Science.gov

Sample records for prostate tumor cell

  1. Isolation and characterization of circulating tumor cells in prostate cancer

    PubMed Central

    Diamond, Elan; Lee, Guang Yu; Akhtar, Naveed H.; Kirby, Brian J.; Giannakakou, Paraskevi; Tagawa, Scott T.; Nanus, David M.

    2012-01-01

    Circulating tumor cells (CTCs) are tumor cells found in the peripheral blood that putatively originate from established sites of malignancy and likely have metastatic potential. Analysis of CTCs has demonstrated promise as a prognostic marker as well as a source of identifying potential targets for novel therapeutics. Isolation and characterization of these cells for study, however, remain challenging owing to their rarity in comparison with other cellular components of the peripheral blood. Several techniques that exploit the unique biochemical properties of CTCs have been developed to facilitate their isolation. Positive selection of CTCs has been achieved using microfluidic surfaces coated with antibodies against epithelial cell markers or tumor-specific antigens such as EpCAM or prostate-specific membrane antigen (PSMA). Following isolation, characterization of CTCs may help guide clinical decision making. For instance, molecular and genetic characterization may shed light on the development of chemotherapy resistance and mechanisms of metastasis without the need for a tissue biopsy. This paper will review novel isolation techniques to capture CTCs from patients with advanced prostate cancer, as well as efforts to characterize the CTCs. We will also review how these analyzes can assist in clinical decision making. Conclusion: The study of CTCs provides insight into the molecular biology of tumors of prostate origin that will eventually guide the development of tailored therapeutics. These advances are predicated on high yield and accurate isolation techniques that exploit the unique biochemical features of these cells. PMID:23087897

  2. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  3. Hedgehog signaling in myofibroblasts directly promotes prostate tumor cell growth†

    PubMed Central

    Domenech, Maribella; Bjerregaard, Robert; Bushman, Wade; Beebe, David J.

    2012-01-01

    Despite strong evidence for the involvement of the stroma in Hedgehog signaling, little is known about the identity of the stromal cells and the signaling mechanisms that mediate the growth promoting effect of Hh signaling. We developed an in vitro co-culture model using microchannel technology to examine the effect of paracrine Hh signaling on proliferation of prostate cancer cells. We show here that activation of Hh signaling in myofibroblasts is sufficient to accelerate tumor cell growth. This effect was independent of any direct effect of Hh ligand on tumor cells or other cellular components of the tumor stroma. Further, the trophic effect of Hh pathway activation in myofibroblasts does not require collaboration of other elements of the stroma or direct physical interaction with the cancer cells. By isolating the tropic effect of Hh pathway activation in prostate stroma, we have taken the first step toward identifying cell-specific mechanisms that mediate the effect of paracrine Hh signaling on tumor growth. PMID:22234342

  4. Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate tumor derived LNCaP cell line

    PubMed Central

    Lazar, Daniel C.; Cho, Edward H.; Luttgen, Madelyn S.; Metzner, Thomas J.; Uson, Maria Loressa; Torrey, Melissa; Gross, Mitchell E.; Kuhn, Peter

    2012-01-01

    Many important experiments in cancer research are initiated with cell line data analysis due to the ease of accessibility and utilization. Recently, the ability to capture and characterize circulating tumor cells (CTCs) has become more prevalent in the research setting. This ability to detect, isolate, and analyze CTCs allows us to directly compare specific protein expression levels found in patient CTCs to cell lines. In this study, we use immunocytochemistry to compare the protein expression levels of total cytokeratin (CK) and androgen receptor (AR) in CTCs and cell lines from patients with prostate cancer to determine what translational insights might be gained through the use of cell line data. A non-enrichment CTC detection assay enables us to compare cytometric features and relative expression levels of CK and AR by indirect immunofluorescence from prostate cancer patients against the prostate cancer cell line LNCaP. We measured physical characteristics of these two groups and observed significant differences in cell size, fluorescence intensity, and nuclear to cytoplasmic (N/C) ratio. We hope that these experiments will initiate a foundation to allow cell line data to be compared against characteristics of primary cells from patients. PMID:22306736

  5. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer.

    PubMed

    Giatromanolaki, Alexandra; Koukourakis, Michael I; Koutsopoulos, Anastasios; Mendrinos, Savvas; Sivridis, Efthimios

    2012-11-01

    Tumor-associated stroma (TAS) is not simply a supporting element for cancer cells, but plays an important role in tumor growth, invasion and metastasis. Changes on the level of stromal constituents, such as loss of Caveolin-1 and increased thymidine phosphorylase (TP) expression, have been associated with tumor aggressiveness. The mutual cooperation between stromal fibroblasts and cancer cells is another distinguishing feature, which has recently emerged. In this investigation, both the loss of Caveolin-1 and the increased TP expression in the prostatic TAS was associated with high Gleason score (p = 0.0002 and 0.003, respectively); the two proteins were acting both independently and synergistically. In addition, TP was significantly associated with high stromal Ki-67 (MIB1) proliferation index (p = 0.03). Analysis of the metabolic interactions between stromal and epithelial elements showed that, while prostatic cancer cells express principally (> 91%) lactate dehydrogenase-5 (LDH-5) (anaerobic metabolism), the tumor-associated fibroblasts/myofibroblasts (TAFs) express largely (67.8%) LDH-1 (aerobic metabolism)-the terms TAFs and TAS are used interchangeably. These two isoenzyme pathways act complementary; the LDH-5 pathway converts pyruvate to lactate, whereas the LDH-1 enzyme system utilizes the secreted metabolite lactate to produce pyruvate, essential for continuous energy supply to tumor cells. Monocarboxylate transporter-1 (MCT-1)-the main facilitator of lactate uptake in tumor cells, was expressed exclusively in prostate cancer cells and related directly to LDH-5 overexpression. These findings support and extend our previous studies on energy recycling between the aerobic stroma and the anaerobic cancer cells within the framework of Warburg effect.

  6. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer.

    PubMed

    Hu, Z; Garen, A

    2001-10-01

    The efficacy and safety of an immunoconjugate (icon) molecule, composed of a mutated mouse factor VII (mfVII) targeting domain and the Fc effector domain of an IgG1 Ig (mfVII/Fc icon), was tested with a severe combined immunodeficient (SCID) mouse model of human prostatic cancer and an immunocompetent mouse model of mouse prostatic cancer. The SCID mice were first injected s.c. with a human prostatic tumor line, forming a skin tumor that produces a high blood titer of prostate-specific antigen and metastasizes to bone. The icon was encoded in a replication-incompetent adenoviral vector that was injected directly into the skin tumor. The tumor cells infected by the vector synthesize and secrete the icon into the blood, and the blood-borne icon binds with high affinity and specificity to mouse tissue factor expressed on endothelial cells lining the lumen of the tumor vasculature and to human tissue factor expressed on the tumor cells. The Fc domain of the icon activates a cytolytic immune attack against cells that bind the icon. The immunotherapy tests in SCID mice demonstrated that intratumoral injections of the adenoviral vector encoding the mfVII/human Fc icon resulted in long-term regression of the injected human prostatic tumor and also of a distant uninjected tumor, without associated toxicity to the mice. Comparable results were obtained with a SCID mouse model of human melanoma. At the end of the experiments the mice appeared to be free of viable tumor cells. This protocol also could be efficacious for treating cancer patients who have vascularized tumors.

  7. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer.

    PubMed

    Hu, Z; Garen, A

    2001-10-01

    The efficacy and safety of an immunoconjugate (icon) molecule, composed of a mutated mouse factor VII (mfVII) targeting domain and the Fc effector domain of an IgG1 Ig (mfVII/Fc icon), was tested with a severe combined immunodeficient (SCID) mouse model of human prostatic cancer and an immunocompetent mouse model of mouse prostatic cancer. The SCID mice were first injected s.c. with a human prostatic tumor line, forming a skin tumor that produces a high blood titer of prostate-specific antigen and metastasizes to bone. The icon was encoded in a replication-incompetent adenoviral vector that was injected directly into the skin tumor. The tumor cells infected by the vector synthesize and secrete the icon into the blood, and the blood-borne icon binds with high affinity and specificity to mouse tissue factor expressed on endothelial cells lining the lumen of the tumor vasculature and to human tissue factor expressed on the tumor cells. The Fc domain of the icon activates a cytolytic immune attack against cells that bind the icon. The immunotherapy tests in SCID mice demonstrated that intratumoral injections of the adenoviral vector encoding the mfVII/human Fc icon resulted in long-term regression of the injected human prostatic tumor and also of a distant uninjected tumor, without associated toxicity to the mice. Comparable results were obtained with a SCID mouse model of human melanoma. At the end of the experiments the mice appeared to be free of viable tumor cells. This protocol also could be efficacious for treating cancer patients who have vascularized tumors. PMID:11593034

  8. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity.

    PubMed

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A; Richter, Andreas S; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-20

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer.

  9. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  10. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-08-01

    Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than

  11. Maspin Expression in Prostate Tumor Cells Averts Stemness and Stratifies Drug Sensitivity

    PubMed Central

    Bernardo, M. Margarida; Kaplun, Alexander; Dzinic, Sijana H.; Li, Xiaohua; Irish, Jonathan; Mujagic, Adelina; Jakupovic, Benjamin; Back, Jessica B.; Van Buren, Eric; Han, Xiang; Dean, Ivory; Chen, Yong Q.; Heath, Elisabeth; Sakr, Wael; Sheng, Shijie

    2015-01-01

    Future curative cancer chemotherapies have to overcome tumor cell heterogeneity and plasticity. To test the hypothesis that the tumor suppressor maspin may reduce microenvironment-dependent prostate tumor cell plasticity and thereby modulate drug sensitivity, we established a new schematic combination of 2D, 3D and suspension cultures to enrich prostate cancer cell subpopulations with distinct differentiation potentials. We report here that, depending on the level of maspin expression, tumor cells in suspension and 3D collagen I manifest the phenotypes of stem-like and dormant tumor cell populations, respectively. In suspension, the surviving maspin-expressing tumor cells lost the self-renewal capacity, underwent senescence, lost the ability to dedifferentiate in vitro and failed to generate tumors in vivo. Maspin-nonexpressing tumor cells that survived the suspension culture in compact tumorspheres, displayed a higher level of stem cell marker expression, maintained the self-renewal capacity, formed tumorspheres in 3D matrices in vitro and were tumorigenic in vivo. The drug sensitivities of the distinct cell subpopulations depend on the drug target and the differentiation state of the cells. In 2D, Docetaxel, MS275 and Salinomycin were all cytotoxic. In suspension, while MS275 and Salinomycin were toxic, Docetaxel showed no effect. Interestingly, cells adapted to 3D collagen I were only responsive to Salinomycin. Maspin expression correlated with higher sensitivity to MS275 in both 2D and suspension, and to Salinomycin in 2D and 3D collagen I. Our data suggest that maspin reduces prostate tumor cell plasticity, and enhances tumor sensitivity to Salinomycin which may hold promise in overcoming tumor cell heterogeneity and plasticity. PMID:26208903

  12. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways.

    PubMed

    Chéry, Lisly; Lam, Hung-Ming; Coleman, Ilsa; Lakely, Bryce; Coleman, Roger; Larson, Sandy; Aguirre-Ghiso, Julio A; Xia, Jing; Gulati, Roman; Nelson, Peter S; Montgomery, Bruce; Lange, Paul; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm

    2014-10-30

    Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM⁺/CD45⁻ cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention.

  13. Circulating Tumor Cells Count and Morphological Features in Breast, Colorectal and Prostate Cancer

    PubMed Central

    Ligthart, Sjoerd T.; Coumans, Frank A. W.; Bidard, Francois-Clement; Simkens, Lieke H. J.; Punt, Cornelis J. A.; de Groot, Marco R.; Attard, Gerhardt; de Bono, Johann S.; Pierga, Jean-Yves; Terstappen, Leon W. M. M.

    2013-01-01

    Background Presence of circulating tumor cells (CTC) in patients with metastatic breast, colorectal and prostate cancer is indicative for poor prognosis. An automated CTC (aCTC) algorithm developed previously to eliminate the variability in manual counting of CTC (mCTC) was used to extract morphological features. Here we validated the aCTC algorithm on CTC images from prostate, breast and colorectal cancer patients and investigated the role of quantitative morphological parameters. Methodology Stored images of samples from patients with prostate, breast and colorectal cancer, healthy controls, benign breast and colorectal tumors were obtained using the CellSearch system. Images were analyzed for the presence of aCTC and their morphological parameters measured and correlated with survival. Results Overall survival hazard ratio was not significantly different for aCTC and mCTC. The number of CTC correlated strongest with survival, whereas CTC size, roundness and apoptosis features reached significance in univariate analysis, but not in multivariate analysis. One aCTC/7.5 ml of blood was found in 7 of 204 healthy controls and 9 of 694 benign tumors. In one patient with benign tumor 2 and another 9 aCTC were detected. Significance of the study CTC can be identified and morphological features extracted by an algorithm on images stored by the CellSearch system and strongly correlate with clinical outcome in metastatic breast, colorectal and prostate cancer. PMID:23826219

  14. Characterization of the heterogeneity of R3327 rat prostatic tumors derived from single-cell clones.

    PubMed

    Thompson, S A; Johnson, M P; Heidger, P M; Lubaroff, D M

    1985-01-01

    Prostatic adenocarcinoma is characterized by cellular diversity, which is well demonstrated in the Dunning R3327 rat prostatic adenocarcinoma. This heterogeneity may arise from epigenetic influences, ie, cellular adaptation or selection, and/or from genetic changes. To investigate the question of genetic instability, four tissue culture cell lines were derived from single cells isolated from the uncloned late (UCL) passage of the Dunning R3327H prostate cell culture. Each of these clonally derived tissue cultures was injected into castrated and intact young adult male rats for tumor production. Uncloned early (UCE) and UCL passage tissue cultures were also propagated as solid tumors. Tumors and the cultures from which they were derived were examined for evidence of phenotypic and genetic changes using morphological and cytometric methods. Transmission and scanning electron microscopy revealed only slight differences among the cell cultures. A single population of diploid cells was demonstrated in each of the cell cultures by propidium iodide staining and subsequent flow cytometric measurement of DNA content/nucleus. Tumors of unicellular as well as multicellular origin exhibited extreme heterogeneity of histological features, both among animals as well as within a single tumor. Tumors were surveyed and tissue types were characterized and cataloged. Clone 3 was generally better differentiated than the others; tumors from castrated animals were better differentiated than those from intact animals. Flow cytometry revealed multiple hyperdiploid cell populations that were variable from one sample to another. We concluded that changes in genotype as well as phenotype occurred in the tumors derived from single cells. Some of these changes may have occurred in the cells while still in culture. PMID:4088951

  15. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells.

    PubMed

    Bhowmick, S; Swanlund, D J; Bischof, J C

    2000-02-01

    To investigate the potential application of thermal therapy in the treatment of prostate cancer, the effects of supraphysiological temperatures (40-70 degrees C) for clinically relevant time periods (approximately 15 minutes) were experimentally studied on attached Dunning AT-1 rat prostate cancer cells using multiple assays. The membrane and reproductive machinery were the targets of injury selected for this study. In order to assess membrane injury, the leakage of calcein was measured dynamically, and the uptake of PI was measured postheating (1-3 hours). Clonogenicity was used as a measure of injury to the reproductive machinery 7 days post-injury after comparable thermal insults. Experimental results from all three assays show a broad trend of increasing injury with an increase in temperature and time of insult. Membrane injury, as measured by the fluorescent dye assays, does not correlate with clonogenic survival for many of the thermal histories investigated. In particular, the calcein assay at temperatures of < or = 40 degrees C led to measurable injury accumulation (dye leakage), which was considered sublethal, as shown by significant survival for comparable insult in the clonogenic assay. Additionally, the PI uptake assay used to measure injury post-thermal insult shows that membrane injury continues to accumulate after thermal insult at temperatures > or = 50 degrees C and may not always correlate with clonogenicity at hyperthermic temperatures such as 45 degrees C. Last, although the clonogenic assay yields the most accurate cell survival data, it is difficult to acquire these data at temperatures > or = 50 degrees C because the thermal transients in the experimental setup are significant as compared to the time scale of the experiment. To improve prediction and understanding of thermal injury in this prostate cancer cell line, a first-order rate process model of injury accumulation (the Arrhenius model) was fit to the experimental results. The

  16. Suppressing tumor progression of in vitro prostate cancer cells by emitted psychosomatic power through Zen meditation.

    PubMed

    Yu, Tiing; Tsai, Hui Ling; Hwang, Ming Liang

    2003-01-01

    Human prostate cancer PC3 cells were treated in vitro with psychosomatic power emitted by a Buddhist-Zen Master. A significant decrease of growth rate was observed as determined by MTT assay after 48 hours. These cells also had two- to three-fold higher levels of prostatic acid phosphatase (PAcP) activity, a prostate tissue-specific differentiation antigen. In addition, the treated cells formed fewer and smaller colonies in soft agar as compared with control cells, which displayed anchorage-independent growth. These observations provide insight into the suppressive effects of healing power through the practice of Buddhist-Zen meditation on tumor progression. The emitted bioenergy may be suggested as an alternative and feasible approach for cancer research and patient treatment.

  17. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  18. The same and not the same: heterogeneous functional activation of prostate tumor cells by TLR ligation

    PubMed Central

    2014-01-01

    Background Many types of tumors are organized in a hierarchy of heterogeneous cell populations with different molecular signature. Such heterogeneity may be associated with different responsiveness to microenvironment stimuli. In the present study, the effects of lipopolysaccharide (LPS) and lipoteichoic acid (LTA), as well-known mediators of inflammation, on cancerous behavior of three prostate tumor cells, LNCaP, PC3 and DU145, were investigated. Methods Expression of TLR1-10, CD14 and MyD88 transcripts was investigated by RT-PCR. Protein expression of TLR2 and 4 was scrutinized by flow cytometry, immunofluorescent staining and Western blotting. Experiments were set up to assess the effects of LPS and LTA at different concentrations and times on cell proliferation, extracellular matrix invasion, adhesion and cytokine production. Results We showed that prostate cancer cell lines differentially express TLR1-10, MyD88 and CD14 transcripts. DU145 failed to express TLR4 gene. Positively-identified TLR2 protein in all prostate cancer cells and TLR4 protein in PC3 and LNCaP by Western blotting was not accompanied by cell surface expression, as judged by flow cytometry. Immunofluorescent staining clearly demonstrated predominantly perinuclear localization of TLR2 and TLR4. LTA activation of all prostate cancer cells significantly increased cell proliferation. Regardless of lacking TLR4, DU145 cells proliferated in response to LPS treatment. While LPS caused increased invasiveness of LNCaP, invasive capacity of PC3 was significantly reduced after LPS or LTA stimulation. Stimulation of all prostate tumor cells with LTA was associated with increased cell adhesion and IL-8 production. IL-6 production, however, was differentially regulated by LPS stimulation in prostate tumor cells. Conclusion The data shows that cancer cells originated from the same histologically origin exhibit heterogeneous response to the same TLR ligand. Therefore, a thorough and comprehensive judgment

  19. Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells.

    PubMed

    Festuccia, C; Dolo, V; Guerra, F; Violini, S; Muzi, P; Pavan, A; Bologna, M

    1998-08-01

    The malignant phenotype of prostatic tumor cells correlates with the expression of both uPA and its cell-membrane receptor (uPAR); however, there is little information concerning the role of cell-bound uPA in matrix degradation and invasion. Our results suggest that cell-associated uPA plays a key role in regulating the amount of plasmin present at the surface of prostatic carcinoma (PRCA) cells and show that differential production of uPA corresponds with the capacity to bind and activate plasminogen. In addition, we provide direct evidence that both uPA secretion and the presence of uPA-uPAR complexes characterize the invasive phenotype of PRCA cells and suggest the existence of several pathways by which tumor cells acquire plasmin activity. LNCaP cells (which do not produce uPA but express uPAR) may activate plasmin through exogenous uPA. In vivo, the source of uPA may be infiltrating macrophages and/or fibroblasts as observed in several other systems. PAI-1 accumulation in the conditioned medium (CM) limits plasmin action to the pericellular microenvironment. Our results indicate that MMP-9 and MMP-2 are also activated by plasmin generated by cell-bound but not by soluble, extracellular uPA. Plasmin activation and triggering of the proteolytic cascade involved in Matrigel invasion is blocked by antibodies against uPA (especially by anti- A-chain of uPA which interacts with uPAR) and by PA inhibitors such as p-aminobenzamidine which may regulate levels of cell-bound uPA. uPA may also regulate growth in PRCA cells. Indeed, antibodies against uPA A-chain (and also p-aminobenzamidine treatment) interfere with the ATF domain and inhibit cell growth in uPA-producing PC3 and DU145 prostate cancer cell lines, whereas exogenous uPA (HMW-uPA with ATF) induces growth of LNCaP prostate tumor cell line. These data support the hypothesis that in prostatic cancer patients at risk of progression, uPA/plasmin blockade may be of therapeutic value by blocking both growth of the

  20. Using circulating tumor cells to inform on prostate cancer biology and clinical utility

    PubMed Central

    Li, Jing; Gregory, Simon G.; Garcia-Blanco, Mariano A.; Armstrong, Andrew J.

    2016-01-01

    Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer. PMID:26079252

  1. CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells

    PubMed Central

    Olson, Brian M.; McNeel, Douglas G.

    2012-01-01

    The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T-cells in prostate cancer patients. Ten ARLBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity, and were used to culture peptide-specific T-cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T-cells specific for all ten peptides in at least one patient, and T-cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using ARLBD-based vaccines. PMID:21350948

  2. Generation of Prostate Cancer Patient Derived Xenograft Models from Circulating Tumor Cells.

    PubMed

    Williams, Estrelania S; Rodriguez-Bravo, Veronica; Rodriquez-Bravo, Veronica; Chippada-Venkata, Uma; De Ia Iglesia-Vicente, Janis; Gong, Yixuan; Galsky, Matthew; Oh, William; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2015-10-20

    Patient derived xenograft (PDX) models are gaining popularity in cancer research and are used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. Circulating tumor cells (CTC) play a critical role in tumor metastasis and have been isolated from patients with several tumor types. Recently, CTCs have been used to generate PDX experimental models of breast and prostate cancer. This manuscript details the method for the generation of prostate cancer PDX models from CTCs developed by our group. Advantages of this method over conventional PDX models include independence from surgical sample collection and generating experimental models at various disease stages. Density gradient centrifugation followed by red blood cell lysis and flow cytometry depletion of CD45 positive mononuclear cells is used to enrich CTCs from peripheral blood samples collected from patients with metastatic disease. The CTCs are then injected into immunocompromised mice; subsequently generated xenografts can be used for functional studies or harvested for molecular characterization. The primary limitation of this method is the negative selection method used for CTC enrichment. Despite this limitation, the generation of PDX models from CTCs provides a novel experimental model to be applied to prostate cancer research.

  3. GTI-2040 and Docetaxel in Treating Patients With Recurrent, Metastatic, or Unresectable Locally Advanced Non-Small Cell Lung Cancer, Prostate Cancer, or Other Solid Tumors

    ClinicalTrials.gov

    2013-01-23

    Recurrent Non-small Cell Lung Cancer; Recurrent Prostate Cancer; Stage III Prostate Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Prostate Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  4. Human prostatic tumor cells in culture produce growth and differentiation factors active on osteoblasts: a new biological and clinical parameter for prostatic carcinoma.

    PubMed

    Festuccia, C; Teti, A; Bianco, P; Guerra, F; Vicentini, C; Tennina, R; Villanova, I; Sciortino, G; Bologna, M

    1997-01-01

    Prostate cancer (PRCA) cells metastasize to bone with high frequency, inducing typical osteosclerotic lesions. To establish if local stimuli on the bone tissue may derive from metastatic colonies of prostatic origin, we evaluated the biologic activities secreted by human prostatic epithelium and effective on osteoblast-like cells in vitro. Supernatant from short-term tissue cultures of human prostatic tissue samples obtained from PRCA (35 cases) and benign prostatic hyperplasia (BPH, 12 cases) patients were applied to three models of cells with osteoblastic phenotype: two normal [rabbit osteoblasts (OB) and rat periosteal cells (PO)] and one transformed (human osteosarcoma cell line, MG63). Proliferative activity was monitored through enzymatic reduction of tetrazolium salts and expressed as relative mitogenic activities (RMA). Analysis of proliferation and alkaline phosphatase (ALP) activity, a marker of osteoblast function, demonstrates that conditioned media (CM) from PRCA cultures stimulate both growth and activity of osteoblast-like cells to a greater extent compared to CM from BPH. Furthermore, cell growth and activity of osteoblast-like cells are progressively increased by CM derived from patients with stage B (tumor confined within the prostate capsule), stage C (locally invasive tumor), and stage D (invasive tumor with distant metastasis) disease. One of the mechanisms potentially underlying the CM-stimulated effects on bone cells is associated with the urokinase (uPA) enzyme route, whose release progressively increases with the stage of disease. However, antibodies against uPA and p-aminobenzamidine (a low molecular weight urokinase inhibitor) treatment, which both inhibit the proliferative and differentiative effects induced by exogenous urokinase, partially slow down the effects of CM from PRCA tissue cultures, suggesting that additional factors are secreted by prostatic tumor cells in vitro. In conclusion, we show that the mitogenic and differentiative

  5. Loss of exogenous androgen dependence by prostate tumor cells is associated with elevated glucuronidation potential

    PubMed Central

    Zimmer, Brenna M.; Howell, Michelle E.; Wei, Qin; Ma, Linlin; Romsdahl, Trevor; Loughman, Eileen G.; Markham, Jonathan E.; Seravalli, Javier; Barycki, Joseph J.; Simpson, Melanie A.

    2016-01-01

    Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD+-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate, and fuels UGT-catalyzed glucuronidation. In this study, we compared the glucuronidation potential and its impact on androgen-mediated gene expression in an isogenic LNCaP model for androgen dependent versus castration resistant prostate cancer. Despite significantly lower androgen-glucuronide output, LNCaP 81 castration resistant tumor cells expressed higher levels of UGDH, UGT2B15, and UGT2B17. However, the magnitude of androgen-activated UGDH and PSA expression, as well as the AR-dependent repression of UGT2B15 and UGT2B17, was blunted several-fold in these cells. Consistent with these results, the ligand-activated binding of AR to the PSA promoter and subsequent transcriptional activation were also significantly reduced in castration resistant cells. Analysis of the UDP-sugar pools and flux through pathways downstream of UDP-glucuronate production revealed that these glucuronidation precursor metabolites were channeled through proteoglycan and glycosaminoglycan biosynthetic pathways, leading to increased surface expression of Notch 1. Knockdown of UGDH diminished Notch1 and increased glucuronide output. Overall, these results support a model in which the aberrant partitioning of UDP-glucuronate and other UDP-sugars into alternative pathways during androgen deprivation contributes to the loss of prostate tumor cell androgen sensitivity by promoting altered cell surface proteoglycan expression. PMID:27307252

  6. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    PubMed Central

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  7. Radioimmunodetection studies of prostate and T-cell lymphoma tumors using In-111 labeled monoclonal anti-tumor antibodies

    SciTech Connect

    Halpern, S.E.; Dillman, R.O.; Hagan, P.L.; Dillman, J.B.; Clutter, M.L.; Amox, D.G.; Frincke, J.M.; Bartholomew, R.M.; David, G.S.; Carlo, D.J.

    1985-05-01

    The purpose of these studies was to determine if prostate carcinoma (PC) and cutaneous T-cell lymphoma (CTCL) could be detected using the In-lll- MoAbs described in this paper. Murine IgG MoAbs were developed against prostatic acid phosphatase (PAP) and to an antigen present on human T-cells. The MoAbs were labeled with In-lll by a bifunctional chelation technique and administered (ad) intravenously to patients (PT) with PC and CTCL respectively. One mg or less of each MoAb was labeled with 1.5-5.0 mCi of In-111. Normal prostate tissue was visualized in 3 of 5 PT and 5 of 12 bone metastases were detected in a PT with PC. Outstanding definitions of lymph nodes was achieved in CTCL. The sequence of administration markedly altered the invivo kinetics of the IN-111-MoAb. Some toxicity was observed in CTCL patients but not in PT with PC. The authors conclude that the above MoAbs will target tumor and that the sequence and to some extent quantities of MoAb has an affect on the pharmacokinetics and tumor uptake of these two MoAbs.

  8. Round cell pattern of prostatic stromal tumor of uncertain malignant potential: a subtle newly recognized variant.

    PubMed

    Sadimin, Evita T; Epstein, Jonathan I

    2016-06-01

    Prostatic stromal tumor of uncertain malignant potential (STUMP) is a distinct entity which includes several different patterns. Four patterns of STUMP have been described including stroma with (1) degenerative atypia, (2) hypercellular spindle cells, (3) myxoid spindle cells, and (4) phyllodes-like pattern. The current study identified a novel round cell pattern. We searched our database from 1999 to 2015 and identified 7 patients with round cell pattern out of a total number of 98 patients with STUMP. All 7 cases showed mildly increased stromal cellularity with rounded nuclei, diagnosed on core biopsies in 5 cases, transurethral resection in 1 case, and radical prostatectomy in 1 case. Some degree of glandular displacement was observed in 4 cases. In 2 of the cases, STUMP was not recognized histologically by the referring pathologists and was initially diagnosed as benign prostatic hyperplasia. As has been described with other patterns of STUMP, several cases showed associated epithelial proliferations that in some instances masked the neoplastic stromal process. The round cell pattern of STUMP is a new deceptively subtle pattern that may not be recognized as a neoplasm and may be misdiagnosed as benign prostatic hyperplasia. Although there was no direct evidence in our study that the round cell pattern of STUMP has the same behavior as other variants of STUMPs, increased recognition of this entity will hopefully lead to additional studies to further understand its malignant potential. PMID:26980017

  9. Calcification of multipotent prostate tumor endothelium.

    PubMed

    Dudley, Andrew C; Khan, Zia A; Shih, Shou-Ching; Kang, Soo-Young; Zwaans, Bernadette M M; Bischoff, Joyce; Klagsbrun, Michael

    2008-09-01

    Solid tumors require new blood vessels for growth and metastasis, yet the biology of tumor-specific endothelial cells is poorly understood. We have isolated tumor endothelial cells from mice that spontaneously develop prostate tumors. Clonal populations of tumor endothelial cells expressed hematopoietic and mesenchymal stem cell markers and differentiated to form cartilage- and bone-like tissues. Chondrogenic differentiation was accompanied by an upregulation of cartilage-specific col2a1 and sox9, whereas osteocalcin and the metastasis marker osteopontin were upregulated during osteogenic differentiation. In human and mouse prostate tumors, ectopic vascular calcification was predominately luminal and colocalized with the endothelial marker CD31. Thus, prostate tumor endothelial cells are atypically multipotent and can undergo a mesenchymal-like transition.

  10. Anti-tumor activity of benzylideneacetophenone derivatives via proteasomal inhibition in prostate cancer cells.

    PubMed

    Lee, Yun-hee; Yun, Jaesuk; Jung, Jae-Chul; Oh, Seikwan; Jung, Young-Suk

    2016-05-01

    A number of some chalcone derivatives possess promising biological properties including anti-inflammation, anti-oxidant, and anti-tumor activity. Although it has been shown that some derivatives of chalcone induce apoptosis in different kinds of cancer cells, the involved mechanism of action is not well defined. The purpose of this study is to investigate the primary target of a benzylideneacetophenone derivative (JC3), which is a synthetic compound derived from the chalcone family, in human cancer, using prostate cancer cells as a working model. Herein, we show that JC3 inhibits proteasomal activity as indicated by both in vitro and in cell-based assays. Especially, the JC3-dimer was more potent than monomer in the aspect of proteasome inhibition, which induced apoptosis significantly in the prostate cancer cells. Owing to the critical roles of the proteasome in the biology of human tumor progression, invasion, and metastasis, these findings give an important clue for the development of novel anti-tumor agents. PMID:27348972

  11. Keratin 13 Is Enriched in Prostate Tubule-Initiating Cells and May Identify Primary Prostate Tumors that Metastasize to the Bone

    PubMed Central

    Zhang, Baohui; Huo, Lihong; Lai, Kevin; Li, Xinmin; Galet, Colette; Grogan, Tristan R.; Elashoff, David; Freedland, Stephen J.; Rettig, Matthew; Aronson, William J.; Knudsen, Beatrice S.; Lewis, Michael S.; Garraway, Isla P.

    2016-01-01

    Background Benign human prostate tubule-initiating cells (TIC) and aggressive prostate cancer display common traits, including tolerance of low androgen levels, resistance to apoptosis, and microenvironment interactions that drive epithelial budding and outgrowth. TIC can be distinguished from epithelial and stromal cells that comprise prostate tissue via cell sorting based upon Epcam, CD44, and CD49f antigenic profiles. Fetal prostate epithelial cells (FC) possess a similar antigenic profile to adult TIC and are capable of inducing tubule formation. To identify the TIC niche in human prostate tissue, differential keratin (KRT) expression was evaluated. Results Gene expression data generated from Affymetrix Gene Chip human U133 Plus 2.0 array of sorted adult and fetal epithelial cells revealed KRT13 to be significantly enriched in FC and TIC compared to basal cells (BC) and luminal cells (LC) (p<0.001). Enriched KRT13 expression was confirmed by RT-PCR and cytospin immunostaining. Immunohistochemical analysis of KRT13 expression revealed rare KRT13+ epithelia throughout prostatic ducts/acini in adult tissue specimens and differentiated tubules in 24-week recombinant grafts, In contrast, abundant KRT13 expression was observed in developing ducts/acini in fetal prostate and cord-like structures composing 8-week recombinant grafts. Immunostaining of a prostate tissue microarray revealed KRT13+ tumor foci in approximately 9% of cases, and this subset displayed significantly shorter time to recurrence (p = 0.031), metastases (p = 0.032), and decreased overall survival (p = 0.004). Diagnostic prostate needle biopsies (PNBX) from untreated patients with concurrent bone metastases (clinical stage M1) displayed KRT13+ tumor foci, as did bone metastatic foci. Conclusions The expression profile of KRT13 in benign fetal and adult prostate tissue and in recombinant grafts, as well as the frequency of KRT13 expression in primary and metastatic prostate cancer indicates that it

  12. CCR 20th Anniversary Commentary: Circulating Tumor Cells in Prostate Cancer.

    PubMed

    Mehra, Niven; Zafeiriou, Zafeiris; Lorente, David; Terstappen, Leon W M M; de Bono, Johann S

    2015-11-15

    Circulating tumor cells (CTC) have substantial promise for multipurpose biomarker studies in prostate cancer. The IMMC-38 trial conducted by de Bono and colleagues, which was published in the October 1, 2008, issue of Clinical Cancer Research, demonstrated for the first time that CTCs are the most accurate and independent predictor of overall survival in metastatic prostate cancer. Since the publication of prospective trials demonstrating prognostic utility, CTCs have been utilized for nucleic acid analyses, for protein analyses, and in intermediate endpoint studies. CTC studies are also now facilitating the analysis of intrapatient heterogeneity. See related article by de Bono et al., Clin Cancer Res 2008;14(19) October 1, 2008;6302-9.

  13. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device.

    PubMed

    Kirby, Brian J; Jodari, Mona; Loftus, Matthew S; Gakhar, Gunjan; Pratt, Erica D; Chanel-Vos, Chantal; Gleghorn, Jason P; Santana, Steven M; Liu, He; Smith, James P; Navarro, Vicente N; Tagawa, Scott T; Bander, Neil H; Nanus, David M; Giannakakou, Paraskevi

    2012-01-01

    Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45- cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch® revealed a 2-400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer

  14. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  15. Inhibiting Vimentin or beta 1-integrin Reverts Prostate Tumor Cells in IrECM and Reduces Tumor Growth

    SciTech Connect

    Zhang, Xueping; Fournier, Marcia V.; Ware, Joy L.; Bissell, Mina J.; Zehner, Zendra E.

    2009-07-27

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphological changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional (3D) lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the parental prostate epithelial P69 cell line by selection in nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin or {alpha}6-, {beta}4- and {beta}1-integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via siRNA interference or {beta}1-integrin expression by the addition of the blocking antibody, AIIB2, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by subcutaneous injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in 3D lrECM gels. These studies suggest that the levels of vimentin and {beta}1-integrin play a key role in the homeostasis of the normal acini in prostate and that their dysregulation may lead to tumorigenesis.

  16. An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors

    PubMed Central

    Leyton, Jeffrey V.; Zhou, Yu; Olafsen, Tove; Salazar, Felix B.; McCabe, Katelyn E.; Hahm, Scott; Marks, James D.; Reiter, Robert E.; Wu, Anna M.

    2010-01-01

    Purpose Prostate stem cell antigen (PSCA), a cell surface glycoprotein expressed in normal human prostate and bladder, is over-expressed in the majority of localized prostate cancer and most bone metastases. We have previously shown that the hu1G8 minibody, a humanized anti-PSCA antibody fragment (single-chain Fv-CH3 dimer, 80 kDa), can localize specifically and image PSCA-expressing xenografts at 21 h post-injection. However, the humanization and antibody fragment reformatting decreased its apparent affinity. Here, we sought to evaluate PET imaging contrast with affinity matured minibodies. Methods Yeast scFv display, involving four rounds of selection, was used to generate the three affinity matured antibody fragments (A2, A11, and C5) that were reformatted into minibodies. These three affinity matured anti-PSCA minibodies were characterized in vitro, and following radiolabeling with 124I were evaluated in vivo for microPET imaging of PSCA-expressing tumors. Results The A2, A11, and C5 minibody variants all demonstrated improved affinity compared to the parental (P) minibody and were ranked as follows: A2 > A11 > C5 > P. The 124I-labeled A11 minibody demonstrated higher immunoreactivity than the parental minibody and also achieved the best microPET imaging contrast in two xenograft models, LAPC-9 (prostate cancer) and Capan-1 (pancreatic cancer), when evaluated in vivo. Conclusion Of the affinity variant minibodies tested, the A11 minibody that ranked second in affinity was selected as the best immunoPET tracer to image PSCA-expressing xenografts. This candidate is currently under development for evaluation in a pilot clinical imaging study. PMID:20354850

  17. Pharmacological and functional properties of TRPM8 channels in prostate tumor cells.

    PubMed

    Valero, Maria; Morenilla-Palao, Cruz; Belmonte, Carlos; Viana, Felix

    2011-01-01

    Prostate cancer (PC) is a major health problem in adult males. TRPM8, a cationic TRP channel activated by cooling and menthol is upregulated in PC. However, the precise role of TRPM8 in PC is still unclear. Some studies hypothesized that TRPM8-mediated transmembrane Ca(2+) fluxes play a key role in cellular proliferation of PC cells. In contrast, other findings suggest that high TRPM8 levels may reduce the metastatic potential of PC cells. A detailed understanding of the response of TRPM8 channels to pharmacological modulators of their activity is relevant when considering potential therapies, targeting this ion channel to treat PC. We characterized the pharmacological and functional properties of native TRPM8 channels in four human prostate cell lines, PNT1A, LNCaP, DU145, and PC3, commonly used as experimental models of PC. PNT1A is a non-tumoral prostate cell line while the other three correspond to different stages of PC. Here, we show that cold- and agonist-evoked [Ca(2+)](i) responses in PC cells are much less sensitive to well-characterized agonists (menthol and icilin) and antagonists (BCTC, clotrimazole, and DD01050) of TRPM8 channels, compared to TRPM8 channels in other tissues, suggesting a different molecular composition and/or spatial organization. In addition, the forced overexpression of human TRPM8 facilitated the trafficking of TRPM8 channels residing in the endoplasmic reticulum to the plasma membrane, leading to a marked potentiation in the efficacy of the different blockers. These results predict that blockers of canonical TRPM8 channels may be less effective in halting proliferation of PC cells than expected.

  18. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells

    PubMed Central

    Shi, Xu-Bao; Xue, Lingru; Ma, Ai-Hong; Tepper, Clifford G.; Gandour-Edwards, Regina; Kung, Hsing-Jien; deVere White, Ralph W.

    2014-01-01

    Although prostate cancer (CaP) is the most frequently diagnosed malignant tumor in American men, the mechanisms underlying the development and progression of CaP remain largely unknown. Recent studies have shown that downregulation of miR-124 occurs in several types of human cancer, suggesting a tumor suppressive function of miR-124. Until now, however, it has been unclear whether miR-124 is associated with CaP. In the present study, we completed a series of experiments to understand the functional role of miR-124 in CaP. We detected the expression level of miR-124 in clinical CaP tissues, evaluated the influence of miR-124 on the growth of CaP cells, and investigated the mechanism underlying the dysregulation of miR-124. We found that i) miR-124 directly targets the androgen receptor (AR) and subsequently induces a upregulation of p53; ii) miR-124 is significantly down-regulated in malignant prostatic cells compared to that in benign cells and DNA methylation causes the reduced expression of miR-124; and iii) miR-124 can inhibit the growth of CaP cells in vitro and in vivo. Data from this study revealed that loss of miR-124 expression is a common event in CaP, which may contribute to pathogenesis of CaP. Our studies also suggest that miR-124 is a potential tumor suppressive gene in CaP, and restoration of miR-124 expression may represent a novel strategy for CaP therapy. PMID:23069658

  19. In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin.

    PubMed

    Festuccia, C; Guerra, F; D'Ascenzo, S; Giunciuglio, D; Albini, A; Bologna, M

    1998-01-30

    Bombesin is a potent inducer of signal trasduction pathways involved in the proliferation and invasion of androgen-insensitive prostatic tumor cells. This study examines the bombesin-mediated modulation of pericellular proteolysis, monitoring cell capability to migrate and invade basement membranes, using a chemo-invasion assay and analyzing protease production. The results suggest that bombesin could modulate the invasive potential of prostatic cell lines regulating secretion and cell-surface uptake of uPA and MMP-9 activation. In fact, in PC3 and DU145 cells but not in LNCaP cells, urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) are induced by bombesin treatment. Bombesin also stimulates cell proliferation and this effect can be inhibited blocking uPA by antibodies and/or uPA inhibitor p-aminobenzamidine. Moreover, HMW-uPA induces cell proliferation in LNCaP cells, which do not produce uPA in the basal conditions, while PC3 and DU145 cell growth is supported by autocrine production of uPA. The increment of uPA activity on the external plasma membrane causes an increased pericellular plasmin activation. This effect is inhibited by antibodies against uPA and by p-aminobenzamidine. Similarly to EGF, bombesin stimulates secretion and activation of MMP-9 and TIMP-1 production. MMP-9 activation can be also obtained by HMW-uPA treatment, suggesting that plasma-membrane-bound uPA can start a proteolytic cascade involving MMP-9. Therefore, in in vitro assays, bombesin is able to modulate pericellular proteolysis and cell proliferation, differently distributing and activating proteolytic activities. This effect can be related to the "non-random" degradation of the extracellular matrix in which membrane uPA-uPAreceptor complexes could start bombesin-induced directional protein degradation during metastatic spread. PMID:9455804

  20. Landscape Phage Fusion Protein-mediated Targeting of Nanomedicines Enhances their Prostate Tumor Cell Association and Cytotoxic Efficiency

    PubMed Central

    Jayanna, P.K.; Bedi, D; Gillespie, J.W.; DeInnocentes, P.; Wang, T; Torchilin, V.P; Bird, R.C.; Petrenko, V.A.

    2010-01-01

    Tumor-specific cytotoxicity of drugs can be enhanced by targeting them to tumor receptors using tumor-specific ligands. Phage display offers a high-throughput approach to screen for the targeting ligands. We have successfully isolated phage fusion peptides selective and specific for PC3 prostate cancer cells. Also, we have demonstrated a novel approach of targeting liposomes through tumor-specific phage fusion coat proteins, exploiting the intrinsic properties of the phage coat protein as an integral membrane protein. Here we describe the production of Rhodamine-labeled liposomes as well as doxorubicin-loaded long circulating liposomes targeted to PC3 prostate tumor cells via PC-specific phage peptides, as an extension of our previous studies. Targeting of labeled liposomes was demonstrated using fluorescence microscopy as well as flow cytometry. Targeting of doxorubicin-loaded liposomes enhanced their cytotoxic effect against PC3 cells in vitro indicating a possible therapeutic advantage. The simplicity of the approach for generating targeted liposomes coupled with the ability to rapidly obtain tumor-specific phage fusion proteins via phage display may contribute to a combinatorial system for the production of targeted liposomal therapeutics for advanced stages of prostate tumor. PMID:20138246

  1. Mechanosensitive Ca2+ permeant cation channels in human prostate tumor cells

    PubMed Central

    Maroto, Rosario; Kurosky, Alexander; Hamill, Owen P.

    2012-01-01

    The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca2+-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd3+ or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca2+]i. Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca2+ channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca2+ influx to a small Ca2+-activated K+ channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics—while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca2+ signaling that may play a role in tumor progression. PMID:22874798

  2. Influence of Anti-Mouse Interferon Serum on the Growth and Metastasis of Tumor Cells Persistently Infected with Virus and of Human Prostatic Tumors in Athymic Nude Mice

    NASA Astrophysics Data System (ADS)

    Reid, Lola M.; Minato, Nagahiro; Gresser, Ion; Holland, John; Kadish, Anna; Bloom, Barry R.

    1981-02-01

    Baby hamster kidney or HeLa cells form tumors in 100% of athymic nude mice. When such cells are persistently infected (PI) with RNA viruses, such as mumps or measles virus, the tumor cells either fail to grow or form circumscribed benign nodules. Neither the parental nor the virus PI tumor cells form invasive or metastatic lesions in nude mice. Previous studies have indicated a correlation between the susceptibility of virus-PI tumor cells in vitro and the cytolytic activity of natural killer (NK) cells and their failure to grow in vivo. Because interferon (IF) is the principal regulatory molecule governing the differentiation of NK cells, it was possible to test the relevance of the IF--NK cell system in vivo to restriction of tumor growth by treatment of nude mice with anti-IF globulin. This treatment was shown to reduce both IF production and NK activity in spleen cells. Both parental and virus-PI tumor cells grew and formed larger tumors in nude mice treated with anti-IF globulin than in control nude mice. The viral-PI tumor cells and the uninfected parental cells formed tumors in treated mice that were highly invasive and often metastatic. Some human tumor types have been notoriously difficult to establish as tumor lines in nude mice (e.g., primary human prostatic carcinomas). When transplanted into nude mice treated either with anti-IF globulin or anti-lymphocyte serum, two prostatic carcinomas grew and produced neoplasms with local invasiveness and some metastases. The results are consistent with the view that interferon may be important in restricting the growth, invasiveness, and metastases of tumor cells by acting indirectly through components of the immune system, such as NK cells.

  3. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer.

    PubMed

    Lohr, Jens G; Adalsteinsson, Viktor A; Cibulskis, Kristian; Choudhury, Atish D; Rosenberg, Mara; Cruz-Gordillo, Peter; Francis, Joshua M; Zhang, Cheng-Zhong; Shalek, Alex K; Satija, Rahul; Trombetta, John J; Lu, Diana; Tallapragada, Naren; Tahirova, Narmin; Kim, Sora; Blumenstiel, Brendan; Sougnez, Carrie; Lowe, Alarice; Wong, Bang; Auclair, Daniel; Van Allen, Eliezer M; Nakabayashi, Mari; Lis, Rosina T; Lee, Gwo-Shu M; Li, Tiantian; Chabot, Matthew S; Ly, Amy; Taplin, Mary-Ellen; Clancy, Thomas E; Loda, Massimo; Regev, Aviv; Meyerson, Matthew; Hahn, William C; Kantoff, Philip W; Golub, Todd R; Getz, Gad; Boehm, Jesse S; Love, J Christopher

    2014-05-01

    Comprehensive analyses of cancer genomes promise to inform prognoses and precise cancer treatments. A major barrier, however, is inaccessibility of metastatic tissue. A potential solution is to characterize circulating tumor cells (CTCs), but this requires overcoming the challenges of isolating rare cells and sequencing low-input material. Here we report an integrated process to isolate, qualify and sequence whole exomes of CTCs with high fidelity using a census-based sequencing strategy. Power calculations suggest that mapping of >99.995% of the standard exome is possible in CTCs. We validated our process in two patients with prostate cancer, including one for whom we sequenced CTCs, a lymph node metastasis and nine cores of the primary tumor. Fifty-one of 73 CTC mutations (70%) were present in matched tissue. Moreover, we identified 10 early trunk and 56 metastatic trunk mutations in the non-CTC tumor samples and found 90% and 73% of these mutations, respectively, in CTC exomes. This study establishes a foundation for CTC genomics in the clinic.

  4. Prostate tumor cells infected with a recombinant influenza virus expressing a truncated NS1 protein activate cytolytic CD8+ cells to recognize noninfected tumor cells.

    PubMed

    Efferson, Clay L; Tsuda, Naotake; Kawano, Kouichiro; Nistal-Villán, Estanislao; Sellappan, Shankhar; Yu, Dihua; Murray, James L; García-Sastre, Adolfo; Ioannides, Constantin G

    2006-01-01

    Many viral oncolytic approaches against cancer are based on the ability of specific viruses to replicate in tumors expressing components of the constitutively activated Ras/mitogen-activated protein kinase (MAPK) pathways and/or inhibited or dysregulated alpha/beta interferon (IFN-alpha/beta) response pathways. A major issue when considering these approaches is their applicability to tumors that lack activated Ras. To identify the effector mechanisms activated by oncolytic viruses, we investigated inhibition of proliferation of the prostate cancer line LNCap by the recombinant TR-NS1 influenza A virus, a genetically attenuated influenza A/PR8/34 virus expressing a truncated nonstructural protein (NS1) of 126 amino acids. LNCap cells lack constitutively activated MAPK, extracellular signal-regulated kinase (ERK), and p38 and are resistant to death by IFN-alpha. Truncation of the NS1 protein of influenza viruses is known to result in viral attenuation due to a reduced ability of the NS1 to inhibit the IFN-alpha/beta response. Infection with TR-NS1 virus rapidly activated ERK-1 more than ERK-2 in LNCap cells. Importantly, TR-NS1 virus infection transiently inhibited cell proliferation and induced apoptosis in LNCap cells. Addition of peripheral blood mononuclear cells (PBMC) and interleukin 12 (IL-12) to TR-NS1 virus-infected LNCap cells (TR-NS1-LNCap) resulted in faster elimination of TR-NS1-LNCap cells compared with LNCap cells. Moreover, TR-NS1-LNCap cells induced IFN-gamma in PBMC. The levels of IFN-gamma were amplified by IL-12. TR-NS1-LNCap cells also induced tumor-lytic cytotoxic T lymphocytes (CTL). These CTL lysed noninfected LNCap cells in a CD8-dependent manner. Activation of cellular immunity to tumor cells by viruses is an intriguing effector pathway, which should be especially significant for elimination of human tumors that lack activated Ras.

  5. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis.

    PubMed

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L; Mulholland, David J; Wu, Hong

    2015-07-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal-like and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre(+/-);Pten(L/L);Kras(G12D) (/+) prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT, and mesenchymal-like cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM(+)/Vim-GFP(+)) and mesenchymal-like (EpCAM(-)/Vim-GFP(+)) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal-like tumor cells displayed enhanced stemness and invasive character compared with epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal-like tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  6. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer.

    PubMed

    Cann, Gordon M; Gulzar, Zulfiqar G; Cooper, Samantha; Li, Robin; Luo, Shujun; Tat, Mai; Stuart, Sarah; Schroth, Gary; Srinivas, Sandhya; Ronaghi, Mostafa; Brooks, James D; Talasaz, Amirali H

    2012-01-01

    Circulating tumor cells (CTC) mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.

  7. [A new WHO classification of prostate tumors].

    PubMed

    Frank, G A; Andreeva, Yu Yu; Moskvina, L V; Efremov, G D; Samoilova, S I

    2016-01-01

    The paper reviews the 2016 WHO classification of prostate tumors, notes the alterations made, and describes approaches to the diagnosis of cancer types and grades. It also gives original photomicrographs from the authors' collection. The main alterations were as follows: - The types of prostate adenocarcinoma were added by pleomorphic giant-cell carcinoma; oncocytic (8290/3) and lymphoepithelial (8082/3) carcinomas were excluded. - Grade III prostatic intraepithelial neoplasia (PIN) was substituted for high grade PIN (8148/2). - Intraductal carcinoma (8500/2) was added. - Basal cell adenoma (8147/0) was excluded. - Carcinoids were referred to as low-grade neuroendocrine tumors according to the current terminology; large cell neuroendocrine cancer (8013/3) was added. - Paraganglioma (8613/3) and neuroblastoma (9500/3) were excluded. Stromal tumors were grouped with mesenchymal neoplasms. -Malignant fibrous histiocytoma, malignant peripheral nerve sheath tumor, chondroma, and hemangiopericytoma were excluded. - Synovial sarcoma (9040/3), inflammatory myofibroblastic tumor (8825/1), osteosarcoma (9180/3), undifferentiated pleomorphic sarcoma (8802/3), solitary fibrous tumor (8815/1), and malignant solitary fibrous tumor (8815/3) were added. The section of lymphoproliferative diseases was extended. The tumors of unknown origin included paraganglioma and neuroblastoma from a group of neuroendocrine tumors. The TNM staging was completely consistent with the 2010 AJCC version. PMID:27600780

  8. [A new WHO classification of prostate tumors].

    PubMed

    Frank, G A; Andreeva, Yu Yu; Moskvina, L V; Efremov, G D; Samoilova, S I

    2016-01-01

    The paper reviews the 2016 WHO classification of prostate tumors, notes the alterations made, and describes approaches to the diagnosis of cancer types and grades. It also gives original photomicrographs from the authors' collection. The main alterations were as follows: - The types of prostate adenocarcinoma were added by pleomorphic giant-cell carcinoma; oncocytic (8290/3) and lymphoepithelial (8082/3) carcinomas were excluded. - Grade III prostatic intraepithelial neoplasia (PIN) was substituted for high grade PIN (8148/2). - Intraductal carcinoma (8500/2) was added. - Basal cell adenoma (8147/0) was excluded. - Carcinoids were referred to as low-grade neuroendocrine tumors according to the current terminology; large cell neuroendocrine cancer (8013/3) was added. - Paraganglioma (8613/3) and neuroblastoma (9500/3) were excluded. Stromal tumors were grouped with mesenchymal neoplasms. -Malignant fibrous histiocytoma, malignant peripheral nerve sheath tumor, chondroma, and hemangiopericytoma were excluded. - Synovial sarcoma (9040/3), inflammatory myofibroblastic tumor (8825/1), osteosarcoma (9180/3), undifferentiated pleomorphic sarcoma (8802/3), solitary fibrous tumor (8815/1), and malignant solitary fibrous tumor (8815/3) were added. The section of lymphoproliferative diseases was extended. The tumors of unknown origin included paraganglioma and neuroblastoma from a group of neuroendocrine tumors. The TNM staging was completely consistent with the 2010 AJCC version.

  9. Recombinant disintegrin domain of human ADAM9 inhibits migration and invasion of DU145 prostate tumor cells

    PubMed Central

    Martin, Ana Carolina Baptista Moreno; Cardoso, Ana Carolina Ferreira; Selistre-de-Araujo, Heloisa Sobreiro; Cominetti, Márcia Regina

    2015-01-01

    One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer. PMID:26211476

  10. Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis.

    PubMed

    Heidegger, Isabel; Kern, Johann; Ofer, Philipp; Klocker, Helmut; Massoner, Petra

    2014-05-15

    We scrutinized the effect of insulin receptor (INSR) in addition to IGF1R in PCa using in vitro and in vivo models. In-vitro overexpression of IGF1R and INSRA, but not INSRB increased cell proliferation, colony formation, migration, invasion and resistance to apoptosis in prostate cancer cells (DU145, LNCaP, PC3). Opposite effects were induced by downregulation of IGF1R and total INSR, but not INSRB. In contrast to tumor cells, non-cancerous epithelial cells of the prostate (EP156T, RWPE-1) were inhibited on overexpression and stimulated by knockdown of receptors. In-vivo analyses using the chicken allantoic membrane assay confirmed the tumorigenic effects of IGF1R and INSR. Apart of promoting tumor growth, IGF1R and INSR overexpression also enhanced angiogenesis indicated by higher vessel density and increased number of desmin-immunoreactive pericytes. Our study underscores the oncogenic impact of IGF1R including significant effects on tumor growth, cell migration, sensitivity to apoptotic/chemotherapeutic agents and angiogenesis, and characterizes the INSR, in particular the isoform INSRA, as additional cancer-promoting receptor in prostate cancer. Both, the insulin-like growth factor receptor 1 and the insulin receptor exert oncogenic functions, thus proposing that both receptors need to be considered in therapeutic settings.

  11. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.

    PubMed

    Man, Yan-Gao; Gardner, William A

    2008-01-01

    The development of human prostate cancer is believed to be a multistep process, progressing sequentially from normal, to hyperplasia, to prostatic intraepithelial neoplasia (PIN), and to invasive and metastatic lesions. High grade PIN has been generally considered as the direct precursor of invasive lesions, and the progression of PIN is believed to be triggered primarily, if not solely, by the overproduction of proteolytic enzymes predominately by cancer cells, which result in the degradation of the basement membrane. These theories, however, are hard to reconcile with two main facts: (1) only about 30% untreated PIN progress to invasive stage, while none of the current approaches could accurately identify the specific PIN or individuals at greater risk for progression, and (2) results from recent world-wide clinical trials with a wide variety of proteolytic enzyme inhibitors have been very disappointing, casting doubt on the validity of the proteolytic enzyme theory. Since over 90% of prostate cancer-related deaths result from invasion-related illness and the incidence of PIN could be up to 16.5-25% in routine or ultrasound guided prostate biopsy, there is an urgent need to uncover the intrinsic mechanism of prostate tumor invasion. Promoted by the facts that the basal cell population is the source of several tumor suppressors and the absence of the basal cell layer is the most distinct feature of invasive lesions, our recent studies have intended to identify the early alterations of basal cell layers and their impact on tumor invasion using multidisciplinary approaches. Our studies revealed that a subset of pre-invasive tumors contained focal disruptions (the absence of basal cells resulting in a gap greater than the combined size of at least three epithelial cells) in surrounding basal cell layers. Compared to their non-disrupted counterparts, focally disrupted basal cell layers had several unique features: (1) significantly lower proliferation; (2

  12. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer.

    PubMed

    Xu, Jingying; Escamilla, Jemima; Mok, Stephen; David, John; Priceman, Saul; West, Brian; Bollag, Gideon; McBride, William; Wu, Lily

    2013-05-01

    Radiotherapy is used to treat many types of cancer, but many treated patients relapse with local tumor recurrence. Tumor-infiltrating myeloid cells (TIM), including CD11b (ITGAM)(+)F4/80 (EMR1)+ tumor-associated macrophages (TAM), and CD11b(+)Gr-1 (LY6G)+ myeloid-derived suppressor cells (MDSC), respond to cancer-related stresses and play critical roles in promoting tumor angiogenesis, tissue remodeling, and immunosuppression. In this report, we used a prostate cancer model to investigate the effects of irradiation on TAMs and MDSCs in tumor-bearing animals. Unexpectedly, when primary tumor sites were irradiated, we observed a systemic increase of MDSCs in spleen, lung, lymph nodes, and peripheral blood. Cytokine analysis showed that the macrophage colony-stimulating factor CSF1 increased by two-fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by a selective inhibitor of CSF1R. These findings were confirmed in patients with prostate cancer, where serum levels of CSF1 increased after radiotherapy. Mechanistic investigations revealed the recruitment of the DNA damage-induced kinase ABL1 into cell nuclei where it bound the CSF1 gene promoter and enhanced CSF1 gene transcription. When added to radiotherapy, a selective inhibitor of CSF1R suppressed tumor growth more effectively than irradiation alone. Our results highlight the importance of CSF1/CSF1R signaling in the recruitment of TIMs that can limit the efficacy of radiotherapy. Furthermore, they suggest that CSF1 inhibitors should be evaluated in clinical trials in combination with radiotherapy as a strategy to improve outcomes.

  13. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade.

    PubMed

    Olson, Brian M; Jankowska-Gan, Ewa; Becker, Jordan T; Vignali, Dario A A; Burlingham, William J; McNeel, Douglas G

    2012-12-15

    Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4(+)CD25(+) regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag-specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8(+)CTLA-4(+), and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8(+) Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8(+)CTLA-4(+) suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8(+)CTLA-4(+) T cells also suppressed T cell proliferation in an IL-35-dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8(+)CTLA-4(+) IL-35-secreting tumor Ag-specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35-dependent mechanism.

  14. Xanthohumol Impairs Human Prostate Cancer Cell Growth and Invasion and Diminishes the Incidence and Progression of Advanced Tumors in TRAMP Mice

    PubMed Central

    Venè, Roberta; Benelli, Roberto; Minghelli, Simona; Astigiano, Simonetta; Tosetti, Francesca; Ferrari, Nicoletta

    2012-01-01

    Despite recent advances in understanding the biological basis of prostate cancer, management of the disease, especially in the phase resistant to androgen ablation, remains a significant challenge. The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention to prevent or eradicate prostate malignancies. In this study, we have used human hormone-resistant prostate cancer cells, DU145 and PC3, as an in vitro model to assess the efficacy of xanthohumol (XN) against cell growth, motility and invasion. We observed that treatment of prostate cancer cells with low micromolar doses of XN inhibits proliferation and modulates focal adhesion kinase (FAK) and AKT phosphorylation leading to reduced cell migration and invasion. Oxidative stress by increased production of reactive oxygen species (ROS) was associated with these effects. Transgenic adenocarcinoma of the mouse prostate (TRAMP) transgenic mice were used as an in vivo model of prostate adenocarcinoma. Oral gavage of XN, three times per week, beginning at 4 wks of age, induced a decrease in the average weight of the urogenital (UG) tract, delayed advanced tumor progression and inhibited the growth of poorly differentiated prostate carcinoma. The ability of XN to inhibit prostate cancer in vitro and in vivo suggests that XN may be a novel agent for the management of prostate cancer. PMID:22952060

  15. The significance of circulating tumor cells in prostate cancer patients undergoing adjuvant or salvage radiation therapy

    PubMed Central

    Lowes, L E; Lock, M; Rodrigues, G; D'Souza, D; Bauman, G; Ahmad, B; Venkatesan, V; Allan, A L; Sexton, T

    2015-01-01

    Background: Following radical prostatectomy, success of adjuvant and salvage radiation therapy (RT) is dependent on the absence of micrometastatic disease. However, reliable prognostic/predictive factors for determining this are lacking. Therefore, novel biomarkers are needed to assist with clinical decision-making in this setting. Enumeration of circulating tumor cells (CTCs) using the regulatory-approved CellSearch System (CSS) is prognostic in metastatic prostate cancer. We hypothesize that CTCs may also be prognostic in the post-prostatectomy setting. Methods: Patient blood samples (n=55) were processed on the CSS to enumerate CTCs at 0, 6, 12 and 24 months after completion of RT. CTC values were correlated with predictive/prognostic factors and progression-free survival. Results: CTC status (presence/absence) correlated significantly with positive margins (increased likelihood of CTCneg disease; P=0.032), and trended toward significance with the presence of seminal vesicle invasion (CTCpos; P=0.113) and extracapsular extension (CTCneg; P=0.116). Although there was a trend toward a decreased time to biochemical failure (BCF) in baseline CTC-positive patients (n=9), this trend was not significant (hazard ratio (HR)=0.3505; P=0.166). However, CTC-positive status at any point (n=16) predicted for time to BCF (HR=0.2868; P=0.0437). Conclusions: One caveat of this study is the small sample size utilized (n=55) and the low number of patients with CTC-positive disease (n=16). However, our results suggest that CTCs may be indicative of disseminated disease and assessment of CTCs during RT may be helpful in clinical decision-making to determine, which patients may benefit from RT versus those who may benefit more from systemic treatments. PMID:26238233

  16. Adaptive (TINT) Changes in the Tumor Bearing Organ Are Related to Prostate Tumor Size and Aggressiveness

    PubMed Central

    Adamo, Hanibal Hani; Strömvall, Kerstin; Nilsson, Maria; Halin Bergström, Sofia; Bergh, Anders

    2015-01-01

    In order to grow, tumors need to induce supportive alterations in the tumor-bearing organ, by us named tumor instructed normal tissue (TINT) changes. We now examined if the nature and magnitude of these responses were related to tumor size and aggressiveness. Three different Dunning rat prostate tumor cells were implanted into the prostate of immune-competent rats; 1) fast growing and metastatic MatLyLu tumor cells 2) fast growing and poorly metastatic AT-1 tumor cells, and 3) slow growing and non-metastatic G tumor cells. All tumor types induced increases in macrophage, mast cell and vascular densities and in vascular cell-proliferation in the tumor-bearing prostate lobe compared to controls. These increases occurred in parallel with tumor growth. The most pronounced and rapid responses were seen in the prostate tissue surrounding MatLyLu tumors. They were, also when small, particularly effective in attracting macrophages and stimulating growth of not only micro-vessels but also small arteries and veins compared to the less aggressive AT-1 and G tumors. The nature and magnitude of tumor-induced changes in the tumor-bearing organ are related to tumor size but also to tumor aggressiveness. These findings, supported by previous observation in patient samples, suggest that one additional way to evaluate prostate tumor aggressiveness could be to monitor its effect on adjacent tissues. PMID:26536349

  17. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells

    PubMed Central

    Wang, Chunyang; Tao, Weiyang; Ni, Shaobin; Chen, Qiyin; Zhao, Zhongshan; Ma, Li; Fu, Yiming; Jiao, Zhixing

    2015-01-01

    Prostate cancer (PCa) prevails as the most commonly diagnosed malignancy in men and the third leading cause of cancer-related deaths in developed countries. One of the distinct characteristics of prostate cancer is overexpression of the small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1), and the upregulation of SENP1 contributes to the malignant progression and cell proliferation of PCa. Previous studies have shown that the expression of microRNA-145 (miRNA-145) was extensively deregulated in PCa cell lines and primary clinical prostate cancer samples. Independent target prediction methods have indicated that the 3′-untranslated region of SENP1 mRNA is a potential target of miR-145. Here we found that low expression of miR-145 was correlated with high expression of SENP1 in PCa cell line PC-3. The transient introduction of miR-145 caused cell cycle arrest in PC-3 cells, and the opposite effect was observed when miR-145 inhibitor was transfected. Further studies revealed that the SENP1 3′-untranslated region was a regulative target of miR-145 in vitro. MicroRNA-145 also suppressed tumor formation in vivo in nude mice. Taken together, miR-145 plays an important role in tumorigenesis of PCa through interfering SENP1. PMID:25645686

  18. Angiostatin directly inhibits human prostate tumor cell invasion by blocking plasminogen binding to its cellular receptor, CD26

    SciTech Connect

    Gonzalez-Gronow, Mario . E-mail: gonza002@mc.duke.edu; Grenett, Hernan E.; Gawdi, Govind; Pizzo, Salvatore V.

    2005-02-01

    Previous studies demonstrate that one of the six plasminogen type 2 glycoforms, plasminogen 2{epsilon}, enhances invasiveness of the 1-LN human prostate tumor cell line in an in vitro model. Binding of plasminogen 2{epsilon} to CD26 on the cell surface induces a Ca{sup 2+} signaling cascade which stimulates the expression of matrix metalloproteinase-9, required by these cells to invade Matrigel registered . We now report that angiostatin, a fragment derived from plasminogen which prevents endothelial cell proliferation, is also a potent, direct inhibitor of 1-LN tumor cell invasiveness. We studied the effect of individual plasminogen 2 glycoform-derived angiostatins and found that only angiostatin 2{epsilon} binds to CD26 on the surface of 1-LN cells at a site also recognized by plasminogen 2{epsilon}. As a result, the plasminogen 2{epsilon}-induced Ca{sup 2+} signaling cascade is inhibited, the expression of matrix metalloproteinase-9 is suppressed, and invasion of Matrigel registered by 1-LN cells is blocked. Angiostatin 2{epsilon} is also the only angiostatin glycoform which is able to inhibit in vitro endothelial cell proliferation and tubule formation. These studies suggest that, in addition to its ability to inhibit tumor vascularization, angiostatin 2{epsilon} may also directly block tumor metastasis.

  19. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  20. Polar biophenolics in sweet potato greens extract synergize to inhibit prostate cancer cell proliferation and in vivo tumor growth.

    PubMed

    Gundala, Sushma R; Yang, Chunhua; Lakshminarayana, N; Asif, Ghazia; Gupta, Meenakshi V; Shamsi, Shahab; Aneja, Ritu

    2013-09-01

    Polyphenolic phytochemicals present in fruits and vegetables indisputably confer anticancer benefits upon regular consumption. Recently, we demonstrated the growth-inhibitory and apoptosis-inducing properties of polyphenol-rich sweet potato greens extract (SPGE) in cell culture and in vivo prostate cancer xenograft models. However, the bioactive constituents remain elusive. Here, we report a bioactivity-guided fractionation of SPGE based upon differential solvent polarity using chromatographic techniques that led to the identification of a remarkably active polyphenol-enriched fraction, F5, which was ~100-fold more potent than the parent extract as shown by IC50 measurements in human prostate cancer cells. High-performance liquid chromatography-ultraviolet and mass spectrometric analyses of the seven SPGE fractions suggested varying abundance of the major phenols, quinic acid (QA), caffeic acid, its ester chlorogenic acid, and isochlorogenic acids, 4,5-di-CQA, 3,5-di-CQA and 3,4-di-CQA, with a distinct composition of the most active fraction, F5. Subfractionation of F5 resulted in loss of bioactivity, suggesting synergistic interactions among the constituent phytochemicals. Quantitative analyses revealed a ~2.6- and ~3.6-fold enrichment of QA and chlorogenic acid, respectively, in F5 and a definitive ratiometric relationship between the isochlorogenic acids. Daily oral administration of 400mg/kg body wt of F5 inhibited growth and progression of prostate tumor xenografts by ~75% in nude mice, as evidenced by tumor volume measurements and non-invasive real-time bioluminescence imaging. These data generate compelling grounds to further examine the chemopreventive efficacy of the most active fraction of SPGE and suggest its potential usefulness as a dietary supplement for prostate cancer management.

  1. Interleukin-6- and Cyclic AMP-Mediated Signaling Potentiates Neuroendocrine Differentiation of LNCaP Prostate Tumor Cells

    PubMed Central

    Deeble, Paul D.; Murphy, Daniel J.; Parsons, Sarah J.; Cox, Michael E.

    2001-01-01

    Neuroendocrine (NE) differentiation in prostatic adenocarcinomas has been reported to be an early marker for development of androgen independence. Secretion of mitogenic peptides from nondividing NE cells is thought to contribute to a more aggressive disease by promoting the proliferation of surrounding tumor cells. We undertook studies to determine whether the prostate cancer cell line LNCaP could be induced to acquire NE characteristics by treatment with agents that are found in the complex environment in which progression of prostate cancer towards androgen independence occurs. We found that cotreatment of LNCaP cells with agents that signal through cyclic AMP-dependent protein kinase (PKA), such as epinephrine and forskolin, and with the cytokine interleukin-6 (IL-6) promoted the acquisition of an NE morphological phenotype above that seen with single agents. Convergent IL-6 and PKA signaling also resulted in potentiated mitogen-activated protein kinase (MAPK) activation without affecting the level of signal transducer and activator of transcription or PKA activation observed with these agents alone. Cotreatment with epinephrine and IL-6 synergistically increased c-fos transcription as well as transcription from the β4 nicotinic acetylcholine receptor subunit promoter. Potentiated transcription from these elements was shown to be dependent on the MAPK pathway. Most importantly, cotreatment with PKA activators and IL-6 resulted in increased secretion of mitogenic neuropeptides. These results indicate that PKA and IL-6 signaling participates in gene transcriptional changes that reflect acquisition of an NE phenotype by LNCaP cells and suggest that similar signaling mechanisms, particularly at sites of metastasis, may be responsible for the increased NE content of many advanced prostate carcinomas. PMID:11713282

  2. Circulating Tumor Cells from Patients with Advanced Prostate and Breast Cancer Display Both Epithelial and Mesenchymal Markers

    PubMed Central

    Armstrong, Andrew J.; Marengo, Matthew S.; Oltean, Sebastian; Kemeny, Gabor; Bitting, Rhonda L.; Turnbull, James; Herold, Christina I.; Marcom, Paul K.; George, Daniel; Garcia-Blanco, Mariano A.

    2011-01-01

    During cancer progression malignant cells undergo epithelial-mesenchymal transitions (EMTs) and mesenchymal-epithelial transitions (METs) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTCs) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer (BC). We show that the majority (>80%) of these CTCs in patients with metastatic CRPC co-express epithelial proteins such as EpCAM, CK, and E-cadherin, mesenchymal proteins, including vimentin, N-cadherin, and O-cadherin, and the stem cell marker CD133. Equally, we find that over 75% of CTCs from women with metastatic BC co-express cytokeratin, vimentin, and N-cadherin. The existence and high frequency of these CTCs co-expressing epithelial, mesenchymal, and stem-cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs. PMID:21665936

  3. α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth

    PubMed Central

    Johnson, Jeremy J.; Petiwala, Sakina M.; Syed, Deeba N.; Rasmussen, John T.; Adhami, Vaqar M.; Siddiqui, Imtiaz A.; Kohl, Amanda M.; Mukhtar, Hasan

    2012-01-01

    There is a need to characterize promising dietary agents for chemoprevention and therapy of prostate cancer (PCa). We examined the anticancer effect of α-mangostin, derived from the mangosteen fruit, in human PCa cells and its role in targeting cell cycle-related proteins involved in prostate carcinogenesis. Using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, we found that α-mangostin significantly decreases PCa cell viability in a dose-dependent manner. Further analysis using flow cytometry identified cell cycle arrest along with apoptosis. To establish a more precise mechanism of action, we performed a cell free biochemical kinase assay against multiple cyclins/cyclin-dependent kinases (CDKs) involved in cell cycle progression; the most significant inhibition in the cell free-based assays was CDK4, a critical component of the G1 phase. Through molecular modeling, we evaluated α-mangostin against the adenosine triphosphate-binding pocket of CDK4 and propose three possible orientations that may result in CDK4 inhibition. We then performed an in vivo animal study to evaluate the ability of α-mangostin to suppress tumor growth. Athymic nude mice were implanted with 22Rv1 cells and treated with vehicle or α-mangostin (100 mg/kg) by oral gavage. At the conclusion of the study, mice in the control cohort had a tumor volume of 1190 mm3, while the treatment group had a tumor volume of 410 mm3 (P < 0.01). The ability of α-mangostin to inhibit PCa in vitro and in vivo suggests α-mangostin may be a novel agent for the management of PCa. PMID:22159229

  4. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    SciTech Connect

    Guo, Jia; Liu, Xiuheng Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  5. Cell density in prostate histopathology images as a measure of tumor distribution

    NASA Astrophysics Data System (ADS)

    Reynolds, Hayley M.; Williams, Scott; Zhang, Alan M.; Ong, Cheng Soon; Rawlinson, David; Chakravorty, Rajib; Mitchell, Catherine; Haworth, Annette

    2014-03-01

    We have developed an automatic technique to measure cell density in high resolution histopathology images of the prostate, allowing for quantification of differences between tumour and benign regions of tissue. Haemotoxylin and Eosin (H&E) stained histopathology slides from five patients were scanned at 20x magnification and annotated by an expert pathologist. Colour deconvolution and a radial symmetry transform were used to detect cell nuclei in the images, which were processed as a set of small tiles and combined to produce global maps of cell density. Kolmogorov-Smirnov tests showed a significant difference in cell density distribution between tumour and benign regions of tissue for all images analyzed (p < 0.05), suggesting that cell density may be a useful feature for segmenting tumour in un-annotated histopathology images. ROC curves quantified the potential utility of cell density measurements in terms of specificity and sensitivity and threshold values were investigated for their classification accuracy. Motivation for this work derives from a larger study in which we aim to correlate ground truth histopathology with in-vivo multiparametric MRI (mpMRI) to validate tumour location and tumour characteristics. Specifically, cell density maps will be registered with T2-weighted MRI and ADC maps from diffusion-weighted MRI. The validated mpMRI data will then be used to parameterise a radiobiological model for designing focal radiotherapy treatment plans for prostate cancer patients.

  6. Identification and characterization of a tumor infiltrating CD56(+)/CD16 (-) NK cell subset with specificity for pancreatic and prostate cancer cell lines.

    PubMed

    Frankel, Timothy L; Burns, William; Riley, John; Morgan, Richard A; Davis, Jeremy L; Hanada, Kenichi; Quezado, Martha; Rosenberg, Steven A; Royal, Richard E

    2010-12-01

    In a recent clinical trial, a patient exhibited regression of several pancreatic cancer metastases following the administration of the immune modulator Ipilimumab (anti-CTLA-4 antibody). We sought to characterize the immune cells responsible for this regression. Tumor infiltrating lymphocytes (TIL-2742) and an autologous tumor line (TC-2742) were expanded from a regressing metastatic lesion excised from this patient. Natural killer (NK) cells predominated in the TIL (92% CD56(+)) with few T cells (12% CD3(+)). A majority (88%) of the NK cells were CD56(bright)CD16(-). TIL-2742 secreted IFN-γ and GM-CSF following co-culture with TC-2742 and major histocompatibility complex mismatched pancreatic tumor lines. After sorting TIL-2742, the purified CD56(+)CD16(-)CD3(-) subset showed reactivity similar to TIL-2742 while the CD56(-)CD16(-)CD3(+) cells exhibited no tumor recognition. In co-culture assays, TIL-2742 and the NK subset expressed high reactivity to several pancreatic and prostate cancer cell lines and could lyse the autologous tumor as well as pancreas and prostate cancer lines. Reactivity was partially abrogated by blockade of TRAIL. We thus identified a unique subset of NK cells (CD56(bright)CD16(dim)) isolated from a regressing metastatic pancreatic cancer in a patient responding to Ipilimumab. This represents the first report of CD56(+)CD16(-) NK cells with apparent specificity for pancreatic and prostate cancer cell lines and associated with tumor regression following the treatment with an immune modulating agent. PMID:20734041

  7. Adenovirus E2F1 Overexpression Sensitizes LNCaP and PC3 Prostate Tumor Cells to Radiation In Vivo

    SciTech Connect

    Udayakumar, Thirupandiyur S.; Stoyanova, Radka; Hachem, Paul; Ahmed, Mansoor M.; Pollack, Alan

    2011-02-01

    Purpose: We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. Methods and Materials: Ad-E2F1 was injected intratumorally in LNCaP (3 x 10{sup 8} plaque-forming units [PFU]) and PC3 (5 x 10{sup 8} PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. Results: Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm{sup 3}) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm{sup 3}; p <0.05). This effect was significantly enhanced by radiation therapy (compare: Ad-E2F1+RT/PSA, 16 ng/ml, and TV, 55 mm{sup 3} to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm{sup 3}, respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. Conclusions: We show here for the first time that

  8. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue

    PubMed Central

    Giangreco, Angeline A; Vaishnav, Avani; Wagner, Dennis; Finelli, Antonio; Fleshner, Neil; Van der Kwast, Theodorus; Vieth, Reinhold; Nonn, Larisa

    2013-01-01

    MiR-100 and miR-125b are lost in many cancers and have potential function as tumor suppressors. Using both primary prostatic epithelial cultures and laser-capture-microdissected prostate epithelium from 45 patients enrolled in a vitamin D3 randomized trial, we identified miR-100 and -125b as targets of 1,25-dihydroxyvitamin D3 (1,25D). In patients, miR-100 and -125b levels were significantly lower in tumor tissue than in benign prostate. Similarly, miR-100 and -125b were lower in primary PCa cells than in cells derived from benign prostate. Prostatic concentrations of 1,25D positively correlated with these miRNA levels in both PCa and benign epithelium, demonstrating that PCa patients may still benefit from vitamin D3. In cell assays, upregulation of these miRNAs by 1,25D was vitamin D receptor-dependent. Transfection of pre-miR-100 and pre-miR-125b in the presence or absence of 1,25D decreased invasiveness of cancer cell, RWPE-2. Pre-miR-100 and pre-miR-125b decreased proliferation in primary cells and cancer cells respectively. Pre-miR-125b transfection suppressed migration and clonal growth of PCa cells while knockdown of miR-125b in normal cells increased migration indicates a tumor suppressor function. 1,25D suppressed expression of previously bona fide mRNA targets of these miRNAs, E2F3 and Plk1, in a miRNA-dependent manner. Together, these findings demonstrate that vitamin D3 supplementation augments tumor suppressive miRNAs in patient prostate tissue, providing evidence that miRNAs could be key physiologic mediators of vitamin D3 activity in prevention and early treatment of PCa. PMID:23503652

  9. Inhibition of vimentin or B1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo

    SciTech Connect

    Zhang, Xueping; Fournier, Marcia V; Ware, Joy L; Bissell, Mina J; Yacoub, Adly; Zehner, Zendra E

    2008-06-12

    Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to {beta}-catenin, E-cadherin, or {alpha}6 and {beta}1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of {alpha}6 and {beta}1 integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and {beta}1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499-508].

  10. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells

    PubMed Central

    Muniyan, Sakthivel; D’Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G.; Bu, Xiu R.; Batra, Surinder K.; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents. PMID:26121643

  11. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    PubMed

    Ingersoll, Matthew A; Lyons, Anastesia S; Muniyan, Sakthivel; D'Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G; Bu, Xiu R; Batra, Surinder K; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents. PMID:26121643

  12. Comparative analysis of innate immune system function in metastatic breast, colorectal, and prostate cancer patients with circulating tumor cells.

    PubMed

    Santos, Mark F; Mannam, Venkat K R; Craft, Barbara S; Puneky, Louis V; Sheehan, Natale T; Lewis, Robert E; Cruse, Julius M

    2014-06-01

    In recent years, circulating tumor cells (CTCs) in metastatic cancer patients have been found to be a promising biomarker to predict overall survival and tumor progression in these patients. A relatively high number of CTCs has been correlated with disease progression and poorer prognosis. This study was designed to assess innate immune system function, known to be responsible for the immune defense against developing neoplasms, in metastatic cancer patients with CTCs. Our aim is to provide a link between indication of poorer prognosis, represented by the number of CTCs to the cytotoxic activity of natural killer cells, an important component of the innate immune system, and to represent a promising expanded approach to management of metastatic cancer patients with CTCs. Seventy-four patients, with metastatic breast, colorectal, or prostate cancer, were recruited for this study. Using a flow cytometric assay, we measured natural killer (NK) cell cytotoxicity against K562 target cells; and CTCs were enumerated using the CellSearch System. Toll-like receptors 2 and 4 expression was also determined by flow cytometry. We found that within each of our three metastatic cancer patient groups, NK cell cytotoxic activity was decreased in patients with a relatively high number of CTCs in peripheral blood compared to patients with a relatively low number of CTCs. In the breast and prostate cancer group, patients with CTCs greater than 5 had decreased NK cell cytotoxicity when compared to patients with less than 5 CTCs. In the colorectal cancer group, we found that 3 or more CTCs in the blood was the level at which NK cell cytotoxicity is diminished. Additionally, we found that the toll-like receptors 2 and 4 expression was decreased in intensity in all the metastatic cancer patients when compared to the healthy controls. Furthermore, within each cancer group, the expression of both toll-like receptors was decreased in the patients with relatively high number of CTCs, i

  13. Multivalent scaffolds for affinity maturation of small molecule cell surface-binders and their application to prostate tumor targeting

    PubMed Central

    Humblet, Valerie; Misra, Preeti; Bhushan, Kumar R.; Nasr, Khaled; Ko, Yao-Sen; Tsukamoto, Takashi; Pannier, Nadine; Frangioni, John V.; Maison, Wolfgang

    2008-01-01

    Adamantane scaffolds for affinity maturation of prostate cancer specific ligands of low molecular mass are described. These scaffolds are modular and can be used for conjugation of up to three ligands and an additional effector molecule by standard peptide coupling techniques. The potential of the scaffolds is demonstrated with the multimerization of GPI 1, a prostate cancer specific small molecule. A detailed study of multimerized GPI conjugates with NIR-fluorophores and their binding properties to different prostate cancer cell lines shows the specific binding of these conjugates to cell types positive for prostate specific membrane antigen (PSMA). We demonstrate that these conjugates allow the sensitive imaging of prostate cancer cells with NIR methodology and suggest that our adamantane scaffolds might be generally useful for affinity maturation of small molecules targeting cell surface epitopes. PMID:19108655

  14. Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces.

    PubMed

    Caley, Matthew P; King, Helen; Shah, Neel; Wang, Kai; Rodriguez-Teja, Mercedes; Gronau, Julian H; Waxman, Jonathan; Sturge, Justin

    2016-02-01

    The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded 'amoeboid-like' mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar 'mesenchymal-like' mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer. PMID:26567111

  15. Solitary fibrous tumor of the prostate: a report of two cases.

    PubMed

    Talvitie, Heidi; Aström, Kristina; Larsson, Olle; Ahlén, Jan; Bergh, Anders; Egevad, Lars

    2011-09-01

    We here report two cases of solitary fibrous tumor (SFT) arising in the prostate. Two men, 66 and 69 years old, with urinary tract symptoms were diagnosed with SFT on transrectal needle biopsy and transurethral resection of the prostate, respectively. The tumors were removed by a low anterior resection including tumor, prostate and rectum en bloc and cystoprostatectomy, respectively. Both tumors were well-circumscribed but also showed some infiltration of the prostate glands. They were composed of storiform bundles of bland spindle cells that stained strongly for CD34 and vimentin but negative for muscle markers. Although rare, SFT should be considered as differential diagnosis of spindle cell lesions on prostate biopsies.

  16. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer.

    PubMed

    Jiang, Runze; Lu, Yi-Tsung; Ho, Hao; Li, Bo; Chen, Jie-Fu; Lin, Millicent; Li, Fuqiang; Wu, Kui; Wu, Hanjie; Lichterman, Jake; Wan, Haolei; Lu, Chia-Lun; OuYang, William; Ni, Ming; Wang, Linlin; Li, Guibo; Lee, Tom; Zhang, Xiuqing; Yang, Jonathan; Rettig, Matthew; Chung, Leland W K; Yang, Huanming; Li, Ker-Chau; Hou, Yong; Tseng, Hsian-Rong; Hou, Shuang; Xu, Xun; Wang, Jun; Posadas, Edwin M

    2015-12-29

    Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history. PMID:26575023

  17. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer.

    PubMed

    Jiang, Runze; Lu, Yi-Tsung; Ho, Hao; Li, Bo; Chen, Jie-Fu; Lin, Millicent; Li, Fuqiang; Wu, Kui; Wu, Hanjie; Lichterman, Jake; Wan, Haolei; Lu, Chia-Lun; OuYang, William; Ni, Ming; Wang, Linlin; Li, Guibo; Lee, Tom; Zhang, Xiuqing; Yang, Jonathan; Rettig, Matthew; Chung, Leland W K; Yang, Huanming; Li, Ker-Chau; Hou, Yong; Tseng, Hsian-Rong; Hou, Shuang; Xu, Xun; Wang, Jun; Posadas, Edwin M

    2015-12-29

    Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history.

  18. The use of circulating tumor cells in guiding treatment decisions for patients with metastatic castration-resistant prostate cancer.

    PubMed

    Onstenk, Wendy; de Klaver, Willemijn; de Wit, Ronald; Lolkema, Martijn; Foekens, John; Sleijfer, Stefan

    2016-05-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has drastically changed over the past decade with the advent of several new anti-tumor agents. Oncologists increasingly face dilemmas concerning the best treatment sequence for individual patients since most of the novel compounds have been investigated and subsequently positioned either pre- or post-docetaxel. A currently unmet need exists for biomarkers able to guide treatment decisions and to capture treatment resistance at an early stage thereby allowing for an early change to an alternative strategy. Circulating tumor cells (CTCs) have in this context intensively been investigated over the last years. The CTC count, as determined by the CellSearch System (Janssen Diagnostics LLC, Raritan, NJ), is a strong, independent prognostic factor for overall survival in patients with mCRPC at various time points during treatment and, as an early response marker, outperforms traditional response evaluations using serum prostate specific antigen (PSA) levels, scintigraphy as well as radiography. The focus of research is now shifting toward the predictive value of CTCs and the use of the characterization of CTCs to guide the selection of treatments with the highest chance of success for individual patients. Recently, the presence of the androgen receptor splice variant 7 (AR-V7) has been shown to be a promising predictive factor. In this review, we have explored the clinical value of the enumeration and characterization of CTCs for the treatment of mCRPC and have put the results obtained from recent studies investigating the prognostic and predictive value of CTCs into clinical perspective. PMID:27107266

  19. Detection of circulating tumor cells in prostate cancer based on carboxylated graphene oxide modified light addressable potentiometric sensor.

    PubMed

    Gu, Yajun; Ju, Cheng; Li, Yanjun; Shang, Zhiqun; Wu, Yudong; Jia, Yunfang; Niu, Yuanjie

    2015-04-15

    Circulating tumor cells (CTCs) are a group of rare cancer cells that have detached from a primary tumor and circulate in the bloodstream. Herein, light addressable potentiometric sensor (LAPS) was exploited in the label-free detection of CTCs in the prostate cancer. To this end, the mouse anti-human epithelial cell adhesion molecule (anti-EpCAM) monoclonal antibody was selected as the probe to capture CTCs according to our western blot experiments, and therefore the anti-EpCAM was immobilized on the surface of carboxylated graphene oxide (GO-COOH) modified LAPS. Spiking experiments confirmed that LAPS' voltage decreased with the increasing of CTCs' concentration both in phosphate buffer (PBS) and blood, and as few as 10 CTCs in 1ml of blood could be detected, illustrating the high sensitivity of the proposed strategy. The analysis of healthy blood samples revealed no change in electrical signal, confirming the specificity of the system. Ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and immunofluorescent assay (IFA) were conducted to characterize GO-COOH, testify its existence on LAPS and validate CTCs' capturing by anti-EpCAM grafted on GO-COOH modified substrates. It is indicated that LAPS could be a potential platform for CTCs detection and may provide a powerful tool for downstream analysis.

  20. Potent inhibitory effect of δ-tocopherol on prostate cancer cells cultured in vitro and grown as xenograft tumors in vivo.

    PubMed

    Huang, Huarong; He, Yan; Cui, Xiao-Xing; Goodin, Susan; Wang, Hong; Du, Zhi Yun; Li, Dongli; Zhang, Kun; Tony Kong, Ah-Ng; DiPaola, Robert S; Yang, Chung S; Conney, Allan H; Zheng, Xi

    2014-11-01

    In the present study, the effects of δ-tocopherol (δ-T) on growth and apoptosis of human prostate cancer cells were determined and compared with that of α-tocopherol (α-T), a commonly used form of vitamin E. Treatment of human prostate cancer cells with δ-T resulted in strong growth inhibition and apoptosis stimulation, while the effects of α-T were modest. The strong effects of δ-T on the cells were associated with suppression of androgen receptor (AR) activity and decreased level of prostate specific antigen (PSA) that is a downstream target of the AR signaling. In the in vivo study, we found that δ-T had a more potent inhibitory effect on the formation and growth of prostate xenograft tumors than that of α-T. Moreover, δ-T inhibited proliferation and stimulated apoptosis in the tumors. The present study identified δ-T as a better form of vitamin E than α-T for future clinical studies of prostate cancer prevention.

  1. Whole-body irradiation increases the magnitude and persistence of adoptively transferred T cells associated with tumor regression in a mouse model of prostate cancer

    PubMed Central

    Ward-Kavanagh, Lindsay K.; Zhu, Junjia; Cooper, Timothy K.; Schell, Todd D.

    2014-01-01

    Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly non-functional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8+ T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to impact significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progressions observed. Regression was associated with long-term persistence of effector/memory phenotype CD8+ donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells. PMID:24801834

  2. Sanguinarine suppresses prostate tumor growth and inhibits survivin expression.

    PubMed

    Sun, Meng; Lou, Wei; Chun, Jae Yeon; Cho, Daniel S; Nadiminty, Nagalakshmi; Evans, Christopher P; Chen, Jun; Yue, Jiao; Zhou, Qinghua; Gao, Allen C

    2010-03-01

    Prostate cancer is a frequently occurring disease and is the second leading cause of cancer-related deaths of men in the United States. Current treatments have proved inadequate in curing or controlling prostate cancer, and a search for agents for the management of this disease is urgently needed. Survivin plays an important role in both progression of castration-resistant prostate cancer and resistance to chemotherapy. Altered expression of survivin in prostate cancer cells is associated with cancer progression, drug/radiation resistance, poor prognosis, and short patient survival. In the present study, the authors performed a cell-based rapid screen of the Prestwick Chemical Library consisting of 1120 Food and Drug Administration-approved compounds with known safety and bioavailability in humans to identify potential inhibitors of survivin and anticancer agents for prostate cancer. Sanguinarine, a benzophenanthridine alkaloid derived primarily from the bloodroot plant, was identified as a novel inhibitor of survivin that selectively kills prostate cancer cells over "normal" prostate epithelial cells. The authors found that sanguinarine inhibits survivin protein expression through protein degradation via the ubiquitin-proteasome system. Sanguinarine induces apoptosis and inhibits growth of human prostate cancer cells and in vivo tumor formation. Administration of sanguinarine, beginning 3 days after ectopic implantation of DU145 human prostate cancer cells, reduces both tumor weight and volume. In addition, sanguinarine sensitized paclitaxel-mediated growth inhibition and apoptosis, offering a potential therapeutic strategy for overcoming taxol resistance. These results suggest that sanguinarine may be developed as an agent either alone or in combination with taxol for treatment of prostate cancer overexpressing survivin. PMID:21318089

  3. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

    PubMed Central

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  4. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth.

    PubMed

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  5. Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor

    PubMed Central

    Muniyan, Sakthivel; Ingersoll, Matthew A.; Batra, Surinder K.; Lin, Ming-Fong

    2014-01-01

    The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for organ-specific TSGs has emerged as a major strategy in cancer research. Prostate cancer (PCa) has the highest incidence in solid tumors in US males. Cellular prostatic acid phosphatase (cPAcP) is a prostate-specific differentiation antigen. Despite intensive studies over the past several decades on PAcP as a PCa biomarker, the role of cPAcP as a PCa-specific tumor suppressor has only recently been emerged and validated. The mechanism underlying the pivotal role of cPAcP as a prostate-specific TSG is, in part, due to its function as a protein tyrosine phosphatase (PTP) as well as a phosphoinositide phosphatase (PIP), an apparent functional homologue to Phosphatase and tensin homolog (PTEN) in PCa cells. This review is focused on discussing the function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis. We review other phosphatases’ roles as TSGs which regulate oncogenic PI3K signaling in PCa and discuss the functional similarity between cPAcP and PTEN in prostate carcinogenesis. PMID:24747769

  6. Heterogeneous PSMA expression on circulating tumor cells - a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer

    PubMed Central

    Gorges, Tobias M.; Riethdorf, Sabine; von Ahsen, Oliver; Nastały, Paulina; Röck, Katharina; Boede, Marcel; Peine, Sven; Kuske, Andra; Schmid, Elke; Kneip, Christoph; König, Frank; Rudolph, Marion; Pantel, Klaus

    2016-01-01

    The prostate specific membrane antigen (PSMA) is the only clinically validated marker for therapeutic decisions in prostate cancer (PC). Characterization of circulating tumor cells (CTCs) obtained from the peripheral blood of PC patients might provide an alternative to tissue biopsies called “liquid biopsy”. The aim of this study was to develop a reliable assay for the determination of PSMA on CTCs. PSMA expression was analyzed on tissue samples (cohort one, n = 75) and CTCs from metastatic PC patients (cohort two, n = 29). Specific signals for the expression of PSMA could be seen for different prostate cancer cell line cells (PC3, LaPC4, 22Rv1, and LNCaP) by Western blot, immunohistochemistry (IHC), immunocytochemistry (ICC), and FACS. PSMA expression was found to be significantly increased in patients with higher Gleason grade (p = 0.0011) and metastases in lymph nodes (p = 0.0000085) or bone (p = 0.0020) (cohort one). In cohort two, CTCs were detectable in 20 out of 29 samples (69 %, range from 1 - 1000 cells). Twelve out of 20 CTC-positive patients showed PSMA-positive CTCs (67 %, score 1+ to 3+). We found intra-patient heterogeneity regarding the PSMA status between CTCs and the corresponding primary tumors. The results of our study could help to address the question whether treatment decisions based on CTC PSMA profiling will lead to a measurable benefit in clinical outcome for prostate cancer patients in the near future. PMID:27145459

  7. Heterogeneous PSMA expression on circulating tumor cells: a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer.

    PubMed

    Gorges, Tobias M; Riethdorf, Sabine; von Ahsen, Oliver; Nastał Y, Paulina; Röck, Katharina; Boede, Marcel; Peine, Sven; Kuske, Andra; Schmid, Elke; Kneip, Christoph; König, Frank; Rudolph, Marion; Pantel, Klaus

    2016-06-01

    The prostate specific membrane antigen (PSMA) is the only clinically validated marker for therapeutic decisions in prostate cancer (PC). Characterization of circulating tumor cells (CTCs) obtained from the peripheral blood of PC patients might provide an alternative to tissue biopsies called "liquid biopsy". The aim of this study was to develop a reliable assay for the determination of PSMA on CTCs. PSMA expression was analyzed on tissue samples (cohort one, n = 75) and CTCs from metastatic PC patients (cohort two, n = 29). Specific signals for the expression of PSMA could be seen for different prostate cancer cell line cells (PC3, LaPC4, 22Rv1, and LNCaP) by Western blot, immunohistochemistry (IHC), immunocytochemistry (ICC), and FACS. PSMA expression was found to be significantly increased in patients with higher Gleason grade (p = 0.0011) and metastases in lymph nodes (p = 0.0000085) or bone (p = 0.0020) (cohort one). In cohort two, CTCs were detectable in 20 out of 29 samples (69 %, range from 1 - 1000 cells). Twelve out of 20 CTC-positive patients showed PSMA-positive CTCs (67 %, score 1+ to 3+). We found intra-patient heterogeneity regarding the PSMA status between CTCs and the corresponding primary tumors. The results of our study could help to address the question whether treatment decisions based on CTC PSMA profiling will lead to a measurable benefit in clinical outcome for prostate cancer patients in the near future.

  8. Pulmonary tumor thrombotic microangiopathy caused by prostate carcinoma

    PubMed Central

    Kuriyama, Keiko; Kinoshita, Tatsuya; Nagai, Keisuke; Hongyo, Hidenari; Kishimoto, Kentaro; Inoue, Atsuo; Takamura, Manabu; Choi, Soomi

    2016-01-01

    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal malignancy-related condition that involves rapidly progressing hypoxia and pulmonary hypertension. We report a case of PTTM caused by prostate carcinoma, which was diagnosed before autopsy in an 81-year-old man. Computed tomography showed diffuse ground-glass opacities, consolidation, and small nodules in the peripheral regions of the lung. Autopsy showed adenocarcinoma cells embolizing small pulmonary arteries with fibrocellular intimal proliferation, which was consistent with PTTM caused by prostate carcinoma.

  9. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer.

    PubMed

    Miller, M Craig; Doyle, Gerald V; Terstappen, Leon W M M

    2010-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created a concomitant need for new methods to monitor their use. Ideally, these modalities would be noninvasive, be independent of treatment, and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells (CTCs) shed into the blood during metastasis may satisfy this need. We developed the CellSearch System to enumerate CTC from 7.5 mL of venous blood. In this review we compare the outcomes from three prospective multicenter studies investigating the use of CTC to monitor patients undergoing treatment for metastatic breast (MBC), colorectal (MCRC), or prostate cancer (MPC) and review the CTC definition used in these studies. Evaluation of CTC at anytime during the course of disease allows assessment of patient prognosis and is predictive of overall survival.

  10. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer

    PubMed Central

    Miller, M. Craig; Doyle, Gerald V.; Terstappen, Leon W. M. M

    2010-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created a concomitant need for new methods to monitor their use. Ideally, these modalities would be noninvasive, be independent of treatment, and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells (CTCs) shed into the blood during metastasis may satisfy this need. We developed the CellSearch System to enumerate CTC from 7.5 mL of venous blood. In this review we compare the outcomes from three prospective multicenter studies investigating the use of CTC to monitor patients undergoing treatment for metastatic breast (MBC), colorectal (MCRC), or prostate cancer (MPC) and review the CTC definition used in these studies. Evaluation of CTC at anytime during the course of disease allows assessment of patient prognosis and is predictive of overall survival. PMID:20016752

  11. The Tumor Suppressor Prostate Apoptosis Response-4 (Par-4) is Regulated by Mutant IDH1 and Kills Glioma Stem Cells

    PubMed Central

    Liu, Yinxing; Gilbert, Misty R.; Kyprianou, Natasha; Rangnekar, Vivek M.; Horbinski, Craig

    2014-01-01

    Prostate apoptosis response-4 (Par-4) is an endogenous tumor suppressor that selectively induces apoptosis in a variety of cancers. Although it has been the subject of intensive research in other cancers, less is known about its significance in gliomas, including whether it is regulated by key driver mutations, has therapeutic potential against glioma stem cells (GSCs), and/or is a prognostic marker. We found that patient-derived gliomas with mutant isocitrate dehydrogenase 1 have markedly lower Par-4 expression (P < 0.0001), which was validated by The Cancer Genome Atlas dataset (P = 2.0 E-13). The metabolic product of mutant IDH1, D-2-hydroxyglutarate (2-HG), can suppress Par-4 transcription in vitro via inhibition of promoter activity as well as enhanced mRNA degradation, but interestingly not by direct DNA promoter hypermethylation. The Selective for Apoptosis induction in Cancer cells (SAC) domain within Par-4 is highly active against glioma cells, including orthotopic xenografts of patient-derived primary GSCs (P < 0.0001). Among high-grade gliomas that are IDH1 wild-type, those that express more Par-4 have significantly longer median survival (18.4 versus 8.0 months, P = 0.002), a finding confirmed in two external GBM cohorts. Together, these data suggest that Par-4 is a significant component of the mutant IDH1 phenotype, that the activity of 2-HG is complex and can extend beyond direct DNA hypermethylation, and that Par-4 is a promising therapeutic strategy against GSCs. Furthermore, not every effect of mutant IDH1 necessarily contributes to the overall favorable prognosis seen in such tumors; inhibition of Par-4 may be one such effect. PMID:25135281

  12. [Giant phyllodes tumor of the prostate].

    PubMed

    Kawamorita, Naoki; Inaba, Yasuo; Soma, Fumihiko; Katayama, Yousei; Mikami, Yoshiki

    2007-09-01

    A 55 year-old man complained dysuria and visited to our hospital. Physical examination showed firm large mass occupying whole abdomen. Computed tomography (CT) demonstrated a huge retroperitoneal tumor which compressed intestine, liver, kidney, and urinary bladder. We performed extirpation of the tumor (8.6 kg, largest diameter 60 cm) which was composed of myxoid stromal region associated with cystic pattern. Histological examination revealed that the epithelium of the cystic region was positive for prostate specific antigen (PSA) immunostaining. The tumor was diagnosed phyllodes tumor of the prostate (prostatic stromal proliferation of uncertain malignancy, PSTUMP). Serum PSA was declined 3.9 ng/ml to 0.9 ng/ml; however, magnetic resonance imaging (MRI) demonstrated a residual (recurrent?) tumor in the pelvis one month after the operation. We carried out total prostatectomy and residual tumor resection. Phyllodes tumor of the prostate is histologically characterized with biphasic pattern of hyperplastic epithelial cysts and variably cellular spindle stroma. The tumor is considered to have malignant potential and several histological factors including cellularity, atypia, etc. are utilized to assess it. However diagnostic criteria and subsequent treatment modalities are not established thus far. Previous reports showed efficacy of total surgical removal rather than partial resection and that we performed radical extirpation of the entire tumor. Close follow up is needed against this frequently recurrent disease.

  13. Hyperactivated FRS2α-mediated signaling in prostate cancer cells promotes tumor angiogenesis and predicts poor clinical outcome of patients

    PubMed Central

    Liu, Junchen; You, Pan; Chen, Guo; Fu, Xin; Zeng, Xiangfeng; Wang, Cong; Huang, Yanqing; An, Lei; Wan, Xinhai; Navone, Nora; Wu, Chin-Lee; McKeehan, Wallace L.; Zhang, Zhongying; Zhong, Weide; Wang, Fen

    2016-01-01

    Metastasis of tumors requires angiogenesis, which is comprised of multiple biological processes that are regulated by angiogenic factors. The fibroblast growth factor (FGF) is a potent angiogenic factor and aberrant FGF signaling is a common property of tumors. Yet, how the aberration in cancer cells contributes to angiogenesis in the tumor is not well understood. Most studies of its angiogenic signaling mechanisms have been in endothelial cells. FRS2α is an FGF receptor (FGFR)-associated protein required for activation of downstream signaling molecules that include those in the MAP and AKT kinase pathways. Herein we demonstrated that overactivation and hyperactivity of FRS2α, as well as overexpression of cJUN and HIF1α, were positively correlated with vessel density and progression of human prostate cancer (PCa) toward malignancy. We also demonstrate that FGF upregulated production of vascular endothelial growth factor A (VEGF-A) mainly through increasing expression of cJUN and HIF1α. This then promoted recruitment of endothelial cells and vessel formation for the tumor. Tumor angiogenesis in mouse PCa tissues was compromised by tissue specific ablation of Frs2α in prostate epithelial cells. Depletion of Frs2α expression in human PCa cells and in a preclinical xenograft model, MDA PCa 118b, also significantly suppressed tumor angiogenesis accompanied with decreased tumor growth in the bone. The results underscore the angiogenic role of FRS2α-mediated signaling in tumor epithelial cells in angiogenesis. They provide a rationale for treating PCa with inhibitors of FGF signaling. They also demonstrate the potential of overexpressed FRS2α as a biomarker for PCa diagnosis, prognosis, and response to therapies. PMID:26096936

  14. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  15. Prostate Cancer Stem Cells: Research Advances.

    PubMed

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  16. Complex cellular composition of solitary fibrous tumor of the prostate.

    PubMed

    Gharaee-Kermani, Mehrnaz; Mehra, Rohit; Robinson, Dan R; Wei, John T; Macoska, Jill A

    2014-03-01

    Solitary fibrous tumors (SFTs) of the prostate are a rare type of spindle cell neoplasm that can demonstrate either a benign or malignant phenotype. SFTs represent a clinical challenge along with other spindle cell lesions of the prostate in terms of both diagnosis and treatment. The present study shows, for the first time, that SFTs of the prostate and other organs can comprise a mixed population of fibroblast, myofibroblast, and smooth muscle cell types. The highly proliferative component demonstrated a fibroblastic phenotype that readily underwent myofibroblast differentiation on exposure to profibrotic stimuli. Consistent with other recent studies, the prostatic SFTs demonstrated NAB2-STAT6 gene fusions that were also present in the fibroblast, myofibroblast, and smooth muscle cell types of the SFT. The results of these studies suggest that benign and malignant prostatic tumors of mesenchymal origin may be distinguished at the molecular and cellular levels, and that delineation of such defining characteristics may help elucidate the etiology and prognosis of such tumors.

  17. Fangchinoline induced G1/S arrest by modulating expression of p27, PCNA, and cyclin D in human prostate carcinoma cancer PC3 cells and tumor xenograft.

    PubMed

    Wang, Chang-Dong; Huang, Jian-Guo; Gao, Xuan; Li, Yi; Zhou, Shi-Yi; Yan, Xu; Zou, An; Chang, Jun-Li; Wang, Yue-Sheng; Yang, Guang-Xiao; He, Guang-Yuan

    2010-01-01

    Prostate cancer (PCA) is the most common invasive malignancy and the second leading cause of cancer-related death in males. The present study investigated the effects of fangchinoline (Fan), an important compound in Stephania Tetradra S. Moore (Fenfangji) with pain-relieving, blood pressure-depressing, and antibiotic activities, on human PCA. It was found that Fan inhibited human prostate cancer cell lines (PC3) cell proliferation in a dose- and time-dependent manner. Studies of cell-cycle progression showed that the anti-proliferative effect of Fan was associated with an increase in the G1/S phase of PC3 cells. Western blot results indicated that Fan-induced G1/S phase arrest was mediated through inhibition of cyclin-regulated signaling pathways. Fan induced p27 expression and inhibited cyclin D and proliferating cell nuclear antigen (PCNA) expression in PC3 cells. Increased exposure time to Fan caused apoptosis of PC3 cells, which was associated with up-regulation of pro-apoptotic proteins Bax and caspase 3, and down-regulation of anti-apoptotic protein Bcl-2. Furthermore, Fan had anti-tumorigenic activity in vivo, including reduction of tumor volume and pro-apoptotic and anti-proliferative effects in a PC3 nude mouse xenograft. Taking all this together, it can be concluded that Fan is an effective anti-proliferative agent that modulates cell growth regulators in prostate cancer cells. PMID:20208355

  18. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    PubMed

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population. PMID:24551200

  19. Detection of live circulating tumor cells by a class of near-infrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer.

    PubMed

    Shao, Chen; Liao, Chun-Peng; Hu, Peizhen; Chu, Chia-Yi; Zhang, Lei; Bui, Matthew H T; Ng, Christopher S; Josephson, David Y; Knudsen, Beatrice; Tighiouart, Mourad; Kim, Hyung L; Zhau, Haiyen E; Chung, Leland W K; Wang, Ruoxiang; Posadas, Edwin M

    2014-01-01

    Tumor cells are inherently heterogeneous and often exhibit diminished adhesion, resulting in the shedding of tumor cells into the circulation to form circulating tumor cells (CTCs). A fraction of these are live CTCs with potential of metastatic colonization whereas others are at various stages of apoptosis making them likely to be less relevant to understanding the disease. Isolation and characterization of live CTCs may augment information yielded by standard enumeration to help physicians to more accurately establish diagnosis, choose therapy, monitor response, and provide prognosis. We previously reported on a group of near-infrared (NIR) heptamethine carbocyanine dyes that are specifically and actively transported into live cancer cells. In this study, this viable tumor cell-specific behavior was utilized to detect live CTCs in prostate cancer patients. Peripheral blood mononuclear cells (PBMCs) from 40 patients with localized prostate cancer together with 5 patients with metastatic disease were stained with IR-783, the prototype heptamethine cyanine dye. Stained cells were subjected to flow cytometric analysis to identify live (NIR(+)) CTCs from the pool of total CTCs, which were identified by EpCAM staining. In patients with localized tumor, live CTC counts corresponded with total CTC numbers. Higher live CTC counts were seen in patients with larger tumors and those with more aggressive pathologic features including positive margins and/or lymph node invasion. Even higher CTC numbers (live and total) were detected in patients with metastatic disease. Live CTC counts declined when patients were receiving effective treatments, and conversely the counts tended to rise at the time of disease progression. Our study demonstrates the feasibility of applying of this staining technique to identify live CTCs, creating an opportunity for further molecular interrogation of a more biologically relevant CTC population.

  20. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    SciTech Connect

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  1. Quantitative [Fe]MRI of PSMA-targeted SPIONs specifically discriminates among prostate tumor cell types based on their PSMA expression levels.

    PubMed

    Sillerud, Laurel O

    2016-01-01

    We report the development, experimental verification, and application of a general theory called [Fe]MRI (pronounced fem-ree) for the non-invasive, quantitative molecular magnetic resonance imaging (MRI) of added magnetic nanoparticles or other magnetic contrast agents in biological tissues and other sites. [Fe]MRI can easily be implemented on any MRI instrument, requiring only measurements of the background nuclear magnetic relaxation times (T1, T2) of the tissue of interest, injection of the magnetic particles, and the subsequent acquisition of a pair of T1-weighted and T2-weighted images. These images, converted into contrast images, are subtracted to yield a contrast difference image proportional to the absolute nanoparticle, iron concentration, ([Fe]) image. [Fe]MRI was validated with the samples of superparamagnetic iron oxide nanoparticles (SPIONs) both in agarose gels and bound to human prostate tumor cells. The [Fe]MRI measurement of the binding of anti-prostate specific membrane antigen (PSMA) conjugated SPIONs to PSMA-positive LNCaP and PSMA-negative DU145 cells in vitro allowed a facile discrimination among prostate tumor cell types based on their PSMA expression level. The low [Fe] detection limit of ~2 μM for SPIONs allows sensitive MRI of added iron at concentrations considerably below the US Food and Drug Administration's human iron dosage guidelines (<90 μM, 5 mg/kg). PMID:26855574

  2. Quantitative [Fe]MRI of PSMA-targeted SPIONs specifically discriminates among prostate tumor cell types based on their PSMA expression levels

    PubMed Central

    Sillerud, Laurel O

    2016-01-01

    We report the development, experimental verification, and application of a general theory called [Fe]MRI (pronounced fem-ree) for the non-invasive, quantitative molecular magnetic resonance imaging (MRI) of added magnetic nanoparticles or other magnetic contrast agents in biological tissues and other sites. [Fe]MRI can easily be implemented on any MRI instrument, requiring only measurements of the background nuclear magnetic relaxation times (T1, T2) of the tissue of interest, injection of the magnetic particles, and the subsequent acquisition of a pair of T1-weighted and T2-weighted images. These images, converted into contrast images, are subtracted to yield a contrast difference image proportional to the absolute nanoparticle, iron concentration, ([Fe]) image. [Fe]MRI was validated with the samples of superparamagnetic iron oxide nanoparticles (SPIONs) both in agarose gels and bound to human prostate tumor cells. The [Fe]MRI measurement of the binding of anti-prostate specific membrane antigen (PSMA) conjugated SPIONs to PSMA-positive LNCaP and PSMA-negative DU145 cells in vitro allowed a facile discrimination among prostate tumor cell types based on their PSMA expression level. The low [Fe] detection limit of ~2 μM for SPIONs allows sensitive MRI of added iron at concentrations considerably below the US Food and Drug Administration’s human iron dosage guidelines (<90 μM, 5 mg/kg). PMID:26855574

  3. SD-208, a Novel Protein Kinase D Inhibitor, Blocks Prostate Cancer Cell Proliferation and Tumor Growth In Vivo by Inducing G2/M Cell Cycle Arrest

    PubMed Central

    Tandon, Manuj; Salamoun, Joseph M.; Carder, Evan J.; Farber, Elisa; Xu, Shuping; Deng, Fan; Tang, Hua; Wipf, Peter; Wang, Q. Jane

    2015-01-01

    Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment. PMID:25747583

  4. SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest.

    PubMed

    Tandon, Manuj; Salamoun, Joseph M; Carder, Evan J; Farber, Elisa; Xu, Shuping; Deng, Fan; Tang, Hua; Wipf, Peter; Wang, Q Jane

    2015-01-01

    Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment. PMID:25747583

  5. Combination of circulating tumor cell enumeration and tumor marker detection in predicting prognosis and treatment effect in metastatic castration-resistant prostate cancer

    PubMed Central

    Chang, Kun; Kong, Yun-Yi; Dai, Bo; Ye, Ding-Wei; Qu, Yuan-Yuan; Wang, Yue; Jia, Zhong-Wei; Li, Gao-Xiang

    2015-01-01

    Although circulating tumor cell (CTC) enumeration in peripheral blood has already been validated as a reliable biomarker in predicting prognosis in metastatic castration-resistant prostate cancer (mCRPC), patients with favorable CTC counts (CTC < 5/7.5 ml) still experience various survival times. Assays that can reduce patients' risks are urgently needed. In this study, we set up a real-time quantitative polymerase chain reaction (RT-qPCR) method to detect epithelial-mesenchymal transition (EMT) and stem cell gene expression status in peripheral blood to validate whether they could complement CTC enumeration. From January 2013 to June 2014 we collected peripheral blood from 70 mCRPC patients and enumerated CTC in these blood samples using CellSearch system. At the same time, stem cell-related genes (ABCG2, PROM1 and PSCA) and EMT-related genes (TWIST1 and vimentin) were detected in these peripheral blood samples using an RT-qPCR assay. Patient overall survival (OS) and treatment methods were recorded in the follow-up. For patients who received first-line chemotherapy, docetaxel plus prednisone, PSA progression-free survival (PSA-PFS) and PSA response rate were recorded. At the time of analysis, 35 patients had died of prostate cancer with a median follow-up of 16.0 months. Unfavorable CTC enumerations (CTC ≥5/7.5 ml) were predictive of shorter OS (p = 0.01). Also, positive stem cell gene expression indicated poor prognosis in mCRPC patients (p = 0.01). However, EMT gene expression status failed to show any prognostic value in OS (p = 0.78). A multivariate analysis indicated that serum albumin (p = 0.04), ECOG performance status (p < 0.01), CTC enumeration (p = 0.02) and stem cell gene expression status (p = 0.01) were independent prognostic factors for OS. For the 40 patients categorized into the favorable CTC enumeration group, positive stem cell gene expression also suggested poor prognosis (p < 0.01). A combined prognostic model consisting of stem cell gene

  6. Combination of circulating tumor cell enumeration and tumor marker detection in predicting prognosis and treatment effect in metastatic castration-resistant prostate cancer.

    PubMed

    Chang, Kun; Kong, Yun-Yi; Dai, Bo; Ye, Ding-Wei; Qu, Yuan-Yuan; Wang, Yue; Jia, Zhong-Wei; Li, Gao-Xiang

    2015-12-01

    Although circulating tumor cell (CTC) enumeration in peripheral blood has already been validated as a reliable biomarker in predicting prognosis in metastatic castration-resistant prostate cancer (mCRPC), patients with favorable CTC counts (CTC < 5/7.5 ml) still experience various survival times. Assays that can reduce patients' risks are urgently needed. In this study, we set up a real-time quantitative polymerase chain reaction (RT-qPCR) method to detect epithelial-mesenchymal transition (EMT) and stem cell gene expression status in peripheral blood to validate whether they could complement CTC enumeration. From January 2013 to June 2014 we collected peripheral blood from 70 mCRPC patients and enumerated CTC in these blood samples using CellSearch system. At the same time, stem cell-related genes (ABCG2, PROM1 and PSCA) and EMT-related genes (TWIST1 and vimentin) were detected in these peripheral blood samples using an RT-qPCR assay. Patient overall survival (OS) and treatment methods were recorded in the follow-up. For patients who received first-line chemotherapy, docetaxel plus prednisone, PSA progression-free survival (PSA-PFS) and PSA response rate were recorded. At the time of analysis, 35 patients had died of prostate cancer with a median follow-up of 16.0 months. Unfavorable CTC enumerations (CTC ≥5/7.5 ml) were predictive of shorter OS (p = 0.01). Also, positive stem cell gene expression indicated poor prognosis in mCRPC patients (p = 0.01). However, EMT gene expression status failed to show any prognostic value in OS (p = 0.78). A multivariate analysis indicated that serum albumin (p = 0.04), ECOG performance status (p < 0.01), CTC enumeration (p = 0.02) and stem cell gene expression status (p = 0.01) were independent prognostic factors for OS. For the 40 patients categorized into the favorable CTC enumeration group, positive stem cell gene expression also suggested poor prognosis (p < 0.01). A combined prognostic model consisting of stem cell gene

  7. Zinc as an anti-tumor agent in prostate cancer and in other cancers.

    PubMed

    Franklin, Renty B; Costello, Leslie C

    2007-07-15

    Human prostate glandular epithelial cells have the unique capability of accumulating high levels of zinc. This is essential to inhibit m-aconitase activity so that citrate can accumulate for secretion into prostatic fluid, which is a major function of the prostate gland. As a result, the Krebs cycle is truncated with the consequence of the lost ATP production that would result from citrate oxidation. The cellular accumulation of zinc also inhibits mitochondrial terminal oxidation and respiration. In addition to these metabolic effects, zinc accumulation exhibits anti-proliferative effects via its induction of mitochondrial apoptogenesis. Zinc accumulation also inhibits the invasive/migration activities in malignant prostate cells. The anti-proliferative effects and the effects on invasion and migration occur through zinc activation of specific intracellular signaling pathways. Consequently, these effects impose anti-tumor actions by zinc. The ability of prostate cells to accumulate zinc is due to the expression and activity of the zinc uptake transporter, ZIP1. To avoid the anti-tumor effects of zinc, in prostate cancer the malignant prostate cells exhibit a silencing of ZIP1 gene expression accompanied by a depletion of cellular zinc. Therefore we regard ZIP1 as a tumor suppressor gene in prostate cancer. In addition to prostate cells, similar tumor suppressor effects of zinc have been identified in several other types of tumors. PMID:17400177

  8. Targeting prostate cancer stem cells for cancer therapy

    PubMed Central

    Wang, Guocan; Wang, Zhiwei; Sarkar, Fazlul H.; Wei, Wenyi

    2012-01-01

    Prostate cancer (PCa) is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of PCa. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of PCa could become a novel strategy for better treatment of patients diagnosed with PCa. In this review article, we will summarize the most recent advances in the prostate CSCs field, with particular emphasis on targeting prostate CSCs to treat prostate cancer. PMID:22369972

  9. Interleukin-27 Gene Delivery for Modifying Malignant Interactions Between Prostate Tumor and Bone

    PubMed Central

    Zolochevska, Olga; Ellis, Jayne; Parelkar, Sangram; Chan-Seng, Delphine; Emrick, Todd; Wei, Jingna; Patrikeev, Igor; Motamedi, Massoud

    2013-01-01

    Abstract We have examined the role of a novel cytokine, interleukin-27 (IL-27), in mediating interactions between prostate cancer and bone. IL-27 is the most recently characterized member of the family of heterodimeric IL-12-related cytokines and has shown promise in halting tumor growth and mediating tumor regression in several cancer models, including prostate cancer. Prostate cancer is frequently associated with metastases to the bone, where the tumor induces a vicious cycle of communication with osteoblasts and osteoclasts to induce bone lesions, which are a significant cause of pain and skeletal-related events for patients, including a high fracture risk. We describe our findings in the effects of IL-27 gene delivery on prostate cancer cells, osteoblasts, and osteoclasts at different stages of differentiation. We applied the IL-27 gene delivery protocol in vivo utilizing sonoporation (sonodelivery) with the goal of treating and reducing the growth of prostate cancer at a bone metastatic site in vivo. We used a new model of immune-competent prostate adenocarcinoma and characterized the tumor growth reduction, gene expression, and effector cellular profiles. Our results suggest that IL-27 can be effective in reducing tumor growth, can help normalize bone structure, and can promote enhanced accumulation of effector cells in prostate tumors. These results are promising, because they are relevant to developing a novel IL-27-based strategy that can treat both the tumor and the bone, by using this simple and effective sonodelivery method for treating prostate tumor bone metastases. PMID:24028178

  10. Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression

    PubMed Central

    Palmer, T. D.; Martínez, C. H.; Vasquez; Hebron, K.; Jones-Paris, C.; Arnold, S.A.; Chan, S.M.; Chalasani, V.; Gomez-Lemus, J.A.; Williams, A.K.; Chin, J.L.; Giannico, G.A.; Ketova, T.; Lewis, J.D.; Zijlstra, A.

    2013-01-01

    Normal physiology relies on the organization of transmembrane proteins by molecular scaffolds, such as tetraspanins. Oncogenesis frequently involves changes in their organization or expression. The tetraspanin CD151 is thought to contribute to cancer progression through direct interaction with the laminin-binding integrins α3β1 and α6β1. However, this interaction cannot explain the ability of CD151 to control migration in the absence of these integrins or on non-laminin substrates. We demonstrate that CD151 can regulate tumor cell migration without direct integrin binding and that integrin-free CD151 (CD151free) correlates clinically with tumor progression and metastasis. Clustering CD151free through its integrin-binding domain promotes accumulation in areas of cell-cell contact leading to enhanced adhesion and inhibition of tumor cell motility in vitro and in vivo. CD151free clustering is a strong regulator of motility even in the absence of α3 expression but requires PKCα, suggesting that CD151 can control migration independent of its integrin associations. The histological detection of CD151free in prostate cancer correlates with poor patient outcome. When CD151free is present, patients are more likely to recur after radical prostatectomy and progression to metastatic disease is accelerated. Multivariable analysis identifies CD151free as an independent predictor of survival. Moreover, the detection of CD151free can stratify survival among patients with elevated PSA. Cumulatively these studies demonstrate that a subpopulation of CD151 exists on the surface of tumor cells that can regulate migration independent of its integrin partner. The clinical correlation of CD151free with prostate cancer progression suggests that it may contribute to the disease and predict cancer progression. PMID:24220242

  11. Pulmonary tumor thrombotic microangiopathy caused by prostate carcinoma

    PubMed Central

    Kuriyama, Keiko; Kinoshita, Tatsuya; Nagai, Keisuke; Hongyo, Hidenari; Kishimoto, Kentaro; Inoue, Atsuo; Takamura, Manabu; Choi, Soomi

    2016-01-01

    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal malignancy-related condition that involves rapidly progressing hypoxia and pulmonary hypertension. We report a case of PTTM caused by prostate carcinoma, which was diagnosed before autopsy in an 81-year-old man. Computed tomography showed diffuse ground-glass opacities, consolidation, and small nodules in the peripheral regions of the lung. Autopsy showed adenocarcinoma cells embolizing small pulmonary arteries with fibrocellular intimal proliferation, which was consistent with PTTM caused by prostate carcinoma. PMID:27635254

  12. Pulmonary tumor thrombotic microangiopathy caused by prostate carcinoma.

    PubMed

    Katayama, Daisuke; Kuriyama, Keiko; Kinoshita, Tatsuya; Nagai, Keisuke; Hongyo, Hidenari; Kishimoto, Kentaro; Inoue, Atsuo; Takamura, Manabu; Choi, Soomi

    2016-08-01

    Pulmonary tumor thrombotic microangiopathy (PTTM) is a fatal malignancy-related condition that involves rapidly progressing hypoxia and pulmonary hypertension. We report a case of PTTM caused by prostate carcinoma, which was diagnosed before autopsy in an 81-year-old man. Computed tomography showed diffuse ground-glass opacities, consolidation, and small nodules in the peripheral regions of the lung. Autopsy showed adenocarcinoma cells embolizing small pulmonary arteries with fibrocellular intimal proliferation, which was consistent with PTTM caused by prostate carcinoma. PMID:27635254

  13. Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines.

    PubMed

    Vieweg, J; Rosenthal, F M; Bannerji, R; Heston, W D; Fair, W R; Gansbacher, B; Gilboa, E

    1994-04-01

    Adenocarcinoma of the prostate is the most common cancer in men. The majority of cancers are discovered once they have already metastasized, and there is no effective therapy for prostatic cancer at this stage. The use of cytokine-secreting tumor cell preparations as therapeutic vaccines for the treatment of advanced prostate cancer was investigated in the Dunning rat R3327-MatLyLu prostatic tumor model. IL-2 secreting, irradiated, tumor cell preparations were capable of curing animals with s.c. established tumors, and induced immunological memory that protected animals from subsequent tumor challenge. Immunotherapy was less effective when tumors were induced orthotopically, but nevertheless led to improved outcome, significantly delaying, and occasionally preventing, recurrence of tumors after resection of the cancerous prostate. Granulocyte-macrophage colony stimulating factor secreting tumor cell preparations were less effective, and interferon-gamma secreting cells had only a marginal effect. Induction of a potent immune response in tumor bearing animals against the nonimmunogenic MatLyLu tumor supports the view that active immunotherapy warrants further investigation as a potential therapeutic approach to prostate cancer. PMID:8137291

  14. Combination of Quercetin and 2-Methoxyestradiol Enhances Inhibition of Human Prostate Cancer LNCaP and PC-3 Cells Xenograft Tumor Growth

    PubMed Central

    Yang, Feiya; Song, Liming; Wang, Huiping; Wang, Jun; Xu, Zhiqing; Xing, Nianzeng

    2015-01-01

    Quercetin and 2-Methoxyestradiol (2-ME) are promising anti-cancer substances. Our previous in vitro study showed that quercetin synergized with 2-Methoxyestradiol exhibiting increased antiproliferative and proapoptotic activity in both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cell lines. In the present study, we determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer. PMID:26011145

  15. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment

    PubMed Central

    Kong, Dejuan; Heath, Elisabeth; Chen, Wei; Cher, Michael; Powell, Isaac; Heilbrun, Lance; Li, Yiwei; Ali, Shadan; Sethi, Seema; Hassan, Oudai; Hwang, Clara; Gupta, Nilesh; Chitale, Dhananjay; Sakr, Wael A; Menon, Mani; Sarkar, Fazlul H

    2012-01-01

    Androgen Receptor (AR) signaling is critically important during the development and progression of prostate cancer (PCa). The AR signaling is also important in the development of castrate resistant prostate cancer (CRPC) where AR is functional even after androgen deprivation therapy (ADT); however, little is known regarding the transcriptional and functional regulation of AR in PCa. Moreover, treatment options for primary PCa for preventing the occurrence of CRPC is limited; therefore, novel strategy for direct inactivation of AR is urgently needed. In this study, we found loss of miR-34a, which targets AR, in PCa tissue specimens, especially in patients with higher Gleason grade tumors, consistent with increased expression of AR. Forced overexpression of miR-34a in PCa cell lines led to decreased expression of AR and prostate specific antigen (PSA) as well as the expression of Notch-1, another important target of miR-34a. Most importantly, BR-DIM intervention in PCa patients prior to radical prostatectomy showed re-expression of miR-34a, which was consistent with decreased expression of AR, PSA and Notch-1 in PCa tissue specimens. Moreover, BR-DIM intervention led to nuclear exclusion both in PCa cell lines and in tumor tissues. PCa cells treated with BR-DIM and 5-aza-dC resulted in the demethylation of miR-34a promoter concomitant with inhibition of AR and PSA expression in LNCaP and C4-2B cells. These results suggest, for the first time, epigenetic silencing of miR -34a in PCa, which could be reversed by BR-DIM treatment and, thus BR-DIM could be useful for the inactivation of AR in the treatment of PCa. PMID:22347519

  16. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment

    PubMed Central

    Kong, D; Heath, E; Chen, W; Cher, M; Powell, I; Heilbrun, L; Li, Y; Ali, S; Sethi, S; Hassan, O; Hwang, C; Gupta, N; Chitale, D; Sakr, WA; Menon, M; Sarkar, FH

    2014-01-01

    Androgen Receptor (AR) signaling is critically important during the development and progression of prostate cancer (PCa). The AR signaling is also important in the development of castrate resistant prostate cancer (CRPC) where AR is functional even after androgen deprivation therapy (ADT); however, little is known regarding the transcriptional and functional regulation of AR in PCa. Moreover, treatment options for primary PCa for preventing the occurrence of CRPC is limited; therefore, novel strategy for direct inactivation of AR is urgently needed. In this study, we found loss of miR-34a, which targets AR, in PCa tissue specimens, especially in patients with higher Gleason grade tumors, consistent with increased expression of AR. Forced over-expression of miR-34a in PCa cell lines led to decreased expression of AR and prostate specific antigen (PSA) as well as the expression of Notch-1, another important target of miR-34a. Most importantly, BR-DIM intervention in PCa patients prior to radical prostatectomy showed reexpression of miR-34a, which was consistent with decreased expression of AR, PSA and Notch-1 in PCa tissue specimens. Moreover, BR-DIM intervention led to nuclear exclusion both in PCa cell lines and in tumor tissues. PCa cells treated with BR-DIM and 5-aza-dC resulted in the demethylation of miR-34a promoter concomitant with inhibition of AR and PSA expression in LNCaP and C4-2B cells. These results suggest, for the first time, epigenetic silencing of miR-34a in PCa, which could be reversed by BR-DIM treatment and, thus BR-DIM could be useful for the inactivation of AR in the treatment of PCa. PMID:24349627

  17. Histotripsy Focal Ablation of Implanted Prostate Tumor in an ACE-1 Canine Cancer Model

    PubMed Central

    Schade, George R.; Keller, Jill; Ives, Kim; Cheng, Xu; Rosol, Thomas J.; Keller, Evan; Roberts, William W.

    2015-01-01

    Purpose Histotripsy is a nonthermal ablative focused ultrasound technology with possible future applications for prostate cancer focal therapy. We used the ACE-1 prostate tumor model and evaluated the feasibility of treating prostate tumors with histotripsy. Materials and Methods A total of 10 immunosuppressed (cyclosporine treated) canine subjects received transrectal ultrasound guided percutaneous intraprostatic injection of ACE-1 canine prostate cancer cells. Prostates were serially imaged with transrectal ultrasound to monitor tumor growth. Subjects were sham treated (3) or underwent transabdominal histotripsy of the prostate, which targeted implanted tumor and adjacent parenchyma using a 750 kHz piezoelectric ultrasound therapy transducer. Prostates were examined histologically to confirm tumor and the histotripsy treatment effect. Results ACE-1 tumors were visualized on transrectal ultrasound in all 10 subjects within 2 weeks of tumor injection. Lesions demonstrated growth in the prostatic capsule, glandular lobules, fibrous septa and periurethral stroma with significant desmoplastic reaction and areas of central necrosis on histology. Lymph node and/or pulmonary metastases developed in 4 subjects. Ultrasound tumor localization and initiation of cavitation during histotripsy therapy were feasible in all treated subjects. Histologically there was evidence of homogenization of tumor and prostatic parenchyma in all 4 acute subjects with necrosis and hemorrhage in the 3 chronic subjects. Conclusions This study shows the feasibility of histotripsy destruction of prostate tumors in a canine ACE-1 model. It suggests a potential role for histotripsy based focal therapy for prostate cancer. Further studies are needed to better characterize the effects of histotripsy on malignant tissues. PMID:22999534

  18. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    SciTech Connect

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-03-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  19. Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice

    PubMed Central

    Tuomela, Johanna M; Valta, Maija P; Väänänen, Kalervo; Härkönen, Pirkko L

    2008-01-01

    Background Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells in vitro. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis. Methods PC-3 cells (5 × 105) were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c.) or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry. Results Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm3, range: 96–485 mm3, n = 11) in the alendronate-treated mice was 41% of that in the control mice (513 mm3, range: 209–1350 mm3, n = 13) (p < 0.05). In the iliac and sacral lymph nodes of alendronate-treated mice, the proportion of metastatic area was only about 10% of that in control mice (p < 0.001). Immunohistochemical staining of tumor sections showed that alendronate treatment caused a marked decrease in the number of CD34-positive endothelial cells in tumors (p < 0.001) and an increase in that of ISEL positive apoptotic cells in tumors as well as in lymph node metastases (p < 0.05) compared with those in the vehicle-treated mice. The density of m-LYVE-1-stained lymphatic capillaries was not changed. Conclusion Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by

  20. Tumor-suppressive microRNA-218 inhibits cancer cell migration and invasion via targeting of LASP1 in prostate cancer

    PubMed Central

    Nishikawa, Rika; Goto, Yusuke; Sakamoto, Shinichi; Chiyomaru, Takeshi; Enokida, Hideki; Kojima, Satoko; Kinoshita, Takashi; Yamamoto, Noriko; Nakagawa, Masayuki; Naya, Yukio; Ichikawa, Tomohiko; Seki, Naohiko

    2014-01-01

    Our recent studies of the microRNA (miRNA) expression signature in prostate cancer (PCa) indicated that miRNA-218 (miR-218) was significantly downregulated in clinical specimens, suggesting that miR-218 might act as a tumor-suppressive miRNA in PCa. The aim of the present study was to investigate the functional significance of miR-218 in PCa and to identify novel miR-218-regulated cancer pathways and target genes involved in PCa oncogenesis and metastasis. Restoration of miR-218 in PCa cell lines (PC3 and DU145) revealed that this miRNA significantly inhibited cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that LIM and SH3 protein 1 (LASP1) is a potential target of miR-218 regulation. LASP1 is a cytoskeletal scaffold protein that plays critical roles in cytoskeletal organization and cell migration. Luciferase reporter assays showed that miR-218 directly regulated expression of LASP1. Moreover, downregulating the LASP1 gene significantly inhibited cell migration and invasion in cancer cells, and the expression of LASP1 was upregulated in cancer tissues. We conclude that loss of tumor-suppressive miR-218 enhanced cancer cell migration and invasion in PCa through direct regulation of LASP1. Our data on pathways regulated by tumor-suppressive miR-218 provide new insight into the potential mechanisms of PCa oncogenesis and metastasis. PMID:24815849

  1. Regulation of tumor suppressor EAF2 polyubiquitination by ELL1 and SIAH2 in prostate cancer cells

    PubMed Central

    Yu, Xinpei; Ai, Junkui; Cai, Liquan; Jing, Yifeng; Wang, Dan; Dong, Jun; Pascal, Laura E.; Zhang, Jian; Luo, Rongcheng; Wang, Zhou

    2016-01-01

    RNA Polymerase II Elongation Factor (ELL)-associated factor 2 (EAF2) is a tumor suppressor frequently down-regulated in human prostate cancer. We previously reported that its binding partner ELL1 can enhance EAF2 protein stability and activity. Here we show that EAF2 can be polyubiquitinated and its degradation blocked by proteasome inhibitor. Co-immunoprecipitation detected EAF2 binding to SIAH2, an E3 ligase, and SIAH2 overexpression enhanced polyubiquitination of EAF2. Co-transfection of EAF2 binding partner ELL1 blocked EAF2 ubiquitination, providing a mechanism for EAF2 stabilization. Finally, EAF2K81R mutant, which exhibits reduced polyubiquitination and increased stability, was more potent than wild-type EAF2 in apoptosis induction. These findings suggest that SIAH2 is an E3 ligase for EAF2 polyubiquitination and ELL1 can enhance EAF2 level and function by blocking its polyubiquitination. PMID:27058417

  2. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  3. Prostate cancer stem cell biology

    PubMed Central

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan. T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of signaling pathways in prostate CSCs (4) involvement of prostate CSCs in metastasis of PCa and (5) microRNA-mediated regulation of prostate CSCs. Although definitive evidence for the identification and characterization of prostate CSCs still remains unclear, future directions pursuing therapeutic targets of CSCs may provide novel insights for the treatment of PCa. PMID:22402315

  4. Effects of butylated hydroxyanisole and butylated hydroxytoluene on DNA adduct formation and arylamines N-acetyltransferase activity in PC-3 cells (human prostate tumor) in vitro.

    PubMed

    Yeh, C C; Chung, J G; Wu, H C; Li, Y C; Lee, Y M; Hung, C F

    2000-11-01

    The effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on the N-acetyltransferase (NAT) activity and DNA adduct formation in PC-3 cells (human prostate tumor) was studied. PC-3 cells were placed into tissue culture flasks and grown in an incubator as cytosols and intact cells. The BHA or BHT were added to the cytosols and intact cells. The NAT activity in cytosol and intact PC-3 cells were measured by HPLC assaying exhibited for the amounts of N-acetyl-2-aminofluorene and N-acetyl-p-aminobenzoic acid, 2-aminofluorene and p-aminobenzoic acid. The NAT activity in PC-3 cells and cytosols were inhibited by BHA or BHT in a dose-dependent manner; that is, the higher the concentrations of BHA or BHT the higher inhibition of NAT activity. The NAT values of K(m) and V(max) from PC-3 cells were also decreased by BHA or BHT in both cytosols and intact cells. The data also demonstrated concomitant exposure to BHA or BHT decreased AF-DNA adduct formation which was seen in the PC-3 cells. In addition, the formation of DNA adduct was decreased after BHA or BHT exposure. These findings suggested the usefulness of using human cultured PC-3 cells for assessing arylamine-induced DNA adduct formation. Furthermore, the findings illustrate how effectively BHA or BHT reduce the adduct formation.

  5. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Leitão, Roberta G.; Santos, Carlos Antônio N.; Junior, Antônio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T.

    2012-05-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45° incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  6. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    SciTech Connect

    Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T.

    2012-05-17

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  7. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    SciTech Connect

    Cai, Liquan; Wang, Dan; Fisher, Alfred L.; Wang, Zhou

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  8. Energy Restriction-mimetic Agents Induce Apoptosis in Prostate Cancer Cells in Part through Epigenetic Activation of KLF6 Tumor Suppressor Gene Expression*

    PubMed Central

    Chen, Chun-Han; Huang, Po-Hsien; Chu, Po-Chen; Chen, Mei-Chuan; Chou, Chih-Chien; Wang, Dasheng; Kulp, Samuel K.; Teng, Che-Ming; Wang, Qianben; Chen, Ching-Shih

    2011-01-01

    Although energy restriction has been recognized as an important target for cancer prevention, the mechanism by which energy restriction-mimetic agents (ERMAs) mediate apoptosis remains unclear. By using a novel thiazolidinedione-derived ERMA, CG-12 (Wei, S., Kulp, S. K., and Chen, C. S. (2010) J. Biol. Chem. 285, 9780–9791), vis-à-vis 2-deoxyglucose and glucose deprivation, we obtain evidence that epigenetic activation of the tumor suppressor gene Kruppel-like factor 6 (KLF6) plays a role in ERMA-induced apoptosis in LNCaP prostate cancer cells. KLF6 regulates the expression of many proapoptotic genes, and shRNA-mediated KLF6 knockdown abrogated the ability of ERMAs to induce apoptosis. Chromatin immunoprecipitation analysis indicates that this KLF6 transcriptional activation was associated with increased histone H3 acetylation and histone H3 lysine 4 trimethylation occupancy at the promoter region. Several lines of evidence demonstrate that the enhancing effect of ERMAs on these active histone marks was mediated through transcriptional repression of histone deacetylases and H3 lysine 4 demethylases by down-regulating Sp1 expression. First, putative Sp1-binding elements are present in the promoters of the affected histone-modifying enzymes, and luciferase reporter assays indicate that site-directed mutagenesis of these Sp1 binding sites significantly diminished the promoter activities. Second, shRNA-mediated knockdown of Sp1 mimicked the repressive effect of energy restriction on these histone-modifying enzymes. Third, ectopic Sp1 expression protected cells from the repressive effect of CG-12 on these histone-modifying enzymes, thereby abolishing the activation of KLF6 expression. Together, these findings underscore the intricate relationship between energy restriction and epigenetic regulation of tumor suppressor gene expression, which has therapeutic relevance to foster novel strategies for prostate cancer therapy. PMID:21282102

  9. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    SciTech Connect

    Zhang, Jing; Shen, Chengwu; Wang, Lin; Ma, Quanping; Xia, Pingtian; Qi, Mei; Yang, Muyi; Han, Bo

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  10. Tumor clone dynamics in lethal prostate cancer.

    PubMed

    Carreira, Suzanne; Romanel, Alessandro; Goodall, Jane; Grist, Emily; Ferraldeschi, Roberta; Miranda, Susana; Prandi, Davide; Lorente, David; Frenel, Jean-Sebastien; Pezaro, Carmel; Omlin, Aurelius; Rodrigues, Daniel Nava; Flohr, Penelope; Tunariu, Nina; S de Bono, Johann; Demichelis, Francesca; Attard, Gerhardt

    2014-09-17

    It is unclear whether a single clone metastasizes and remains dominant over the course of lethal prostate cancer. We describe the clonal architectural heterogeneity at different stages of disease progression by sequencing serial plasma and tumor samples from 16 ERG-positive patients. By characterizing the clonality of commonly occurring deletions at 21q22, 8p21, and 10q23, we identified multiple independent clones in metastatic disease that are differentially represented in tissue and circulation. To exemplify the clinical utility of our studies, we then showed a temporal association between clinical progression and emergence of androgen receptor (AR) mutations activated by glucocorticoids in about 20% of patients progressing on abiraterone and prednisolone or dexamethasone. Resistant clones showed a complex dynamic with temporal and spatial heterogeneity, suggesting distinct mechanisms of resistance at different sites that emerged and regressed depending on treatment selection pressure. This introduces a management paradigm requiring sequential monitoring of advanced prostate cancer patients with plasma and tumor biopsies to ensure early discontinuation of agents when they become potential disease drivers.

  11. Differential Expression of Matrix Metalloproteinase-2 Expression in Disseminated Tumor Cells and Micrometastasis in Bone Marrow of Patients with Nonmetastatic and Metastatic Prostate Cancer: Theoretical Considerations and Clinical Implications—An Immunocytochemical Study

    PubMed Central

    Murray, Nigel P.; Reyes, Eduardo; Tapia, Pablo; Badínez, Leonardo; Orellana, Nelson

    2012-01-01

    Matrix metalloproteinase-2 (MMP-2) is important in the dissemination and invasion of tumor cells and activates angiogenesis. We present an immunocytochemical study of MMP-2 expression in circulating prostate cells (CPCs), disseminated tumor cells (DTCs), and micrometastasis (mM) in bone marrow of men with prostate cancer. Methods and Patients. Tumor cells were identified with anti-PSA immunocytochemistry. Positive samples underwent processing with anti-MMP-2, its expression was compared with Gleason score, concordance of expression, and metastatic and nonmetastatic disease. Results. 215 men participated, CPCs were detected in 62.7%, DTCs in 62.2%, and mM in 71.4% in nonmetastatic cancer; in metastatic cancer all had CPCs, DTCs, and mM detected. All CPCs and DTCs expressed MMP-2; in mM MMP-2 expression was positively associated with increasing Gleason score. MMP-2 expression in CPCs and DTCs showed concordance. In low grade tumors, mM and surrounding stromal cells were MMP-2 negative, with variable expression in high grade tumors; in metastatic disease, both mM and stromal cells were MMP-2 positive. Conclusions. CPCs and DTCs are different from mM, with inhibition of MMP-2 expression in mM of low grade tumors. With disease progression, MMP-2 expression increases in both mM and surrounding stromal cells, with implications for the use of bisphosphonates or MMP-2 inhibitors. PMID:23227342

  12. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  13. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo.

    PubMed

    Saha, Achinto; Blando, Jorge; Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-05-01

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer.

  14. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo

    PubMed Central

    Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-01-01

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer. PMID:26910370

  15. Linneg Sca-1high CD49fhigh prostate cancer cells derived from the Hi-Myc mouse model are tumor-initiating cells with basal-epithelial characteristics and differentiation potential in vitro and in vivo.

    PubMed

    Saha, Achinto; Blando, Jorge; Fernandez, Irina; Kiguchi, Kaoru; DiGiovanni, John

    2016-05-01

    A cell line was established from ventral prostate (VP) tumors of one-year-old Hi-Myc mice. These cells, called HMVP2 cells, are LinnegSca-1highCD49fhigh with high CD44 and CD29 expression and express CK14, Sca-1 and CD49f (but not CK8), suggesting basal-epithelial characteristics. Furthermore, HMVP2 cells form spheroids and both the cells and spheroids produce tumors in syngeneic mice. After four days of culture, HMVP2 spheroids underwent a gradual transition from LinnegSca-1highCD49fhigh expression to LinnegSca-1lowCD49flow while a subpopulation of the cells retained the original LinnegSca-1highCD49fhigh expression pattern. Additional cell subpopulations expressing Lin positive markers were also present suggesting further differentiation of HMVP2 spheroids. Two additional highly tumorigenic cell lines (HMVP2A1 and HMVP2A2) were isolated from HMVP2 cells after subsequent tumor formation in FVB/N mice. Concurrently, we also established cell lines from the VP of 6 months old Hi-Myc mice (named as HMVP1) and FVB/N mice (called NMVP) having less aggressive growth properties compared to the other three cell lines. AR expression was reduced in HMVP2 cells compared to NMVP and HMVP1 cells and almost absent in HMVP2A1 and HMVP2A2 cells. These cell lines will provide valuable tools for further mechanistic studies as well as preclinical studies to evaluate preventive and/or therapeutic agents for prostate cancer. PMID:26910370

  16. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer.

    PubMed

    Geng, Chuandong; Rajapakshe, Kimal; Shah, Shrijal S; Shou, John; Eedunuri, Vijay Kumar; Foley, Christopher; Fiskus, Warren; Rajendran, Mahitha; Chew, Sue Anne; Zimmermann, Martin; Bond, Richard; He, Bin; Coarfa, Cristian; Mitsiades, Nicholas

    2014-10-01

    Somatic missense mutations in the substrate-binding pocket of the E3 ubiquitin ligase adaptor SPOP are present in up to 15% of human prostate adenocarcinomas, but are rare in other malignancies, suggesting a prostate-specific mechanism of action. SPOP promotes ubiquitination and degradation of several protein substrates, including the androgen receptor (AR) coactivator SRC-3. However, the relative contributions that SPOP substrates may make to the pathophysiology of SPOP-mutant (mt) prostate adenocarcinomas are unknown. Using an unbiased bioinformatics approach, we determined that the gene expression profile of prostate adenocarcinoma cells engineered to express mt-SPOP overlaps greatly with the gene signature of both SRC-3 and AR transcriptional output, with a stronger similarity to AR than SRC-3. This finding suggests that in addition to its SRC-3-mediated effects, SPOP also exerts SRC-3-independent effects that are AR-mediated. Indeed, we found that wild-type (wt) but not prostate adenocarcinoma-associated mutants of SPOP promoted AR ubiquitination and degradation, acting directly through a SPOP-binding motif in the hinge region of AR. In support of these results, tumor xenografts composed of prostate adenocarcinoma cells expressing mt-SPOP exhibited higher AR protein levels and grew faster than tumors composed of prostate adenocarcinoma cells expressing wt-SPOP. Furthermore, genetic ablation of SPOP was sufficient to increase AR protein levels in mouse prostate. Examination of public human prostate adenocarcinoma datasets confirmed a strong link between transcriptomic profiles of mt-SPOP and AR. Overall, our studies highlight the AR axis as the key transcriptional output of SPOP in prostate adenocarcinoma and provide an explanation for the prostate-specific tumor suppressor role of wt-SPOP.

  17. Physical Activity and Prostate Tumor Vessel Morphology: Data from the Health Professionals Follow-up Study.

    PubMed

    Van Blarigan, Erin L; Gerstenberger, John P; Kenfield, Stacey A; Giovannucci, Edward L; Stampfer, Meir J; Jones, Lee W; Clinton, Steven K; Chan, June M; Mucci, Lorelei A

    2015-10-01

    Vigorous activity is associated with lower risk of prostate cancer progression, but the biologic mechanisms are unknown. Exercise affects vascularization of tumors in animal models, and small, irregularly shaped vessels in prostate tumors are associated with fatal prostate cancer. We hypothesized that men who engaged in vigorous activity or brisk walking would have larger, more regularly shaped vessels in their prostate tumors. We prospectively examined whether physical activity was associated with prostate tumor microvessel morphology among 571 men in the Health Professionals Follow-up Study using ordinal logistic regression. Vessel size (μm(2)), vessel lumen regularity (perimeter(2)/4 · Π · area), and microvessel density (number/high-powered field) were ascertained in tumor sections stained for endothelial cell marker CD34. Vigorous activity [metabolic equivalent task (MET) ≥ 6], nonvigorous activity (MET < 6), and walking pace were assessed a median of 14 months before diagnosis. Prostate tumors from men who reported a brisk walking pace (3+ mph) had larger, more regularly shaped blood vessels compared with those of men who walked at a less than brisk pace [vessel regularity OR, 1.59; 95% confidence interval (CI), 1.11-2.27; P value, 0.01; vessel size OR, 1.48; 95% CI, 1.04-2.12; P value, 0.03]. Brisk walking was not associated with microvessel density; total vigorous and nonvigorous activities were not associated with vessel size, shape, or number. Brisk walking may be associated with larger, more regularly shaped vessels in prostate tumors. Additional research elucidating the effect of physical activity on prostate tumor biology is needed. PMID:26276753

  18. Physical activity and prostate tumor vessel morphology: data from the Health Professionals Follow-up Study

    PubMed Central

    Kenfield, Stacey A.; Giovannucci, Edward L.; Stampfer, Meir J.; Jones, Lee W.; Clinton, Steven K.

    2015-01-01

    Vigorous activity is associated with lower risk of prostate cancer progression, but the biologic mechanisms are unknown. Exercise affects vascularization of tumors in animal models, and small, irregularly shaped vessels in prostate tumors are associated with fatal prostate cancer. We hypothesized that men who engaged in vigorous activity or brisk walking would have larger, more regularly shaped vessels in their prostate tumors. We prospectively examined whether physical activity was associated with prostate tumor microvessel morphology among 571 men in the Health Professionals Follow-up Study using ordinal logistic regression. Vessel size (μm2), vessel lumen regularity (perimeter2 / 4 · Π · area), and microvessel density (number per high powered field) were ascertained in tumor sections stained for endothelial cell marker CD34. Vigorous activity [metabolic equivalent task (MET) ≥ 6], non-vigorous activity (MET <6), and walking pace were assessed a median of 14 months prior to diagnosis. Prostate tumors from men who reported a brisk walking pace (3+ mph) had larger, more regularly shaped blood vessels compared to those of men who walked at a less than brisk pace [vessel regularity odds ratio (OR): 1.59; 95% confidence interval (CI): 1.11, 2.27; p-value: 0.01; vessel size OR: 1.48; 95% CI: 1.04, 2.12; p-value: 0.03]. Brisk walking was not associated with microvessel density; total vigorous and non-vigorous activities were not associated with vessel size, shape, or number. Brisk walking may be associated with larger, more regularly shaped vessels in prostate tumors. Additional research elucidating the effect of physical activity on prostate tumor biology is needed. PMID:26276753

  19. Physical Activity and Prostate Tumor Vessel Morphology: Data from the Health Professionals Follow-up Study.

    PubMed

    Van Blarigan, Erin L; Gerstenberger, John P; Kenfield, Stacey A; Giovannucci, Edward L; Stampfer, Meir J; Jones, Lee W; Clinton, Steven K; Chan, June M; Mucci, Lorelei A

    2015-10-01

    Vigorous activity is associated with lower risk of prostate cancer progression, but the biologic mechanisms are unknown. Exercise affects vascularization of tumors in animal models, and small, irregularly shaped vessels in prostate tumors are associated with fatal prostate cancer. We hypothesized that men who engaged in vigorous activity or brisk walking would have larger, more regularly shaped vessels in their prostate tumors. We prospectively examined whether physical activity was associated with prostate tumor microvessel morphology among 571 men in the Health Professionals Follow-up Study using ordinal logistic regression. Vessel size (μm(2)), vessel lumen regularity (perimeter(2)/4 · Π · area), and microvessel density (number/high-powered field) were ascertained in tumor sections stained for endothelial cell marker CD34. Vigorous activity [metabolic equivalent task (MET) ≥ 6], nonvigorous activity (MET < 6), and walking pace were assessed a median of 14 months before diagnosis. Prostate tumors from men who reported a brisk walking pace (3+ mph) had larger, more regularly shaped blood vessels compared with those of men who walked at a less than brisk pace [vessel regularity OR, 1.59; 95% confidence interval (CI), 1.11-2.27; P value, 0.01; vessel size OR, 1.48; 95% CI, 1.04-2.12; P value, 0.03]. Brisk walking was not associated with microvessel density; total vigorous and nonvigorous activities were not associated with vessel size, shape, or number. Brisk walking may be associated with larger, more regularly shaped vessels in prostate tumors. Additional research elucidating the effect of physical activity on prostate tumor biology is needed.

  20. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  1. [Prostate cancer stem cells: advances in current research].

    PubMed

    Wu, Gang; Wu, Deng-long

    2015-02-01

    Prostate cancer is one of the most common malignancies threatening men's health, and the mechanisms underlying its initiation and progression are poorly understood. Last decade has witnessed encouraging progress in the studies of prostate cancer stem cells (PCSCs), which are considered to play important roles in tumor initiation, recurrence and metastasis, castration resistance, and drug resistance. Therefore, a deeper insight into PCSCs is of great significance for the successful management of prostate cancer. This article presents an overview on the location, origin, and markers of PCSCs as well as their potential correlation with tumor metastasis and castration resistance.

  2. Solitary fibrous tumor on needle biopsy and transurethral resection of the prostate: a clinicopathologic study of 13 cases.

    PubMed

    Herawi, Mehsati; Epstein, Jonathan I

    2007-06-01

    One of the least commonly encountered spindle cell tumors seen on prostatic needle biopsy or transurethral resection (TUR) of the prostate is solitary fibrous tumor (SFT). We studied 13 cases of SFTs identified on either prostate needle biopsy (n=9) or TUR of the prostate (n=4). Mean patient age at diagnosis was 63 years (range: 46 to 75 y; median: 65 y). Twelve men presented with urinary tract symptoms and 1 patient was biopsied during work-up of bone metastases. Ten cases were SFTs originating in the prostate, 2 cases arose between the prostate and rectum extending into the prostate (n=2), and 1 case was a pelvic mass without infiltration of the prostate. In 9 cases, a complete tumor resection was attempted by cystoprostatectomy (n=2), radical prostatectomy (n=4), pelvic exenteration (n=2), or pelvic tumor resection (n=1). Enucleation (n=1) and TUR (n=1) were performed in 2 other cases. Tumor sizes ranged from 8.5 to 15 cm in 7 radically resected cases. Mitotic rates were 3 to 5 per 10 high power fields in 5 cases, with the remaining cases having either rare (n=4) or no mitoses (n=4). Seven cases demonstrated areas of necrosis. Based on a combination of increased cellularity, mitotic activity, necrosis, nuclear pleomorphism, and infiltrativeness, 4 prostatic SFTs were malignant, 4 were benign, and 2 were borderline. Of the 3 non-prostatic SFTs, 1 was malignant and 2 were borderline. All tumors but 1 were immunoreactive for CD34 (n=12). Material for additional immunohistochemistry was available for the majority of cases with positive stains for Bcl-2 (11/11), CD99 (7/10), beta-catenin (5/10), and c-kit (0/11). Three SFTs demonstrated >or=10% p53 immunoreactivity including 1 tumor with 50% positivity; and 3 cases had Ki-67 rates of >or=20%. Although all SFTs were initially clinically considered to be of prostatic origin, some of the cases arose in the pelvis with secondary involvement of the prostate. Approximately 50% of prostatic SFTs were malignant. Even in the

  3. [Experience with transrectal ultrasonic studies in patients with prostatic tumors].

    PubMed

    Romics, I; Rüssel, C; Bach, D

    1990-02-18

    The authors present the most typical forms of the prostatic cancer imaged by transrectal ultrasound. They compared the results of investigations of two tumor markers [prostatic specific antigen (PSA), prostatic acid phosphatase (PAP),] the transrectal ultrasound and the rectal palpation. The sensibility of PSA, the ultrasound and the digital investigation were almost the same. The valuability of the transrectal ultrasound investigation in the early diagnosis is limited, but important to determine the stage of the disease, monitoring the process, control of the proper treatment, and in some differential diagnostical problems of the prostate.

  4. Celastrol Suppresses Tumor Cell Growth through Targeting an AR-ERG-NF-κB Pathway in TMPRSS2/ERG Fusion Gene Expressing Prostate Cancer

    PubMed Central

    Cai, Yi; Castro, Patricia; Dakhov, Olga; Shi, Ping; Bai, Yaoxia; Ji, Huixiang; Shen, Wenhao; Wang, Jianghua

    2013-01-01

    The TMPRSS2/ERG (T/E) fusion gene is present in the majority of all prostate cancers (PCa). We have shown previously that NF-kB signaling is highly activated in these T/E fusion expressing cells via phosphorylation of NF-kB p65 Ser536 (p536). We therefore hypothesize that targeting NF-kB signaling may be an efficacious approach for the subgroup of PCas that carry T/E fusions. Celastrol is a well known NF-kB inhibitor, and thus may inhibit T/E fusion expressing PCa cell growth. We therefore evaluated Celastrol’s effects in vitro and in vivo in VCaP cells, which express the T/E fusion gene. VCaP cells were treated with different concentrations of Celastrol and growth inhibition and target expression were evaluated. To test its ability to inhibit growth in vivo, 0.5 mg/kg Celastrol was used to treat mice bearing subcutaneous VCaP xenograft tumors. Our results show Celastrol can significantly inhibit the growth of T/E fusion expressing PCa cells both in vitro and in vivo through targeting three critical signaling pathways: AR, ERG and NF-kB in these cells. When mice received 0.5 mg/kg Celastrol for 4 times/week, significant growth inhibition was seen with no obvious toxicity or significant weight loss. Therefore, Celastrol is a promising candidate drug for T/E fusion expressing PCa. Our findings provide a novel strategy for the targeted therapy which may benefit the more than half of PCa patients who have T/E fusion expressing PCas. PMID:23554889

  5. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  6. Antitumor effects of methotrexate-monoclonal anti-prostatic acid phosphatase antibody conjugate on human prostate tumor

    SciTech Connect

    Deguchi, T.; Chu, T.M.; Leong, S.S.; Horoszewicz, J.S.; Lee, C.L.

    1986-03-01

    Methotrexate (MTX) was conjugated to an IgG/sub 1/ monoclonal antibody (MCA) specific for human prostatic acid phosphatase (PAP) by an active ester method, resulting in a molar ratio of MTX to IgG/sub 1/ of 14. MTX-MCA conjugate retained 94% of free antibody activity and preserved 90% of dihydrofolate reductase inhibitory activity of free MTX. MTX-MCA conjugate was shown to be accumulated in vitro by prostate tumor cells (LNCaP) 1.3 times higher than that of MTX conjugate to normal mouse IgG (NIgG) and 6.2 times higher than that of free MTX. Antitumor activity in vitro exhibited that MTX-MCA conjugate is more effective on inhibition (52%) of /sup 3/H-deoxyuridine incorporation into LNCaP cells than that of MTX-NIgG (39%), but both were less effective than free MTX (70%). The in vivo distribution of /sup 3/H-MTX-MCA conjugate in human prostate tumor xenograft (tumor: blood ratio 5.1) was higher than those of /sup 3/H-MTX-NIgG conjugate (1.1) and of free /sup 3/H-MTX (1.5). Anti-tumor activity in vivo demonstrated that MTX-MCA conjugate retarded the growth of xenografted human prostate tumor greatly and persistently, as compared with the control groups. These results suggested that MTX-monoclonal anti-PAP antibody conjugate represents a potential reagent for immunochemotherapy of human prostate tumor (NIH CA-34536, CA-15437 and ACS CH-269.

  7. Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1.

    PubMed

    Marqués, N; Sesé, M; Cánovas, V; Valente, F; Bermudo, R; de Torres, I; Fernández, Y; Abasolo, I; Fernández, P L; Contreras, H; Castellón, E; Celià-Terrassa, T; Méndez, R; Ramón Y Cajal, S; Thomson, T M; Paciucci, R

    2014-02-27

    Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease. PMID:23455324

  8. Metformin and prostate cancer stem cells: a novel therapeutic target.

    PubMed

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies. PMID:26215782

  9. Metformin and prostate cancer stem cells: a novel therapeutic target.

    PubMed

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies.

  10. Metastatic brain tumor from urothelial carcinoma of the prostatic urethra

    PubMed Central

    Morita, Kohei; Oda, Masashi; Koyanagi, Masaomi; Saiki, Masaaki

    2016-01-01

    Background: Urothelial carcinoma occurs in the bladder, upper urinary tract, and lower urinary tract, including prostatic urethra. A majority of the reported cases of intracranial metastasis from urothelial carcinoma originates from the bladder and upper urinary tract. Brain metastasis from urothelial carcinoma of the prostatic urethra has not yet been reported in the literature. Case Description: A 72-year-old male presented with a metastatic brain tumor and a 3-year history of urothelial carcinoma of the prostatic urethra treated with cystourethrectomy and chemotherapy with gemcitabine-cisplatin. Pathological diagnosis for tumor removal was compatible with metastatic brain tumor from urothelial carcinoma. Conclusion: Brain metastasis from urothelial carcinoma of the prostatic urethra has not yet been reported in the literature. It is an extremely rare case, however, we should be careful of brain metastasis during follow-up for urothelial carcinoma in the lower urinary tract. PMID:27512612

  11. Fibronectin induces MMP2 expression in human prostate cancer cells.

    PubMed

    Moroz, Andrei; Delella, Flávia K; Lacorte, Lívia M; Deffune, Elenice; Felisbino, Sérgio L

    2013-01-25

    High-grade prostate cancers express high levels of matrix metalloproteinases (MMPs), major enzymes involved in tumor invasion and metastasis. However, the tumor cell lines commonly employed for prostate cancer research express only small amounts of MMPs when cultivated as monolayer cultures, in common culture media. The present study was conducted to ascertain whether culture conditions that include fibronectin can alter MMP2 and MMP9 expression by the human prostatic epithelial cell lines RWPE-1, LNCaP and PC-3. These cells were individually seeded at 2×10(4) cells/cm(2), cultivated until they reached 80% confluence, and then exposed for 4h to fibronectin, after which the conditioned medium was analyzed by gelatin zymography. Untreated cells were given common medium. Only RWPE-1 cells express detectable amounts of MMP9 when cultivated in common medium, whereas the addition of fibronectin induced high expression levels of pro and active forms of MMP2 in all tested cell lines. Our findings demonstrate that normal and tumor prostate cell lines express MMP2 activity when in contact with extracellular matrix components or blood plasma proteins such as fibronectin. Future studies of transcriptomes and proteomes in prostate cancer research using these cell lines should not neglect these important conclusions.

  12. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    PubMed

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P < 0.05). Collectively, our findings demonstrate that CNTN1 promotes prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.

  13. Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression.

    PubMed

    Han, Zeqiu; Slack, Rebecca S; Li, Wenping; Papadopoulos, Vassilios

    2003-01-01

    High levels of peripheral-type benzodiazepine receptor (PBR), the alternative-binding site for diazepam, are part of the aggressive human breast cancer cell phenotype in vitro. We examined PBR levels and distribution in normal tissue and tumors from multiple cancer types by immunohistochemistry. Among normal breast tissues, fibroadenomas, primary and metastatic adenocarcinomas, there is a progressive increase in PBR levels parallel to the invasive and metastatic ability of the tumor (p < 0.0001). In colorectal and prostate carcinomas, PBR levels were also higher in tumor than in the corresponding non-tumoral tissues and benign lesions (p < 0.0001). In contrast, PBR was highly concentrated in normal adrenal cortical cells and hepatocytes, whereas in adrenocortical tumors and hepatomas PBR levels were decreased. Moreover, malignant skin tumors showed decreased PBR expression compared with normal skin. These results indicate that elevated PBR expression is not a common feature of aggressive tumors, but rather may be limited to certain cancers, such as those of breast, colon-rectum and prostate tissues, where elevated PBR expression is associated with tumor progression. Thus, we propose that PBR overexpression could serve as a novel prognostic indicator of an aggressive phenotype in breast, colorectal and prostate cancers.

  14. SPOCK1 promotes tumor growth and metastasis in human prostate cancer

    PubMed Central

    Chen, Qi; Yao, Yuan-ting; Xu, Huan; Chen, Yan-bo; Gu, Meng; Cai, Zhi-kang; Wang, Zhong

    2016-01-01

    Prostate cancer is the most diagnosed noncutaneous cancer and ranks as the second leading cause of cancer-related deaths in American males. Metastasis is the primary cause of prostate cancer mortality. Survival rate is only 28% for metastatic patients, but is nearly 100% for patients with localized prostate cancers. Molecular mechanisms that underlie this malignancy remain obscure, and this study investigated the role of SPARC/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) in prostate cancer progression. Initially, we found that SPOCK1 expression was significantly higher in prostate cancer tissues relative to noncancerous tissues. In particular, SPOCK1 expression was also markedly high in metastatic tissues compared with nonmetastatic cancerous tissues. SPOCK1 expression knockdown by specific short hairpin RNA in PC3 cells was significantly inhibited, whereas SPOCK1 overexpression in RWPE-1 cells promoted cell viability, colony formation in vitro, and tumor growth in vivo. Moreover, the SPOCK1 knockdown in PC3 cells was associated with cell cycle arrest in G0/G1 phase, while the SPOCK1 overexpression in RWPE-1 cells induced cell cycle arrest in S phase. The SPOCK1 knockdown in PC3 cells even increased cell apoptosis. SPOCK1 modulation was also observed to affect cancerous cell proliferation and apoptotic processes in the mouse model of prostate cancer. Additionally, the SPOCK1 knockdown decreased, whereas the SPOCK1 overexpression increased cell migration and invasion abilities in vitro. Injection of SPOCK1-depleted PC3 cells significantly decreased metastatic nodules in mouse lungs. These findings suggest that SPOCK1 is a critical mediator of tumor growth and metastasis in prostate cancer. PMID:27486308

  15. SPOCK1 promotes tumor growth and metastasis in human prostate cancer.

    PubMed

    Chen, Qi; Yao, Yuan-Ting; Xu, Huan; Chen, Yan-Bo; Gu, Meng; Cai, Zhi-Kang; Wang, Zhong

    2016-01-01

    Prostate cancer is the most diagnosed noncutaneous cancer and ranks as the second leading cause of cancer-related deaths in American males. Metastasis is the primary cause of prostate cancer mortality. Survival rate is only 28% for metastatic patients, but is nearly 100% for patients with localized prostate cancers. Molecular mechanisms that underlie this malignancy remain obscure, and this study investigated the role of SPARC/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) in prostate cancer progression. Initially, we found that SPOCK1 expression was significantly higher in prostate cancer tissues relative to noncancerous tissues. In particular, SPOCK1 expression was also markedly high in metastatic tissues compared with nonmetastatic cancerous tissues. SPOCK1 expression knockdown by specific short hairpin RNA in PC3 cells was significantly inhibited, whereas SPOCK1 overexpression in RWPE-1 cells promoted cell viability, colony formation in vitro, and tumor growth in vivo. Moreover, the SPOCK1 knockdown in PC3 cells was associated with cell cycle arrest in G0/G1 phase, while the SPOCK1 overexpression in RWPE-1 cells induced cell cycle arrest in S phase. The SPOCK1 knockdown in PC3 cells even increased cell apoptosis. SPOCK1 modulation was also observed to affect cancerous cell proliferation and apoptotic processes in the mouse model of prostate cancer. Additionally, the SPOCK1 knockdown decreased, whereas the SPOCK1 overexpression increased cell migration and invasion abilities in vitro. Injection of SPOCK1-depleted PC3 cells significantly decreased metastatic nodules in mouse lungs. These findings suggest that SPOCK1 is a critical mediator of tumor growth and metastasis in prostate cancer. PMID:27486308

  16. Mast Cells as a Potential Prognostic Marker in Prostate Cancer

    PubMed Central

    Taverna, Gianluigi; Giusti, Guido; Seveso, Mauro; Hurle, Rodolfo; Colombo, Piergiuseppe; Stifter, Sanja

    2013-01-01

    Despite years of intensive investigation that has been made in understanding prostate cancer, it remains one of the major men's health issues and the leading cause of death worldwide. It is now ascertained that prostate cancer emerges from multiple spontaneous and/or inherited alterations that induce changes in expression patterns of genes and proteins that function in complex networks controlling critical cellular events. It is now accepted that several innate and adaptive immune cells, including T- and B-lymphocytes, macrophages, natural killer cells, dendritic cells, neutrophils, eosinophils, and mast cells (MCs), infiltrate the prostate cancer. All of these cells are irregularly scattered within the tumor and loaded with an assorted array of cytokines, chemokines, and inflammatory and cytotoxic mediators. This complex framework reflects the diversity in tumor biology and tumor-host interactions. MCs are well-established effector cells in Immunoglobulin-E (Ig-E) associated immune responses and potent effector cells of the innate immune system; however, their clinical significance in prostate cancer is still debated. Here, these controversies are summarized, focusing on the implications of these findings in understanding the roles of MCs in primary prostate cancer. PMID:24324287

  17. Bone Matrix Osteonectin Limits Prostate Cancer Cell Growth and Survival

    PubMed Central

    Kapinas, Kristina; Lowther, Katie M.; Kessler, Catherine B.; Tilbury, Karissa; Lieberman, Jay R.; Tirnauer, Jennifer S.; Campagnola, Paul; Delany, Anne M.

    2012-01-01

    There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases. PMID:22525512

  18. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review

    PubMed Central

    CEBOTARU, CRISTINA LIGIA; OLTEANU, ELENA DIANA; ANTONE, NICOLETA ZENOVIA; BUIGA, RARES; NAGY, VIORICA

    2016-01-01

    Analysis of circulating tumor cells from patients with different types of cancer is nowadays a fascinating new tool of research and their number is proven to be useful as a prognostic factor in metastatic breast, colon and prostate cancer patients. Studies are going beyond enumeration, exploring the circulating tumor cells to better understand the mechanisms of tumorigenesis, invasion and metastasis and their value for characterization, prognosis and tailoring of treatment. Few studies investigated the prognostic significance of circulating tumor cells in germ cell tumors. In this review, we examine the possible significance of the detection of circulating tumor cells in this setting. PMID:27152069

  19. The Use of a New CellCollector to Isolate Circulating Tumor Cells from the Blood of Patients with Different Stages of Prostate Cancer and Clinical Outcomes - A Proof-of-Concept Study

    PubMed Central

    Theil, Gerit; Fischer, Kersten; Weber, Ekkehard; Medek, Rita; Hoda, Raschid; Lücke, Klaus; Fornara, Paolo

    2016-01-01

    Background and Methods Circulating tumor cells (CTCs) constitute a useful approach for personalized medicine. Nevertheless, the isolation of these cells remains very challenging because they rarely circulate in the blood. Another current problem is the cancer-specific characterization of these cells, which requires a method that allows for the molecular and immunocytochemical profiling of all captured cells. The purpose of our proof of concept study was to investigate the use of a medical wire (CellCollector, GILUPI) to isolate CTCs in the blood of prostate cancer (PCa) patients, which allowed CTCs to be counted and molecularly characterized. Forty-three PCa patients in different stages and 11 control subjects were studied. Some randomized samples were used to detect tumor-associated transcripts, such as prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA) and epidermal growth factor receptor (EGFR), in the isolated CTCs. Results The mean CTC counts were 4.6 CTCs [range, 0–8] in patients with localized PCa, 16.8 CTCs [range, 10–25] in patients with locally advanced PCa, and 26.8 CTCs [range, 0–98] in patients with metastatic PCa. The median follow-up time was 24 months, and there was a significant difference in the cancer-specific survival rates. Patients with CTC counts under 5 CTCs lived significantly longer (p = 0.035) than patients with more than 5 CTCs. We also demonstrated that the captured CTCs could be molecularly characterized. We detected tumor-associated transcripts of EGFR and PSMA in patients with metastatic PCa in 42.8% and 14.3% of the analyzed samples, respectively. Conclusion Our results indicate that the sensitive isolation and molecular characterization of CTCs can be achieved ex vivo using the wire. Patients with more than 5 CTCs had a mortality risk that was 7.0 times greater that of those with fewer than 5 CTCs (hazard ratio 7.0 95%, CI 1.1–29.39). This proof of concept was required for the approval of the use of

  20. Prostate specific antigen gene expression in androgen insensitive prostate carcinoma subculture cell line.

    PubMed

    Tsui, Ke-Hung; Feng, Tsui-Hsia; Chung, Li-Chuan; Chao, Chun-Hsiang; Chang, Phei-Lang; Juang, Horng-Heng

    2008-01-01

    A novel prostate cancer cell line (PC-J) was isolated from an androgen independent non-prostate specific antigen (non-PSA) producing carcinoma cell line. The homologous correlation between PC-J and PC-3 was determined by short tandem repeat analysis. The PSA promoter activity was detected by transient expression assay in the PC-J and LNCaP cells but not in androgen insensitive PC-3 cells. When the PC-J cells were cotransfected with androgen receptor, androgen receptor coactivators and PSA reporter vector cells, the reporter assays indicated that nuclear receptor coactivator 4 (NCOA4) but not androgen receptor activator 24 (ARA24) increased the sensitivity and maximum stimulation of dihydrotestosterone (DHT)-inducing PSA promoter activity. The RT-PCR assays revealed that the expression of several tumor markers, including interleukin-6, prostate stem cell antigen (PSCA), prostate epithelium-specific Ets transcription factor (PDEF) and matriptase, was lower in the PC-J cells than in the PC-3 cells. This cell model elucidated the regulation of PSA expression and enabled comparison of the gene profile at different stages of metastasis in prostatic carcinoma.

  1. Bone marrow mesenchymal stem cells participate in prostate carcinogenesis and promote growth of prostate cancer by cell fusion in vivo

    PubMed Central

    Wang, Jianan; Li, Jian; Ma, Pengde; Ding, Hao; Feng, Guowei; Lin, Dong; Xu, Yong; Yang, Kuo

    2016-01-01

    The tumor microenvironment is comprised of diverse stromal cells that contribute towards tumor progression. As a result, there has been a growing interest in the role of bone marrow derived cells (BMDCs) in cancer progression. However, the role of BMDCs in prostate cancer (PCa) progression still remains unclear. In this study, we established GFP bone marrow transplanted TRAMP and MUN-induced prostate cancer models, in order to investigate the role of BMDCs in prostate cancer progression. By tracing GFP positive cells, we observed that BMDCS were recruited into mouse prostate tissues during tumorigenesis. GFP+/Sca-1+/CD45− BMDCs were significantly increased in the MNU-induced PCa group, as compared to the citrated-treated control group (2.67 ± 0.25% vs 0.67 ± 0.31%, p = 0.006). However, there were no significant differences found in GFP+/Sca-1+/CD45+ cell populations between the two groups (0.27 ± 0.15% vs 0.10 ± 0.10%, p = 0.334). Moreover, co-grafting of bone marrow mesenchymal stem cells (BMMSCs) and RM1 cells were found to promote RM1 tumor growth in vivo, and cell fusion was observed in RM-1+BMMSCs xenografts. Therefore, the data suggests that BMDCs can be recruited to the prostate during carcinogenesis, and that BMMSCs may promote the growth of PCa. PMID:27129157

  2. Improved delivery of polymer therapeutics to prostate tumors using plasmonic photothermal therapy

    NASA Astrophysics Data System (ADS)

    Gormley, Adam Joseph

    When a patient is presented with locally advanced prostate cancer, it is possible to provide treatment with curative intent. However, once the disease has formed distant metastases, the chances of survival drops precipitously. For this reason, proper management of the disease while it remains localized is of critical importance. Treating these malignant cells with cytotoxic agents is effective at cell killing; however, the nonspecific toxicity profiles of these drugs often limit their use until the disease has progressed and symptom palliation is required. Incorporation of these drugs in nanocarriers such as polymers help target them to tumors with a degree of specificity, though major vascular barriers limit their effective delivery. In this dissertation, it is shown that plasmonic photothermal therapy (PPTT) can be used to help overcome some of these barriers and improve delivery to prostate tumors. First, the concept of using PPTT to improve the delivery of macromolecules to solid tumors was validated. This was done by measuring the tumor uptake of albumin. Next, the concept of targeting gold nanorods (GNRs) directly to the tumor's vasculature to better modulate vascular response to heating was tested. Surface conjugation of cyclic RGD (Arg-Gly-Asp) to GNRs improved their binding and uptake to endothelial cells in vitro, but not in vivo. Nontargeted GNRs and PPTT were then utilized to guide the location of polymer therapeutic delivery to prostate tumors. N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, which were designed to be targeted to cells previously exposed to heat shock, were used in this study. Treatment of tumors with PPTT facilitated a burst accumulation of the copolymers over 4 hours, and heat shock targeting to cells allowed them to be retained for an extended period of time. Finally, the tumor localization of the HPMA copolymers following PPTT was evaluated by magnetic resonance imaging (MRI). These results show that PPTT may be a useful tool

  3. Prostate-Specific Membrane Antigen (PSMA) Avid Pancreatic Neuroendocrine Tumor.

    PubMed

    Vamadevan, Shankar; Shetty, Deepa; Le, Ken; Bui, Chuong; Mansberg, Robert; Loh, Han

    2016-10-01

    Ga-PSMA PET/CT is increasingly used to evaluate recurrent prostatic malignancy due to its high specificity. A 75-year-old man with a previous history of treated prostate cancer 3 years earlier presented with rising prostate-specific antigen (PSA) level and underwent Ga-PSMA PET/CT which demonstrated a PSMA-avid focus in the neck of the pancreas. Triple-phase abdominal CT demonstrated enhancement in the arterial phase and to a lesser extent the venous phase of a soft tissue mass in the neck of the pancreas. Cytological and histopathological examination of the soft tissue mass confirmed a low-grade pancreatic neuroendocrine tumor.

  4. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol-A Natural Compound Present in Humulus lupulus L.

    PubMed

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. PMID:27338375

  5. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    PubMed Central

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. PMID:27338375

  6. 5α-reductase inhibition suppresses testosterone-induced initial regrowth of regressed xenograft prostate tumors in animal models.

    PubMed

    Masoodi, Khalid Z; Ramos Garcia, Raquel; Pascal, Laura E; Wang, Yujuan; Ma, Hei M; O'Malley, Katherine; Eisermann, Kurtis; Shevrin, Daniel H; Nguyen, Holly M; Vessella, Robert L; Nelson, Joel B; Parikh, Rahul A; Wang, Zhou

    2013-07-01

    Androgen deprivation therapy (ADT) is the standard treatment for patients with prostate-specific antigen progression after treatment for localized prostate cancer. An alternative to continuous ADT is intermittent ADT (IADT), which allows recovery of testosterone during off-cycles to stimulate regrowth and differentiation of the regressed prostate tumor. IADT offers patients a reduction in side effects associated with ADT, improved quality of life, and reduced cost with no difference in overall survival. Our previous studies showed that IADT coupled with 5α-reductase inhibitor (5ARI), which blocks testosterone conversion to DHT could prolong survival of animals bearing androgen-sensitive prostate tumors when off-cycle duration was fixed. To further investigate this clinically relevant observation, we measured the time course of testosterone-induced regrowth of regressed LuCaP35 and LNCaP xenograft tumors in the presence or absence of a 5ARI. 5α-Reductase inhibitors suppressed the initial regrowth of regressed prostate tumors. However, tumors resumed growth and were no longer responsive to 5α-reductase inhibition several days after testosterone replacement. This finding was substantiated by bromodeoxyuridine and Ki67 staining of LuCaP35 tumors, which showed inhibition of prostate tumor cell proliferation by 5ARI on day 2, but not day 14, after testosterone replacement. 5α-Reductase inhibitors also suppressed testosterone-stimulated proliferation of LNCaP cells precultured in androgen-free media, suggesting that blocking testosterone conversion to DHT can inhibit prostate tumor cell proliferation via an intracrine mechanism. These results suggest that short off-cycle coupled with 5α-reductase inhibition could maximize suppression of prostate tumor growth and, thus, improve potential survival benefit achieved in combination with IADT. PMID:23671262

  7. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  8. H2 relaxin overexpression increases in vivo prostate xenograft tumor growth and angiogenesis.

    PubMed

    Silvertown, Josh D; Ng, Jonathan; Sato, Takeya; Summerlee, Alastair J; Medin, Jeffrey A

    2006-01-01

    Our study reports a preliminary investigation into the role of human H2 relaxin in prostate tumor growth. A luciferase-expressing human prostate cancer cell line, PC-3, was generated and termed PC3-Luc. PC3-Luc cells were transduced with lentiviral vectors engineering the expression of either enhanced green fluorescent protein (eGFP) or both H2 relaxin and eGFP in a bicistronic format. These transduced cells were termed PC3-Luc-eGFP and PC3-Luc-H2/eGFP, respectively. To gauge effects, PC3-Luc-H2/eGFP and PC3-Luc-eGFP cells were injected into NOD/SCID mice and monitored over 6 weeks. PC-3 tumor xenografts overexpressing H2 relaxin exhibited greater tumor volumes compared to control tumors. Circulating H2 relaxin levels in sera increased with the relative size of the tumor, with moderately elevated H2 relaxin levels in mice bearing PC3-Luc-H2/eGFP tumors compared to PC3-Luc-eGFP tumors. Zymographic analysis demonstrated that proMMP-9 enzyme activity was significantly downregulated in H2 relaxin-overexpressing tumors. An advanced angiogenic phenotype was observed in H2 relaxin-overexpressing tumors indicated by greater intratumoral vascularization by immunohistochemical staining of endothelial cells with anti-mouse CD31. Moreover, PC3-Luc-H2/eGFP tumors exhibited increased VEGF transcript by reverse-transcription PCR, compared to basal levels in control animals. Taken together, our study provides the first account of a potential role of H2 relaxin in prostate tumor development.

  9. MicroRNAs targeting prostate cancer stem cells

    PubMed Central

    Fang, Yu-Xiang; Chang, Yun-Li

    2015-01-01

    Prostate cancer is a frequently diagnosed cancer in males with high mortality in the world. As a heterogeneous tissue, the tumor mass contains a subpopulation that is called as cancer stem cells and displays stem-like properties such as self-renewal, epithelial–mesenchymal transition, metastasis, and drug resistance. Cancer stem cells have been identified in variant tumors and shown to be regulated by various molecules including microRNAs. MicroRNAs are a class of small non-coding RNAs, which can influence tumorigenesis via different mechanisms. In this review, we focus on the functions of microRNAs on regulating the stemness of prostate cancer stem cells with different mechanisms and propose the potential roles of microRNAs in prostate cancer therapy. PMID:25966983

  10. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation

    PubMed Central

    Choi, Nahyun; Zhang, Boyu; Zhang, Li; Ittmann, Michael; Xin, Li

    2012-01-01

    Summary The prostate epithelial lineage hierarchy and the cellular origin for prostate cancer remain inadequately defined. Using a lineage tracing approach, we show that adult rodent prostate basal and luminal cells are independently self-sustained in vivo. Disrupting the tumor suppressor Pten in either lineage led to prostate cancer initiation. However, the cellular composition and onset dynamics of the resulting tumors are distinctive. Prostate luminal cells are more responsive to Pten null-induced mitogenic signaling. In contrast, basal cells are resistant to direct transformation. Instead, loss of Pten activity induces the capability of basal cells to differentiate into transformation-competent luminal cells. Our study suggests that deregulation of epithelial differentiation is a critical step for the initiation of prostate cancers of basal cell origin. PMID:22340597

  11. Mitochondrial DNA determines androgen dependence in prostate cancer cell lines

    PubMed Central

    Higuchi, M; Kudo, T; Suzuki, S; Evans, TT; Sasaki, R; Wada, Y; Shirakawa, T; Sawyer, JR; Gotoh, A

    2008-01-01

    Prostate cancer progresses from an androgen-dependent to androgen-independent stage after androgen ablation therapy. Mitochondrial DNA plays a role in cell death and metastatic competence. Further, heteroplasmic large-deletion mitochondrial DNA is verycommon in prostate cancer. To investigate the role of mitochondrial DNA in androgen dependence of prostate cancers, we tested the changes of normal and deleted mitochondrial DNA in accordance with the progression of prostate cancer. We demonstrated that the androgen-independent cell line C4-2, established byinoculation of the androgen-dependent LNCaP cell line into castrated mice, has a greatlyreduced amount of normal mitochondrial DNA and an accumulation of large-deletion DNA. Strikingly, the depletion of mitochondrial DNA from androgen-dependent LNCaP resulted in a loss of androgen dependence. Reconstitution of normal mitochondrial DNA to the mitochondrial DNA-depleted clone restored androgen dependence. These results indicate that mitochondrial DNA determines androgen dependence of prostate cancer cell lines. Further, mitochondrial DNA-deficient cells formed tumors in castrated athymic mice, whereas LNCaP did not. The accumulation of large deletion and depletion of mitochondrial DNA maythus playa role in the development of androgen independence, leading to progression of prostate cancers. PMID:16278679

  12. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model.

    PubMed

    Foster, B A; Gingrich, J R; Kwon, E D; Madias, C; Greenberg, N M

    1997-08-15

    To develop a syngeneic transplantable system to study immunotherapeutic approaches for the treatment of prostate cancer, three cell lines were established from a heterogeneous 32 week tumor of the transgenic adenocarcinoma mouse prostate (TRAMP) model. TRAMP is a transgenic line of C57BL/6 mice harboring a construct comprised of the minimal -426/+28 rat probasin promoter driving prostate-specific epithelial expression of the SV40 large T antigen. TRAMP males develop histological prostatic intraepithelial neoplasia by 8-12 weeks of age that progress to adenocarcinoma with distant metastases by 24-30 weeks of age. The three cell lines (TRAMP-C1, TRAMP-C2, and TRAMP-C3) express cytokeratin, E-cadherin, and androgen receptor by immunohistochemical analysis and do not appear to have a mutated p53. Although TRAMP-C1 and TRAMP-C2 are tumorigenic when grafted into syngeneic C57BL/6 hosts, TRAMP-C3 grows readily in vitro but does not form tumors. The T antigen oncoprotein is not expressed by the cell lines in vitro or in vivo. The rationale for establishing multiple cell lines was to isolate cells representing various stages of cellular transformation and progression to androgen-independent metastatic disease that could be manipulated in vitro and, in combination with the TRAMP model, provide a system to investigate therapeutic interventions, such as immunotherapy prior to clinical trials. PMID:9269988

  13. [Primary prevention of urologic tumors: prostate cancer].

    PubMed

    Schmitz-Dräger, B J; Lümmen, G; Bismarck, E; Fischer, C

    2011-10-01

    Assessment of the role of vitamins and micronutrients in the primary prevention of prostate cancer has changed dramatically in the past 10 years. Efforts to confirm the efficacy of a single substance have not yet succeeded. Therefore, such recommendations should at present no longer be given. Consideration could even be given to discussing whether additional large-scale interventional studies are expedient in this regard. There is still solid evidence that a well-balanced moderate diet, reduced consumption of milk products, and an Asian or Mediterranean diet are not only beneficial for general good health but can also prevent the development of prostate cancer. This should be the focus of further epidemiological studies. Thus, one can certainly speak of a paradigm shift in the prevention of prostate cancer. In contrast, available data on chemoprevention with 5α-reductase inhibitors is unequivocal: intake of finasteride as well as dutasteride correlates with significantly decreased evidence for prostate cancer. Converting this result into urologic practice remains the topic of extensive controversy. PMID:21927877

  14. Chemopreventive Effect of PSP Through Targeting of Prostate Cancer Stem Cell-Like Population

    PubMed Central

    Liu, Ji; Lee, Davy Tak-Wing; Chiu, Yung-Tuen; Ma, Stephanie; Ng, Irene Oi-Lin; Wong, Yong-Chuan; Chan, Franky Leung; Ling, Ming-Tat

    2011-01-01

    Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer. PMID:21603625

  15. Copy Number Alterations in Prostate Tumors and Disease Aggressiveness

    PubMed Central

    Cheng, Iona; Levin, Albert M.; Tai, Yu Chuan; Plummer, Sarah; Chen, Gary K.; Neslund-Dudas, Christine; Casey, Graham; Rybicki, Benjamin A.; Witte, John S.

    2011-01-01

    Detecting genomic alterations that result in more aggressive prostate cancer may improve clinical treatment and our understanding of the biology underlying this common but complex disease. To this end, we undertook a genome-wide copy number alterations (CNAs) study of clinicopathological characteristics of 62 prostate tumors using the Illumina 1M SNP array. The highest overall frequencies of CNAs were on chromosomes 8q (gains), 8p (loss and copy-neutral) and 6q (copy-loss). Combined loss and copy-neutral events were associated with increasing disease grade (p=0.03), stage (p=0.01), and diagnostic PSA (p=0.01). Further evaluation of CNAs using gene ontology identified pathways involved with disease aggressiveness. The ‘regulation of apoptosis’ pathway was associated with stage of disease (p=0.004), while the ‘reproductive cellular process’ pathway was associated with diagnostic PSA (p=0.00038). Specific genes within these pathways exhibited strong associations with clinical characteristics; for example, in the apoptosis pathway BNIP3L was associated with increasing prostate tumor stage (p=0.007). These findings confirm known regions of CNAs in prostate cancer, and localize additional regions and possible genes (e.g., BNIP3L, WWOX, and GATM) that may help clarify the genetic basis of prostate cancer aggressiveness. PMID:21965145

  16. Urology pertinent neuroendocrine tumors: focusing on renal pelvis, bladder, prostate located sympathetic functional paragangliomas

    PubMed Central

    ALBERTI, C.

    2016-01-01

    Urology pertinent neuroendocrine neoplasias are more and more driving to research attractive contributions mainly as regards the urinary tract paragangliomas, besides the prostate cancer neuroendocrine differentiation. About such visceral sympathetic paragangliomas, a considerable attention is aroused by those concerning the renal pelvis, urinary bladder and, particularly, the prostate gland. Essential catecholamine/adrenergic signal-mediated pathophysiological implications and outlined diagnostic approaches are here taken into consideration. Particularly, to reach an accurate functional diagnostic assessment, both plasma and urine catecholamine level tests are required together with 123I or 131I-meta-iodobenzylguanidine (MIBG) scan while 131I-, instead of 123I-, labeled MIBG, proving to be also useful to targeted radionuclide therapy of sympathetic paragangliomas. Nevertheless, a thorough diagnostic confirmation should be obtained by a proper histologic/immunohistochemical study, so that it respectively highlighting the typical “zellballen” cell setting and neuroendocrine tumor cell specific bio-markers such as chromogranin-A, synaptophysin, neuron-specific enolase. Open/laparoscopic/robot-assisted surgical procedures are performed under α1 (doxazosin, prazosin) - and β(propranolol)-adrenergic blockade to avoid the risk of an intraoperative adrenergic signal-triggered hypertensive crisis, what moreover may occur also during cystoscopy and biopsy in case of bladder or prostate paraganglioma. Given a conceivable likeness, about some adrenergic-mediated pathophysiological implications, between prostate paraganglioma and prostate cancer neuroendocrine transdifferentiation – although as regards two obviously different diseases – a reliable pathogenetic matter concerning prostate paraganglioma is requiring novel research approaches. PMID:27381689

  17. Tumor expression of adiponectin receptor 2 and lethal prostate cancer

    PubMed Central

    Fiorentino, Michelangelo; Kelly, Rachel; Gerke, Travis; Jordahl, Kristina; Sinnott, Jennifer A.; Giovannucci, Edward L.; Loda, Massimo; Mucci, Lorelei A.; Finn, Stephen

    2015-01-01

    To investigate the role of adiponectin receptor 2 (AdipoR2) in aggressive prostate cancer we used immunohistochemistry to characterize AdipoR2 protein expression in tumor tissue for 866 men with prostate cancer from the Physicians’ Health Study and the Health Professionals Follow-up Study. AdipoR2 tumor expression was not associated with measures of obesity, pathological tumor stage or prostate-specific antigen (PSA) at diagnosis. However, AdipoR2 expression was positively associated with proliferation as measured by Ki-67 expression quartiles (P-trend < 0.0001), with expression of fatty acid synthase (P-trend = 0.001), and with two measures of angiogenesis (P-trend < 0.1). An inverse association was observed with apoptosis as assessed by the TUNEL assay (P-trend = 0.006). Using Cox proportional hazards regression and controlling for age at diagnosis, Gleason score, year of diagnosis category, cohort and baseline BMI, we identified a statistically significant trend for the association between quartile of AdipoR2 expression and lethal prostate cancer (P-trend = 0.02). The hazard ratio for lethal prostate cancer for the two highest quartiles, as compared to the two lowest quartiles, of AdipoR2 expression was 1.9 (95% confidence interval [CI]: 1.2–3.0). Results were similar when additionally controlling for categories of PSA at diagnosis and Ki-67 expression quartiles. These results strengthen the evidence for the role of AdipoR2 in prostate cancer progression. PMID:25863129

  18. Translationally Controlled Tumor Protein in Prostatic Adenocarcinoma: Correlation with Tumor Grading and Treatment-Related Changes

    PubMed Central

    Rocca, Bruno Jim; Ginori, Alessandro; Barone, Aurora; Calandra, Calogera; Crivelli, Filippo; De Falco, Giulia; Gazaneo, Sara; Tripodi, Sergio; Cevenini, Gabriele; del Vecchio, Maria Teresa; Ambrosio, Maria Raffaella; Tosi, Piero

    2015-01-01

    Prostate cancer is the second leading cause of cancer-related death. The androgen deprivation therapy is the standard treatment for advanced stages. Unfortunately, virtually all tumors become resistant to androgen withdrawal. The progression to castration-resistance is not fully understood, although a recent paper has suggested translationally controlled tumor protein to be implicated in the process. The present study was designed to investigate the role of this protein in prostate cancer, focusing on the correlation between its expression level with tumor differentiation and response to treatment. We retrieved 292 prostatic cancer specimens; of these 153 had been treated only by radical prostatectomy and 139 had undergone radical prostatectomy after neoadjuvant treatment with combined androgen blockade therapy. Non-neoplastic controls were represented by 102 prostatic peripheral zone specimens. In untreated patients, the expression of the protein, evaluated by RT-qPCR and immunohistochemistry, was significantly higher in tumor specimens than in non-neoplastic control, increasing as Gleason pattern and score progressed. In treated prostates, the staining was correlated with the response to treatment. An association between protein expression and the main clinicopathological factors involved in prostate cancer aggressiveness was identified. These findings suggest that the protein may be a promising prognostic factor and a target for therapy. PMID:25667934

  19. Small cell carcinoma of the prostate

    PubMed Central

    Nadal, Rosa; Schweizer, Michael; Kryvenko, Oleksandr N.; Epstein, Jonathan I.; Eisenberger, Mario A.

    2015-01-01

    Pure small-cell carcinoma (SCC) of the prostate is a rare entity and one of the most aggressive malignancies of the prostate. Histologically, prostatic SCCs of the prostate are part of a spectrum of anaplastic tumours of the prostate and are similar to SCCs of the lungs. In most cases, SCC of the prostate is associated with conventional prostatic adenocarcinoma. Both components of these mixed tumours frequently share molecular alterations such as ERG gene rearrangements or AURKA and MYCN amplifications, suggesting a common clonal origin. The clinical behaviour of small-cell prostate carcinomas is characterized by extensive local disease, visceral disease, and low PSA levels despite large metastatic burden. Commonly, the emergence of the SCC occurs in patients with high-grade adenocarcinoma who are often treated with androgen deprivation treatment (ADT). However, SCCs do not usually benefit from ADT. A biopsy of accessible lesions is strongly recommended to identify those with SCC pathological features, as management is undoubtedly affected by this finding. Chemotherapy is the standard approach for treating patients with either localized or advanced prostatic SCC. Despite the emergence of more-aggressive treatment modalities, the prognosis of men with prostatic SCC remains dismal. PMID:24535589

  20. Stem Cell Based Gene Therapy in Prostate Cancer

    PubMed Central

    Lee, Hong Jun; Song, Yun Seob

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations. PMID:25121103

  1. ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer

    PubMed Central

    Holzmann, Christian; Kilch, Tatiana; Kappel, Sven; Armbrüster, Andrea; Jung, Volker; Stöckle, Michael; Bogeski, Ivan; Schwarz, Eva C.; Peinelt, Christine

    2013-01-01

    Labelled 5α-dihydrotestosterone (DHT) binding experiments have shown that expression levels of (yet unidentified) membrane androgen receptors (mAR) are elevated in prostate cancer and correlate with a negative prognosis. However, activation of these receptors which mediate a rapid androgen response can counteract several cancer hallmark functions such as unlimited proliferation, enhanced migration, adhesion and invasion and the inability to induce apoptosis. Here, we investigate the downstream signaling pathways of mAR and identify rapid DHT induced activation of store-operated Ca2+ entry (SOCE) in primary cultures of human prostate epithelial cells (hPEC) from non-tumorous tissue. Consequently, down-regulation of Orai1, the main molecular component of Ca2+ release-activated Ca2+ (CRAC) channels results in an almost complete loss of DHT induced SOCE. We demonstrate that this DHT induced Ca2+ influx via Orai1 is important for rapid androgen triggered prostate specific antigen (PSA) release. We furthermore identified alterations of the molecular components of CRAC channels in prostate cancer. Three lines of evidence indicate that prostate cancer cells down-regulate expression of the Orai1 homolog Orai3: First, Orai3 mRNA expression levels are significantly reduced in tumorous tissue when compared to non-tumorous tissue from prostate cancer patients. Second, mRNA expression levels of Orai3 are decreased in prostate cancer cell lines LNCaP and DU145 when compared to hPEC from healthy tissue. Third, the pharmacological profile of CRAC channels in prostate cancer cell lines and hPEC differ and siRNA based knock-down experiments indicate changed Orai3 levels are underlying the altered pharmacological profile. The cancer-specific composition and pharmacology of CRAC channels identifies CRAC channels as putative targets in prostate cancer therapy. PMID:24240085

  2. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  3. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.

    PubMed

    Abd Elmageed, Zakaria Y; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M; Moparty, Krishnarao; Sikka, Suresh C; Sartor, Oliver; Abdel-Mageed, Asim B

    2014-04-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to downregulation of the large tumor suppressor homolog2 and the programmed cell death protein 4, a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients.

  4. [Basal cell carcinoma of prostate: a report of three cases].

    PubMed

    Liu, Z; Ma, L L; Zhang, S D; Lu, M; Tian, Y; He, Q; Jin, J

    2016-02-18

    To explore the clinical pathological characteristics and improve the recognition in the diagnosis and treatment of basal cell carcinoma (BCC) of prostate. Three cases of BCC of prostate were reported and the relevant literature was reviewed to investigate the diagnosis and treatment of this disease. We analyzed three cases of prostatic BCC. Their ages were within a range of 57 to 83 years. One of them complained of hematuria and two complained of dysuria. All of them presented with prostatic hyperplasia. Two of them presented with high prostate specific antigen (PSA) and one with normal PSA. Case 1 had prostate cancer invasion of bladder, rectal fascia, with lymph node metastasis, bone metastasis and lung metastases. The patient received bladder resection+bilateral ureteral cutaneous ureterostomy+lymph node dissection on November 2, 2014 . Postoperative pathological diagnosis showed BCC. Reexamination of pelvic enhanced MRI in January 8, 2015 suggested pelvic recurrence. Abdominal enhanced CT showed multiple liver metastases and pancreatic metastasis on July 11, 2015. Prostate cancer specific death occurred in October 2015. Case 2 was diagnosed as BCC in prostate biopsy on March 27, 2015. Positron emission tomography and computed tomography (PET-CT) showed pulmonary metastasis and bone metastasis. Then the patient received chemotherapy, endocrine therapy and local radiation therapy. Reexamination of PET-CT on January 11, 2016 showed that the lung metastase tumors and bone metastase tumors were larger than before. Up to January 10, 2016, the patient was still alive. Postoperative pathological changes of transurethral resection of prostate (TURP) in case 3 showed BCC might be considered. The PET-CT suggested residual prostate cancer, which might be associated with bilateral pelvic lymph node metastasis. In April 20, 2016, the review of PET-CT showed pelvic huge irregular hybrid density shadow, about 14.5 cm×10.0 cm×12.9 cm in size, and tumor recurrence was

  5. [Basal cell carcinoma of prostate: a report of three cases].

    PubMed

    Liu, Z; Ma, L L; Zhang, S D; Lu, M; Tian, Y; He, Q; Jin, J

    2016-02-18

    To explore the clinical pathological characteristics and improve the recognition in the diagnosis and treatment of basal cell carcinoma (BCC) of prostate. Three cases of BCC of prostate were reported and the relevant literature was reviewed to investigate the diagnosis and treatment of this disease. We analyzed three cases of prostatic BCC. Their ages were within a range of 57 to 83 years. One of them complained of hematuria and two complained of dysuria. All of them presented with prostatic hyperplasia. Two of them presented with high prostate specific antigen (PSA) and one with normal PSA. Case 1 had prostate cancer invasion of bladder, rectal fascia, with lymph node metastasis, bone metastasis and lung metastases. The patient received bladder resection+bilateral ureteral cutaneous ureterostomy+lymph node dissection on November 2, 2014 . Postoperative pathological diagnosis showed BCC. Reexamination of pelvic enhanced MRI in January 8, 2015 suggested pelvic recurrence. Abdominal enhanced CT showed multiple liver metastases and pancreatic metastasis on July 11, 2015. Prostate cancer specific death occurred in October 2015. Case 2 was diagnosed as BCC in prostate biopsy on March 27, 2015. Positron emission tomography and computed tomography (PET-CT) showed pulmonary metastasis and bone metastasis. Then the patient received chemotherapy, endocrine therapy and local radiation therapy. Reexamination of PET-CT on January 11, 2016 showed that the lung metastase tumors and bone metastase tumors were larger than before. Up to January 10, 2016, the patient was still alive. Postoperative pathological changes of transurethral resection of prostate (TURP) in case 3 showed BCC might be considered. The PET-CT suggested residual prostate cancer, which might be associated with bilateral pelvic lymph node metastasis. In April 20, 2016, the review of PET-CT showed pelvic huge irregular hybrid density shadow, about 14.5 cm×10.0 cm×12.9 cm in size, and tumor recurrence was

  6. Anti-tumor effect of RGD modified PTX loaded liposome on prostatic cancer

    PubMed Central

    Cao, Yunjie; Zhou, Yaojun; Zhuang, Qianfeng; Cui, Li; Xu, Xianlin; Xu, Renfang; He, Xiaozhou

    2015-01-01

    In this study, we report an active targeting liposomal formulation directed by a novel peptide (RGD) that specifically binds to the integrins receptors overexpressed on prostatic cancer cells. The objectives of this study were to evaluate the in vitro and in vivo tumor drug targeting delivery of RGD modified liposomes on PC-3 cells and DU145 cells. The uptake efficiency of RGD-LP was 5.2 times higher than that of LP on PC-3 cells. The uptake efficiency of RGD-LP was 3.2 times higher than that of LP on DU145 cells. The anti-proliferative activity of RGD-LP-PTX against PC-3 cells and DU145 cells were much stronger compared to that of LP-PTX and free PTX, respectively. The tumor spheroids experiment revealed that RGD-LP-PTX was more efficaciously internalized into tumor spheroids than LP in both PC-3 cells and DU145 cells. Compared to LP-PTX and free PTX, RGD-LP-PTX showed the greatest tumor growth inhibitory effect in vivo. In brief, the RGD-LP may be an efficient targeting drug delivery system for prostatic cancer. PMID:26550128

  7. Primary versus castration-resistant prostate cancer: modeling through novel murine prostate cancer cell lines

    PubMed Central

    Chamaa, Farah; Hamdar, Layal; Mouhieddine, Tarek H.; Shayya, Sami; Eid, Assaad; Kobeissy, Firas; Liu, Yen-Nien; Abou-Kheir, Wassim

    2016-01-01

    Cell lines representing the progression of prostate cancer (PC) from an androgen-dependent to an androgen-independent state are scarce. In this study, we used previously characterized prostate luminal epithelial cell line (Plum), under androgen influence, to establish cellular models of PC progression. Cells derived from orthotopic tumors have been isolated to develop an androgen-dependent (PLum-AD) versus an androgen-independent (PLum-AI) model. Upon immunofluorescent, qRT-PCR and Western blot analyses, PLum-AD cells mostly expressed prostate epithelial markers while PLum-AI cells expressed mesenchymal cell markers. Interestingly, both cell lines maintained a population of stem/progenitor cells. Furthermore, our data suggest that both cell lines are tumorigenic; PLum-AD resulted in an adenocarcinoma whereas PLum-AI resulted in a sarcomatoid carcinoma when transplanted subcutaneously in NOD-SCID mice. Finally, gene expression profiles showed enrichment in functions involved in cell migration, apoptosis, as well as neoplasm invasiveness and metastasis in PLum-AI cells. In conclusion, these data suggest that the newly isolated cell lines represent a new in vitro model of androgen-dependent and –independent PC. PMID:27036046

  8. Primary versus castration-resistant prostate cancer: modeling through novel murine prostate cancer cell lines.

    PubMed

    Daoud, Georges; Monzer, Alissar; Bahmad, Hisham; Chamaa, Farah; Hamdar, Layal; Mouhieddine, Tarek H; Shayya, Sami; Eid, Assaad; Kobeissy, Firas; Liu, Yen-Nien; Abou-Kheir, Wassim

    2016-05-17

    Cell lines representing the progression of prostate cancer (PC) from an androgen-dependent to an androgen-independent state are scarce. In this study, we used previously characterized prostate luminal epithelial cell line (Plum), under androgen influence, to establish cellular models of PC progression. Cells derived from orthotopic tumors have been isolated to develop an androgen-dependent (PLum-AD) versus an androgen-independent (PLum-AI) model. Upon immunofluorescent, qRT-PCR and Western blot analyses, PLum-AD cells mostly expressed prostate epithelial markers while PLum-AI cells expressed mesenchymal cell markers. Interestingly, both cell lines maintained a population of stem/progenitor cells. Furthermore, our data suggest that both cell lines are tumorigenic; PLum-AD resulted in an adenocarcinoma whereas PLum-AI resulted in a sarcomatoid carcinoma when transplanted subcutaneously in NOD-SCID mice. Finally, gene expression profiles showed enrichment in functions involved in cell migration, apoptosis, as well as neoplasm invasiveness and metastasis in PLum-AI cells. In conclusion, these data suggest that the newly isolated cell lines represent a new in vitro model of androgen-dependent and -independent PC. PMID:27036046

  9. Impact of Stroma on the Growth, Microcirculation, and Metabolism of Experimental Prostate Tumors

    PubMed Central

    Zechmann, Christian M; Woenne, Eva C; Brix, Gunnar; Radzwill, Nicole; Ilg, Martin; Bachert, Peter; Peschke, Peter; Kirsch, Stefan; Kauczor, Hans-Ulrich; Delorme, Stefan; Semmler, Wolfhard; Kiessling, Fabian

    2007-01-01

    Abstract In prostate cancers (PCa), the formation of malignant stroma may substantially influence tumor phenotype and aggressiveness. Thus, the impact of the orthotopic and subcutaneous implantations of hormone-sensitive (H), hormone-insensitive (HI), and anaplastic (AT1) Dunning PCa in rats on growth, microcirculation, and metabolism was investigated. For this purpose, dynamic contrast-enhanced magnetic resonance imaging and 1H magnetic resonance spectroscopy ([1H]MRS) were applied in combination with histology. Consistent observations revealed that orthotopic H tumors grew significantly slower compared to subcutaneous ones, whereas the growth of HI and AT1 tumors was comparable at both locations. Histologic analysis indicated that glandular differentiation and a close interaction of tumor cells and smooth muscle cells (SMC) were associated with slow tumor growth. Furthermore, there was a significantly lower SMC density in subcutaneous H tumors than in orthotopic H tumors. Perfusion was observed to be significantly lower in orthotopic H tumors than in subcutaneous H tumors. Regional blood volume and permeability-surface area product showed no significant differences between tumor models and their implantation sites. Differences in growth between subcutaneous and orthotopic H tumors can be attributed to tumor-stroma interaction and perfusion. Here, SMC, may stabilize glandular structures and contribute to the maintenance of differentiated phenotype. PMID:17325744

  10. Validation of a dual reporter system for in vivo heat-mediated HSP70 expression in prostate tumors

    NASA Astrophysics Data System (ADS)

    Shetty, Anil; Najjar, Amer; Elliott, Andrew M.; Springer, Adam; Stafford, R. Jason; Diller, Ken; Gelovani, Juri; Hazle, John D.

    2008-02-01

    Minimally invasive thermal therapy is gaining ground as a new treatment modality of prostate tumors. However, further understanding of molecular events like HSP70 expression is required for treatment planning and coordination with chemotherapy and radiation. Metastatic prostate tumor (PC3 MM2) cells, transduced with reporter genes, were utilized to study the expression of HSP70 induced by normal and nanoshell-mediated heating. A correlation was noted between HSP70 expression, cellular viability and heating temperatures. This imaging paradigm can be developed into a PET-MR thermal treatment regimen, which would include dosimetry planning, real time temperature monitoring and post treatment assessment of tumor response at a cellular level.

  11. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    PubMed Central

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  12. ERBB2 increases metastatic potentials specifically in androgen-insensitive prostate cancer cells.

    PubMed

    Tome-Garcia, Jessica; Li, Dan; Ghazaryan, Seda; Shu, Limin; Wu, Lizhao

    2014-01-01

    Despite all the blood-based biomarkers used to monitor prostate cancer patients, prostate cancer remains as the second common cause of cancer mortality in men in the United States. This is largely due to a lack of understanding of the molecular pathways that are responsible for the aggressive forms of prostate cancers, the castrate-resistant prostate cancer and the metastatic prostate cancer. Cell signaling pathways activated by the ERBB2 oncogene or the RAS oncogene are frequently found to be altered in metastatic prostate cancers. To evaluate and define the role of the ERBB2/RAS pathway in prostate cancer metastasis, we have evaluated the impact of ERBB2- or RAS-overexpression on the metastatic potentials for four prostate cancer cell lines derived from tumors with different androgen sensitivities. To do so, we transfected the human DU145, LnCaP, and PC3 prostate cancer cells and the murine Myc-CaP prostate cancer cells with the activated form of ERBB2 or H-RAS and assessed their metastatic potentials by three complementary assays, a wound healing assay, a transwell motility assay, and a transwell invasion assay. We showed that while overexpression of ERBB2 increased the metastatic potential of the androgen-insensitive prostate cancer cells (i.e. PC3 and DU145), it did not affect metastatic potentials of the androgen-sensitive prostate cancer cells (i.e. LnCaP and Myc-CaP). In contrast, overexpression of H-RAS only increased the cell motility of Myc-CaP cells, which overexpress the human c-MYC oncogene. Our data suggest that ERBB2 collaborates with androgen signaling to promote prostate cancer metastasis, and that although RAS is one of the critical downstream effectors of ERBB2, it does not phenocopy ERBB2 for its impact on the metastatic potentials of prostate cancer cell lines. PMID:24937171

  13. Monocyte-Induced Prostate Cancer Cell Invasion is Mediated by Chemokine ligand 2 and Nuclear Factor-κB Activity

    PubMed Central

    Lindholm, Paul F; Sivapurapu, Neela; Jovanovic, Borko; Kajdacsy-Balla, André

    2015-01-01

    Study Background The tumor microenvironment contains inflammatory cells which can influence cancer growth and progression; however the mediators of these effects vary with different cancer types. The mechanisms by which prostate cancer cells communicate with monocytes to promote cancer progression are incompletely understood. This study tested prostate cancer cell and monocyte interactions that lead to increased prostate cancer cell invasion. Methods We analyzed the prostate cancer cell invasion and NF-κB activity and cytokine expression during interaction with monocyte-lineage cells in co-cultures. The roles of monocyte chemotactic factor (MCP-1/CCL2) and NF-κB activity for co-culture induced prostate cancer invasion were tested. Clinical prostate cancer NF-κB expression was analyzed by immunohistochemistry. Results In co-cultures of prostate cancer cell lines with monocyte-lineage cells, (C-C motif) ligand 2 (CCL2) levels were significantly increased when compared with monocytes or cancer cells cultured alone. Prostate cancer cell invasion was induced by recombinant CCL2 in a dose dependent manner, similar to co-cultures with monocytes. The monocyte-induced prostate cancer cell invasion was inhibited by CCL2 neutralizing antibodies and by the CCR2 inhibitor, RS102895. Prostate cancer cell invasion and CCL2 expression induced in the co-cultures was inhibited by Lactacystin and Bay11-7082 NF-κB inhibitors. Prostate cancer cell NF-κB DNA binding activity depended on CCL2 dose and was inhibited by CCL2 neutralizing antibodies. Clinical prostate cancer NF-κB expression correlated with tumor grade. Conclusions Co-cultures with monocyte-lineage cell lines stimulated increased prostate cancer cell invasion through increased CCL2 expression and increased prostate cancer cell NF-κB activity. CCL2 and NF-κB may be useful therapeutic targets to interfere with inflammation-induced prostate cancer invasion. PMID:26317041

  14. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling.

    PubMed

    Schroeder, Anne; Herrmann, Andreas; Cherryholmes, Gregory; Kowolik, Claudia; Buettner, Ralf; Pal, Sumanta; Yu, Hua; Müller-Newen, Gerhard; Jove, Richard

    2014-02-15

    Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.

  15. The Effect of Tumor-Prostate Ratio on Biochemical Recurrence after Radical Prostatectomy

    PubMed Central

    Cho, Sung Yong

    2016-01-01

    Purpose Prostate tumor volume calculated after surgery using pathologic tissue has been shown to be an independent risk factor for biochemical recurrence. Nonetheless, prostate size varies among individuals, regardless of the presence or absence of cancer. We assumed to be lower margin positive rate in the surgical operation, when the prostate volume is larger and the tumor lesion is same. Thus, we defined the tumor-prostate ratio in the ratio of tumor volume to prostate volume. In order to compensate the prostate tumor volume, the effect of tumor-prostate ratio on biochemical recurrence was examined. Materials and Methods This study included 251 patients who underwent open retropubic radical prostatectomy for prostate cancer in a single hospital. We analyzed the effects of tumor volume and tumor-prostate ratio, as well as the effects of known risk factors for biochemical recurrence, on the duration of disease-free survival. Results In the univariate analysis, the risk factors that significantly impacted disease-free survival time were found to be a prostate-specific antigen level ≥10 ng/mL, a tumor volume ≥5 mL, tumor-prostate ratio ≥10%, tumor capsular invasion, lymph node invasion, positive surgical margins, and seminal vesicle invasion. In the multivariate analysis performed to evaluate the risk factors found to be significant in the univariate analysis, positive surgical margins (hazard ratio=3.066) and a tumor density ≥10% (hazard ratio=1.991) were shown to be significant risk factors for biochemical recurrence. Conclusions Tumor-prostate ratio, rather than tumor volume, should be regarded as a significant risk factor for biochemical recurrence. PMID:27574595

  16. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements.

    PubMed

    Hwang, Ji-Eun; Joung, Jae Young; Shin, Seung-Phil; Choi, Moon-Kyung; Kim, Jeong Eun; Kim, Yon Hui; Park, Weon Seo; Lee, Sang-Jin; Lee, Kang Hyun

    2016-03-01

    Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker.

  17. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements.

    PubMed

    Hwang, Ji-Eun; Joung, Jae Young; Shin, Seung-Phil; Choi, Moon-Kyung; Kim, Jeong Eun; Kim, Yon Hui; Park, Weon Seo; Lee, Sang-Jin; Lee, Kang Hyun

    2016-03-01

    Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker. PMID:26723876

  18. SU-E-J-95: Predicting Treatment Outcomes for Prostate Cancer: Irradiation Responses of Prostate Cancer Stem Cells

    SciTech Connect

    Wang, K

    2014-06-01

    Purpose: Most prostate cancers are slow-growing diseases but normally require much higher doses (80Gy) with conventional fractionation radiotherapy, comparing to other more aggressive cancers. This study is to disclose the radiobiological basis of this discrepancy by proposing the concept of prostate cancer stem cells (CSCs) and examining their specific irradiation responses. Methods: There are overwhelming evidences that CSC may keep their stemness, e.g. the competency of cell differentiation, in hypoxic microenvironments and hence become radiation resistive, though the probability is tiny for aggressiveness cancers. Tumor hypoxia used to be considered as an independent reason for poor treatment outcomes, and recent evidences showed that even prostate cancers were also hypoxic though they are very slow-growing. In addition, to achieve comparable outcomes to other much more aggressive cancers, much higher doses (rather than lower doses) are always needed for prostate cancers, regardless of its non-aggressiveness. All these abnormal facts can only be possibly interpreted by the irradiation responses characteristics of prostate CSCs. Results: Both normal cancer cells (NCCs) and CSCs exiting in tumors, in which NCCs are mainly for symptoms whereas killing all CSCs achieves disease-free. Since prostate cancers are slow-growing, the hypoxia in prostate cancers cannot possibly from NCCs, thus it is caused by hypoxic CSCs. However, single hypoxic cell cannot be imaged due to limitation of imaging techniques, unless a large group of hypoxic cells exist together, thus most of CSCs in prostate cancers are virtually hypoxic, i.e. not in working mode because CSCs in proliferating mode have to be normoxic, and this explains why prostate cancers are unaggressive. Conclusion: The fractional dose in conventional radiotherapy (∼2Gy) could only kill NCCs and CSCs in proliferating modes, whereas most CSCs survived fractional treatments since they were hypoxic, thus to eliminate all

  19. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells

    PubMed Central

    Kim, Jayoung; Morley, Samantha; Le, Minh; Bedoret, Denis; Umetsu, Dale T; Di Vizio, Dolores; Freeman, Michael R

    2014-01-01

    The gene encoding the cytoskeletal regulator DIAPH3 is lost at high frequency in metastatic prostate cancer, and DIAPH3 silencing evokes a transition to an amoeboid tumor phenotype in multiple cell backgrounds. This amoeboid transformation is accompanied by increased tumor cell migration, invasion, and metastasis. DIAPH3 silencing also promotes the formation of atypically large (>1 μm) membrane blebs that can be shed as extracellular vesicles (EV) containing bioactive cargo. Whether loss of DIAPH3 also stimulates the release of nano-sized EV (e.g., exosomes) is not established. Here we examined the mechanism of release and potential biological functions of EV shed from DIAPH3-silenced and other prostate cancer cells. We observed that stimulation of LNCaP cells with the prostate stroma-derived growth factor heparin-binding EGF-like growth factor (HB-EGF), combined with p38MAPK inhibition caused EV shedding, a process mediated by ERK1/2 hyperactivation. DIAPH3 silencing in DU145 cells also increased rates of EV production. EV isolated from DIAPH3-silenced cells activated AKT1 and androgen signaling, increased proliferation of recipient tumor cells, and suppressed proliferation of human macrophages and peripheral blood mononuclear cells. DU145 EV contained miR-125a, which suppressed AKT1 expression and proliferation in recipient human peripheral blood mononuclear cells and macrophages. Our findings suggest that EV produced as a result of DIAPH3 loss or growth factor stimulation may condition the tumor microenvironment through multiple mechanisms, including the proliferation of cancer cells and suppression of tumor-infiltrating immune cells. PMID:24423651

  20. Tumor cell metabolism

    PubMed Central

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  1. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  2. Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects.

    PubMed

    Sheikh, Nadeem; Cham, Jason; Zhang, Li; DeVries, Todd; Letarte, Simon; Pufnock, Jeff; Hamm, David; Trager, James; Fong, Lawrence

    2016-07-01

    Sipuleucel-T is an autologous cellular therapy for asymptomatic, or minimally symptomatic, metastatic castrate-resistant prostate cancer, designed to stimulate an immune response against prostate cancer. In a recent clinical trial (NCT00715104), we found that neoadjuvant sipuleucel-T increased the number of activated T cells within the tumor microenvironment. The current analysis examined whether sipuleucel-T altered adaptive T-cell responses by expanding pre-existing T cells or by recruiting new T cells to prostate tissue. Next-generation sequencing of the T-cell receptor (TCR) genes from blood or prostate tissue was used to quantitate and track T-cell clonotypes in these treated subjects with prostate cancer. At baseline, there was a significantly greater diversity of circulating TCR sequences in subjects with prostate cancer compared with healthy donors. Among healthy donors, circulating TCR sequence diversity remained unchanged over the same time interval. In contrast, sipuleucel-T treatment reduced circulating TCR sequence diversity versus baseline as measured by the Shannon index. Interestingly, sipuleucel-T treatment resulted in greater TCR sequence diversity in resected prostate tissue in sipuleucel-T-treated subjects versus tissue of nonsipuleucel-T-treated subjects with prostate cancer. Furthermore, sipuleucel-T increased TCR sequence commonality between blood and resected prostate tissue in treated versus untreated subjects with prostate cancer. The broadening of the TCR repertoire within the prostate tissue supports the hypothesis that sipuleucel-T treatment facilitates the recruitment of T cells into the prostate. Our results highlight the importance of assessing T-cell response to immunotherapy both in the periphery and in tumor tissue. Cancer Res; 76(13); 3711-8. ©2016 AACR.

  3. Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects.

    PubMed

    Sheikh, Nadeem; Cham, Jason; Zhang, Li; DeVries, Todd; Letarte, Simon; Pufnock, Jeff; Hamm, David; Trager, James; Fong, Lawrence

    2016-07-01

    Sipuleucel-T is an autologous cellular therapy for asymptomatic, or minimally symptomatic, metastatic castrate-resistant prostate cancer, designed to stimulate an immune response against prostate cancer. In a recent clinical trial (NCT00715104), we found that neoadjuvant sipuleucel-T increased the number of activated T cells within the tumor microenvironment. The current analysis examined whether sipuleucel-T altered adaptive T-cell responses by expanding pre-existing T cells or by recruiting new T cells to prostate tissue. Next-generation sequencing of the T-cell receptor (TCR) genes from blood or prostate tissue was used to quantitate and track T-cell clonotypes in these treated subjects with prostate cancer. At baseline, there was a significantly greater diversity of circulating TCR sequences in subjects with prostate cancer compared with healthy donors. Among healthy donors, circulating TCR sequence diversity remained unchanged over the same time interval. In contrast, sipuleucel-T treatment reduced circulating TCR sequence diversity versus baseline as measured by the Shannon index. Interestingly, sipuleucel-T treatment resulted in greater TCR sequence diversity in resected prostate tissue in sipuleucel-T-treated subjects versus tissue of nonsipuleucel-T-treated subjects with prostate cancer. Furthermore, sipuleucel-T increased TCR sequence commonality between blood and resected prostate tissue in treated versus untreated subjects with prostate cancer. The broadening of the TCR repertoire within the prostate tissue supports the hypothesis that sipuleucel-T treatment facilitates the recruitment of T cells into the prostate. Our results highlight the importance of assessing T-cell response to immunotherapy both in the periphery and in tumor tissue. Cancer Res; 76(13); 3711-8. ©2016 AACR. PMID:27216195

  4. Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate

    PubMed Central

    Chung, Ivy; Montecinos, Viviana P.; Buttyan, Ralph; Johnson, Candace S.; Smith, Gary J.

    2013-01-01

    Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182–1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous “antiangiogenic” agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients. PMID:23548616

  5. Zinc Ionophore (Clioquinol) Inhibition of Human ZIP1-Deficient Prostate Tumor Growth in the Mouse Ectopic Xenograft Model: A Zinc Approach for the Efficacious Treatment of Prostate Cancer

    PubMed Central

    Franklin, Renty B.; Zou, Jing; Zheng, Yao; Naslund, Michael J.; Costello, Leslie C.

    2016-01-01

    Prostate cancer remains the second leading cause of cancer deaths in males. This is mainly due to the absence of an available efficacious chemotherapy despite decades of research in pursuit of effective treatment approaches. A plausible target for the treatment is the established clinical relationship that the zinc levels in the malignant cells are markedly decreased compared to the normal epithelium in virtually all cases of prostate cancer, and at all stages malignancy. The decrease in zinc results from the downregulation of the functional zinc uptake transporter, ZIP1; which occurs during early development of prostate malignancy. This is an essential requirement for the development of malignancy to prevent the cytotoxic/tumor-suppressor effects of increased zinc on the premalignant and malignant cells. Thus prostate cancer is a ZIP1-deficient malignancy. This relationship provides the basis for a treatment regimen that will facilitate the uptake and accumulation of zinc into the premalignant and malignant cells. In this report we employed a zinc ionophore (clioquinol) approach in the treatment of mice with human ZIP1-deficient prostate tumors (ectopic xenograft model). Clioquinol treatment resulted in 85%inhibition of tumor growth due to the cytotoxic effects of zinc. Coupled with additional results from earlier studies, the compelling evidence provides a plausible approach for the effective treatment of human prostate cancer; including primary site malignancy, hormone-resistant cancer, and metastasis. Additionally, this approach might be effective in preventing the development of malignancy in individuals suspected of presenting with early development of malignancy. Clinical trials are now required in leading to the potential for an efficacious zinc-treatment approach, which is urgently needed for the treatment of prostate cancer. PMID:26878064

  6. Klf5 Deletion Promotes Pten Deletion–Initiated Luminal-Type Mouse Prostate Tumors through Multiple Oncogenic Signaling Pathways12

    PubMed Central

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N.; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-01-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5. PMID:25425963

  7. The Prostate Tumor Microenvironment Exhibits differentially expressed Genes Useful for Diagnosis — EDRN Public Portal

    Cancer.gov

    To develop a multi-site prospective clinical validation trial of the multigene diagnostic signature for the diagnosis of prostate cancer from non tumor containing biopsy tissue. Prostate cancer now affects one in five men in the U.S. It is diagnosed by examination of a biopsy sample of the prostate gland by a pathologist and treatment decisions such as the choice of surgery are usually not made without direct visualization of the presence of cancer by a pathologist. There are about one million such biopsy procedures in the U.S. every year. However about 1-200,000 are ambiguous owing to the absence of tumor but the presence of small changes such as atypical small acinar proliferations (ASAP) or proliferations within otherwise normal glands (PIN, prostate intraepithelial neoplasia) that are highly suspicious for cancer. Studies by the UCI/NCI SPECS project on prostate cancer have led to a new way to diagnosis the presence of prostate cancer in these ambiguous changes. Researchers of the UCI/NCI SPECS project observed that the tissue around a tumor called stroma has many altered gene activities that are caused by molecules secreted by the tumor cells. Indeed these studies revealed that 114 genes exhibited altered activity in stroma near tumor compared to normal stroma. These changes can be used as a “signature” to examine new samples to determine the “presence of-tumor”. Such a test has many applications. Currently ambiguous cases are asked to return for a repeat biopsy in 3 to 12 months – an agonizing period for patients during which they receive no guidance and during which any tumor may continue to grow and spread. Thus, the new test would detect tumor 3 to 12 months prior to conventional practice. This will avoid repeated biopsy procedures. Patients who are positive by the new test may consider whether immediate medical treatment or neo adjuvant treatment is appropriate. In addition the ability to detect presence-of-tumor early will avoid the necessity

  8. Apparent quiescence of the metallothionein gene in the rat ventral prostate: association with cadmium-induced prostate tumors in rats.

    PubMed

    Coogan, T P; Shiraishi, N; Waalkes, M P

    1994-09-01

    Several chronic studies in rats indicating that cadmium exposure can induce tumors of the ventral prostate have recently been completed in our laboratory. In one such study, a single dose of cadmium, s.c., increased prostatic tumor incidence only at doses below 5.0 mumol/kg, the approximate threshold for cadmium-induced testicular damage. In a further study, prostatic tumors were elevated with higher doses of cadmium (30 mumol/kg, s.c.) if testicular damage was prevented by zinc pretreatment. Most recently, we found that dietary cadmium (25 to 200 micrograms/g) also can increase prostatic neoplastic lesions, but these were reduced by zinc-deficient diets. Thus it appears that cadmium produces prostatic tumors only if testicular function is maintained. Furthermore, we find that metallothionein (MT), a protein associated with cadmium tolerance, may be deficient in the rat prostate, and the prostatic MT gene, at least in the ventral lobe, is unresponsive to metal stimuli. In liver, MT gene expression, as assessed by MT-1 mRNA, was quite apparent in control tissue and was induced in a dose-dependent manner 24 hr following cadmium exposure (1 to 10 mumol/kg, s.c.). However, in the ventral prostate very low constitutive levels of MT-1 mRNA were detected and increases did not occur with cadmium exposure. Cadmium concentrations in the ventral prostate were in excess of those that cause significant induction in the liver. In sharp contrast to the gene in the ventral prostate, in the dorsal prostate the MT gene was quite active. The dorsal prostate is not susceptible to cadmium carcinogenesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7843088

  9. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases.

    PubMed

    Romero, Diana; Al-Shareef, Zainab; Gorroño-Etxebarria, Irantzu; Atkins, Stephanie; Turrell, Frances; Chhetri, Jyoti; Bengoa-Vergniory, Nora; Zenzmaier, Christoph; Berger, Peter; Waxman, Jonathan; Kypta, Robert

    2016-01-01

    Dickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-β/Smad signaling. Here, we examined the effects of Dkk-3 on the expression and activity of matrix metalloproteases (MMPs), which mediate the effects of TGF-β on extracellular matrix disassembly during tissue morphogenesis and promote invasion of tumor cells. Silencing of Dkk-3 in prostate epithelial cells resulted in increased expression and enzyme activity of MMP-2 and MMP-9. Inhibition of MMP-9 partially restored normal acinar morphogenesis in Dkk-3-silenced RWPE-1 prostate epithelial cells. In PC3 prostate cancer cells, Dkk-3 inhibited TGF-β-dependent migration and invasion. Inhibition was mediated by the Dkk-3 C-terminal cysteine-rich domain (Cys2), which also inhibited TGF-β-induced expression of MMP9 and MMP13. In contrast, Dkk-3, but not Cys2, increased formation of normal acini in Dkk-3-silenced prostate epithelial cells. These observations highlight a role for Dkk-3 in modulating TGF-β/MMP signals in the prostate, and suggest that the Dkk-3 Cys2 domain can be used as a basis for therapies that target the tumor promoting effects of TGF-β signaling in advanced prostate cancer.

  10. Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist

    PubMed Central

    Rick, Ferenc G.; Abi-Chaker, Andrew; Szalontay, Luca; Perez, Roberto; Jaszberenyi, Miklos; Jayakumar, Arumugam R.; Shamaladevi, Nagarajarao; Szepeshazi, Karoly; Vidaurre, Irving; Halmos, Gabor; Krishan, Awtar; Block, Norman L.; Schally, Andrew V.

    2013-01-01

    Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 μg/d; and a 18.4% reduction with 50 μg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κβ/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH. PMID:23359692

  11. Induced pluripotency of human prostatic epithelial cells.

    PubMed

    Zhao, Hongjuan; Sun, Ning; Young, Sarah R; Nolley, Rosalie; Santos, Jennifer; Wu, Joseph C; Peehl, Donna M

    2013-01-01

    Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that

  12. MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer.

    PubMed

    Koul, Dimpy; Shen, Ruijun; Garyali, Anil; Ke, L D; Liu, Ta-Jen; Yung, W K Alfred

    2002-09-01

    Prostate cancer presents with a broad spectrum of biologic behavior, ranging from being an indolent, incidental finding to an aggressively invasive and metastatic disease. An improved understanding of the events involved in prostate cancer progression is critically important to its diagnosis and staging, as well as to the development of new therapies. Tumor progression, particularly in aggressive and malignant tumors, is associated with the induction of an angiogenic, gene-driven switch. In prostate cancer, one of the most powerful stimulators of angiogenesis is the vascular endothelial growth factor (VEGF). VEGF transcription can be induced by hypoxia through activation of the PI3 kinase pathway and hypoxia-inducible factor alpha. MMAC/PTEN (henceforth referred to as PTEN) is a recently identified tumor suppressor gene residing on chromosome 10q23, which is frequently inactivated in a wide range of human tumors, including advanced prostate cancer. The goal of this study was to determine whether PTEN inhibits angiogenesis by modulating VEGF activity. Our results showed that reintroduction of the PTEN gene into human prostate PC-3 and LNCaP cells decreased VEGF secretion, which was accompanied by various biologic activities, including inhibited endothelial cell growth and migration. PTEN expression also down-regulated VEGF mRNA levels, as detected by RT-PCR analysis. Concomitant with lessened VEGF expression was the reduction of VEGF promoter activity in PTEN-expressing cells. Our findings suggest that PTEN modulates angiogenesis by regulating VEGF expression.

  13. Multiple granular cell tumor.

    PubMed

    Jones, J K; Kuo, T T; Griffiths, C M; Itharat, S

    1980-10-01

    Eleven cases of granular cell tumor were reviewed. In two of the cases multiple sites of involvement were seen. The tumor occurred in the oral cavity in both of these cases and each was initially wrongly diagnosed as squamous cell carcinoma. The most common site was the subcutaneous tissue (nine patients) and the tongue was involved in three cases. In one patient the parotid gland was involved. Eight of the patients were females and three were males; seven were black and four were white. The importance of differentiating between squamous cell carcinoma and granular cell tumor is stressed, as is the need for a simple wide surgical excision. PMID:7421377

  14. Zebrafish Germ Cell Tumors.

    PubMed

    Sanchez, Angelica; Amatruda, James F

    2016-01-01

    Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs. PMID:27165367

  15. Frequently rearranged in advanced T-cell lymphomas-1 demonstrates oncogenic properties in prostate cancer

    PubMed Central

    Zhang, Wei; Xiong, Hua; Zou, Yanmei; Xu, Sanpeng; Quan, Lanping; Yuan, Xianglin; Xu, Ningzhi; Wang, Yihua

    2016-01-01

    Prostate cancer is the fifth most common cause of cancer-associated mortality for males worldwide. Although dysregulation of the β-catenin/T-cell factor (TCF) pathway has been previously reported in prostate cancer, the mechanisms underlying this process remain unknown. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) functions as a positive regulator of the β-catenin/TCF signaling pathway. However, to the best of our knowledge, the molecular association between FRAT1 and the β-catenin/TCF pathway in prostate cancer has not been investigated. In the present study, FRAT1 expression was analyzed in normal prostate tissues and prostate adenocarcinoma samples using publicly available databases, a commercial tissue microarray and immunohistochemistry techniques. In addition, FRAT1 expression levels were altered by overexpression or RNA interference-mediated depletion in prostate cancer cells. The effects of FRAT1 expression on tumor growth were determined using cell growth curves in vitro and xenografts in nude mice in vivo. The effects of FRAT1 on β-catenin/TCF activity were measured using the TOPFLASH reporter assay. FRAT1 was expressed exclusively in the nuclei of normal prostate basal cells, and nuclear FRAT1 was detected in 68% (40/59) of prostate adenocarcinoma samples. In addition, FRAT1 activated the TCF luciferase reporter gene promoter in prostate cancer cells, and was observed to promote the growth of prostate cancer cells in vitro. Furthermore, FRAT1 expression was sufficient to transform NIH3T3 mouse embryonic fibroblast cells and lead to tumor formation in vivo. These results suggest that FRAT1 demonstrates oncogenic properties in prostate cancer, potentially by suppressing the inhibitory effect of nuclear glycogen synthase 3β against β-catenin/TCF activity, thus activating the Wnt/β-catenin signaling pathway and promoting cell growth. PMID:27599661

  16. Frequently rearranged in advanced T‑cell lymphomas‑1 demonstrates oncogenic properties in prostate cancer.

    PubMed

    Zhang, Wei; Xiong, Hua; Zou, Yanmei; Xu, Sanpeng; Quan, Lanping; Yuan, Xianglin; Xu, Ningzhi; Wang, Yihua

    2016-10-01

    Prostate cancer is the fifth most common cause of cancer‑associated mortality for males worldwide. Although dysregulation of the β‑catenin/T‑cell factor (TCF) pathway has been previously reported in prostate cancer, the mechanisms underlying this process remain unknown. Frequently rearranged in advanced T‑cell lymphomas‑1 (FRAT1) functions as a positive regulator of the β‑catenin/TCF signaling pathway. However, to the best of our knowledge, the molecular association between FRAT1 and the β‑catenin/TCF pathway in prostate cancer has not been investigated. In the present study, FRAT1 expression was analyzed in normal prostate tissues and prostate adenocarcinoma samples using publicly available databases, a commercial tissue microarray and immunohistochemistry techniques. In addition, FRAT1 expression levels were altered by overexpression or RNA interference‑mediated depletion in prostate cancer cells. The effects of FRAT1 expression on tumor growth were determined using cell growth curves in vitro and xenografts in nude mice in vivo. The effects of FRAT1 on β‑catenin/TCF activity were measured using the TOPFLASH reporter assay. FRAT1 was expressed exclusively in the nuclei of normal prostate basal cells, and nuclear FRAT1 was detected in 68% (40/59) of prostate adenocarcinoma samples. In addition, FRAT1 activated the TCF luciferase reporter gene promoter in prostate cancer cells, and was observed to promote the growth of prostate cancer cells in vitro. Furthermore, FRAT1 expression was sufficient to transform NIH3T3 mouse embryonic fibroblast cells and lead to tumor formation in vivo. These results suggest that FRAT1 demonstrates oncogenic properties in prostate cancer, potentially by suppressing the inhibitory effect of nuclear glycogen synthase 3β against β‑catenin/TCF activity, thus activating the Wnt/β‑catenin signaling pathway and promoting cell growth. PMID:27599661

  17. Prostate Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Prostate Cancer What is Prostate Cancer? How Tumors Form The body is made up ... the Escape (Esc) button on your keyboard.) How Prostate Cancer Occurs Prostate cancer occurs when a tumor forms ...

  18. A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.

    PubMed

    Yang, Jing; Zhao, Tong-Jun; Yuan, Chang-Qing; Xie, Jing-Hui; Hao, Fang-Fang

    2016-09-01

    Hormone suppression has been the primary modality of treatment for prostate cancer. However long-term androgen deprivation may induce androgen-independent (AI) recurrence. Intermittent androgen suppression (IAS) is a potential way to delay or avoid the AI relapse. Mathematical models of tumor growth and treatment are simple while they are capable of capturing the essence of complicated interactions. Game theory models have analyzed that tumor cells can enhance their fitness by adopting genetically determined survival strategies. In this paper, we consider the survival strategies as the competitive advantage of tumor cells and propose a new model to mimic the prostate tumor growth in IAS therapy. Then we investigate the competition effect in tumor development by numerical simulations. The results indicate that successfully IAS-controlled states can be achieved even though the net growth rate of AI cells is positive for any androgen level. There is crucial difference between the previous models and the new one in the phase diagram of successful and unsuccessful tumor control by IAS administration, which means that the suggestions from the models for medication can be different. Furthermore we introduce quadratic logistic terms to the competition model to simulate the tumor growth in the environment with a finite carrying capacity considering the nutrients or inhibitors. The simulations show that the tumor growth can reach an equilibrium state or an oscillatory state with the net growth rate of AI cells being androgen independent. Our results suggest that the competition and the restraint of a limited environment can enhance the possibility of relapse prevention. PMID:27259386

  19. A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.

    PubMed

    Yang, Jing; Zhao, Tong-Jun; Yuan, Chang-Qing; Xie, Jing-Hui; Hao, Fang-Fang

    2016-09-01

    Hormone suppression has been the primary modality of treatment for prostate cancer. However long-term androgen deprivation may induce androgen-independent (AI) recurrence. Intermittent androgen suppression (IAS) is a potential way to delay or avoid the AI relapse. Mathematical models of tumor growth and treatment are simple while they are capable of capturing the essence of complicated interactions. Game theory models have analyzed that tumor cells can enhance their fitness by adopting genetically determined survival strategies. In this paper, we consider the survival strategies as the competitive advantage of tumor cells and propose a new model to mimic the prostate tumor growth in IAS therapy. Then we investigate the competition effect in tumor development by numerical simulations. The results indicate that successfully IAS-controlled states can be achieved even though the net growth rate of AI cells is positive for any androgen level. There is crucial difference between the previous models and the new one in the phase diagram of successful and unsuccessful tumor control by IAS administration, which means that the suggestions from the models for medication can be different. Furthermore we introduce quadratic logistic terms to the competition model to simulate the tumor growth in the environment with a finite carrying capacity considering the nutrients or inhibitors. The simulations show that the tumor growth can reach an equilibrium state or an oscillatory state with the net growth rate of AI cells being androgen independent. Our results suggest that the competition and the restraint of a limited environment can enhance the possibility of relapse prevention.

  20. CCR5 receptor antagonists block metastasis to bone of v-Src-oncogene-transformed metastatic prostate cancer cell lines

    PubMed Central

    Sicoli, Daniela; Jiao, Xuanmao; Ju, Xiaoming; Velasco-Velazquez, Marco; Ertel, Adam; Addya, Sankar; Li, Zhiping; Ando, Sebastiano; Fatatis, Alessandro; Paudyal, Bishnuhari; Cristofanilli, Massimo; Thakur, Mathew L.; Lisanti, Michael P; Pestell, Richard G.

    2014-01-01

    Src family kinases (SFKs) integrate signal transduction for multiple receptors, regulating cellular proliferation invasion and metastasis in human cancer. Although Src is rarely mutated in human prostate cancer, SFK activity is increased in the majority of human prostate cancers. In order to determine the molecular mechanisms governing prostate cancer bone metastasis, FVB murine prostate epithelium was transduced with oncogenic v-Src. The prostate cancer cell lines metastasized in FVB mice to brain and bone. Gene expression profiling of the tumors identified activation of a CCR5 signaling module when the prostate epithelial cells (PEC) lines were grown in vivo vs. tissue cultures. The whole body, bone and brain metastatic prostate cancer burden was reduced by oral CCR5 antagonist. Clinical trials of CCR5 inhibitors may warrant consideration in patients with CCR5 activation in their tumors. PMID:25452256

  1. Suppression of casein kinase 2 sensitizes tumor cells to antitumor TRAIL therapy by regulating the phosphorylation and localization of p65 in prostate cancer.

    PubMed

    Gang, Xiaokun; Wang, Yao; Wang, Yingdi; Zhao, Yu; Ding, Liya; Zhao, Jingwen; Sun, Lin; Wang, Guixia

    2015-09-01

    In the United States, prostate cancer (PCa) is the most commonly diagnosed cancer in males. For PCa at the late hormone-refractory stage, substantial improvement in treatment strategies is critically needed. TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent, but both intrinsic and acquired resistance to TRAIL poses a huge problem in establishing clinically effective TRAIL therapies. In the present study, we examined the role played by casein kinase 2 (CK2) in the TRAIL‑induced nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) pathway in a PCa cell line. Downregulation of CK2 combined with a sub-dose of TRAIL suppressed p65 phosphorylation at serine 536. The combination treatment of TRAIL and the CK2 inhibitor decreased p65 nuclear translocation. Under the treatment of a sub-dose of TRAIL, downregulation of CK2, using both genetic and pharmacological approaches, decreased the transcriptional activity of NF-κB and the expression of NF-κB downstream anti-apoptosis genes. Therefore, we provided novel molecular mechanistic insight reporting that CK2 regulates the sensitivity of PCa cells to the antitumor effect of TRAIL. This is important for understanding how the TRAIL pathway is disrupted in PCa and may help to develop an effective combinatorial therapy for PCa.

  2. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  3. Depletion kinetics of circulating prostate cancer cells studied by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Guo, Jin; Li, Yan; Chen, Yun; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2010-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  4. A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2010-04-01

    This paper extends Jackson’s model describing the growth of a prostate tumor with hormone therapy to a new one with hypothetical mutation inhibitors. The new model not only considers the mutation by which androgen-dependent (AD) tumor cells mutate into androgen-independent (AI) ones but also introduces inhibition which is assumed to change the mutation rate. The tumor consists of two types of cells (AD and AI) whose proliferation and apoptosis rates are functions of androgen concentration. The mathematical model represents a free-boundary problem for a nonlinear system of parabolic equations, which describe the evolution of the populations of the above two types of tumor cells. The tumor surface is a free boundary, whose velocity is equal to the cell’s velocity there. Global existence and uniqueness of solutions of this model is proved. Furthermore, explicit formulae of tumor volume at any time t are found in androgen-deprived environment under the assumption of radial symmetry, and therefore the dynamics of tumor growth under androgen-deprived therapy could be predicted by these formulae. Qualitative analysis and numerical simulation show that controlling the mutation may improve the effect of hormone therapy or delay a tumor relapse.

  5. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  6. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells.

    PubMed

    Kwon, Oh-Joon; Zhang, Boyu; Zhang, Li; Xin, Li

    2016-05-01

    Recent lineage tracing studies showed that the prostate basal and luminal cells in adult mice are two independent lineages under the physiological condition, but basal cells are capable of generating luminal progenies during bacterial infection-induced prostatitis. Because acute bacterial infection in human prostate tissues is relatively rare, the disease relevance of the bacterial infection-induced basal-to-luminal differentiation is uncertain. Herein we employ a high fat diet-induced sterile prostate inflammation model to determine whether basal-to-luminal differentiation can be induced by inflammation irrespective of the underlying etiologies. A K14-CreER model and a fluorescent report line are utilized to specifically label basal cells with the green fluorescent protein. We show that high fat diet promotes immune cell infiltration into the prostate tissues and basal-to-luminal differentiation. Increased cell proliferation accompanies basal-to-luminal differentiation, suggesting a concurrent regulation of basal cell proliferation and differentiation. This study demonstrates that basal-to-luminal differentiation can be induced by different types of prostate inflammation evolved with distinct etiologies. Finally, high fat diet also accelerates initiation and progression of prostatic intraepithelial neoplasia that are originated from basal cells with loss-of-function of the tumor suppressor Pten. Because prostate cancer originated from basal cells tends to be invasive, our study also provides an alternative explanation for the association between obesity and aggressive prostate cancer.

  7. Adipocyte Secreted Factors Enhance Aggressiveness of Prostate Carcinoma Cells

    PubMed Central

    Moreira, Ângela; Pereira, Sofia S.; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P.

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade. PMID:25928422

  8. Engineering chemically modified viruses for prostate cancer cell recognition.

    PubMed

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease. PMID:26463253

  9. Circulating Tumor Cells.

    PubMed

    Paoletti, Costanza; Hayes, Daniel F

    2016-01-01

    Circulating Tumor Cells (CTC) are shed from primary or secondary tumors. Prior studies have demonstrated that enumeration of CTC is a robust independent prognostic factor of progression free and overall survival in patients with early and metastatic breast cancer. CTC, as well as other circulating tumor markers, have the appealing advantages over tissue biopsy of (1) ease of collection, (2) serial evaluation, and (3) interrogation of the entire tumor burden instead of just a limited part of the tumor. Advances have been recently made in phenotyping and genotyping of CTC, which should provide insights into the predictive role of CTC for sensitivity or resistance to therapies. In addition, CTC phenotypic marker changes during the course of treatment may serve as pharmacodynamic monitoring tools. Therefore, CTC may be considered "liquid biopsies," providing prognostic and predictive clinical information as well as additional understanding of tumor heterogeneity.

  10. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases

    PubMed Central

    Sottnik, Joseph L.; Dai, Jinlu; Zhang, Honglai; Campbell, Brittany; Keller, Evan T.

    2015-01-01

    Crosstalk between tumor cells and their microenvironment is critical for malignant progression. Crosstalk mediators including soluble factors and direct cell contact have been identified, but roles for the interaction of physical forces between tumor cells and the bone microenvironment have not been described. Here we report preclinical evidence that tumor-generated pressure acts to modify the bone microenvironment to promote the growth of prostate cancer bone metastases. Tumors growing in mouse tibiae increased intraosseous pressure. Application of pressure to osteocytes, the main mechanotransducing cells in bone, induced PCa growth and invasion. Mechanistic investigations revealed that this process was mediated in part by upregulation of CCL5 and matrix metalloproteinases in osteocytes. Our results defined the critical contribution of physical forces to tumor cell growth in the tumor microenvironment, and they identified osteocytes as a critical mediator in the bone metastatic niche. PMID:25855383

  11. The Relationship between Obesity, Prostate Tumor Infiltrating Lymphocytes and Macrophages, and Biochemical Failure

    PubMed Central

    Zeigler-Johnson, Charnita; Morales, Knashawn H.; Lal, Priti; Feldman, Michael

    2016-01-01

    Background Obesity reflects a chronic inflammatory environment that may contribute to prostate cancer progression and poor treatment outcomes. However, it is not clear which mechanisms drive this association within the tumor microenvironment. The aim of this pilot study was to examine prostatic inflammation via tumor infiltrating lymphocytes and macrophages characterized by obesity and cancer severity. Methods We studied paraffin-embedded prostatectomy tissue from 99 participants (63 non-obese and 36 obese) from the Study of Clinical Outcomes, Risk and Ethnicity (University of Pennsylvania). Pathologists analyzed the tissue for type and count of lymphocytes and macrophages, including CD3, CD8, FOXP3, and CD68. Pathology data were linked to clinical and demographic variables. Statistical analyses included frequency tables, Kruskal-Wallis tests, Spearman correlations, and multivariable models. Results We observed positive univariate associations between the number of CD68 cells and tumor grade (p = 0.019). In multivariable analysis, CD8 counts were associated with time to biochemical failure (HR = 1.09, 95% CI = 1.004–1.192, p-value = 0.041.) There were no differences in lymphocytes or macrophages by obesity status or BMI. Conclusions The number of lymphocytes and macrophages in the tumor microenvironment did not differ by obesity status. However, these inflammation markers were associated with poor prostate cancer outcomes. Further examination of underlying mechanisms that influence obesity-related effects on prostate cancer outcomes is warranted. Such research will guide immunotherapy protocols and weight management as they apply to diverse patient populations and phenotypes. PMID:27487262

  12. Percutaneous tumor ablation: microencapsulated echo-guided interstitial chemotherapy combined with cryosurgery increases necrosis in prostate cancer.

    PubMed

    Le Pivert, P J; Morrison, D R; Haddad, R S; Renard, M; Aller, A; Titus, K; Doulat, J

    2009-06-01

    This study aimed at confirming the increased growth inhibition (GI) of human prostate tumors produced by a intentionally palliative combination treatment of cryochemotherapy, i.e., partial cryoablation (CA) followed by intratumor partial chemotherapy with injection of microencapsulated 5-fluorouracil (MCC/5FU) at the ice ball (IB) periphery. We report the local effectiveness of cryochemotherapy compared to chemotherapy only with using multiple injections of MCC/5FU spaced out to maximize cumulative effect of sustained release of 5-fluorouracil (5FU) during a 21-day period. Prostate bioluminescent tumor cells - DU145 Luc+ - were implanted sub-cutaneously and bilaterally in each flank of nude mice. Tumors were treated with: (i) cryoablation alone (CA), causing necrosis in approximately 45% of the tumor volume; (ii) cryo-chemotherapy (CA+MCC/5FU), a combined regimen consisting of partial CA followed immediately and on day 14 by ultrasound assisted, intra-tumor injections (40 mul) of MCC/5FU( 0.81 ng/mm3 of tumor) containing Ethiodol (IPO) an imaging contrast agent, on two opposite sides of the unfrozen part of tumor; (iii) intratumor chemotherapy (MCC/5FU), consisting of three successive intra-tumor injections of microencapsulated 5FU on two opposite sides on Day 0, 4, and 11, and (iv) control series (MM), consisting of a single injection of echogenic microcapsules (mucaps) containing IPO but no 5FU. Tumor growth and viability were followed during a 21-day period with using biometric measurements, bioluminescent imaging (BLI) and ultrasonography (US), and then animals were sacrificed. CA, spared 54.4% of the tumor volume and the IB kill ratio was 0.4 +/-0.9. The maximum tumor volume reduction observed by Day 3 was short-lived as re-growth became significant by Day 6. CA+ MCC/5FU spared 55.6% of the tumor volume and the IB kill ratio was 0.54 +/- 0.12. The viable tumor cells, as measured by BLI remained at preoperative levels. After 11 days CA+ MCC/5FU limited the

  13. [Specific prostatic antigen in prostatic carcinoma: its relationship with tumor differentiation and clinical course].

    PubMed

    Sáenz de Chirife, A M; Bassi, A M; Celeste, F; Bergdolt, D

    1991-05-01

    Carcinoma of the prostate is a tumor with a variable clinical course and a high incidence of local progression and/or metastasis. This study was undertaken to evaluate tissue prostate specific antigen (PSA) in patients with carcinoma of the prostate, its correlation with Gleason's grading and its value in predicting the clinical course of these patients. We studied 28 transurethral biopsies of patients with prostatic carcinoma utilizing HE and peroxidase-antiperoxidase staining techniques. These were given a score of 2 to 10 using Gleason's grading. PSA was determined according to percent positivity. The clinical course was considered favourable (F) when the lesion remained stable and unfavourable (U) when peri-prostatic spread was evidenced, metastasis and/or death from the disease. Statistical analysis was performed with the linear discriminatory test. PSA percentages ranged from 0 to 95 and the Gleason score from 3 to 11. There was an indirect correlation between these methods (r = 0.74): high Gleason scores corresponded to low PSA values and viceversa. PSA was highly positive in patients with F and U clinical courses whereas low positive values (less than 40%) were observed only in patients with U clinical course. High Gleason (8 to 10) and low (less than 5) scores were observed only in patients with a clinical course of U or F, respectively, while intermediate values (5 to 8) were not predictive of the clinical course. Discriminatory analysis gave Z values of -2.446 (P = 0.014) for PSA, -2.90 (P = 0.004) for the Gleason score in predicting prognosis, conferring a greater value overall to the latter.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model.

    PubMed

    Kazmierczak, Robert A; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105-107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  15. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model

    PubMed Central

    Kazmierczak, Robert A.; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  16. IL-8 secretion in primary cultures of prostate cells is associated with prostate cancer aggressiveness

    PubMed Central

    Neveu, Bertrand; Moreel, Xavier; Deschênes-Rompré, Marie-Pier; Bergeron, Alain; LaRue, Hélène; Ayari, Cherifa; Fradet, Yves; Fradet, Vincent

    2014-01-01

    Background Chronic inflammation is believed to be a major factor in prostate cancer initiation and promotion and has been studied using prostate cancer cells and immortalized cell lines. However, little is known about the contribution of normal cells to the prostatic microenvironment and inflammation. We aim to study the contribution of normal prostate epithelial cells to prostate inflammation and to link the inflammatory status of normal cells to prostate cancer aggressiveness. Materials and methods Short-term primary cell cultures of normal epithelial prostate cells were derived from prostate biopsies from 25 men undergoing radical prostatectomy, cystoprostatectomy, or organ donation. Cells were treated with polyinosinic:polycytidylic acid, a mimic of double-stranded viral RNA and a potent inducer of the inflammatory response. Secretion of interleukin (IL)-8 in the cell culture medium by untreated and treated cells was measured and we determined the association between IL-8 levels in these primary cell cultures and prostate cancer characteristics. The Fligner–Policello test was used to compare the groups. Results Baseline and induced IL-8 secretion were highly variable between cultured cells from different patients. This variation was not related to drug use, past medical history, age, or preoperative prostate-specific antigen value. Nonetheless, an elevated secretion of IL-8 from normal cultured epithelial cells was associated with prostate cancer aggressiveness (P=0.0005). Conclusion The baseline secretion of IL-8 from normal prostate epithelial cells in culture is strongly correlated with cancer aggressiveness and may drive prostate cancer carcinogenesis. A better characterization of individual prostate microenvironment may provide a basis for personalized treatment and for monitoring the effects of strategies aimed at preventing aggressive prostate cancer. PMID:24892030

  17. Prostate cancer marker panel with single cell sensitivity in urine

    PubMed Central

    Nickens, Kristen P.; Ali, Amina; Scoggin, Tatiana; Tan, Shyh‐Han; Ravindranath, Lakshmi; McLeod, David G.; Dobi, Albert; Tacha, David; Sesterhenn, Isabell A.; Srivastava, Shiv

    2015-01-01

    Background Over one million men undergo prostate biopsies annually in the United States, a majority of whom due to elevated serum PSA. More than half of the biopsies turn out to be negative for prostate cancer (CaP). The limitations of both the PSA test and the biopsy procedure have led to the development for more precise CaP detection assays in urine (e.g., PCA3, TMPRSS2‐ERG) or blood (e.g., PHI, 4K). Here, we describe the development and evaluation of the Urine CaP Marker Panel (UCMP) assay for sensitive and reproducible detection of CaP cells in post‐digital rectal examination (post‐DRE) urine. Methods The cellular content of the post‐DRE urine was captured on a translucent filter membrane, which is placed on Cytoclear slides for direct evaluation by microscopy and immuno‐cytochemistry (ICC). Cells captured on the membrane were assayed for PSA and Prostein expression to identify prostate epithelial cells, and for ERG and AMACR to identify prostate tumor cells. Immunostained cells were analyzed for quantitative and qualitative features and correlated with biopsy positive and negative status for malignancy. Results The assay was optimized for single cell capture sensitivity and downstream evaluations by spiking a known number of cells from established CaP cell lines, LNCaP and VCaP, into pre‐cleared control urine. The cells captured from the post‐DRE urine of subjects, obtained prior to biopsy procedure, were co‐stained for ERG, AMACR (CaP specific), and Prostein or PSA (prostate epithelium specific) rendering a whole cell based analysis and characterization. A feasibility cohort of 63 post‐DRE urine specimens was assessed. Comparison of the UCMP results with blinded biopsy results showed an assay sensitivity of 64% (16 of 25) and a specificity of 68.8% (22 of 32) for CaP detection by biopsy. Conclusions This pilot study assessing a minimally invasive CaP detection assay with single cell sensitivity cell‐capture and characterization from the

  18. Circulating Prostate Cells Found in Men with Benign Prostate Disease Are P504S Negative: Clinical Implications

    PubMed Central

    Murray, Nigel P.; Reyes, Eduardo; Badínez, Leonardo; Orellana, Nelson; Fuentealba, Cynthia; Olivares, Ruben; Porcell, José; Dueñas, Ricardo

    2013-01-01

    Introduction. Developments in immunological and quantitative real-time PCR-based analysis have enabled the detection, enumeration, and characterization of circulating tumor cells (CTCs). It is assumed that the detection of CTCs is associated with cancer, based on the finding that CTCs can be detected in all major cancer and not in healthy subjects or those with benign disease. Methods and Patients. Consecutive men, with suspicion of prostate cancer, had blood samples taken before prostate biopsy; mononuclear cells were obtained using differential gel centrifugation and CPCs detecting using anti-PSA immunocytochemistry. Positive samples underwent further classification with anti-P504S. Results. 329 men underwent prostate biopsy; of these men 83 underwent a second biopsy and 44 a third one. Of those with a biopsy negative for cancer, 19/226 (8.4%) had CPCs PSA (+) P504S (−) detected at first biopsy, 6/74 (8.1%) at second biopsy, and 5/33 (15.2%) at third biopsy. Men with cancer-positive biopsies did not have PSA (+) P504S (−) CPCs detected. These benign cells were associated with chronic prostatitis. Conclusions. Patients with chronic prostatitis may have circulating prostate cells detected in blood, which do not express the enzyme P504S and should be thought of as benign in nature. PMID:23690774

  19. Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress.

    PubMed

    Chen, Y; Zhang, Z; Yang, K; Du, J; Xu, Y; Liu, S

    2015-07-01

    Although previous studies suggest that myeloid zinc-finger 1 (MZF-1) is a multifaceted transcription factor that may function as either an oncogene or a tumor suppressor, the molecular bases determining its different traits remain elusive. Increasing evidence suggests that disorders in iron metabolism affect tumorigenesis and tumor behaviors, and that excess tumor iron stimulates tumor progression through various mechanisms such as enhancing DNA replication and energy metabolism. Ferroportin (FPN) is the only known iron exporter in mammalian cells, and it determines global iron egress out of cells. FPN reduction leads to decreased iron efflux and increased intracellular iron that consequentially aggravates the oncogenic effects of iron. MZF-1 was recently identified as a transcription factor that regulates FPN expression. Thus far, however, the molecular mechanisms underlying the MZF-1-FPN signaling in cancers are largely unknown. Here, we found a significant reduction of FPN levels in prostate tumors relative to adjacent tissues, and demonstrated a crucial role of FPN in tumor growth through controlling tumor iron concentration. Inhibition of MZF-1 expression led to reduced FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, increase of MZF-1 expression restrained tumor cell growth by promoting FPN-driven iron egress. Importantly, we demonstrated that AP4 and c-Myb jointly modulated MZF-1 transcription, and that miR-492 was also directly involved in regulating MZF-1 concentration through binding to the 3' untranslated regions of its mRNA. These results correlate with reduced AP4 and c-Myb expression and elevated miR-492 expression found in prostate tumors as compared with adjacent tissues that resulted in diminished MZF-1 and FPN. Moreover, we demonstrated that alterations of AP4, c-Myb and miR-492 levels significantly affected tumor cell growth. Targeting

  20. D-glucuronyl C5-epimerase cell type specifically affects angiogenesis pathway in different prostate cancer cells.

    PubMed

    Rosenberg, Eugenia E; Prudnikova, Tatiana Y; Zabarovsky, Eugene R; Kashuba, Vladimir I; Grigorieva, Elvira V

    2014-04-01

    D-glucuronyl C5-epimerase (GLCE) is involved in breast and lung carcinogenesis as a potential tumor suppressor gene, acting through inhibition of tumor angiogenesis and invasion/metastasis pathways. However, in prostate tumors, increased GLCE expression is associated with advanced disease, suggesting versatile effects of GLCE in different cancers. To investigate further the potential cancer-promoting effect of GLCE in prostate cancer, GLCE was ectopically re-expressed in morphologically different LNCaP and PC3 prostate cancer cells. Transcriptional profiles of normal PNT2 prostate cells, LNCaP, PC3 and DU145 prostate cancer cells, and GLCE-expressing LNCaP and PC3 cells were determined. Comparative analysis revealed the genes whose expression was changed in prostate cancer cells compared with normal PNT2 cells, and those differently expressed between the cancer cell lines (ACTA2, IL6, SERPINE1, TAGLN, SEMA3A, and CDH2). GLCE re-expression influenced mainly angiogenesis-involved genes (ANGPT1, SERPINE1, IGF1, PDGFB, TNF, IL8, TEK, IFNA1, and IFNB1) but in a cell type-specific manner (from basic deregulation of angiogenesis in LNCaP cells to significant activation in PC3 cells). Invasion/metastasis pathway was also affected (MMP1, MMP2, MMP9, S100A4, ITGA1, ITGB3, ERBB2, and FAS). The obtained results suggest activation of angiogenesis as a main molecular mechanism of pro-oncogenic effect of GLCE in prostate cancer. GLCE up-regulation plus expression pattern of a panel of six genes, discriminating morphologically different prostate cancer cell sub-types, is suggested as a potential marker of aggressive prostate cancer.

  1. MicroRNA-145 Modulates Tumor Sensitivity to Radiation in Prostate Cancer.

    PubMed

    Gong, Pijun; Zhang, Tingting; He, Dalin; Hsieh, Jer-Tsong

    2015-12-01

    Radiation therapy prior to surgery has increasingly become the standard of care for locally advanced prostate cancer, however tumor radioresistance remains a major clinical problem. While restoration of microRNA-145 (miR-145) expression reduces chemoradioresistance in glioblastoma and suppress prostate cancer proliferation, migration and invasion, the role of miR-145 in response to radiation therapy for prostate cancer is still unknown. The aim of this study was to investigate the role of miR-145 in determining the tumor response to radiation treatment in prostate cancer. Human prostate cancer cells LNCAP and PC3 were transfected with miR-145 mimic. Clonogenic assay was used to determine whether overexpression of miR-145 could alter radiation response in vitro. Immunofluorescence of γ-H2AX and flow cytometric analysis of phosphorylated histone H3 were performed to investigate the potential mechanisms contributing to the enhanced radiation-induced cell killing induced by miR-145. In addition, a qPCR-based array was used to detect the possible miR-145-mediated regulated genes involved. Tumor growth delay assays and survival curves were then analyzed in an animal model to investigate whether miR-145 induced radiosensitivity in vivo. Furthermore, miR-145 expression was assessed in 30 prostate tumor tissue biopsies taken prior to neoadjuvant radiotherapy using miRNA arrays. Our current study suggested that ectopic expression of miR-145 significantly sensitized prostate cancer cells to radiation and we used γ-H2AX phosphorylation as a surrogate marker of radiotherapy response versus miR-145 expression levels. We observed significantly more foci per cell in the group treated with miR-145 and radiation. In addition, mitotic catastrophe was significantly increased in cells receiving miR-145 and radiation. The above results suggest that miR-145 appears to reduced the efficiency of the repair of radiation-induced DNA double-strand breaks in cells. A detailed examination of

  2. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.

  3. Expansion of prostate epithelial progenitor cells after inflammation of the mouse prostate

    PubMed Central

    Wang, Liang; Zoetemelk, Marloes; Chitteti, Brahmananda R.; Ratliff, Timothy L.; Myers, Jason D.; Srour, Edward F.; Broxmeyer, Hal

    2015-01-01

    Prostatic inflammation is a nearly ubiquitous pathological feature observed in specimens from benign prostate hyperplasia and prostate cancer patients. The microenvironment of the inflamed prostate is highly reactive, and epithelial hyperplasia is a hallmark feature of inflamed prostates. How inflammation orchestrates epithelial proliferation as part of its repair and recovery action is not well understood. Here, we report that a novel epithelial progenitor cell population is induced to expand during inflammation. We used sphere culture assays, immunofluorescence, and flow cytometry to show that this population is increased in bacterially induced inflamed mouse prostates relative to naïve control prostates. We confirmed from previous reports that this population exclusively possesses the ability to regrow entire prostatic structures from single cell culture using renal grafts. In addition, putative progenitor cells harvested from inflamed animals have greater aggregation capacity than those isolated from naïve control prostates. Expansion of this critical cell population requires IL-1 signaling, as IL-1 receptor 1-null mice exhibit inflammation similar to wild-type inflamed animals but exhibit significantly reduced progenitor cell proliferation and hyperplasia. These data demonstrate that inflammation promotes hyperplasia in the mouse prostatic epithelium by inducing the expansion of a selected epithelial progenitor cell population in an IL-1 receptor-dependent manner. These findings may have significant impact on our understanding of how inflammation promotes proliferative diseases such as benign prostatic hyperplasia and prostate cancer, both of which depend on expansion of cells that exhibit a progenitor-like nature. PMID:25925259

  4. Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix.

    PubMed

    Passaniti, A; Isaacs, J T; Haney, J A; Adler, S W; Cujdik, T J; Long, P V; Kleinman, H K

    1992-05-01

    The tumorigenicity, migration, growth and invasiveness of certain tumor cells is stimulated by basement membranes. Here we have examined the effect of Matrigel, an extract of basement membrane proteins, on the behavior of several prostate cancer cell lines, testing their growth and invasiveness in vitro and in vivo. Cells of the Tsu-prI line were more invasive than PC-3, Du-145, or LNCaP cells. Peptide inhibitors implicated laminin in the migration and invasion of these cells. When these cells were suspended in Matrigel and injected into nude mice, their growth was greatly enhanced, since large tumors formed in athymic nude mice whereas virtually no tumors were observed in the absence of Matrigel. The growth of a slowly growing line, LNCaP, was increased by exogenous basic fibroblast growth factor when injected with Matrigel. A laminin cell adhesion peptide, YIGSR, was a potent inhibitor of Matrigel-stimulated tumor growth implicating cell-laminin interactions in this process. These results suggest that tumor growth of prostate adenocarcinoma cells may be dependent both on cellular growth factors and on cell-matrix interactions mediated by laminin which facilitate the development of transplanted tumors in nude mice.

  5. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  6. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  7. Convergent Effects of Resveratrol and PYK2 on Prostate Cells.

    PubMed

    Conte, Andrea; Kisslinger, Annamaria; Procaccini, Claudio; Paladino, Simona; Oliviero, Olimpia; de Amicis, Francesca; Faicchia, Deriggio; Fasano, Dominga; Caputo, Marilena; Matarese, Giuseppe; Pierantoni, Giovanna Maria; Tramontano, Donatella

    2016-01-01

    Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans. PMID:27649143

  8. Convergent Effects of Resveratrol and PYK2 on Prostate Cells

    PubMed Central

    Conte, Andrea; Kisslinger, Annamaria; Procaccini, Claudio; Paladino, Simona; Oliviero, Olimpia; de Amicis, Francesca; Faicchia, Deriggio; Fasano, Dominga; Caputo, Marilena; Matarese, Giuseppe; Pierantoni, Giovanna Maria; Tramontano, Donatella

    2016-01-01

    Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans. PMID:27649143

  9. Rat prostate tumors express cancer procoagulant, an activator of coagulation factor X.

    PubMed

    Kamocka, Malgorzata; Pollard, Morris; Suckow, Mark; Mielicki, Wojciech P; Rosen, Elliot D

    2008-06-01

    Two common procoagulant activities associated with tumors are tissue factor and cancer procoagulant (CP), an activator of coagulation factor X. We have identified a convenient source of CP in transplanted Lobund-Wistar rat PA3 prostate tumors. CP activity was purified from 5 independent transplanted prostate tumors by column chromatography. The protein activated factor X in the absence of TF and factor VII. An antihuman CP antibody recognized rat CP in an ELISA and inactivated CP activity in a chromogenic assay. Lobund-Wistar prostate tumors may provide a convenient animal model useful in determining the role of CP in cancer development.

  10. Identification of Novel Tumor Markers in Prostate, Colon and Breast Cancer by Unbiased Methylation Profiling

    PubMed Central

    Chung, Woonbok; Kwabi-Addo, Bernard; Ittmann, Michael; Jelinek, Jaroslav; Shen, Lanlan; Yu, Yinhua; Issa, Jean-Pierre J.

    2008-01-01

    DNA hypermethylation is a common epigenetic abnormality in cancer and may serve as a useful marker to clone cancer-related genes as well as a marker of clinical disease activity. To identify CpG islands methylated in prostate cancer, we used methylated CpG island amplification (MCA) coupled with representational difference analysis (RDA) on prostate cancer cell lines. We isolated 34 clones that corresponded to promoter CpG islands, including 5 reported targets of hypermethylation in cancer. We confirmed the data for 17 CpG islands by COBRA and/or pyrosequencing. All 17 genes were methylated in at least 2 cell lines of a 21-cancer cell line panel containing prostate cancer, colon cancer, leukemia, and breast cancer. Based on methylation in primary tumors compared to normal adjacent tissues, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS and NSE1 are candidate biomarkers for prostate cancer (methylation range 50%–85%). The combination of NSE1 or SPOCK2 hypermethylation showed a sensitivity of 80% and specificity of 95% in differentiating cancer from normal. Similarly NKX2-5, SPOCK2, SLC16A12, DPYS and GALR2 are candidate biomarkers for colon cancer (methylation range 60%–95%) and GALR2 hypermethylation showed a sensitivity of 85% and specificity of 95%. Finally, SLC16A12, GALR2, TOX, SPOCK2, EGFR5 and DPYS are candidate biomarkers for breast cancer (methylation range 33%–79%) with the combination of EGFR5 or TOX hypermethylation showing a sensitivity of 92% and specificity of 92%. Expression analysis for eight genes that had the most hypermethylation confirmed the methylation associated silencing and reactivation with 5-aza-2′-deoxycytidine treatment. Our data identify new targets of transcriptional silencing in cancer, and provide new biomarkers that could be useful in screening for prostate cancer and other cancers. PMID:18446232

  11. ERG oncogene modulates prostaglandin signaling in prostate cancer cells.

    PubMed

    Mohamed, Ahmed A; Tan, Shyh-Han; Sun, Chen; Shaheduzzaman, Syed; Hu, Ying; Petrovics, Gyorgy; Chen, Yongmei; Sesterhenn, Isabell A; Li, Hua; Sreenath, Taduru; McLeod, David G; Dobi, Albert; Srivastava, Shiv

    2011-02-15

    Androgen dependent induction of the ETS related gene (ERG) expression in more than half of all prostate cancers results from gene fusions involving regulatory sequence of androgen regulated genes (i.e. TMPRSS2, SLC45A3 and NDRG1) and protein coding sequence of the ERG. Emerging studies in experimental models underscore the functions of ERG in prostate tumorigenesis. However, biological and biochemical functions of ERG in prostate cancer (CaP) remain to be elucidated. This study suggests that ERG activation plays a role in prostaglandin signaling because knockdown of ERG expression in TMPRSS2-ERG fusion containing CaP cells leads to altered levels of the 15-hydroxy-prostaglandin dehydrogenase (HPGD), a tumor suppressor and prostaglandin catabolizing enzyme, and prostaglandin E2 (PGE2) . We demonstrate that HPGD expression is regulated by the binding of the ERG protein to the core promoter of this gene. Moreover, prostaglandin E2 dependent cell growth and urokinase-type plasminogen activator (uPA) expression are also affected by ERG knockdown. Together, these data imply that the ERG oncoprotein in CaP cells positively influence prostaglandin mediated signaling, which may contribute to tumor progression. PMID:21178489

  12. Luminal cells are favored as the cell of origin for prostate cancer

    PubMed Central

    Wang, Zhu A.; Toivanen, Roxanne; Bergren, Sarah K.; Chambon, Pierre; Shen, Michael M.

    2014-01-01

    The identification of cell types of origin for cancer has important implications for tumor stratification and personalized treatment. For prostate cancer, the cell of origin has been intensively studied, but it has remained unclear whether basal or luminal epithelial cells, or both, represent cells of origin under physiological conditions in vivo. Here, we use a novel lineage-tracing strategy to assess the cell of origin in a diverse range of mouse models, including Nkx3.1+/–; Pten+/–, Pten+/–, Hi-Myc, and TRAMP mice, as well as a hormonal carcinogenesis model. Our results show that luminal cells are consistently the observed cell of origin for each model in situ; however, explanted basal cells from these mice can generate tumors in grafts. Consequently, we propose that luminal cells are favored as cells of origin in many contexts, whereas basal cells only give rise to tumors after differentiation into luminal cells. PMID:25176651

  13. Analog of H2 relaxin exhibits antagonistic properties and impairs prostate tumor growth.

    PubMed

    Silvertown, Josh D; Symes, Juliane C; Neschadim, Anton; Nonaka, Takahiro; Kao, Jessica C H; Summerlee, Alastair J S; Medin, Jeffrey A

    2007-03-01

    Hormone antagonists can be effective tools to delineate receptor signaling pathways and their resulting downstream physiological actions. Mutation of the receptor binding domain (RBD) of human H2 relaxin (deltaH2) impaired its biological function as measured by cAMP signaling. In a competition assay, deltaH2 exhibited antagonistic activity by blocking recombinant H2 relaxin from binding to receptors on THP-1 cells. In a flow cytometry-based binding assay, deltaH2 demonstrated weak binding to 293T cells expressing the LGR7 receptor in the presence of biotinylated H2 relaxin. When human prostate cancer cell lines (PC-3 and LNCaP) were engineered to overexpress eGFP, wild-type (WT) H2, or deltaH2, and subsequently implanted into NOD/SCID mice, tumor xenografts overexpressing deltaH2 displayed smaller volumes compared to H2 and eGFP controls. Plasma osmolality readings and microvessel density and area assessment suggest that deltaH2 modulates physiological parameters in vivo. In a second murine model, intratumoral injections of lentivectors engineered to express deltaH2/eGFP led to suppressed tumor growth compared to controls. This study provides further evidence supporting a role for H2 relaxin in prostate tumor growth. More importantly, we report how mutation of the H2 relaxin RBD confers the hormone derivative with antagonistic properties, offering a novel reagent for relaxin research.

  14. Testicular germ cell tumors.

    PubMed

    Looijenga, Leendert H J

    2014-02-01

    Human germ cell tumors are of interest because of their epidemiology, clinical behavior and pathobiology. Histologically, they are subdivided into various elements, with similarities to embryogenesis. Recent insights resulted in a division of five types of human germ cell tumors. In the context of male germ cells, three are relevant; Type I: teratomas and yolk sac tumors of neonates and infants; Type II: seminomas and nonseminomas of (predominantly) adolescents and adults; and Type III: spermatocytic seminomas of the elderly. Recent studies led to significant increases in understanding of the parameters involved in the earliest pathogenetic steps of human germ cells tumors, in particularly the seminomas and nonseminomas (Type II). In case of a disturbed gonadal physiology, either due to the germ cell itself, or the micro-environment, embryonic germ cells during a specific window of sensitization can be blocked in their maturation, resulting in carcinoma in situ or gonadoblastoma, the precursors of seminomas and nonseminomas. The level of testicularization of the gonad determines the histological composition of the precursor. These insights will allow better definition of individuals at risk to develop a germ cell malignancy, with putative preventive measurements, and allow better selection of scientific approaches to elucidate the pathogenesis. PMID:24683949

  15. Solitary fibrous tumor of the prostate: case report and review of the literature.

    PubMed

    Moureau-Zabotto, Laurence; Chetaille, Bruno; Bladou, Franck; Dauvergne, Pierre-Yves; Marcy, Myriam; Perrot, Delphine; Guiramand, Jérôme; Sarran, Anthony; Bertucci, François

    2012-01-01

    Solitary fibrous tumor (SFT), usually described in the pleura, is exceedingly rare in the prostate. We report a 60-year-old man with prostatic SFT revealed by obstructive urinary symptoms, and detected by ultrasonography. Computed tomography (CT) and magnetic resonance imaging suggested a prostatic origin. CT-guided tumor biopsy diagnosed a SFT. A cystoprostatectomy was performed. Pathologic examination showed a 15-cm tumor arising from the prostate and showing histological criteria suggestive of aggressiveness. The surgical resection margins were tumor-free. The patient was then regularly monitored and is still alive in complete remission, 28 months after surgery. In conclusion, we report a new exceptional case of prostatic SFT. We review the literature and discuss the challenging issues of misdiagnosis, prognosis and treatment.

  16. Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes

    PubMed Central

    Abd Elmageed, Zakaria Y.; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M.; Moparty, Krishnarao; Sikka, Suresh C.; Sartor, Oliver; Abdel-Mageed, Asim B.

    2014-01-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition (MET) and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to down-regulation of the large tumor suppressor homolog2 (Lats2) and the programmed cell death protein 4 (PDCD4), a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. PMID:24715691

  17. The dark side of mast cell-targeted therapy in prostate cancer.

    PubMed

    Pittoni, Paola; Colombo, Mario Paolo

    2012-02-15

    Tumor development requires accomplices among white blood cells. Other than macrophages, mast cells have been observed to support the outgrowth of certain neoplasias because of their proangiogenic properties. In some tumor settings, however, mast cells may have a protective role, exerted by their proinflammatory mediators. In prostate cancer, no conclusive data on mast cell function were available. Here, we discuss recent work on the role of mast cells in mouse and human prostate cancer, showing that mast cells can behave alternatively as dangerous promoters, innocent bystanders, or essential guardians of tumors, according to the stage and origin of transformed cells. In particular, mast cells are essential for the outgrowth of early-stage tumors due to their matrix metalloproteinase-9 production, become dispensable in advanced-stage, post-epithelial-to-mesenchymal transition, and are protective against neuroendocrine prostate tumor variants. The common expression of c-Kit by mast cells and neuroendocrine clones suggests a possible competition for the ligand Stem cell factor and offers the chance of curing early-stage disease while preventing neuroendocrine tumors using c-Kit-targeted therapy. This review discusses the implications of these findings on the advocated mast cell-targeted cancer therapy and considers future directions in the study of mast cells and their interactions with other c-Kit-expressing cells. PMID:22307838

  18. Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea.

    PubMed

    Wang, Piwen; Vadgama, Jaydutt V; Said, Jonathan W; Magyar, Clara E; Doan, Ngan; Heber, David; Henning, Susanne M

    2014-01-01

    The chemopreventive activity of green tea (GT) is limited by the low bioavailability and extensive methylation of GT polyphenols (GTPs) in vivo. We determined whether a methylation inhibitor quercetin (Q) will enhance the chemoprevention of prostate cancer in vivo. Androgen-sensitive LAPC-4 prostate cancer cells were injected subcutaneously into severe combined immunodeficiency (SCID) mice one week before the intervention. The concentration of GTPs in brewed tea administered as drinking water was 0.07% and Q was supplemented in diet at 0.2% or 0.4%. After 6-weeks of intervention tumor growth was inhibited by 3% (0.2% Q), 15% (0.4% Q), 21% (GT), 28% (GT+0.2% Q) and 45% (GT+0.4% Q) compared to control. The concentration of non-methylated GTPs was significantly increased in tumor tissue with GT+0.4% Q treatment compared to GT alone, and was associated with a decreased protein expression of catechol-O-methyltransferase and multidrug resistance-associated protein (MRP)-1. The combination treatment was also associated with a significant increase in the inhibition of proliferation, androgen receptor and phosphatidylinositol 3-kinase/Akt signaling, and stimulation of apoptosis. The combined effect of GT+0.4% Q on tumor inhibition was further confirmed in another experiment where the intervention started prior to tumor inoculation. These results provide a novel regimen by combining GT and Q to improve chemoprevention in a non-toxic manner and warrant future studies in humans.

  19. Human kallikrein 3 (prostate specific antigen) and human kallikrein 5 expression in salivary gland tumors.

    PubMed

    Darling, M R; Tsai, S; Jackson-Boeters, L; Daley, T D; Diamandis, E P

    2006-01-01

    The human kallikrein 5 protein (hK5) is expressed in many normal tissues, most notably in skin, breast, salivary gland and esophagus. It has also been shown to be a potential biomarker for breast, ovarian and testicular cancer. Human kallikrein 3 (hK3; prostate-specific antigen) is the most useful marker for adenocarcinoma of the prostate gland. The aim of this study was to determine whether hK3 and hK5 are expressed in salivary gland tissues and salivary gland tumors (both benign and malignant), in order to compare normal with tumor tissues. Pleomorphic adenomas, adenoid cystic carcinomas, polymorphous low-grade adenocarcinomas, acinic cell carcinomas, mucoepidermoid carcinomas and adenocarcinomas not otherwise specified of both minor and major salivary glands were examined. The results of this study indicate that most salivary gland tumors do not show high levels of expression of hK5. Staining was most prominent in keratinizing epithelia in pleomorphic adenomas. hK3 is not expressed in salivary gland tumors.

  20. Prostate cancer stem cells: the role of androgen and estrogen receptors

    PubMed Central

    Di Zazzo, Erika; Galasso, Giovanni; Giovannelli, Pia; Di Donato, Marzia; Di Santi, Annalisa; Cernera, Gustavo; Rossi, Valentina; Abbondanza, Ciro; Moncharmont, Bruno; Sinisi, Antonio Agostino; Castoria, Gabriella; Migliaccio, Antimo

    2016-01-01

    Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy. PMID:26506594

  1. A prostate-specific antigen-dependent fusion polypeptide inhibits growth of prostate cancer cells in vitro and in vivo

    PubMed Central

    Zhang, Xiang; Ma, Yueyun; Wei, Hua; Li, Bin; Xiao, Fengjing; Yang, Jing; Yue, Qiaohong; Yang, Angang; Hao, Xiaoke

    2016-01-01

    Polypeptide APP8 is a prostate-specific antigen (PSA)-activated prodrug that was designed to synergize the effects of the Bcl-2 homology domain 3 (BH3) peptide, K237 and the DG2 peptide. The aim of this study is to evaluate its biodistribution and anticancer effect in vitro and in vivo. In this study, APP8 and each component peptide were synthesized. The biodistribution was identified using con-focal microscopyin both PSA+ cell line and PSA- cell line in vitro. Then cell cycle, MTT and in-cell western blot were accessed to analyze the effect mechanisms. Finally, xenografts were used to confirm the anticancer effect in vivo. Here, it was shown that APP8 was hydrolyzed and BH3 was released into the nucleus, while K237 and DG2 were located predominantly in the cytoplasm, only in LNCaP cells (PSA+), but not PC3 cells (PSA-). K237 and DG2 could induce cell apoptosis through decreasing the phosphorylation of ERK-2 and Flk-1. APP8 also caused the death of LNCaP cells, and was predominantly dependent on BH3 in vitro. In addition, It was noted that as the tumor grew in vivo, APP8 could inhibit the tumor volume to 77.3%, mainly depending on K237 and DG2 via inhibition of the growth of vascular endothelial cells. Our results suggested that APP8 could promote prostate cancer cell death and stop prostate cancer growth via synergizing apoptosis induction of tumor cell and inhibition of the growth of vascular endothelial cells. It provides a novel candidate prodrug for specific therapy of prostate cancer. PMID:27293998

  2. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth

    PubMed Central

    Adamo, Hanibal; Thysell, Elin; Jernberg, Emma; Stattin, Pär; Widmark, Anders; Wikström, Pernilla; Bergh, Anders

    2016-01-01

    Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer. PMID:27280718

  3. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis.

    PubMed

    Liu, Gang; Lu, Shengjun; Wang, Xuanjun; Page, Stephanie T; Higano, Celestia S; Plymate, Stephen R; Greenberg, Norman M; Sun, Shaoli; Li, Zihai; Wu, Jennifer D

    2013-10-01

    The activating receptor NK cell group 2 member D (NKG2D) mediates antitumor immunity in experimental animal models. However, whether NKG2D ligands contribute to tumor suppression or progression clinically remains controversial. Here, we have described 2 novel lines of "humanized" bi-transgenic (bi-Tg) mice in which native human NKG2D ligand MHC class I polypeptide-related sequence B (MICB) or the engineered membrane-restricted MICB (MICB.A2) was expressed in the prostate of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous carcinogenesis. Bi-Tg TRAMP/MICB mice exhibited a markedly increased incidence of progressed carcinomas and metastasis, whereas TRAMP/MICB.A2 mice enjoyed long-term tumor-free survival conferred by sustained NKG2D-mediated antitumor immunity. Mechanistically, we found that cancer progression in TRAMP/MICB mice was associated with loss of the peripheral NK cell pool owing to high serum levels of tumor-derived soluble MICB (sMICB). Prostate cancer patients also displayed reduction of peripheral NK cells and high sMIC levels. Our study has not only provided direct evidence in "humanized" mouse models that soluble and membrane-restricted NKG2D ligands pose opposite impacts on cancer progression, but also uncovered a mechanism of sMIC-induced impairment of NK cell antitumor immunity. Our findings suggest that the impact of soluble NKG2D ligands should be considered in NK cell-based cancer immunotherapy and that our unique mouse models should be valuable for therapy optimization. PMID:24018560

  4. Differential Redox Regulation of Ca2+ Signaling and Viability in Normal and Malignant Prostate Cells

    PubMed Central

    Holzmann, Christian; Kilch, Tatiana; Kappel, Sven; Dörr, Kathrin; Jung, Volker; Stöckle, Michael; Bogeski, Ivan; Peinelt, Christine

    2015-01-01

    In prostate cancer, reactive oxygen species (ROS) are elevated and Ca2+ signaling is impaired. Thus, several novel therapeutic strategies have been developed to target altered ROS and Ca2+ signaling pathways in prostate cancer. Here, we investigate alterations of intracellular Ca2+ and inhibition of cell viability caused by ROS in primary human prostate epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and DU145 H2O2 induces an initial Ca2+ increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon depletion of intracellular Ca2+ stores, store-operated Ca2+ entry (SOCE) is activated. SOCE channels can be formed by hexameric Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1 (Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In prostate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs, LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong correlation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept that store-operated Ca2+ channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca2+ signaling in prostate cancer cells may contribute to the higher sensitivity of these cells to ROS. PMID:26445441

  5. Discrete functions of GSK3α and GSK3β isoforms in prostate tumor growth and micrometastasis

    PubMed Central

    Gao, Fei; Al-Azayzih, Ahmad; Somanath, Payaningal R.

    2015-01-01

    Isoform specific function of glycogen synthase kinase-3 (GSK3) in cancer is not well defined. We report that silencing of GSK3α, but not GSK3β expression inhibited proliferation, survival and colony formation by the PC3, DU145 and LNCaP prostate cancer cells, and the growth of PC3 tumor xenografts in athymic nude mice. Silencing of GSK3α, but not GSK3β resulted in reduced proliferation and enhanced apoptosis in tumor xenografts. ShRNA-mediated knockdown of GSK3α and GSK3β equally inhibited the ability of prostate cancer cells to migrate and invade the endothelial-barrier in vitro, and PC3 cell micrometastasis to lungs in vivo. Mechanistically, whereas silencing GSK3α resulted in increased expression of pro-apoptotic markers cleaved caspase-3 and cleaved caspase-9 in LNCaP, PC3 and DU145 cells, silencing GSK3β resulted in the inhibition of cell scattering, establishment of cell-cell contacts, increased expression and membrane localization of β-catenin, and reduced expression of epithelial to mesenchymal transition (EMT) markers such as Snail and MMP-9. This indicated the specific role of GSK3β in EMT, acquisition of motility and invasive potential. Overall, our data demonstrated the isoform specific role of GSK3α and GSK3β in prostate cancer cells in vitro, and tumor growth and micrometastasis in vivo, via distinct molecular and cellular mechanisms. PMID:25714023

  6. Tumor heterogeneity and circulating tumor cells.

    PubMed

    Zhang, Chufeng; Guan, Yan; Sun, Yulan; Ai, Dan; Guo, Qisen

    2016-05-01

    In patients with cancer, individualized treatment strategies are generally guided by an analysis of molecular biomarkers. However, genetic instability allows tumor cells to lose monoclonality and acquire genetic heterogeneity, an important characteristic of tumors, during disease progression. Researchers have found that there is tumor heterogeneity between the primary tumor and metastatic lesions, between different metastatic lesions, and even within a single tumor (either primary or metastatic). Tumor heterogeneity is associated with heterogeneous protein functions, which lowers diagnostic precision and consequently becomes an obstacle to determining the appropriate therapeutic strategies for individual cancer patients. With the development of novel testing technologies, an increasing number of studies have attempted to explore tumor heterogeneity by examining circulating tumor cells (CTCs), with the expectation that CTCs may comprehensively represent the full spectrum of mutations and/or protein expression alterations present in the cancer. In addition, this strategy represents a minimally invasive approach compared to traditional tissue biopsies that can be used to dynamically monitor tumor evolution. The present article reviews the potential efficacy of using CTCs to identify both spatial and temporal tumor heterogeneity. This review also highlights current issues in this field and provides an outlook toward future applications of CTCs.

  7. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells.

  8. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    PubMed Central

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-01-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3∕day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo. PMID:21361696

  9. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.

  10. LIM domain only 2 over-expression in prostate stromal cells facilitates prostate cancer progression through paracrine of Interleukin-11

    PubMed Central

    Ruan, Yuan; Wang, Xiao-Hai; Zhao, Wei; Wang, Xing-Jie; Zhu, Yi-Ping; Gao, Yuan; Hao, Kui-Yuan; Chen, Lei; Han, Bang-Min; Xia, Shu-Jie; Zhao, Fu-Jun

    2016-01-01

    Mechanisms of stromal-epithelial crosstalk are essential for Prostate cancer (PCa) tumorigenesis and progression. Peripheral zone of the prostate gland possesses a stronger inclination for PCa than transition zone. We previously found a variety of genes that differently expressed among different prostate stromal cells, including LIM domain only 2 (LMO2) which highly expressed in peripheral zone derived stromal cells (PZSCs) and PCa associated fibroblasts (CAFs) compared to transition zone derived stromal cells (TZSCs). Studies on its role in tumors have highlighted LMO2 as an oncogene. Herein, we aim to study the potential mechanisms of stromal LMO2 in promoting PCa progression. The in vitro cells co-culture and in vivo cells recombination revealed that LMO2 over-expressed prostate stromal cells could promote the proliferation and invasiveness of either prostate epithelial or cancer cells. Further protein array screening confirmed that stromal LMO2 stimulated the secretion of Interleukin-11 (IL-11), which could promote proliferation and invasiveness of PCa cells via IL-11 receptor α (IL11Rα) – STAT3 signaling. Moreover, stromal LMO2 over-expression could suppress miR-204-5p which was proven to be a negative regulator of IL-11 expression. Taken together, results of our study demonstrate that prostate stromal LMO2 is capable of stimulating IL-11 secretion and by which activates IL11Rα – STAT3 signaling in PCa cells and then facilitates PCa progression. These results may make stromal LMO2 responsible for zonal characteristic of PCa and as a target for PCa microenvironment-targeted therapy. PMID:27028859

  11. PTP1B is an androgen receptor-regulated phosphatase associated with tumor-promoting functions in prostate cancer

    PubMed Central

    Lessard, Laurent; Labbé, David P.; Deblois, Geneviève; Bégin, Louis R.; Hardy, Serge; Mes-Masson, Anne-Marie; Saad, Fred; Trotman, Lloyd; Giguère, Vincent; Tremblay, Michel L.

    2016-01-01

    The androgen receptor (AR)-signaling axis plays a key role in the pathogenesis of prostate cancer. The identification of AR targets contributing to prostate tumorigenesis is thus critical for the development of more effective therapies. Herein, we examined whether the AR could regulate classical protein tyrosine phosphatases, a family of enzymes increasingly associated with oncogenic processes. We found that protein tyrosine phosphatase 1B (PTP1B), a well-established regulator of metabolic signaling, was induced after androgenic stimulation of AR-expressing prostate cancer cells. This effect was observed both at the mRNA and protein levels, and translated into increased PTP1B activity. High-resolution location analyses on tiled array covering chromosome 20q revealed the recruitment of the AR to two response elements located within the first intron of the PTP1B gene (PTPN1) and correlated with an increase in RNA polymerase II recruitment to the transcriptional start site of PTPN1. Analysis of copy number alterations revealed that both PTPN1 and AR genes are co-amplified in metastatic tumors, and that PTPN1 amplification is associated with a subset of high-risk primary tumors. At the functional level, PTP1B depletion significantly delayed LNCaP tumor growth in vivo, and impaired androgen-induced cell migration and invasion in vitro. Importantly, androgen-independent cells also required PTP1B for optimal cell migration. Collectively, our results establish the AR as a transcriptional regulator of PTPN1 transcription, and suggest that PTP1B plays a tumor-promoting role in prostate cancer. This has important implications for prostate cancer biology, and supports the pre-clinical testing of PTP1B inhibitors for the treatment of the disease. PMID:22282656

  12. Transrectal ultrasound-integrated spectral optical tomography of hypoxic progression of a regressing tumor in a canine prostate.

    PubMed

    Jiang, Z; Piao, D; Bartels, K E; Holyoak, G R; Ritchey, J W; Ownby, C L; Rock, K; Slobodov, G

    2011-12-01

    The objective of this study was to evaluate if transrectal optical tomography implemented at three wavelength bands for spectral detection could monitor changes of the hemoglobin oxygen saturation (StO2) in addition to those of the total hemoglobin concentration ([HbT]) in lesions of a canine prostate, including an induced tumor modeling canine prostate cancer. Near-infrared (NIR) optical tomography was integrated with ultrasound (US) for transrectal imaging. Multi-spectral detection at 705_nm, 785_nm and 808_nm rendered measurements of [HbT] and StO2. Canine transmissible venereal tumor (TVT) cells were injected into the right lobe of a dog's prostate gland, which had a pre-existing cyst in the left lobe. Longitudinal assessments of the prostate were performed weekly over a 63-day duration by NIR imaging concurrent with grey-scale and Doppler US. Ultrasonography revealed a bi-lobular tumor-mass regressing from day-49 to day-63. At day-49 this tumor-mass developed a hypoxic core that became larger and more intense by day-56 and expanded further by day-63. The tumor-mass presented a strong hyper-[HbT] feature on day-56 that was inconsistent with US-visualized blood flow. Histology confirmed two necrotic TVT foci within this tumor-mass. The cyst appeared to have a large anoxic-like interior that was greater in size than its ultrasonographically delineated lesion, and a weak lesional elevation of [HbT]. On day-56, the cyst presented a strong hyper-[HbT] feature consistent with US-resolved blood flow. Histology revealed acute and chronic hemorrhage in the periphery of the cyst. The NIR imaging features of two other TVT nodules and a metastatic lymph node were evaluated retrospectively. Transrectal US-integrated spectral optical tomography seems to enable longitudinal monitoring of intra-lesional oxygenation dynamics in addition to the hemoglobin content of lesions in the canine prostate.

  13. Prostatic Stromal Tumor of Uncertain Malignant Potential Which Was Difficult to Diagnose

    PubMed Central

    Matsuyama, Satoko; Nohara, Takahiro; Kawaguchi, Shohei; Seto, Chikashi; Nakanishi, Yuko; Uchiyama, Akio; Ishizawa, Shin

    2015-01-01

    Here, we report a case of stromal tumor of uncertain malignant potential (STUMP) that was difficult to diagnose. A 53-year-old male was found to have a hard nodule on digital rectal examination; magnetic resonance imaging revealed a large nodule on the left side of the prostate, indicating prostate cancer. However, pathological diagnosis of the biopsy specimen was benign prostatic hyperplasia. Although a papillary tumor in the prostatic urethra was also seen on urethrocystoscopy, the tumor specimen obtained from transurethral resection was not malignant. The tumor in the prostatic urethra recurred only 3 months after transurethral resection, and pathological findings revealed benign hyperplasia not only in the stromal tissue but also in the epithelium; therefore, the prostate tumor was suspected to be STUMP. It took many prostate pathologists a long time to reach the final diagnosis of STUMP. STUMP is a rare benign tumor, difficult to diagnose, and sometimes transforms into stromal sarcoma. Thus, we should consider radical resection in such cases. PMID:26839730

  14. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    SciTech Connect

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-05-09

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  15. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-05-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  16. Xenotransplanted human prostate carcinoma (DU145) cells develop into carcinomas and cribriform carcinomas: ultrastructural aspects.

    PubMed

    Gilloteaux, Jacques; Jamison, James M; Neal, Deborah R; Summers, Jack L; Taper, Henryk S

    2012-10-01

    Androgen-independent, human prostate carcinoma cells (DU145) develop into solid, carcinomatous xenotransplants on the diaphragm of nu/nu mice. Tumors encompass at least two poorly differentiated cell types: a rapidly dividing, eosinophilic cell comprises the main cell population and a few, but large basophilic cells able to invade the peritoneal stroma, the muscular tissue, lymph vessels. Poor cell contacts, intracytoplasmic lumina, and signet cells are noted. Lysosomal activities are reflected by entoses and programmed cell deaths forming cribriform carcinomas. In large tumors, degraded cells may align with others to facilitate formation of blood supply routes. Malignant cells would spread via ascites and through lymphatics.

  17. Human and murine prostate basal/stem cells are not direct targets of prolactin.

    PubMed

    Sackmann-Sala, Lucila; Angelergues, Antoine; Boutillon, Florence; d'Acremont, Bruno; Maidenberg, Marc; Oudard, Stéphane; Goffin, Vincent

    2015-09-01

    Local overexpression of prolactin (PRL) in the prostate of Pb-PRL transgenic mice induces benign prostate tumors exhibiting marked amplification of the epithelial basal/stem cell compartment. However, PRL-activated intracellular signaling seems to be restricted to luminal cells, suggesting that basal/stem cells may not be direct targets of PRL. Given their described role as prostate cancer-initiating cells, it is important to understand the mechanisms that regulate basal/stem cells. In this study, we evaluated whether PRL can act directly on these cells, by growing them as prostaspheres. For this, primary 3D prostasphere cultures were prepared from unfractionated cells isolated from freshly harvested human and mouse benign prostate tissues and subjected to PRL stimulation in vitro. None of the various concentrations of PRL tested showed any effects on the sizes or numbers of the prostaspheres generated. In addition, neither activation of canonical PRL-induced signaling pathways (Stat5, Stat3 or Erk1/2) nor increased expression of the proliferation marker Ki-67 were detected by immunostaining in PRL-stimulated prostaspheres. Consistent with the absence of response, PRL receptor mRNA levels were generally undetectable in mouse sphere cells. We conclude that human and mouse prostate basal/stem cells are not direct targets of PRL action. The observed amplification of basal/stem cells in Pb-PRL prostates might be due to paracrine mechanisms originating from PRL action on other cell compartments. Our current efforts are aimed at unraveling these mechanisms.

  18. The urokinase inhibitor p-aminobenzamidine inhibits growth of a human prostate tumor in SCID mice.

    PubMed

    Billström, A; Hartley-Asp, B; Lecander, I; Batra, S; Astedt, B

    1995-05-16

    Malignant cells possess a high degree of proteolytic activity in which the plasminogen activator system plays an important role. An increased expression of urokinase type plasminogen activator (uPA) is of significance for degradation of the extracellular tumor matrix, facilitating invasiveness and growth. Inhibition of the active site of uPA makes it possible to evaluate the significance of uPA in tumor growth. We report here experiments on a uPA-producing human prostate xenograft (DU 145) using a competitive inhibitor of uPA, p-aminobenzamidine. In vitro experiments with DU 145 cells showed that p-aminobenzamidine caused a dose-dependent inhibition of uPA activity. DU 145 cells were inoculated s.c. in SCID mice and, once tumors were established, treatment with p-aminobenzamidine added to drinking water was started and lasted for 23 days. Mice receiving 250 mg/kg/day of p-aminobenzamidine showed a clear decrease in tumor-growth rate compared to the non-treated mice, resulting in 64% lower final tumor weight. In addition, uPA-antigen levels in the membrane fractions of DU 145 tumors from p-aminobenzamidine-treated mice were found to be decreased by 59%. We also show that p-aminobenzamidine has an anti-proliferative effect in cell culture at low cell number, correlating with a dose-dependent decrease in uPA production. In conclusion, we show that a low-molecular-weight uPA-inhibitor, p-aminobenzamidine, has a growth-inhibitory effect on a solid uPA-producing tumor. PMID:7759160

  19. An integrated microfluidic chip for immunomagnetic detection and isolation of rare prostate cancer cells from blood.

    PubMed

    Esmaeilsabzali, Hadi; Beischlag, Timothy V; Cox, Michael E; Dechev, Nikolai; Parameswaran, Ash M; Park, Edward J

    2016-02-01

    The quantitative and qualitative analysis of circulating tumor cells (CTCs) has the potential to improve the clinical management of several cancers, including prostate cancer. As such, there is much interest in the isolation of CTCs from the peripheral blood of cancer patients. We report the design, fabrication, and proof-of-principle testing of an integrated permalloy-based microfluidic chip for immunomagnetic isolation of blood-borne prostate cancer cells using an antibody targeting prostate surface membrane antigen (PSMA). The preliminary results using spiked blood samples indicate that the proposed device is consistently capable of isolating prostate cancer cells with high sensitivity (up to 98 %) at clinically relevant low concentrations (down to 20 cells/mL) and an acceptable throughput (100 μL/min). PMID:26876965

  20. Overexpression of BAD potentiates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand treatment in the prostatic carcinoma cell line LNCaP.

    PubMed

    Taghiyev, Agshin F; Guseva, Natalya V; Harada, Hisashi; Knudson, C Michael; Rokhlin, Oskar W; Cohen, Michael B

    2003-05-01

    Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.

  1. [Mediastinal germ cell tumors].

    PubMed

    Bremmer, F; Ströbel, P

    2016-09-01

    The mediastinum is among the most frequent anatomic region in which germ cell tumors (GCT) arise, second only to the gonads. Mediastinal GCT (mGCT) account for 16 % of all mediastinal neoplasms. Although the morphology and (according to all available data) the molecular genetics of mediastinal and gonadal GCT are identical, a number of unique aspects exist. There is a highly relevant bi-modal age distribution. In pre-pubertal children of both sexes, mGCT consist exclusively of teratomas and yolk sac tumors. The prognosis is generally favorable with modern treatment. In post-pubertal adults, virtually all patients with malignant mGCT are males; the prognosis is more guarded and depends (among other factors) on the histological GCT components and is similar to GCT in other organs. So-called somatic type malignancies (i. e. clonally related, non-germ cell neoplasias arising in a GCT) are much more frequent in mGCT than in other organs, and the association between mediastinal yolk sac tumors and hematological malignancies, such as myelodysplasias and leukemias, is unique to mediastinal tumors. The prognosis of GCT with somatic type malignancies is generally dismal. PMID:27491549

  2. Uric acid: a modulator of prostate cells and activin sensitivity.

    PubMed

    Sangkop, Febbie; Singh, Geeta; Rodrigues, Ely; Gold, Elspeth; Bahn, Andrew

    2016-03-01

    Elevated serum uric acid (SUA) or urate is associated with inflammation and gout. Recent evidence has linked urate to cancers, but little is known about urate effects in prostate cancer. Activins are inflammatory cytokines and negative growth regulators in the prostate. A hallmark of prostate cancer progression is activin insensitivity; however, mechanisms underlying this are unclear. We propose that elevated SUA is associated with prostate cancer counteracting the growth inhibitory effects of activins. The expression of activins A and B, urate transporter GLUT9 and tissue urate levels were examined in human prostate disease. Intracellular and secreted urate and GLUT9 expression were assessed in human prostate cancer cell lines. Furthermore, the effects of urate and probenecid, a known urate transport inhibitor, were determined in combination with activin A. Activin A expression was increased in low-grade prostate cancer, whereas activin B expression was reduced in high-grade prostate cancer. Intracellular urate levels decreased in all prostate pathologies, while GLUT9 expression decreased in benign prostatic hyperplasia, prostatitis and high-grade prostate cancer. Activin responsive LNCaP cells had higher intracellular and lower secreted urate levels than activin-insensitive PC3 cells. GLUT9 expression in prostate cancer cells was progressively lower than in prostate epithelial cells. Elevated extracellular urate was growth promoting in vitro, which was abolished by the gout medication probenecid, and it antagonized the growth inhibitory effects of activins. This study shows for the first time that a change in plasma or intracellular urate levels, possibly involving GLUT9 and a urate efflux transporter, has an impact on prostate cancer cell growth, and that lowering SUA levels in prostate cancer is likely to be therapeutically beneficial. PMID:26910779

  3. Lrf suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion

    PubMed Central

    Zhang, Jiangwen; Chen, Zhenbang; Ala, Ugo; Webster, Kaitlyn A.; Tay, Yvonne; Gonzalez-Billalabeitia, Enrique; Egia, Ainara; Shaffer, David R.; Carver, Brett; Liu, Xue-Song; Taulli, Riccardo; Kuo, Winston Patrick; Nardella, Caterina; Signoretti, Sabina; Cordon-Cardo, Carlos; Gerald, William L.; Pandolfi, Pier Paolo

    2013-01-01

    Lrf has been previously described as a powerful proto-oncogene. Here we surprisingly demonstrate that Lrf plays a critical oncosuppressive role in the prostate. Prostate specific inactivation of Lrf leads to a dramatic acceleration of Pten-loss-driven prostate tumorigenesis through a bypass of Pten-loss-induced senescence (PICS). We show that LRF physically interacts with and functionally antagonizes SOX9 transcriptional activity on key target genes such as MIA, which is involved in tumor cell invasion, and H19, a long non-coding RNA precursor for an Rb-targeting miRNA. Inactivation of Lrf in vivo leads to Rb down-regulation, PICS bypass and invasive prostate cancer. Importantly, we found that LRF is genetically lost, as well as down-regulated at both the mRNA and protein levels in a subset of human advanced prostate cancers. Thus, we identify LRF as a context-dependent cancer gene that can act as an oncogene in some contexts but also displays oncosuppressive-like activity in Pten−/− tumors. PMID:23727861

  4. The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis.

    PubMed

    de Oliveira Barros, Eliane Gouvêa; Palumbo, Antonio; Mello, Pedro Lucas Prado; de Mattos, Rômulo Medina; da Silva, Julianna Henriques; Pontes, Bruno; Viana, Nathan Bessa; do Amaral, Rackele Ferreira; Lima, Flavia Regina Souza; da Costa, Nathalia Meireles; Palmero, Celia Yelimar; Miranda-Alves, Leandro; Takiya, Christina Maeda; Nasciutti, Luiz Eurico

    2014-04-01

    Tumor establishment, growth, and survival are supported by interactions with microenvironment components. Here, we investigated whether the interactions between prostate cancer cells and cortical astrocytes are associated to a potential role for astrocytes in tumor establishment. We demonstrate that astrocytes interact in vitro with prostatic cancers cells derived from different metastatic sites. Astrocytes and their secreted extracellular matrix, stimulate DU145 cell (a brain-derived prostate tumor cell line) proliferation while inhibiting cell death and modulating the expression of several genes related to prostate cancer progression, suggesting the activation of EMT process in these cells. In contrast, DU145 cells and their conditioned medium inhibited cell proliferation and induced cell death of astrocytes. On the other hand, the astrocytes were unable to significantly induce an increment of LNCaP cell (a lymph node-derived prostate tumor cell line) proliferative activity. In addition, LNCaP cells were also unable to induce cell death of astrocytes. Thus, we believe that DU145 cells, but not LNCaP cells, present an even more aggressive behavior when interacting with astrocytes. These results provide an important contribution to the elucidation of the cellular mechanisms involved in the brain microenvironment colonization.

  5. The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis.

    PubMed

    de Oliveira Barros, Eliane Gouvêa; Palumbo, Antonio; Mello, Pedro Lucas Prado; de Mattos, Rômulo Medina; da Silva, Julianna Henriques; Pontes, Bruno; Viana, Nathan Bessa; do Amaral, Rackele Ferreira; Lima, Flavia Regina Souza; da Costa, Nathalia Meireles; Palmero, Celia Yelimar; Miranda-Alves, Leandro; Takiya, Christina Maeda; Nasciutti, Luiz Eurico

    2014-04-01

    Tumor establishment, growth, and survival are supported by interactions with microenvironment components. Here, we investigated whether the interactions between prostate cancer cells and cortical astrocytes are associated to a potential role for astrocytes in tumor establishment. We demonstrate that astrocytes interact in vitro with prostatic cancers cells derived from different metastatic sites. Astrocytes and their secreted extracellular matrix, stimulate DU145 cell (a brain-derived prostate tumor cell line) proliferation while inhibiting cell death and modulating the expression of several genes related to prostate cancer progression, suggesting the activation of EMT process in these cells. In contrast, DU145 cells and their conditioned medium inhibited cell proliferation and induced cell death of astrocytes. On the other hand, the astrocytes were unable to significantly induce an increment of LNCaP cell (a lymph node-derived prostate tumor cell line) proliferative activity. In addition, LNCaP cells were also unable to induce cell death of astrocytes. Thus, we believe that DU145 cells, but not LNCaP cells, present an even more aggressive behavior when interacting with astrocytes. These results provide an important contribution to the elucidation of the cellular mechanisms involved in the brain microenvironment colonization. PMID:24488147

  6. Androgen receptor–negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms

    PubMed Central

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W.; Zurita, Amado J.; Liu, Jie; Sikes, Charles; Multani, Asha S.; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V.; Prieto, Victor G.; Kundra, Vikas; Vazquez, Elba S.; Troncoso, Patricia; Raymond, Austin K.; Logothetis, Christopher J.; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M.

    2008-01-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor–negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer–induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor–null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells. PMID:18618013

  7. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.

    PubMed

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M

    2008-08-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells. PMID:18618013

  8. Prostate-regenerating capacity of cultured human adult prostate epithelial cells.

    PubMed

    Yao, M; Taylor, R A; Richards, M G; Sved, P; Wong, J; Eisinger, D; Xie, C; Salomon, R; Risbridger, G P; Dong, Q

    2010-01-01

    Experimentation with the progenitor/stem cells in adult prostate epithelium can be inconvenient due to a tight time line from tissue acquisition to cell isolation and to downstream experiments. To circumvent this inconvenience, we developed a simple technical procedure for culturing epithelial cells derived from human prostate tissue. In this study, benign prostate tissue was enzymatically digested and fractionated into epithelium and stroma, which were then cultured in the medium designed for prostate epithelial and stromal cells, respectively. The cultured cells were analyzed by immunocytochemical staining and flow cytometry. Prostate tissue-regenerating capacity of cultured cells in vitro was determined by co-culturing epithelial and stromal cells in dihydrotestosterone-containing RPMI. Cell lineages in formed acini-like structures were determined by immunohistochemistry. The culture of epithelial cells mainly consisted of basal cells. A minor population was negative for known lineage markers and positive for CD133. The culture also contained cells with high activity of aldehyde dehydrogenase. After co-culturing with stromal cells, the epithelial cells were able to form acini-like structures containing multiple cell lineages. Thus, the established culture of prostate epithelial cells provides an alternative source for studying progenitor/stem cells of prostate epithelium.

  9. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.

    PubMed

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep

    2016-09-01

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function.

  10. Apolipoprotein E gene polymorphism influences aggressive behavior in prostate cancer cells by deregulating cholesterol homeostasis

    PubMed Central

    IFERE, GODWIN O.; DESMOND, RENEE; DEMARK-WAHNEFRIED, WENDY; NAGY, TIM R.

    High circulating cholesterol and its deregulated homeostasis may facilitate prostate cancer progression. Genetic polymorphism in Apolipoprotein (Apo) E, a key cholesterol regulatory protein may effect changes in systemic cholesterol levels. In this investigation, we determined whether variants of the Apo E gene can trigger defective intracellular cholesterol efflux, which could promote aggressive prostate cancer. ApoE genotypes of weakly (non-aggressive), moderate and highly tumorigenic (aggressive) prostate cancer cell lines were characterized, and we explored whether the ApoE variants were associated with tumor aggressiveness generated by intra cellular cholesterol imbalance, using the expression of caveolin-1 (cav-1), a pro-malignancy surrogate of cholesterol overload. Restriction isotyping of ApoE isoforms revealed that the non-aggressive cell lines carried ApoE ε3/ε3 or ε3/ε4 alleles, while the aggressive cell lines carried the Apoε2/ε4 alleles. Our data suggest a contrast between the non-aggressive and the aggressive prostate cancer cell lines in the pattern of cholesterol efflux and cav-1 expression. Our exploratory results suggest a relationship between prostate aggressiveness, ApoE isoforms and cholesterol imbalance. Further investigation of this relationship may elucidate the molecular basis for considering cholesterol as a risk factor of aggressive prostate tumors, and underscore the potential of the dysfunctional ApoE2/E4 isoform as a biomarker of aggressive disease. PMID:23934233

  11. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression

    SciTech Connect

    Han, Guangye Fan, Maochuan Zhang, Xinjun

    2015-01-16

    Highlights: • miR-218 expression is downregulated in prostate cancer. • miR-218 inhibits prostate tumor cells proliferation partially through promoting apoptosis. • miR-218 targets TPD52 by binding to its 3′-UTR. • miR-218 suppresses prostate cancer cell growth through inhibiting TPD52 expression. - Abstract: The tumor protein D52 (TPD52) is an oncogene overexpressed in prostate cancer (PC) due to gene amplification. Although the oncogenic effect of TPD52 is well recognized, how its expression is regulated is still not clear. This study tried to explore the regulative role of miR-218, a tumor suppressing miRNA on TPD52 expression and prostate cancer cell proliferation. We found the expression of miR-218 was significantly lower in PC specimens. Based on gain and loss of function analysis, we found miR-218 significantly inhibit cancer cell proliferation by inducing apoptosis. These results strongly suggest that miR-218 plays a tumor suppressor role in PC cells. In addition, our data firstly demonstrated that miR-218 directly regulates oncogenic TPD52 in PC3 cells and the miR-218-TPD52 axis can regulate growth of this prostate cancer cell line. Knockdown of TPD52 resulted in significantly increased cancer cell apoptosis. Clearly understanding of oncogenic TPD52 pathways regulated by miR-218 might be helpful to reveal new therapeutic targets for PC.

  12. Histological changes caused by meclofenamic acid in androgen independent prostate cancer tumors: evaluation in a mouse model

    PubMed Central

    Delgado-Enciso, Iván; Soriano-Hernández, Alejandro D.; Rodriguez-Hernandez, Alejandrina; Galvan-Salazar, Héctor R.; Montes-Galindo, Daniel A.; Martinez-Martinez, Rafael; Valdez-Velazquez, Laura L.; Gonzalez-Alvarez, Rafael; Espinoza-Gómez, Francisco; Newton-Sanchez, Oscar A.; Lara-Esqueda, Agustín; Guzman-Esquivel, Jose

    2015-01-01

    ABSTRACT Meclofenamic acid is a nonsteroidal anti-inflammatory drug that has shown therapeutic potential for different types of cancers, including androgen-independent prostate neoplasms. The antitumor effect of diverse nonsteroidal anti-inflammatory drugs has been shown to be accompanied by histological and molecular changes that are responsible for this beneficial effect. The objective of the present work was to analyze the histological changes caused by meclofenamic acid in androgen-independent prostate cancer. Tumors were created in a nude mouse model using PC3 cancerous human cells. Meclofenamic acid (10 mg/kg/day; experimental group, n=5) or saline solution (control group, n=5) was administered intraperitoneally for twenty days. Histological analysis was then carried out on the tumors, describing changes in the cellular architecture, fibrosis, and quantification of cellular proliferation and tumor vasculature. Meclofenamic acid causes histological changes that indicate less tumor aggression (less hypercellularity, fewer atypical mitoses, and fewer nuclear polymorphisms), an increase in fibrosis, and reduced cellular proliferation and tumor vascularity. Further studies are needed to evaluate the molecular changes that cause the beneficial and therapeutic effects of meclofenamic acid in androgen-independent prostate cancer. PMID:26689527

  13. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Aebi, Johannes D; Hyder, Salman M

    2016-01-01

    Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4′-[6-(allylmethylamino)hexyloxy]-4-bromo-2′-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells

  14. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells.

    PubMed

    Liang, Yayun; Mafuvadze, Benford; Aebi, Johannes D; Hyder, Salman M

    2016-01-01

    Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration); however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4'-[6-(allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071) (RO), which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway), on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ) protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the growth of aggressive castration-resistant human prostate cancer cell xenografts in vivo without any signs of toxicity to experimental animals. Importantly, RO did not reduce the viability of normal prostate cells in vitro. Our study is the first to demonstrate that the cholesterol biosynthesis inhibitor RO effectively suppresses growth of human prostate cancer cells. Our

  15. Equine testicular interstitial cell tumors.

    PubMed

    Gelberg, H B; McEntee, K

    1987-05-01

    Interstitial cell tumors from nine stallions were described. In all but one horse the tumors were found in undescended testes. Five animals had bilateral tumors. Two animals showed increased aggression. Tumors contained two cell types. The first type were large distinctly bordered eosinophilic cells interpreted to be hyperplastic and hypertrophic interstitial cells. They blended with pleomorphic often spindloid neoplastic cells which had fibrillar, vacuolated cytoplasm and indistinct cell borders. This latter cell population was arranged in nodules or broad sheets as endocrine-like packets or interweaving fascicles. Biologic behavior of the neoplasms could not be ascertained from histologic examination. PMID:2885961

  16. Superporous Poly(ethylene glycol) Diacrylate Cryogel with a Defined Elastic Modulus for Prostate Cancer Cell Research.

    PubMed

    Göppert, Bettina; Sollich, Thomas; Abaffy, Paul; Cecilia, Angelica; Heckmann, Jan; Neeb, Antje; Bäcker, Anne; Baumbach, Tilo; Gruhl, Friederike J; Cato, Andrew C B

    2016-08-01

    The physical and mechanical properties of the tumor microenvironment are crucial for the growth, differentiation and migration of cancer cells. However, such microenvironment is not found in the geometric constraints of 2D cell culture systems used in many cancer studies. Prostate cancer research, in particular, suffers from the lack of suitable in vitro models. Here a 3D superporous scaffold is described with thick pore walls in a mechanically stable and robust architecture to support prostate tumor growth. This scaffold is generated from the cryogelation of poly(ethylene glycol) diacrylate to produce a defined elastic modulus for prostate tumor growth. Lymph node carcinoma of the prostate (LNCaP) cells show a linear growth over 21 d as multicellular tumor spheroids in such a scaffold with points of attachments to the walls of the scaffold. These LNCaP cells respond to the growth promoting effects of androgens and demonstrate a characteristic cytoplasmic-nuclear translocation of the androgen receptor and androgen-dependent gene expression. Compared to 2D cell culture, the expression or androgen response of prostate cancer specific genes is greatly enhanced in the LNCaP cells in this system. This scaffold is therefore a powerful tool for prostate cancer studies with unique advantages over 2D cell culture systems. PMID:27240250

  17. Photo-activated pheophorbide a inhibits the growth of prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, D. D.; Cho, W. C. S.; Wu, P.; Lam, H. M.; Leung, A. W. N.

    2011-09-01

    Pheophorbide a (PhA) was identified as a photosensitizer to exert cytotoxicity on tumor cells. However, the efficacy of this compound on the treatment of prostate cancer remains unknown. The aim of this study was to evaluate the photodynamic effect of PhA on prostate cancer cells. Cellular uptake of PhA and cell viability after photo-activation was studied in LNCaP prostate cancer cells. The corresponding production of reactive oxygen species within cells was determined after photodynamic therapy (PDT). Our results showed that the uptake of PhA into LNCaP cells was in a time-dependent manner and the cytotoxicity of PhA-PDT was photosensitizer dose- and light dose-dependent. The intracellular reactive oxygen species was remarkably induced after PDT treatment, which was responsible for the inhibition effect on prostate cancer cells. This is the first report to evaluate the photodynamic effect of PhA on prostate cancer. Our findings demonstrate that PhA-PDT may be a potentially promising treatment for localized prostate cancer, which can be a therapeutic option after the failures of radiotherapy and hormone therapy.

  18. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  19. Role of the Phospholipase A2 Receptor in Liposome Drug Delivery in Prostate Cancer Cells

    PubMed Central

    2015-01-01

    The M-type phospholipase A2 receptor (PLA2R1) is a member of the C-type lectin superfamily and can internalize secreted phospholipase A2 (sPLA2) via endocytosis in non-cancer cells. sPLA2 itself was recently shown to be overexpressed in prostate tumors and to be a possible mediator of metastasis; however, little is known about the expression of PLA2R1 or its function in prostate cancers. Thus, we examined PLA2R1 expression in primary prostate cells (PCS-440-010) and human prostate cancer cells (LNCaP, DU-145, and PC-3), and we determined the effect of PLA2R1 knockdown on cytotoxicity induced by free or liposome-encapsulated chemotherapeutics. Immunoblot analysis demonstrated that the expression of PLA2R1 was higher in prostate cancer cells compared to that in primary prostate cells. Knockdown of PLA2R1 expression in PC-3 cells using shRNA increased cell proliferation and did not affect the toxicity of cisplatin, doxorubicin (Dox), and docetaxel. In contrast, PLA2R1 knockdown increased the in vitro toxicity of Dox encapsulated in sPLA2 responsive liposomes (SPRL) and correlated with increased Dox and SPRL uptake. Knockdown of PLA2R1 also increased the expression of Group IIA and X sPLA2. These data show the novel findings that PLA2R1 is expressed in prostate cancer cells, that PLA2R1 expression alters cell proliferation, and that PLA2R1 modulates the behavior of liposome-based nanoparticles. Furthermore, these studies suggest that PLA2R1 may represent a novel molecular target for controlling tumor growth or modulating delivery of lipid-based nanomedicines. PMID:25189995

  20. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models

    PubMed Central

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M.; Zhao, Ming

    2015-01-01

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting. PMID:26431498

  1. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  2. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    SciTech Connect

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-06-05

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  3. In vivo trans-rectal ultrasound coupled trans-rectal near-infrared optical tomography of canine prostate bearing transmissible venereal tumor

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Holyoak, G. Reed; Bartels, Kenneth E.; Ritchey, Jerry W.; Xu, Guan; Bunting, Charles F.; Slobodov, Gennady; Krasinski, Jerzy S.; Piao, Daqing

    2009-02-01

    In vivo trans-rectal near-infrared (NIR) optical tomography is conducted on a tumor-bearing canine prostate with the assistance of trans-rectal ultrasound (TRUS). The canine prostate tumor model is made possible by a unique round cell neoplasm of dogs, transmissible venereal tumor (TVT) that can be transferred from dog to dog regardless of histocompatibility. A characterized TVT cell line was homogenized and passed twice in subcutaneous tissue of NOD/SCID mice. Following the second passage, the tumor was recovered, homogenized and then inoculated by ultrasound guidance into the prostate gland of a healthy dog. The dog was then imaged with a combined trans-rectal NIR and TRUS imager using an integrated trans-rectal NIR/US applicator. The image was taken by NIR and US modalities concurrently, both in sagittal view. The trans-rectal NIR imager is a continuous-wave system that illuminates 7 source channels sequentially by a fiber switch to deliver sufficient light power to the relatively more absorbing prostate tissue and samples 7 detection channels simultaneously by a gated intensified high-resolution CCD camera. This work tests the feasibility of detecting prostate tumor by trans-rectal NIR optical tomography and the benefit of augmenting TRUS with trans-rectal NIR imaging.

  4. Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis

    PubMed Central

    Budd, William T.; Seashols-Williams, Sarah J.; Clark, Gene C.; Weaver, Danielle; Calvert, Valerie; Petricoin, Emanuel; Dragoescu, Ema A.; O’Hanlon, Katherine; Zehner, Zendra E.

    2015-01-01

    MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3’-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression. PMID:26544868

  5. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  6. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors.

    PubMed

    Sackmann-Sala, Lucila; Chiche, Aurélie; Mosquera-Garrote, Nerea; Boutillon, Florence; Cordier, Corinne; Pourmir, Ivan; Pascual-Mathey, Luz; Kessal, Karima; Pigat, Natascha; Camparo, Philippe; Goffin, Vincent

    2014-11-01

    Current androgen ablation therapies for prostate cancer are initially successful, but the frequent development of castration resistance urges the generation of alternative therapies and represents an important health concern. Prolactin/signal transducer and activator of transcription 5 (STAT5) signaling is emerging as a putative target for alternative treatment for prostate cancer. However, mechanistic data for its role in development or progression of prostate tumors are scarce. In vivo mouse studies found that local prolactin induced the amplification of prostate epithelial basal/stem cells. Because these cells are proposed cells of origin for prostate cancer and disease recurrence, we looked further into this amplification. Our results indicated that sustained Stat5 activation was associated with the occurrence of abnormal basal/stem cell clusters in prostate epithelium of prostate-specific prolactin-transgenic mice. Analysis of epithelial areas containing these clusters found high proliferation, Stat5 activation, and expression of stem cell antigen 1. Furthermore, enhanced prolactin signaling also led to amplification of a luminal cell population that was positive for stem cell antigen 1. These cells may originate from amplified basal/stem cells and might represent important progenitors for tumor development in prostate epithelium. These data provide a deeper understanding of the initial stages of prostate tumorigenesis induced by prolactin to help determine whether this hormone or its downstream messengers could be useful targets for prostate cancer treatment in the future.

  7. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique.

    PubMed

    Ni, Jie; Cozzi, Paul; Hung, Tzong-Tyng; Hao, Jingli; Graham, Peter; Li, Yong

    2016-02-01

    Prostate cancer (CaP) is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D) ultrasound system equipped with photoacoustic (PA) imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8). Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r(2) = 0.948, 0.955, and 0.953, respectively) and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001). The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  8. Psoralidin, An Herbal Molecule Inhibits PI3K Mediated Akt Signaling In Androgen Independent Prostate Cancer (AIPC) Cells

    PubMed Central

    Kumar, Raj; Srinivasan, Sowmyalakshmi; Koduru, Srinivas; Pahari, Pallab; Rohr, Jürgen; Kyprianou, Natasha; Damodaran, Chendil

    2008-01-01

    The protein kinase Akt plays an important role in cell proliferation and survival in many cancers, including prostate cancer. Due to its kinase activity, it serves as a molecular conduit for inhibiting apoptosis and promoting angiogenesis in most cell types. In most of the prostate tumors, Akt signaling is constitutively activated due to the deletion or mutation of the tumor suppressor PTEN, which negatively regulates PI3K through lipid phosphatase activity. Recently, we identified a natural compound, psoralidin, which inhibits Akt phosphorylation and its consequent activation in androgen independent prostate cancer cells (AIPC). Furthermore, ectopic expression of Akt renders AIPC cells resistant chemotherapy; however, psoralidin overcomes Akt-mediated resistance and induces apoptosis in AIPC cells. While dissecting the molecular events, both upstream and downstream of Akt, we found that psoralidin inhibits PI3 kinase activation and transcriptionally represses the activation of NF-κB and its target genes (Bcl-2, Survivin, and Bcl-xL, etc.), which results in the inhibition of cell viability and induction of apoptosis in PC-3 and DU-145 cells. Interestingly, psoralidin selectively targets cancer cells, without causing any toxicity to normal prostate epithelial cells. In vivo xenograft assays substantiate these in vitro findings, and show psoralidin inhibits prostate tumor growth in nude mice. Our findings are of therapeutic significance in the management of prostate cancer patients with advanced or metastatic disease, as they provide new directions for the development of a phyotochemical-based platform for prevention and treatment strategies for AIPC. PMID:19223576

  9. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression

    PubMed Central

    2014-01-01

    Background PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Methods Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Results Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression

  10. Pancreatic islet cell tumor

    MedlinePlus

    Complications of these tumors include: Diabetes Hormone crises (if the tumor releases certain types of hormones) Severe low blood sugar (from insulinomas) Severe ulcers in the stomach and small intestine (from gastrinomas) Spread of the tumor to the liver

  11. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest.

    PubMed

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  12. Targeting prostate cancer cells with a multivalent PSMA inhibitor-guided streptavidin conjugate.

    PubMed

    Liu, Tiancheng; Nedrow-Byers, Jessie R; Hopkins, Mark R; Wu, Lisa Y; Lee, Jeonghoon; Reilly, Peter T A; Berkman, Clifford E

    2012-06-15

    Prostate-specific membrane antigen (PSMA), a type II membrane glycoprotein, its high expression is associated with prostate cancer progression, and has been becoming an active target for imaging or therapeutic applications for prostate cancer. On the other hand, streptavidin-biotin system has been successfully employed in pretargeting therapy towards multiple cancers. Herein, we describe the synthesis of bifunctional ligands (biotin-CTT54, biotin-PEG(4)-CTT54, and biotin-PEG(12)-CTT54) possessing two functional motifs separated by a length-varied polyethylene glycol (PEG) spacer: one (CTT54) binds tumor-marker PSMA and the other (biotin) binds streptavidin or avidin. All three compounds exhibited high potencies (IC(50) values: 1.21, 2.53, and 10nM, respectively) and irreversibility; but only biotin-PEG(12)-CTT54 demonstrated specifically labeling PSMA-positive prostate cancer cells in a two-step pretargeting procedure. Additionally, the pre-formulated complex between biotin-PEG(12)-CTT54 and Cy5-streptavidin displayed the improved inhibitory potency (IC(50)=1.86 nM) and irreversibility against PSMA and rapid uptake of streptavidin conjugate into PSMA-positive prostate cancer cells through PSMA-associated internalization. Together, all these results supported a proof-concept that combination of streptavidin and PSMA's biotinylated inhibitor may lead to development of a novel strategy of tumor-targeting imaging or drug delivery towards prostate cancer.

  13. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay.

    PubMed

    Park, Jung Wook; Lee, John K; Phillips, John W; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N

    2016-04-19

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic theMYCamplification andPTENloss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1-transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1-transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics. PMID:27044116

  14. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay.

    PubMed

    Park, Jung Wook; Lee, John K; Phillips, John W; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N

    2016-04-19

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic theMYCamplification andPTENloss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1-transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1-transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics.

  15. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay

    PubMed Central

    Park, Jung Wook; Lee, John K.; Phillips, John W.; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic the MYC amplification and PTEN loss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1–transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1–transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics. PMID:27044116

  16. Androgen receptor and gene network: Micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells

    PubMed Central

    2014-01-01

    Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery. PMID:24739220

  17. Anti-Tumor Effect of the Alphavirus-based Virus-like Particle Vector Expressing Prostate-Specific Antigen in a HLA-DR Transgenic Mouse Model of Prostate Cancer

    PubMed Central

    Riabov, V.; Tretyakova, I.; Alexander, R. B.; Pushko, P.; Klyushnenkova, E. N.

    2015-01-01

    The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1*1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8+ T cells (19.6±7.4%) produced IFNγ in response to the immunodominant peptide PSA65–73. In the blood of vaccinated mice, 18.4±4.1% of CD8+ T cells were PSA-specific as determined by the staining with H-2Db/PSA65–73 dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8 T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. PMID:26319744

  18. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation

    PubMed Central

    Bae, Kyung-Mi; Dai, Yao; Vieweg, Johannes; Siemann, Dietmar W

    2016-01-01

    SOX2 is an embryonic stem cell marker that in prostate cancer has been associated not only with tumorigenesis but also metastasis. Furthermore hypoxia in primary tumors has been linked to poor prognosis and outcomes in this disease. The goal of the present study was to investigate the impact of hypoxia on SOX2 expression and metastasis-associated functions in prostate cancer cells. A tissue microarray of 80 samples from prostate cancer patients or healthy controls was employed to examine the expression of HIF-1α and its correlation with SOX2. The role of SOX2 and HIF-1/2α in the regulation of cell invasion and sphere formation capacity under hypoxic conditions was investigated in vitro using short hairpin RNA (shRNA)-mediated knockdown in three human prostate cancer cell lines. HIF-1α expression was significantly elevated in malignant prostate tissue compared to benign or normal tissue, and in tumor samples its expression was highly correlated with SOX2. In prostate cancer cells, acute and chronic exposures to hypoxia that resulted in elevated expression levels of HIF-1α and HIF-2α, respectively, also induced SOX2. Genetic depletion of SOX2 attenuated hypoxia-induced cell functions. Knockdown of HIF-1α, but not HIF-2α, decreased acute hypoxia-mediated cell invasion and SOX2 up-regulation, whereas only HIF-2α gene silencing reduced sphere formation capacity and chronic hypoxia-mediated SOX2 up-regulation. Enhanced SOX2 expression and HIF-1α or HIF-2α associated phenotypes are dependent on the time duration of exposure to hypoxia. The present results indicate that SOX2 may be a key mediator of hypoxia-induced metastasis-associated functions and hence may serve as a potential target for therapeutic interventions for metastatic prostate cancer. PMID:27294000

  19. Anthocyanin Induces Apoptosis of DU-145 Cells In Vitro and Inhibits Xenograft Growth of Prostate Cancer

    PubMed Central

    Ha, U-Syn; Bae, Woong Jin; Kim, Su Jin; Yoon, Byung Il; Hong, Sung Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Hwang, Sung Yeoun; Wang, Zhiping

    2015-01-01

    Purpose To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). Materials and Methods The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2×106) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. Results Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. Conclusion This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model. PMID:25510742

  20. miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3

    PubMed Central

    Hua, Xing; Xiao, Yu; Pan, Wenhai; Li, Meiyun; Huang, Xiaoxiao; Liao, Zexiao; Xian, Qi; Yu, Lina

    2016-01-01

    Prostate cancer is one of the leading causes of cancer deaths among men, many miRNAs have been demonstrated to play critical role in the progression of prostate cancer, miR-186 suppresses the progression of many tumors, such as bladder cancer and glioma. Previous study shows miR-186 is downregulated in prostate cancer tissues, and is a good prognosis for prostate cancer patients. In this study, we found miR-186 was downregulated in prostate cancer cells and tissues, overexpression of miR-186 inhibited cell proliferation and tumorigenesis in vitro determined by MTT assay, colony formation assay and soft agar growth assay, whereas knockdown of miR-186 reduced these effects. Cell cycle analysis found miR-186 overexpression arrested cell cycle in G0/G1 phase, and reduced p21 and p27 levels, and enhanced Cyclin D1 and the phosphorylation of Rb levels, suggesting miR-186 blocked G1/S transition. A novel oncogene Golgi phhosphoprotein 3 (GOLPH3) was the target of miR-186, miR-186 bound to the 3’UTR of GOLPH3. Moreover, miR-186 was negatively correlated with GOLPH3 in prostate cancer tissues. In conclusion, our study suggested miR-186 inhibited cell proliferation through targeting oncogene GOLPH3. PMID:27648356

  1. miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3.

    PubMed

    Hua, Xing; Xiao, Yu; Pan, Wenhai; Li, Meiyun; Huang, Xiaoxiao; Liao, Zexiao; Xian, Qi; Yu, Lina

    2016-01-01

    Prostate cancer is one of the leading causes of cancer deaths among men, many miRNAs have been demonstrated to play critical role in the progression of prostate cancer, miR-186 suppresses the progression of many tumors, such as bladder cancer and glioma. Previous study shows miR-186 is downregulated in prostate cancer tissues, and is a good prognosis for prostate cancer patients. In this study, we found miR-186 was downregulated in prostate cancer cells and tissues, overexpression of miR-186 inhibited cell proliferation and tumorigenesis in vitro determined by MTT assay, colony formation assay and soft agar growth assay, whereas knockdown of miR-186 reduced these effects. Cell cycle analysis found miR-186 overexpression arrested cell cycle in G0/G1 phase, and reduced p21 and p27 levels, and enhanced Cyclin D1 and the phosphorylation of Rb levels, suggesting miR-186 blocked G1/S transition. A novel oncogene Golgi phhosphoprotein 3 (GOLPH3) was the target of miR-186, miR-186 bound to the 3'UTR of GOLPH3. Moreover, miR-186 was negatively correlated with GOLPH3 in prostate cancer tissues. In conclusion, our study suggested miR-186 inhibited cell proliferation through targeting oncogene GOLPH3. PMID:27648356

  2. miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3

    PubMed Central

    Hua, Xing; Xiao, Yu; Pan, Wenhai; Li, Meiyun; Huang, Xiaoxiao; Liao, Zexiao; Xian, Qi; Yu, Lina

    2016-01-01

    Prostate cancer is one of the leading causes of cancer deaths among men, many miRNAs have been demonstrated to play critical role in the progression of prostate cancer, miR-186 suppresses the progression of many tumors, such as bladder cancer and glioma. Previous study shows miR-186 is downregulated in prostate cancer tissues, and is a good prognosis for prostate cancer patients. In this study, we found miR-186 was downregulated in prostate cancer cells and tissues, overexpression of miR-186 inhibited cell proliferation and tumorigenesis in vitro determined by MTT assay, colony formation assay and soft agar growth assay, whereas knockdown of miR-186 reduced these effects. Cell cycle analysis found miR-186 overexpression arrested cell cycle in G0/G1 phase, and reduced p21 and p27 levels, and enhanced Cyclin D1 and the phosphorylation of Rb levels, suggesting miR-186 blocked G1/S transition. A novel oncogene Golgi phhosphoprotein 3 (GOLPH3) was the target of miR-186, miR-186 bound to the 3’UTR of GOLPH3. Moreover, miR-186 was negatively correlated with GOLPH3 in prostate cancer tissues. In conclusion, our study suggested miR-186 inhibited cell proliferation through targeting oncogene GOLPH3.

  3. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth.

    PubMed

    Santanam, Urmila; Banach-Petrosky, Whitney; Abate-Shen, Cory; Shen, Michael M; White, Eileen; DiPaola, Robert S

    2016-02-15

    Understanding new therapeutic paradigms for both castrate-sensitive and more aggressive castrate-resistant prostate cancer is essential to improve clinical outcomes. As a critically important cellular process, autophagy promotes stress tolerance by recycling intracellular components to sustain metabolism important for tumor survival. To assess the importance of autophagy in prostate cancer, we generated a new autochthonous genetically engineered mouse model (GEMM) with inducible prostate-specific deficiency in the Pten tumor suppressor and autophagy-related-7 (Atg7) genes. Atg7 deficiency produced an autophagy-deficient phenotype and delayed Pten-deficient prostate tumor progression in both castrate-naïve and castrate-resistant cancers. Atg7-deficient tumors display evidence of endoplasmic reticulum (ER) stress, suggesting that autophagy may promote prostate tumorigenesis through management of protein homeostasis. Taken together, these data support the importance of autophagy for both castrate-naïve and castrate-resistant growth in a newly developed GEMM, suggesting a new paradigm and model to study approaches to inhibit autophagy in combination with known and new therapies for advanced prostate cancer. PMID:26883359

  4. [An extremely rare retro-vesico-prostatic tumor: peritoneal cystic mesothelioma].

    PubMed

    Benchekroun, A; Belahnech, Z; Faik, M; Marzouk, M; Jelthi, A

    1994-02-01

    The authors report an uncommon case of sub-peritoneal tumor. This tumor, which took the econographic features of multivesicular hydatic cyst, was in fact a mesothelia of the peritoneum. It was located behind the bladder and the prostate. The authors think that this localisation is an argument in favor of the peritoneal origin of Denonvilliers's prostatoperitoneal fascia.

  5. 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway

    PubMed Central

    Pang, Xiufeng; Zhang, Li; Lai, Li; Chen, Jing; Wu, Yuanyuan; Yi, Zhengfang; Zhang, Jian; Qu, Weijing; Aggarwal, Bharat B.; Liu, Mingyao

    2011-01-01

    Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1′-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth. PMID:21427164

  6. 1'-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway.

    PubMed

    Pang, Xiufeng; Zhang, Li; Lai, Li; Chen, Jing; Wu, Yuanyuan; Yi, Zhengfang; Zhang, Jian; Qu, Weijing; Aggarwal, Bharat B; Liu, Mingyao

    2011-06-01

    Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1'-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth.

  7. Molecular Evidence of Helicobacter Pylori Infection in Prostate Tumors

    PubMed Central

    Al-Marhoon, Mohammed S.; Ouhtit, Allal; Al-Abri, Aisha O.; Venkiteswaran, Krishna P.; Al-Busaidi, Qassim; Mathew, Josephkunju; Al-Haddabi, Ibrahim; Shareef, Omar; Aquil, Shahid; Rahman, Khalid; Al-Hashmi, Intisar; Gupta, Ishita; Ganguly, Shyam S.

    2015-01-01

    Objectives To determine whether Helicobacter pylori (H. pylori) is detectable in both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Epidemiological studies have shown significant associations between infective chronic prostatitis and prostatic carcinoma. Many bacteria have been found in the prostate of patients with chronic prostatitis, BPH, and PCa. Methods One hundred consecutive patients with prostate diseases were enrolled in the study. Detection of H. pylori DNA in prostate tissue from patients with BPH and PCa was performed using both immunohistochemistry and PCR, and the results were confirmed by DNA sequencing. Odds ratios and the Fisher Exact test were used for the analysis of the associations between the variables. Results Among the patients, 78% had BPH and 19% had PCa. While immunohistochemistry showed no positive sample for H. pylori, PCR combined with sequencing detected H. pylori DNA in prostate tissue samples from 5 patients. However, statistical analysis of the data showed that BPH and PCa are not significantly associated with the presence of H. pylori DNA in prostate tissue (odds ratio = 0.94, 95% confidence interval = 0.09–23.34, one-tailed Chi-square value = 0.660, p > 0.05). The limitation of this study was the small number of PCa patients. Conclusions This study provides, for the first time, molecular evidence of the presence of H. pylori DNA in prostatic tissue of patients with BPH and PCa. It paves the way for further comprehensive studies to examine the association of H. pylori infection with BPH and PCa. PMID:26889133

  8. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate.

    PubMed

    Dueregger, Andrea; Schöpf, Bernd; Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies. PMID:26285134

  9. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate.

    PubMed

    Dueregger, Andrea; Schöpf, Bernd; Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.

  10. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate

    PubMed Central

    Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E.

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies. PMID:26285134

  11. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  12. The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells.

    PubMed

    Zhang, Lin; Yang, Shuping; Chen, Xingcheng; Stauffer, Seth; Yu, Fang; Lele, Subodh M; Fu, Kai; Datta, Kaustubh; Palermo, Nicholas; Chen, Yuanhong; Dong, Jixin

    2015-04-01

    Yes-associated protein (YAP) is an effector of the Hippo tumor suppressor pathway. The functional significance of YAP in prostate cancer has remained elusive. In this study, we first show that enhanced expression of YAP is able to transform immortalized prostate epithelial cells and promote migration and invasion in both immortalized and cancerous prostate cells. We found that YAP mRNA was upregulated in androgen-insensitive prostate cancer cells (LNCaP-C81 and LNCaP-C4-2 cells) compared to the level in androgen-sensitive LNCaP cells. Importantly, ectopic expression of YAP activated androgen receptor signaling and was sufficient to promote LNCaP cells from an androgen-sensitive state to an androgen-insensitive state in vitro, and YAP conferred castration resistance in vivo. Accordingly, YAP knockdown greatly reduced the rates of migration and invasion of LNCaP-C4-2 cells and under androgen deprivation conditions largely blocked cell division in LNCaP-C4-2 cells. Mechanistically, we found that extracellular signal-regulated kinase-ribosomal s6 kinase signaling was downstream of YAP for cell survival, migration, and invasion in androgen-insensitive cells. Finally, immunohistochemistry showed significant upregulation and hyperactivation of YAP in castration-resistant prostate tumors compared to their levels in hormone-responsive prostate tumors. Together, our results identify YAP to be a novel regulator in prostate cancer cell motility, invasion, and castration-resistant growth and as a potential therapeutic target for metastatic castration-resistant prostate cancer (CRPC).

  13. Down-regulation of beta 1C integrin, an inhibitor of cell proliferation, in prostate carcinoma.

    PubMed Central

    Fornaro, M.; Tallini, G.; Bofetiado, C. J.; Bosari, S.; Languino, L. R.

    1996-01-01

    The beta 1C integrin, a member of the cell adhesion receptor superfamily, is an alternatively spliced variant of the beta 1A subunit and, in contrast to its wild-type counterpart, inhibits cell proliferation in vitro. The expression of beta 1C integrin in tumor cell growth was investigated. In benign and neoplastic human prostate tissues, immunohistochemical analysis performed using affinity-purified antibodies specific for beta 1C demonstrated a predominant epithelial expression of beta 1C in benign prostate glands with marked staining of the apical, basal, and lateral surfaces. In the adjacent prostate adenocarcinoma glands, the beta 1C variant was dramatically down-regulated in 27 of 34 (79%) analyzed cases, whereas the expression and distribution of its wild-type counterpart, beta 1A, remained unchanged. Tumors exhibiting different Gleason's patterns showed that beta 1C was down-regulated in comparison with the benign tissue regardless of the histological grade. Immunoblotting analysis, using affinity-purified antibodies specific for beta 1C, was performed, in a quantitative manner, to compare beta 1C expression in benign and tumor prostate tissue. The results showed that beta 1C was expressed in benign prostate tissue whereas it was undetectable in prostate adenocarcinoma. Taken together, these data show that beta 1C integrin down-regulation in prostate tissues correlates with a neoplastic phenotype consistent with its in vitro growth-inhibitory properties. These findings indicate a novel pathophysiological role for this integrin variant in tumorigenesis. Images Figure 2 Figure 3 PMID:8780381

  14. Inorganic Arsenic–Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell–Conditioned Media Model

    PubMed Central

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal–epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). Results: ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. Conclusions: Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. Citation: Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL

  15. P2X7 Mediates ATP-Driven Invasiveness in Prostate Cancer Cells

    PubMed Central

    Qiu, Ying; Li, Wei-hua; Zhang, Hong-quan; Liu, Yan; Tian, Xin-Xia; Fang, Wei-Gang

    2014-01-01

    The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer. PMID:25486274

  16. TR4 nuclear receptor functions as a tumor suppressor for prostate tumorigenesis via modulation of DNA damage/repair system.

    PubMed

    Lin, Shin-Jen; Lee, Soo Ok; Lee, Yi-Fen; Miyamoto, Hiroshi; Yang, Dong-Rong; Li, Gonghui; Chang, Chawnshang

    2014-06-01

    Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, plays important roles in metabolism, fertility and aging. The linkage of TR4 functions in cancer progression, however, remains unclear. Using three different mouse models, we found TR4 could prevent or delay prostate cancer (PCa)/prostatic intraepithelial neoplasia development. Knocking down TR4 in human RWPE1 and mouse mPrE normal prostate cells promoted tumorigenesis under carcinogen challenge, suggesting TR4 may play a suppressor role in PCa initiation. Mechanism dissection in both in vitro cell lines and in vivo mice studies found that knocking down TR4 led to increased DNA damage with altered DNA repair system that involved the modulation of ATM expression at the transcriptional level, and addition of ATM partially interrupted the TR4 small interfering RNA-induced tumorigenesis in cell transformation assays. Immunohistochemical staining in human PCa tissue microarrays revealed ATM expression is highly correlated with TR4 expression. Together, these results suggest TR4 may function as a tumor suppressor to prevent or delay prostate tumorigenesis via regulating ATM expression at the transcriptional level. PMID:24583925

  17. Prostatic adenoma of ductal origin.

    PubMed

    Min, K W; Gyorkey, F

    1980-07-01

    A case of prostatic adenoma believed to originate from the prostatic duct is described. There were morphologic similarities to basal cell adenomas of salivary glands, and it was concluded that the tumor is a benign counterpart of "salivary gland" carcinomas, rarely observed in the prostate.

  18. Checkpoint Kinase 2 Negatively Regulates Androgen Sensitivity and Prostate Cancer Cell Growth.

    PubMed

    Ta, Huy Q; Ivey, Melissa L; Frierson, Henry F; Conaway, Mark R; Dziegielewski, Jaroslaw; Larner, James M; Gioeli, Daniel

    2015-12-01

    Prostate cancer is the second leading cause of cancer death in American men, and curing metastatic disease remains a significant challenge. Nearly all patients with disseminated prostate cancer initially respond to androgen deprivation therapy (ADT), but virtually all patients will relapse and develop incurable castration-resistant prostate cancer (CRPC). A high-throughput RNAi screen to identify signaling pathways regulating prostate cancer cell growth led to our discovery that checkpoint kinase 2 (CHK2) knockdown dramatically increased prostate cancer growth and hypersensitized cells to low androgen levels. Mechanistic investigations revealed that the effects of CHK2 were dependent on the downstream signaling proteins CDC25C and CDK1. Moreover, CHK2 depletion increased androgen receptor (AR) transcriptional activity on androgen-regulated genes, substantiating the finding that CHK2 affects prostate cancer proliferation, partly, through the AR. Remarkably, we further show that CHK2 is a novel AR-repressed gene, suggestive of a negative feedback loop between CHK2 and AR. In addition, we provide evidence that CHK2 physically associates with the AR and that cell-cycle inhibition increased this association. Finally, IHC analysis of CHK2 in prostate cancer patient samples demonstrated a decrease in CHK2 expression in high-grade tumors. In conclusion, we propose that CHK2 is a negative regulator of androgen sensitivity and prostate cancer growth, and that CHK2 signaling is lost during prostate cancer progression to castration resistance. Thus, perturbing CHK2 signaling may offer a new therapeutic approach for sensitizing CRPC to ADT and radiation. PMID:26573794

  19. Effect of gyromagnetic fields on human prostatic adenocarcinoma cells

    PubMed Central

    Lei, Hongen; Xu, Yongde; Guan, Ruili; Li, Meng; Hui, Yu; Gao, Zhezhu; Yang, Bicheng; Xin, Zhongcheng

    2015-01-01

    Purpose To investigate the biological effect of gyromagnetic fields (GMFs) on cell proliferation and apoptosis of human prostatic adenocarcinoma cells and explore the underlying mechanisms. Methods PC-3 cells were grouped into normal control (NC) and GMF treatment groups. Cell proliferation was analyzed with kit-8 and Ki67 immunofluorescence staining, while cell apoptosis was analyzed with flow cytometry double staining of Annexin V-PE/7-AAD. The Akt and p38 MAPK/Caspase signaling pathways were analyzed by western blotting and immunofluorescence staining, and cell polarization was analyzed with PARD3. Results Cell proliferation and activity of the Akt pathway were significantly decreased by the GMF, while cell apoptosis, activity of p38 MAPK, and PARD3-positive cell number were significantly increased in the GMF group compared to the NC group. Conclusion GMFs inhibit cell proliferation, induce apoptosis, and regulate tumor cell polarity conditions, potentially through down-regulating Akt, activating the p38 MAPK/Caspase pathway, and promoting PARD3 expression in PC-3 cells. PMID:26648740

  20. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  1. Calprotectin induces cell death in human prostate cancer cell (LNCaP) through survivin protein alteration.

    PubMed

    Sattari, Mina; Pazhang, Yaghub; Imani, Mehdi

    2014-11-01

    Calprotectin (CP), an abundant heterodimeric cytosolic protein of neutrophils, conveys a variety of functions such as tumor cell growth arrest and antimicrobial activity. We investigated CP activity and its possible apoptosis-inducing mechanism of action against an antiandrogen therapy-resistance prostate cancer cell line LNCaP. Cell viability and Annexin V FITC assays were performed in order to investigate its cell death activity and apoptosis, respectively. In order to address cell death inducing mechanism(s), immunocytochemistry and immunobloting analysis, reactive oxygen species (ROS) and nitric oxide (NO) measurements were performed. The effective concentration of CP against LNCaP promoting LNCaP cell death was 200 µg/mL. ROS and NO levels of cells remarkably were enhanced following treatment with 50 and 100 µg/mL of CP, respectively. Protein expression of anti-apoptotic protein survivin was significantly decreased after administration of tumor cells with CP. Our data indicate that CP regulates the LNCaP cells viability via survivin-mediated pathway and ROS and NO enhancement. Thus, inhibition of survivin expression, enhancement of ROS and NO level by CP or other similar pharmaceutical agents might be effective in lowering the malignant proliferation of human prostate cancer cells. PMID:24942387

  2. Calprotectin induces cell death in human prostate cancer cell (LNCaP) through survivin protein alteration.

    PubMed

    Sattari, Mina; Pazhang, Yaghub; Imani, Mehdi

    2014-11-01

    Calprotectin (CP), an abundant heterodimeric cytosolic protein of neutrophils, conveys a variety of functions such as tumor cell growth arrest and antimicrobial activity. We investigated CP activity and its possible apoptosis-inducing mechanism of action against an antiandrogen therapy-resistance prostate cancer cell line LNCaP. Cell viability and Annexin V FITC assays were performed in order to investigate its cell death activity and apoptosis, respectively. In order to address cell death inducing mechanism(s), immunocytochemistry and immunobloting analysis, reactive oxygen species (ROS) and nitric oxide (NO) measurements were performed. The effective concentration of CP against LNCaP promoting LNCaP cell death was 200 µg/mL. ROS and NO levels of cells remarkably were enhanced following treatment with 50 and 100 µg/mL of CP, respectively. Protein expression of anti-apoptotic protein survivin was significantly decreased after administration of tumor cells with CP. Our data indicate that CP regulates the LNCaP cells viability via survivin-mediated pathway and ROS and NO enhancement. Thus, inhibition of survivin expression, enhancement of ROS and NO level by CP or other similar pharmaceutical agents might be effective in lowering the malignant proliferation of human prostate cancer cells.

  3. A subset of prostatic basal cell carcinomas harbor the MYB rearrangement of adenoid cystic carcinoma.

    PubMed

    Bishop, Justin A; Yonescu, Raluca; Epstein, Jonathan I; Westra, William H

    2015-08-01

    Adenoid cystic carcinoma (ACC) is a basaloid tumor consisting of myoepithelial and ductal cells typically arranged in a cribriform pattern. Adenoid cystic carcinoma is generally regarded as a form of salivary gland carcinoma, but it can arise from sites unassociated with salivary tissue. A rare form of prostate carcinoma exhibits ACC-like features; it is no longer regarded as a true ACC but rather as prostatic basal cell carcinoma (PBCC) and within the spectrum of basaloid prostatic proliferations. True ACCs often harbor MYB translocations resulting in the MYB-NFIB fusion protein. MYB analysis could clarify the true nature of prostatic carcinomas that exhibit ACC features and thus help refine the classification of prostatic basaloid proliferations. Twelve PBCCs were identified from the pathology consultation files of Johns Hopkins Hospital. The histopathologic features were reviewed, and break-apart fluorescence in situ hybridization for MYB was performed. All 12 cases exhibited prominent basaloid histology. Four were purely solid, 7 exhibited a cribriform pattern reminiscent of salivary ACC, and 1 had a mixed pattern. The MYB rearrangement was detected in 2 (29%) of 7 ACC-like carcinomas but in none (0%) of the 5 PBCCs with a prominent solid pattern. True ACCs can arise in the prostate as is evidenced by the presence of the characteristic MYB rearrangement. When dealing with malignant basaloid proliferations in the prostate, recommendations to consolidate ACCs with other tumor types may need to be reassessed, particularly in light of the rapidly advancing field of biologic therapy where the identification of tumor-specific genetic alterations presents novel therapeutic targets.

  4. An immunocytochemical analysis of TGF alpha expression in benign and malignant prostatic tumors.

    PubMed

    Harper, M E; Goddard, L; Glynne-Jones, E; Wilson, D W; Price-Thomas, M; Peeling, W B; Griffiths, K

    1993-01-01

    Transforming growth factor alpha (TGF alpha) expression was analyzed immunocytochemically on formalin-fixed wax-embedded sections obtained from 24 benign prostatic hyperplasia (BPH) specimens and 76 prostatic carcinoma tissues, 3 human prostatic tumor xenografts, normal kidney, and salivary gland. Low amounts of TGF alpha immunopositivity were encountered in the epithelium of BPH glandular tissues, whereas in the prostatic adenocarcinoma samples, a greater heterogeneity and intensity of TGF alpha immunostaining was observed. The most intense staining was exhibited by the least differentiated tumors, although a few of these were weakly stained. Statistical analysis of the relationship of histopathological grade of tumor with TGF alpha expression in the carcinomas showed a significant correlation of these parameters, 0.01 > P > 0.001. The expression of the proliferation markers Ki-67 and PCNA was also analyzed in the carcinoma specimens, and the relationship of these to TGF alpha expression indicated that there was no significant correlation in this series of tumors between increased growth activity and TGF alpha expression (p approximately 0.25 with both markers). The prostatic carcinoma xenografts TEN12 and TEN15 contained low levels of immunoreactive TGF alpha, which was uniformly distributed, whilst heterogeneous immunostaining was observed in the uroepithelial xenograft TEN16. In the normal human kidney, TGF alpha was concentrated in the epithelium of the distal convoluted tubules (DCT) and the collecting tubules (CT), and lower amounts were identified in the proximal convoluted tubules (PCT). As in the prostatic carcinomas, the immunostaining was eliminated by prior absorption of the antibody with pure TGF alpha and not with human or mouse EGF. No crossreactivity of the TGF alpha antibody with salivary EGF was demonstrated. This study concludes that, in prostate carcinoma, the least differentiated tumors more often expressed greater amounts immunoreactive TGF

  5. Metabolomic profiling reveals a role for androgen in activating amino acid metabolism and methylation in prostate cancer cells.

    PubMed

    Putluri, Nagireddy; Shojaie, Ali; Vasu, Vihas T; Nalluri, Srilatha; Vareed, Shaiju K; Putluri, Vasanta; Vivekanandan-Giri, Anuradha; Byun, Jeman; Pennathur, Subramaniam; Sana, Theodore R; Fischer, Steven M; Palapattu, Ganesh S; Creighton, Chad J; Michailidis, George; Sreekumar, Arun

    2011-01-01

    Prostate cancer is the second leading cause of cancer related death in American men. Development and progression of clinically localized prostate cancer is highly dependent on androgen signaling. Metastatic tumors are initially responsive to anti-androgen therapy, however become resistant to this regimen upon progression. Genomic and proteomic studies have implicated a role for androgen in regulating metabolic processes in prostate cancer. However, there have been no metabolomic profiling studies conducted thus far that have examined androgen-regulated biochemical processes in prostate cancer. Here, we have used unbiased metabolomic profiling coupled with enrichment-based bioprocess mapping to obtain insights into the biochemical alterations mediated by androgen in prostate cancer cell lines. Our findings indicate that androgen exposure results in elevation of amino acid metabolism and alteration of methylation potential in prostate cancer cells. Further, metabolic phenotyping studies confirm higher flux through pathways associated with amino acid metabolism in prostate cancer cells treated with androgen. These findings provide insight into the potential biochemical processes regulated by androgen signaling in prostate cancer. Clinically, if validated, these pathways could be exploited to develop therapeutic strategies that supplement current androgen ablative treatments while the observed androgen-regulated metabolic signatures could be employed as biomarkers that presage the development of castrate-resistant prostate cancer. PMID:21789170

  6. Metabolomic Profiling Reveals a Role for Androgen in Activating Amino Acid Metabolism and Methylation in Prostate Cancer Cells

    PubMed Central

    Putluri, Nagireddy; Shojaie, Ali; Vasu, Vihas T.; Nalluri, Srilatha; Vareed, Shaiju K.; Putluri, Vasanta; Vivekanandan-Giri, Anuradha; Byun, Jeman; Pennathur, Subramaniam; Sana, Theodore R.; Fischer, Steven M.; Palapattu, Ganesh S.; Creighton, Chad J.; Michailidis, George; Sreekumar, Arun

    2011-01-01

    Prostate cancer is the second leading cause of cancer related death in American men. Development and progression of clinically localized prostate cancer is highly dependent on androgen signaling. Metastatic tumors are initially responsive to anti-androgen therapy, however become resistant to this regimen upon progression. Genomic and proteomic studies have implicated a role for androgen in regulating metabolic processes in prostate cancer. However, there have been no metabolomic profiling studies conducted thus far that have examined androgen-regulated biochemical processes in prostate cancer. Here, we have used unbiased metabolomic profiling coupled with enrichment-based bioprocess mapping to obtain insights into the biochemical alterations mediated by androgen in prostate cancer cell lines. Our findings indicate that androgen exposure results in elevation of amino acid metabolism and alteration of methylation potential in prostate cancer cells. Further, metabolic phenotyping studies confirm higher flux through pathways associated with amino acid metabolism in prostate cancer cells treated with androgen. These findings provide insight into the potential biochemical processes regulated by androgen signaling in prostate cancer. Clinically, if validated, these pathways could be exploited to develop therapeutic strategies that supplement current androgen ablative treatments while the observed androgen-regulated metabolic signatures could be employed as biomarkers that presage the development of castrate-resistant prostate cancer. PMID:21789170

  7. Detection of circulating tumor cells.

    PubMed

    de Wit, Sanne; van Dalum, Guus; Terstappen, Leon W M M

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements.

  8. Detection of Circulating Tumor Cells

    PubMed Central

    Terstappen, Leon W. M. M.

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements. PMID:25133014

  9. [Primary Squamous Cell Carcinoma of the Prostate in which Docetaxel Therapy was Effective : A Case Report].

    PubMed

    Moriyama, Hiroyuki; Kajiwara, Mitsuru; Yonehara, Shuji

    2016-05-01

    The patient was a 73-year-old man who visited our hospital with asymptomatic gross hematuria. Cystoscopy revealed a bladder tumor in two places. Serum prostatic specific antigen was normal (2.535 ng/ml). Transurethral resection of bladder tumors was performed. In order to complete resection of bladder tumor, transurethral resection of right lobe of the prostate whitch had protruded into the bladder, was needed. Histology of the prostatic tissue revealed squamous cell carcinoma with no grandular and acinar structures. Serum SCC-antigen level was evaluated (6.2 ng/ml) after establishment of the diagnosis. Thoraco-abdominal computed tomography and 18-fluorodeoxyglucose positron emission tomography/ computed tomography ((18)F-FDG PET/CT) showed prostate cancer and multiple metastases in the lymph nodes, such as right external iliac, right common iliac, para-aortic and left supraclavicular region. The patient received external radiation therapy to the prostate and underwent systemic chemotherapy using docetaxel. After 2 courses of docetaxel therapy, multiple lymph nodes metastases were reduced and serum SCC-antigen level was normalized. Docetaxel therapy could not be continued because of a side effect of interstitial pneumonia. PMID:27320118

  10. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype.

    PubMed

    Joseph, Jeena; Shiozawa, Yusuke; Jung, Younghun; Kim, Jin Koo; Pedersen, Elisabeth; Mishra, Anjali; Zalucha, Janet Linn; Wang, Jingcheng; Keller, Evan T; Pienta, Kenneth J; Taichman, Russell S

    2012-03-01

    Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.

  11. Lycopene and apo-12'-lycopenal reduce cell proliferation and alter cell cycle progression in human prostate cancer cells.

    PubMed

    Ford, Nikki A; Elsen, Amy C; Zuniga, Krystle; Lindshield, Brian L; Erdman, John W

    2011-01-01

    Lycopene is associated with a reduced risk of prostate cancer. However, lycopene may not be wholly responsible for the effects seen in vivo or in cell culture systems. Apo-lycopenals or other lycopene metabolites, whether produced by cleavage enzymes within the body or consumed with tomato products, can be found in tissues at concentrations equivalent to physiological retinoid concentrations. Therefore, it is plausible that lycopenoids, like retinoids, are bioactive within tissues. Androgen-independent DU145 prostate cancer cells were treated with lycopene, apo-8'-lycopenal, or apo-12'-lycopenal. DU145 cell proliferation was significantly reduced by supra-physiological levels of lycopene and apo-12'-lycopenal, in part, through alteration of the normal cell cycle. Levels of the gap junction protein, connexin 43, were unaltered by lycopene or apo-lycopenal treatment while cell apoptosis rates significantly decreased. We further confirmed that connexin 43 protein levels were unaltered by lycopene treatment in mouse embryonic fibroblasts, or in Dunning R3327-H rat prostate tumor. The present data indicate that lycopene and apo-12'-lycopenal reduce the proliferation of prostate cancer cells, in part, by inhibiting normal cell cycle progression. PMID:21207319

  12. Targeting of pancreatic and prostate cancer stem cell characteristics by Crambe crambe marine sponge extract.

    PubMed

    Ottinger, Sabine; Klöppel, Anne; Rausch, Vanessa; Liu, Li; Kallifatidis, Georgios; Gross, Wolfgang; Gebhard, Martha-Maria; Brümmer, Franz; Herr, Ingrid

    2012-04-01

    Cancer stem cells (CSCs) are suggested as reason for resistance of tumors toward conventional tumor therapy including pancreatic and advanced prostate cancer. New therapeutic agents are urgently needed for targeting of CSCs. Marine sponges harbor novel and undefined compounds with antineoplastic activity but their potential to eliminate CSC characteristics is not examined so far. We collected 10 marine sponges and one freshwater sponge by diving at the seaside and prepared crude methanolic extracts. The effect to established pancreatic and prostate CSC lines was evaluated by analysis of apoptosis, cell cycle, side population, colony and spheroid formation, migratory potential in vitro and tumorigenicity in vivo. While each sponge extract at a 1:10 dilution efficiently diminished viability, Crambe crambe marine sponge extract (CR) still strongly reduced viability of tumor cells at a dilution of 1:1,000 but was less toxic to normal fibroblasts and endothelial cells. CR inhibited self-renewal capacity, apoptosis resistance, and proliferation even in gemcitabine-selected pancreatic cancer cells with acquired therapy resistance and enhanced CSC characteristics. CR pretreatment of tumor cells diminished tumorigenicity of gemcitabine-resistant tumor cells in mice and totally abolished tumor take upon combination with gemcitabine. Our data suggest that CR contains substances, which render standard cancer therapy more effective by targeting of CSC characteristics. Isolation of bioactive metabolites from CR and evaluation in mice are required for development of new CSC-specific chemotherapeutic drugs from a marine sponge.

  13. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers.

    PubMed

    Wernicke, Alla Gabriella; Varma, Sonal; Greenwood, Eleni A; Christos, Paul J; Chao, K S Clifford; Liu, He; Bander, Neil H; Shin, Sandra J

    2014-06-01

    Prostate-specific membrane antigen (PSMA) has been found to be expressed in the tumor-associated neovasculature of multiple solid tumor types including breast cancers. However, thus far, the number of cases studied from some tumor types has been limited. In this study, we set out to assess PSMA expression in the tumor-associated vasculature associated with invasive breast carcinomas in a sizable cohort of patients. One hundred and six patients with AJCC stage 0-IV breast cancer were identified. Ninety-two of these patients had primary breast cancer [invasive breast carcinoma with or without co-existing ductal carcinoma in situ (DCIS) (74) or DCIS alone (18)]. In addition, 14 patients with breast cancer metastases to the brain were identified. Immunohistochemical staining for PSMA and CD31 was performed on parallel representative tumor sections in each case. Tumor-associated vascular endothelial cell PSMA immunoreactivity was semi-quantitatively assessed based on two parameters: overall percent of endothelial positivity and staining intensity. PSMA expression for tumor-associated vascular endothelial cells was scored 0 if there was no detectable PSMA expression, 1 if PSMA staining was detectable in 5-50%, and 2 if PSMA expression was positive in >50% of microvessels. CD 31 staining was concurrently reviewed to confirm the presence of vasculature in each case. Tumor-associated vasculature was PSMA-positive in 68/92 (74%) of primary breast cancers and in 14/14 (100%) of breast cancers metastatic to brain. PSMA was not detected in normal breast tissue or carcinoma cells. All but 2 cases (98%) showed absence of PSMA expression in normal breast tissue-associated vasculature. The 10-year overall survival was 88.7% (95% CI = 80.0%, 93.8%) in patients without brain metastases. When overall survival (OS) was stratified based on PSMA score group, patients with PSMA scores of 0, 1, and 2 had 10-year OS of 95.8%, 96.0%, and 79.7%, respectively (p = 0.12). When PSMA scores

  14. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2012-01-01

    Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27KIP1 and p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse. PMID:21396984

  15. [Detection of tumors in the central zone of the prostate with 11C-Choline PET/CT].

    PubMed

    Garcia, J R; Soler, M; Moragas, M; Ponce, A; Moreno, C; Riera, E

    2014-01-01

    Prostate tumors originate 68% in the peripheral region and 24% in the transitional region where tumors originating in the central zone are rare (8%). However, diagnosis of the tumors in the central zone is important since they exhibit greater aggressiveness conditioned by their location and different biological behavior. Magnetic resonance imaging shows problems in identifying lesions in the central prostate zone, since this region has a heterogeneous signal, mainly after the primary treatment. Ultrasound guided sextant biopsy shows a negative result in 28% of prostate tumors. Therefore, it is advisable to repeat or even to perform saturation biopsies. We present two patients, one of them with suspected biochemical prostate cancer and one with biochemical recurrence after radical treatment. In both, (11)C-Choline PET/CT allowed detection of the tumor focus in the central zone of the prostate, with negative complementary diagnostic test and biopsies. PMID:24119550

  16. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells.

    PubMed

    Jilg, Cordula A; Ketscher, Anett; Metzger, Eric; Hummel, Barbara; Willmann, Dominica; Rüsseler, Vanessa; Drendel, Vanessa; Imhof, Axel; Jung, Manfred; Franz, Henriette; Hölz, Stefanie; Krönig, Malte; Müller, Judith M; Schüle, Roland

    2014-12-30

    The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer. PMID:25504435

  17. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells.

    PubMed

    Jilg, Cordula A; Ketscher, Anett; Metzger, Eric; Hummel, Barbara; Willmann, Dominica; Rüsseler, Vanessa; Drendel, Vanessa; Imhof, Axel; Jung, Manfred; Franz, Henriette; Hölz, Stefanie; Krönig, Malte; Müller, Judith M; Schüle, Roland

    2014-12-30

    The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer.

  18. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    SciTech Connect

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong; Kim, Euiyong; Kim, Byung Joo; Ha, Kotdaji; Cho, Nam-Hyuk; Kim, In-Gyu; Jeon, Ju-Hong; So, Insuk

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  19. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells

    PubMed Central

    Jilg, Cordula A.; Ketscher, Anett; Metzger, Eric; Hummel, Barbara; Willmann, Dominica; Rüsseler, Vanessa; Drendel, Vanessa; Imhof, Axel; Jung, Manfred; Franz, Henriette; Hölz, Stefanie; Krönig, Malte; Müller, Judith M.; Schüle, Roland

    2014-01-01

    The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Statement of significance Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer. PMID:25504435

  20. Significance of Circulating Tumor Cells in Soft Tissue Sarcoma

    PubMed Central

    Nicolazzo, Chiara; Gradilone, Angela

    2015-01-01

    Circulating tumor cells can be detected from the peripheral blood of cancer patients. Their prognostic value has been established in the last 10 years for metastatic colorectal, breast, and prostate cancer. On the contrary their presence in patients affected by sarcomas has been poorly investigated. The discovery of EpCAM mRNA expression in different sarcoma cell lines and in a small cohort of metastatic sarcoma patients supports further investigations on these rare tumors to deepen the importance of CTC isolation. Although it is not clear whether EpCAM expression might be originally present on tumor sarcoma cells or acquired during the mesenchymal-epithelial transition, the discovery of EpCAM on circulating sarcoma cells opens a new scenario in CTC detection in patients affected by a rare mesenchymal tumor. PMID:26167450

  1. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression

    PubMed Central

    Voll, Eric A; Ogden, Irene M; Pavese, Janet M; Huang, XiaoKe; Xu, Li; Jovanovic, Borko D; Bergan, Raymond C

    2014-01-01

    Prostate cancer (PCa) is the most common form of cancer in American men. Mortality from PCa is caused by the movement of cancer cells from the primary organ to form metastatic tumors at distant sites. Heat shock protein 27 (HSP27) is known to increase human PCa cell invasion and its overexpression is associated with metastatic disease. The role of HSP27 in driving PCa cell movement from the prostate to distant metastatic sites is unknown. Increased HSP27 expression increased metastasis as well as primary tumor mass. In vitro studies further examined the mechanism of HSP27-induced metastatic behavior. HSP27 did not affect cell detachment, adhesion, or migration, but did increase cell invasion. Cell invasion was dependent upon matrix metalloproteinase 2 (MMP-2), whose expression was increased by HSP27. In vivo, HSP27 induced commensurate changes in MMP-2 expression in tumors. These findings demonstrate that HSP27 drives metastatic spread of cancer cells from the prostate to distant sites, does so across a continuum of expression levels, and identifies HSP27-driven increases in MMP-2 expression as functionally relevant. These findings add to prior studies demonstrating that HSP27 increases PCa cell motility, growth and survival. Together, they demonstrate that HSP27 plays an important role in PCa progression. PMID:24798191

  2. Role of macrophages in circulating prostate cancer cells studied by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2013-02-01

    Macrophages appear to be directly involved in cancer progression and metastasis. However, the role of macrophages in influencing tumor metastasis has not been fully understood. Here, we have used an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 prostate cancer cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages might facilitate the stay of prostate tumor cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cancer cells. Therefore, the phagocytosis may mainly contribute to the differences in depletion kinetics. The developed methods here would be useful to study the relationship between macrophages and cancer metastasis in small animal tumor model.

  3. Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Wenhuan; Lu, Jun Qing; Yang, Li V.; Sa, Yu; Feng, Yuanming; Ding, Junhua; Hu, Xin-Hua

    2016-07-01

    Accurate classification of malignant cells from benign ones can significantly enhance cancer diagnosis and prognosis by detection of circulating tumor cells (CTCs). We have investigated two approaches of quantitative morphology and polarization diffraction imaging on two prostate cell types to evaluate their feasibility as single-cell assay methods toward CTC detection after cell enrichment. The two cell types have been measured by a confocal imaging method to obtain their three-dimensional morphology parameters and by a polarization diffraction imaging flow cytometry (p-DIFC) method to obtain image texture parameters. The support vector machine algorithm was applied to examine the accuracy of cell classification with the morphology and diffraction image parameters. Despite larger mean values of cell and nuclear sizes of the cancerous prostate cells than the normal ones, it has been shown that the morphologic parameters cannot serve as effective classifiers. In contrast, accurate classification of the two prostate cell types can be achieved with high classification accuracies on measured data acquired separately in three measurements. These results provide strong evidence that the p-DIFC method has the potential to yield morphology-related "fingerprints" for accurate and label-free classification of the two prostate cell types.

  4. Integrated Multimodal Imaging of Dynamic Bone-Tumor Alterations Associated with Metastatic Prostate Cancer

    PubMed Central

    Chenevert, Thomas L.; Jacobson, Jon A.; Boes, Jennifer L.; Galbán, Stefanie; Rehemtulla, Alnawaz; Johnson, Timothy D.; Pienta, Kenneth J.; Galbán, Craig J.; Meyer, Charles R.; Schakel, Timothy; Nicolay, Klaas; Alva, Ajjai S.; Hussain, Maha; Ross, Brian D.

    2015-01-01

    Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease. Trial Registration ClinicalTrials.gov NCT02064283 PMID:25859981

  5. Transrectal Ultrasound-Integrated Spectral Optical Tomography of Hypoxic Progression of a Regressing Tumor in a Canine Prostate

    PubMed Central

    Jiang, Z.; Piao, D.; Bartels, K. E.; Holyoak, G. R.; Ritchey, J. W.; Ownby, C. L.; Rock, K.; Slobodov, G.

    2011-01-01

    The objective of this study was to evaluate if transrectal optical tomography implemented at three wavelength bands for spectral detection could monitor changes of the hemoglobin oxygen saturation (StO2) in addition to those of the total hemoglobin concentration ([HbT]) in lesions of a canine prostate, including an induced tumor modeling canine prostate cancer. Near-infrared (NIR) optical tomography was integrated with ultrasound (US) for transrectal imaging. Multi-spectral detection at 705 nm, 785 nm and 808 nm rendered measurements of [HbT] and StO2. Canine transmissible venereal tumor (TVT) cells were injected into the right lobe of a dog's prostate gland, which had a pre-existing cyst in the left lobe. Longitudinal assessments of the prostate were performed weekly over a 63-day duration by NIR imaging concurrent with grey-scale and Doppler US. Ultrasonography revealed a bi-lobular tumor-mass regressing from day-49 to day-63. At day-49 this tumor-mass developed a hypoxic core that became larger and more intense by day-56 and expanded further by day-63. The tumor-mass presented a strong hyper-[HbT] feature on day-56 that was inconsistent with US-visualized blood flow. Histology confirmed two necrotic TVT foci within this tumor-mass. The cyst appeared to have a large anoxic-like interior that was greater in size than its ultrasonographically delineated lesion, and a weak lesional elevation of [HbT]. On day-56, the cyst presented a strong hyper-[HbT] feature consistent with US-resolved blood flow. Histology revealed acute and chronic hemorrhage in the periphery of the cyst. The NIR imaging features of two other TVT nodules and a metastatic lymph node were evaluated retrospectively. Transrectal US-integrated spectral optical tomography seems to enable longitudinal monitoring of intra-lesional oxygenation dynamics in addition to the hemoglobin content of lesions in the canine prostate. PMID:22066593

  6. Silencing of CCR7 inhibits the growth, invasion and migration of prostate cancer cells induced by VEGFC

    PubMed Central

    Chi, Bao-Jin; Du, Cong-Lin; Fu, Yun-Feng; Zhang, Ya-Nan; Wang, Ru Wen

    2015-01-01

    Early in prostate cancer development, tumor cells express vascular endothelial growth factor C (VEGF-C), a secreted molecule that is important in angiogenesis progression. CC-chemokine receptor 7 (CCR7), another protein involved in angiogenesis, is strongly expressed in most human cancers, where it activated promotes tumor growth as well as favoring tumor cell invasion and migration. The present study aimed to investigate the effect of down-regulating CCR7 expression on the growth of human prostate cancer cells stimulated by VEGFC. The CCR7-specific small interfering RNA (siRNA) plasmid vector was constructed and then transfected into prostate cancer cells. The expression of CCR7 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, apoptosis, cell cycle distribution and cell migration were assessed following knockdown of CCR7 by RNA interference (RNAi). Western blot analysis was used to identify differentially expressed angiogenesis- and cell cycle-associated proteins in cells with silenced CCR7. The expression levels of CCR7 in prostate cancer cells transfected with siRNA were decreased, leading to a significant inhibition of prostate cancer cell proliferation, migration and invasion induced by VEGFC. Western blot analysis revealed that silencing of CCR7 may inhibit vascular endothelial growth factor, matrix metalloproteinase (MMP)-2 and MMP-9 protein expression. In conclusion, the present study demonstrated that RNAi can effectively silence CCR7 gene expression and inhibit the growth of prostate cancer cells, which indicates that there is a potential of targeting CCR7 as a novel gene therapy approach for the treatment of prostate cancer. PMID:26722441

  7. sup 51 Cr loss and lactate dehydrogenase (LDH) release in irradiated human tumor cells

    SciTech Connect

    Ts'ao, C.; Molteni, A.; Hinz, J. )

    1991-03-11

    Much of what is known about tumor cell radiosensitivity in vitro derives from the colony formation assay. Other endpoints of cytotoxicity in irradiated tumor cells are rarely examined. The purpose of this study was to determine whether loss of {sup 51}Cr from prelabeled cells and release of LDH could be used to quantify radiation injury in two cultured human tumor cell lines: a prostate carcinoma and a melanoma. Bovine aortic endothelial cells (EC) known to release {sup 51}Cr and LDH following irradiation, were cotested. Radioactivity and LDH activity in the culture medium were determined after 0-40 Gy of {sup 60}CO {gamma} rays. Proliferation of irradiated tumor cells was also studied. EC exhibited a time- and radiation dose-dependent increase in {sup 51}Cr and LDH release. Both tumor cell lines showed a time-dependent increase in {sup 51}Cr release, but this baseline release was not elevated after irradiation. LDH release from the prostate cancer cell line was observed within 8 hr after 40 Gy, and at 48 hr by 10 Gy. Irradiated melanoma cells, in contrast, never release excess LDH into the culture medium. Melanoma cells continued to proliferate after 10 Gy, while proliferation of prostate cancer cells was totally arrested by this dose of exposure. While {sup 51}Cr loss and LDH release appear to be sensitive indicators of radiation-induced damage in EC, they have limited value in the assessment of radiation-induced cytotoxicity in human prostate cancer and melanoma cells.

  8. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells

    PubMed Central

    Dakshinamoorthy, Gajalakshmi; Bartik, Mary Margaret; Johnson, Gary Leon; Webb, Brian; Zheng, Guoxing; Chen, Aoshuang; Kalyanasundaram, Ramaswamy; Munirathinam, Gnanasekar

    2013-01-01

    Prostate cancer is the most common solid malignancy in men, with 32,000 deaths annually. Piperine, a major alkaloid constituent of black pepper, has previously been reported to have anti-cancer activity in variety of cancer cell lines. The effect of piperine against prostate cancer is not currently known. Therefore, in this study, we investigated the anti-tumor mechanisms of piperine on androgen dependent and androgen independent prostate cancer cells. Here, we show that piperine inhibited the proliferation of LNCaP, PC-3, 22RV1 and DU-145 prostate cancer cells in a dose dependent manner. Furthermore, Annexin-V staining demonstrated that piperine treatment induced apoptosis in hormone dependent prostate cancer cells (LNCaP). Using global caspase activation assay, we show that piperine-induced apoptosis resulted in caspase activation in LNCaP and PC-3 cells. Further studies revealed that piperine treatment resulted in the activation of caspase-3 and cleavage of PARP-1 proteins in LNCaP, PC-3 and DU-145 prostate cancer cells. Piperine treatment also disrupted androgen receptor (AR) expression in LNCaP prostate cancer cells. Our evaluations further show that there is a significant reduction of Prostate Specific Antigen (PSA) levels following piperine treatment in LNCaP cells. NF-kB and STAT-3 transcription factors have previously been shown to play a role in angiogenesis and invasion of prostate cancer cells. Interestingly, treatment of LNCaP, PC-3 and DU-145 prostate cancer cells with piperine resulted in reduced expression of phosphorylated STAT-3 and Nuclear factor-κB (NF-kB) transcription factors. These results correlated with the results of Boyden chamber assay, wherein piperine treatment reduced the cell migration of LNCaP and PC-3 cells. Finally, we show that piperine treatment significantly reduced the androgen dependent and androgen independent tumor growth in nude mice model xenotransplanted with prostate cancer cells. Taken together, these results support

  9. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    PubMed Central

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  10. The Prostate Specific Membrane Antigen Regulates the Expression of IL-6 and CCL5 in Prostate Tumour Cells by Activating the MAPK Pathways1

    PubMed Central

    Colombatti, Marco; Fracasso, Giulio; Scupoli, Maria Teresa; Cingarlini, Sara; Poffe, Ornella; Naim, Hassan Y.; Heine, Martin; Tridente, Giuseppe; Mainiero, Fabrizio; Ramarli, Dunia

    2009-01-01

    The interleukin-6 (IL-6) and the chemokine CCL5 are implicated in the development and progression of several forms of tumours including that of the prostate. The expression of the prostate specific membrane antigen (PSMA) is augmented in high-grade and metastatic tumors. Observations of the clinical behaviour of prostate tumors suggest that the increased secretion of IL-6 and CCL5 and the higher expression of PSMA may be correlated. We hypothesized that PSMA could be endowed with signalling properties and that its stimulation might impact on the regulation of the gene expression of IL-6 and CCL5. We herein demonstrate that the cross-linking of cell surface PSMA with specific antibodies activates the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 in prostate carcinoma LNCaP cells. As downstream effects of the PSMA-fostered RAS-RAC1-MAPK pathway activation we observed a strong induction of NF-κB activation associated with an increased expression of IL-6 and CCL5 genes. Pharmacological blockade with specific inhibitors revealed that both p38 and ERK1/2 participate in the phenomenon, although a major role exerted by p38 was evident. Finally we demonstrate that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically and in a dose-dependent manner and that CCL5 functioned by receptor-mediated activation of the STAT5-Cyclin D1 pro-proliferative pathway. The novel functions attributable to PSMA which are described in the present report may have profound influence on the survival and proliferation of prostate tumor cells, accounting for the observation that PSMA overexpression in prostate cancer patients is related to a worse prognosis. PMID:19242540

  11. Role of microRNA in prostate cancer stem/progenitor cells regulation.

    PubMed

    Tao, Z-Q; Shi, A-M; Li, R; Wang, Y-Q; Wang, X; Zhao, J

    2016-07-01

    Most of the human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It's crucial to understand the regulatory mechanisms unique to CSCs, in order to design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue for understanding the regulatory mechanisms of cancer. The present review article will discuss important milestones associated with mircroRNA regulation during prostate carcinogenesis. PMID:27460733

  12. Akt Inhibitor MK2206 and Hydroxychloroquine in Treating Patients With Advanced Solid Tumors, Melanoma, Prostate or Kidney Cancer

    ClinicalTrials.gov

    2016-02-05

    Adult Solid Neoplasm; Hormone-Resistant Prostate Cancer; Recurrent Melanoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  13. Preclinical evaluation of the supercritical extract of azadirachta indica (neem) leaves in vitro and in vivo on inhibition of prostate cancer tumor growth.

    PubMed

    Wu, Qiang; Kohli, Manish; Bergen, H Robert; Cheville, John C; Karnes, R Jeffrey; Cao, Hong; Young, Charles Y F; Tindall, Donald J; McNiven, Mark A; Donkena, Krishna Vanaja

    2014-05-01

    Azadirachta indica, commonly known as neem, has gained worldwide prominence because of its medical properties, namely antitumor, antiviral, anti-inflammatory, antihyperglycemic, antifungal, and antibacterial activities. Despite these promising results, gaps remain in our understanding of the molecular mechanism of action of neem compounds and their potential for use in clinical trials. We investigated supercritical extract of neem leaves (SENL) for the following: molecular targets in vitro, in vivo efficacy to inhibit tumor growth, and bioactive compounds that exert antitumor activity. Treatment of LNCaP-luc2 prostate cancer cells with SENL suppressed dihydrotestosterone-induced androgen receptor and prostate-specific antigen levels. SENL inhibited integrin β1, calreticulin, and focal adhesion kinase activation in LNCaP-luc2 and PC3 prostate cancer cells. Oral administration of SENL significantly reduced LNCaP-luc2 xenograft tumor growth in mice with the formation of hyalinized fibrous tumor tissue, reduction in the prostate-specific antigen, and increase in AKR1C2 levels. To identify the active anticancer compounds, we fractionated SENL by high-pressure liquid chromatography and evaluated 16 peaks for cytotoxic activity. Four of the 16 peaks exhibited significant cytotoxic activity against prostate cancer cells. Mass spectrometry of the isolated peaks suggested the compounds with cytotoxic activity were nimbandiol, nimbolide, 2',3'-dihydronimbolide, and 28-deoxonimbolide. Analysis of tumor tissue and plasma samples from mice treated with SENL indicated 28-deoxonimbolide and nimbolide as the bioactive compounds. Overall, our data revealed the bioactive compounds in SENL and suggested that the anticancer activity could be mediated through alteration in androgen receptor and calreticulin levels in prostate cancer.

  14. Preclinical Evaluation of the Supercritical Extract of Azadirachta Indica (Neem) Leaves In Vitro and In Vivo on Inhibition of Prostate Cancer Tumor Growth

    PubMed Central

    Wu, Qiang; Kohli, Manish; Bergen, H. Robert; Cheville, John C.; Karnes, R. Jeffrey; Cao, Hong; Young, Charles Y.F.; Tindall, Donald J.; McNiven, Mark A.; Donkena, Krishna Vanaja

    2015-01-01

    Azadirachta indica, commonly known as neem, has gained worldwide prominence because of its medical properties, namely antitumor, antiviral, anti-inflammatory, antihyperglycemic, antifungal, and antibacterial activities. Despite these promising results, gaps remain in our understanding of the molecular mechanism of action of neem compounds and their potential for use in clinical trials. We investigated supercritical extract of neem leaves (SENL) for the following: molecular targets in vitro, in vivo efficacy to inhibit tumor growth, and bioactive compounds that exert antitumor activity. Treatment of LNCaP-luc2 prostate cancer cells with SENL suppressed dihydrotestosterone-induced androgen receptor and prostate-specific antigen levels. SENL inhibited integrin β1, calreticulin, and focal adhesion kinase activation in LNCaP-luc2 and PC3 prostate cancer cells. Oral administration of SENL significantly reduced LNCaP-luc2 xenograft tumor growth in mice with the formation of hyalinized fibrous tumor tissue, reduction in the prostate-specific antigen, and increase in AKR1C2 levels. To identify the active anticancer compounds, we fractionated SENL by high-pressure liquid chromatography and evaluated 16 peaks for cytotoxic activity. Four of the 16 peaks exhibited significant cytotoxic activity against prostate cancer cells. Mass spectrometry of the isolated peaks suggested the compounds with cytotoxic activity were nimbandiol, nimbolide, 2′,3′-dihydronimbolide, and 28-deoxonim-bolide. Analysis of tumor tissue and plasma samples from mice treated with SENL indicated 28-deoxonim-bolide and nimbolide as the bioactive compounds. Overall, our data revealed the bioactive compounds in SENL and suggested that the anticancer activity could be mediated through alteration in androgen receptor and calreticulin levels in prostate cancer. PMID:24674886

  15. The growth regulatory fibroblast IK channel is the prominent electrophysiological feature of rat prostatic cancer cells.

    PubMed

    Rane, S G

    2000-03-16

    Physiological effectors for mitogenic cell growth control remain to be determined for mammalian tumor cells, particularly those derived from prostatic tissue. One such effector for mitogenic Ras/MAPK signaling in fibroblasts is an intermediate-conductance, calcium-activated potassium channel (FIK). In this study patch-clamp electrophysiology was used to show that both AT2.1 and MatLyLu rat prostate cancer cell lines express high levels of a current identified as FIK, based on the following criteria: activation by elevation of intracellular calcium, voltage independence, potassium selectivity, and block by charybdotoxin (ChTX) and the Stichodactyla helianthus potassium channel neurotoxin (StK). FIK current densities in AT2.1 and MatLyLu cells were comparable to the high levels seen in fibroblasts transfected with oncogenic Ras or Raf, suggesting hyperactivity of the Ras/MAPK pathway in prostatic cancer cells. Voltage-gated sodium current was present in most MatLyLu cells but absent from AT2.1 cells, and all AT2.1 cells had voltage-gated potassium currents. Thus, FIK is the main electrophysiological feature of rat prostatic cancer cells as it is for mitogenically active fibroblasts, suggesting it may play a similar growth regulatory role in both. PMID:10708575

  16. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation

    PubMed Central

    Snyder, Nathaniel W.; Wei, Shuanzeng; Venneti, Sriram; Worth, Andrew J.; Yuan, Zuo-Fei; Lim, Hee-Woong; Liu, Shichong; Jackson, Ellen; Aiello, Nicole M.; Haas, Naomi B.; Rebbeck, Timothy R.; Judkins, Alexander; Won, Kyoung-Jae; Chodosh, Lewis A.; Garcia, Benjamin A.; Stanger, Ben Z.; Feldman, Michael D.; Blair, Ian A.; Wellen, Kathryn E.

    2014-01-01

    SUMMARY Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl-CoA availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA: coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase (ACLY), and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells. PMID:24998913

  17. Liposomal delivery of dexamethasone attenuates prostate cancer bone metastatic tumor growth In Vivo

    PubMed Central

    Buijs, Jeroen T.; van der Horst, Geertje; Cheung, Henry; van der Mark, Maaike; van Bloois, Louis; Rizzo, Larissa Y.; Lammers, Twan; Pelger, Rob C.; Storm, Gert; van der Pluijm, Gabri; Metselaar, Josbert M.

    2015-01-01

    Background The inflammatory tumor microenvironment, and more specifically the tumor‐associated macrophages, plays an essential role in the development and progression of prostate cancer towards metastatic bone disease. Tumors are often characterized by a leaky vasculature, which ‐ combined with the prolonged circulation kinetics of liposomes ‐ leads to efficient tumor localization of these drug carriers, via the so‐called enhanced permeability and retention (EPR) ‐effect. In this study, we evaluated the utility of targeted, liposomal drug delivery of the glucocorticoid dexamethasone in a model of prostate cancer bone metastases. Methods Tumor‐bearing Balb‐c nu/nu mice were treated intravenously with 0.2–1.0–5.0 mg/kg/week free‐ and liposomal DEX for 3–4 weeks and tumor growth was monitored by bioluminescent imaging. Results Intravenously administered liposomes localize efficiently to bone metastases in vivo and treatment of established bone metastases with (liposomal) dexamethasone resulted in a significant inhibition of tumor growth up to 26 days after initiation of treatment. Furthermore, 1.0 mg/kg liposomal dexamethasone significantly outperformed 1.0 mg/kg free dexamethasone, and was found to be well‐tolerated at clinically‐relevant dosages that display potent anti‐tumor efficacy. Conclusions Liposomal delivery of the glucocorticoid dexamethasone inhibits the growth of malignant bone lesions. We believe that liposomal encapsulation of dexamethasone offers a promising new treatment option for advanced, metastatic prostate cancer which supports further clinical evaluation. Prostate 75: 815–824, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663076

  18. Computer-Aided Image Analysis and Fractal Synthesis in the Quantitative Evaluation of Tumor Aggressiveness in Prostate Carcinomas

    PubMed Central

    Waliszewski, Przemyslaw

    2016-01-01

    The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken’s embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed

  19. Computer-Aided Image Analysis and Fractal Synthesis in the Quantitative Evaluation of Tumor Aggressiveness in Prostate Carcinomas.

    PubMed

    Waliszewski, Przemyslaw

    2016-01-01

    The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken's embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed

  20. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells.

    PubMed

    Fan, Lingling; Peng, Guihong; Hussain, Arif; Fazli, Ladan; Guns, Emma; Gleave, Martin; Qi, Jianfei

    2015-08-21

    Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells.

  1. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Miyauchi, Yutaka; Suzawa, Michiko; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-06-01

    Prostate cancer is one of the most prevalent malignancies and is the second leading cause of cancer-related deaths in men. Fruit and vegetable consumption is a novel, non-toxic therapeutic approach that can be used to prevent and treat prostate cancer. Citrus peels and their extracts have been reported to have potent pharmacological activities and health benefits due to the abundance of flavonoids in citrus fruits, particularly in the peels. Our previous studies demonstrated that oral administration of Gold Lotion (GL), an extract of multiple varieties of citrus peels containing abundant flavonoids, including a large percentage of polymethoxyflavones (PMFs), effectively suppressed azoxymethane (AOM)-induced colonic tumorigenesis. However, the efficacy of GL against prostate cancer has not yet been investigated. Here, we explored the anti-tumor effects of GL using a human prostate tumor xenograft mouse model. Our data demonstrated that treatment with GL by both intraperitoneal (i.p.) injection and oral administration dramatically reduced both the weights (57%-100% inhibition) and volumes (78%-94% inhibition) of the tumors without any observed toxicity. These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of inflammatory enzymes (inducible nitric oxide synthase, iNOS and cyclooxygenase-2, COX-2), metastasis (matrix metallopeptidase-2, MMP-2 and MMP-9), angiogenesis (vascular endothelial growth factor, VEGF), and proliferative molecules, as well as by the induction of apoptosis in prostate tumors. Our findings suggest that GL is an effective anti-cancer agent that may potentially serve as a novel therapeutic option for prostate cancer treatment.

  2. Polymeric Nanoparticles for Targeted Radiosensitization of Prostate Cancer Cells

    PubMed Central

    Menon, Jyothi U.; Tumati, Vasu; Hsieh, Jer-Tsong; Nguyen, Kytai T.; Saha, Debabrata

    2014-01-01

    One of the many issues of using radiosensitizers in a clinical setting is timing daily radiation treatments to coincide with peak drug concentration in target tissue. To overcome this deficit, we have synthesized a novel nanoparticle system consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with prostate cancer cell penetrating peptide-R11 and encapsulated with a potent radio-sensitizer 8-dibenzothiophen-4-yl-2-morpholin-4-yl-chromen-4-one (NU7441) to allow prostate cancer-specific targeting and sustained delivery over 3 weeks. Preliminary characterization studies showed that the R11-conjugated nanoparticles (R11-NU7441 NPs) had an average size of about 274 ± 80 nm and were stable for up to 5 days in de-ionized water and serum. The nanoparticles were cytocompatible with immortalized prostate cells (PZ-HPV-7). Further, the particles showed a bi-phasic release of encapsulated NU7441 and were taken up by PC3 prostate cancer cells in a dose- and magnetic field-dependent manner while not being taken up in non-prostate cancer cell lines. In addition, R11-NU7441 NPs were effective radiation sensitizers of prostate cancer cell lines in vitro. These results thus demonstrate the potential of R11-conjugated PLGA NPs as novel platforms for targeted radiosensitization of prostate cancer cells. PMID:25088162

  3. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.

    2001-01-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  4. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  5. Proteomic analysis of cancer stem cells in human prostate cancer cells

    SciTech Connect

    Lee, Eun-Kyung; Cho, Hyungdon; Kim, Chan-Wha

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  6. Obesity promotes aerobic glycolysis in prostate cancer cells.

    PubMed

    Cavazos, David A; deGraffenried, Matthew J; Apte, Shruti A; Bowers, Laura W; Whelan, Kaitlin A; deGraffenried, Linda A

    2014-01-01

    Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects. PMID:25264717

  7. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    SciTech Connect

    Nomura, Masatoshi; Tanaka, Kimitaka; Wang, Lixiang; Goto, Yutaka; Mukasa, Chizu; Ashida, Kenji; Takayanagi, Ryoichi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancer cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.

  8. Loss of P53 facilitates invasion and metastasis of prostate cancer cells.

    PubMed

    Wang, Yi; Zhang, Y X; Kong, C Z; Zhang, Z; Zhu, Y Y

    2013-12-01

    Prostate cancer is a lethal cancer for the invasion and metastasis in its earlier period. P53 is a tumor suppressor gene which plays a critical role on safeguarding the integrity of genome. However, loss of P53 facilitates or inhibits the invasion and metastasis of tumor is still suspended. In this study, we are going to explain whether loss of P53 affect the invasion and metastasis of prostate cancer cells. To explore whether loss of P53 influences the invasion and metastasis ability of prostate cancer cells, we first compared the invasion ability of si-P53 treated cells and control cells by wound healing, transwell assay, and adhesion assay. We next tested the activity of MMP-2, MMP-9, and MMP-14 by western blot and gelatin zymography. Moreover, we employed WB and IF to identify the EMT containing E-cad, N-cad, vimentin, etc. We also examined the expression of cortactin, cytoskeleton, and paxillin by immunofluorescence, and tested the expression of ERK and JNK by WB. Finally, we applied WB to detect the expression of FAK, Src, and the phosphorylation of them to elucidate the mechanism of si-P53 influencing invasion and metastasis. According to the inhibition rate of si-P53, we choose the optimized volume of si-P53. With the volume, we compare the invasion and metastasis ability of Du145 and si-P53 treated cells. We find si-P53 promotes the invasion and metastasis in prostate cancer cells, increases the expression and activity of MMP-2/9 and MMP-14. Also, si-P53 promotes EMT and cytoskeleton rearrangement. Further analyses explain that this effect is associated with FAK-Src signaling pathway. Loss of P53 promotes the invasion and metastasis ability of prostate cancer cells and the mechanism is correlated with FAK-Src signaling pathway. P53 is involved in the context of invasion and metastasis. PMID:23982184

  9. MicroRNA-125a-5p regulates cancer cell proliferation and migration through NAIF1 in prostate carcinoma

    PubMed Central

    Fu, Yi; Cao, Fuhua

    2015-01-01

    Background We investigated the functional roles of microRNA-125a-5p in regulating human prostate carcinoma. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to evaluate the gene expression levels of miR-125a-5p in eight prostate cancer cell lines and nine biopsy specimens from patients with prostate cancer. miR-125a-5p was genetically knocked down in prostate cancer cell lines, DU145 and VCaP cells by lentiviral transduction. The effects of miR-125a-5p downregulation on prostate cancer cell proliferation and migration were evaluated by MTT assay and transwell assay, respectively. Direct regulation of miR-125a-5p on its downstream targets, NAIF1, and apoptotic gene caspase-3 were evaluated through dual-luciferase reporter assay, qRT-PCR, and Western blot, respectively. NAIF1 was then ectopically overexpressed in DU145 and VCaP cells to modulate prostate cancer cell proliferation and migration. Finally, the effects of miR-125a-5p downregulation or NAIF1 overexpression on the growth of in vivo prostate cancer xenograft were evaluated. Results miR-125a-5p was upregulated in prostate cancer cell lines and human prostate carcinomas. Lentivirus induced miR-125a-5p downregulation in DU145 and VCaP cells inhibited prostate cancer cell proliferation or migration. NAIF1 was the direct target of miR-125a-5p, as both gene and protein expression levels of NAIF1, as well as caspase-3 were upregulated by miR-125a-5p. Forced overexpression of NAIF1 had similar antitumor effects as miR-125a-5p downregulation on prostate cancer cell proliferation and migration. In vivo prostate xenograft assay confirmed the tumor-suppressive effect of miR-125a-5p downregulation or NAIF1 overexpression. Conclusion miR-125a-5p regulates prostate cancer cell proliferation and migration through NAIF1. PMID:26719710

  10. Effect of cyclin G2 on proliferative ability of prostate cancer PC-3 cell.

    PubMed

    Cui, D W; Cheng, Y J; Jing, S W; Sun, G G

    2014-04-01

    This study aimed to analyze the expression, clinical significance of cyclin G2 (CCNG2) in prostate carcinoma, and the biological effect in its cell line by CCNG2 overexpression. Immunohistochemistry and Western blot were used to analyze CCNG2 protein expression in 85 cases of prostate cancer and normal tissues to study the relationship between CCNG2 expression and clinical factors. CCNG2 lentiviral vector and empty vector were, respectively, transfected into prostate cancer PC-3 cell line. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the mRNA level and protein of CCNG2. MTT assay and cell cycle were also conducted as to the influence of the upregulated expression of CCNG2 that might be found on PC-3 cells biological effect. The level of CCNG2 protein expression was found to be significantly lower in prostate cancer tissue than normal tissues (P < 0.05). The level of CCNG2 protein expression was not correlated with age, PSA contention, and tumor size (P < 0.05), but it was correlated with lymph node metastasis, clinic stage, and Gleason score (P < 0.05). The result of biological function shown that PC-3 cell transfected CCNG2 had a lower survival fraction, more percentage of the G0/G1 phases, and lower CDK2 protein expression compared with PC-3 cell untransfected CCNG2 (P < 0.05). CCNG2 expression decreased in prostate cancer and correlated significantly with lymph node metastasis, clinic stage, and Gleason score, suggesting that CCNG2 may play important roles as a negative regulator to prostate cancer cell.

  11. Molecular aspects of prostate cancer with neuroendocrine differentiation

    PubMed Central

    Li, Qi; Zhang, Connie S.

    2016-01-01

    Neuroendocrine differentiation (NED), which is not uncommon in prostate cancer, is increases in prostate cancer after androgen-deprivation therapy (ADT) and generally appears in castration-resistant prostate cancer (CRPC). Neuroendocrine cells, which are found in normal prostate tissue, are a small subset of cells and have unique function in regulating the growth of prostate cells. Prostate cancer with NED includes different types of tumor, including focal NED, pure neuroendocrine tumor or mixed neuroendocrine-adenocarcinoma. Although more and more studies are carried out on NED in prostate cancer, the molecular components that are involved in NED are still poorly elucidated. We review neuroendocrine cells in normal prostate tissue, NED in prostate cancer, terminology of NED and biomarkers used for detecting NED in routine pathological practice. Some recently reported molecular components which drive NED in prostate cancer are listed in the review. PMID:27041934

  12. Inhibition of CHOP accentuates the apoptotic effect of α-mangostin from the mangosteen fruit (Garcinia mangostana) in 22Rv1 prostate cancer cells.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Nonn, Larisa; Johnson, Jeremy J

    2014-10-10

    The mangosteen (Garcinia mangostana) fruit has been a popular food in Southeast Asia for centuries and is increasing in popularity in Western countries. We identified α-Mangostin as a primary phytochemical modulating ER stress proteins in prostate cancer cells and propose that α-Mangostin is responsible for exerting a biological effect in prostate cancer cells. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two patients undergoing radical prostatectomy were treated with α-Mangostin and evaluated by RT-PCR, Western blot, fluorescent microscopy and siRNA transfection to evaluate ER stress. Next, we evaluated α-Mangostin for microsomal stability, pharmacokinetic parameters, and anti-cancer activity in nude mice. α-Mangostin significantly upregulated ER stress markers in prostate cancer cells. Interestingly, α-Mangostin did not promote ER stress in prostate epithelial cells (PrECs) from prostate cancer patients. CHOP knockdown enhanced α-Mangostin-induced apoptosis in prostate cancer cells. α-Mangostin significantly suppressed tumor growth in a xenograft tumor model without obvious toxicity. Our study suggests that α-Mangostin is not the only active constituent from the mangosteen fruit requiring further work to understand the complex chemical composition of the mangosteen.

  13. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth.

    PubMed

    Culig, Zoran; Bartsch, Georg; Hobisch, Alfred

    2002-11-29

    Interleukin-6 (IL-6) is a multifunctional cytokine which is involved in regulation of growth of various malignant tumors. IL-6 binds to its receptor, which is composed of a ligand-binding and a signal-transducing subunit and activates pathways of signal transducers and activators of transcription and mitogen-activated protein kinases (MAPKs). In prostate cancer cells, IL-6 induces divergent proliferative responses. Serum levels of IL-6 are elevated in patients with therapy-resistant carcinoma of the prostate. We have investigated whether IL-6 interacts with the androgen signaling pathway in prostate cancer cells. In DU-145 cells, transiently transfected with androgen receptor (AR) cDNA, IL-6 caused ligand-independent and synergistic activation of the AR. Nonsteroidal antagonists of the AR down-regulated AR activity induced by IL-6. In LNCaP cells, IL-6-induced expression of the AR-regulated prostate-specific antigen gene. Inhibitors of protein kinase A and C and MAPK down-regulated IL-6-induced AR activity. IL-6 expression in human prostate tissue was studied by immunohistochemistry. In benign prostatic tissue, IL-6 immunoreactivity was confined to basal cells. In prostate intraepithelial neoplasia and in cancer tissue, atypical intraluminal and cancer cells expressed IL-6. The expression of IL-6 receptor was demonstrated in benign and malignant tissue in both epithelium and stroma. In the authors' laboratory, IL-6-inhibited proliferation of parental LNCaP cells. A new LNCaP subline was generated to investigate changes in signal transduction which might occur after prolonged treatment with IL-6. In the subline LNCaP-IL-6+, IL-6 neither reduced a number of cells nor caused G1 growth arrest. IL-6 receptor expression declined during long-term IL-6 treatment. However, IL-6-up-regulated AR expression and was capable of inducing AR activity in LNCaP-IL-6+ cells. Parental LNCaP cells do not express IL-6. In contrast, IL-6 mRNA and protein expression were detectable in

  14. Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth.

    PubMed

    Sung, Shian-Ying; Wu, I-Hui; Chuang, Pei-Hsin; Petros, John A; Wu, Hsi-Chin; Zeng, Hong-Jie; Huang, Wei-Chien; Chung, Leland W K; Hsieh, Chia-Ling

    2014-10-30

    The L1 cell adhesion molecule (L1CAM) has been implicated in tumor progression of many types of cancers, but its role in prostate cancer and its application in targeted gene therapy have not been investigated. Herein, we demonstrated that the L1CAM was expressed in androgen-insensitive and highly metastatic human prostate cancer cell lines. The correlation between L1CAM expression and prostate cancer metastasis was also validated in serum samples of prostate cancer patients. Knockdown of L1CAM expression in prostate cancer cells by RNA interference significantly decreased their aggressive behaviors, including colony formation, migration and invasion in vitro, and tumor formation in a metastatic murine model. These anti-malignant phenotypes of L1CAM-knockdown cancer cells were accompanied by G0/G1 cell cycle arrest and suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression and nuclear factor NF-κB activation. In vivo targeting of L1CAM expression using liposome-encapsulated L1CAM siRNAs effectively inhibited prostate cancer growth in mouse bone, which was associated with decreased L1CAM expression and cell proliferation by tumor cells. These results provide the first evidence for L1CAM being a major contributor to prostate cancer metastasis and translational application of siRNA-based L1CAM-targeted therapy. PMID:25294816

  15. Hyperdiploid tumor cells increase phenotypic heterogeneity within Glioblastoma tumors.

    PubMed

    Donovan, Prudence; Cato, Kathleen; Legaie, Roxane; Jayalath, Rumal; Olsson, Gemma; Hall, Bruce; Olson, Sarah; Boros, Samuel; Reynolds, Brent A; Harding, Angus

    2014-04-01

    Here we report the identification of a proliferative, viable, and hyperdiploid tumor cell subpopulation present within Glioblastoma (GB) patient tumors. Using xenograft tumor models, we demonstrate that hyperdiploid cell populations are maintained in xenograft tumors and that clonally expanded hyperdiploid cells support tumor formation and progression in vivo. In some patient tumorsphere lines, hyperdiploidy is maintained during long-term culture and in vivo within xenograft tumor models, suggesting that hyperdiploidy can be a stable cell state. In other patient lines hyperdiploid cells display genetic drift in vitro and in vivo, suggesting that in these patients hyperdiploidy is a transient cell state that generates novel phenotypes, potentially facilitating rapid tumor evolution. We show that the hyperdiploid cells are resistant to conventional therapy, in part due to infrequent cell division due to a delay in the G₀/G₁ phase of the cell cycle. Hyperdiploid tumor cells are significantly larger and more metabolically active than euploid cancer cells, and this correlates to an increased sensitivity to the effects of glycolysis inhibition. Together these data identify GB hyperdiploid tumor cells as a potentially important subpopulation of cells that are well positioned to contribute to tumor evolution and disease recurrence in adult brain cancer patients, and suggest tumor metabolism as a promising point of therapeutic intervention against this subpopulation. PMID:24448662

  16. Obesity and Prostate Cancer Risk According to Tumor TMPRSS2:ERG Gene Fusion Status

    PubMed Central

    Egbers, Lieke; Luedeke, Manuel; Rinckleb, Antje; Kolb, Suzanne; Wright, Jonathan L.; Maier, Christiane; Neuhouser, Marian L.; Stanford, Janet L.

    2015-01-01

    The T2E gene fusion, formed by fusion of the transmembrane protease, serine 2, gene (TMPRSS2) with the erythroblast transformation-specific (ETS)-related gene (ERG), is found in approximately 50% of prostate cancers and may characterize distinct molecular subtypes of prostate cancer with different etiologies. We investigated the relationship between body mass index (BMI; weight (kg)/height (m)2) and prostate cancer risk by T2E status. Study participants were residents of King County, Washington, recruited for 2 population-based case-control studies conducted in 1993–1996 and 2002–2005. Tumor T2E status was determined for 563 prostate cancer patients who underwent radical prostatectomy. Information on weight, height, and covariables was obtained through in-person interviews. We performed polytomous logistic regression to calculate odds ratios and 95% confidence intervals for T2E-positive and -negative prostate cancer. Comparing the highest BMI quartile with the lowest, inverse associations were observed between recent (≥29.7 vs. <24.5: odds ratio = 0.66, 95% confidence interval: 0.45, 0.97) and maximum (≥31.8 vs. <25.9: odds ratio = 0.69, 95% confidence interval: 0.47, 1.02) BMI and the risk of T2E-positive prostate cancer. No significant associations were seen for men with T2E-negative tumors. This study provides evidence that obesity is specifically associated with reduced risk of developing androgen-responsive T2E fusion–positive tumors. The altered steroid hormone profile in obese men may contribute to this inverse association. PMID:25852077

  17. Nonylphenol effects on human prostate non tumorigenic cells.

    PubMed

    Forte, Maurizio; Di Lorenzo, Mariana; Carrizzo, Albino; Valiante, Salvatore; Vecchione, Carmine; Laforgia, Vincenza; De Falco, Maria

    2016-05-16

    Nonylphenol (NP) is an industrial chemical with estrogenic activity both in vivo and in vitro; estrogens play a critical role in the development of prostate and may be the cause of some pathological states, including cancer. In this study we examined the effects of NP on human prostate non tumorigenic epithelial cells (PNT1A) investigating on cell proliferation, interaction with estrogen receptors (ERs) and gene expression of genes involved in prostate diseases. We found that NP affects cell proliferation at 10(-6)M, promoting a cytoplasm-nucleus translocation of ERα and not ERβ, like the natural estrogen 17β-estradiol (E2). Moreover, we showed that NP enhances gene expression of key regulators of cell cycle. Estrogen selective antagonist ICI182780 in part reverted the observed effects of NP. These results confirm the estrogenic activity of NP and suggest that other transduction pathways may be involved in NP action on prostate. PMID:27260121

  18. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  19. The Practicality of Targeted Prostate Biopsy Procedures on the Dominant Side of the Tumor Determined by Magnetic Resonance Imaging in Elderly Patients with High Serum Levels of Prostate-Specific Antigen

    PubMed Central

    Huh, Jung Sik; Kim, Bong Soo; Kim, Young Joo; Kim, Sung Dae

    2015-01-01

    Purpose To examine the possibility of reducing the number of cores per prostate biopsy in elderly patients with high levels of prostate-specific antigen (PSA) without significantly lowering the detection rate of prostate cancer. Materials and Methods Two hundreds sixteen men with PSA levels >20 ng/mL who underwent prostate biopsies from May 2009 to April 2013 were retrospectively reviewed. With the help of magnetic resonance imaging (MRI), the laterality of the dominant tumor burden in patients was determined. The results of targeted biopsies were compared with those of conventional biopsy procedures. Results The mean age and PSA level were 79.5 years and 81.3 ng/mL, respectively, and the overall diagnostic rate of sextant biopsies was 81.9% (177/216). MRI was able to show the tumor burden in 189 of the 216 patients. The detection rate of transrectal ultrasonography (TRUS)-guided targeted biopsies was 87.3% (165/189). Detection rates were comparable with conventional biopsies (81.9% [177/216]) (p=0.23). Of the 177 men in whom the results of the sextant biopsy were positive, 12 men (6.8%) with PSA levels <29 ng/mL did not have any cancer cells according to targeted biopsies. However, all other patients were diagnosed with prostate cancer using the abovementioned techniques. Conclusions We believe that TRUS-guided targeted biopsies of the prostate in elderly men with high PSA levels could reduce the number of unnecessary cores per biopsy. However, a risk of detection loss remains. Therefore, we recommend that at least a sextant biopsy should be performed, even in elderly patients, in order to detect prostate cancer. PMID:26770939

  20. Passive Entrapment of Tumor Cells Determines Metastatic Dissemination to Spinal Bone and Other Osseous Tissues.

    PubMed

    Broggini, Thomas; Piffko, Andras; Hoffmann, Christian J; Harms, Christoph; Vajkoczy, Peter; Czabanka, Marcus

    2016-01-01

    During the metastatic process tumor cells circulate in the blood stream and are carried to various organs. In order to spread to different organs tumor cell-endothelial cell interactions are crucial for extravasation mechanisms. It remains unclear if tumor cell dissemination to the spinal bone occurs by passive entrapment of circulating tumor cells or by active cellular mechanisms mediated by cell surface molecules or secreted factors. We investigated the seeding of three different tumor cell lines (melanoma, lung and prostate carcinoma) to the microvasculature of different organs. Their dissemination was compared to biologically passive microbeads. The spine and other organs were resected three hours after intraarterial injection of tumor cells or microbeads. Ex vivo homogenization and fluorescence analysis allowed quantification of tumor cells or microbeads in different organs. Interestingly, tumor cell distribution to the spinal bone was comparable to dissemination of microbeads independent of the tumor cell type (melanoma: 5.646% ± 7.614%, lung: 6.007% ± 1.785%, prostate: 3.469% ± 0.602%, 7 μm beads: 9.884% ± 7.379%, 16 μm beads: 7.23% ± 1.488%). Tumor cell seeding differed significantly between tumor cells and microbeads in all soft tissue organs. Moreover, there were significant differences between the different tumor cell lines in their dissemination behaviour to soft tissue organs only. These findings demonstrate that metastatic dissemination of tumor cells to spinal bone and other osseous organs is mediated by passive entrapment of tumor cells similar to passive plugging of microvasculature observed after intraarterial microbeads injection. PMID:27603673

  1. Hypoxia primes human normal prostate epithelial cells and cancer cell lines for the NLRP3 and AIM2 inflammasome activation

    PubMed Central

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2016-01-01

    The molecular mechanisms by which hypoxia contributes to prostatic chronic inflammation (PCI) remain largely unknown. Because hypoxia stimulates the transcriptional activity of NF-κB, which “primes” cells for inflammasome activation by inducing the expression of NLRP3 or AIM2 receptor and pro-IL-1β, we investigated whether hypoxia could activate the NLRP3 and AIM2 inflammasome in human normal prostate epithelial cells (PrECs) and cancer cell lines. Here we report that hypoxia (1% O2) treatment of PrECs, prostate cell lines, and a macrophage cell line (THP-1) increased the levels of NLRP3, AIM2, and pro-IL-1β. Further, hypoxia in cells potentiated activation of the NLRP3 and AIM2 inflammasome activity. Notably, hypoxia “primed” cells for NLRP3 and AIM2 inflammasome activation through stimulation of the NF-κB activity. Our observations support the idea that hypoxia in human prostatic tumors contributes to PCI, in part, by priming cells for the activation of NLRP3 and AIM2 inflammasome. PMID:27058421

  2. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells

    PubMed Central

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K.; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M.; Maiti, Indu B.; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  3. Differential Efficacy of Combined Therapy With Radiation and AEE788 in High and Low EGFR-Expressing Androgen-Independent Prostate Tumor Models

    SciTech Connect

    Huamani, Jessica; Willey, Christopher; Thotala, Dinesh; Niermann, Kenneth J.; Reyzer, Michelle; Leavitt, Lauren; Jones, Cameron; Fleishcher, Arthur; Caprioli, Richard; Hallahan, Dennis E.; Kim, Don