

  17. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy

    PubMed Central

    Ceder, Jens; Elgqvist, Jörgen

    2017-01-01

    Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody–drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs

  18. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  19. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells

    PubMed Central

    da Silva, Maurício Moreira; Matheus, Wagner Eduardo; Garcia, Patrick Vianna; Stopiglia, Rafael Mamprim; Billis, Athanase; Ferreira, Ubirajara; Fávaro, Wagner José

    2015-01-01

    ABSTRACT Introduction and Objectives: Reactive Stroma (RStr) is observed in many human cancers and is related to carcinogenesis. The objectives of the present study were to stablish a relationship of the RStr microenvironment with prostate cancer (Pca) through a morphological and molecular characterization, and to identify a possible relationship between RStr with worse prognosis factors and occurrence of malignant prostatic stem cells. Materials and Methods: Forty prostatic samples were selected from men with Pca diagnosis submitted to radical prostatectomy; they were divided in two groups: Group-1 (n=20): samples without reactive stroma; Group-2 (n=20): samples of PCa with intense stroma reaction. Prostatic samples were evaluated for RStr intensity by Masson Trichromic stain and posteriorly submitted to histopathological and immunohistochemistry analysis for antigens: α-actin, vimentin, IGF-1, MMP-2, FGF-2, C-Myc, PSCA, AR, Erα and ERβ. Results: Reactive stroma with intense desmoplastic reactivity was significantly more frequent in intermediate (Gleason 7, 3+4) and high grade tumors (Gleason 7, 4+3). The group with intense stromal reactivity showed significant higher levels of Vimentin, IGF-1, MMP-2, FGF-2, C-Myc, PSCA and ERα. Conclusions: It can be concluded that RStr may be a predictive marker of Pca progression, since it was associated with increase of growth factors, imbalance of androgen and estrogen receptors and presence of malign prostatic stem cells. PMID:26689510

  20. Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis

    PubMed Central

    Budd, William T.; Seashols-Williams, Sarah J.; Clark, Gene C.; Weaver, Danielle; Calvert, Valerie; Petricoin, Emanuel; Dragoescu, Ema A.; O’Hanlon, Katherine; Zehner, Zendra E.

    2015-01-01

    MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3’-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression. PMID:26544868

  1. Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis.

    PubMed

    Budd, William T; Seashols-Williams, Sarah J; Clark, Gene C; Weaver, Danielle; Calvert, Valerie; Petricoin, Emanuel; Dragoescu, Ema A; O'Hanlon, Katherine; Zehner, Zendra E

    2015-01-01

    MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3'-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression.

  2. Disparate results between proliferation rates of surgically excised prostate tumors and an in vitro bioassay using sera from a positive randomized controlled trial.

    PubMed

    Azrad, M; Vollmer, R T; Madden, J; Polascik, T J; Snyder, D C; Ruffin, M T; Moul, J W; Brenner, D; He, X; Demark-Wahnefried, W

    2015-04-01

    In vitro bioassay has been used extensively to test the effects of culturing cancer cells in sera from humans participating in dietary interventions, i.e, studies of modified intake of nutrients for the purpose of reducing cancer risk or progression. It has been hypothesized that cell proliferation rates determined by the in vitro bioassay indicate whether modification of dietary intake could decrease cancer cell growth in vivo. It has been suggested, however, that the in vitro bioassay may not correlate with tumor cell proliferation rates in prostate cancer. We investigated the concordance of cell proliferation rates from surgically excised prostate tumor tissue with the in vitro bioassay using sera from matched patients. We used samples from an earlier randomized clinical trial that showed that supplementation with flaxseed significantly inhibited prostate cancer cell proliferation rates in vivo as indicated by Ki67 staining in tumor specimens. Proliferation rates of LNCaP, DU145 and PC3 cell lines cultured in 10% human sera from participants in the flaxseed trial were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Spearman's Rho correlation coefficients (ρ) indicated no association between Ki67 staining in prostate tumors and the in vitro bioassay for the three cell lines. These disparate findings suggest that the in vitro bioassay may not provide an accurate assessment of the environment in vivo.

  3. Pancreatic islet cell tumor

    MedlinePlus

    ... functions. These include blood sugar level and the production of stomach acid. Tumors that arise from islet ... try and shrink the tumors. If the abnormal production of hormones is causing symptoms, you may receive ...

  4. Molecular Mechanism for Prostate Cancer Resistance to the Anti-Tumor Activity

    DTIC Science & Technology

    2005-11-01

    chemotherapy and radio-sensitization of prostate cancer Consultant-Curator (March 2004 – August 2005) Huaiyu Mi, MD., Ph.D. Celera Genomics , Protein...and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any...would be effected downstream of 1αOH bioactivation of vitamin D. Using normal human prostatic epithelial cells and prostate cancer cell lines, we

  5. Prominin-1 (CD133) Expression in the Prostate and Prostate Cancer: A Marker for Quiescent Stem Cells.

    PubMed

    Pellacani, Davide; Oldridge, Emma E; Collins, Anne T; Maitland, Norman J

    2013-01-01

    The origin and phenotype of stem cells in human prostate cancer remains a subject of much conjecture. In this scenario, CD133 has been successfully used as a stem cell marker in both normal prostate and prostate cancer. However, cancer stem cells have been identified without the use of this marker, opening up the possibility of a CD133 negative cancer stem cell. In this chapter, we review the current literature regarding prostate cancer stem cells, with specific reference to the expression of CD133 as a stem cell marker to identify and purify stem cells in normal prostate epithelium and prostate cancer.

  6. Signaling mechanisms that mediate invasion in prostate cancer cells.

    PubMed

    Bonaccorsi, L; Marchiani, S; Muratori, M; Carloni, V; Forti, G; Baldi, E

    2004-12-01

    Recent evidence indicates that androgen-sensitive prostate cancer cells have a less malignant phenotype characterized by reduced migration and invasion. We investigated whether the presence of the androgen receptor could affect EGFR-mediated signaling by evaluating autotransphosphorylation of the receptor as well as activation of the downstream signaling pathway PI3K/AKT. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signaling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. Our results suggest that the expression of androgen receptors by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signaling leading to invasion in response to EGF. We used the selective tyrosine kinase inhibitor of the EGFR gefitinib (also known as Iressa or ZD1839) to further investigate the role of EGFR in the invasion and growth of PC cells. We demonstrate that in the androgen-insensitive cell lines PC3 and DU145 this compound was able to decrease in vitro invasion of Matrigel by inhibiting EGFR autotransphosphorylation and subsequent PI3K activation. Gefitinib may be useful in the treatment of androgen-independent prostate cancer to limit not only the proliferation but also the invasion of these tumors.

  7. The role of Cajal cells in chronic prostatitis.

    PubMed

    Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan

    2016-07-04

    Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  8. Detection of Circulating Tumor Cells

    PubMed Central

    Terstappen, Leon W. M. M.

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements. PMID:25133014

  9. Photo-activated pheophorbide a inhibits the growth of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, D. D.; Cho, W. C. S.; Wu, P.; Lam, H. M.; Leung, A. W. N.

    2011-09-01

    Pheophorbide a (PhA) was identified as a photosensitizer to exert cytotoxicity on tumor cells. However, the efficacy of this compound on the treatment of prostate cancer remains unknown. The aim of this study was to evaluate the photodynamic effect of PhA on prostate cancer cells. Cellular uptake of PhA and cell viability after photo-activation was studied in LNCaP prostate cancer cells. The corresponding production of reactive oxygen species within cells was determined after photodynamic therapy (PDT). Our results showed that the uptake of PhA into LNCaP cells was in a time-dependent manner and the cytotoxicity of PhA-PDT was photosensitizer dose- and light dose-dependent. The intracellular reactive oxygen species was remarkably induced after PDT treatment, which was responsible for the inhibition effect on prostate cancer cells. This is the first report to evaluate the photodynamic effect of PhA on prostate cancer. Our findings demonstrate that PhA-PDT may be a potentially promising treatment for localized prostate cancer, which can be a therapeutic option after the failures of radiotherapy and hormone therapy.

  10. Isolation and Characterization of Prostate Cancer Stem Cells

    DTIC Science & Technology

    2012-08-01

    18-29. 5. Garraway, I.P., et al., Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration...guidelines. Adjacent prostate tissue was snap frozen in liquid Nitrogen or fixed in formalin and paraffin-embedded to evaluate anatomy and glandular ...forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 70: 491–501. 5. Collins AT, Habib FK

  11. Origin and Properties of Prostatic Stem Cells

    DTIC Science & Technology

    2007-02-01

    α6 Fig 2. SP cells have greater proliferative potential than non-SP cells. A. FACS sorted SP and non-SP cells (4000/well) were seeded in collagen...proximal region also has the highest levels of telomerase [38], which is associated with germinative compartments of many self-renewing tissues [39, 40...2013. 3 Salm SN, Burger PE, Coetzee S et al. TGF- maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 2005; 170:81

  12. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    SciTech Connect

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-06-05

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  13. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  14. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

    PubMed Central

    2014-01-01

    Background PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Methods Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Results Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression

  15. High-dose dietary zinc promotes prostate intraepithelial neoplasia in a murine tumor induction model.

    PubMed

    Ko, Young Hwii; Woo, Yu Jeong; Kim, Jin Wook; Choi, Hoon; Kang, Seok Ho; Lee, Jeong Gu; Kim, Je Jong; Park, Hong Seok; Cheon, Jun

    2010-03-01

    To evaluate the role of high-dose dietary zinc in the process of prostate malignancy, 60 Sprague-Dawley rats were randomly divided into four groups: tumor induction with carcinogen and hormone (group 1), oral zinc administration without tumor induction (group 2), oral zinc administration with tumor induction (group 3) and a control without zinc administration or tumor induction (group 4). Zinc was supplied orally in the form of zinc sulfate heptahydrate dissolved in drinking water to groups 2 and 3 for 20 weeks. Although the serum level of zinc measured at 20 weeks was maintained similarly in each group (P = 0.082), intraprostatic zinc concentrations were statistically different. Group 1 prostates contained the least amount of zinc in both the dorsolateral and ventral lobes at levels of 36.3 and 4.8 microg g(-1), respectively. However, in group 3, zinc levels increased in both lobes to 59.3 and 12.1 microg g(-1), respectively, comparable with that of group 4 (54.5 +/- 14.6 and 14.1 +/- 2.4 microg g(-1)). In spite of these increases in zinc concentration, the prevalence of prostate intraepithelial neoplasm was rather increased in group 3 (53.3% and 46.7%) compared with group 1 (33.3% and 33.3%) in both dorsolateral and ventral prostate lobes. Although prostate intraepithelial neoplasm did not develop in any prostate in group 4, zinc administration did induce prostate intraepithelial neoplasm in group 2 (46.7% and 40.0%). Thus, although high dietary zinc increased intraprostatic zinc concentrations, it promoted, instead of preventing, prostate intraepithelial neoplasm in a murine prostate malignancy induction model.

  16. Voltage-gated sodium channels were differentially expressed in human normal prostate, benign prostatic hyperplasia and prostate cancer cells.

    PubMed

    Shan, Bin; Dong, Mei; Tang, He; Wang, Na; Zhang, Jin; Yan, Changqing; Jiao, Xiaocui; Zhang, Hailin; Wang, Chuan

    2014-07-01

    Voltage-gated sodium channels (VGSCs) are expressed not only in excitable cells but also in numerous metastatic cells, particularly in certain types of cancer cells. In some types of cancer, including prostate cancer, the expression of VGSCs is associated with cancer migration, invasion and metastasis in vivo. However, the detailed expression profiles of VGSC α subunits in normal human prostate, in prostatic hyperplasia and prostatic cancer remain controversial. In the present study, quantitative polymerase chain reaction was used to systematically detect all subtypes of VGSC α subunits in normal human prostate, benign prostatic hyperplasia (BPH) and prostate cancer cells. The expression profile of VGSC α subunits was observed to differ between these cell types. Nav1.5 was the major isoform expressed in normal human prostate tissue, while Nav1.5 and Nav1.2 were the predominant isoforms in BPH tissue. However, in PC-3 and LNCaP cells, two typical prostate cancer cell lines, Nav1.6 and Nav1.7 were abundantly expressed. By comparing the relative expression levels of Nav1.5, Nav1.6 and Nav1.7 in these cells, the mRNA levels of Nav1.6 and Nav1.7 were identified to be 6- to 27-fold higher in PC-3 and LNCaP cells than in either normal or BPH samples (P<0.05); however, Nav1.5 mRNA levels were relatively lower compared with those of Nav1.6 or Nav1.7 in all cells analyzed. To confirm whether Nav1.6 and Nav1.7 expression in cancer cells was functional, a patch-clamp technique was used to record whole-cell currents. A tetrodotoxin-sensitive sodium current was successfully recorded in PC-3 cells, but not in LNCaP cells. It was concluded that although all types of VGSC α subunits exhibited low expression levels in normal prostate and BPH cells, both Nav1.6 and Nav1.7 were significantly upregulated in the prostate cancer cell lines, suggesting these subtypes may be potential diagnostic markers and therapeutic targets for certain types of prostate cancer in humans.

  17. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer

    PubMed Central

    Gupta, Nisha; Duda, Dan G.

    2016-01-01

    Abstract Metastatic prostate cancer is one of the leading causes of cancer-related death in men. The primary site of metastasis from prostate cancers is the bone. During the last decade, multiple studies have pointed to the role of the stromal cell-derived factor 1 alpha (SDF1α)/CXCR4 axis in the metastatic spread of the disease, but the mechanisms that underlie this effect are still incompletely understood. In this review, we summarize the current understanding of the role of the SDF1α/CXCR4 pathway in bone metastatic prostate cancer. We also discuss the therapeutic potential of disrupting the interaction between prostate tumor cells and bone environment with focus on the SDF1α pathway. PMID:27533927

  18. Psoralidin, An Herbal Molecule Inhibits PI3K Mediated Akt Signaling In Androgen Independent Prostate Cancer (AIPC) Cells

    PubMed Central

    Kumar, Raj; Srinivasan, Sowmyalakshmi; Koduru, Srinivas; Pahari, Pallab; Rohr, Jürgen; Kyprianou, Natasha; Damodaran, Chendil

    2008-01-01

    The protein kinase Akt plays an important role in cell proliferation and survival in many cancers, including prostate cancer. Due to its kinase activity, it serves as a molecular conduit for inhibiting apoptosis and promoting angiogenesis in most cell types. In most of the prostate tumors, Akt signaling is constitutively activated due to the deletion or mutation of the tumor suppressor PTEN, which negatively regulates PI3K through lipid phosphatase activity. Recently, we identified a natural compound, psoralidin, which inhibits Akt phosphorylation and its consequent activation in androgen independent prostate cancer cells (AIPC). Furthermore, ectopic expression of Akt renders AIPC cells resistant chemotherapy; however, psoralidin overcomes Akt-mediated resistance and induces apoptosis in AIPC cells. While dissecting the molecular events, both upstream and downstream of Akt, we found that psoralidin inhibits PI3 kinase activation and transcriptionally represses the activation of NF-κB and its target genes (Bcl-2, Survivin, and Bcl-xL, etc.), which results in the inhibition of cell viability and induction of apoptosis in PC-3 and DU-145 cells. Interestingly, psoralidin selectively targets cancer cells, without causing any toxicity to normal prostate epithelial cells. In vivo xenograft assays substantiate these in vitro findings, and show psoralidin inhibits prostate tumor growth in nude mice. Our findings are of therapeutic significance in the management of prostate cancer patients with advanced or metastatic disease, as they provide new directions for the development of a phyotochemical-based platform for prevention and treatment strategies for AIPC. PMID:19223576

  19. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer.

    PubMed

    Riabov, V; Tretyakova, I; Alexander, R B; Pushko, P; Klyushnenkova, E N

    2015-10-05

    The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1(*)1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8 T cells (19.6 ± 7.4%) produced IFNγ in response to the immunodominant peptide PSA(65-73). In the blood of vaccinated mice, 18.4 ± 4.1% of CD8 T cells were PSA-specific as determined by the staining with H-2D(b)/PSA(65-73) dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8+ T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer.

  20. Fatostatin Displays High Anti-Tumor Activity in Prostate Cancer by Blocking SREBP-Regulated Metabolic Pathways and Androgen Receptor Signaling

    PubMed Central

    Li, Xiangyan; Chen, Yi-Ting; Hu, Peizhen; Huang, Wen-Chin

    2014-01-01

    Current research links aberrant lipogenesis and cholesterogenesis with prostate cancer development and progression. Sterol regulatory element-binding proteins (SREBPs; SREBP-1 and SREBP-2) are key transcription factors controlling lipogenesis and cholesterogenesis via the regulation of genes related to fatty acid and cholesterol biosynthesis. Overexpression of SREBPs has been reported to be significantly associated with aggressive pathologic features in human prostate cancer. Our previous results showed that SREBP-1 promoted prostate cancer growth and castration resistance through induction of lipogenesis and androgen receptor (AR) activity. In the present study, we evaluated the anti-prostate tumor activity of a novel SREBP inhibitor, fatostatin. We found that fatostatin suppressed cell proliferation and anchorage-independent colony formation in both androgen-responsive LNCaP and androgen-insensitive C4-2B prostate cancer cells. Fatostatin also reduced in vitro invasion and migration in both cell lines. Further, fatostatin caused G2/M cell cycle arrest and induced apoptosis by increasing caspase-3/7 activity and the cleavages of caspase-3 and PARP. The in vivo animal results demonstrated that fatostatin significantly inhibited subcutaneous C4-2B tumor growth and markedly decreased serum PSA level compared to the control group. The in vitro and in vivo effects of fatostatin treatment were due to blockade of SREBP regulated metabolic pathways and the AR signaling network. Our findings identify SREBP inhibition as a potential new therapeutic approach for the treatment of prostate cancer. PMID:24493696

  1. Elevated HA and HMMR are associated with biochemical failure in patients with intermediate grade prostate tumors

    PubMed Central

    Rizzardi, Anthony E; Vogel, Rachel Isaksson; Koopmeiners, Joseph S; Forster, Colleen L; Marston, Lauren O; Rosener, Nikolaus K; Akentieva, Natalia; Price, Matthew A; Metzger, Gregory J; Warlick, Christopher A; Henriksen, Jonathan C; Turley, Eva A; McCarthy, James B; Schmechel, Stephen C

    2014-01-01

    Background The clinical course of prostate cancer (PCa) measured by biochemical failure (BF) after prostatectomy remains unpredictable in many patients, particularly in intermediate Gleason score (GS) 7 tumors, suggesting that identification of molecular mechanisms associated with aggressive PCa biology may be exploited for improved prognostication or therapy. Hyaluronan (HA) is a high molecular weight polyanionic carbohydrate produced by synthases (HAS1-3) and fragmented by oxidative/nitrosative stress and hyaluronidases (HYAL1-4, SPAM1) common in PCa microenvironments. HA and HA fragments interact with receptors CD44 and HMMR resulting in increased tumor aggressiveness in experimental PCa models. We evaluated the association of HA-related molecules with BF after prostatectomy in GS7 tumors. Methods Tissue microarrays were constructed from a 96-patient cohort. HA histochemistry and HAS2, HYAL1, CD44, CD44v6, and HMMR immunohistochemistry were quantified using digital pathology techniques. Results HA in tumor-associated stroma and HMMR in malignant epithelium were significantly and marginally significantly associated with time to BF in univariate analysis, respectively. After adjusting for clinicopathologic features, both HA in tumor-associated stroma and HMMR in malignant epithelium were significantly associated with time to BF. Although not significantly associated with BF, HAS2 and HYAL1 positively correlated with HMMR in malignant epithelium. Cell culture assays demonstrated that HMMR bound native and fragmented HA, promoted HA uptake, and was required for a pro-migratory response to fragmented HA. Conclusions HA and HMMR are factors associated with time to BF in GS7 tumors, suggesting that increased HA synthesis and fragmentation within the tumor microenvironment stimulates aggressive PCa behavior through HA-HMMR signaling. PMID:24668563

  2. Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells

    PubMed Central

    2014-01-01

    Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery. PMID:24739220

  3. Inorganic Arsenic–Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell–Conditioned Media Model

    PubMed Central

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal–epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). Results: ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. Conclusions: Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. Citation: Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL

  4. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation

    PubMed Central

    Gao, Xian-Shu; Li, Yi; Yu, Hongliang; Xiong, Wei; Yu, Hao; Wang, Wen; Li, Yingbo; Teng, Yingqi; Zhou, Demin

    2016-01-01

    Aldo-keto reductase 1C3(AKR1C3) is an enzyme involved in prostaglandins metabolism. Studies suggest that AKR1C3 has a pivotal role in the radioresistance of esophageal cancer and non-small-cell lung cancer, yet the role of AKR1C3 in prostate cancer cells radiation resistance has not yet been clarified. In our study, we established a stable overexpressing AKR1C3 cell line (AKR1C3-over) derived from the prostate cell line DU145 and its control cell line (Control). We conducted colony formation assay to determine the role of AKR1C3 in radioresistance and we used its chemical inhibitor to detect whether it can restored the sensitivity of the acquired tumor cells. Flow cytometry assay was carried out to detect IR-induced ROS accumulation. Elisa was adopted to dedect the concentration of PGF2α in the suspension of the cells after 6GY radiation. Western blotting was used to dedect the MAPK and PPAR γ. The results demonstrated that overexpression of AKR1C3 in prostate cancer can result in radioresistance and suppression of AKR1C3 via its chemical inhibitor indocin restored the sensitivity of the acquired tumor cells. According to the flow cytometry assay, ROS was decreased by 80% in DU145-over cells. Also overexpression of AKR1C3 could result in the accumulation of prostaglandin F2α (PGF2α), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation and activated the MAPK pathway and inhibited the expression of PPARγ. In conclusion, we found that overexpression of AKR1C3 significantly enhanced human prostate cancer cells resistance to radiation through activation of MAPK pathway. PMID:27385003

  5. Genistein Up-Regulates Tumor Suppressor MicroRNA-574-3p in Prostate Cancer

    PubMed Central

    Chiyomaru, Takeshi; Yamamura, Soichiro; Fukuhara, Shinichiro; Hidaka, Hideo; Majid, Shahana; Saini, Sharanjot; Arora, Sumit; Deng, Guoren; Shahryari, Varahram; Chang, Inik; Tanaka, Yuichiro; Tabatabai, Z. Laura; Enokida, Hideki; Seki, Naohiko; Nakagawa, Masayuki; Dahiya, Rajvir

    2013-01-01

    Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs). In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa) and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1) and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as ‘Pathways in cancer’, ‘Jak-STAT signaling pathway’, and ‘Wnt signaling pathway’. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3′ UTR of several target genes (such as RAC1, EGFR and EP300) that are components of ‘Pathways in cancer’. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa. PMID:23554959

  6. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay.

    PubMed

    Park, Jung Wook; Lee, John K; Phillips, John W; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N

    2016-04-19

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic theMYCamplification andPTENloss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1-transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1-transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics.

  7. Molecular Evidence of Helicobacter Pylori Infection in Prostate Tumors

    PubMed Central

    Al-Marhoon, Mohammed S.; Ouhtit, Allal; Al-Abri, Aisha O.; Venkiteswaran, Krishna P.; Al-Busaidi, Qassim; Mathew, Josephkunju; Al-Haddabi, Ibrahim; Shareef, Omar; Aquil, Shahid; Rahman, Khalid; Al-Hashmi, Intisar; Gupta, Ishita; Ganguly, Shyam S.

    2015-01-01

    Objectives To determine whether Helicobacter pylori (H. pylori) is detectable in both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Epidemiological studies have shown significant associations between infective chronic prostatitis and prostatic carcinoma. Many bacteria have been found in the prostate of patients with chronic prostatitis, BPH, and PCa. Methods One hundred consecutive patients with prostate diseases were enrolled in the study. Detection of H. pylori DNA in prostate tissue from patients with BPH and PCa was performed using both immunohistochemistry and PCR, and the results were confirmed by DNA sequencing. Odds ratios and the Fisher Exact test were used for the analysis of the associations between the variables. Results Among the patients, 78% had BPH and 19% had PCa. While immunohistochemistry showed no positive sample for H. pylori, PCR combined with sequencing detected H. pylori DNA in prostate tissue samples from 5 patients. However, statistical analysis of the data showed that BPH and PCa are not significantly associated with the presence of H. pylori DNA in prostate tissue (odds ratio = 0.94, 95% confidence interval = 0.09–23.34, one-tailed Chi-square value = 0.660, p > 0.05). The limitation of this study was the small number of PCa patients. Conclusions This study provides, for the first time, molecular evidence of the presence of H. pylori DNA in prostatic tissue of patients with BPH and PCa. It paves the way for further comprehensive studies to examine the association of H. pylori infection with BPH and PCa. PMID:26889133

  8. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.

    PubMed

    Fernández-Martínez, Ana B; Bajo, Ana M; Isabel Arenas, M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2010-12-18

    The carcinogenic potential of vasoactive intestinal peptide (VIP) was analyzed in non-tumor human prostate epithelial cells (RWPE-1) and in vivo xenografts. VIP induced morphological changes and a migratory phenotype consistent with stimulation of expression/activity of metalloproteinases MMP-2 and MMP-9, decreased E-cadherin-mediated cell-cell adhesion, and increased cell motility. VIP increased cyclin D1 expression and cell proliferation that was blocked after VPAC(1)-receptor siRNA transfection. Similar effects were seen in RWPE-1 tumors developed by subcutaneous injection of VIP-treated cells in athymic nude mice. VIP acts as a cytokine in RWPE-1 cell transformation conceivably through epithelial-mesenchymal transition (EMT), reinforcing VIP role in prostate tumorigenesis.

  9. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  10. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    PubMed

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  11. Augmented mast cell infiltration and microvessel density in prostate cancer

    PubMed Central

    Wagrowska-Danilewicz, Małgorzata; Stasikowska-Kanicka, Olga; Tuka, Elżbieta; Danilewicz, Marian

    2013-01-01

    Aim of the study Recent investigations have taken into account the role of mast cells in prostate cancer formation, analyzing their dual functions (as tumour growth promoters and tumour growth inhibitors). The aim of our study was to compare mast cell infiltration and microvessel density in prostate cancer and in benign prostate hyperplasia. We also attempted to find possible relationships among mast cell infiltration and microvessel density, Gleason score, as well as serum levels of prostate-specific antigen (PSA). Material and methods The investigation was confined to evaluations of material from prostate needle biopsies, carried out in 26 patients with prostate cancer, and of 14 specimens diagnosed as benign hyperplasia. The numbers of tryptase positive mast cells and CD34 positive vessels were determined using a computer image analysis system. In the patients with prostate cancer, both mast cell infiltrates and microvessel density were significantly increased, as compared to the control patients. Results Significant positive correlations were identified between the mean numbers of mast cells and microvessel densities, both in the prostate cancer group and in the control group. Moreover, significant positive correlations were observed between Gleason score on one hand and the number of mast cells and microvessel density on the other. The correlations between PSA serum levels and both mast cell infiltration and microvessel density were positive, but not in a statistically significant way. Conclusions The reported investigations may support the assumption of mast cell promoter function in prostate cancer development, whereas no evidence was found for their opposite PMID:24592126

  12. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate.

    PubMed

    Dueregger, Andrea; Schöpf, Bernd; Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.

  13. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate

    PubMed Central

    Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E.

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies. PMID:26285134

  14. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  15. Isolation, cultivation, and characterization of adult murine prostate stem cells

    PubMed Central

    Lukacs, Rita U.; Goldstein, Andrew S.; Lawson, Devon A.; Cheng, Donghui; Witte, Owen N.

    2010-01-01

    ABSTRACT/SUMMARY The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; the cultivation of prostate stem cells in vitro; and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally it will take approximately 8 hours to harvest prostate cells, isolate the stem cell enriched population, and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo. PMID:20360765

  16. Isolation, cultivation and characterization of adult murine prostate stem cells.

    PubMed

    Lukacs, Rita U; Goldstein, Andrew S; Lawson, Devon A; Cheng, Donghui; Witte, Owen N

    2010-04-01

    The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we describe step-by-step procedures on the basis of previous work in our laboratory for the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; and the cultivation of prostate stem cells in vitro and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally, it will take approximately 8 h to harvest prostate cells, isolate the stem cell-enriched population and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo.

  17. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection

    PubMed Central

    Sabo, Yosef; Bacharach, Eran; Ehrlich, Marcelo

    2016-01-01

    Interferons (IFNs) induce anti-viral programs, regulate immune responses, and exert anti-proliferative effects. To escape anti-tumorigenic effects of IFNs, malignant cells attenuate JAK/STAT signaling and expression of IFN stimulated genes (ISGs). Such attenuation may enhance the susceptibility of tumor cells to oncolytic virotherapy. Here we studied genetic and epigenetic mechanisms of interference with JAK/STAT signaling and their contribution to susceptibility of prostate cancer cells to viral infection. Bioinformatics analysis of gene-expression in cohorts of prostate cancer patients revealed genetic and epigenetic interference with the IFN program. To correlate lack of IFN signaling and susceptibility to viral infection and oncolysis; we employed LNCaP prostate cancer cells as cellular model, and the human metapneumovirus and the epizootic hemorrhagic disease virus as infectious agents. In LNCaP cells, JAK1 is silenced by bi-allelic inactivating mutations and epigenetic silencing, which also silences ISGs. Chemical inhibition of epigenetic silencing partially restored IFN-sensitivity, induced low levels of expression of selected ISGs and attenuated, but failed to block, viral infection and oncolysis. Since viral infection was not blocked by epigenetic modifiers, and these compounds may independently-induce anti-tumor effects, we propose that epigenetic modifiers and virotherapy are compatible in treatment of prostate tumors defective in JAK1 expression and IFN signaling. PMID:27366948

  18. Contemporary update on pathology-related issues on routine workup of prostate biopsy: sectioning, tumor extent measurement, specimen orientation, and immunohistochemistry.

    PubMed

    Montironi, Rodolfo; Lopez-Beltran, Antonio; Mazzucchelli, Roberta; Scarpelli, Marina; Galosi, Andrea B; Cheng, Liang

    2014-04-01

    While the prime goal of the needle biopsy is to diagnose prostatic adenocarcinoma (PCa), once PCa is detected further descriptive information regarding the type of cancer, amount of tumor, and grade in prostate needle cores forms the cornerstone for contemporary management of the patient and to assess the potential for local cure and the risk for distant metastasis. This review gives an update on selected pathology-related issues on routine workup of prostate biopsy with special references to adequate histologic sectioning necessary to maximize cancer yield, tumor extent measurements and methodologies, specimen orientation, and the role of immunohistochemistry in the evaluation of the prostate. Multiple factors influence the diagnostic yield of prostate biopsies. Many of these factors are fixed and uncontrollable. Other factors are controlled by the urologist, including number of cores obtained, method and location of biopsy, and amount of tissue obtained. The yield of cancer is also controlled by the pathologist and histotechnologist. It is necessary to report the number of cores submitted and the number of positive cores, thereby giving the fraction of positive cores. The percentage involvement by carcinoma with or without the linear extent of carcinoma of the single core with the greatest amount of tumor should also be provided. Using the marking technique, we can add a new pathological parameter: pathological orientation. Cancer or atypical lesions can be accurately located within the biopsy specimen and integrated to biopsy approach. Probably the most common use of immunohistochemistry in the evaluation of the prostate is for the identification of basal cells, which are absent with rare exception in adenocarcinoma of the prostate and in general positive in mimickers of prostate cancer. If a case is still considered atypical by a uropathology expert after negative basal cell staining, positive staining for alpha-methylacyl-CoA-racemase can help establish in 50

  19. Targeting cancer stem cell in castration resistant prostate cancer

    PubMed Central

    Yun, Eun-Jin; Zhou, Jiancheng; Lin, Chun-Jung; Hernandez, Elizabeth; Fazli, Ladan; Gleave, Martin; Hsieh, Jer-Tsong

    2015-01-01

    Purpose Clinical evidence suggests an increased CSC in tumor mass may contribute to the failure of conventional therapies since CSCs seem to be more resistant than differentiated tumor cells. Thus, unveiling the mechanism regulating CSCs and candidate target molecules will provide new strategy to cure the patients. Experimental design The stem-like cell properties were determined by a prostasphere assay, and dye exclusion assay. To find critical stem cell marker and reveal regulation mechanism, basic biochemical and molecular biological methods such as qRT-PCR, Western blot, reporter gene assay and chromatin immunoprecipitation assay were employed. In addition, to determine the effect of combination therapy targeting both CSCs and its progeny, in vitro MTT assay and in vivo xenograft model was used. Results We demonstrate immortalized normal human prostate epithelial cells, appeared non-tumorigenic in vivo, become tumorigenic and acquire stem cell phenotype after knocking down a tumor suppressor gene. Also, those stem-like cells increase chemoresistance to conventional anti-cancer reagent. Mechanistically, we unveil that Wnt signaling is a key pathway regulating well-known stem cell marker CD44 by directly interacting to the promoter. Thus, by targeting CSCs using Wnt inhibitors synergistically enhances the efficacy of conventional drugs. Furthermore, the in vivo mice model bearing xenografts showed a robust inhibition of tumor growth after combination therapy. Conclusions Overall, this study provides strong evidence of CSC in CRPC. This new combination therapy strategy targeting CSC could significantly enhance therapeutic efficacy of current chemotherapy regimen only targeting non-CSC cells. PMID:26490309

  20. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics

    PubMed Central

    Barach, Yael S; Lee, Jun Sik; Zang, Xingxing

    2010-01-01

    T cell-mediated adaptive immune response is controlled by both positive costimulation and negative coinhibition, generated mainly by the interaction between the B7 family and their receptor CD28 family. Coinhibition is exploited by prostate cancer as an immune evasion pathway. Overexpression of coinhibitory B7x and B7-H3 in prostate cancer correlates with poor disease outcome, whereas tumor-infiltrating immune cells have enhanced expression of PD-L1 and its receptor PD-1. New insights into the complex mechanisms governing B7 expression in the tumor microenvironment have been reported and therapies aimed at overcoming T cell coinhibition with antagonistic monoclonal antibodies are emerging as effective tumor immunotherapies. Therapies that block B7x and B7-H3, either as monotherapies or in synergism with traditional therapies, should be pursued. PMID:20971039

  1. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer.

    PubMed

    Majid, Shahana; Dar, Altaf A; Saini, Sharanjot; Arora, Sumit; Shahryari, Varahram; Zaman, Mohd Saif; Chang, Inik; Yamamura, Soichiro; Tanaka, Yuichiro; Deng, Guoren; Dahiya, Rajvir

    2012-12-15

    The miRNAs have great potential as biomarkers and therapeutic agents owing to their ability to control multiple genes and potential to influence cellular behavior. Here, we identified that miR-23b is a methylation-silenced tumor suppressor in prostate cancer. We showed that miR-23b expression is controlled by promoter methylation and has great promise as a diagnostic and prognostic biomarker in prostate cancer. High levels of miR-23b expression are positively correlated with higher overall and recurrence-free survival in patients with prostate cancer. Furthermore, we elucidated the tumor suppressor role of miR-23b using in vitro and in vivo models. We showed that proto-oncogene Src kinase and Akt are direct targets of miR-23b. Increased expression of miR-23b inhibited proliferation, colony formation, migration/invasion, and triggered G(0)-G(1) cell-cycle arrest and apoptosis in prostate cancer. Overexpression of miR-23b inhibited epithelial-to-mesenchymal transition (EMT) causing a decline in mesenchymal markers Vimentin and Snail and increasing the epithelial marker, E-cadherin. Depletion of Src by RNA interference conferred similar functional effects as that of miR-23b reconstitution. miR-23b expression caused a dramatic decrease in tumor growth in nude mice and attenuated Src expression in excised tumors compared with a control miR. These findings suggest that miR-23b is a methylation-silenced tumor suppressor that may be a useful biomarker in prostate cancer. Loss of miR-23b may confer proliferative advantage and promote prostate cancer migration and invasion, and reexpression of miR-23b may contribute to the epigenetic therapy for prostate cancer.

  2. miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma

    PubMed Central

    Xu, Song; Yi, Xiao-Ming; Zhang, Zheng-Yu; Ge, Jing-Ping; Zhou, Wen-Quan

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, well-conserved, non-coding RNAs that are increasingly identified as diagnostic and prognostic biomarkers in a number of cancers. Deregulated miR-129 is closely associated with tumorigenesis and cancer progression. However, the potential role of miR-129 in prostate cancer remains largely elusive. The present study investigated the role of miR-129 as a prognostic biomarker for tumor progression and clinical prognosis in prostate cancer patients. The examined prostate cancer tissues exhibited a significant reduction in miR-129 expression compared with the normal tissues (P=0.013). The expression levels of miR-129 were negatively correlated with histological grade (P<0.001), high preoperative prostate-specific antigen serum levels (P<0.001), pathological stage (P<0.001), high Gleason score (P<0.001), lymph node metastasis (P=0.002), angiolymphatic invasion (P=0.018), and biochemical recurrence (BCR; P=0.001). Use of the Kaplan-Meier analysis demonstrated that low miR-129 expression was closely associated with poorer BCR-free survival. Multivariate survival analysis indicated that miR-129 expression may be an independent prognostic marker for BCR-free survival in prostate cancer patients (P<0.001). Overexpression of miR-129 markedly attenuated prostate cancer cell growth by rescuing cell cycle-regulated protein expression. The present study suggests that miR-129 is downregulated in the cancerous tissues of prostate cancer patients, which was associated with poor BCR-free survival. Thus, it may be considered as a novel independent prognostic biomarker for prostate cancer. In addition, downregulation of miR-129 may serve a critical role in the proliferation of prostate cancer cells. PMID:27779679

  3. The Function of Neuroendocrine Cells in Prostate Cancer

    DTIC Science & Technology

    2014-04-01

    still many unanswered questions in prostate cancer. A fundamental and clinically important issue is why prostate cancer responds to hormonal therapy ...adenocarcinoma cells express low levels of CD49f. We then fractionated CD49fhi and CD49flo cells and transplanted both into recipient mice. Both phenotypic...Hsia E, Squires J, Li Z, Zhang Y, Li W, Chen X, Xu H, Huang J. Androgen-deprivation therapy -induced aggressive prostate cancer with neuroendocrine

  4. Design and Investigation of a [(18)F]-Labeled Benzamide Derivative as a High Affinity Dual Sigma Receptor Subtype Radioligand for Prostate Tumor Imaging.

    PubMed

    Yang, Dongzhi; Comeau, Anthony; Bowen, Wayne D; Mach, Robert H; Ross, Brian D; Hong, Hao; Van Dort, Marcian E

    2017-03-06

    High overexpression of sigma (σ) receptors (σ1 and σ2 subtypes) in a variety of human solid tumors has prompted the development of σ receptor-targeting radioligands, as imaging agents for tumor detection. A majority of these radioligands to date target the σ2 receptor, a potential marker of tumor proliferative status. The identification of approximately equal proportions of both σ receptor subtypes in prostate tumors suggests that a high affinity, dual σ receptor-targeting radioligand could potentially provide enhanced tumor targeting efficacy in prostate cancer. To accomplish this goal, we designed a series of ligands which bind to both σ receptor subtypes with high affinity. Ligand 3a in this series, displaying optimal dual σ receptor subtype affinity (σ1, 6.3 nM; σ2, 10.2 nM) was radiolabeled with fluorine-18 ((18)F) to give [(18)F]3a and evaluated as a σ receptor-targeting radioligand in the mouse PC-3 prostate tumor model. Cellular assays with PC-3 cells demonstrated that a major proportion of [(18)F]3a was localized to cell surface σ receptors, while ∼10% of [(18)F]3a was internalized within cells after incubation for 3.5 h. Serial PET imaging in mice bearing PC-3 tumors revealed that uptake of [(18)F]3a was 1.6 ± 0.8, 4.4 ± 0.3, and 3.6 ± 0.6% ID/g (% injection dose per gram) in σ receptor-positive prostate tumors at 15 min, 1.5 h, and 3.5 h postinjection, respectively (n = 3) resulting in clear tumor visualization. Blocking studies conducted with haloperidol (a nonselective inhibitor for both σ receptor subtypes) confirmed that the uptake of [(18)F]3a was σ receptor-mediated. Histology analysis confirmed similar expression of σ1 and σ2 in PC-3 tumors which was significantly greater than its expression in normal organs/tissues such as liver, kidney, and muscle. Metabolite studies revealed that >50% of radioactivity in PC-3 tumors at 30 min postinjection represented intact [(18)F]3a. Prominent σ receptor-specific uptake of [(18)F]3a in

  5. Calprotectin induces cell death in human prostate cancer cell (LNCaP) through survivin protein alteration.

    PubMed

    Sattari, Mina; Pazhang, Yaghub; Imani, Mehdi

    2014-11-01

    Calprotectin (CP), an abundant heterodimeric cytosolic protein of neutrophils, conveys a variety of functions such as tumor cell growth arrest and antimicrobial activity. We investigated CP activity and its possible apoptosis-inducing mechanism of action against an antiandrogen therapy-resistance prostate cancer cell line LNCaP. Cell viability and Annexin V FITC assays were performed in order to investigate its cell death activity and apoptosis, respectively. In order to address cell death inducing mechanism(s), immunocytochemistry and immunobloting analysis, reactive oxygen species (ROS) and nitric oxide (NO) measurements were performed. The effective concentration of CP against LNCaP promoting LNCaP cell death was 200 µg/mL. ROS and NO levels of cells remarkably were enhanced following treatment with 50 and 100 µg/mL of CP, respectively. Protein expression of anti-apoptotic protein survivin was significantly decreased after administration of tumor cells with CP. Our data indicate that CP regulates the LNCaP cells viability via survivin-mediated pathway and ROS and NO enhancement. Thus, inhibition of survivin expression, enhancement of ROS and NO level by CP or other similar pharmaceutical agents might be effective in lowering the malignant proliferation of human prostate cancer cells.

  6. Exosome Mediates Stemness Transfer from Prostate Epithelial Progenitors to Prostate Cancer Cells

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-12-1-0200 TITLE: Exosome Mediates Stemness Transfer from...2012 – 31 May 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Exosome Mediates Stemness Transfer from Prostate Epithelial Progenitors to Prostate... Exosomes are small membrane vesicles secreted by most cell types, functioning as signal transmitters by conveying their bioactive molecules, such as

  7. Effect of gyromagnetic fields on human prostatic adenocarcinoma cells

    PubMed Central

    Lei, Hongen; Xu, Yongde; Guan, Ruili; Li, Meng; Hui, Yu; Gao, Zhezhu; Yang, Bicheng; Xin, Zhongcheng

    2015-01-01

    Purpose To investigate the biological effect of gyromagnetic fields (GMFs) on cell proliferation and apoptosis of human prostatic adenocarcinoma cells and explore the underlying mechanisms. Methods PC-3 cells were grouped into normal control (NC) and GMF treatment groups. Cell proliferation was analyzed with kit-8 and Ki67 immunofluorescence staining, while cell apoptosis was analyzed with flow cytometry double staining of Annexin V-PE/7-AAD. The Akt and p38 MAPK/Caspase signaling pathways were analyzed by western blotting and immunofluorescence staining, and cell polarization was analyzed with PARD3. Results Cell proliferation and activity of the Akt pathway were significantly decreased by the GMF, while cell apoptosis, activity of p38 MAPK, and PARD3-positive cell number were significantly increased in the GMF group compared to the NC group. Conclusion GMFs inhibit cell proliferation, induce apoptosis, and regulate tumor cell polarity conditions, potentially through down-regulating Akt, activating the p38 MAPK/Caspase pathway, and promoting PARD3 expression in PC-3 cells. PMID:26648740

  8. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model.

    PubMed

    McCullough, Danielle J; Nguyen, Linda M-D; Siemann, Dietmar W; Behnke, Bradley J

    2013-12-01

    Regular physical exercise is considered to be an integral component of cancer care strategies. However, the effect of exercise training on tumor microvascular oxygenation, hypoxia, and vascular function, all of which can affect the tumor microenvironment, remains unknown. Using an orthotopic preclinical model of prostate cancer, we tested the hypotheses that, after exercise training, in the tumor, there would be an enhanced microvascular Po2, increased number of patent vessels, and reduced hypoxia. We also investigated tumor resistance artery contractile properties. Dunning R-3327 AT-1 tumor cells (10(4)) were injected into the ventral prostate of 4-5-mo-old male Copenhagen or Nude rats, which were randomly assigned to tumor-bearing exercise trained (TB-Ex trained; n = 15; treadmill exercise for 5-7 wk) or sedentary groups (TB-Sedentary; n = 12). Phosphorescence quenching was used to measure tumor microvascular Po2, and Hoechst-33342 and EF-5 were used to measure patent vessels and tumor hypoxia, respectively. Tumor resistance artery function was assessed in vitro using the isolated microvessel technique. Compared with sedentary counterparts, tumor microvascular Po2 increased ∼100% after exercise training (TB-Sedentary, 6.0 ± 0.3 vs. TB-Ex Trained, 12.2 ± 1.0 mmHg, P < 0.05). Exercise training did not affect the number of patent vessels but did significantly reduce tumor hypoxia in the conscious, resting condition from 39 ± 12% of the tumor area in TB-Sedentary to 4 ± 1% in TB-Ex Trained. Exercise training did not affect vessel contractile function. These results demonstrate that after exercise training, there is a large increase in the driving force of O2 from the tumor microcirculation, which likely contributes to the considerable reduction in tumor hypoxia. These results suggest that exercise training can modulate the microenvironment of the tumor, such that a sustained reduction in tumor hypoxia occurs, which may lead to a less aggressive phenotype and

  9. A subset of prostatic basal cell carcinomas harbor the MYB rearrangement of adenoid cystic carcinoma.

    PubMed

    Bishop, Justin A; Yonescu, Raluca; Epstein, Jonathan I; Westra, William H

    2015-08-01

    Adenoid cystic carcinoma (ACC) is a basaloid tumor consisting of myoepithelial and ductal cells typically arranged in a cribriform pattern. Adenoid cystic carcinoma is generally regarded as a form of salivary gland carcinoma, but it can arise from sites unassociated with salivary tissue. A rare form of prostate carcinoma exhibits ACC-like features; it is no longer regarded as a true ACC but rather as prostatic basal cell carcinoma (PBCC) and within the spectrum of basaloid prostatic proliferations. True ACCs often harbor MYB translocations resulting in the MYB-NFIB fusion protein. MYB analysis could clarify the true nature of prostatic carcinomas that exhibit ACC features and thus help refine the classification of prostatic basaloid proliferations. Twelve PBCCs were identified from the pathology consultation files of Johns Hopkins Hospital. The histopathologic features were reviewed, and break-apart fluorescence in situ hybridization for MYB was performed. All 12 cases exhibited prominent basaloid histology. Four were purely solid, 7 exhibited a cribriform pattern reminiscent of salivary ACC, and 1 had a mixed pattern. The MYB rearrangement was detected in 2 (29%) of 7 ACC-like carcinomas but in none (0%) of the 5 PBCCs with a prominent solid pattern. True ACCs can arise in the prostate as is evidenced by the presence of the characteristic MYB rearrangement. When dealing with malignant basaloid proliferations in the prostate, recommendations to consolidate ACCs with other tumor types may need to be reassessed, particularly in light of the rapidly advancing field of biologic therapy where the identification of tumor-specific genetic alterations presents novel therapeutic targets.

  10. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression

    PubMed Central

    Dallavalle, Cecilia; Civenni, Gianluca; Merulla, Jessica; Ostano, Paola; Mello-Grand, Maurizia; Rossi, Simona; Losa, Marco; D’Ambrosio, Gioacchino; Sessa, Fausto; Thalmann, George N.; Zitella, Andrea; Chiorino, Giovanna; Catapano, Carlo V.

    2016-01-01

    Mutations and deletions in components of ubiquitin ligase complexes that lead to alterations in protein turnover are important mechanisms in driving tumorigenesis. Here we describe an alternative mechanism involving upregulation of the microRNA miR-424 that leads to impaired ubiquitination and degradation of oncogenic transcription factors in prostate cancers. We found that miR-424 targets the E3 ubiquitin ligase COP1 and identified STAT3 as a key substrate of COP1 in promoting tumorigenic and cancer stem-like properties in prostate epithelial cells. Altered protein turnover due to impaired COP1 function led to accumulation and enhanced basal and cytokine-induced activity of STAT3. We further determined that loss of the ETS factor ESE3/EHF is the initial event that triggers the deregulation of the miR-424/COP1/STAT3 axis. COP1 silencing and STAT3 activation were effectively reverted by blocking of miR-424, suggesting a possible strategy to attack this key node of tumorigenesis in ESE3/EHF–deficient tumors. These results establish miR-424 as an oncogenic effector linked to noncanonical activation of STAT3 and as a potential therapeutic target. PMID:27820701

  11. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  12. Transrectal Ultrasound-Integrated Spectral Optical Tomography of Hypoxic Progression of a Regressing Tumor in a Canine Prostate

    PubMed Central

    Jiang, Z.; Piao, D.; Bartels, K. E.; Holyoak, G. R.; Ritchey, J. W.; Ownby, C. L.; Rock, K.; Slobodov, G.

    2011-01-01

    The objective of this study was to evaluate if transrectal optical tomography implemented at three wavelength bands for spectral detection could monitor changes of the hemoglobin oxygen saturation (StO2) in addition to those of the total hemoglobin concentration ([HbT]) in lesions of a canine prostate, including an induced tumor modeling canine prostate cancer. Near-infrared (NIR) optical tomography was integrated with ultrasound (US) for transrectal imaging. Multi-spectral detection at 705 nm, 785 nm and 808 nm rendered measurements of [HbT] and StO2. Canine transmissible venereal tumor (TVT) cells were injected into the right lobe of a dog's prostate gland, which had a pre-existing cyst in the left lobe. Longitudinal assessments of the prostate were performed weekly over a 63-day duration by NIR imaging concurrent with grey-scale and Doppler US. Ultrasonography revealed a bi-lobular tumor-mass regressing from day-49 to day-63. At day-49 this tumor-mass developed a hypoxic core that became larger and more intense by day-56 and expanded further by day-63. The tumor-mass presented a strong hyper-[HbT] feature on day-56 that was inconsistent with US-visualized blood flow. Histology confirmed two necrotic TVT foci within this tumor-mass. The cyst appeared to have a large anoxic-like interior that was greater in size than its ultrasonographically delineated lesion, and a weak lesional elevation of [HbT]. On day-56, the cyst presented a strong hyper-[HbT] feature consistent with US-resolved blood flow. Histology revealed acute and chronic hemorrhage in the periphery of the cyst. The NIR imaging features of two other TVT nodules and a metastatic lymph node were evaluated retrospectively. Transrectal US-integrated spectral optical tomography seems to enable longitudinal monitoring of intra-lesional oxygenation dynamics in addition to the hemoglobin content of lesions in the canine prostate. PMID:22066593

  13. Differential cytotoxic activity of a novel palladium-based compound on prostate cell lines, primary prostate epithelial cells and prostate stem cells.

    PubMed

    Ulukaya, Engin; Frame, Fiona M; Cevatemre, Buse; Pellacani, Davide; Walker, Hannah; Mann, Vincent M; Simms, Matthew S; Stower, Michael J; Yilmaz, Veysel T; Maitland, Norman J

    2013-01-01

    The outcome for patients with advanced metastatic and recurrent prostate cancer is still poor. Therefore, new chemotherapeutics are required, especially for killing cancer stem cells that are thought to be responsible for disease recurrence. In this study, we screened the effect of a novel palladium-based anticancer agent (Pd complex) against six different prostate cancer cell lines, and primary cultures from seven Gleason 6/7 prostate cancer, three Gleason 8/9 prostate cancer and four benign prostate hyperplasia patient samples, as well as cancer stem cells selected from primary cultures. MTT and ATP viability assays were used to assess cell growth and flow cytometry to assess cell cycle status. In addition, immunofluorescence was used to detect γH2AX nuclear foci, indicative of DNA damage, and Western blotting to assess the induction of apoptosis and autophagy. The Pd complex showed a powerful growth-inhibitory effect against both cell lines and primary cultures. More importantly, it successfully reduced the viability of cancer stem cells as first reported in this study. The Pd complex induced DNA damage and differentially induced evidence of cell death, as well as autophagy. In conclusion, this novel agent may be promising for use against the bulk of the tumour cell population as well as the prostate cancer stem cells, which are thought to be responsible for the resistance of metastatic prostate cancer to chemotherapy. This study also indicates that the combined use of the Pd complex with an autophagy modulator may be a more promising approach to treat prostate cancer. In addition, the differential effects observed between cell lines and primary cells emphasise the importance of the model used to test novel drugs including its genetic background, and indeed the necessity of using cells cultured from patient samples.

  14. The Androgen Receptor Regulates PPARγ Expression and Activity in Human Prostate Cancer Cells

    PubMed Central

    Olokpa, Emuejevoke; Bolden, Adrienne

    2016-01-01

    The peroxisome proliferator activated receptor gamma (PPARγ) is a ligand‐activated transcription factor that regulates growth and differentiation within normal prostate and prostate cancers. However the factors that control PPARγ within the prostate cancers have not been characterized. The goal of this study was to examine whether the androgen receptor (AR) regulates PPARγ expression and function within human prostate cancer cells. qRT‐PCR and Western blot analyses revealed nanomolar concentrations of the AR agonist dihydrotestosterone (DHT) decrease PPARγ mRNA and protein within the castration‐resistant, AR‐positive C4‐2 and VCaP human prostate cancer cell lines. The AR antagonists bicalutamide and enzalutamide blocked the ability of DHT to reduce PPARγ levels. In addition, siRNA mediated knockdown of AR increased PPARγ protein levels and ligand‐induced PPARγ transcriptional activity within the C4‐2 cell line. Furthermore, proteasome inhibitors that interfere with AR function increased the level of basal PPARγ and prevented the DHT‐mediated suppression of PPARγ. These data suggest that AR normally functions to suppress PPARγ expression within AR‐positive prostate cancer cells. To determine whether increases in AR protein would influence PPARγ expression and activity, we used lipofectamine‐based transfections to overexpress AR within the AR‐null PC‐3 cells. The addition of AR to PC‐3 cells did not significantly alter PPARγ protein levels. However, the ability of the PPARγ ligand rosiglitazone to induce activation of a PPARγ‐driven luciferase reporter and induce expression of FABP4 was suppressed in AR‐positive PC‐3 cells. Together, these data indicate AR serves as a key modulator of PPARγ expression and function within prostate tumors. J. Cell. Physiol. 231: 2664–2672, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26945682

  15. GRP78-targeted nanotherapy against castrate-resistant prostate cancer cells expressing membrane GRP78.

    PubMed

    Delie, Florence; Petignat, Patrick; Cohen, Marie

    2013-12-01

    Glucose-regulated protein 78, GRP78, is a chaperone protein mainly located in the endoplasmic reticulum (ER) of normal cells. In stress conditions, GRP78 is overexpressed and in different cancer cell types, it is expressed at the cell surface, whereas it stays intracellular in non-cancerous cells. Therefore, it appears as a strategic target to recognize malignant cells. Prostate cancer is one of the most diagnosed cancers in men. The development of castrate resistant tumors and the resistance to chemotherapy frequently occur. The carboxy-terminal ER retention domain is defined by the KDEL amino acid sequence. We developed anti-KDEL functionalized polymeric nanoparticles (NPs) loaded with paclitaxel (Tx) to specifically target prostate cancer cells expressing GRP78. The sensitivity to Tx in different formulations was compared in three prostate cell lines: PNT1B, a normal cell line, PC3, a cancer cell line faintly expressing GRP78 at its surface, and DU145, a cancer cell line expressing GRP78 at its cell surface. Our results show that the targeted formulation significantly increases Tx sensitivity of cell line expressing GRP78 at its surface compared to other treatments suggesting the added value of GRP78 targeted therapy for castrate resistant tumor which expresses GRP78 at its cell surface.

  16. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acquisition of metastatic ability by prostatic cancer cells is the most lethal aspect of prostatic cancer progression. (-)-Gossypol, a polyphenolic compound present in cottonseeds, possesses anti-proliferation and pro-apoptotic effects in various cancer cells. In this study, the differences betwee...

  17. Quantification of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer.

    PubMed

    Brennen, W Nathaniel; Chen, Shuangling; Denmeade, Samuel R; Isaacs, John T

    2013-01-01

    Circulating bone marrow-derived Mesenchymal Stem Cells (BM-MSCs) have an innate tropism for tumor tissue in response to the inflammatory microenvironment present in malignant lesions. The prostate is bombarded by numerous infectious and inflammatory insults over a lifetime. Chronic inflammation is associated with CXCL12, CCL5, and CCL2, which are highly overexpressed in prostate cancer. Among other cell types, these chemoattractant stimuli recruit BM-MSCs to the tumor. MSCs are minimally defined as plastic-adhering cells characterized by the expression of CD90, CD73, and CD105 in the absence of hematopoietic markers, which can differentiate into osteoblasts, chondrocytes, and adipocytes. MSCs are immunoprivileged and have been implicated in tumorigenesis through multiple mechanisms, including promoting proliferation, angiogenesis, and metastasis, in addition to the generation of an immunosuppressive microenvironment. We have demonstrated that MSCs represent 0.01-1.1% of the total cells present in core biopsies from primary human prostatectomies. Importantly, these analyses were performed on samples prior to expansion in tissue culture. MSCs in these prostatectomy samples are FAP-, CD90-, CD73-, and CD105-positive, and CD14-, CD20-, CD34-, CD45-, and HLA-DR-negative. Additionally, like BM-MSCs, these prostate cancer-derived stromal cells (PrCSCs) were shown to differentiate into osteoblasts, adipocytes and chondrocytes. In contrast to primary prostate cancer-derived epithelial cells, fluorescently-labeled PrCSCs and BM-MSCs were both shown to home to CWR22RH prostate cancer xenografts following IV injection. These studies demonstrate that not only are MSCs present in sites of prostate cancer where they may contribute to carcinogenesis, but these cells may also potentially be used to deliver cytotoxic or imaging agents for therapeutic and/or diagnostic purposes.

  18. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    PubMed Central

    2009-01-01

    Background Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types. PMID:20021671

  19. Androgen regulates ADAMTS15 gene expression in prostate cancer cells.

    PubMed

    Molokwu, Chidi N; Adeniji, Olajumoke O; Chandrasekharan, Shankar; Hamdy, Freddie C; Buttle, David J

    2010-08-01

    Prostate cancer is a major cause of mortality, largely as a consequence of metastases and transformation to androgen-independent growth. Metalloproteinases are implicated in cancer progression. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) are expressed in prostate cancer cells, with ADAMTS-1 and ADAMTS-15 being the most abundant. ADAMTS-15 but not ADAMTS-1 expression was downregulated by androgen in LNCaP prostate cancer cells, possibly through androgen response elements associated with the gene. ADAMTS-15 expression is predictive for survival in breast cancer, and the situation may be similar in prostate cancer, as androgen independence is usually due to aberrant signaling through its receptor.

  20. Signal Transduction Pathway in Maspin-induced Tumor Suppression of Prostate Cancer

    DTIC Science & Technology

    2002-03-01

    tissue epithelial cells is membrane- A, detergent phase separation and PI- PLC treatment. Human prostate bound by GPI anchorage as well. We selected a panel...are mainly membrane-anchored (pre- PLC , detergent phase or Pro. The human prostate cancer cell line LNCaP and normal D). Soluble prostasin is detected...D). The PC-3/Vec cells showed negative results and after PI- PLC digestion as described under "Experimental in all fractions tested. Because of a

  1. Knockdown strategies for the study of proprotein convertases and proliferation in prostate cancer cells.

    PubMed

    D'Anjou, François; Couture, Frédéric; Desjardins, Roxane; Day, Robert

    2014-01-01

    Gene silencing strategies targeting mRNA are suitable methods to validate the functions of specific genes. In this chapter, we sought to compare two knockdown strategies for the study of proprotein convertases and proliferation in prostate cancer cells. We used both SOFA-HDV ribozyme and lentiviral-mediated shRNA delivery system to reduce PACE4 mRNA levels and validate its implication in the proliferation of DU145 prostate cancer cells. The cellular effects of PACE4 knockdown were assessed (1) in vitro using two tetrazolium salts (MTT and XTT assays) and (2) in vivo using a tumor xenograft approach in immunodeficient mice (Nu/Nu). Our results confirm the unique role of the proprotein convertase PACE4 in prostate cancer cell proliferation while demonstrating advantages and disadvantages of each approach. Achieving target validation in an effective manner is critical, as further development using a drug development approach is highly laborious and requires enormous resources.

  2. Anticancer effects of ethanolic neem leaf extract on prostate cancer cell line (PC-3).

    PubMed

    Kumar, Suresh; Suresh, P K; Vijayababu, M R; Arunkumar, A; Arunakaran, J

    2006-04-21

    Prostate cancer (PC) is the most prevalent cancer and the leading cause of male cancer death. Azadirachta indica (neem tree) has been used successfully centuries to reduce tumors by herbalists throughout Southeast Asia. Here the present study indicated that an ethanolic extract of neem has been shown to cause cell death of prostate cancer cells (PC-3) by inducing apoptosis as evidenced by a dose-dependent increase in DNA fragmentation and a decrease in cell viability. Western blot studies indicated that treatment with neem extract showed decreased level of Bcl-2, which is anti-apoptotic protein and increased the level of Bax protein. So the neem extract could be potentially effective against prostate cancer treatment.

  3. Characterization of a Novel Metastatic Prostate Cancer Cell Line of LNCaP Origin

    PubMed Central

    Castanares, Mark A.; Copeland, Ben T.; Chowdhury, Wasim H.; Liu, Minzhi M.; Rodriguez, Ronald; Pomper, Martin G.; Lupold, Shawn E.; Foss, Catherine A.

    2016-01-01

    Background The LNCaP cell line was originally isolated from the lymph node of a patient with metastatic prostate cancer. Many cell lines have been derived from LNCaP by selective pressures to study different aspects of prostate cancer progression. When injected subcutaneously into male athymic nude mice, LNCaP and its derivatives rarely metastasize. Methods Here, we describe the characteristics of a new LNCaP derivative, JHU-LNCaPSM, which was generated by long term passage in normal cell culture conditions. Results Short tandem repeat (STR) analysis and genomic sequencing verified JHU-LNCaP-SM derivation from parental LNCaP cells. JHU-LNCaP-SM cells express the same mutated androgen receptor (AR) but unlike LNCaP, are no longer androgen dependent for growth. The cells demonstrate an attenuated androgen responsiveness in transcriptional assays and retain androgen sensitive expression of PSA, AR, and PSMA. Unlike parental LNCaP, JHU-LNCaP-SM cells quickly form subcutaneous tumors in male athymic nude mice, reliably metastasize to the lymph nodes and display a striking intra-tumoral and spreading hemorrhagic phenotype as tumor xenografts. Conclusions The JHU-LNCaP-SM cell line is a new isolate of LNCaP, which facilitates practical, preclinical studies of spontaneous metastasis of prostate cancer through lymphatic tissues. PMID:26499105

  4. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    SciTech Connect

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong; Kim, Euiyong; Kim, Byung Joo; Ha, Kotdaji; Cho, Nam-Hyuk; Kim, In-Gyu; Jeon, Ju-Hong; So, Insuk

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  5. Role of macrophages in circulating prostate cancer cells studied by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2013-02-01

    Macrophages appear to be directly involved in cancer progression and metastasis. However, the role of macrophages in influencing tumor metastasis has not been fully understood. Here, we have used an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 prostate cancer cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages might facilitate the stay of prostate tumor cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cancer cells. Therefore, the phagocytosis may mainly contribute to the differences in depletion kinetics. The developed methods here would be useful to study the relationship between macrophages and cancer metastasis in small animal tumor model.

  6. Selenoprotein expression is regulated at multiple levels in prostate cells.

    PubMed

    Rebsch, Cheryl M; Penna, Frank J; Copeland, Paul R

    2006-12-01

    Selenium supplementation in a population with low basal blood selenium levels has been reported to decrease the incidence of several cancers including prostate cancer. Based on the clinical findings, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect, although low molecular weight seleno-compounds have also been posited to selectively induce apoptosis in transformed cells. To address the effects of selenium supplementation on selenoprotein expression in prostate cells, we have undertaken an analysis of antioxidant selenoprotein expression as well as selenium toxicity in non-tumorigenic prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP and PC-3). Our results show that two of the glutathione peroxidase family members (GPX1 and GPX4) are highly induced by supplemental selenium in prostate cancer cells but only slightly induced in RWPE-1 cells. In addition, GPX1 levels are dramatically lower in PC-3 cells as compared to RWPE-1 or LNCaP cells. GPX2 protein and mRNA, however, are only detectable in RWPE-1 cells. Of the three selenium compounds tested (sodium selenite, sodium selenate and selenomethionine), only sodium selenite shows toxicity in a physiological range of selenium concentrations. Notably and in contrast to previous studies, RWPE-1 cells were significantly more sensitive to selenite than either of the prostate cancer cell lines. These results demonstrate that selenoproteins and selenium metabolism are regulated at multiple levels in prostate cells.

  7. Silencing of CCR7 inhibits the growth, invasion and migration of prostate cancer cells induced by VEGFC.

    PubMed

    Chi, Bao-Jin; Du, Cong-Lin; Fu, Yun-Feng; Zhang, Ya-Nan; Wang, Ru Wen

    2015-01-01

    Early in prostate cancer development, tumor cells express vascular endothelial growth factor C (VEGF-C), a secreted molecule that is important in angiogenesis progression. CC-chemokine receptor 7 (CCR7), another protein involved in angiogenesis, is strongly expressed in most human cancers, where it activated promotes tumor growth as well as favoring tumor cell invasion and migration. The present study aimed to investigate the effect of down-regulating CCR7 expression on the growth of human prostate cancer cells stimulated by VEGFC. The CCR7-specific small interfering RNA (siRNA) plasmid vector was constructed and then transfected into prostate cancer cells. The expression of CCR7 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, apoptosis, cell cycle distribution and cell migration were assessed following knockdown of CCR7 by RNA interference (RNAi). Western blot analysis was used to identify differentially expressed angiogenesis- and cell cycle-associated proteins in cells with silenced CCR7. The expression levels of CCR7 in prostate cancer cells transfected with siRNA were decreased, leading to a significant inhibition of prostate cancer cell proliferation, migration and invasion induced by VEGFC. Western blot analysis revealed that silencing of CCR7 may inhibit vascular endothelial growth factor, matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. In conclusion, the present study demonstrated that RNAi can effectively silence CCR7 gene expression and inhibit the growth of prostate cancer cells, which indicates that there is a potential of targeting CCR7 as a novel gene therapy approach for the treatment of prostate cancer.

  8. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.

    PubMed

    Lefort, Karine; Ostano, Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, G Paolo; Chiorino, Giovanna

    2016-07-26

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.

  9. Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer

    PubMed Central

    Lefort, Karine; Ostano, Gian Paola; Mello-Grand, Maurizia; Calpini, Valérie; Scatolini, Maria; Farsetti, Antonella; Dotto, Gian Paolo; Chiorino, Giovanna

    2016-01-01

    Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer. PMID:27384993

  10. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2012-01-01

    Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27KIP1 and p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse. PMID:21396984

  11. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Wenhuan; Lu, Jun Qing; Yang, Li V.; Sa, Yu; Feng, Yuanming; Ding, Junhua; Hu, Xin-Hua

    2016-07-01

    Accurate classification of malignant cells from benign ones can significantly enhance cancer diagnosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been measured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polarization diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support vector machine algorithm was applied to examine the accuracy of cell classification with the morphology and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective classifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification accuracies on measured data acquired separately in three measurements. These results provide strong evidence that the p-DIFC method has the potential to yield morphology-related "fingerprints" for accurate and label-free classification of the two prostate cell types.

  12. Preclinical Evaluation of the Supercritical Extract of Azadirachta Indica (Neem) Leaves In Vitro and In Vivo on Inhibition of Prostate Cancer Tumor Growth

    PubMed Central

    Wu, Qiang; Kohli, Manish; Bergen, H. Robert; Cheville, John C.; Karnes, R. Jeffrey; Cao, Hong; Young, Charles Y.F.; Tindall, Donald J.; McNiven, Mark A.; Donkena, Krishna Vanaja

    2015-01-01

    Azadirachta indica, commonly known as neem, has gained worldwide prominence because of its medical properties, namely antitumor, antiviral, anti-inflammatory, antihyperglycemic, antifungal, and antibacterial activities. Despite these promising results, gaps remain in our understanding of the molecular mechanism of action of neem compounds and their potential for use in clinical trials. We investigated supercritical extract of neem leaves (SENL) for the following: molecular targets in vitro, in vivo efficacy to inhibit tumor growth, and bioactive compounds that exert antitumor activity. Treatment of LNCaP-luc2 prostate cancer cells with SENL suppressed dihydrotestosterone-induced androgen receptor and prostate-specific antigen levels. SENL inhibited integrin β1, calreticulin, and focal adhesion kinase activation in LNCaP-luc2 and PC3 prostate cancer cells. Oral administration of SENL significantly reduced LNCaP-luc2 xenograft tumor growth in mice with the formation of hyalinized fibrous tumor tissue, reduction in the prostate-specific antigen, and increase in AKR1C2 levels. To identify the active anticancer compounds, we fractionated SENL by high-pressure liquid chromatography and evaluated 16 peaks for cytotoxic activity. Four of the 16 peaks exhibited significant cytotoxic activity against prostate cancer cells. Mass spectrometry of the isolated peaks suggested the compounds with cytotoxic activity were nimbandiol, nimbolide, 2′,3′-dihydronimbolide, and 28-deoxonim-bolide. Analysis of tumor tissue and plasma samples from mice treated with SENL indicated 28-deoxonim-bolide and nimbolide as the bioactive compounds. Overall, our data revealed the bioactive compounds in SENL and suggested that the anticancer activity could be mediated through alteration in androgen receptor and calreticulin levels in prostate cancer. PMID:24674886

  13. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy.

    PubMed

    Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping

    2013-01-01

    The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.

  14. Simulating Heterogeneous Tumor Cell Populations

    PubMed Central

    Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620

  15. Interplay of CREB and ATF2 in Ionizing Radiation-Induced Neuroendocrine Differentiation of Prostate Cancer Cells

    DTIC Science & Technology

    2012-06-01

    cross-talk between Hh and androgen signaling in prostate cancer. Source of Funding: NCI RO1-CA111618; DOD W81XWH-06 377 WHAT CAN THE HAIR FOLLICLES ...Award will test whether targeting PRMT5 can radiosensitize prostate cancer cells. In vitro and in vivo model systems developed 13 through current DoD...days after testosterone readministration to regressed tumors and tested gene specific mRNA expression. RESULTS: Overall AD induced expression of

  16. Generation of T cell effectors using