USDA-ARS?s Scientific Manuscript database
The western corn rootworm, Diabrotica virgifera virgifera LeConte, exhibits protandry. The contribution of pre-hatch development to protandry in western corn rootworm was previously investigated with a small set of data from one population. To verify the contribution of pre-hatch development to prot...
Sex and the Catasetinae (Darwin's favourite orchids).
Pérez-Escobar, Oscar Alejandro; Gottschling, Marc; Whitten, W Mark; Salazar, Gerardo; Gerlach, Günter
2016-04-01
Two sexual systems are predominant in Catasetinae (Orchidaceae), namely protandry (which has evolved in other orchid lineages as well) and environmental sex determination (ESD) being a unique trait among Orchidaceae. Yet, the lack of a robust phylogenetic framework for Catasetinae has hampered deeper insights in origin and evolution of sexual systems. To investigate the origins of protandry and ESD in Catasetinae, we sequenced nuclear and chloroplast loci from 77 species, providing the most extensive data matrix of Catasetinae available so far with all major lineages represented. We used Maximum Parsimony, Maximum Likelihood and Bayesian methods to infer phylogenetic relationships and evolution of sexual systems. Irrespectively of the methods used, Catasetinae were monophyletic in molecular phylogenies, with all established generic lineages and their relationships resolved and highly supported. According to comparative reconstruction approaches, the last common ancestor of Catasetinae was inferred as having bisexual flowers (i.e., lacking protandry and ESD as well), and protandry originated once in core Catasetinae (comprising Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes). In addition, three independent gains of ESD are reliably inferred, linked to corresponding loss of protandry within core Catasetinae. Thus, prior gain of protandry appears as the necessary prerequisite for gain of ESD in orchids. Our results contribute to a comprehensive evolutionary scenario for sexual systems in Catasetinae and more generally in orchids as well. Copyright © 2015 Elsevier Inc. All rights reserved.
2012-01-01
Sexual selection is a major force driving evolution and is intertwined with ecological factors. Differential allocation of limited resources has a central role in the cost of reproduction. In this paper, I review the costs and benefits of mating in tettigoniids, focussing on nuptial gifts, their trade-off with male calling songs, protandry and how mate density influences mate choice. Tettigoniids have been widely used as model systems for studies of mating costs and benefits; they can provide useful general insights. The production and exchange of large nuptial gifts by males for mating is an important reproductive strategy in tettigoniids. As predicted by sexual selection theory spermatophylax size is condition dependent and is constrained by the need to invest in calling to attract mates also. Under some circumstances, females benefit directly from the nuptial gifts by an increase in reproductive output. However, compounds in the nuptial gift can also benefit the male by prolonging the period before the female remates. There is also a trade-off between adult male maturation and mating success. Where males mature before females (protandry) the level of protandry varies in the direction predicted by sperm competition theory; namely, early male maturation is correlated with a high level of first inseminations being reproductively successful. Lastly, mate density in bushcrickets is an important environmental factor influencing the behavioural decisions of individuals. Where mates are abundant, individuals are more choosey of mates; when they are scarce, individuals are less choosey. This review reinforces the view that tettigoniids provide excellent models to test and understand the economics of matings in both sexes. PMID:22894685
Moeller, David A; Geber, Monica A
2005-04-01
The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability directly influenced variation in the strength of selection on herkogamy among populations. The striking parallels between our experimental results and patterns of variation in ecological factors across the geographic range of outcrossing and selfing populations suggest that reproductive assurance may play a central role in directing mating system evolution in C. xantiana.
Ecological and evolutionary consequences of alternative sex-change pathways in fish.
Benvenuto, C; Coscia, I; Chopelet, J; Sala-Bozano, M; Mariani, S
2017-08-22
Sequentially hermaphroditic fish change sex from male to female (protandry) or vice versa (protogyny), increasing their fitness by becoming highly fecund females or large dominant males, respectively. These life-history strategies present different social organizations and reproductive modes, from near-random mating in protandry, to aggregate- and harem-spawning in protogyny. Using a combination of theoretical and molecular approaches, we compared variance in reproductive success (V k *) and effective population sizes (N e ) in several species of sex-changing fish. We observed that, regardless of the direction of sex change, individuals conform to the same overall strategy, producing more offspring and exhibiting greater V k * in the second sex. However, protogynous species show greater V k *, especially pronounced in haremic species, resulting in an overall reduction of N e compared to protandrous species. Collectively and independently, our results demonstrate that the direction of sex change is a pivotal variable in predicting demographic changes and resilience in sex-changing fish, many of which sustain highly valued and vulnerable fisheries worldwide.
Breeding system in the dichogamous hermaphrodite Silene acutifolia (Caryophyllaceae).
Buide, M L; Guitian, J
2002-12-01
The breeding system of the dichogamous hermaphrodite species Silene acutifolia, endemic to north-west Spain and north and central Portugal, is examined. Pollen germinability and style-stigma receptivity were analysed to determine whether protandry is a barrier to self-fertilization. By 48 h after anthesis, pollen germinability had declined to approx. 10 %. The short straight styles are not receptive when flowers first open. They gradually elongate and curve outwards, develop stigma papillae and become receptive. There is no clear separation between stigma and style: the stigma papillae appear in a line along the length of the style. Fruit set is high regardless of pollen source; however, seed set is significantly reduced after both spontaneous and facilitated autogamy. Seed set following spontaneous autogamy was 30 % (86 % in controls) in 1998 and 33 % (87 % in controls) in 1999. Seed set following facilitated autogamy was 62 % (86 % in controls) in 1998 and 67 % (89 % in controls) in 1999. Thus, separation of the male and female phases does not prevent production of seeds by self-pollination, although it does reduce the likelihood of this. Furthermore, results of the present experiments indicate that this species has no self-incompatibility mechanisms (self-compatibility index = 0.98). The selfing rate in the study population was 0.41, which is supported by the lack of self-incompatibility systems and by the incomplete protandry. Copyright 2002 Annals of Botany Company
Briscoe Runquist, Ryan D; Geber, Monica A; Pickett-Leonard, Michael; Moeller, David A
2017-05-01
Selection on floral traits in hermaphroditic plants is determined by both male and female reproductive success. However, predictions regarding floral trait and mating system evolution are often based solely on female fitness. Selection via male fitness has the potential to affect the outcomes of floral evolution. In this study, we used paternity analysis to assess individual selfing rates and selection on floral traits via male and female fitness in an experimental population of Clarkia xantiana where pollen limitation of seed set was strong. We detected selection through both female and male fitness with reinforcing or noninterfering patterns of selection through the two sex functions. For female fitness, selection favored reduced herkogamy and protandry, traits that promote increased autonomous selfing. For male fitness, selection on petal area was disruptive, with higher trait values conferring greater pollinator attraction and outcross siring success and smaller trait values leading to higher selfed siring success. Combining both female and male fitness, selection on petal area and protandry was disruptive because intermediate phenotypes were less successful as both males and females. Finally, functional relationships among male and female fertility components indicated that selfing resulted in seed discounting and pollen discounting. Under these functional relationships, the evolutionarily stable selfing rate can be intermediate or predominantly selfing or outcrossing, depending on the segregating load of deleterious mutations.
Breeding System in the Dichogamous Hermaphrodite Silene acutifolia (Caryophyllaceae)
BUIDE, M. L.; GUITIÁN, J.
2002-01-01
The breeding system of the dichogamous hermaphrodite species Silene acutifolia, endemic to north‐west Spain and north and central Portugal, is examined. Pollen germinability and style–stigma receptivity were analysed to determine whether protandry is a barrier to self‐fertilization. By 48 h after anthesis, pollen germinability had declined to approx. 10 %. The short straight styles are not receptive when flowers first open. They gradually elongate and curve outwards, develop stigma papillae and become receptive. There is no clear separation between stigma and style: the stigma papillae appear in a line along the length of the style. Fruit set is high regardless of pollen source; however, seed set is significantly reduced after both spontaneous and facilitated autogamy. Seed set following spontaneous autogamy was 30 % (86 % in controls) in 1998 and 33 % (87 % in controls) in 1999. Seed set following facilitated autogamy was 62 % (86 % in controls) in 1998 and 67 % (89 % in controls) in 1999. Thus, separation of the male and female phases does not prevent production of seeds by self‐pollination, although it does reduce the likelihood of this. Furthermore, results of the present experiments indicate that this species has no self‐incompatibility mechanisms (self‐compatibility index = 0·98). The selfing rate in the study population was 0·41, which is supported by the lack of self‐incompatibility systems and by the incomplete protandry. PMID:12451024
Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes.
Erisman, Brad E; Petersen, Christopher W; Hastings, Philip A; Warner, Robert R
2013-10-01
Hermaphroditism is taxonomically widespread among teleost fishes and takes on many forms including simultaneous, protogynous, and protandrous hermaphroditism, bidirectional sex change, and androdioecy. The proximate mechanisms that influence the timing, incidence, and forms of hermaphroditism in fishes are supported by numerous theoretical and empirical studies on their mating systems and sexual patterns, but few have examined aspects of sex-allocation theory or the evolution of hermaphroditism for this group within a strict phylogenetic context. Fortunately, species-level phylogenetic reconstructions of the evolutionary history of many lineages of fishes have emerged, providing opportunities for understanding fine-scale evolutionary pathways and transformations of sex allocation. Examinations of several families of fishes with adequate data on phylogeny, patterns of sex allocation, mating systems, and with some form of hermaphroditism reveal that the evolution and expression of protogyny and other forms of sex allocation show little evidence of phylogenetic inertia within specific lineages but rather are associated with particular mating systems in accordance with prevalent theories about sex allocation. Transformations from protogyny to gonochorism in groupers (Epinephelidae), seabasses (Serranidae), and wrasses and parrotfishes (Labridae) are associated with equivalent transformations in the structure of mating groups from spawning of pairs to group spawning and related increases in sperm competition. Similarly, patterns of protandry, androdioecy, simultaneous hermaphroditism, and bidirectional sex change in other lineages (Aulopiformes, Gobiidae, and Pomacentridae) match well with particular mating systems in accordance with sex-allocation theory. Unlike other animals and plants, we did not find evidence that transitions between hermaphroditism and gonochorism required functional intermediates. Two instances in which our general conclusions might not hold include the expression of protandry in the Sparidae and the distribution of simultaneous hermaphroditism. In the Sparidae, the association of hypothesized mating systems and patterns of sex allocation were not always consistent with the size-advantage model (SAM), in that certain protandric sparids show evidence of intense sperm competition that should favor the expression of gonochorism. In the other case, simultaneous hermaphroditism does not occur in some groups of monogamous fishes, which are similar in ecology to the hermaphroditic serranines, suggesting that this form of sex allocation may be more limited by phylogenetic inertia. Overall, this work strongly supports sexual lability within teleost fishes and confirms evolutionary theories of sex allocation in this group of vertebrates.
Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S
2016-04-01
In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.
Varga, Sandra; Nuortila, Carolin; Kytöviita, Minna-Maarit
2013-01-01
Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before the stigma is receptive). We found that flowers from hermaphrodites produced more nectar than female flowers in terms of total nectar sugar content. In addition, differences in nectar production among floral phases were found in hermaphrodite flowers but not in female flowers. In hermaphrodite flowers, maximum sugar content coincided with pollen presentation and declined slightly towards the female phase, indicating nectar reabsorption, whereas in female flowers sugar content did not differ between the floral phases. These differences in floral reward are discussed in relation to visitation patterns by pollinators and seed production in this species. PMID:23614053
Varga, Sandra; Nuortila, Carolin; Kytöviita, Minna-Maarit
2013-01-01
Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before the stigma is receptive). We found that flowers from hermaphrodites produced more nectar than female flowers in terms of total nectar sugar content. In addition, differences in nectar production among floral phases were found in hermaphrodite flowers but not in female flowers. In hermaphrodite flowers, maximum sugar content coincided with pollen presentation and declined slightly towards the female phase, indicating nectar reabsorption, whereas in female flowers sugar content did not differ between the floral phases. These differences in floral reward are discussed in relation to visitation patterns by pollinators and seed production in this species.
Hull, M. Q.
1998-01-01
Non-invasive observations of single cohort and manipulated populations of the sealouse on laboratory-maintained salmon established the sequence of reproductive events and mating. Protandry occurs with adult male emergence synchronized with pre-adult II female emergence, the stage at which most pair formation and pre-copular guarding takes place. Male competence for pair formation and mating was achieved within 24 h of the final moult and pairing occurred according to the preference hierarchy, virgin adult females greater than pre-adult II females much greater than pre-adult I females. This hierarchy broke down when the adult male to unmated female ratio increased rapidly. Males mated successfully not only with newly moulted adult females, but also with older virgin females in which enlargement of the genital complex and premature extrusion of egg strings had occurred. Multiple mating by adult males was demonstrated and may be widespread. Significant inter-host transfer was also demonstrated. Adult males were more mobile than adult females and showed significantly more inter-host transfer. Ablation of the distal tip of the antennules significantly reduced the success of host-finding, pair formation and males' mating.
Bourdais, D; Hance, T
2009-05-01
Mechanisms for inbreeding avoidance should be prevalent in insects that reproduce by arrhenotokous haplodiploidy because of the higher potential production of unviable diploid males in inbred matings. Few studies have focused on mating strategies in insect parasitoids and even less on kinship relationships during mate choice. In this study we tested avoidance of kin as mate in the parasitic wasp Aphidius matricariae (Hymenoptera: Braconidae) using an ethological approach. Key mating parameters, such as male wing fanning, latent period before genitalia contact and duration of copulation were measured. No evidence for kin avoidance in mate choice in both A. matricariae males and females was observed in our behaviour (no choice or choice tests) tests. This lack of ethological sib mating avoidance could be due to different factors such as sex determination rule different than the single locus complementary sex determination, making lower the proportion of diploid males in case of sib matings and thus its negative consequence. The existence of other inbreeding avoidance strategies and mechanisms that reduce the probability of 2 receptive relatives meeting in nature may be common, for example, inbred mating may be rare through differential dispersal, delayed maturation, or protandry.
Kuwamura, Tetsuo; Suzuki, Shohei; Kadota, Tatsuru
2011-12-01
Sex change, either protogyny (female to male) or protandry (male to female), is well known among fishes, but evidence of bidirectional sex change or reversed sex change in natural populations is still very limited. This is the first report on female removal experiments for polygnous and protogynous fish species to induce reversed sex change in the widowed males in the field. We removed all of the females and juveniles from the territories of dominant males in the cleaner wrasse Labroides dimidiatus (Labridae) and the rusty angelfish Centropyge ferrugata (Pomacanthidae) on the coral reefs of Okinawa. In both species, if new females or juveniles did not immigrate into the territories of the widowed males, some of them emigrated to form male-male pairs. When a male-male pair formed, the smaller, subordinate partner began to perform female sexual behaviours (n = 4 in L. dimidiatus; n = 2 in C. ferrugata) and, finally, released eggs (n = 1, respectively). Thus, the reversed sex change occurred in the widowed males according to the change of their social status. These results suggest that such female removal experiments will contribute to the discovery of reversed sex change in the field also in other polygnous and protogynous species.
Sharma, Chandra Mohan; Khanduri, Vinod Prasad; Ghildiyal, Sunil Kumar
2012-01-01
We studied several flowering traits, namely, male-female cone phenology, male-female cone production per tree, mating system, sex ratio, air-borne pollen grains and pollen migration, over four successive years in two different natural populations of P. roxburghii from Garhwal Himalaya, India. Assessment of each trait mentioned except pollen dispersion was done by selecting five representative trees randomly in each population. The pollen migration was studied on naturally isolated source trees. The pollen trapping was done in all directions up to 2.5 km. The average reproductive period in P. roxburghii was 36 days with 3–5 days protandry. There were significant year and population effects for male and female cone output and pollen grains production per tree. In mass production year (1999), an average production of pollen cone per tree was estimated as 42.44 ± 8.32 × 103 at lower altitude and 28.1 ± 0.89 × 103 at higher altitude. The controlled pollination results in high level of outcrossing with 90% seed setting. We conclude that the high male-female ratio and tremendous pollen production capacity in P. roxburghii indicate high male competition among trees within populations. The isolation strip of 600 m is considered minimal for the management of seed orchard. PMID:22654581
NASA Astrophysics Data System (ADS)
Kuwamura, Tetsuo; Suzuki, Shohei; Kadota, Tatsuru
2011-12-01
Sex change, either protogyny (female to male) or protandry (male to female), is well known among fishes, but evidence of bidirectional sex change or reversed sex change in natural populations is still very limited. This is the first report on female removal experiments for polygnous and protogynous fish species to induce reversed sex change in the widowed males in the field. We removed all of the females and juveniles from the territories of dominant males in the cleaner wrasse Labroides dimidiatus (Labridae) and the rusty angelfish Centropyge ferrugata (Pomacanthidae) on the coral reefs of Okinawa. In both species, if new females or juveniles did not immigrate into the territories of the widowed males, some of them emigrated to form male-male pairs. When a male-male pair formed, the smaller, subordinate partner began to perform female sexual behaviours ( n = 4 in L. dimidiatus; n = 2 in C. ferrugata) and, finally, released eggs ( n = 1, respectively). Thus, the reversed sex change occurred in the widowed males according to the change of their social status. These results suggest that such female removal experiments will contribute to the discovery of reversed sex change in the field also in other polygnous and protogynous species.
Sharma, Chandra Mohan; Khanduri, Vinod Prasad; Ghildiyal, Sunil Kumar
2012-01-01
We studied several flowering traits, namely, male-female cone phenology, male-female cone production per tree, mating system, sex ratio, air-borne pollen grains and pollen migration, over four successive years in two different natural populations of P. roxburghii from Garhwal Himalaya, India. Assessment of each trait mentioned except pollen dispersion was done by selecting five representative trees randomly in each population. The pollen migration was studied on naturally isolated source trees. The pollen trapping was done in all directions up to 2.5 km. The average reproductive period in P. roxburghii was 36 days with 3-5 days protandry. There were significant year and population effects for male and female cone output and pollen grains production per tree. In mass production year (1999), an average production of pollen cone per tree was estimated as 42.44 ± 8.32 × 10(3) at lower altitude and 28.1 ± 0.89 × 10(3) at higher altitude. The controlled pollination results in high level of outcrossing with 90% seed setting. We conclude that the high male-female ratio and tremendous pollen production capacity in P. roxburghii indicate high male competition among trees within populations. The isolation strip of 600 m is considered minimal for the management of seed orchard.
Silva, Cláudia I; Augusto, Solange C; Sofia, Silvia H; Moscheta, Ismar S
2007-01-01
Tecoma stans (L.) Kunth is an exotic plant in Brazil, commonly distributed in urban areas, which is considered an invasive species in crop and pasture areas. In this study, the floral biology and the behavior of bees in flowers of T. stans from three urban areas in southeastern Brazil were investigated. In all study sites, T. stans was an important food resource to the Apoidea to 48 species of bees. Centris tarsata Smith and Exomalopsis fulvofasciata Smith (Hymenoptera: Apidae) were the effective pollinators more abundant, while Scaptotrigona depilis Moure (Hymenoptera: Apidae) was the more frequent robber species. The most part of T. stans visitors (87.5%) exploited exclusively nectar, which varied in sugar concentration depending on the day period and flower phase. In all flower stages, higher averages of nectar concentration (26.4% to 32.7%) occurred from 10 am to 2 pm. The presence of osmophore in the petals and protandry were detected. In two urban areas the number of visitors varied significantly during the day. The greatest abundance of pollinators occurred when pollen availability was higher and flowers showed receptive stigma, which could be contributing to the reproductive success of T. stans. The results indicate that the production of fruits increased in plants that received a higher number of effective pollinators.
Casula, P.; Nichols, J.D.
2003-01-01
When capturing and marking of individuals is possible, the application of newly developed capture-recapture models can remove several sources of bias in the estimation of population parameters such as local abundance and sex ratio. For example, observation of distorted sex ratios in counts or captures can reflect either different abundances of the sexes or different sex-specific capture probabilities, and capture-recapture models can help distinguish between these two possibilities. Robust design models and a model selection procedure based on information-theoretic methods were applied to study the local population structure of the endemic Sardinian chalk hill blue butterfly, Polyommatus coridon gennargenti. Seasonal variations of abundance, plus daily and weather-related variations of active populations of males and females were investigated. Evidence was found of protandry and male pioneering of the breeding space. Temporary emigration probability, which describes the proportion of the population not exposed to capture (e.g. absent from the study area) during the sampling process, was estimated, differed between sexes, and was related to temperature, a factor known to influence animal activity. The correlation between temporary emigration and average daily temperature suggested interpreting temporary emigration as inactivity of animals. Robust design models were used successfully to provide a detailed description of the population structure and activity in this butterfly and are recommended for studies of local abundance and animal activity in the field.
Zhang, Jin-Ju; Montgomery, Benjamin R.; Huang, Shuang-Quan
2016-01-01
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis. Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea. Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. PMID:27178066
Knutson, Randy L.; Kwilosz, John R.; Grundel, Ralph
1999-01-01
We conducted a three-year mark-release-recapture study of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov) at Indiana Dunes National Lakeshore to describe the butterfly's movement patterns and to assess seasonal changes in the Karner blue's population structure. Estimated mean Karner blue adult life span was less than 3.5 days. Populations exhibited protandry and about a 2:1 male:female sex ratio at population peak within a brood. Ranges, or maximum distances moved by individual butterflies, were typically less than 100 m. Maximum ranges were less than 1 km. These distances are similar to those reported for other lycaenid butterflies and from other studies of the Karner blue in the midwestern United States. At two sites, fewer than 2% of adults had ranges greater than 300 m, while at a third site 4.3% of adults had ranges greater than 300 m. Given typical subpopulation sizes these movement percentages suggest that few adults per generation will move between subpopulations separated by more than 300 m. Movement of individuals between subpopulation sites is important for maintaining genetic diversity within a metapopulation and for recolonizing areas following local extinctions. Therefore, prudent conservation planning should aim for a landscape with habitat patches suitable for Karner blue butterfly occupancy separated by less than 300 m.
Sanad, Manar M.; Shamseldean, Muhammad S. M.; Elgindi, Abd-Elmoneim Y.; Gaugler, Randy
2013-01-01
Romanomermis iyengari and Strelkovimermis spiculatus are mermithid nematodes that parasitize mosquito larvae. We describe host penetration and emergence patterns of Romanomermis iyengari and Strelkovimermis spiculatus in laboratory exposures against Culex pipiens pipiens larvae. The mermithid species differed in host penetration behavior, with R. iyengari juveniles attaching to the host integument before assuming a rigid penetration posture at the lateral thorax (66.7%) or abdominal segments V to VIII (33.3%). Strelkovimermis spiculatus attached first to a host hair in a coiled posture that provided a stable base for penetration, usually through the lateral thorax (83.3%). Superparasitism was reduced by discriminating against previously infected hosts, but R. iyengari’s ability to avoid superparasitism declined at a higher inoculum rate. Host emergence was signaled by robust nematode movements that induced aberrant host swimming. Postparasites of R. iyengari usually emerged from the lateral prothorax (93.2%), whereas S. spiculatus emergence was peri-anal. In superparasitized hosts, emergence was initiated by males in R. iyengari and females in S. spiculatus; emergence was otherwise nearly synchronous. Protandry was observed in R. iyengari. The ability of S. spiculatus to sustain an optimal sex ratio suggested superior self-regulation. Mermithid penetration and emergence behaviors and sites may be supplementary clues for identification. Species differences could be useful in developing production and release strategies. PMID:23589657
Zhang, Jin-Ju; Montgomery, Benjamin R; Huang, Shuang-Quan
2016-01-01
Interspecific hybridization is widespread among plants; nevertheless, pre- and post-zygotic isolating mechanisms may maintain species integrity for interfertile species in sympatry despite some gene flow. Interspecific hybridization and potential isolating barriers were evaluated between co-flowering Silene asclepiadea and Silene yunnanensis in an alpine community in southwest China. We investigated morphological and molecular (nuclear microsatellites and chloroplast gene sequence) variation in sympatric populations of S. asclepiadea and S. yunnanensis. Additionally, we analyzed pollinator behaviour and compared reproductive success between the putative hybrids and their parental species. Both the molecular and morphological data indicate that there were putative natural hybrids in the field, with S. asclepiadae the ovule parent and S. yunnanensis the pollen parent. Bumblebees were the primary visitors to S. asclepiadae and putative hybrids, while butterflies were the primary visitors to S. yunnanensis Pollen production and viability were significantly lower in putative hybrids than the parental species. The direction of hybridization is quite asymmetric from S. yunnanensis to S. asclepiadea Protandry combined with later peak flowering of S. yunnanensis, and pollinator preference may have contributed to the asymmetric pattern of hybridization, but putative hybrids were rare. Our results thus suggest that despite gene flow, S. asclepiadea and S. yunnanensis can maintain species boundaries, perhaps as a result of floral isolation and low fecundity of the hybrids. Published by Oxford University Press on behalf of the Annals of Botany Company.
Phylogenetic patterns and phenotypic plasticity of molluscan sexual systems.
Collin, Rachel
2013-10-01
Molluscs show a wide diversity of sexual systems and strategies. There are both gastropod and bivalve families that are each primarily dioecious, simultaneous hermaphrodites, or sequential hermaphrodites, and other families in which almost every sexual strategy occurs. The multiple evolutionary transitions of sexual systems within molluscs would allow comparative analyses of the associated ecological factors, but data on all but a few groups are too sparse to draw many solid conclusions. The phylogenetic distribution of sexual systems in the Mollusca shows that gastropods and bivalves demonstrate different patterns, possibly associated with the presence/absence of copulation. The distribution of change of sex suggests that, in gastropods, sequential hermaphrodites do not evolve from simultaneous hermaphrodites, and that sex reversal (flip-flopping) occurs in free-spawners but not in copulators. Three well-studied protandrous gastropod groups (calyptraeids, coralliophilids, and patellogastropods) show similar responses to environmental conditions and associations with conspecifics. They all have the following attributes: (1) they are sedentary, (2) they live in groups, patches, or aggregates, and (3) size at sex change varies among sites and among aggregates. In addition the available experimental evidence suggests that (4) the presence of females or large individuals represses growth and sex change of males, and (5) behavior seems to mediate the repressive influence of large females. Available data from other species tend to support these patterns. Finally, the repression of growth of males by females in protandry likely facilitates the evolution of dwarf males.
Reproductive phenology and pre-dispersal fruit predation in Atriplex halimus L. (Chenopodiaceae).
Romera, Prado; Fernández-Illescas, Francisca; Nieva, F Javier J; Rodríguez-Rubio, Pilar; Sánchez-Gullón, Enrique; Muñoz-Rodríguez, Adolfo F
2013-12-01
The flowering phenology pattern of Atriplex halimus was studied in a Mediterranean habitat in order to analyze protandry effectiveness. Fruit set evolution was recorded over two years and the impact of pre-dispersal predation by insects was also evaluated. The flowering phenology coincided in 2006 and 2007, starting in mid-July and reaching full flowering at the end of August in both years. Inflorescences are composed of glomerules with 8.78 ± 2.79 male flowers and 4.57 ± 2.58 female flowers, with no significant differences in position on the inflorescence. The peaks of male and female flower anthesis were reached in mid-August, but the male maximum occurred one week before the female. Plants at the start of flowering only bear male flowers, but female flowers soon appear. Fruit set starts at the end of August; all the flowers were transformed into fruit by mid-September and their development continued to the beginning of October, when fruit structures had matured and began to drop. Fruit predation started at the end of September and reached maximum intensity in mid-October. At population level, male and female flowers seemed to open in the same weeks, but at plant and glomerule level male flowers opened one week before the females. Fruit predation levels were 62.42 and 43.14% in 2006 and 2007 respectively, with no significant differences between different parts of the inflorescence. And larvae of Coleophoridae were the most abundant predators.
Sex change strategy and the aromatase genes.
Gardner, L; Anderson, T; Place, A R; Dixon, B; Elizur, A
2005-04-01
Sequential hermaphroditism is a common reproductive strategy in many teleosts. Steroid production is known to mediate both the natural and induced sex change, yet beyond this the physiology directing this process has received little attention. Cytochrome P450 aromatase is a key enzyme in the hormonal pathway catalysing the conversion of sex steroids, androgens to oestrogens, and thus is highly relevant to the process of sex change. This study reports the isolation of cDNA sequences for aromatase isoforms CYP19A1 and CYP19A2 from teleost species representing three forms of sexual hermaphroditism: Lates calcarifer (protandry), Cromileptes altivelis (protogyny), and Gobiodon histrio (bi-directional). Deduced amino acid analysis of these isoforms with other reported isoforms from gonochoristic (single sex) teleosts revealed 56-95% identity within the same isoform while only 48-65% identity between isoforms irrespective of species and sexual strategy. Phylogenetic analysis supported this result separating sequences into isoform exclusive clades in spite of species apparent evolutionary distance. Furthermore, this study isolates 5' flanking regions of all above genes and describes putative cis-acting elements therein. Elements identified include steroidogenic factor 1 binding site (SF-1), oestrogen response element (ERE), progesterone response element (PRE), androgen response element (ARE), glucocorticoid response elements (GRE), peroxisome proliferator-activated receptor alpha/retinoid X receptor alpha heterodimer responsive element (PPARalpha/RXRalpha), nuclear factor kappabeta (NF-kappabeta), SOX 5, SOX 9, and Wilms tumor suppressor (WTI). A hypothetical in vivo model was constructed for both isoforms highlighting potential roles of these putative cis-acting elements with reference to normal function and sexual hermaphroditism.
Borges, Carla D G; Hawkins, Stephen J; Crowe, Tasman P; Doncaster, C Patrick
2016-01-01
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L 50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L 50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0-15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.
Citrus flush shoot ontogeny modulates biotic potential of Diaphorina citri.
Cifuentes-Arenas, Juan Camilo; de Goes, António; de Miranda, Marcelo Pedreira; Beattie, George Andrew Charles; Lopes, Silvio Aparecido
2018-01-01
The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have been extensively studied with respect to host preferences, thermal requirements, and responses to visual and chemical volatile stimuli. However, development of the psyllid in relation to the ontogeny of immature citrus flush growth has not been clearly defined or illustrated. Such information is important for determining the timing and frequency of measures used to minimize populations of the psyllid in orchards and spread of HLB. Our objective was to study how flush ontogeny influences the biotic potential of the psyllid. We divided citrus flush growth into six stages within four developmental phases: emergence (V1), development (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri oviposition and nymph development were assessed on all flush stages in a temperature controlled room, and in a screen-house in which ambient temperatures varied. Our results show that biotic potential of Diaphorina citri is not a matter of the size or the age of the flushes (days after budbreak), but the developmental stage within its ontogeny. Females laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition, nymph survival and development, and adult emergence, which showed evidence of protandry. Flush shoots at emerging and developmental phases should be the focus of any chemical or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree from Liberibacter infection and to minimize HLB dissemination.
Citrus flush shoot ontogeny modulates biotic potential of Diaphorina citri
de Goes, António; de Miranda, Marcelo Pedreira
2018-01-01
The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have been extensively studied with respect to host preferences, thermal requirements, and responses to visual and chemical volatile stimuli. However, development of the psyllid in relation to the ontogeny of immature citrus flush growth has not been clearly defined or illustrated. Such information is important for determining the timing and frequency of measures used to minimize populations of the psyllid in orchards and spread of HLB. Our objective was to study how flush ontogeny influences the biotic potential of the psyllid. We divided citrus flush growth into six stages within four developmental phases: emergence (V1), development (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri oviposition and nymph development were assessed on all flush stages in a temperature controlled room, and in a screen-house in which ambient temperatures varied. Our results show that biotic potential of Diaphorina citri is not a matter of the size or the age of the flushes (days after budbreak), but the developmental stage within its ontogeny. Females laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition, nymph survival and development, and adult emergence, which showed evidence of protandry. Flush shoots at emerging and developmental phases should be the focus of any chemical or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree from Liberibacter infection and to minimize HLB dissemination. PMID:29304052
Fisogni, A; Cristofolini, G; Rossi, M; Galloni, M
2011-11-01
Plants with multiple flowers could be prone to autonomous self-pollination and insect-mediated geitonogamy, but physiological and ecological features have evolved preventing costs related to autogamy. We studied the rare perennial herb Dictamnus albus as a model plant, with the aim of describing the plant-pollinator system from both plant and pollinator perspectives and analysing features that promote outcrossing in an entomophilous species. The breeding system and reproductive success of D. albus were investigated in experimental and natural conditions, showing that it is potentially self-compatible, but only intra-inflorescence insect-mediated selfing is possible. Nectar analysis showed gender-biased production towards the female phase, which follows the male phase, and during flowering, full blooming is found in flowers at the bottom of the raceme. Among a wide spectrum of insect visitors, three genera (Bombus, Apis, Megachile) were found to be principal pollinators. A study of insect behaviour showed a tendency towards bottom-to-top flights for the most important pollinators Bombus spp. and Apis mellifera: upward movements on the racemes could be explained by foraging behaviour, from more to less rewarding flowers. In accordance with the 'declining reward hypothesis', bumblebees and honeybees leave the plant when gain of reward is low, after which few flowers are visited, reducing the chance of self-pollen transfer among flowers. Intra-flower self-pollination is prevented in D. albus by protandry and herkogamy, while the nectar-induced sequential pattern of pollinator visits avoids geitonogamy and tends to maximise pollen export, promoting outcrossing. All these features for preventing selfing benefit plant fitness and population genetic structure. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Baeza, J. Antonio; Hemphill, Carrie A.; Ritson-Williams, Raphael
2015-01-01
Theory predicts that monogamy is adaptive in symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in the shrimp Odontonia katoi, which inhabits the atrial chamber of the ascidian Polycarpa aurata in the Coral Triangle. Preliminary observations in O. katoi indicated that males were smaller than females, which is suggestive of sex change (protandry) in some symbiotic organisms. Thus, we first investigated the sexual system of O. katoi to determine if this shrimp was sequentially hermaphroditic. Morphological identification and size frequency distributions indicated that the population comprised males that, on average, were smaller than females. Gonad dissections demonstrated the absence of transitional individuals. Thus, O. katoi is a gonochoric species with reverse sexual dimorphism. The population distribution of O. katoi in its ascidian host did not differ significantly from a random distribution and shrimps inhabiting the same host individual as pairs were found with a frequency similar to that expected by chance alone. This is in contrast to that reported for other socially monogamous crustaceans in which pairs of heterosexual conspecifics are found in host individuals more frequently than expected by chance alone. Thus, the available information argues against monogamy in O. katoi. Furthermore, that a high frequency of solitary females were found brooding embryos and that the sex ratio was skewed toward females suggests that males might be roaming among hosts in search of receptive females in O. katoi. Symbiotic crustaceans can be used as a model system to understand the adaptive value of sexual and mating systems in marine invertebrates. PMID:25799577
Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts)
Poore, Gary C. B.; Bruce, Niel L.
2012-01-01
The crustacean order Isopoda (excluding Asellota, crustacean symbionts and freshwater taxa) comprise 3154 described marine species in 379 genera in 37 families according to the WoRMS catalogue. The history of taxonomic discovery over the last two centuries is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet resolved but systematics of the major subordinal taxa is relatively well understood. Isopods range in size from less than 1 mm to Bathynomus giganteus at 365 mm long. They inhabit all marine habitats down to 7280 m depth but with few doubtful exceptions species have restricted biogeographic and bathymetric ranges. Four feeding categories are recognised as much on the basis of anecdotal evidence as hard data: detritus feeders and browsers, carnivores, parasites, and filter feeders. Notable among these are the Cymothooidea that range from predators and scavengers to external blood-sucking micropredators and parasites. Isopods brood 10–1600 eggs depending on individual species. Strong sexual dimorphism is characteristic of several families, notably in Gnathiidae where sessile males live with a harem of females while juvenile praniza stages are ectoparasites of fish. Protandry is known in Cymothoidae and protogyny in Anthuroidea. Some Paranthuridae are neotenous. About half of all coastal, shelf and upper bathyal species have been recorded in the MEOW temperate realms, 40% in tropical regions and the remainder in polar seas. The greatest concentration of temperate species is in Australasia; more have been recorded from temperate North Pacific than the North Atlantic. Of tropical regions, the Central Indo-Pacific is home to more species any other region. Isopods are decidedly asymmetrical latitudinally with 1.35 times as many species in temperate Southern Hemisphere than the temperate North Atlantic and northern Pacific, and almost four times as many Antarctic as Arctic species. More species are known from the bathyal and abyssal Antarctic than Arctic GOODS provinces, and more from the larger Pacific than Atlantic oceans. Two areas with many species known are the New Zealand-Kermadec and the Northern North Pacific provinces. Deep hard substrates such as found on seamounts and the slopes are underrepresented in samples. This, the documented numbers of undescribed species in recent collections and probable cryptic species suggest a large as yet undocumented fauna, potentially an order of magnitude greater than presently known. PMID:22952700