Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.
Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel
2004-02-15
Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.
Vergis, James M.; Wiener, Michael C.
2011-01-01
Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (Enterokinase, Factor Xa, Human Rhinovirus 3C Protease, SUMOstar, Tobacco Etch Virus Protease, and Thrombin) by use of a panel of ninety-four individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and Factor Xa were only affected by a small number of detergents, making them good choices as well. PMID:21539919
Human eosinophils constitutively express a unique serine protease, PRSS33.
Toyama, Sumika; Okada, Naoko; Matsuda, Akio; Morita, Hideaki; Saito, Hirohisa; Fujisawa, Takao; Nakae, Susumu; Karasuyama, Hajime; Matsumoto, Kenji
2017-07-01
Eosinophils play important roles in asthma, especially airway remodeling, by producing various granule proteins, chemical mediators, cytokines, chemokines and proteases. However, protease production by eosinophils is not fully understood. In the present study, we investigated the production of eosinophil-specific proteases/proteinases by transcriptome analysis. Human eosinophils and other cells were purified from peripheral blood by density gradient sedimentation and negative/positive selections using immunomagnetic beads. Protease/proteinase expression in eosinophils and release into the supernatant were evaluated by microarray analysis, qPCR, ELISA, flow cytometry and immunofluorescence staining before and after stimulation with eosinophil-activating cytokines and secretagogues. mRNAs for extracellular matrix proteins in human normal fibroblasts were measured by qPCR after exposure to recombinant protease serine 33 (PRSS33) protein (rPRSS33), created with a baculovirus system. Human eosinophils expressed relatively high levels of mRNA for metalloproteinase 25 (MMP25), a disintegrin and metalloprotease 8 (ADAM8), ADAM10, ADAM19 and PRSS33. Expression of PRSS33 was the highest and eosinophil-specific. PRSS33 mRNA expression was not affected by eosinophil-activating cytokines. Immunofluorescence staining showed that PRSS33 was co-localized with an eosinophil granule protein. PRSS33 was not detected in the culture supernatant of eosinophils even after stimulation with secretagogues, but its cell surface expression was increased. rPRSS33 stimulation of human fibroblasts increased expression of collagen and fibronectin mRNAs, at least in part via protease-activated receptor-2 activation. Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s) in airway remodeling. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika
2006-01-01
An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.
Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui
2016-01-01
Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.
Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui
2016-01-01
Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956
Inhibition of melanosome transfer results in skin lightening.
Seiberg, M; Paine, C; Sharlow, E; Andrade-Gordon, P; Costanzo, M; Eisinger, M; Shapiro, S S
2000-08-01
The chemical basis of melanogenesis is well documented, but the mechanism of melanosome transfer and the regulation of pigmentation by keratinocyte-melanocyte interactions are not well understood. Therefore we examined the effects of serine protease inhibitors on skin pigmentation and found that the protease-activated receptor 2, expressed on keratinocytes, may regulate pigmentation via keratinocyte-melanocyte interactions. Here we show that modulation of protease-activated receptor 2 activation affects melanosome transfer into keratinocytes, resulting in changes in pigment production and deposition. SLIGRL, the protease-activated receptor 2 activating peptide, enhanced melanosome ingestion by keratinocytes, thus increasing pigment deposition. RWJ-50353, a serine protease inhibitor, led to reduced pigment deposition in melanocytes and depigmentation. Electron microscopy studies illustrated an accumulation of immature melanosomes inside melanocytes and abnormal dendrite dynamics in RWJ-50353-treated epidermal equivalents. RWJ-50353 induced a visible and dose-dependent skin lightening effect in the dark-skinned Yucatan swine. Examinations by electron microscopy indicated that the in vivo transfer of melanosomes from melanocytes to keratinocytes was affected. Our data suggest that modulation of keratinocyte-melanocyte interactions via the protease-activated receptor 2 pathway affects melanosome transfer. The use of RWJ-50353 to modulate protease-activated receptor 2 activation could lead to a new class of depigmenting agents.
Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A
2017-09-01
Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.
Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping
2013-12-01
Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.
Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway
Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won
2012-01-01
The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102
Silver, Kristopher; Littlejohn, A.; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D.
2017-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. PMID:28342779
Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes.
Bociąga-Jasik, Monika; Polus, Anna; Góralska, Joanna; Czech, Urszula; Gruca, Anna; Śliwa, Agnieszka; Garlicki, Aleksander; Mach, Tomasz; Dembińska-Kieć, Aldona
2013-01-01
The iatrogenic, HIV-related lipodystrophy is associated with development of the significant metabolic and cardiovascular complications. The underlying mechanisms of antiretroviral (ARV) drugs are not completely explored. The aim of the study was to characterize effects of the protease inhibitor (PI)--saquinavir (SQV) on metabolic functions, and gene expression during differentiation in cells (Chub-S7) culture. SQV in concentrations observed during antiretroviral therapy (ART) significantly decreased mitochondrial membrane potential (MMP), oxygen consumption and ATP generation. The effects were greater in already differentiated cells. This was accompanied by characteristic changes in the expression of the genes involved in endoplasmic reticulum (ER) stress, and differentiation (lipid droplet formation) process such as: WNT10a, C/EBPa, AFT4, CIDEC, ADIPOQ, LPIN1. The results indicate that SQV affects not only metabolic (mitochondrial) activity of adipocytes, but affects the expression of genes related to differentiation and to a lesser extent to cell apoptosis.
Amiri, Azam; Bandani, Ali Reza; Alizadeh, Houshang
2016-04-01
Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting. © 2015 Wiley Periodicals, Inc.
Simone, Tessa M.; Higgins, Craig E.; Czekay, Ralf-Peter; Law, Brian K.; Higgins, Stephen P.; Archambeault, Jaclyn; Kutz, Stacie M.; Higgins, Paul J.
2014-01-01
Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels. PMID:24669362
An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway.
Paine, C; Sharlow, E; Liebel, F; Eisinger, M; Shapiro, S; Seiberg, M
2001-04-01
The protease-activated receptor 2, expressed on keratinocytes but not on melanocytes, has been ascribed functional importance in the regulation of pigmentation by phagocytosis of melanosomes. Inhibition of protease-activated receptor 2 activation by synthetic serine protease inhibitors requires keratinocyte-melanocyte contact and results in depigmentation of the dark skinned Yucatan swine, suggesting a new class of depigmenting mechanism and agents. We therefore examined natural agents that could exert their effect via the protease-activated receptor 2 pathway. Here we show that soymilk and the soybean-derived serine protease inhibitors soybean trypsin inhibitor and Bowman-Birk inhibitor inhibit protease-activated receptor 2 cleavage, affect cytoskeletal and cell surface organization, and reduce keratinocyte phagocytosis. The depigmenting activity of these agents and their capability to prevent ultraviolet-induced pigmentation are demonstrated both in vitro and in vivo. These results imply that inhibition of the protease-activated receptor 2 pathway by soymilk may be used as a natural alternative to skin lightening.
An insight into the sialotranscriptome of the seed-feeding bug, Oncopeltus fasciatus.
Francischetti, Ivo M B; Lopes, Angela H; Dias, Felipe A; Pham, Van M; Ribeiro, José M C
2007-09-01
The salivary transcriptome of the seed-feeding hemipteran, Oncopeltus fasciatus (milkweed bug), is described following assembly of 1025 expressed sequence tags (ESTs) into 305 clusters of related sequences. Inspection of these sequences reveals abundance of low complexity, putative secreted products rich in the amino acids (aa) glycine, serine or threonine, which might function as silk or mucins and assist food canal lubrication and sealing of the feeding site around the mouthparts. Several protease inhibitors were found, including abundant expression of cystatin transcripts that may inhibit cysteine proteases common in seeds that might injure the insect or induce plant apoptosis. Serine proteases and lipases are described that might assist digestion and liquefaction of seed proteins and oils. Finally, several novel putative proteins are described with no known function that might affect plant physiology or act as antimicrobials.
Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D
2017-05-15
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Yuan, Lin; Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang
2017-01-01
Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05). These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers.
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors
Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo
2013-01-01
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670
Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang
2017-01-01
Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased pancreatic trypsin mRNA levels by 40%, 44% and 28%, respectively. Supplementation with NSP enzyme and 160 mg/kg protease decreased pancreatic trypsin mRNA levels by 13%. Pancreatic lipase and amylase mRNA expression were significantly elevated in treated animals compared to the control group (p<0.05). These results suggest that the amount of NSP enzyme and acid protease in the diet significantly affects digestive function, endogenous digestive-enzyme activity and mRNA expression in broilers. PMID:28323908
The expression and activation of protease-activated receptor-2 correlate with skin color.
Babiarz-Magee, Laura; Chen, Nannan; Seiberg, Miri; Lin, Connie B
2004-06-01
Skin color results from the production and distribution of melanin in the epidermis. The protease-activated receptor-2 (PAR-2), expressed on keratinocytes but not on melanocytes, is involved in melanosome uptake via phagocytosis, and modulation of PAR-2 activation affects skin color. The pattern of melanosome distribution within the epidermis is skin color-dependent. In vitro, this distribution pattern is regulated by the ethnic origin of the keratinocytes, not the melanocytes. Therefore, we hypothesized that PAR-2 may play a role in the modulation of pigmentation in a skin type-dependent manner. We examined the expression of PAR-2 and its activator, trypsin, in human skins with different pigmentary levels. Here we show that PAR-2 and trypsin are expressed in higher levels, and are differentially localized in highly pigmented, relative to lightly pigmented skins. Moreover, highly pigmented skins exhibit an increase in PAR-2-specific protease cleavage ability. Microsphere phagocytosis was more efficient in keratinocytes from highly pigmented skins, and PAR-2 induced phagocytosis resulted in more efficient microsphere ingestion and more compacted microsphere organization in dark skin-derived keratinocytes. These results demonstrate that PAR-2 expression and activity correlate with skin color, suggesting the involvement of PAR-2 in ethnic skin color phenotypes.
Anandan, Dayanandan; Marmer, William N; Dudley, Robert L
2007-05-01
Aspergillus tamarii expresses an extracellular alkaline protease that we show to be effective in removing hair from cattle hide. Large quantities of the enzyme will be required for the optimization of the enzymatic dehairing process so the growth conditions for maximum protease expression by A. tamarii were optimized for both solid-state culture on wheat bran and for broth culture. Optimal protease expression occurred, for both cultural media, at initial pH 9; the culture was incubated at 30 degrees C for 96 h using a 5% inoculum. The crude enzyme was isolated, purified and characterized using MALDI TOF TOF. The alkaline protease was homologous to the alkaline protease expressed by Aspergillus viridinutans.
Scott, G; Deng, A; Rodriguez-Burford, C; Seiberg, M; Han, R; Babiarz, L; Grizzle, W; Bell, W; Pentland, A
2001-12-01
Previous studies have shown that the protease-activated receptor 2 is involved in skin pigmentation through increased phagocytosis of melanosomes by keratinocytes. Ultraviolet irradiation is a potent stimulus for melanosome transfer. We show that protease-activated receptor 2 expression in human skin is upregulated by ultraviolet irradiation. Subjects with skin type I, II, or III were exposed to two or three minimal erythema doses of irradiation from a solar simulator. Biopsies were taken from nonexposed and irradiated skin 24 and 96 h after irradiation and protease-activated receptor 2 expression was detected using immunohistochemical staining. In nonirradiated skin, protease-activated receptor 2 expression was confined to keratinocytes in the lower one-third of the epidermis. After ultraviolet irradiation protease-activated receptor 2 expression was observed in keratinocytes in the upper two-thirds of the epidermis or the entire epidermis at both time points studied. Subjects with skin type I showed delayed upregulation of protease-activated receptor 2 expression, however, compared with subjects with skin types II and III. Irradiated cultured human keratinocytes showed upregulation in protease-activated receptor 2 expression as determined by immunofluorescence microscopy and Western blotting. Cell culture supernatants from irradiated keratinocytes also exhibited a dose-dependent increase in protease-activated receptor-2 cleavage activity. These results suggest an important role for protease-activated receptor-2 in pigmentation in vivo. Differences in protease-activated receptor 2 regulation in type I skin compared with skin types II and III suggest a potential mechanism for differences in tanning in subjects with different skin types.
Krstic, Dimitrije; Rodriguez, Myriam; Knuesel, Irene
2012-01-01
The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD. PMID:23082219
Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans
2003-05-01
A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.
Dowd, Patrick F; Johnson, Eric T
2015-05-01
Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins.
Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina
2018-04-13
Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.
m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration
Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas
2018-01-01
The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders. PMID:29451229
m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.
Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas
2018-03-01
The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.
Serine proteases in rodent hippocampus.
Davies, B J; Pickard, B S; Steel, M; Morris, R G; Lathe, R
1998-09-04
Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.
Reid, Vernita J.; Theron, Louwrens W.; du Toit, Maret
2012-01-01
The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence. PMID:22820332
Chen, Hsien-Jung; Huang, Yu-Hsuan; Huang, Guan-Jhong; Huang, Shyh-Shyun; Chow, Te-Jin; Lin, Yaw-Huei
2015-05-15
Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested. Copyright © 2015 Elsevier GmbH. All rights reserved.
Interaction between FMDV Lpro and transcription factor ADNP is required for viral replication
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an ...
Cole, Alicia; Wang, Zezhou; Coyaud, Etienne; Voisin, Veronique; Gronda, Marcela; Jitkova, Yulia; Mattson, Rachel; Hurren, Rose; Babovic, Sonja; Maclean, Neil; Restall, Ian; Wang, Xiaoming; Jeyaraju, Danny V.; Sukhai, Mahadeo A.; Prabha, Swayam; Bashir, Shaheena; Ramakrishnan, Ashwin; Leung, Elisa; Qia, Yi Hua; Zhang, Nianxian; Combes, Kevin R.; Ketela, Troy; Lin, Fengshu; Houry, Walid A.; Aman, Ahmed; Al-awar, Rima; Zheng, Wei; Wienholds, Erno; Xu, Chang Jiang; Dick, John; Wang, Jean C.Y.; Moffat, Jason; Minden, Mark D.; Eaves, Connie J.; Bader, Gary D.; Hao, Zhenyue; Kornblau, Steven M.; Raught, Brian; Schimmer, Aaron D.
2015-01-01
Summary From an shRNA screen, we identified ClpP as a member of the mitochondrial proteome whose knockdown reduced the viability of K562 leukemic cells. Expression of this mitochondrial protease that has structural similarity to the cytoplasmic proteosome is increased in the leukemic cells from approximately half of patients with AML. Genetic or chemical inhibition of ClpP killed cells from both human AML cell lines and primary samples in which the cells showed elevated ClpP expression, but did not affect their normal counterparts. Importantly, Clpp knockout mice were viable with normal hematopoiesis. Mechanistically, we found ClpP interacts with mitochondrial respiratory chain proteins and metabolic enzymes, and knockdown of ClpP in leukemic cells inhibited oxidative phosphorylation and mitochondrial metabolism. PMID:26058080
Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease
USDA-ARS?s Scientific Manuscript database
TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...
Nepal, Saroj; Shrestha, Anup; Park, Pil-Hoon
2015-09-05
Adiponectin and leptin, both produced from adipose tissue, cause cell cycle arrest and progression, respectively in cancer cells. Ubiquitin specific protease-2 (USP-2), a deubiquitinating enzyme, is known to impair proteasome-induced degradation of cyclin D1, a critical cell cycle regulator. Herein, we investigated the effects of these adipokines on USP-2 expression and its potential role in the modulation of cell cycle. Treatment with globular adiponectin (gAcrp) decreased, whereas leptin increased USP-2 expression both in human hepatoma and breast cancer cells. In addition, overexpression or gene silencing of USP-2 affected cyclin D1 expression and cell cycle progression/arrest by adipokines. Adiponectin and leptin also modulated in vitro proteasomal activity, which was partially dependent on USP-2 expression. Taken together, our results reveal that modulation of USP-2 expression plays a crucial role in cell cycle regulation by adipokines. Thus, USP-2 would be a promising therapeutic target for the modulation of cancer cell growth by adipokines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Insecticide resistance and intracellular proteases.
Wilkins, Richard M
2017-12-01
Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica
2014-07-16
The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline serine protease could be developed as a postharvest treatment with antimicrobial activity for fruit undergoing a short storage period. Copyright © 2014 Elsevier B.V. All rights reserved.
Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.
2014-01-01
Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119
NASA Astrophysics Data System (ADS)
Celussi, Mauro; Del Negro, Paola
2012-12-01
The degradation of organic matter along the water column is mediated by enzymes released into the environment by planktonic organisms. Variations in enzymes profiles (types and levels of activity) reflect the trophic status of the environment and could be caused by shifts in the dominant species or in the level of enzyme expression by the same species in response to changes in the spectrum of organic substrates. To explore this issue, we examined the maximum rates of hydrolysis of 6 different enzymes (protease, α-glucosidase, β-glucosidase, β-galactosidase, alkaline phosphatase and lipase) along the water column (4 depths) at a coastal station in the Gulf of Trieste (northern Adriatic Sea), from 2000 to 2005. Most of the studied enzymes exhibited a pronounced seasonal variability with winter minima and maxima from April to October. During summer, alkaline phosphatase, lipase and protease reached the highest activities, while polysaccharide degradation prevailed in spring and autumn, associated to phytoplankton blooms. Phosphatase/protease activities ratio was generally low, indicating that microbial communities were rarely P-limited, possibly because of the use of organic P sources. A pronounced interannual variability of degradation patterns was found, with maximum rates of protease being the highest in most of the samples, followed by the alkaline phosphatase's ones. Water column features greatly affected hydrolysis rates, being degradation of linear polysaccharides, lipids, phosphorilated compounds and polypeptides significantly different at different depths during stratified condition. Mixing processes affected especially α-glucosidase activity, possibly as a consequence of resuspension of organic matter from the seabed. Large-impact phenomena such as the 2003 heat wave and mucilage influenced the degradation of specific substrates. Mucilage enhanced lipase, phosphatase and protease, whereas a pronounced inhibition characterised phosphatase and protease during summer 2003.
An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.
Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia
2015-12-01
Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.
Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.
2015-01-01
The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335
Into, T; Inomata, M; Kanno, Y; Matsuyama, T; Machigashira, M; Izumi, Y; Imamura, T; Nakashima, M; Noguchi, T; Matsushita, K
2006-01-01
Chronic periodontitis is correlated with Porphyromonas gingivalis infection. In this study, we found that the expression of secretory leucocyte protease inhibitor (SLPI), an endogenous inhibitor for neutrophil-derived proteases, was reduced in gingival tissues with chronic periodontitis associated with P. gingivalis infection. The addition of vesicles of P. gingivalis decreased the amount of SLPI in the media of primary human gingival keratinocytes compared to untreated cultures. We therefore investigated how arginine-specific gingipains (Rgps) affect the functions of SLPI, because Rgps are the major virulence factors in the vesicles and cleave a wide range of in-host proteins. We found that Rgps digest SLPI in vitro, suppressing the release of SLPI. Rgps proteolysis of SLPI disrupted SLPI functions, which normally suppresses neutrophil elastase and neutralizes pro-inflammatory effects of bacterial cell wall compounds in cultured human gingival fibroblasts. The protease inhibitory action of SLPI was not exerted towards Rgps. These results suggest that Rgps reduce the protective effects of SLPI on neutrophil proteases and bacterial proinflammatory compounds, by which disease in gingival tissue may be accelerated at the sites with P. gingivalis infection. PMID:16907925
USDA-ARS?s Scientific Manuscript database
Protease activated receptors (PARs) are expressed on structural cells and immune cells. Control of the initiation, duration, and magnitude of the PAR effects are linked to the level of receptor expression, the availability of proteases, and the intracellular signal transduction machinery. We inve...
Cousin, Hélène; Abbruzzese, Genevieve; Kerdavid, Erin; Gaultier, Alban; Alfandari, Dominique
2011-01-01
Summary ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus. Preventing this translocation renders the protein incapable of promoting cranial neural crest (CNC) cell migration in vivo, without affecting its proteolytic activity. In addition, the cytoplasmic domain of ADAM13 regulates the expression of multiple genes in CNC, including the protease Calpain8-a. Restoring the expression of Calpain8-a is sufficient to rescue CNC migration in the absence of the ADAM13 cytoplasmic domain. This study shows that the cytoplasmic domain of ADAM metalloproteases can perform essential functions in the nucleus of cells and may contribute substantially to the overall function of the protein. PMID:21316592
Mast cell proteases as pharmacological targets
Caughey, George H.
2015-01-01
Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties and patterns of expression of proteases expressed in human mast cell subsets, and in humans versus other mammals. These considerations are influencing prioritization of specific protease targets for therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of topical versus systemic routes of inhibitor administration. PMID:25958181
Denadai-Souza, Alexandre; Bonnart, Chrystelle; Tapias, Núria Solà; Marcellin, Marlène; Gilmore, Brendan; Alric, Laurent; Bonnet, Delphine; Burlet-Schiltz, Odile; Hollenberg, Morley D; Vergnolle, Nathalie; Deraison, Céline
2018-05-18
While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.
Kallikreins - The melting pot of activity and function.
Kalinska, Magdalena; Meyer-Hoffert, Ulf; Kantyka, Tomasz; Potempa, Jan
2016-03-01
The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang
2010-12-01
The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.
Extracellular proteases as targets for drug development
Cudic, Mare
2015-01-01
Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354
Kim, Wontae; Bae, Sungwoo; Kim, Ayoung; Park, Kwanho; Lee, Sangbeom; Choi, Youngcheol; Han, Sangmi; Park, Younghan; Koh, Youngho
2011-06-01
To investigate the molecular scavenging capabilities of the larvae of Hermetia illucens, two serine proteases (SPs) were cloned and characterized. Multiple sequence alignments and phylogenetic tree analysis of the deduced amino acid sequences of Hi-SP1 and Hi-SP2 were suggested that Hi-SP1 may be a chymotrypsin- and Hi-SP2 may be a trypsin-like protease. Hi-SP1 and Hi-SP2 3-D homology models revealed that a catalytic triad, three disulfide bonds, and a substrate-binding pocket were highly conserved, as would be expected of a SP. E. coli expressed Hi-SP1 and Hi-SP2 showed chymotrypsin or trypsin activities, respectively. Hi-SP2 mRNAs were consistently expressed during larval development. In contrast, the expression of Hi-SP1 mRNA fluctuated between feeding and molting stages and disappeared at the pupal stages. These expression pattern differences suggest that Hi-SP1 may be a larval specific chymotrypsin-like protease involved with food digestion, while Hi-SP2 may be a trypsin-like protease with diverse functions at different stages.
Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M
2009-01-01
The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.
Hua, Yinan; Nair, Sreejayan
2014-01-01
Cardiovascular disease is the leading cause of death in the U.S. and other developed country. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or overexpress proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for threating or controlling these diseases. PMID:24815358
Schneider, Lars A.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Wunderlin, Markus; Rodewald, Hans-Reimer
2007-01-01
Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpa's substrate specificity without loss of toxicity. PMID:17923505
Birt, Julie A.; Nabli, Henda; Stilley, Julie A.; Windham, Emma A.; Frazier, Shellaine R.
2013-01-01
Endometriosis-associated infertility manifests itself via multiple, poorly understood mechanisms. Our goal was to characterize signaling pathways, between peritoneal endometriotic lesions and the ovary, leading to failed ovulation. Genome-wide microarray analysis comparing ovarian tissue from an in vivo endometriosis model in the rat (Endo) with controls (Sham) identified 22 differentially expressed genes, including transiently expressed early growth response factor 1 (Egr1). The Egr1 regulates gene requisites for ovulation. The Egr1 promoter is responsive to tumor necrosis factor-alpha (TNF-α) signaling. We hypothesized that altered expression of ovarian EGR1 is induced by elevated peritoneal fluid TNF-α which is upregulated by the presence of peritoneal endometriosis. Endo rats, compared to controls, had more peritoneal fluid TNF-α and quantitative, spatial differences in Egr1 mRNA and EGR1 protein localization in follicular compartments. Interactions between elevated peritoneal fluid TNF-α and overexpression of follicular Egr1/EGR1 expression may affect downstream protease pathways impeding ovulation in endometriosis. Preliminary studies identified similar patterns of EGR1 protein localization in human ovaries from women with endometriosis and compared to those without endometriosis. PMID:23427178
Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K
2016-09-02
An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Chunling; Ju, Jiyu
2015-06-01
The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.
Maldonado-Aguayo, Waleska; Chávez-Mardones, Jacqueline; Gonçalves, Ana Teresa; Gallardo-Escárate, Cristian
2015-01-01
Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi. PMID:25923525
Maldonado-Aguayo, Waleska; Chávez-Mardones, Jacqueline; Gonçalves, Ana Teresa; Gallardo-Escárate, Cristian
2015-01-01
Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.
Sharma, Vivek; Salwan, Richa; Sharma, Prem N
2016-09-01
In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240
Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique
2011-08-24
Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Vickers, Imelda; Reeves, Emer P; Kavanagh, Kevin A; Doyle, Sean
2007-05-01
Aspergillus fumigatus is an opportunistic fungal pathogen that infects immunocompromised patients. A putative aspartic protease gene (ctsD; 1425 bp; intron-free) was identified and cloned. CtsD is evolutionarily distinct from all previously identified A. fumigatus aspartic proteases. Recombinant CtsD was expressed in inclusion bodies in Escherichia coli (0.2mg/g cells) and subjected to extensive proteolysis in the baculovirus expression system. Activation studies performed on purified, refolded, recombinant CtsD resulted in protease activation with a pH(opt)4.0 and specific activity=10 U/mg. Pepstatin A also inhibited recombinant CtsD activity by up to 72% thereby confirming classification as an aspartic protease. Native CtsD was also immunologically identified in culture supernatants and purified from fungal cultures using pepstatin-agarose affinity chromatography (7.8 microg CtsD/g mycelia). In A. fumigatus, semi-quantitative RT-PCR analysis revealed expression of ctsD in minimal and proteinaceous media only. Expression of ctsD was absent under nutrient-rich conditions. Expression of ctsD was also detected, in vivo, in the Galleria mellonella virulence model following A. fumigatus infection.
Production of foot-and-mouth disease virus capsid proteins by the TEV protease.
Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max
2018-06-10
Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.
A de novo variant in the ASPRV1 gene in a dog with ichthyosis.
Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso
2017-03-01
Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.
Loss of hippocampal serine protease BSP1/neuropsin predisposes to global seizure activity.
Davies, B; Kearns, I R; Ure, J; Davies, C H; Lathe, R
2001-09-15
Serine proteases in the adult CNS contribute both to activity-dependent structural changes accompanying learning and to the regulation of excitotoxic cell death. Brain serine protease 1 (BSP1)/neuropsin is a trypsin-like serine protease exclusively expressed, within the CNS, in the hippocampus and associated limbic structures. To explore the role of this enzyme, we have used gene targeting to disrupt this gene in mice. Mutant mice were viable and overtly normal; they displayed normal hippocampal long-term synaptic potentiation (LTP) and exhibited no deficits in spatial navigation (water maze). Nevertheless, electrophysiological studies revealed that the hippocampus of mice lacking this specifically expressed protease possessed an increased susceptibility for hyperexcitability (polyspiking) in response to repetitive afferent stimulation. Furthermore, seizure activity on kainic acid administration was markedly increased in mutant mice and was accompanied by heightened immediate early gene (c-fos) expression throughout the brain. In view of the regional selectivity of BSP1/neuropsin brain expression, the observed phenotype may selectively reflect limbic function, further implicating the hippocampus and amygdala in controlling cortical activation. Within the hippocampus, our data suggest that BSP1/neuropsin, unlike other serine proteases, has little effect on physiological synaptic remodeling and instead plays a role in limiting neuronal hyperexcitability induced by epileptogenic insult.
Tripathi, Siddharth Kaushal; Singh, Amar Pal; Sane, Aniruddha P.; Nath, Pravendra
2009-01-01
Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease. PMID:19346241
Factors affecting the protease activity of venom from jellyfish Rhopilema esculentum Kishinouye.
Li, Cuiping; Yu, Huahua; Liu, Song; Xing, Ronge; Guo, Zhanyong; Li, Pengcheng
2005-12-15
In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn(2+), Mg(2+), and Mn(2+) in sodium phosphate buffer (0.02M, pH 8.0) could increase protease activity. Mn(2+) had the best effects among the three metal cations and the effect was about 20 times of that of Zn(2+) or Mg(2+) and its maximal protease activity was 2.3x10(5)U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively.
Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.
2014-01-01
Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625
Luniak, Nora; Meiser, Peter; Burkart, Sonja; Müller, Rolf
2017-01-01
Expression of proteases in heterologous hosts remains an ambitious challenge due to severe problems associated with digestion of host proteins. On the other hand, proteases are broadly used in industrial applications and resemble promising drug candidates. Bromelain is an herbal drug that is medicinally used for treatment of oedematous swellings and inflammatory conditions and consists in large part of proteolytic enzymes. Even though various experiments underline the requirement of active cysteine proteases for biological activity, so far no investigation succeeded to clearly clarify the pharmacological mode of action of bromelain. The potential role of proteases themselves and other molecules of this multi-component extract currently remain largely unknown or ill defined. Here, we set out to express several bromelain cysteine proteases as well as a bromelain inhibitor molecule in order to gain defined molecular entities for subsequent studies. After cloning the genes from its natural source Ananas comosus (pineapple plant) into Pichia pastoris and subsequent fermentation and purification, we obtained active protease and inhibitor molecules which were subsequently biochemically characterized. Employing purified bromelain fractions paves the way for further elucidation of pharmacological activities of this natural product. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:54-65, 2017. © 2016 American Institute of Chemical Engineers.
Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos
2017-10-01
Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.
Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran
2015-01-01
Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106
Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut
2010-10-01
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.
Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis
Lee, Sang Eun; Jeong, Se Kyoo
2010-01-01
Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045
Galectin-3 Is a Target for Proteases Involved in the Virulence of Staphylococcus aureus.
Elmwall, Jonas; Kwiecinski, Jakub; Na, Manli; Ali, Abukar Ahmed; Osla, Veronica; Shaw, Lindsey N; Wang, Wanzhong; Sävman, Karin; Josefsson, Elisabet; Bylund, Johan; Jin, Tao; Welin, Amanda; Karlsson, Anna
2017-07-01
Staphylococcus aureus is a major cause of skin and soft tissue infection. The bacterium expresses four major proteases that are emerging as virulence factors: aureolysin (Aur), V8 protease (SspA), staphopain A (ScpA), and staphopain B (SspB). We hypothesized that human galectin-3, a β-galactoside-binding lectin involved in immune regulation and antimicrobial defense, is a target for these proteases and that proteolysis of galectin-3 is a novel immune evasion mechanism. Indeed, supernatants from laboratory strains and clinical isolates of S. aureus caused galectin-3 degradation. Similar proteolytic capacities were found in Staphylococcus epidermidis isolates but not in Staphylococcus saprophyticus Galectin-3-induced activation of the neutrophil NADPH oxidase was abrogated by bacterium-derived proteolysis of galectin-3, and SspB was identified as the major protease responsible. The impact of galectin-3 and protease expression on S. aureus virulence was studied in a murine skin infection model. In galectin-3 +/+ mice, SspB-expressing S. aureus caused larger lesions and resulted in higher bacterial loads than protease-lacking bacteria. No such difference in bacterial load or lesion size was detected in galectin-3 -/- mice, which overall showed smaller lesion sizes than the galectin-3 +/+ animals. In conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its stimulation of oxygen radical production in human neutrophils and increasing tissue damage during skin infection. Copyright © 2017 American Society for Microbiology.
Moser, M; Menz, G; Blaser, K; Crameri, R
1994-01-01
A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866
Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas
2014-08-01
Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease-deficient tobacco BY-2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY-2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full-length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV-1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four-fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N-terminal sequencing data revealed that the antibody has two cleavage sites within the CDR-H3 and one site at the end of the H4-framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lohoefer, Fabian; Reeps, Christian; Lipp, Christina; Rudelius, Martina; Haertl, Felix; Matevossian, Edouard; Zernecke, Alma; Eckstein, Hans-Henning; Pelisek, Jaroslav
2014-01-01
Cysteine and aspartic proteases possess high elastolytic activity and might contribute to the degradation of the abdominal aortic aneurysm (AAA) wall. The aim of this study was to analyze, in detail, the proteases (cathepsins B, D, K, L and S, and inhibitor cystatin C) found in human AAA and healthy aortic tissue samples. The vessel walls from AAA patients (n=36) and nonaneurysmal aortae (n=10) were retrieved using conventional surgical repair and autopsy methods. Serum samples from the same AAA patients and 10 healthy volunteers were also collected. Quantitative expression analyses were performed at the mRNA level using real-time reverse transcriptase-PCR (RT–PCR). Furthermore, analyses at the protein level included western blot and immunoprecipitation analyses. Cellular sources of cysteine/aspartic proteases and cystatin C were identified by immunohistochemistry (IHC). All cysteine/aspartic proteases and cystatin C were detected in the AAA and control samples. Using quantitative RT–PCR, a significant increase in expression was observed for cathepsins B (P=0.021) and L (P=0.018), compared with the controls. Cathepsin B and cystatin C were also detected in the serum of AAA patients. Using IHC, smooth muscle cells (SMCs) and macrophages were positive for all of the tested cathepsins, as well as cystatin C; in addition, the lymphocytes were mainly positive for cathepsin B, followed by cathepsins D and S. All cysteine/aspartic proteases analyzed in our study were detected in the AAA and healthy aorta. The highest expression was found in macrophages and SMCs. Consequently, cysteine/aspartic proteases might play a substantial role in AAA. PMID:24833013
Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon
2014-01-01
Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.
Accelerated Neuronal Cell Recovery from Botulinum Neurotoxin Intoxication by Targeted Ubiquitination
Kuo, Chueh-Ling; Oyler, George A.; Shoemaker, Charles B.
2011-01-01
Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop ‘targeted F-box’ (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only VH (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable. PMID:21629663
Kuo, Chueh-Ling; Oyler, George A; Shoemaker, Charles B
2011-01-01
Botulinum neurotoxin (BoNT), a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE) proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB) agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS), thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H) (VHH) domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5) was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10) led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.
A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases[C][W
van der Linde, Karina; Hemetsberger, Christoph; Kastner, Christine; Kaschani, Farnusch; van der Hoorn, Renier A.L.; Kumlehn, Jochen; Doehlemann, Gunther
2012-01-01
Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)–induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis. PMID:22454455
Tripathi, Prabhanshu; Nair, Smitha; Singh, B P; Arora, Naveen
2011-03-01
Serine protease from numerous sources have been identified and characterized as major allergens. The present study aimed to clone, express and characterize a serine protease from Curvularia lunata. cDNA library screening identified partial protease clones. A clone showed significant homology to subtilisin like serine proteases from Aspergillus and Penicillium species. Full length sequence was generated by RACE PCR, subcloned in pET vector, protein expressed in Escherichia coli and purified from inclusion bodies yielding 0.5 mg/L of culture. Bioinformatic analysis identified serine protease motifs of subtilase family, catalytic triad and N-glycosylation sites on the primary sequence. The protein resolved at 54-kDa on SDS-PAGE and was recognized as a major allergen on immunoblot with 13/16 C. lunata sensitive patients' sera in ELISA and immunoblot. Recombinant protein reacted with rabbit polyclonal antibodies against alkaline serine proteases from C. lunata. Recombinant protein required 50-56 ng of same protein for 50% inhibition of IgE binding in competitive ELISA. In addition, 13 of 16 patients' samples showed significant basophil histamine release upon stimulation with purified recombinant protein. In conclusion, a 54 kDa major allergen of C. lunata was cloned, expressed, characterized and showed biological activity. It has potential to be used in molecule based approach for allergy diagnosis and therapy. Copyright © 2010 Elsevier GmbH. All rights reserved.
Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web
Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.
2014-01-01
Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and validated evidence for the existence of the protease web, a network that affects the activity of most proteases and thereby influences the functional state of the proteome and cell activity. PMID:24865846
N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function
Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia
2011-01-01
Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989
Mosaic serine proteases in the mammalian central nervous system.
Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi
2008-01-01
We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.
Di Nardo, Anna; Holmes, Anna D; Muto, Yumiko; Huang, Eugene Y; Preston, Norman; Winkelman, Warren J; Gallo, Richard L
2016-06-01
Patients with rosacea have increased amounts of cathelicidin and protease activity but their usefulness as disease biomarkers is unclear. We sought to evaluate the effect of doxycycline treatment on cathelicidin expression, protease activity, and clinical response in rosacea. In all, 170 adults with papulopustular rosacea were treated for 12 weeks with doxycycline 40-mg modified-release capsules or placebo in a multicenter, randomized, double-blind, placebo-controlled study. Clinical response was compared with cathelicidin and protease activity in stratum corneum samples obtained by tape strip and in skin biopsy specimens obtained from a random subset of patients. Treatment with doxycycline significantly reduced inflammatory lesions and improved investigator global assessment scores compared with placebo. Cathelicidin expression and protein levels decreased over the course of 12 weeks in patients treated with doxycycline. Low levels of protease activity and cathelicidin expression at 12 weeks correlated with treatment success. Low protease activity at baseline was a predictor of clinical response in the doxycycline treatment group. Healthy control subjects were not studied. Improved clinical outcome correlated with reduced cathelicidin and protease activity, supporting both the mechanism of doxycycline and the potential of these molecules as biomarkers for rosacea. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang
2014-03-24
Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications.
Leske, Henning; Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Reimann, Regina Rose; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano
2017-01-01
Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2-α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2-α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, Maria Rosa
2015-09-29
Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.
Molecular Genetic Analysis of Midgut Serine Proteases in Aedes aegypti Mosquitoes
Isoe, Jun; Rascón, Alberto A.; Kunz, Susan; Miesfeld, Roger L.
2009-01-01
Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (p<0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761
Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli
2016-10-01
Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leong, L. E.-C.; Walker, P. A.; Porter, A. G.
1992-08-01
The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.
Sakai, Keiko; Chikata, Takayuki; Brumme, Zabrina L; Brumme, Chanson J; Gatanaga, Hiroyuki; Gatanag, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi
2015-11-19
HLA class I-associated escape mutations in HIV-1 Gag can reduce viral replication, suggesting that associated fitness costs could impact HIV-1 disease progression. Previous studies in North American and African cohorts have reported reduced Gag-Protease mediated viral replication capacity (Gag-Pro RC) in individuals expressing protective HLA class I alleles including HLA-B*57:01, B*27:05, and B*81:01. These studies also reported significant positive associations between Gag-Pro RCs and plasma viral load (pVL). However, these HLA alleles are virtually absent in Japan, and the importance of Gag as an immune target is not clearly defined in this population. We generated chimeric NL4-3 viruses carrying patient-derived Gag-Protease from 306 treatment-naive Japanese individuals chronically infected with HIV-1 subtype B. We analyzed associations between Gag-Pro RC and clinical markers of HIV-1 infection and host HLA expression. We observed no significant correlation between Gag-Pro RC and pVL in Japan in the overall cohort. However, upon exclusion of individuals expressing Japanese protective alleles HLA-B*52:01 and B*67:01, Gag-Pro RC correlated positively with pVL and negatively with CD4 T-cell count. Our results thus contrast with studies from other global cohorts reporting significantly lower Gag-Pro RC among persons expressing protective HLA alleles, and positive relationships between Gag-Pro RC and pVL in the overall study populations. We also identified five amino acids in Gag-Protease significantly associated with Gag-Pro RC, whose effects on RC were confirmed by site-directed mutagenesis. However, of the four mutations that decreased Gag-Pro RC, none were associated with reductions in pVL in Japan though two were associated with lower pVL in North America. These data indicate that Gag fitness does not affect clinical outcomes in subjects with protective HLA class I alleles as well as the whole Japanese population. Moreover, the impact of Gag fitness costs on HIV-1 clinical parameters in chronic infection is likely low in Japan compared to other global populations.
Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua
2014-01-01
This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.
Knoops, Sofie; Aldinucci Buzzo, João L.; Boon, Lise; Martens, Erik; Opdenakker, Ghislain; Kolaczkowska, Elzbieta
2017-01-01
Gelatinase B or matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) is increased in inflammatory processes and cancer, and is associated with disease progression. In part, this is due to MMP-9-mediated degradation of extracellular matrix, facilitating influx of leukocytes into inflamed tissues and invasion or metastasis of cancer cells. MMP-9 is produced as proMMP-9 and its propeptide is subsequently removed by other proteases to generate proteolytically active MMP-9. The significance of MMP-9 in pathologies triggered the development of specific inhibitors of this protease. However, clinical trials with synthetic inhibitors of MMPs in the fight against cancer were disappointing. Reports on active compounds which inhibit MMP-9 should be carefully examined in this regard. In a considerable set of recent publications, two antibiotics (minocycline and azythromycin) and the proteasome inhibitor bortezomib, used in cancers, were reported to inhibit MMP-9 at different stages of its expression, activation or activity. The current study was undertaken to compare and to verify the impact of these compounds on MMP-9. With exception of minocycline at high concentrations (>100 μM), the compounds did not affect processing of proMMP-9 into MMP-9, nor did they affect direct MMP-9 gelatinolytic activity. In contrast, azithromycin specifically reduced MMP-9 mRNA and protein levels without affecting NF-κB in endotoxin-challenged monocytic THP-1 cells. Bortezomib, although being highly toxic, had no MMP-9-specific effects but significantly upregulated cyclooxygenase-2 (COX-2) activity and PGE2 levels. Overall, our study clarified that azithromycin decreased the levels of MMP-9 by reduction of gene and protein expression while minocycline inhibits proteolytic activity at high concentrations. PMID:28369077
Sijwali, P S; Brinen, L S; Rosenthal, P J
2001-06-01
The Plasmodium falciparum cysteine protease falcipain-2 is a potential new target for antimalarial chemotherapy. In order to obtain large quantities of active falcipain-2 for biochemical and structural analysis, a systematic assessment of optimal parameters for the expression and refolding of the protease was carried out. High-yield expression was achieved using M15(pREP4) Escherichia coli transformed with the pQE-30 plasmid containing a truncated profalcipain-2 construct. Recombinant falcipain-2 was expressed as inclusion bodies, solubilized, and purified by nickel affinity chromatography. A systematic approach was then used to optimize refolding parameters. This approach utilized 100-fold dilutions of reduced and denatured falcipain-2 into 203 different buffers in a microtiter plate format. Refolding efficiency varied markedly. Optimal refolding was obtained in an alkaline buffer containing glycerol or sucrose and equal concentrations of reduced and oxidized glutathione. After optimization of the expression and refolding protocols and additional purification with anion-exchange chromatography, 12 mg of falcipain-2 was obtained from 5 liters of E. coli, and crystals of the protease were grown. The systematic approach described here allowed the rapid evaluation of a large number of expression and refolding conditions and provided milligram quantities of recombinant falcipain-2. Copyright 2001 Academic Press.
Spit, Jornt; Zels, Sven; Dillen, Senne; Holtof, Michiel; Wynant, Niels; Vanden Broeck, Jozef
2014-05-01
While technological advancements have recently led to a steep increase in genomic and transcriptomic data, and large numbers of protease sequences are being discovered in diverse insect species, little information is available about the expression of digestive enzymes in Orthoptera. Here we describe the identification of Locusta migratoria serine protease transcripts (cDNAs) involved in digestion, which might serve as possible targets for pest control management. A total of 5 putative trypsin and 15 putative chymotrypsin gene sequences were characterized. Phylogenetic analysis revealed that these are distributed among 3 evolutionary conserved clusters. In addition, we have determined the relative gene expression levels of representative members in the gut under different feeding conditions. This study demonstrated that the transcript levels for all measured serine proteases were strongly reduced after starvation. On the other hand, larvae of L. migratoria displayed compensatory effects to the presence of Soybean Bowman Birk (SBBI) and Soybean Trypsin (SBTI) inhibitors in their diet by differential upregulation of multiple proteases. A rapid initial upregulation was observed for all tested serine protease transcripts, while only for members belonging to class I, the transcript levels remained elevated after prolonged exposure. In full agreement with these results, we also observed an increase in proteolytic activity in midgut secretions of locusts that were accustomed to the presence of protease inhibitors in their diet, while no change in sensitivity to these inhibitors was observed. Taken together, this paper is the first comprehensive study on dietary dependent transcript levels of proteolytic enzymes in Orthoptera. Our data suggest that compensatory response mechanisms to protease inhibitor ingestion may have appeared early in insect evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beaufort, Nathalie; Leduc, Dominique; Eguchi, Hiroshi; Mengele, Karin; Hellmann, Daniela; Masegi, Tsukio; Kamimura, Takashi; Yasuoka, Susumu; Fend, Falko; Chignard, Michel; Pidard, Dominique
2007-05-01
The human airway trypsin-like protease (HAT) is a respiratory epithelium-associated, type II transmembrane serine protease, which is also detected as an extracellular enzyme in lung fluids during airway inflammatory disorders. We have evaluated its capacity to affect the urokinase-type plasminogen activator receptor (uPAR), a membrane glycolipid-anchored, three-domain (D1D2D3) glycoprotein that plays a crucial role in innate immunity and inflammation by supporting cell migration and matrix degradation, with structure and biological properties that can be regulated via limited endoproteolysis. With the use of immunoblotting, flow immunocytometry, and ELISA analyses applied to a recombinant uPAR protein and to uPAR-expressing monocytic and human bronchial epithelial cells, it was shown that exposure of uPAR to soluble HAT in the range of 10-500 nM resulted in the proteolytic processing of the full-length (D1D2D3) into the truncated (D2D3) species, with cleavage occurring in the D1 to D2 linker sequence after arginine residues at position 83 and 89. Using immunohistochemistry, we found that both HAT and uPAR were expressed in the human bronchial epithelium. Moreover, transient cotransfection in epithelial cells showed that membrane coexpression of the two partners produced a constitutive and extensive shedding of the D1 domain, occurring for membrane-associated HAT concentrations in the nanomolar range. Because the truncated receptor was found to be unable to bind two of the major uPAR ligands, the adhesive matrix protein vitronectin and the serine protease urokinase, it thus appears that proteolytic regulation of uPAR by HAT is likely to modulate cell adherence and motility, as well as tissue remodeling during the inflammatory response in the airways.
Preliminary crystallographic analysis of avian infectious bronchitis virus main protease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Shen, Wei; Liao, Ming, E-mail: mliao@scau.edu.cn
The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed inmore » Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.« less
Kim, Hyun-Do; Kim, Su-Mi; Choi, Jong-Il
2018-03-28
In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion-exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and 40°C. Protease activity was inhibited by PMSF, but not by DTT. On the basis of the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.
Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
Li, Fengwu; Bounkeua, Viengngeun; Pettersen, Kenneth; Vinetz, Joseph M
2016-02-24
Plasmodium invasion of the mosquito midgut is a population bottleneck in the parasite lifecycle. Interference with molecular mechanisms by which the ookinete invades the mosquito midgut is one potential approach to developing malaria transmission-blocking strategies. Plasmodium aspartic proteases are one such class of potential targets: plasmepsin IV (known to be present in the asexual stage food vacuole) was previously shown to be involved in Plasmodium gallinaceum infection of the mosquito midgut, and plasmepsins VII and plasmepsin X (not known to be present in the asexual stage food vacuole) are upregulated in Plasmodium falciparum mosquito stages. These (and other) parasite-derived enzymes that play essential roles during ookinete midgut invasion are prime candidates for transmission-blocking vaccines. Reverse transcriptase PCR (RT-PCR) was used to determine timing of P. falciparum plasmepsin VII (PfPM VII) and plasmepsin X (PfPM X) mRNA transcripts in parasite mosquito midgut stages. Protein expression was confirmed by western immunoblot and immunofluorescence assays (IFA) using anti-peptide monoclonal antibodies (mAbs) against immunogenic regions of PfPM VII and PfPM X. These antibodies were also used in standard membrane feeding assays (SMFA) to determine whether inhibition of these proteases would affect parasite transmission to mosquitoes. The Mann-Whitney U test was used to analyse mosquito transmission assay results. RT-PCR, western immunoblot and immunofluorescence assay confirmed expression of PfPM VII and PfPM X in mosquito stages. Whereas PfPM VII was expressed in zygotes and ookinetes, PfPM X was expressed in gametes, zygotes, and ookinetes. Antibodies against PfPM VII and PfPM X decreased P. falciparum invasion of the mosquito midgut when used at high concentrations, indicating that these proteases play a role in Plasmodium mosquito midgut invasion. Failure to generate genetic knockouts of these genes limited determination of the precise role of these proteases in parasite transmission but suggests that they are essential during the intraerythrocytic life cycle. PfPM VII and PfPM X are present in the mosquito-infective stages of P. falciparum. Standard membrane feeding assays demonstrate that antibodies against these proteins reduce the infectivity of P. falciparum for mosquitoes, suggesting their viability as transmission-blocking vaccine candidates. Further study of the role of these plasmepsins in P. falciparum biology is warranted.
Liu, Xin; Ropp, Susan L.; Jackson, Richard J.; Frey, Teryl K.
1998-01-01
The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit reticulocyte lysate system, although all of the other viral PCPs do so. However, in the presence of divalent cations such as Zn2+, Cd2+, and Co2+, the RUB NS protease functioned efficiently, indicating that these cations are required either as direct cofactors in catalytic activity or for correct acquisition of three-dimensional conformation of the protease. Since other viral and cell PCPs do not require cations for activity and the RUB NS protease contains a putative zinc binding motif, the latter possibility is more likely. Previous in vivo expression studies of the RUB NS protease failed to demonstrate trans cleavage activity (J.-P. Chen et al., J. Virol. 70:4707–4713, 1996). To study whether trans cleavage could be detected in vitro, a protease catalytic site mutant and a mutant in which the C-terminal 31 amino acids of P90 were deleted were independently introduced into plasmid constructs that express the complete NSP-ORF. Cotranslation of these mutants in vitro yielded both the native and the mutated forms of P90, indicating that the protease present in the mutated construct cleaved the catalytic-site mutant precursor. Thus, RUB NS protease can function in trans. PMID:9557742
Efficient Extracellular Expression of Metalloprotease for Z-Aspartame Synthesis.
Zhu, Fucheng; Liu, Feng; Wu, Bin; He, Bingfang
2016-12-28
Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffer, M.A.; Fischer, R.L.
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activatemore » C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.« less
Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant.
Hagag, Shelly; Kubitschek-Barreira, Paula; Neves, Gabriela W P; Amar, David; Nierman, William; Shalit, Itamar; Shamir, Ron; Lopes-Bezerra, Leila; Osherov, Nir
2012-01-01
Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.
Nucleotide sequences encoding a thermostable alkaline protease
Wilson, David B.; Lao, Guifang
1998-01-01
Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.
Chen, C-M; Liu, J-J; Chou, C-W; Lai, C-H; Wu, L-T
2015-10-01
To investigate the biochemical and functional properties of an extracellular protease, RpA, in Ralstonia pickettii WP1 isolated from water supply systems. An extracellular protease was identified and characterized from R. pickettii WP1. A mutant strain WP1M2 was created from strain WP1 by mini-Tn5 transposition. The culture filtrates from WP1M2 had a lower cytotoxic effect than the parental WP1 on several mammalian cell lines. Cloning and sequence analysis revealed the Tn5 transposon inserted at a protease gene (rpA) which is 81% homologous to prtA and aprX genes of Pseudomonas fluorescens. The rpA gene encodes a 482-residue protein showing sequence similarity to metalloproteases of the serralysin family. The RpA protein was expressed in Escherichia coli using a pET expression vector and purified as a 55 kDa molecular weight protein. Furthermore, the protease activity of RpA was inhibited by protease inhibitor and heat treatment. The in vitro cytotoxic activity of R. pickettii culture filtrates was attributed to RpA protease. An extracellular protease, RpA, was identified from R. pickettii WP1 isolated from water supply system. The RpA metalloproteases is required for the pathogenicity of R. pickettii to mammalian cell lines. © 2015 The Society for Applied Microbiology.
Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.
Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R
2015-10-01
Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.
Sahana, Nandita; Kaur, Harpreet; Jain, R K; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly
2014-05-01
The multifunctional potyviral helper-component protease (HcPro) contains variable regions with some functionally conserved domains, such as the FRNK box. Natural variants occur at the FRNK box, a conserved central domain, known for its role in RNA binding and RNAi suppression activities, although no dominant natural variants for the N(182) residue are known to occur. Here, a mutant at HcPro(N182L) was developed to investigate its role in natural populations. Using in vitro studies, we found an increase in the small RNA (sRNA) binding potential of HcPro(N182L) without affecting its protein-protein interaction properties, suggesting that the presence of N(182) is critical to maintain threshold levels of sRNAs, but does not interfere in the self-interaction of HcPro. Furthermore, we found that expression of HcPro(N182L) in Nicotiana benthamiana affected plant growth. Transient expression of HcPro(N182L) induced reporter gene expression in 16c GFP transgenic plants more than HcPro did, suggesting that replacement of asparagine in the FRNK box favours RNA silencing suppression. HcPro was found to be distributed in the nucleus and cytoplasm, whereas HcPro(N182L) was observed only in cytoplasmic inclusion bodies in N. benthamiana leaves, when fused to a GFP tag and expressed by agro-infiltration, suggesting mutation favours oligomerization of HcPro. These findings suggest that amino acid N(182) of the conserved FRNK box may regulate RNA silencing mechanisms, and is required for maintenance of the subcellular localization of the protein for its multi-functionality. Hence, the N(182) residue of the FRNK box seems to be indispensable for potyvirus infection during evolution.
Cereal cystatins delay sprouting and nutrient loss in tubers of potato, Solanum tuberosum.
Munger, Aurélie; Simon, Marie-Aube; Khalf, Moustafa; Goulet, Marie-Claire; Michaud, Dominique
2015-12-21
Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.
Jutras, Philippe V.; Marusic, Carla; Lonoce, Chiara; Deflers, Carole; Goulet, Marie-Claire; Benvenuto, Eugenio; Donini, Marcello
2016-01-01
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories. PMID:27893815
Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.
Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun
2012-12-21
In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.
Dysregulation of Protease and Protease Inhibitors in a Mouse Model of Human Pelvic Organ Prolapse
Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio; Suzuki, Ayako; Shah-Simpson, Sheena; Wieslander, Cecilia Karin; Yanagisawa, Masashi; Word, Ruth Ann; Yanagisawa, Hiromi
2013-01-01
Mice deficient for the fibulin-5 gene (Fbln5−/−) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5−/− mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5−/− mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5−/− and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5−/− epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice. PMID:23437119
Pružinská, Adriana; Shindo, Takayuki; Niessen, Sherry; Kaschani, Farnusch; Tóth, Réka; Millar, A Harvey; van der Hoorn, Renier A L
2017-01-06
Papain-like Cys Proteases (PLCPs) and Vacuolar Processing Enzymes (VPEs) are amongst the most highly expressed proteases during leaf senescence in Arabidopsis. Using activity-based protein profiling (ABPP), a method that enables detection of active enzymes within a complex sample using chemical probes, the activities of PLCPs and VPEs were investigated in individually darkened leaves of Arabidopsis, and their role in senescence was tested in null mutants. ABPP and mass spectrometry revealed an increased activity of several PLCPs, particularly RD21A and AALP. By contrast, despite increased VPE transcript levels, active VPE decreased in individually darkened leaves. Eight protease knock-out lines and two protease over expressing lines were subjected to senescence phenotype analysis to determine the importance of individual protease activities to senescence. Unexpectedly, despite the absence of dominating PLCP activities in these plants, the rubisco and chlorophyll decline in individually darkened leaves and the onset of whole plant senescence were unaltered. However, a significant delay in progression of whole plant senescence was observed in aalp-1 and rd21A-1/aalp-1 mutants, visible in the reduced number of senescent leaves. Major Cys protease activities are not essential for dark-induced and developmental senescence and only a knock out line lacking AALP shows a slight but significant delay in plant senescence.
Mitsui, Shinichi; Okui, Akira; Kominami, Katsuya; Konishi, Eiichi; Uemura, Hidetoshi; Yamaguchi, Nozomi
2005-10-01
We have isolated a cDNA that encodes a novel serine protease, prosemin, from human brain. The cDNA of human prosemin is 1306 bp, encoding 317 amino acids. It showed significant homology with the sequence of a chromosome 16 cosmid clone (accession no. NT_037887.4). The prosemin gene contains six exons and five introns. The amino acid sequence of prosemin shows significant homology to prostasin, gamma-tryptase, and testisin (43%, 41%, and 38% identity, respectively), the genes of which are also located on chromosome 16. Northern hybridization showed that prosemin is expressed predominantly in the pancreas and weakly in the prostate and cerebellum. However, western blot and RT-PCR analyses showed that prosemin is expressed and secreted from various kinds of cancer cells, such as glioma, pancreas, prostate, and ovarian cell lines. Prosemin is secreted in the cystic fluid of clinical ovarian cancers. Furthermore, immunohistochemistry showed prosemin protein localized in the apical parts of ovarian carcinomas. Recombinant prosemin was expressed in COS cells and was purified by immunoaffinity chromatography. Recombinant prosemin preferentially cleaved benzyloxycarbonyl (Z)-His-Glu-Lys-methylcoumaryl amidide (MCA) and t-butyloxycarbonyl (Boc)-Gln-Ala-Arg-MCA. Our results suggest that prosemin is a novel serine protease of the chromosome 16 cluster that is highly expressed in the pancreas. The usefulness of this serine protease as a candidate tumor marker should be further examined.
Lon Protease of Azorhizobium caulinodans ORS571 Is Required for Suppression of reb Gene Expression
Nakajima, Azusa; Tsukada, Shuhei; Siarot, Lowela; Ogawa, Tetsuhiro; Oyaizu, Hiroshi
2012-01-01
Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells. PMID:22752172
Liu, H-W; Wang, L-L; Meng, Z; Tang, X; Li, Y-S; Xia, Q-Y; Zhao, P
2017-10-01
Clip domain serine proteases (CLIPs), characterized by one or more conserved clip domains, are essential components of extracellular signalling cascades in various biological processes, especially in innate immunity and the embryonic development of insects. Additionally, CLIPs may have additional non-immune functions in insect development. In the present study, the clip domain serine protease gene Bombyx mori serine protease 95 (BmSP95), which encodes a 527-residue protein, was cloned from the integument of B. mori. Bioinformatics analysis indicated that BmSP95 is a typical CLIP of the subfamily D and possesses a clip domain at the N terminus, a trypsin-like serine protease (tryp_spc) domain at the C terminus and a conserved proline-rich motif between these two domains. At the transcriptional level, BmSP95 is expressed in the integument during moulting and metamorphosis, and the expression pattern is consistent with the fluctuating 20-hydroxyecdysone (20E) titre in B. mori. At the translational level, BmSP95 protein is synthesized in the epidermal cells, secreted as a zymogen and activated in the moulting fluid. Immunofluorescence revealed that BmSP95 is distributed into the old endocuticle in the moulting stage. The expression of BmSP95 was upregulated by 20E. Moreover, expression of BmSP95 was downregulated by pathogen infection. RNA interference-mediated silencing of BmSP95 led to delayed moulting from pupa to moth. These results suggest that BmSP95 is involved in integument remodelling during moulting and metamorphosis. © 2017 The Royal Entomological Society.
Aman, Murasaki; Ohishi, Yoshihiro; Imamura, Hiroko; Shinozaki, Tomoko; Yasutake, Nobuko; Kato, Kiyoko; Oda, Yoshinao
2017-06-01
Recent studies demonstrated that protease-activated receptor-2 (PAR-2) correlates with tumor progression in various tissues. On the other hand, oxidative stress arising from endometriosis has been considered a cause of carcinogenesis in ovarian clear cell carcinoma (OCCC). We previously demonstrated that oxidative stress up-regulates PAR-2 expression, and we conducted the present study to investigate the PAR-2 expression and its relation to clinicopathological factors and oxidative stress in OCCC. We performed an immunohistochemical evaluation in 95 cases of OCCC. For the evaluation of oxidative stress markers, 31 cases of ovarian endometrioid carcinoma (OEC) were also examined. No significant differences in the expression of cyclooxygenase-2 and inducible nitric oxide synthase were observed between OCCC and OEC. Sixty-two percent of the OCCC cases showed high 8-hydroxydeoxyguanosine expression, whereas all of the OEC cases showed almost negative immunoreactivities. The presence of endometriosis did not affect the expression of these oxidative stress markers or prognosis. High PAR-2 expression was observed in 20% (14/71) of the early International Federation of Gynecology and Obstetrics (FIGO) stage cases and 58% (14/24) of the advanced FIGO stage cases. High PAR-2 expression was significantly correlated with advanced FIGO stage and shorter overall survival. We found no correlations between PAR-2 expression and oxidative stress in OCCC. Our results suggest that PAR-2 plays an important role in the progression of OCCC. The expression of 8-hydroxydeoxyguanosine is a characteristic finding of OCCC, indicating that the injury of DNA by oxidative stress may be involved in the carcinogenesis of OCCC. Copyright © 2017 Elsevier Inc. All rights reserved.
Yan, J; Cheng, Q; Li, C B; Aksoy, S
2001-02-01
Serine proteases are major insect gut enzymes involved in digestion of dietary proteins, and in addition they have been implicated in the process of pathogen establishment in several vector insects. The medically important vector, tsetse fly (Diptera:Glossinidiae), is involved in the transmission of African trypanosomes, which cause devastating diseases in animals and humans. Both the male and female tsetse can transmit trypanosomes and both are strict bloodfeeders throughout all stages of their development. Here, we describe the characterization of two putative serine protease-encoding genes, Glossina serine protease-1 (Gsp1) and Glossina serine protease-2 (Gsp2) from gut tissue. Both putative cDNA products represent prepro peptides with hydrophobic signal peptide sequences associated with their 5'-end terminus. The Gsp1 cDNA encodes a putative mature protein of 245 amino acids with a molecular mass of 26 428 Da, while the predicted size of the 228 amino acid mature peptide encoded by Gsp2 cDNA is 24 573 Da. Both deduced peptides contain the Asp/His/Ser catalytic triad and the conserved residues surrounding it which are characteristic of serine proteases. In addition, both proteins have the six-conserved cysteine residues to form the three-cysteine bonds typically present in invertebrate serine proteases. Based on the presence of substrate specific residues, the Gsp1 gene encodes a chymotrypsin-like protease while Gsp2 gene encodes for a protein with trypsin-like activity. Both proteins are encoded by few loci in tsetse genome, being present in one or two copies only. The mRNA expression levels for the genes do not vary extensively throughout the digestive cycle, and high levels of mRNAs can be readily detected in the gut tissue of newly emerged flies. The levels of trypsin and chymotrypsin activities in the gut lumen increase following blood feeding and change significantly in the gut cells throughout the digestion cycle. Hence, the regulation of expression for trypsin and chymotrypsin occurs at the post-transcriptional level in tsetse. Both the coding sequences and patterns of expression of Gsp1 and Gsp2 genes are similar to the serine proteases that have been reported from the bloodfeeding insect Stomoxys calcitrans.
Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas
2014-01-01
Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629
Nucleotide sequences encoding a thermostable alkaline protease
Wilson, D.B.; Lao, G.
1998-01-06
Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.
Jalomo-Khayrova, Ekaterina; Mares, Rosa E; Muñoz, Patricia L A; Meléndez-López, Samuel G; Rivero, Ignacio A; Ramos, Marco A
2018-04-03
Recombinant production of amebic cysteine proteases using Escherichia coli cells as the bacterial system has become a challenging effort, with protein insolubility being the most common issue. Since many of these enzymes need a native conformation stabilized by disulfide bonds, an elaborate process of oxidative folding is usually demanded to get a functional protein. The cytoplasm of E. coli SHuffle Express cells owns an enhanced ability to properly fold proteins with disulfide bonds. Because of this cellular feature, it was possible to assume that this strain represents a reliable expression system and worthwhile been considered as an efficient bacterial host for the recombinant production of amebic cysteine proteases. Using E. coli SHuffle Express cells as the bacterial system, we efficiently produce soluble recombinant EhCP1protein. Enzymatic and inhibition analyses revealed that it exhibits proper catalytic abilities, proceeds effectively over the substrate (following an apparent Michaelis-Menten kinetics), and displays a typical inhibition profile. We report the first feasibility study of the recombinant production of amebic cysteine proteases using E. coli SHuffle Express as the bacterial host. We present a simple protocol for the recombinant expression and purification of fully soluble and active EhCP1 enzyme. We confirm the suitability of recombinant EhCP1 as a therapeutic target. We propose an approachable bacterial system for the recombinant production of amebic proteins, particularly for those with a need for proper oxidative folding.
Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard
2018-01-01
Background & aims The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Method Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Results Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin–the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Conclusion Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to characterise IBS. PMID:29529042
Wex, Thomas; Kuester, Doerthe; Schönberg, Cornelius; Schindele, Daniel; Treiber, Gerhard; Malfertheiner, Peter
2011-05-26
Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P < 0.05). Overall, no correlations between mucosal Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.
2011-01-01
Background Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. Methods The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. Results H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P < 0.05). Overall, no correlations between mucosal Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Conclusions Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis. PMID:21612671
Serine proteases, inhibitors and receptors in renal fibrosis
Eddy, Allison A.
2011-01-01
Summary Chronic kidney disease (CKD) is estimated to affect one in eight adults. Their kidney function progressively deteriorates as inflammatory and fibrotic processes damage nephrons. New therapies to prevent renal functional decline must build on basic research studies that identify critical cellular and molecular mediators. Plasminogen activator inhibitor-1 (PAI-1), a potent fibrosis-promoting glycoprotein, is one promising candidate. Absent from normal kidneys, PAI-1 is frequently expressed in injured kidneys. Studies in genetically engineered mice have demonstrated its potency as a pro-fibrotic molecule. Somewhat surprising, its ability to inhibit serine protease activity does not appear to be its primary pro-fibrotic effect in CKD. Both tissue-type plasminogen activator and plasminogen deficiency significantly reduced renal fibrosis severity after ureteral obstruction, while genetic urokinase (uPA) deficiency had no effect. PAI-1 expression is associated with enhanced recruitment of key cellular effectors of renal fibrosis – interstitial macrophages and myofibroblasts. The ability of PAI-1 to promote cell migration involves interactions with the low-density lipoprotein receptor-associate protein-1 and also complex interactions with uPA bound to its receptor (uPAR) and several leukocyte and matrix integrins that associate with uPAR as co-receptors. uPAR is expressed by several cell types in damaged kidneys, and studies in uPAR-deficient mice have shown that its serves a protective role. uPAR mediates additional anti-fibrotic effects - it interacts with specific co-receptors to degrade PAI-1 and extracellular collagens, and soluble uPAR has leukocyte chemoattractant properties. Molecular pathways activated by serine proteases and their inhibitor, PAI-1, are promising targets for future anti-fibrotic therapeutic agents. PMID:19350108
Chen, Deqiang; Wang, Dongwei; Xu, Chunling; Chen, Chun; Li, Junyi; Wu, Wenjia; Huang, Xin; Xie, Hui
2018-04-01
Controlling Radopholus similis, an important phytopathogenic nematode, is a challenge worldwide. Herein, we constructed a metagenomic fosmid library from the rhizosphere soil of banana plants, and six clones with protease activity were obtained by functionally screening the library. Furthermore, subclones were constructed using the six clones, and three protease genes with nematicidal activity were identified: pase1, pase4, and pase6. The pase4 gene was successfully cloned and expressed, demonstrating that the protease PASE4 could effectively degrade R. similis tissues and result in nematode death. Additionally, we isolated a predominant R. similis-associated bacterium, Pseudomonas fluorescens (pf36), from 10 R. similis populations with different hosts. The pase4 gene was successfully introduced into the pf36 strain by vector transformation and conjugative transposition, and two genetically modified strains were obtained: p4MCS-pf36 and p4Tn5-pf36. p4MCS-pf36 had significantly higher protease expression and nematicidal activity (p < 0.05) than p4Tn5-pf36 in a microtiter plate assay, whereas p4Tn5-pf36 was superior to p4MCS-pf36 in terms of genetic stability and controlling R. similis in growth pot tests. This study confirmed that R. similis is inhibited by the associated bacterium pf36-mediated expression of nematicidal proteases. Herein, a novel approach is provided for the study and development of efficient, environmentally friendly, and sustainable biocontrol techniques against phytonematodes.
Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley
2015-01-01
ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis. PMID:25694594
Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.
2015-01-01
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908
Indispensable Role of Proteases in Plant Innate Immunity.
Balakireva, Anastasia V; Zamyatnin, Andrey A
2018-02-23
Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.
Lee, Jae Hoon; Ancona, Veronica; Zhao, Youfu
2018-04-01
Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets. © 2017 BSPP AND JOHN WILEY & SONS LTD.
USDA-ARS?s Scientific Manuscript database
This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...
Abidi, Ferid; Limam, Ferid; Marzouki, M Nejib
2007-01-01
Alkaline thiol protease named Prot 1 was isolated from a culture filtrate of Botrytis cinerea. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion-exchange chromatography. Thus, the enzyme was purified to homogeneity with specific activity of 30-fold higher than that of the crude broth. The purified alkaline protease has an apparent molecular mass of 43 kDa under denaturing conditions as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular mass (45 kDa), determined by gel filtration, indicated that the alkaline protease has a monomeric form. The purified protease was biochemically characterized. The enzyme is active at alkaline pH and has a suitable and high thermostability. The optimal pH and temperature for activity were 9.0-10.0 and 60 degrees C, respectively. This protease was stable between pH 5.0 and 12.0. The enzyme retained 85% of its activity by treatment at 50 degrees C over 120 min; it maintained 50% of activity after 60 min of heating at 60 degrees C. Furthermore, the protease retained almost complete activity after 4 wk storage at 25 degrees C. The activity was significantly affected by thiol protease inhibitors, suggesting that the enzyme belongs to the alkaline thiol protease family. With the aim on industrial applications, we focused on studying the stability of the protease in several conditions. Prot 1 activity was not affected by ionic strength and different detergent additives, and, thus, the protease shows remarkable properties as a biodetergent catalyst.
Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G
2013-06-01
The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.
An atypical proprotein convertase in Giardia lamblia differentiation.
Davids, B J; Gilbert, M A; Liu, Q; Reiner, D S; Smith, A J; Lauwaet, T; Lee, C; McArthur, A G; Gillin, F D
2011-02-01
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation. Copyright © 2010 Elsevier B.V. All rights reserved.
An Atypical Proprotein Convertase in Giardia lamblia Differentiation
Davids, B. J.; Gilbert, M. A.; Liu, Q.; Reiner, D. S.; Smith, A. J.; Lauwaet, T.; Lee, C.; McArthur, A. G.; Gillin, F. D.
2010-01-01
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologues distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-Aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1 mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation. PMID:21075147
The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds.
Szewińska, Joanna; Simińska, Joanna; Bielawski, Wiesław
2016-12-01
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs. Copyright © 2016 Elsevier GmbH. All rights reserved.
Amyloid precursor protein controls cholesterol turnover needed for neuronal activity
Pierrot, Nathalie; Tyteca, Donatienne; D'auria, Ludovic; Dewachter, Ilse; Gailly, Philippe; Hendrickx, Aurélie; Tasiaux, Bernadette; Haylani, Laetitia El; Muls, Nathalie; N'Kuli, Francisca; Laquerrière, Annie; Demoulin, Jean-Baptiste; Campion, Dominique; Brion, Jean-Pierre; Courtoy, Pierre J; Kienlen-Campard, Pascal; Octave, Jean-Noël
2013-01-01
Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity. PMID:23554170
Transcriptional Activation by Heat and Cold of a Thiol Protease Gene in Tomato
Schaffer, Mark A.; Fischer, Robert L.
1990-01-01
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases (MA Schaffer, RL Fischer [1988] Plant Physiol 87: 431-436). We now demonstrate that C14 mRNA accumulation is a response common to both high (40°C) and low (4°C) temperature stresses. Exposure of tomato fruit to 40°C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4°C, but slower than the induction of many heat shock messages by 40°C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667644
Boulangé, Alain F; Khamadi, Samoel A; Pillay, Davita; Coetzer, Theresa H T; Authié, Edith
2011-01-01
African animal trypanosomosis (nagana) is arguably the most important parasitic disease affecting livestock in sub-Saharan Africa. Since none of the existing control measures are entirely satisfactory, vaccine development is being actively pursued. However, due to antigenic variation, the quest for a conventional vaccine has proven elusive. As a result, we have sought an alternative 'anti-disease vaccine approach', based on congopain, a cysteine protease of Trypanosoma congolense, which was shown to have pathogenic effects in vivo. Congopain was initially expressed as a recombinant protein in bacterial and baculovirus expression systems, but both the folding and yield obtained proved inadequate. Hence alternative expression systems were investigated, amongst which Pichia pastoris proved to be the most suitable. We report here the expression of full length, and C-terminal domain-truncated congopain in the methylotrophic yeast P. pastoris. Differences in yield were observed between full length and truncated proteins, the full length producing 2-4 mg of protein per litre of culture, while the truncated form produced 20-30 mg/l. The protease was produced as a proenzyme, but underwent spontaneous activation when acidified (pH <5). To investigate whether this activation was due to autolysis, we produced an inactive mutant (active site Cys→Ala) by site-directed mutagenesis. The mutant form was produced at a much higher rate, up to 100mg/l culture, as a proenzyme. It did not undergo spontaneous cleavage of the propeptide when subjected to acidic pH suggesting an autocatalytic process of activation for congopain. These recombinant proteins displayed a very unusual feature for cathepsin L-like proteinases, i.e. complete dimerisation at pH >6, and by reversibly monomerising at acidic pH <5. This attribute is of utmost importance in the context of an anti-disease vaccine, given that the epitopes recognised by the sera of trypanosome-infected trypanotolerant cattle appear dimer-specific. Copyright © 2010 Elsevier Inc. All rights reserved.
Cusick, John K; Hager, Elizabeth; Gill, Ronald E
2015-01-01
The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.
2016-01-01
Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921
Crosby, J L; Bleackley, R C; Nadeau, J H
1990-02-01
A complex of genes encoding serine proteases that are preferentially expressed in cytotoxic T-cells was shown to be closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14. A striking difference in recombination frequencies among linkage crosses was reported. Two genes, Np-1 and Tcra, which fail to recombine in crosses involving conventional strains of mice, were shown to recombine readily in interspecific crosses involving Mus spretus. This difference in recombination frequency suggests chromosomal rearrangements that suppress recombination in conventional crosses, recombination hot spots in interspecific crosses, or selection against recombinant haplotypes during development of recombinant inbred strains. Finally, a mutation called disorganization, which is located near the serine protease complex, is of considerable interest because it causes an extraordinarily wide variety of congenital defects. Because of the involvement of serine protease loci in several homeotic mutations in Drosophila, disorganization must be considered a candidate for a mutation in a serine protease-encoding gene.
Ward, Elaine; Kerry, Brian R; Manzanilla-López, Rosa H; Mutua, Gerald; Devonshire, Jean; Kimenju, John; Hirsch, Penny R
2012-01-01
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances.
Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M
2015-02-06
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Physical characterization of the cloned protease III gene from Escherichia coli K-12.
Dykstra, C C; Kushner, S R
1985-09-01
Analysis of the cloned protease III gene (ptr) from Escherichia coli K-12 has demonstrated that in addition to the previously characterized 110,000-Mr protease III protein, a second 50,000-Mr polypeptide (p50) is derived from the amino-terminal end of the coding sequence. The p50 polypeptide is found predominantly in the periplasmic space along with protease III, but does not proteolytically degrade insulin, a substrate for protease III. p50 does not appear to originate from autolysis of the larger protein. Protease III is not essential for normal cell growth since deletion of the structural gene causes no observed alterations in the phenotypic properties of the bacteria. A 30-fold overproduction of protease III does not affect cell viability. A simple new purification method for protease III is described.
Mulligan, Evan A; Ferry, Natalie; Jouanin, Lise; Walters, Keith Fa; Port, Gordon R; Gatehouse, Angharad Mr
2006-10-01
The potential impact of a chemical pesticide control method has been compared with that of transgenic plants expressing a protease inhibitor conferring insect resistance by utilising a tritrophic system comprising the crop plant Brassica napus (L.) (Oilseed rape), the pest mollusc Deroceras reticulatum (Müller) and the predatory carabid beetle Pterostichus melanarius (Illiger). Cypermethrin, as the most widely used pesticide in UK oilseed rape (OSR) cultivation, was selected as the conventional treatment. OSR expressing a cysteine protease inhibitor, oryzacystatin-1 (OC-1), was the transgenic comparator. In feeding trials, D. reticulatum showed no significant long-term effects on measured life history parameters (survival, weight gain, food consumption) as a result of exposure to either the cypermethrin or OC-1 treatment. However, D. reticulatum was able to respond to the presence of the dietary inhibitor by producing two novel proteases following exposure to OC-1-expressing OSR. Similarly, P. melanarius showed no detectable alterations in mortality, weight gain or food consumption when feeding on D. reticulatum previously fed either pesticide-contaminated or GM plant material. Furthermore, as with the slug, a novel form of protease, approximately M(r) 27 kDa, was induced in the carabid in response to feeding on slugs fed OC-1-expressing OSR.
HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination1
Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia
2016-01-01
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. PMID:26912343
A novel serine protease predominately expressed in macrophages.
Chen, Cailin; Darrow, Andrew L; Qi, Jian-Shen; D'Andrea, Michael R; Andrade-Gordon, Patricia
2003-01-01
We have identified a novel serine protease designated EOS by sequence identity searches. The deduced protein contains 284 amino acids with an active form containing 248 amino acids starting from an Ile-Val-Gly-Gly motif. The active form comprises a catalytic triad of conserved amino acids: His77, Asp126 and Ser231. It shares 44% identity with beta-tryptase and belongs to the S1 trypsin-like serine-protease family. Interestingly, this gene also maps to human chromosome 16p13.3. The purified protease showed amidolytic activity, cleaving its substrates before arginine residues. Tissue distribution by immunohistochemistry analysis demonstrated that EOS is highly expressed in spleen and moderately expressed in intestine, colon, lung and brain. We confirmed this expression pattern at the mRNA level by performing in situ hybridization. The results from both immunohistochemistry and in situ hybridization indicate that EOS is associated with macrophages. We corroborated this observation by double immunofluorescence using the anti-EOS antibody and an anti-CD68 antibody, a macrophage specific marker. Furthermore, we have detected a dramatic increase in immune staining of EOS in cultured U937 cells treated with PMA, which represent activated macrophages. This up-regulation is also reflected by elevated EOS mRNA in the PMA-treated U937 cells detected by Northern blotting. Since macrophages have important roles in various pathological conditions, such as wound healing, atherosclerosis and numerous inflammatory diseases, the localization of this novel serine protease to active macrophages may help to further the elucidation of the roles of this gene product in modulating these disorders. PMID:12795636
Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N
2015-05-01
Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.
Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N
2015-01-01
Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061
Pettit, Steven C.; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H.
2003-01-01
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation. PMID:12477841
Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H
2003-01-01
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.
Sokolova, Elena; Aleshin, Stepan; Reiser, Georg
2012-02-01
Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kim, Ji Young; Kim, Yoon Jee; Lim, Beom Jin; Sohn, Hyo Jung; Shin, Dongyun
2014-01-01
Purpose Recent findings of increased cathelicidin protein and its proteolytic fragments in rosacea suggest a pathogenic role for cathelicidin in this disease. The relationship between cathelicidin and protease-activated receptor 2 (PAR-2) is therefore of interest, as PAR-2, expressed principally in keratinocytes, regulates pro-inflammatory cytokine expression in the skin. The purpose of this study was to determine the relationship between expression of PAR-2 and cathelicidin in rosacea and to test the effect of direct PAR-2 activation on cathelicidin expression in keratinocytes. Materials and Methods Samples from 40 patients with clinicopathologic diagnosis of rosacea and facial skin tissue samples from 20 patients with no specific findings or milium without inflammation were retrieved. Intensities of immunohistochemical staining for PAR-2 and cathelicidin were compared between normal and rosacea-affected skin tissues. Additionally, correlations between PAR-2 and cathelicidin staining intensities within rosacea patients were analyzed. In cultured keratinocytes, changes in PAR-2, cathelicidin, and vascular endothelial growth factor (VEGF) mRNA and protein were analyzed after treatment with PAR-2 activating peptide (AP). Results Cathelicidin expression was significantly higher in rosacea skin tissues than in normal tissues (p<0.001), while PAR-2 expression was not significantly higher in rosacea tissues than in normal skin tissues. A positive correlation between PAR-2 and cathelicidin within rosacea samples was observed (R=0.330, p=0.037). After treatment of PAR-2 AP, both mRNA and protein levels for PAR-2, cathelicidin, and VEGF significantly increased in cultured keratinocytes, compared with PAR-2 control peptide treatment. Conclusion PAR-2 may participate in the pathogenesis of rosacea through activation of cathelicidin LL-37, a mediator of innate immune responses in the skin. PMID:25323904
Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.
Liu, Juan; Sharma, Anupma; Niewiara, Marie Jamille; Singh, Ratnesh; Ming, Ray; Yu, Qingyi
2018-01-06
Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might have been promoted by the continuous reciprocal selective effects of herbivore attack and plant defense.
Lazarus and Group Psychotherapy: AIDS in the Era of Protease Inhibitors
ERIC Educational Resources Information Center
Gushue, George V.; Brazaitis, Sarah J.
2003-01-01
A new class of medications, protease inhibitors, has dramatically improved the health of many people with Human Immunodeficiency Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS). This development has had a major impact on the lives of those affected by HIV/AIDS. This article considers how a group is affected by the larger systems of…
Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard
2015-11-01
Zebra chip disease of potato decreases protease inhibitor levels resulting in enhanced serine-type protease activity, decreased protein content and altered protein profiles of fully mature tubers. Zebra-chip (ZC), caused by Candidatus Liberibacter solanacearum (CLso), is a relatively new disease of potato that negatively affects growth, yield, propagation potential, and fresh and process qualities of tubers. Diseased plants produce tubers with characteristic brown discoloration of vascular tissue accompanied by elevated levels of free amino acids and reducing sugars. Here we demonstrate that ZC disease induces selective protein catabolism in tubers through modulating protease inhibitor levels. Soluble protein content of tubers from CLso-infected plants was 33% lower than from non-infected plants and electrophoretic analyses revealed substantial reductions in major tuber proteins. Patatin (~40 kDa) and ser-, asp- (22 kDa) and cys-type (85 kDa) protease inhibitors were either absent or greatly reduced in ZC-afflicted tubers. In contrast to healthy (non-infected) tubers, the proteolytic activity in CLso infected tubers was high and the ability of extracts from infected tubers to inhibit trypsin (ser-type) and papain (cys-type) proteases greatly attenuated. Moreover, extracts from CLso-infected tubers rapidly catabolized proteins purified from healthy tubers (40 kDa patatin, 22 kDa protease inhibitors, 85 kDa potato multicystatin) when subjected to proteolysis individually. In contrast, crude extracts from non-infected tubers effectively inhibited the proteolytic activity from ZC-afflicted tubers. These results suggest that the altered protein profile of ZC afflicted tubers is largely due to loss of ser- and cys-type protease inhibitors. Further analysis revealed a novel PMSF-sensitive (ser) protease (ca. 80-120 kDa) in CLso infected tubers. PMSF abolished the proteolytic activities responsible for degrading patatin, the 22 kDa protease inhibitor(s) and potato multicystatin by CLso infected tubers. The disease-induced loss of patatin and protease inhibitors therefore appears to be modulated by ser-type protease(s). The selective catabolism of proteins in ZC-afflicted tubers undoubtedly affects downstream aspects of carbohydrate and amino acid metabolism, which is ultimately reflected by the accumulation of reducing sugars, free amino acids and reduced sprouting capacity.
Chymotrypsin C (Caldecrin) Is Associated with Enamel Development
Lacruz, R.S.; Smith, C.E.; Smith, S.M.; Hu, P.; Bringas, P.; Sahin-Tóth, M.; Moradian-Oldak, J.; Paine, M.L.
2011-01-01
Two main proteases cleave enamel extracellular matrix proteins during amelogenesis. Matrix metalloprotease-20 (Mmp20) is the predominant enzyme expressed during the secretory stage, while kallikrein-related peptidase-4 (Klk4) is predominantly expressed during maturation. Mutations to both Mmp20 and Klk4 result in abnormal enamel phenotypes. During a recent whole-genome microarray analysis of rat incisor enamel organ cells derived from the secretory and maturation stages of amelogenesis, the serine protease chymotrypsin C (caldecrin, Ctrc) was identified as significantly up-regulated (> 11-fold) during enamel maturation. Prior reports indicate that Ctrc expression is pancreas-specific, albeit low levels were also noted in brain. We here report on the expression of Ctrc in the enamel organ. Quantitative PCR (qPCR) and Western blot analysis were used to confirm the expression of Ctrc in the developing enamel organ. The expression profile of Ctrc is similar to that of Klk4, increasing markedly during the maturation stage relative to the secretory stage, although levels of Ctrc mRNA are lower than for Klk4. The discovery of a new serine protease possibly involved in enamel development has important implications for our understanding of the factors that regulate enamel biomineralization. PMID:21828354
PAR1 activation affects the neurotrophic properties of Schwann cells.
Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo
2017-03-01
Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.
Expression of cathepsin S antisense transcripts by adenovirus in retinal pigment epithelial cells.
Rakoczy, P E; Lai, M C; Baines, M G; Spilsbury, K; Constable, I J
1998-10-01
To show the production of sense or antisense transcripts by recombinant adenoviruses, to investigate whether the transcripts produced were suitable for downregulating the expression of the targeted gene, cathepsin S (CatS), and to examine the effect of antisense transcript production on the biologic function of retinal pigment epithelial (RPE) cells, including the regulation of endogenous aspartic protease expression. Ad.MLP.CatSAS, Ad.RSV.CatSAS, and Ad.MLP.CatSS recombinant viruses were produced by homologous recombination. The recombinant viruses were tested by restriction enzyme digestion to confirm the orientation of the inserts. The expression of antisense transcripts was tested by northern blot analysis. Western blot analysis was used to study the regulation of the endogenous CatS protein in ARPE19 cells. The biologic effect of CatS downregulation in ARPE19 cells was tested by proliferation and phagocytosis assays, de novo cathepsin D (CatD) synthesis, and measurement of aspartic protease activity. After characterization of the recombinant adenovirus constructs, the production of antisense and sense CatS transcripts was shown in ARPE19 cells. The transcripts appeared at approximately 1.9 kb 48 hours after transduction, and the expression of the antisense transcripts was similar in constructs carrying either the MLP or the RSV promoter. Western blot analysis showed that ARPE19 cells transduced with Ad.MLP.CatSAS and Ad.RSV.CatSAS had no detectable CatS. In contrast, there was a strong signal appearing at 24 kDa in ARPE19 cells transduced with Ad.MLP.CatSS. ARPE19 cells were transduced to a high level. The transduction of ARPE19 cells with the recombinant adenoviruses did not affect the morphologic appearance of the cells, their proliferation, or their phagocytosing ability. However, ARPE19 cells transduced by Ad.MLP.CatSAS recombinant adenovirus showed a significant downregulation of de novo CatD synthesis and a twofold decrease in aspartic protease activity. Recombinant adenoviruses were shown to be suitable for producing antisense CatS transcripts to modulate endogenous CatS expression in RPE cells. It is proposed that CatS may play an important role, directly or indirectly, in the lysosomal digestion of outer segments through the regulation of other lysosomal enzyme activity, such as the expression of CatD.
Dongre, Arundhati; Clements, Debbie; Fisher, Andrew J; Johnson, Simon R
2017-08-01
Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells and fibroblasts form lung nodules and it is hypothesized that LAM nodule-derived proteases cause cyst formation and tissue damage. On protease gene expression profiling in whole lung tissue, cathepsin K gene expression was 40-fold overexpressed in LAM compared with control lung tissue (P ≤ 0.0001). Immunohistochemistry confirmed cathepsin K protein was expressed in LAM but not control lungs. Cathepsin K gene expression and protein and protease activity were detected in LAM-associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immunoreactivity predominantly co-localized with LAM-associated fibroblasts. In vitro, fibroblast extracellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced at pH 7 and 6. 621-101 cells reduced extracellular pH with acidification dependent on 621-101 mechanistic target of rapamycin activity and net hydrogen ion exporters, particularly sodium bicarbonate co-transporters and carbonic anhydrases, which were also expressed in LAM lung tissue. In LAM cell-fibroblast co-cultures, acidification paralleled cathepsin K activity, and both were reduced by sodium bicarbonate co-transporter (P ≤ 0.0001) and carbonic anhydrase inhibitors (P = 0.0021). Our findings suggest that cathepsin K activity is dependent on LAM cell-fibroblast interactions, and inhibitors of extracellular acidification may be potential therapies for LAM. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Curzi, Matías J; Zavala, Jorge A; Spencer, Joseph L; Seufferheld, Manfredo J
2012-01-01
Western corn rootworm (Diabrotica virgifera) (WCR) depends on the continuous availability of corn. Broad adoption of annual crop rotation between corn (Zea mays) and nonhost soybean (Glycine max) exploited WCR biology to provide excellent WCR control, but this practice dramatically reduced landscape heterogeneity in East-central Illinois and imposed intense selection pressure. This selection resulted in behavioral changes and “rotation-resistant” (RR) WCR adults. Although soybeans are well defended against Coleopteran insects by cysteine protease inhibitors, RR-WCR feed on soybean foliage and remain long enough to deposit eggs that will hatch the following spring and larvae will feed on roots of planted corn. Other than documenting changes in insect mobility and egg laying behavior, 15 years of research have failed to identify any diagnostic differences between wild-type (WT)- and RR-WCR or a mechanism that allows for prolonged RR-WCR feeding and survival in soybean fields. We documented differences in behavior, physiology, digestive protease activity (threefold to fourfold increases), and protease gene expression in the gut of RR-WCR adults. Our data suggest that higher constitutive activity levels of cathepsin L are part of the mechanism that enables populations of WCR to circumvent soybean defenses, and thus, crop rotation. These new insights into the mechanism of WCR tolerance of soybean herbivory transcend the issue of RR-WCR diagnostics and management to link changes in insect gut proteolytic activity and behavior with landscape heterogeneity. The RR-WCR illustrates how agro-ecological factors can affect the evolution of insects in human-altered ecosystems. PMID:22957201
Zhang, HuaJian; Tang, BaoZhen; Lin, YaPing; Chen, ZhiMing; Zhang, XiaFang; Ji, TianLiang; Zhang, XiaoMei; Hou, YouMing
2017-12-01
A typical characteristic of the insect innate immune system is the activation of the serine protease cascade in the hemolymph. As being the terminal component of the extracellular serine protease cascade in the prophenoloxidase (proPO) activating system, proPO-activating factors (PPAFs) activated by the upstream cascade may generate active phenoloxidase, which then induces downstream melanization. In the present study, we reported three PPAFs from the nipa palm hispid beetle Octodonta nipae (Maulik) (designated as OnPPAF1, OnPPAF2, OnPPAF3). All three OnPPAFs contained a single clip domain at the amino-terminus followed by a trypsin-like serine protease domain at the carboxyl-terminus, except the Ser in the active sites of OnPPAF2 and OnPPAF3 was substituted with Gly. Transcript expression analysis revealed that all OnPPAFs were highly expressed in hemolymph, whereas OnPPAF2 showed an extremely low mRNA abundance compared with that of OnPPAF1 and OnPPAF3, and that the abundance of all three OnPPAFs was dramatically increased upon bacterial challenge. Knockdown of OnPPAF1 or OnPPAF3 resulted in a reduction of hemolymph phenoloxidase activity and an inhibition of hemolymph melanization, whereas the knockdown of OnPPAF2 did not affect the proPO cascade. Our work thus implies that the three OnPPAFs may have different functions and regulation during immune responses in O. nipae. © 2017 Wiley Periodicals, Inc.
A Look Inside HIV Resistance through Retroviral Protease Interaction Maps
Kontijevskis, Aleksejs; Prusis, Peteris; Petrovska, Ramona; Yahorava, Sviatlana; Mutulis, Felikss; Mutule, Ilze; Komorowski, Jan; Wikberg, Jarl E. S
2007-01-01
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate cleavage by retroviral proteases. PMID:17352531
Hirata, Hiroshi; Ohbuchi, Kengo; Nishi, Kentaro; Maeda, Akira; Kuniyasu, Akihiko; Yamada, Daisuke; Maeda, Takehiko; Tsuji, Akihiko; Sawada, Makoto
2016-01-01
To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross‐reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50‐ to 70‐kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys170. In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin‐like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full‐length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin‐like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double‐immunοstaining with 9F5 antibody and anti‐Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938–1961 PMID:27464357
Ewen, D; Clarke, S L; Smith, J R; Berger, C; Salmon, G; Trevethick, M; Shute, J K
2010-03-01
We recently reported that repair following mechanical wounding of epithelial cell layers in vitro is dependent on fibrin formation and the activity of locally expressed coagulation cascade proteins. Serine proteases of the coagulation cascade are an important group of protease-activated receptor (PAR) activators and PAR-1 to 4 are expressed by the normal bronchial epithelium. We tested the hypothesis that activation of PAR-1 and PAR-2 by coagulation cascade proteases stimulates epithelial repair via effects on fibrin formation. Using mechanically wounded 16HBE 14o(-) epithelial cell layers in culture, we investigated the effect of PAR-1 and PAR-2 agonist peptides, control partially scrambled peptides and PAR-neutralizing antibodies on the rate of repair and fibrin formation. Coagulation factors in culture supernatants were measured by immunoblot. RT-PCR was used to investigate PAR-1, PAR-2 and PGE2 receptor (EP-1 to EP-4) expression in this model and qRT-PCR to quantify responses to wounding. Additionally, we investigated the effect of exogenously added factor Xa (FXa) and neutrophil elastase and the influence of PGE2 and indomethacin on the repair response. PAR-1 and PAR-2 peptide agonists stimulated the rate of repair and enhanced the formation of a fibrin provisional matrix to support the repair process. Conversely, PAR-neutralizing antibodies inhibited repair. Under serum-free culture conditions, 16HBE 14o(-) cells expressed EP-2 and EP-3, but not EP-1 or EP-4, receptors. Wounding induced an increased expression of EP-3 but did not alter EP-2, PAR-1 or PAR-2 expression. In the absence of PAR agonists, there was no evidence for a role for PGE2 in fibrin formation or the repair process. Indomethacin attenuated fibrin formation in wounded cultures only in the presence of the PAR-2 peptide. FXa stimulated epithelial repair while neutrophil elastase reduced the levels of coagulation factors and inhibited repair. Locally expressed serine proteases of the coagulation cascade activate PAR-1 and PAR-2 to enhance fibrin formation and bronchial epithelial repair.
Antimicrobial activity of an aspartic protease from Salpichroa origanifolia fruits.
Díaz, M E; Rocha, G F; Kise, F; Rosso, A M; Guevara, M G; Parisi, M G
2018-05-08
Plant proteases play a fundamental role in several processes like growth, development and in response to biotic and abiotic stress. In particular, aspartic proteases (AP) are expressed in different plant organs and have antimicrobial activity. Previously, we purified an AP from Salpichroa origanifolia fruits called salpichroin. The aim of this work was to determine the cytotoxic activity of this enzyme on selected plant and human pathogens. For this purpose, the growth of the selected pathogens was analysed after exposure to different concentrations of salpichroin. The results showed that the enzyme was capable of inhibiting Fusarium solani and Staphylococcus aureus in a dose-dependent manner. It was determined that 1·2 μmol l -1 of salpichroin was necessary to inhibit 50% of conidial germination, and the minimal bactericidal concentration was between 1·9 and 2·5 μmol l -1 . Using SYTOX Green dye we were able to demonstrate that salpichroin cause membrane permeabilization. Moreover, the enzyme treated with its specific inhibitor pepstatin A did not lose its antibacterial activity. This finding demonstrates that the cytotoxic activity of salpichroin is due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of the AP could represent a potential alternative for the control of pathogens that affect humans or crops of economic interest. This study provides insights into the antimicrobial activity of an aspartic protease isolated from Salpichroa origanifolia fruits on plant and human pathogens. The proteinase inhibited Fusarium solani and Staphylococcus aureus in a dose-dependent manner due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of salpichroin suggests its potential applications as an important tool for the control of pathogenic micro-organisms affecting humans and crops of economic interest. Therefore, it would represent a new alternative to avoid the problems of environmental pollution and antimicrobial resistance. © 2018 The Society for Applied Microbiology.
Petersen, Lauren M.
2014-01-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493
Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjo, Kuniaki; Hiraoka, Nobuyuki; Asada, Hidetsugu; Shin-Ya, Masaharu; Imanishi, Jiro; Mazda, Osam; Kubo, Toshikazu
2009-01-01
To clarify the significance of the osteophytes that appear during the progression of osteoarthritis (OA), we investigated the expression of inflammatory cytokines and proteases in osteoblasts from osteophytes. We also examined the influence of mechanical stress loading on osteoblasts on the expression of inflammatory cytokines and proteases. Osteoblasts were isolated from osteophytes in 19 patients diagnosed with knee OA and from subchondral bone in 4 patients diagnosed with femoral neck fracture. Messenger RNA expression and protein production of inflammatory cytokines and proteases were analyzed using real-time RT-PCR and ELISA, respectively. To examine the effects of mechanical loading, continuous hydrostatic pressure was applied to the osteoblasts. We determined the mRNA expression and protein production of IL-6, IL-8, and MMP-13, which are involved in the progression of OA, were increased in the osteophytes. Additionally, when OA pathological conditions were simulated by applying a nonphysiological mechanical stress load, the gene expression of IL-6 and IL-8 increased. Our results suggested that nonphysiological mechanical stress may induce the expression of biological factors in the osteophytes and is involved in OA progression. By controlling the expression of these genes in the osteophytes, the progression of cartilage degeneration in OA may be reduced, suggesting a new treatment strategy for OA.
Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai
2014-01-01
Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. PMID:25035401
Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai
2014-07-01
Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. © 2014 American Society of Plant Biologists. All rights reserved.
Krishnaswamy, Venkat Raghavan; Manikandan, Mayakannan; Munirajan, Arasambattu Kannan; Vijayaraghavan, Doraiswamy; Korrapati, Purna Sai
2014-12-01
Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.
HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination.
Diaz-Mendoza, Mercedes; Dominguez-Figueroa, Jose D; Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel
2016-04-01
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. © 2016 American Society of Plant Biologists. All Rights Reserved.
Nontypeable Haemophilus influenzae Induces Sustained Lung Oxidative Stress and Protease Expression
King, Paul T.; Sharma, Roleen; O’Sullivan, Kim; Selemidis, Stavros; Lim, Steven; Radhakrishna, Naghmeh; Lo, Camden; Prasad, Jyotika; Callaghan, Judy; McLaughlin, Peter; Farmer, Michael; Steinfort, Daniel; Jennings, Barton; Ngui, James; Broughton, Bradley R. S.; Thomas, Belinda; Essilfie, Ama-Tawiah; Hickey, Michael; Holmes, Peter W.; Hansbro, Philip; Bardin, Philip G.; Holdsworth, Stephen R.
2015-01-01
Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps. PMID:25793977
Salwan, Richa; Sharma, Vivek; Pal, Mohinder; Kasana, Ramesh Chand; Yadav, Sudesh Kumar; Gulati, Arvind
2018-02-01
The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg -1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry. Copyright © 2017. Published by Elsevier B.V.
Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.
Korhonen, T K
2015-06-01
Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.
Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday
2016-10-01
Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Takenaka, Shinji; Umeda, Mayo; Senba, Hisanori; Koyama, Dai; Tanaka, Kosei; Yoshida, Ken-Ichi; Doi, Mikiharu
2017-01-01
Aspergillus repens strain MK82 produces an aspartic protease (PepA_MK82) that efficiently decolorises red-pigmented proteins during dried bonito fermentation. However, further expansion of the industrial applications of PepA_MK82 requires the high-level production and efficient preparation of the recombinant enzyme. The genomic DNA and cDNA fragments encoding the protease were cloned from strain MK82 and sequenced. Phylogenetic analysis of PepA_MK82 and comparisons with previously reported fungal aspartic proteases showed that PepA_MK 82 clusters with different groups of these enzymes. Heterologous expression of PepA_MK82 in Pichia pastoris yielded preparations of higher purity than obtained with an Escherichia coli expression system. Total protease activity in a 100-mL culture of the P. pastoris transformant was 14 times higher than that from an equivalent culture of A. repense MK82. The recombinant PepA_MK82 was easily obtained via acetone precipitation; the final recovery was 83%. PepA_MK82 and its recombinant had similar characteristics in terms of their optimal pH, thermostability, and decolorisation activity. The recombinant was also able to decolorise flaked, dried bonito and to bleach a blood-stained cloth. Given its ability to hydrolyse and decolorise red-pigmented proteins, recombinant PepA_MK8 can be exploited in the food industry and as a stain-removal agent in laundry applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja
2015-09-01
A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.
Udukala, Dinusha N; Wang, Hongwang; Wendel, Sebastian O; Malalasekera, Aruni P; Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H
2016-01-01
Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis.
Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary
2016-01-01
Summary Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis. PMID:27335730
Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona
2012-01-01
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID:22496898
Lee, Shiao-Pieng; Kao, Chen-Yu; Chang, Shun-Cheng; Chiu, Yi-Lin; Chen, Yen-Ju; Chen, Ming-Hsing G; Chang, Chun-Chia; Lin, Yu-Wen; Chiang, Chien-Ping; Wang, Jehng-Kang; Lin, Chen-Yong; Johnson, Michael D
2018-01-01
The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.
Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric
2016-06-23
The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.
Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells.
Voynow, J A; Young, L R; Wang, Y; Horger, T; Rose, M C; Fischer, B M
1999-05-01
Chronic neutrophil-predominant inflammation and hypersecretion of mucus are common pathophysiological features of cystic fibrosis, chronic bronchitis, and viral- or pollution-triggered asthma. Neutrophils release elastase, a serine protease, that causes increased mucin production and secretion. The molecular mechanisms of elastase-induced mucin production are unknown. We hypothesized that as part of this mechanism, elastase upregulates expression of a major respiratory mucin gene, MUC5AC. A549, a human lung carcinoma cell line that expresses MUC5AC mRNA and protein, and normal human bronchial epithelial cells in an air-liquid interface culture were stimulated with neutrophil elastase. Neutrophil elastase increased MUC5AC mRNA levels in a time-dependent manner in both cell culture systems. Neutrophil elastase treatment also increased MUC5AC protein levels in A549 cells. The mechanism of MUC5AC gene regulation by elastase was determined in A549 cells. The induction of MUC5AC gene expression required serine protease activity; other classes of proteases had no effect on MUC5AC gene expression. Neutrophil elastase increased MUC5AC mRNA levels by enhancing mRNA stability. This is the first report of mucin gene regulation by this mechanism.
Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target
NASA Astrophysics Data System (ADS)
Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.
1999-09-01
Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.
Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.
Thakur, Rupamoni; Mukherjee, Ashis K
2017-06-01
Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Ethylene-Protected Achilles’ Heel of Etiolated Seedlings for Arthropod Deterrence
Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2016-01-01
A small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21. Western blotting and cytolocalization studies using mono-specific antibodies recalled Kunitz-PI;1 protein expression in flowers, young siliques and etiolated seedlings. In dark-grown seedlings, maximum Kunitz-PI;1 promoter activity was detected in the apical hook region and apical parts of the hypocotyls. Immunolocalization confirmed Kunitz-PI;1 expression in these organs and tissues. No transmitting tract (NTT) and HECATE 1 (HEC1), two transcription factors previously implicated in the formation of the female reproductive tract in flowers of Arabidopsis, were identified to regulate Kunitz-PI;1 expression in the dark and during greening, with NTT acting negatively and HEC1 acting positively. Laboratory feeding experiments with isopod crustaceans such as Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug) pinpointed the apical hook as ethylene-protected Achilles’ heel of etiolated seedlings. Because exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and mechanical stress (wounding) strongly up-regulated HEC1-dependent Kunitz-PI;1 gene expression, our results identify a new circuit controlling herbivore deterrence of etiolated plants in which Kunitz-PI;1 is involved. PMID:27625656
de Almeida Barros, Beatriz; da Silva, Wiliane Garcia; Moreira, Maurilio Alves; de Barros, Everaldo Gonçalves
2012-01-01
The Bowman-Birk (BBI) protease inhibitors can be used as source of sulfur amino acids, can regulate endogenous protease activity during seed germination and during the defense response of plants to pathogens. In soybean this family has not been fully described. The goal of this work was to characterize in silico and analyze the expression of the members of this family in soybean. We identified 11 potential BBI genes in the soybean genome. In each one of them at least a characteristic BBI conserved domain was detected in addition to a potential signal peptide. The sequences have been positioned in the soybean physical map and the promoter regions were analyzed with respect to known regulatory elements. Elements related to seed-specific expression and also to response to biotic and abiotic stresses have been identified. Based on the in silico analysis and also on quantitative RT-PCR data it was concluded that BBI-A, BBI-CII and BBI-DII are expressed specifically in the seed. The expression profiles of these three genes are similar along seed development. Their expressions reach a maximum in the intermediate stages and decrease as the seed matures. The BBI-DII transcripts are the most abundant ones followed by those of BBI-A and BBI-CII.
Igawa, Satomi; Kishibe, Mari; Minami-Hori, Masako; Honma, Masaru; Tsujimura, Hisashi; Ishikawa, Junko; Fujimura, Tsutomu; Murakami, Masamoto; Ishida-Yamamoto, Akemi
2017-02-01
Atopic dermatitis (AD) is a common inflammatory skin disorder. Chronic AD lesions present hyperkeratosis, indicating a disturbed desquamation process. KLK7 is a serine protease involved in the proteolysis of extracellular corneodesmosome components, including desmocollin 1 and corneodesmosin, which leads to desquamation. KLK7 is secreted by lamellar granules and upregulated in AD lesional skin. However, despite increased KLK7 protein levels, immunostaining and electron microscopy indicated numerous corneodesmosomes remaining in the uppermost layer of the stratum corneum from AD lesions. We aimed to clarify the discrepancy between KLK7 overexpression and retention of corneodesmosomes on AD corneocytes. Western blot analysis indicated abnormal corneodesmosin degradation patterns in stratum corneum from AD lesions. The KLK activity of tape-stripped corneocytes from AD lesions was not significantly elevated in in situ zymography, which was our new attempt to detect the protease activity more precisely than conventional assays. This ineffective KLK activation was associated with impaired KLK7 secretion from lamellar granules and increased expression of LEKTI in AD. Such imbalances in protease-protease inhibitor interactions could lead to abnormal proteolysis of corneodesmosomes and compact hyperkeratosis. Upregulated expression of LEKTI might be a compensatory mechanism to prevent further barrier dysfunction in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Maldonado-Aguayo, W; Gallardo-Escárate, C
2014-06-01
Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.
A new fusion protein platform for quantitatively measuring activity of multiple proteases
2014-01-01
Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity. PMID:24649897
Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil
2013-01-01
Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830
Numajiri, Toshiaki; Mitsui, Shinichi; Hisa, Yasuo; Ishida, Toshihiro; Nishino, Kenichi; Yamaguchi, Nozomi
2006-01-01
Motopsin (PRSS12) is a mosaic serine protease that is preferentially expressed in motor neurons. To study the relationship between motopsin and motoneuron function, we investigated the expression of motopsin mRNA in facial nerve nuclei after facial nerve axotomy at the anterior margin of the parotid gland in mice. Neuronal function was monitored by assessing vibrissal motion in 3 months. Vibrissal behaviour on the injured side disappeared until the day 14 post-operation, and then recovered between the day 21 and 35. Motopsin expression decreased at the day 14, but markedly recovered by the day 21. In contrast, expression of growth-associated protein-43 (GAP-43) was induced at the day 3. These results suggest that the recovery of motopsin expression is correlated with the recovery of the facial motor neuronal function.
Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi
2012-12-01
Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.
Characterization of a novel ADAM protease expressed by Pneumocystis carinii.
Kennedy, Cassie C; Kottom, Theodore J; Limper, Andrew H
2009-08-01
Pneumocystis species are opportunistic fungal pathogens that cause severe pneumonia in immunocompromised hosts. Recent evidence has suggested that unidentified proteases are involved in Pneumocystis life cycle regulation. Proteolytically active ADAM (named for "a disintegrin and metalloprotease") family molecules have been identified in some fungal organisms, such as Aspergillus fumigatus and Schizosaccharomyces pombe, and some have been shown to participate in life cycle regulation. Accordingly, we sought to characterize ADAM-like molecules in the fungal opportunistic pathogen, Pneumocystis carinii (PcADAM). After an in silico search of the P. carinii genomic sequencing project identified a 329-bp partial sequence with homology to known ADAM proteins, the full-length PcADAM sequence was obtained by PCR extension cloning, yielding a final coding sequence of 1,650 bp. Sequence analysis detected the presence of a typical ADAM catalytic active site (HEXXHXXGXXHD). Expression of PcADAM over the Pneumocystis life cycle was analyzed by Northern blot. Southern and contour-clamped homogenous electronic field blot analysis demonstrated its presence in the P. carinii genome. Expression of PcADAM was observed to be increased in Pneumocystis cysts compared to trophic forms. The full-length gene was subsequently cloned and heterologously expressed in Saccharomyces cerevisiae. Purified PcADAMp protein was proteolytically active in casein zymography, requiring divalent zinc. Furthermore, native PcADAMp extracted directly from freshly isolated Pneumocystis organisms also exhibited protease activity. This is the first report of protease activity attributable to a specific, characterized protein in the clinically important opportunistic fungal pathogen Pneumocystis.
Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko
2005-02-01
Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.
Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli
2016-06-01
Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.
Substrate adaptation of Trichophyton rubrum secreted endoproteases.
Chen, Jian; Yi, Jinling; Liu, Li; Yin, Songchao; Chen, Rongzhang; Li, Meirong; Ye, Congxiu; Zhang, Yu-qing; Lai, Wei
2010-02-01
Trichophyton rubrum is the most common pathogen caused the dermatophytosis of nail and skin in human. The secreted proteases were considered to be the most important virulence factors. However, the substrates adaptation of T. rubrum secreted proteases is largely unknown. For the first time, we use the keratins from human nail and skin stratum corneum as the growth medium to investigate the different expression patterns of T. rubrum secreted endoproteases genes. During grow in both keratin-containing media SUB7 and MEP2 were the highest expressed gene in each family. These results indicated that SUB7 and MEP2 may be the dominant endoproteases secreted by T. rubrum during host infection and the other proteases may play a supplementary role. The direct comparison of T. rubrum grown on skin and nail medium showed different substrate favorite of secreted endoproteases. The genes MEP2, SUB5, SUB2 and SUB3 were more active during growth in skin medium, possibly these proteases have a higher affinity for skin original keratins. While the structures of SUB1, SUB4, and MEP4 maybe more suitable for the degradation of nail original keratins. This work presents useful molecular details for further understanding the pathogenesis of secreted proteases and the wide adaptation of T. rubrum.
Acevedo, J P; Rodriguez, V; Saavedra, M; Muñoz, M; Salazar, O; Asenjo, J A; Andrews, B A
2013-02-01
Cloning, expression and characterization of a new cold-adapted protease with potential biotechnological application, isolated from Antarctic bacteria. A subtilisin-like gene was isolated from several Antarctic bacterial genus using CODPEHOP-designed primers and a genome walking method. This gene encodes a precursor protein, which undergoes an autocatalytic cleavage resulting in a 34.6 kDa active cold-adapted protease with a maximum activity at 25-35°C and optimum pH of 8.0-9.0. It showed a higher catalytic efficiency at lower temperatures compared to its mesophilic counterpart. Heat-induced inactivation resulted in a very low melting point. Local packing analysis using the homology model indicated Ala284 as an important cold-adaptation determinant, which was corroborated by the site-directed mutagenesis. A new thermolabile subtilisin-like protease has been successfully cloned and analysed, and an important hot spot in the evolution of the cold adaptation and substrate specificity of this enzyme was identified and tested. This work reports a new cold-adapted protease with a vast representation amongst Antarctic genus, suggesting therefore its evolutionary success in this cold environment. Likewise, important sites for genetic potentiation have been identified, which are extrapolated to other enzymes of the same kind. © 2012 The Society for Applied Microbiology.
Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max
2017-11-15
The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.
Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.
Schlüter, Urte; Benchabane, Meriem; Munger, Aurélie; Kiggundu, Andrew; Vorster, Juan; Goulet, Marie-Claire; Cloutier, Conrad; Michaud, Dominique
2010-10-01
Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Coppola, Julia M; Hamilton, Christin A; Bhojani, Mahaveer S; Larsen, Martha J; Ross, Brian D; Rehemtulla, Alnawaz
2007-05-01
Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.
Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko
2011-02-01
Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.
Identification of Proteases and Protease Inhibitors in Allergenic and Non-Allergenic Pollen.
Höllbacher, Barbara; Schmitt, Armin O; Hofer, Heidi; Ferreira, Fatima; Lackner, Peter
2017-06-05
Pollen is one of the most common causes of allergy worldwide, making the study of their molecular composition crucial for the advancement of allergy research. Despite substantial efforts in this field, it is not yet clear why some plant pollens strongly provoke allergies while others do not. However, proteases and protease inhibitors from allergen sources are known to play an important role in the development of pollen allergies. In this study, we aim to uncover differences in the transcriptional pattern of proteases and protease inhibitors in Betula verrucosa and Pinus sylvestris pollen as models for high and low allergenic potential, respectively. We applied RNA sequencing to Betula verrucosa and Pinus sylvestris pollen. After de-novo assembly we derived general functional profiles of the protein coding transcripts. By utilization of domain based functional annotation we identified potential proteases and protease inhibitors and compared their expression in the two types of pollen. Functional profiles are highly similar between Betula verrucosa and Pinus sylvestris pollen. Both pollen contain proteases and inhibitors from 53 and 7 Pfam families, respectively. Some of the members comprised within those families are implicated in facilitating allergen entry, while others are known allergens themselves. Our work revealed several candidate proteins which, with further investigation, represent exciting new leads in elucidating the process behind allergic sensitization.
Efficient expression systems for cysteine proteases of malaria parasites
Sarduy, Emir Salas; de los A. Chávez Planes, María
2013-01-01
Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863
Identification of the Staphylococcus aureus vfrAB operon, a novel virulence factor regulatory locus.
Bose, Jeffrey L; Daly, Seth M; Hall, Pamela R; Bayles, Kenneth W
2014-05-01
During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis.
TcCYS4, a cystatin from cocoa, reduces necrosis triggered by MpNEP2 in tobacco plants.
Santana, L S; Costa, M G C; Pirovani, N M; Almeida, A F; Alvim, F C; Pirovani, C P
2014-09-26
In Brazil, most cocoa bean production occurs in Southern Bahia. Witches' broom disease arrived in this area in 1989 and has since caused heavy losses in production. The disease is caused by the basidiomycete fungus Moniliophthora perniciosa, a hemibiotrophic fungus that produces the necrosis and ethylene-inducting protein (MpNEP2) during infection; this protein can activate cysteine proteases and induce programmed cell death. Cysteine proteases can be modulated by cystatin. In this study, we overexpressed TcCYS4, a cocoa cystatin, in tobacco plants and evaluated the effect on MpNEP2 in model plants. Tccys4 cDNA was cloned into the pCAMBIA 1390 vector and inserted into the tobacco plants via Agrobacterium tumefaciens. Transgene expression was analyzed by reverse transcription-quantitative PCR and Western blot analysis. Transcript and protein levels in Tcccys4:tobacco lines were 8.9- and 1.5-fold higher than in wild-type plants (wt). Tcccys4:tobacco lines showed no change in growth compared to wt plants. CO2 net assimilation (A) increased in Tcccys4:tobacco lines compared to wt plants. Only one line showed statistically significant stomatal conductance (gs) and transpiration rate (E) changes. MpNEP2 was infiltered into the foliar mesophyll of Tcccys4:tobacco lines and wt plants, and necrotic lesions were attenuated in lines highly expressing Tccys4. Our results suggest that cocoa cystatin TcCYS4 affects MpNEP2 activity related to the progression of programmed cell death in tobacco plants. This may occur through the action of cystatin to inhibit cysteine proteases activated by MpNEP2 in plant tissues. Further studies are necessary to examine cystatin in the Theobroma cacao-M. perniciosa pathosystem.
Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D
2016-05-01
Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.
Jeon, Amy Hye Won; Böhm, Christopher; Chen, Fusheng; Huo, Hairu; Ruan, Xueying; Ren, Carl He; Ho, Keith; Qamar, Seema; Mathews, Paul M.; Fraser, Paul E.; Mount, Howard T. J.; St George-Hyslop, Peter; Schmitt-Ulms, Gerold
2013-01-01
γ-Secretase plays a pivotal role in the production of neurotoxic amyloid β-peptides (Aβ) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken. Brains of mice engineered to express wild-type or mutant PS1, or HEK293 cells stably expressing PS paralogs with N-terminal tandem-affinity purification tags served as biological source materials. The analyses revealed novel interactions of the γ-secretase core complex with a molecular machinery that targets and fuses synaptic vesicles to cellular membranes and with the H+-transporting lysosomal ATPase macrocomplex but uncovered no differences in the interactomes of wild-type and mutant PS1. The catenin/cadherin network was almost exclusively found associated with PS1. Another intramembrane protease, signal peptide peptidase, predominantly co-purified with PS2-containing γ-secretase complexes and was observed to influence Aβ production. PMID:23589300
2011-01-01
Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses. Conclusions Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses. PMID:21936897
Serine protease activity in m-1 cortical collecting duct cells.
Liu, Lian; Hering-Smith, Kathleen S; Schiro, Faith R; Hamm, L Lee
2002-04-01
An apical serine protease, channel-activating protease 1 (CAP1), augments sodium transport in A6 cells. Prostasin, a novel serine protease originally purified from seminal fluid, has been proposed to be the mammalian ortholog of CAP1. We have recently found functional evidence for a similar protease activity in the M-1 cortical collecting duct cell line. The purposes of the present studies were to determine whether prostasin (or CAP1) is present in collecting duct cells by use of mouse M-1 cells, to sequence mouse prostasin, and to further characterize the identity of the serine protease activity and additional functional features in M-1 cells. Using mouse expressed sequence tag sequences that are highly homologous to the published human prostasin sequence as templates, reverse transcription-polymerase chain reaction and RACE (rapid amplification of cDNA ends) were used to sequence mouse prostasin mRNA, which shows 99% identical to published mouse CAP1 sequence. A single 1800-bp transcript was found by Northern analysis, and this was not altered by aldosterone. Equivalent short-circuit current (I(eq)), which represents sodium transport in these cells, dropped to 59+/-3% of control value within 1 hour of incubation with aprotinin, a serine protease inhibitor. Trypsin increased the I(eq) in aprotinin-treated cells to the value of the control group within 5 minutes. Application of aprotinin not only inhibited amiloride sensitive I(eq) but also reduced transepithelial resistance (R(te)) to 43+/-2%, an effect not expected with simple inhibition of sodium channels. Trypsin partially reversed the effect of aprotinin on R(te). Another serine protease inhibitor, soybean trypsin inhibitor (STI), decreased I(eq) in M-1 cells. STI inhibited I(eq) gradually over 6 hours, and the inhibition of I(eq) by 2 inhibitors was additive. STI decreased transepithelial resistance much less than did aprotinin. Neither aldosterone nor dexamethasone significantly augmented protease activity or prostasin mRNA levels, and in fact, dexamethasone decreased prostasin mRNA expression. In conclusion, although prostasin is present in M-1 cells and probably augments sodium transport in these cells, serine proteases probably have other effects (eg, resistance) in the collecting duct in addition to effects on sodium channels. Steroids do not alter these effects in M-1 cells. Additional proteases are likely also present in mouse collecting duct cells.
Maseko, Sibusiso B; Natarajan, Satheesh; Sharma, Vikas; Bhattacharyya, Neelakshi; Govender, Thavendran; Sayed, Yasien; Maguire, Glenn E M; Lin, Johnson; Kruger, Hendrik G
2016-06-01
Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Many studies have targeted HIV-1 protease for the development of drugs against AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. Along with the wild type (C-SA) we also over-expressed and characterized two mutant forms from patients that had shown resistance to protease inhibitors. Using recombinant DNA technology, we constructed three recombinant plasmids in pGEX-6P-1 and expressed them containing a sequence encoding wild type HIV protease and two mutants (I36T↑T contains 100 amino acids and L38L↑N↑L contains 101 amino acids). These recombinant proteins were isolated from inclusion bodies by using QFF anion exchange and GST trap columns. In SDS-PAGE, we obtained these HIV proteases as single bands of approximately 11.5, 11.6 and 11.7 kDa for the wild type, I36T↑Tand L38L↑N↑L mutants, respectively. The enzyme was recovered efficiently (0.25 mg protein/L of Escherichia coli culture) and had high specific activity of 2.02, 2.20 and 1.33 μmol min(-1) mg(-1) at an optimal pH of 5 and temperature of 37 °C for the wild type, I36T↑T and L38L↑N↑L, respectively. The method employed here provides an easy and rapid purification of the HIV-1(C-SA) protease from the inclusion bodies, with high yield and high specific activities. Copyright © 2016 Elsevier Inc. All rights reserved.
Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai
2011-01-01
The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238
Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan
2014-05-29
Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist (P < 0.05). Protease-activated receptor 1 antagonist did not alter aPA-stimulated IL-8 mRNA expression and protein production in HCE cells. Flow cytometry and immunocytochemistry showed that aPA and SLIGRL-NH2 (PAR2 agonist) upregulated PAR2 surface protein as compared to that in unstimulated HCE cells. Thrombin, but not aPA, stimulated PAR1 surface protein in HCE cells. Acanthamoeba plasminogen activator specifically induces expression and production of IL-8 in HCE cells via PAR2 pathway, and PAR2 antagonists may be used as a therapeutic target in AK. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Kiguoya, Marion W; Mann, Jaclyn K; Chopera, Denis; Gounder, Kamini; Lee, Guinevere Q; Hunt, Peter W; Martin, Jeffrey N; Ball, T Blake; Kimani, Joshua; Brumme, Zabrina L; Brockman, Mark A; Ndung'u, Thumbi
2017-07-01
There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates ( r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases ( P < 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C < D < intersubtype recombinants ( P < 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes. IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa. Copyright © 2017 American Society for Microbiology.
[Analysis of salivary protease spectrum in chronic periodontitis].
Qian, Li; Xuedong, Zhou; Yaping, Fan; Tengyu, Yang; Songtao, Wu; Yu, Yu; Jiao, Chen; Ping, Zhang; Yun, Feng
2017-02-01
This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (P<0.01). By contrast, the concentrations of ADAM9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, ADAMTS13, cathepsin B, E, L, V, X/Z/P, kallikrein 6, 7, 11, 13, MMP-9, proteinase 3, presenilin-1, and proprotein convertase 9 sharply decreased (P<0.05). The results demonstrated that protease spectrum in the saliva of chronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.
Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.
Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique
2016-01-01
We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.
El-Halawany, Medhat S; Ohkouchi, Susumu; Shibata, Hideki; Hitomi, Kiyotaka; Maki, Masatoshi
2004-06-01
Family 1 cystatins are cytosolic inhibitors of cysteine proteases, and they are conserved in higher eukaryotes. We characterized two newly identified family 1 cystatins of the cellular slime mold Dictyostelium discoideum, cystatin A1 and A2. Their recombinant proteins showed specific inhibitory activity against papain and cathepsin B, respectively. Using specific polyclonal antibodies, we found that cystatin A1 is stably expressed throughout the life cycle of Dictyostelium, whereas cystatin A2 expression is up-regulated during the course of development.
Weiss, André; Joerss, Hanna; Brockmeyer, Jens
2014-01-01
EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319
Petersen, Lauren M; Tisa, Louis S
2014-11-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Makadiya, Nirajkumar; Gaba, Amit; Tikoo, Suresh K
2015-09-01
The L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12-24 h and proteins of 130, 100, 95 and 15 kDa at 36-48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells. In contrast, 100K localized predominantly to the cytoplasm of the transfected cells. However, BAdV-3 infection of cells transfected with 100K-enhanced yellow fluorescent protein-expressing plasmid detected fluorescent protein in the nucleus of the cells, suggesting that other viral proteins may be required for the nuclear localization of 100K. Interaction of BAdV-3 100K with BAdV-3 33K protein did not alter the cytoplasmic localization of 100K. However, co-expression of BAdV-3 100K and BAdV-3 protease localized 100K to the nucleolus of the transfected cells. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (aa 740-745 and 781-786) in transfected or BAdV-3-infected cells. The cleaved C terminus (107 aa) was localized to the nucleolus of the transfected cells. Further analysis suggested that the cleaved C terminus contains a bipartite nuclear localization signal and utilizes import receptor importin-α3 of the classical importin-α/β transport pathway for nuclear transport. Successful isolation of recombinant BAdV-3 expressing mutant 100K (substitution of alanine for glycine in the potential protease cleavage site) suggested that cytoplasmic cleavage of BAdV-3 100K by adenoviral protease is not essential for virus replication.
Kawahara, Kohichi; Hirata, Hiroshi; Ohbuchi, Kengo; Nishi, Kentaro; Maeda, Akira; Kuniyasu, Akihiko; Yamada, Daisuke; Maeda, Takehiko; Tsuji, Akihiko; Sawada, Makoto; Nakayama, Hitoshi
2016-11-01
To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.
Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.
2017-01-01
Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.
2011-09-23
Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatinmore » was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.« less
Adissu, Hibret A; McKerlie, Colin; Di Grappa, Marco; Waterhouse, Paul; Xu, Qiang; Fang, Hui; Khokha, Rama; Wood, Geoffrey A
2015-12-01
Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression. © 2015 Wiley Periodicals, Inc.
Pan, Li; Zhang, Yongguang; Wang, Yonglu; Wang, Baoqin; Wang, Wenxiu; Fang, Yuzhen; Jiang, Shoutian; Lv, Jianliang; Wang, Wei; Sun, Yuan; Xie, Qingge
2008-01-15
The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.
Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y
1999-03-20
Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.
Maryanoff, Bruce E; Zhang, Han-Cheng; Andrade-Gordon, Patricia; Derian, Claudia K
2003-03-01
Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G-protein-coupled receptors, which are enzymatically cleaved to expose a new extracellular N-terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease alpha-thrombin, is expressed in various tissues (e.g. platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. By using a de novo design approach, we have discovered a series of potent heterocycle-based peptide-miimetic antagonists of PAR-1, exemplified by advanced leads RWJ-56110 (22) and RWJ-58259 (32). These compounds are potent, selective PAR-1 antagonists, devoid of PAR-1 agonist and thrombin inhibitory activity: they bind to PAR-1, interfere with calcium mobilization and cellular functions associated with PAR-1, and do not affect PAR-2, PAR-3, or PAR-4. RWJ-56110 was determined to be a direct inhibitor of PAR-1 activation and internalization, without affecting PAR-1 N-terminal cleavage. At high concentrations of alpha-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, but not in human platelets; whereas, at high concentrations of TRAP-6, RWJ-56110 blocked activation responses in both cell types. This result is consistent with the presence of another thrombin receptor on human platelets, namely PAR-4. RWJ-56110 and RWJ-58259 clearly interrupt the binding of a tethered ligand to its receptor. RWJ-58259 demonstrated antirestenotic activity in a rat balloon angioplasty model and antithrombotic activity in a cynomolgus monkey arterial injury model. Such PAR-1 antagonists should not only serve as useful tools to delineate the physiological and pathophysiological roles of PAR-1, but also may have therapeutic potential for treating thrombosis and restenosis in humans.
Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer's disease.
Dorfman, Verónica Berta; Pasquini, Laura; Riudavets, Miguel; López-Costa, Juan José; Villegas, Andrés; Troncoso, Juan Carlos; Lopera, Francisco; Castaño, Eduardo Miguel; Morelli, Laura
2010-10-01
Alzheimer's disease (AD) is characterized by amyloid beta (A beta) accumulation in the brain and is classified as familial early-onset (FAD) or sporadic late-onset (SAD). Evidences suggest that deficits in the brain expression of insulin degrading enzyme (IDE) and neprilysin (NEP), both proteases involved in amyloid degradation, may promote A beta deposition in SAD. We studied by immunohistochemistry IDE and NEP cortical expression in SAD and FAD samples carrying the E280A presenilin-1 missense mutation. We showed that IDE, a soluble peptidase, is linked with aggregated A beta 40 isoform while NEP, a membrane-bound protease, negatively correlates with amyloid angiopathy and its expression in the senile plaques is independent of aggregated amyloid and restricted to SAD cases. NEP, but not IDE, is over-expressed in dystrophic neurites, both proteases are immunoreactive in activated astrocytes but not in microglia and IDE was the only one detected in astrocytes of white matter from FAD cases. Collectively, our results support the notion that gross conformational changes involved in the modification from "natively folded-active" to "aggregated-inactive" IDE and NEP may be a relevant pathogenic mechanism in SAD. (c) 2008 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.
2010-01-01
In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, andmore » enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.« less
Dentilisin activity affects the organization of the outer sheath of Treponema denticola.
Ishihara, K; Kuramitsu, H K; Miura, T; Okuda, K
1998-08-01
Prolyl-phenylalanine-specific serine protease (dentilisin) is a major extracellular protease produced by Treponema denticola. The gene, prtP, coding for the protease was recently cloned and sequenced (K. Ishihara, T. Miura, H. K. Kuramitsu, and K. Okuda, Infect. Immun. 64:5178-5186, 1996). In order to determine the role of this protease in the physiology and virulence of T. denticola, a dentilisin-deficient mutant, K1, was constructed following electroporation with a prtP-inactivated DNA fragment. No chymotrypsin-like protease activity was detected in the dentilisin-deficient mutant. In addition, the high-molecular-mass oligomeric protein characteristic of the outer sheath of the organism decreased in the mutant. Furthermore, the hydrophobicity of the mutant was decreased, and coaggregation of the mutant with Fusobacterium nucleatum was enhanced compared to that of the wild-type organism. The results obtained with a mouse abscess model system indicated that the virulence of the mutant was attenuated relative to that of the wild-type organism. These results suggest that dentilisin activity plays a major role in the structural organization of the outer sheath of T. denticola. The loss of dentilsin activity and the structural change in the outer sheath affect the pathogenicity of T. denticola.
Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin
Shapira, Assaf; Shapira, Shiran; Gal-Tanamy, Meital; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai
2012-01-01
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express intracellular proteases. PMID:22359682
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927
Mallo, N; DeFelipe, A P; Folgueira, I; Sueiro, R A; Lamas, J; Leiro, J M
2017-02-01
The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti-inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro-inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 μm, curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 μm, curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence-associated proteases: leishmanolysin-like peptidase and cathepsin L-like. At concentrations between 25 and 50 μm, curcumin inhibited the expression of S-adenosyl-L-homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 μm, curcumin inhibited the expression of the cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti-inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis. © 2016 John Wiley & Sons Ltd.
Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy
Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin
2016-01-01
The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023
[In vitro function of outer membrane protease T of Escherichia coli K1 pathogenic strain].
Hui, Changye; Guo, Yan; Wu, Shuchi; Peng, Liang; Cao, Hong; Huang, Shenghe
2010-01-01
Plasminogen activation and antimicrobial peptide hydrolysis contribute to pathogens invasion and survival in vivo. To demonstrate the expression of outer membrane protease T in E. coli K1 pathogenic strain E44, its activity of plasminogen activator and protamine hydrolysis. After Benzamidine Sepharose Fast Flow and SOURCE 30Q chromatography, we got E44 outer membrane mixed fraction, and examined its activity of plasminogen activation with chromogenic substrate S-2251 method. An ompT deletion mutant of E44 was constructed by using the suicide vector pCVD442, termed as E44ompT. We examined 0.1 mg/mL cationic antimicrobial peptide protamine susceptibility of E44, ompT mutant strain E44ompT and E44ompT harboring pUCT, which was constructed by inserting complete ompT open reading frame into pUC13. We got about 37 kDa E44 membrane extract, which could activate plasminogen, and activation was membrane extract dose dependent. This confirmed the expression of outer membrane protease T in the outer membrane of E44. E44ompT was, more susceptible to 0.1 mg/mL protamine than E44, and E440mpT was partially complemented by pUCT. Outer membrane protease T is expressed in E. coli K1 pathogenic strain E44, and can activate plasminogen and hydrolyze protamine.
Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa
2014-01-01
The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.
Serine protease-related proteins in the malaria mosquito, Anopheles gambiae.
Cao, Xiaolong; Gulati, Mansi; Jiang, Haobo
2017-09-01
Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip 1-5 -PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD 0-1 . While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD ≥1 ) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Christian, Jan; Vier, Juliane; Paschen, Stefan A.; Häcker, Georg
2010-01-01
Chlamydiae are obligate intracellular bacteria that frequently cause human disease. Chlamydiae replicate in a membranous vacuole in the cytoplasm termed inclusion but have the ability to transport proteins into the host cell cytosol. Chlamydial replication is associated with numerous changes of host cell functions, and these changes are often linked to proteolytic events. It has been shown earlier that the member of the NF-κB family of inflammation-associated transcription factors, p65/RelA, is cleaved during chlamydial infection, and a chlamydial protease has been implicated. We here provide evidence that the chlamydial protease chlamydial protease-like activity factor (CPAF) is responsible for degradation of p65/RelA during infection. This degradation was seen in human and in mouse cells infected with either Chlamydia trachomatis or Chlamydia pneumoniae where it correlated with the expression of CPAF and CPAF activity. Isolated expression of active C. trachomatis or C. pneumoniae CPAF in human or mouse cells yielded a p65 fragment of indistinguishable size from the one generated during infection. Expression of active CPAF in human cells caused a mild reduction in IκBα phosphorylation but a strong reduction in NF-κB reporter activity in response to interleukin-1β. Infection with C. trachomatis likewise reduced this responsiveness. IL-1β-dependent secretion of IL-8 was further reduced by CPAF expression. Secretion of CPAF is, thus, a mechanism that reduces host cell sensitivity to a proinflammatory stimulus, which may facilitate bacterial growth in vivo. PMID:21041296
Laux, Holger; Romand, Sandrine; Nuciforo, Sandro; Farady, Christopher J; Tapparel, Joel; Buechmann-Moeller, Stine; Sommer, Benjamin; Oakeley, Edward J; Bodendorf, Ursula
2018-05-19
An increasing number of non-antibody format proteins are entering the clinical development. However, one of the major hurdles for the production of non-antibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics and genetic knockdowns we have identified, out of the more than 700 known proteases in rodents, Matriptase-1 as the major protease involved in degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently Matriptase-1 was deleted in CHO-K1 cells using "Transcription Activator-Like Effector Nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase knockout (KO) cell line with strongly reduced or no proteolytic degradation activity towards a panel of recombinantly-expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments, and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next generation sequencing screening methods and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Two Paralogous Families of a Two-Gene Subtilisin Operon Are Widely Distributed in Oral Treponemes
Correia, Frederick F.; Plummer, Alvin R.; Ellen, Richard P.; Wyss, Chris; Boches, Susan K.; Galvin, Jamie L.; Paster, Bruce J.; Dewhirst, Floyd E.
2003-01-01
Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, “Treponema vincentii,” and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5′ hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes. PMID:14617650
Coppola, Julia M.; Hamilton, Christin A.; Bhojani, Mahaveer S.; Larsen, Martha J.; Ross, Brian D.; Rehemtulla, Alnawaz
2007-01-01
Non-invasive real time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease’s natural milieu. We developed a protease-activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, upon protease mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV, and in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high throughput screening of 30,000 compound small molecule libraries, leading to identification of furin inhibitors. Further, this strategy was utilized to identify inhibitors of another Golgi protease, the β-site APP-cleaving enzyme (BACE). BACE cleavage of the amyloid precursor protein leads to formation of the Aβ peptide, a key event that leads to Alzheimer’s disease. In conclusion, we describe a customizable, non-invasive technology for real time assessment of Golgi protease activity used to identify inhibitors of furin and BACE. PMID:17316541
A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.
Ohkawa, T; Majima, K; Maeda, S
1994-01-01
Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997
Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.
Eddy, Justin L; Schroeder, Jay A; Zimbler, Daniel L; Bellows, Lauren E; Lathem, Wyndham W
2015-12-01
Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Frees, D; Varmanen, P; Ingmer, H
2001-07-01
Exposure of cells to elevated temperatures triggers the synthesis of chaperones and proteases including components of the conserved Clp protease complex. We demonstrated previously that the proteolytic subunit, ClpP, plays a major role in stress tolerance and in the degradation of non-native proteins in the Gram-positive bacterium Lactococcus lactis. Here, we used transposon mutagenesis to generate mutants in which the temperature- and puromycin-sensitive phenotype of a lactococcal clpP null mutant was partly alleviated. In all mutants obtained, the transposon was inserted in the L. lactis trmA gene. When analysing a clpP, trmA double mutant, we found that the expression normally induced from the clpP and dnaK promoters in the clpP mutant was reduced to wild-type level upon introduction of the trmA disruption. Additionally, the degradation of puromycyl-containing polypeptides was increased, suggesting that inactivation of trmA compensates for the absence of ClpP by stimulating an as yet unidentified protease that degrades misfolded proteins. When trmA was disrupted in wild-type cells, both stress tolerance and proteolysis of puromycyl peptides was enhanced above wild-type level. Based on our results, we propose that TrmA, which is well conserved in several Gram-positive bacteria, affects the degradation of non-native proteins and thereby controls stress tolerance.
Impact of the Pla Protease Substrate α2-Antiplasmin on the Progression of Primary Pneumonic Plague
Eddy, Justin L.; Schroeder, Jay A.; Zimbler, Daniel L.; Bellows, Lauren E.
2015-01-01
Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection. PMID:26438794
Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H
2013-11-15
A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. Copyright © 2013 Elsevier GmbH. All rights reserved.
Neural ECM proteases in learning and synaptic plasticity.
Tsilibary, Effie; Tzinia, Athina; Radenovic, Lidija; Stamenkovic, Vera; Lebitko, Tomasz; Mucha, Mariusz; Pawlak, Robert; Frischknecht, Renato; Kaczmarek, Leszek
2014-01-01
Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.
Chiou, S J; Vanden Broeck, J; Janssen, I; Borovsky, D; Vandenbussche, F; Simonet, G; De Loof, A
1998-10-01
The cDNA coding for a Ser-protease-related protein (Scg-SPRP) was cloned from desert locust (Schistocerca gregaria) midgut. The derived amino acid sequence consists of 260 residues and shows strong sequence similarity to insect trypsin-like molecules. It is, however, likely that Scg-SPRP is not a proteolytically active enzyme and that it plays another physiologically relevant role, since two out of three residues which are indispensable for catalytic activity of Ser-proteases are replaced. Northern analysis revealed that the Scg-SPRP gene is expressed in midgut tissue and that this expression is strongly induced in adult female locusts. Moreover, the occurrence of the transcript (1.2 kb) fluctuates during the molting cycle and during the female reproductive cycle. Juvenile hormone (JH III) dependence of transcription was investigated by chemical allatectomy (precocene I) of adult females. This resulted in inhibition of vitellogenesis and in disappearance of the Scg-SPRP transcript. Expression of Scg-SPRP in precocene-treated locusts could be reinduced by additional treatment with JH III or with 20-OH-ecdysone.
The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing
Zinkernagel, Annelies S.; Timmer, Anjuli M.; Pence, Morgan A.; Locke, Jeffrey B.; Buchanan, John T.; Turner, Claire E.; Mishalian, Inbal; Sriskandan, Shiranee; Hanski, Emanuel; Nizet, Victor
2009-01-01
SUMMARY Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (Cepl) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection. PMID:18692776
Rapid large-scale purification of myofilament proteins using a cleavable His6-tag.
Zhang, Mengjie; Martin, Jody L; Kumar, Mohit; Khairallah, Ramzi J; de Tombe, Pieter P
2015-11-01
With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1' cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner. Copyright © 2015 the American Physiological Society.
Rapid large-scale purification of myofilament proteins using a cleavable His6-tag
Zhang, Mengjie; Martin, Jody L.; Kumar, Mohit; de Tombe, Pieter P.
2015-01-01
With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1′ cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner. PMID:26386113
Seo, Jin
2013-01-01
Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence. PMID:24082078
Lehmann, Christine; Hanson, Kirsten K.; Lin, Jing-wen; Rousseau, Kimberly; Carvalho, Filomena A.; van der Linden, Wouter A.; Santos, Nuno C.; Sinnis, Photini
2017-01-01
Proteases have been implicated in a variety of developmental processes during the malaria parasite lifecycle. In particular, invasion and egress of the parasite from the infected hepatocyte and erythrocyte, critically depend on protease activity. Although falcipain-1 was the first cysteine protease to be characterized in P. falciparum, its role in the lifecycle of the parasite has been the subject of some controversy. While an inhibitor of falcipain-1 blocked erythrocyte invasion by merozoites, two independent studies showed that falcipain-1 disruption did not affect growth of blood stage parasites. To shed light on the role of this protease over the entire Plasmodium lifecycle, we disrupted berghepain-1, its ortholog in the rodent parasite P. berghei. We found that this mutant parasite displays a pronounced delay in blood stage infection after inoculation of sporozoites. Experiments designed to pinpoint the defect of berghepain-1 knockout parasites found that it was not due to alterations in gliding motility, hepatocyte invasion or liver stage development and that injection of berghepain-1 knockout merosomes replicated the phenotype of delayed blood stage growth after sporozoite inoculation. We identified an additional role for berghepain-1 in preparing blood stage merozoites for infection of erythrocytes and observed that berghepain-1 knockout parasites exhibit a reticulocyte restriction, suggesting that berghepain-1 activity broadens the erythrocyte repertoire of the parasite. The lack of berghepain-1 expression resulted in a greater reduction in erythrocyte infectivity in hepatocyte-derived merozoites than it did in erythrocyte-derived merozoites. These observations indicate a role for berghepain-1 in processing ligands important for merozoite infectivity and provide evidence supporting the notion that hepatic and erythrocytic merozoites, though structurally similar, are not identical. PMID:28922424
Hamson, Elizabeth J; Keane, Fiona M; Tholen, Stefan; Schilling, Oliver; Gorrell, Mark D
2014-06-01
Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration
Williams, Julie C.; Lee, Rebecca D.; Doerschuk, Claire M.; Mackman, Nigel
2011-01-01
Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages. PMID:22175012
Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration.
Williams, Julie C; Lee, Rebecca D; Doerschuk, Claire M; Mackman, Nigel
2011-01-01
Protease activated receptors (PAR) have been shown to play a role in inflammation. PAR-2 is expressed by numerous cells in the lung and has either proinflammatory, anti-inflammatory, or no effect depending on the model. Here, we examined the role of PAR-2 in a model of LPS-induced lung inflammation. We found that PAR-2-deficient mice had significantly less KC expression in bronchial lavage fluid compared with wild-type mice but there was no difference in MIP-2 or TNF-α expression. We also found that isolated alveolar and resident peritoneal macrophages lacking PAR-2 showed a similar deficit in KC after LPS stimulation without differences in MIP-2 or TNF-α. Infiltration of neutrophils and macrophages into the lung following LPS administration was not affected by an absence of PAR-2. Our results support the notion that PAR-2 plays a role in LPS activation of TLR4 signaling in macrophages.
Ribeiro-Guimarães, Michelle Lopes; Marengo, Eliana Blini; Tempone, Antonio Jorge; Amaral, Julio Jablonski; Klitzke, Clécio F; Silveira, Erika K Xavier da; Portaro, Fernanda Calheta Vieira; Pessolani, Maria Cristina Vidal
2009-12-01
Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40 degrees C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.
ERIC Educational Resources Information Center
Reumann, Rebecca; Vierk, Ricardo; Zhou, Lepu; Gries, Frederice; Kraus, Vanessa; Mienert, Julia; Romswinkel, Eva; Morellini, Fabio; Ferrer, Isidre; Nicolini, Chiara; Fahnestock, Margaret; Rune, Gabriele; Glatzel, Markus; Galliciotti, Giovanna
2017-01-01
The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the…
Zhang, Yinghui; Mikhael, Marc; Xu, Dongxue; Li, Yiye; Soe-Lin, Shan; Ning, Bo; Li, Wei; Nie, Guangjun; Zhao, Yuliang; Ponka, Prem
2010-10-01
Cytosolic ferritins sequester and store iron, consequently protecting cells against iron-mediated free radical damage. However, the mechanisms of iron exit from the ferritin cage and reutilization are largely unknown. In a previous study, we found that mitochondrial ferritin (MtFt) expression led to a decrease in cytosolic ferritin. Here we showed that treatment with inhibitors of lysosomal proteases largely blocked cytosolic ferritin loss in both MtFt-expressing and wild-type cells. Moreover, cytosolic ferritin in cells treated with inhibitors of lysosomal proteases was found to store more iron than did cytosolic ferritins in untreated cells. The prevention of cytosolic ferritin degradation in MtFt-expressing cells significantly blocked iron mobilization from the protein cage induced by MtFt expression. These studies also showed that blockage of cytosolic ferritin loss by leupeptin resulted in decreased cytosolic ferritin synthesis and prolonged cytosolic ferritin stability, potentially resulting in diminished iron availability. Lastly, we found that proteasomes were responsible for cytosolic ferritin degradation in cells pretreated with ferric ammonium citrate. Thus, the current studies suggest that cytosolic ferritin degradation precedes the release of iron in MtFt-expressing cells; that MtFt-induced cytosolic ferritin decrease is partially preventable by lysosomal protease inhibitors; and that both lysosomal and proteasomal pathways may be involved in cytosolic ferritin degradation.
Wang, Peng; Chen, Fei-Xue; Du, Chao; Li, Chang-Qing; Yu, Yan-Bo; Zuo, Xiu-Li; Li, Yan-Qing
2015-05-22
Colonic brain-derived neurotrophic factor (BDNF) plays an essential role in pathogenesis of abdominal pain in diarrhea-predominant irritable bowel syndrome (IBS-D), but regulation on its expression remains unclear. We investigated the role of fecal supernatants (FSN) from IBS-D patients on regulating BDNF expression in colonic epithelial cells of human and mice. Using human Caco-2 cells, we found that IBS-D FSN significantly increased BDNF mRNA and protein levels compared to control FSN, which were remarkably suppressed by the serine protease inhibitor. To further explore the potential mechanisms, we investigated the impact of protease-activated receptor-2 (PAR-2) on BDNF expression. We found a significant increase in PAR-2 expression in Caco-2 after IBS-D FSN stimulation. Knockdown of PAR-2 significantly inhibited IBS-D FSN-induced upregulation of BDNF. Moreover, we found that phosphorylation of p38 MAPK, not NF-κB p65, contributed to PAR-2-mediated BDNF overexpression. To confirm these results, we intracolonically infused IBS-D or control FSN in mice and found that IBS-D FSN significantly elevated colonic BDNF and visceral hypersensitivity in mice, which were both suppressed by the inhibitor of serine protease or antagonist of PAR-2. Together, our data indicate that activation of PAR-2 signaling by IBS-D FSN promotes expression of colonic BDNF, thereby contributing to IBS-like visceral hypersensitivity.
Li, Youshan; Zhao, Ping; Liu, Huawei; Guo, Xiaomeng; He, Huawei; Zhu, Rui; Xiang, Zhonghuai; Xia, Qingyou
2015-02-01
Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.
Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H
2015-07-01
The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Identification of SlpB, a Cytotoxic Protease from Serratia marcescens
Stella, Nicholas A.; Hunt, Kristin M.; Brothers, Kimberly M.; Zhang, Liang; Thibodeau, Patrick H.
2015-01-01
The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. PMID:25939509
Caulfield, Robert H; Tyler, Michael P H; Austyn, Jon M; Dziewulski, Peter; McGrouther, Duncan A
2008-06-01
In the management of partial thickness burns, it is difficult to balance between conservative management and surgical intervention. Our hypothesis was that a triangular relationship exists between protease/anti-protease profile at the burn wound surface, angiogenesis and re-epithelialisation. By manipulation of the biochemical profile at the wound level, we determined to affect the nature and extent of angiogenesis and resulting re-epithelialisation. We performed a randomised longitudinal observational study on partial thickness burns in adult patients presenting to two regional burns units. Our results demonstrated that a high-protease wound environment is associated with lower levels of the angiogenic factor VEGF, a lower more uniform change in wound bloodflow and a uniform well healed wound with an architecturally normal epidermis. In addition, we found that a low protease wound environment is associated with higher levels of the angiogenic factor VEGF, a higher wound bloodflow throughout the wound healing period and a more chaotic, hypercellular, overkeratinised, and chaotic thickened epidermis.
Mitsui, Shinichi; Yamaguchi, Nozomi; Osako, Yoji; Yuri, Kazunari
2007-03-09
Motopsin (PRSS12) is a mosaic protease expressed in the central nervous system. Truncation of the human motopsin gene causes nonsyndromic mental retardation. Understanding the enzymatic properties and localization of motopsin protein in the central nervous system will help identify the molecular mechanism by which the loss of motopsin function causes mental retardation. Recombinant motopsin showed amidolytic activity against the synthetic substrate benzyloxycarbonyl-l-phenylalanyl-l-arginine 4-methyl-coumaryl-7-amide. Motopsin activated the single-chain tissue plasminogen activator precursor and exhibited gelatinolytic activity. This enzymatic activity was inhibited by typical serine protease inhibitors such as aprotinin, leupeptin, and (4-amidinophenyl) methanesulfonyl fluoride. Immunocytochemistry using anti-motopsin IgG revealed that both human and mouse motopsin proteins were distributed in discrete puncta along the dendrites and soma as well as axons in cultured hippocampal neurons. In the limbic system, including the cingulate and hippocampal pyramidal neurons and piriform cortex, high level of motopsin protein was expressed at postnatal day 10, but a very low level at 10-week-old mice. Motopsin and tissue plasminogen activator were co-expressed in the cingulate pyramidal neurons at postnatal day 10 and were distributed along dendrites of cultured pyramidal neurons. In cranial nuclei, a moderate level of motopsin protein was detected independently on the developmental stage. Our results suggest that motopsin has multiple functions, such as axon outgrowth, arranging perineuronal environment, and maintaining neuronal plasticity, partly in coordination with other proteases including tissue plasminogen activator.
van der Post, Sjoerd; Subramani, Durai B.; Bäckström, Malin; Johansson, Malin E. V.; Vester-Christensen, Malene B.; Mandel, Ulla; Bennett, Eric P.; Clausen, Henrik; Dahlén, Gunnar; Sroka, Aneta; Potempa, Jan; Hansson, Gunnar C.
2013-01-01
The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation. PMID:23546879
Herasse, M; Ono, Y; Fougerousse, F; Kimura, E; Stockholm, D; Beley, C; Montarras, D; Pinset, C; Sorimachi, H; Suzuki, K; Beckmann, J S; Richard, I
1999-06-01
Calpain 3 is a nonlysosomal cysteine protease whose biological functions remain unknown. We previously demonstrated that this protease is altered in limb girdle muscular dystrophy type 2A patients. Preliminary observations suggested that its gene is subjected to alternative splicing. In this paper, we characterize transcriptional and posttranscriptional events leading to alterations involving the NS, IS1, and IS2 regions and/or the calcium binding domains of the mouse calpain 3 gene (capn3). These events can be divided into three groups: (i) splicing of exons that preserve the translation frame, (ii) inclusion of two distinct intronic sequences between exons 16 and 17 that disrupt the frame and would lead, if translated, to a truncated protein lacking domain IV, and (iii) use of an alternative first exon specific to lens tissue. In addition, expression of these isoforms seems to be regulated. Investigation of the proteolytic activities and titin binding abilities of the translation products of some of these isoforms clearly indicated that removal of these different protein segments affects differentially the biochemical properties examined. In particular, removal of exon 6 impaired the autolytic but not fodrinolytic activity and loss of exon 16 led to an increased titin binding and a loss of fodrinolytic activity. These results are likely to impact our understanding of the pathophysiology of calpainopathies and the development of therapeutic strategies.
Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas
2017-03-01
To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mast Cell Proteases as Protective and Inflammatory Mediators
Caughey, George H.
2014-01-01
Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them—notably tryptases and chymases—are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms, and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptides like endothelin and neurotensin during septic peritonitis, and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence non-mast cell proteases, such as by activating matrix metalloproteinase cascades, which are important in responses to infection and resolution of tissue injury. Overall, mast cell proteases have a variety of roles—inflammatory and anti-inflammatory, protective and deleterious—in keeping with the increasingly well-appreciated contributions of mast cells in allergy, tissue homeostasis, and innate immunity. PMID:21713659
Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia
2012-01-01
Background Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced occlusion of the middle cerebral artery in rats, a model of transient and unilateral cerebral ischemia. Methods Male Sprague-Dawley rats were used. RT-PCR, immunohistochemistry and protease activity assays were performed at different time points, lasting from 2 h to 7 days after cerebral ischemia. The effect of protease inhibitors on ischemia-dependent infarct volumes was quantified 7 days post middle cerebral artery occlusion. Statistical analysis was conducted using the t-test. Results Qualitative RT-PCR revealed these proteases in ipsilateral and contralateral cortices. Dipeptidyl peptidase II and aminopeptidase N were up-regulated ipsilaterally from 6 h to 7 days post ischemia, whereas dipeptidyl peptidase 9 and cytosolic alanyl-aminopeptidase were transiently down-regulated at day 3. Dipeptidyl peptidase 8 and aminopeptidase N immunoreactivities were detected in cortical neurons of the contralateral hemisphere. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were identified in activated microglia and macrophages in the ipsilateral cortex. Seven days post artery occlusion, dipeptidyl peptidase IV immunoreactivity was found in the perikarya of surviving cortical neurons of the ipsilateral hemisphere, whereas their nuclei were dipeptidyl peptidase 8- and amino peptidase N-positive. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were targeted in astroglial cells. Total dipeptidyl peptidase IV, 8 and 9 activities remained constant in both hemispheres until day 3 post experimental ischemia, but were increased (+165%) in the ipsilateral cortex at day 7. In parallel, aminopeptidase N and cytosolic alanyl-aminopeptidase activities remained unchanged. Conclusions Distinct expression, localization and activity patterns of proline- and alanine-specific proteases indicate their involvement in ischemia-triggered inflammation and neurodegeneration. Consistently, IPC1755, a non-selective protease inhibitor, revealed a significant reduction of cortical lesions after transient cerebral ischemia and may suggest dipeptidyl peptidase IV, aminopeptidase N and proteases with similar substrate specificity as potentially therapy-relevant targets. PMID:22373413
Mast cell proteases as protective and inflammatory mediators.
Caughey, George H
2011-01-01
Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor F(c)εRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them, notably tryptases and chymases, are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the "rubor" component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptideslike endothelin and neurotensin during septic peritonitis and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence nonmast cell proteases, such as by activating matrix metalloproteinase cascades, which are important in responses to infection and resolution of tissue injury. Overall, mast cell proteases have a variety of roles, inflammatory and anti-inflammatory, protective and deleterious, in keeping with the increasingly well-appreciated contributions of mast cells in allergy, tissue homeostasis and innate immunity.
Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M
2017-03-27
Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.
Human High Temperature Requirement Serine Protease A1 (HTRA1) Degrades Tau Protein Aggregates*
Tennstaedt, Annette; Pöpsel, Simon; Truebestein, Linda; Hauske, Patrick; Brockmann, Anke; Schmidt, Nina; Irle, Inga; Sacca, Barbara; Niemeyer, Christof M.; Brandt, Roland; Ksiezak-Reding, Hanna; Tirniceriu, Anca Laura; Egensperger, Rupert; Baldi, Alfonso; Dehmelt, Leif; Kaiser, Markus; Huber, Robert; Clausen, Tim; Ehrmann, Michael
2012-01-01
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed. PMID:22535953
Addiction, Adolescence, and Innate Immune Gene Induction
Crews, Fulton T.; Vetreno, Ryan Peter
2011-01-01
Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837
Alici, Esma Hande; Arabaci, Gulnur
2018-03-27
In this study, a protease enzyme was purified from strawberry by using Sepharose-4B-l-tyrosine-p-amino benzoic acid affinity chromatography. The molecular weight of pure protease was determined 65.8 kDa by SDS-PAGE. The single band observed on the gel showed that the enzyme had a single polypeptide chain and was successfully purified. Purification of the protease by the chromatographic method resulted in a 395.6-fold increase in specific activity (3600 U/mg). Optimum pH and temperature for the enzyme were 6 and 40 °C, respectively. The protease was stable at a wide temperature range of 40 to 70 °C and a pH range of 3.0 to 9.0. Co 2+ ions stimulated protease activity very strongly. Cu 2+ , Hg 2+ , Cd 2+ and Mn 2+ ions significantly inhibited protease activity. While 2-propanol completely inhibited the enzyme, the enzyme maintained its activity better in the presence of ethanol and methanol. The strawberry protease showed the highest specificity towards hemoglobin among all the natural substrates tested. The specificity of the enzyme towards synthetic substrates was also investigated and it was concluded that it has broad substrate specificity. The obtained results indicated that this purified protease was highly-likely a serine protease and its activity was significantly affected by the presence of metal ions. Copyright © 2018. Published by Elsevier B.V.
Broeren, Mathijs G A; Di Ceglie, Irene; Bennink, Miranda B; van Lent, Peter L E M; van den Berg, Wim B; Koenders, Marije I; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; van de Loo, Fons A J
2018-01-01
Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.
Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur
2016-01-01
Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053
Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur
2016-01-01
Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.
Arnold, Kelly B; Burgener, Adam; Birse, Kenzie; Romas, Laura; Dunphy, Laura J; Shahabi, Kamnoosh; Abou, Max; Westmacott, Garrett R; McCorrister, Stuart; Kwatampora, Jessie; Nyanga, Billy; Kimani, Joshua; Masson, Lindi; Liebenberg, Lenine J; Abdool Karim, Salim S; Passmore, Jo-Ann S; Lauffenburger, Douglas A; Kaul, Rupert; McKinnon, Lyle R
2016-01-01
Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1β (interleukin-1β), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.
de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia
2015-01-01
Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538
Purification and characterization of a serine protease (CESP) from mature coconut endosperm
Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath
2009-01-01
Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537
Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca
2013-01-01
To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545
2012-01-01
Background Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies. PMID:22857656
Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin
2015-01-01
Background Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. Methods We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Results Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. Conclusions PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma. PMID:26658828
Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin; Cameron, Lisa; Vliagoftis, Harissios
2015-01-01
Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.
2011-01-01
Background Wheat grains accumulate a variety of low molecular weight proteins that are inhibitors of alpha-amylases and proteases and play an important protective role in the grain. These proteins have more balanced amino acid compositions than the major wheat gluten proteins and contribute important reserves for both seedling growth and human nutrition. The alpha-amylase/protease inhibitors also are of interest because they cause IgE-mediated occupational and food allergies and thereby impact human health. Results The complement of genes encoding alpha-amylase/protease inhibitors expressed in the US bread wheat Butte 86 was characterized by analysis of expressed sequence tags (ESTs). Coding sequences for 19 distinct proteins were identified. These included two monomeric (WMAI), four dimeric (WDAI), and six tetrameric (WTAI) inhibitors of exogenous alpha-amylases, two inhibitors of endogenous alpha-amylases (WASI), four putative trypsin inhibitors (CMx and WTI), and one putative chymotrypsin inhibitor (WCI). A number of the encoded proteins were identical or very similar to proteins in the NCBI database. Sequences not reported previously included variants of WTAI-CM3, three CMx inhibitors and WTI. Within the WDAI group, two different genes encoded the same mature protein. Based on numbers of ESTs, transcripts for WTAI-CM3 Bu-1, WMAI Bu-1 and WTAI-CM16 Bu-1 were most abundant in Butte 86 developing grain. Coding sequences for 16 of the inhibitors were unequivocally associated with specific proteins identified by tandem mass spectrometry (MS/MS) in a previous proteomic analysis of milled white flour from Butte 86. Proteins corresponding to WDAI Bu-1/Bu-2, WMAI Bu-1 and the WTAI subunits CM2 Bu-1, CM3 Bu-1 and CM16 Bu-1 were accumulated to the highest levels in flour. Conclusions Information on the spectrum of alpha-amylase/protease inhibitor genes and proteins expressed in a single wheat cultivar is central to understanding the importance of these proteins in both plant defense mechanisms and human allergies and facilitates both breeding and biotechnology approaches for manipulating the composition of these proteins in plants. PMID:21774824
Ximénez-Embún, Miguel G; Glas, Joris J; Ortego, Felix; Alba, Juan M; Castañera, Pedro; Kant, Merijn R
2017-12-01
Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.
Akhavan Sepahy, Abbas; Jabalameli, Leila
2011-01-01
Soil samples of Tehran jungle parks were screened for proteolytic Bacilli. Among eighteen protease producers one of the isolates obtained from Lavizan park, in north east of Tehran, was selected for further experimental studies. This isolate was identified as Bacillus sp. strain CR-179 based on partial sequencing of 16S rRNA. Various nutritional and environmental parameters affected protease production by Bacillus sp. strain CR-179. Protease production by this Bacillus cultivated in liquid cultures reached a maximum at 24 h, with levels of 340.908 U/mL. Starch and maltose were the best substrates for enzyme production while some pure sugars such as fructose, glucose, and sucrose could not influence production of protease. Among various organic nitrogen sources corn steep liquor, which is commercial, was found as the best substrate followed by yeast extract, whey protein, and beef extract. The optimal pH and optimal temperature of enzyme production were 8.0 and 45°C, respectively. Studies on enzymatic characterization revealed that crude protease showed maximum activity at pH 9.0 and 60°C, which is indicating the enzyme to be thermoalkaline protease. PMID:22191016
Li, Yan; Loh, Ying Ru; Hung, Alvin W; Kang, CongBao
2018-06-21
Zika virus (ZIKV) protease is a two-component complex in which NS3 contains the catalytic triad and NS2B cofactor region is important for protease folding and activity. A protease construct-eZiPro without the transmembrane domains of NS2B was designed. Structural study on eZiPro reveals that the Thr-Gly-Lys-Arg (TGKR) sequence at the C-terminus of NS2B binds to the active site after cleavage. The bZiPro construct only contains NS2B cofactor region and the N-terminus of NS3 without any artificial linker or protease cleavage site, giving rise to an empty pocket accessible to substrate and inhibitor binding. Herein, we demonstrate that the TGKR sequence of NS2B in eZiPro is dynamic. Peptides from NS2B with various lengths exhibit different binding affinities to bZiPro. TGKR binding to the active site in eZiPro does not affect protease binding to small-molecule compounds. Our results suggest that eZiPro will also be useful for evaluating small-molecule protease inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Proteolytic-antiproteolytic balance and its regulation in carcinogenesis
Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw
2005-01-01
Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari
Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleavemore » the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.« less
Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria.
Sessenwein, Jessica L; Baker, Corey C; Pradhananga, Sabindra; Maitland, Megan E; Petrof, Elaine O; Allen-Vercoe, Emma; Noordhof, Curtis; Reed, David E; Vanner, Stephen J; Lomax, Alan E
2017-11-29
Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K + currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain. SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain. Copyright © 2017 the authors 0270-6474/17/3711758-11$15.00/0.
Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.
2013-01-01
Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526
Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen
2017-01-01
Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21’s activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening. PMID:28179567
Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S
2013-12-01
Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.
Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen
2017-02-28
Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.
Lucas, Jared M.; Heinlein, Cynthia; Kim, Tom; Hernandez, Susana A.; Malik, Muzdah S.; True, Lawrence D.; Morrissey, Colm; Corey, Eva; Montgomery, Bruce; Mostaghel, Elahe; Clegg, Nigel; Coleman, Ilsa; Brown, Christopher M.; Schneider, Eric L.; Craik, Charles; Simon, Julian; Bedalov, Tony; Nelson, Peter S.
2014-01-01
TMPRSS2 is an androgen-regulated cell surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastasis. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-Met receptor tyrosine kinase signaling, and initiated a pro-invasive EMT phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling programs and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. PMID:25122198
The multiple functions of plant serine protease inhibitors
Giri, Ashok P; Kaur, Harleen; Baldwin, Ian T
2011-01-01
Plant protease inhibitors (PIs) are a diverse group of proteins which have been intensely investigated due to their potential function in protecting plants against herbivorous insects by inhibiting digestive proteases. Although this mechanism has been well documented for a number of single PIs and their target enzymes, whether this mechanism protects plants in nature remains unclear. Moreover, many plants express a number of different PIs and it was unknown if these proteins work synergistically as defenses or if they also have other functions. We recently identified four serine PIs (SPI) of Solanum nigrum and demonstrated that they differ substantially in substrate specificity, accumulation patterns, and their effect against different natural herbivorous insects in field- and glasshouse experiments. These differences suggest that SPIs have at least partially diversified to provide protection against different attackers. Although we could not detect effects on plant development or growth when silencing SPIs, gene- and tissue-specific expression patterns suggest multiple functions in generative tissues, including a possible involvement in development. PMID:22004998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es; Castello, Alfredo; Carrasco, Luis
Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of proteasemore » fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.« less
Multiple roles of the coagulation protease cascade during virus infection.
Antoniak, Silvio; Mackman, Nigel
2014-04-24
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Lin, Connie B; Chen, Nannan; Scarpa, Richard; Guan, Fei; Babiarz-Magee, Laura; Liebel, Frank; Li, Wen-Hwa; Kizoulis, Menas; Shapiro, Stanley; Seiberg, Miri
2008-04-01
The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.
Cooper, K W; Baneyx, F
2001-03-01
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site. Copyright 2001 Academic Press.
Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai
2017-09-01
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a resu...
Hou, Ming-Zhe; Shen, Guang-Mao; Wei, Dong; Li, Ya-Li; Dou, Wei; Wang, Jin-Jun
2014-01-01
The oriental fruit fly Bactrocera dorsalis (Hendel) causes devastating losses to agricultural crops world-wide and is considered to be an economically important pest. Little is known about the digestive enzymes such as serine proteases (SPs) in B. dorsalis, which are important both for energy supply and mitigation of fitness cost associated with insecticide tolerance. In this study, we identified five SP genes in the midgut of B. dorsalis, and the alignments of their deduced amino acid sequences revealed the presence of motifs conserved in the SP superfamily. Phylogenetic analyses with known SPs from other insect species suggested that three of them were trypsin-like proteases. Analyses of the expression profiles among the different developmental stages showed that all five genes were most abundant in larvae than in other stages. When larvae were continuously fed on diet containing 0.33 μg/g β-Cypermethrin, expression of all five genes were upregulated in the midgut but the larval development was delayed. Biochemical assays were consistent with the increased protease activity exhibited by SPs in the midgut after treatment with β-Cypermethrin. Taken together, these findings provide evidence for the hypothesis that enhanced SP activity may play an indirect role in relieving the toxicity stress of insecticide in B. dorsalis. PMID:24566149
McNeel, Anthony K; Cushman, Robert A; Vallet, Jeffrey L
2013-06-01
The process of placental separation is not completely understood. In domestic animals, especially cattle, it is important that expulsion of the fetal membranes takes place in a timely manner in order to achieve maximal reproductive efficiency. The activity of the matrix-metalloprotease (MMP) family of proteases is known to be reduced in placentomes from cases of retained placenta. Members of the MMP family are known to be activated by the plasminogen activator (PA) family of proteases. We hypothesized that the expression and activity of the PA family increase in the cotyledon and/or caruncle as parturition approaches, with maximal expression and activity at parturition. To test this hypothesis, we performed reverse-transcriptase quantitative PCR and plasminogen-casein zymography to detect the presence and activity of PA family members in the placentome leading up to and during parturition in spontaneous and dexamethasone-induced parturient ewes. The results from our experiments indicated that serine proteases inhibitor E1 (SERPINE1) mRNA abundance in the cotyledon was different between treatment groups (P = 0.0002). In the caruncle, gene expression for plasminogen activator urokinase-type (PLAU) was different (P = 0.0154), and there was a strong trend for differences in SERPINE1 expression (P = 0.0565). These results demonstrate that expression of the PA system in the placentome changes from late pregnancy to parturition, and the presence or activity of these enzymes may occur after fetal expulsion.
Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi.
Sun, Yu-Xuan; Zhu, Bao-Jian; Tang, Lin; Sun, Yu; Chen, Chen; Nadeem Abbas, Muhammad; Wang, Lei; Qian, Cen; Wei, Guo-Qing; Liu, Chao-Liang
2017-11-01
Cathepsins are key members of mammalian papain-like cysteine proteases that play an important role in the immune response. In this study, a fragment of cDNA encoding cathepsin O proteinase (ApCathepsin O) was cloned from Antheraea pernyi. It contains an open reading frame of 1170bp and encodes a protein with 390 amino acid residues, including a conserved I29 inhibitor domain and a peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) domain. Comparison with other previously reported cathepsin O proteins showed identity ranging from 45% to 79%. Quantitative real-time PCR (qRT-PCR) and Western blot analysis revealed that ApCathepsin O was highly expressed in the fat body; furthermore, the high expression during the pupal stage indicated that it might be involved during metamorphosis. After exposure to four different heat-killed pathogens (Escherichia coli, Beauveria bassiana, Micrococcus luteus, and A. pernyi nucleopolyhedrovirus), the expression levels of ApCathepsin O mRNA significantly increased and showed variable expression patterns. This indicates that ApCathepsin O is potentially involved in the innate immune system of A. pernyi. Interestingly, ApCathepsin O expression was upregulated after 20-hydroxyecdysone (20E) injection, which suggested that it might be regulated by 20E. In conclusion, ApCathepsin O is a protease that may play an important role in the innate immune response and metamorphosis of A. pernyi. Copyright © 2017. Published by Elsevier Inc.
Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John
2017-01-09
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mendoza-Palomares, Carlos; Biteau, Nicolas; Giroud, Christiane; Coustou, Virginie; Coetzer, Theresa; Authié, Edith; Boulangé, Alain; Baltz, Théo
2008-01-01
Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for Trypanosoma congolense. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to T. congolense. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCBc1 to TcoCBc5 and TcoCBc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBs7 to TcoCBs13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCBc1 to TcoCBc5 and the TcoCBs7 to TcoCBs13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCBc1 and TcoCBc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCBc1 behaved as an endopeptidase. TcoCBc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBs12 did not automature in vitro, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. In vivo inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor) demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for T. congolense diagnosis. PMID:18281598
Miandare, Hamed Kolangi; Mirghaed, Ali Taheri; Hosseini, Marjan; Mazloumi, Nastaran; Zargar, Ashkan; Nazari, Sajad
2017-11-01
Pacific white shrimp Litopenaeus vannamei (Boone, 1931) is an important economical shrimp species worldwide, especially in the Middle East region, and farming activities of this species have been largely affected by diseases, mostly viral and bacterial diseases. Scientists have started to use prebiotics for bolstering the immune status of the animal. This study aimed to investigate the influence of Immunogen ® on growth, digestive enzyme activity and immune related gene expression of Litopenaeus vannamei post-larvae. All post-larvae were acclimated to the laboratory condition for 14 days. Upon acclimation, shrimps were fed on different levels of Immunogen ® (0, 0.5, 1 and 1.5 g kg -1 ) for 60 days. No significant differences were detected in weight gain, specific growth rate (SGR) and food conversion ratio (FCR) in shrimp post-larvae in which fed with different levels of Immunogen ® and control diet. The results showed that digestive enzymes activity including protease and lipase increased with different amounts of Immunogen ® in the shrimp diet. Protease activity increased with 1.5 g kg -1 Immunogen ® after 60 days and lipase activity increased with 1 and 1.5 g kg -1 Immunogen ® after 30 and 60 days of the trial respectively (P < 0.05), while amylase activity did not change in response to different levels of Immunogen ® (P > 0.05). The expression of immune related genes including, prophenoloxidase, crustin and g-type lysozyme increased with diet 1.5 g kg -1 Immunogen ® (P < 0.05) while expression of penaeidin gene increased only with experimental diet 1 g kg -1 of Immunogen ® . These results indicated that increase in digestive enzymes activity and expression of immune related genes could modulate the Immunogen ® in the innate immune system in L. vannamei in this study. Copyright © 2017. Published by Elsevier Ltd.
Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo
Galli, Stephen J.; Tsai, Mindy; Marichal, Thomas; Tchougounova, Elena; Reber, Laurent L.; Pejler, Gunnar
2016-01-01
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such “controversial” results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified. PMID:25727288
Mazdeh, Mehrdokht; Komaki, Alireza; Omrani, Mir Davood; Gharzi, Vajihe; Sayad, Arezou; Taheri, Mohammad; Ghafouri-Fard, Soudeh
2018-06-02
Beta-secretase 1 (BACE1) gene encodes a transmembrane protease from the peptidase A1 family of aspartic proteases whose role in the pathogenesis of Alzheimer's disease has been assessed. The enzymatic activity of BACE1 on several proteins implicated in epileptogenesis implies its role in the pathogenesis of epilepsy. In the present study, we assessed expression of BACE1 and its naturally occurring antisense (BACE1-AS) in peripheral blood of 40 epileptic patients and 40 age- and sex-matched healthy subjects. We did not detect either any difference in the expression of these genes between cases and controls or significant correlation between their expressions and participants' age. However, we demonstrated a significant correlation between expression levels of BACE1 and BACE1-AS which supports the previously suggested feed-forward mechanism of regulation between these two transcripts. Future studies in larger sample sizes are needed to elaborate the function of BACE1 in epilepsy.
Liu, G T; Shen, C; Ren, X H; Yang, L; Yu, Y M; Xiu, Y X; Li, R H; Jiang, L; Zhang, C L; Li, Y W
2017-01-01
Esophageal squamous cell carcinoma is the most common type of esophageal cancer in Eastern Europe and Asia, being the 6th most common cause of cancer deaths worldwide. The aim of this study was to analyze the expression of transmembrane serine protein in esophageal squamous cell carcinoma, and to correlate it with the clinical biological features of esophageal cancer. The expression of transmembrane protease serine 4 (TMPRSS4) mRNA and protein in carcinoma tissues and corresponding adjacent tissues and non-tumorous esophageal tissues was determined using PCR (qRT-PCR). The results show that both TMPRSS4 mRNA and protein expression were remarkably lower in adjacent normal tissues than in tumorous tissues. TMPRSS4 protein expression in esophageal carcinoma was correlated with patient demographic characteristics, tumor type, high TNM stages and overall survival (OS). Based on the experimental results, we conclude that TMPRSS4 is closely related to the occurrence, development and metastasis of esophageal squamous cell carcinoma.
Devaraja, S; Nagaraju, S; Mahadeswaraswamy, Y H; Girish, K S; Kemparaju, K
2008-07-01
Despite the long history [Kaiser, E., 1956. Enzymatic activity of spider venoms. In: Buckley, E.E., Porges, N. (Eds.), Venoms. American Association for the Advancement of Science, Washington, DC, pp. 91-93] on proteolytic activity, no study so far claims the isolation of a serine protease from the spider venom/venom gland extract. Therefore, the present study describes the isolation and characterization of a low molecular weight serine protease from Hippasa agelenoides venom gland extract. The protease (Hag-protease) was purified to homogeneity using the combination of gel-permeation and ion-exchange chromatography. The molecular mass was found to be 16.350 kDa by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Hag-protease was optimally active at pH 7.5 and temperature of 37 degrees C. PMSF abolished the enzyme activity while EDTA, EGTA, IAA, 1, 10-phenanthrolene did not. It hydrolyzed proteins such as casein, fibronectin and collagen type-I dose dependently but did not degrade gelatin and collagen type-IV. The isolated protease was non-lethal and devoid of hemorrhagic, myotoxic and edema forming activities. The light microscopy of Hag-protease treated skin tissue sections at the site of injection showed extensive damage of extracellular matrix (ECM) of hypodermis without causing any damage to blood vessels and capillaries. Similar damage of ECM of muscle tissue sections without affecting myocytes was noticed. Hag-protease was found to be procoagulant in property when studied plasma recalcification time.
Elias, Camila G R; Chagas, Michel G; Souza-Gonçalves, Ana Luiza; Pascarelli, Bernardo M O; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S
2012-01-01
Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules. Copyright © 2011 Elsevier Inc. All rights reserved.
Neuhaus, Jochen; Schiffer, Eric; Mannello, Ferdinando; Horn, Lars-Christian; Ganzer, Roman; Stolzenburg, Jens-Uwe
2017-05-04
Previously, we described prostate cancer (PCa) detection (83% sensitivity; 67% specificity) in seminal plasma by CE-MS/MS. Moreover, advanced disease was distinguished from organ-confined tumors with 80% sensitivity and 82% specificity. The discovered biomarkers were naturally occurring fragments of larger seminal proteins, predominantly semenogelin 1 and 2, representing endpoints of the ejaculate liquefaction. Here we identified proteases putatively involved in PCa specific protein cleavage, and examined gene expression and tissue protein levels, jointly with cell localization in normal prostate (nP), benign prostate hyperplasia (BPH), seminal vesicles and PCa using qPCR, Western blotting and confocal laser scanning microscopy. We found differential gene expression of chymase (CMA1), matrix metalloproteinases (MMP3, MMP7), and upregulation of MMP14 and tissue inhibitors (TIMP1 and TIMP2) in BPH. In contrast tissue protein levels of MMP14 were downregulated in PCa. MMP3/TIMP1 and MMP7/TIMP1 ratios were decreased in BPH. In seminal vesicles, we found low-level expression of most proteases and, interestingly, we also detected TIMP1 and low levels of TIMP2. We conclude that MMP3 and MMP7 activity is different in PCa compared to BPH due to fine regulation by their inhibitor TIMP1. Our findings support the concept of seminal plasma biomarkers as non-invasive tool for PCa detection and risk stratification.
Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier
2010-06-01
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.
Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.
Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674
Ronza, P; Cao, A; Robledo, D; Gómez-Tato, A; Álvarez-Dios, J A; Hasanuzzaman, A F M; Quiroga, M I; Villalba, A; Pardo, B G; Martínez, P
2018-04-18
European flat oyster (Ostrea edulis) production has suffered a severe decline due to bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute inflammatory response frequently leading to death. We used an immune-enriched oligo-microarray to understand the haemocyte response to Bonamia ostreae by comparing expression profiles between naïve (NS) and long-term affected (AS) populations along a time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, which might be indicative of selection for resistance. No regulated genes were detected at 30 d in both populations while a notable reactivation was observed at 90 d, suggesting parasite latency during infection. Genes related to extracellular matrix and protease inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, might play an important role along the infection. Twenty-four candidate genes related to resistance should be further validated for selection programs aimed to control bonamiosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Cell adhesion molecules in context
2011-01-01
Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration and process extension. CAMs are also known to serve as substrates for proteases that can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors. PMID:20948304
Ricci, Annalisa; Coppo, Erika; Barbieri, Ramona; Debbia, Eugenio A; Marchese, Anna
2017-04-01
Rifaximin, a topical derivative of rifampin, inhibited urease production and other virulence factors at sub-MIC concentrations in strains involved in hepatic encephalopathy and the expression of methicillin resistance in Staphylococcus aureus. In particular, urease production was affected in all Proteus mirabilis and Klebsiella pneumoniae strains as well as in all tested Pseudomonas aeruginosa isolates. Other exotoxins, synthesized by P. aeruginosa, such as protease, gelatinase, lipase, lecithinase and DNAse were also not metabolized in the presence of rifaximin. This antibiotic inhibited pigment production in both P. aeruginosa and Chromobacterium violaceum, a biosensor control strain. Lastly, rifaximin affected haemolysin production in S. aureus and was able to restore cefoxitin susceptibility when the strain was cultured in the presence of sub-MICs of the drug. The present findings confirm and extend previous observations about the beneficial effects of rifaximin for the treatment of gastrointestinal diseases, since in this anatomic site, it reaches a large array of concentrations which prevents enterobacteria from thriving and/or producing their major virulence factors.
Expression patterns of protein C inhibitor in mouse development.
Wagenaar, Gerry T M; Uhrin, Pavel; Weipoltshammer, Klara; Almeder, Marlene; Hiemstra, Pieter S; Geiger, Margarethe; Meijers, Joost C M; Schöfer, Christian
2010-02-01
Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis.
Insect response to plant defensive protease inhibitors.
Zhu-Salzman, Keyan; Zeng, Rensen
2015-01-07
Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.
Azad, Gajendra Kumar; Tomar, Raghuvir Singh
2016-06-01
The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M
2010-01-01
Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.
Rathore, Sumit; Sinha, Dipto; Asad, Mohd; Böttcher, Thomas; Afrin, Farhat; Chauhan, Virander S; Gupta, Dinesh; Sieber, Stephan A; Mohmmed, Asif
2010-08-01
The prokaryotic ATP-dependent protease machineries such as ClpQY and ClpAP in the malaria parasite may represent potential drug targets. In the present study, we show that the orthologue of cyanobacterial ClpP protease in Plasmodium falciparum (PfClpP) is expressed in the asexual blood stages and possesses serine protease activity. The PfClpP was localized in the apicoplast using a GFP-targeting approach, immunoelectron microscopy and by immunofluorescence assays. A set of cell permeable β-lactones, which specifically bind with the active site of prokaryotic ClpP, were screened using an in vitro protease assay of PfClpP. A PfClpP-specific protease inhibitor was identified in the screen, labelled as U1-lactone. In vitro growth of the asexual stage parasites was significantly inhibited by U1-lactone treatment. The U1-treated parasites showed developmental arrest at the late-schizont stage. We further show that the U1-lactone treatment resulted in formation of abnormal apicoplasts which were not able to grow and segregate in the parasite progeny; these effects were also evident by blockage in the replication of the apicoplast genome. Overall, our data show that the PfClpP protease has confirmed localization in the apicoplast and it plays important role in development of functional apicoplasts. © 2010 Blackwell Publishing Ltd.
The cysteine-rich domain regulates ADAM protease function in vivo.
Smith, Katherine M; Gaultier, Alban; Cousin, Helene; Alfandari, Dominique; White, Judith M; DeSimone, Douglas W
2002-12-09
ADAMs are membrane-anchored proteases that regulate cell behavior by proteolytically modifying the cell surface and ECM. Like other membrane-anchored proteases, ADAMs contain candidate "adhesive" domains downstream of their metalloprotease domains. The mechanism by which membrane-anchored cell surface proteases utilize these putative adhesive domains to regulate protease function in vivo is not well understood. We address this important question by analyzing the relative contributions of downstream extracellular domains (disintegrin, cysteine rich, and EGF-like repeat) of the ADAM13 metalloprotease during Xenopus laevis development. When expressed in embryos, ADAM13 induces hyperplasia of the cement gland, whereas ADAM10 does not. Using chimeric constructs, we find that the metalloprotease domain of ADAM10 can substitute for that of ADAM13, but that specificity for cement gland expansion requires a downstream extracellular domain of ADAM13. Analysis of finer resolution chimeras indicates an essential role for the cysteine-rich domain and a supporting role for the disintegrin domain. These and other results reveal that the cysteine-rich domain of ADAM13 cooperates intramolecularly with the ADAM13 metalloprotease domain to regulate its function in vivo. Our findings thus provide the first evidence that a downstream extracellular adhesive domain plays an active role in regulating ADAM protease function in vivo. These findings are likely relevant to other membrane-anchored cell surface proteases.
Kakizoe, Yutaka; Miyasato, Yoshikazu; Onoue, Tomoaki; Nakagawa, Terumasa; Hayata, Manabu; Uchimura, Kohei; Morinaga, Jun; Mizumoto, Teruhiko; Adachi, Masataka; Miyoshi, Taku; Sakai, Yoshiki; Tomita, Kimio; Mukoyama, Masashi; Kitamura, Kenichiro
2016-10-01
Emerging evidence has suggested that aldosterone has direct deleterious effects on the kidney independently of its hemodynamic effects. However, the detailed mechanisms of these direct effects remain to be elucidated. We have previously reported that camostat mesilate (CM), a synthetic serine protease inhibitor, attenuated kidney injuries in Dahl salt-sensitive rats, remnant kidney rats, and unilateral ureteral obstruction rats, suggesting that some serine proteases would be involved in the pathogenesis of kidney injuries. The current study was conducted to investigate the roles of serine proteases and the beneficial effects of CM in aldosterone-related kidney injuries. We observed a serine protease that was activated by aldosterone/salt in rat kidney lysate, and identified it as plasmin with liquid chromatography-tandem mass spectrometry. Plasmin increased pro-fibrotic and inflammatory gene expressions in rat renal fibroblast cells. CM inhibited the protease activity of plasmin and suppressed cell injury markers induced by plasmin in the fibroblast cells. Furthermore, CM ameliorated glomerulosclerosis and interstitial fibrosis in the kidney of aldosterone/salt-treated rats. Our findings indicate that plasmin has important roles in kidney injuries that are induced by aldosterone/salt, and that serine protease inhibitor could provide a new strategy for the treatment of aldosterone-associated kidney diseases in humans. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.
Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I
2016-12-01
The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.
Ramsay, Andrew J; Dong, Ying; Hunt, Melanie L; Linn, MayLa; Samaratunga, Hemamali; Clements, Judith A; Hooper, John D
2008-05-02
Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca(2+) flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1-1000 nM indicated that KLK4-induced Ca(2+) mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.
Ellis, Mark; Patel, Pareshkumar; Edon, Marjory; Ramage, Walter; Dickinson, Robert; Humphreys, David P
2017-01-01
Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD 600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017. © 2016 American Institute of Chemical Engineers.
Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod
2009-01-01
Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Graham, E-mail: gsimmons@bloodsystems.or; Bertram, Stephanie; Glowacka, Ilona
Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a proteasemore » essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.« less
Palmieri, Gianna; Bianco, Carmen; Cennamo, Giovanna; Giardina, Paola; Marino, Gennaro; Monti, Maria; Sannia, Giovanni
2001-01-01
A new extracellular protease (PoSl; Pleurotus ostreatus subtilisin-like protease) from P. ostreatus culture broth has been purified and characterized. PoSl is a monomeric glycoprotein with a molecular mass of 75 kDa, a pI of 4.5, and an optimum pH in the alkaline range. The inhibitory profile indicates that PoSl is a serine protease. The N-terminal and three tryptic peptide sequences of PoSl have been determined. The homology of one internal peptide with conserved sequence around the Asp residue of the catalytic triad in the subtilase family suggests that PoSl is a subtilisin-like protease. This hypothesis is further supported by the finding that PoSl hydrolysis sites of the insulin B chain match those of subtilisin. PoSl activity is positively affected by calcium. A 10-fold decrease in the Km value in the presence of calcium ions can reflect an induced structural change in the substrate recognition site region. Furthermore, Ca2+ binding slows PoSl autolysis, triggering the protein to form a more compact structure. These effects have already been observed for subtilisin and other serine proteases. Moreover, PoSl protease seems to play a key role in the regulation of P. ostreatus laccase activity by degrading and/or activating different isoenzymes. PMID:11375191
Protein quality control in organelles - AAA/FtsH story.
Janska, Hanna; Kwasniak, Malgorzata; Szczepanowska, Joanna
2013-02-01
This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.
Welsch, Christoph; Shimakami, Tetsuro; Hartmann, Christoph; Yang, Yan; Domingues, Francisco S.; Lengauer, Thomas; Zeuzem, Stefan; Lemon, Stanley M.
2011-01-01
Background & Aims It is a challenge to develop direct-acting antiviral agents (DAAs) that target the NS3/4A protease of hepatitis C virus (HCV) because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants. Methods We identified residues near the ketoamide-binding site in X-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype 1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection. Results Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell culture studies were consistent with this observation. Four variants (Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K). Conclusions Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the HCV protease NS3/4A sequences might affect susceptibility to first-generation DAAs. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants. PMID:22155364
Okamura, Masashi; Yokoyama, Naoaki; Takabatake, Noriyuki; Okubo, Kazuhiro; Ikehara, Yuzuru; Igarashi, Ikuo
2007-02-01
In the present study, we investigated the effects of protease pretreatments of host erythrocytes (RBC) on the in vitro growth of bovine Babesia parasites (Babesia bovis and B. bigemina) and equine Babesia parasites (B. equi and B. caballi). The selected proteases, trypsin and chymotrypsin, clearly modified several membrane proteins of both bovine and equine RBC, as demonstrated by SDS-PAGE analysis; however, the protease treatments also modified the sialic acid content exclusively in bovine RBC, as demonstrated by lectin blot analysis. An in vitro growth assay using the protease-treated RBC showed that the trypsin-treated bovine RBC, but not the chymotrypsin-treated ones, significantly reduced the growth of B. bovis and B. bigemina as compared to the control. In contrast, the growth of B. equi and B. caballi was not affected by any of these proteases. Thus, the bovine, but not the equine, Babesia parasites require the trypsin-sensitive membrane (sialoglyco) proteins to infect the RBC.
Generic protease detection technology for monitoring periodontal disease.
Zheng, Xinwei; Cook, Joseph P; Watkinson, Michael; Yang, Shoufeng; Douglas, Ian; Rawlinson, Andrew; Krause, Steffi
2011-01-01
Periodontal diseases are inflammatory conditions that affect the supporting tissues of teeth and can lead to destruction of the bone support and ultimately tooth loss if untreated. Progression of periodontitis is usually site specific but not uniform, and currently there are no accurate clinical methods for distinguishing sites where there is active disease progression from sites that are quiescent. Consequently, unnecessary and costly treatment of periodontal sites that are not progressing may occur. Three proteases have been identified as suitable markers for distinguishing sites with active disease progression and quiescent sites: human neutrophil elastase, cathepsin G and MMP8. Generic sensor materials for the detection of these three proteases have been developed based on thin dextran hydrogel films cross-linked with peptides. Degradation of the hydrogel films was monitored using impedance measurements. The target proteases were detected in the clinically relevant range within a time frame of 3 min. Good specificity for different proteases was achieved by choosing appropriate peptide cross-linkers.
Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir
2008-09-01
We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had an ORF of 1149bp encoding a protein of 383 aa organized into a signal peptide (29 aa), a pro-protein (79 aa) and a mature enzyme (275 aa). The deduced amino acid sequence inspection displays an important homology with other bacterial proteases. The highest homology of 98.1% was found with BPP-A protease from Bacillus pumilus MS-1, with only 8 aa of difference.
Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi
2005-12-01
Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.
Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal
2016-01-01
Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.
Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.
2012-01-01
Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801
García-Fernández, Rossana; Ziegelmüller, Patrick; González, Lidice; Mansur, Manuel; Machado, Yoan; Redecke, Lars; Hahn, Ulrich; Betzel, Christian; Chávez, María de Los Ángeles
2016-07-01
The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood
NASA Astrophysics Data System (ADS)
Yu, Johnson Chung Sing
Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.
Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae
2017-10-01
Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.
Infection of XC Cells by MLVs and Ebola Virus Is Endosome-Dependent but Acidification-Independent
Kamiyama, Haruka; Kakoki, Katsura; Yoshii, Hiroaki; Iwao, Masatomo; Igawa, Tsukasa; Sakai, Hideki; Hayashi, Hideki; Matsuyama, Toshifumi; Yamamoto, Naoki; Kubo, Yoshinao
2011-01-01
Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells. PMID:22022555
Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G.; von Pawel-Rammingen, Ulrich
2016-01-01
Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873
Dias, B.A.; Neves, P.M.O.J.; Furlaneto-Maia, L.; Furlaneto, M.C.
2008-01-01
A Brazilian isolate of Beauveria bassiana (CG425) that shows high virulence against the coffee berry borer (CBB) was examined for the production of subtilisin-like (Pr1) and trypsin-like (Pr2) cuticle-degrading proteases. Fungal growth was either in nitrate-medium or in CBB cuticle-containing medium under both buffered and unbuffered conditions. In unbuffered medium supplemented with cuticle, the pH of cultures dropped and Pr1 and Pr2 activities were detected in high amounts only at a pH of 5.5 or higher. In buffered cultures, Pr1 and Pr2 activities were higher in medium supplemented with cuticle compared to activities with nitrate-medium. The Pr1 and Pr2 activities detected were mostly in the culture supernatant. These data suggest that Pr1 and Pr2 proteases produced by strain CG425 are induced by components of CBB cuticle, and that the culture pH influences the expression of these proteases, indicating the occurrence of an efficient mechanism of protein secretion in this fungus. The results obtained in this study extend the knowledge about protease production in B. bassiana CG425, opening new avenues for studying the role of secreted proteases in virulence against the coffee berry borer during the infection process. PMID:24031220
High Milk-Clotting Activity Expressed by the Newly Isolated Paenibacillus spp. Strain BD3526.
Hang, Feng; Liu, Peiyi; Wang, Qinbo; Han, Jin; Wu, Zhengjun; Gao, Caixia; Liu, Zhenmin; Zhang, Hao; Chen, Wei
2016-01-12
Paenibacillus spp. BD3526, a bacterium exhibiting a protein hydrolysis circle surrounded with an obvious precipitation zone on skim milk agar, was isolated from raw yak (Bos grunniens) milk collected in Tibet, China. Phylogenetic analysis based on 16S rRNA and whole genome sequence comparison indicated the isolate belong to the genus Paenibacillus. The strain BD3526 demonstrated strong ability to produce protease with milk clotting activity (MCA) in wheat bran broth. The protease with MCA was predominantly accumulated during the late-exponential phase of growth. The proteolytic activity (PA) of the BD3526 protease was 1.33-fold higher than that of the commercial R. miehei coagulant. A maximum MCA (6470 ± 281 SU mL(-1)) of the strain BD3526 was reached under optimal cultivation conditions. The protease with MCA was precipitated from the cultivated supernatant of wheat bran broth with ammonium sulfate and purified by anion-exchange chromatography. The molecular weight of the protease with MCA was determined as 35 kDa by sodium dodecyl sulfate-polyacrylamide gels electrophoresis (SDS-PAGE) and gelatin zymography. The cleavage site of the BD3526 protease with MCA in κ-casein was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis.
Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried
2009-08-01
The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.
Blocking negative effects of senescence in human skin fibroblasts with a plant extract.
Lämmermann, Ingo; Terlecki-Zaniewicz, Lucia; Weinmüllner, Regina; Schosserer, Markus; Dellago, Hanna; de Matos Branco, André Dargen; Autheried, Dominik; Sevcnikar, Benjamin; Kleissl, Lisa; Berlin, Irina; Morizot, Frédérique; Lejeune, Francois; Fuzzati, Nicola; Forestier, Sandra; Toribio, Alix; Tromeur, Anaïs; Weinberg, Lionel; Higareda Almaraz, Juan Carlos; Scheideler, Marcel; Rietveld, Marion; El Ghalbzouri, Abdoel; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes
2018-01-01
There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris , which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.
Yuan, Zuoqing; Miao, Zili; Gong, Xiaoning; Zhao, Baoying; Zhang, Yuanyuan; Ma, Hongdou; Zhang, Jianyong; Zhao, Bosheng
2017-11-01
We investigated perfluorooctanoic acid (PFOA)-induced stress response in planarians. We administered different concentrations of PFOA to planarians for up to 10 d. PFOA exposure resulted in significant concentration-dependent elevations in lipid peroxidation, glutathione S-transferase and caspase-3 protease activities, and a significant decline in glutathione peroxidase activities compared with control groups. Exposure to PFOA significantly up-regulated the heat shock proteins hsp70 and hsp90, and p53, and down-regulated hsp40 compared with controls. PFOA exposure also increased HSP70 protein levels, as demonstrated by western blot analysis. These alterations indicated that PFOA exposure induced a stress response and affected the regulation of oxidative stress, enzymatic activities and gene expression. These results suggest that these sensitive parameters, together with other biomarkers, could be used for evaluating toxicity, for ecological risk assessment of PFOA in freshwaters. Copyright © 2017 Elsevier Inc. All rights reserved.
Barrera, Daniel; Valdecantos, Pablo A; García, E Vanesa; Miceli, Dora C
2012-02-01
The glycoprotein envelope surrounding the Bufo arenarum egg exists in different functional forms. Conversion between types involves proteolysis of specific envelope glycoproteins. When the egg is released from the ovary, the envelope cannot be penetrated by sperm. Conversion to a penetrable state occurs during passage through the pars recta portion of the oviduct, where oviductin, a serine protease with trypsin-like substrate specificity, hydrolyzes two kinds of envelope glycoproteins: gp84 and gp55. The nucleotide sequence of a 3203 bp B. arenarum oviductin cDNA was obtained. Deduced amino acid sequence showed a complete open reading frame encoding 980 amino acids. B. arenarum oviductin is a multi-domain protein with a protease domain at the N-terminal region followed by two CUB domains and toward the C-terminal region another protease domain, which lacked an active histidine site, and one CUB domain. Expression of ovochymase 2, the mammalian orthologous of amphibian oviductin, was assayed in mouse female reproductive tract. Ovochymase 2 mRNA was unnoticeable in the mouse oviduct but expression was remarkable in the uterus. Phylogenetic relationship between oviductin and ovochymase 2 opens the possibility to understand the role of this enzyme in mammalian reproduction.
Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica
2012-02-15
An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach. Copyright © 2011 Elsevier B.V. All rights reserved.
Vermeulen, C J; Sørensen, P; Kirilova Gagalova, K; Loeschcke, V
2013-09-01
In sexually reproducing species, increased homozygosity often causes a decline in fitness, called inbreeding depression. Recently, researchers started describing the functional genomic changes that occur during inbreeding, both in benign conditions and under environmental stress. To further this aim, we have performed a genome-wide gene expression study of inbreeding depression, manifesting as cold sensitivity and conditional lethality. Our focus was to describe general patterns of gene expression during inbreeding depression and to identify specific processes affected in our line. There was a clear difference in gene expression between the stressful restrictive environment and the benign permissive environment in both the affected inbred line and the inbred control line. We noted a strong inbreeding-by-environment interaction, whereby virtually all transcriptional differences between lines were found in the restrictive environment. Functional annotation showed enrichment of transcripts coding for serine proteases and their inhibitors (serpins and BPTI/Kunitz family), which indicates activation of the innate immune response. These genes have previously been shown to respond transcriptionally to cold stress, suggesting the conditional lethal effect is associated with an exaggerated cold stress response. The set of differentially expressed genes significantly overlapped with those found in three other studies of inbreeding depression, demonstrating that it is possible to detect a common signature across different genetic backgrounds. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Teixeira, Priscila Camillo; Velasquez, Leonardo Garcia; Lepique, Ana Paula; de Rezende, Eloiza; Bonatto, José Matheus Camargo; Barcinski, Marcello Andre; Cunha-Neto, Edecio; Stolf, Beatriz Simonsen
2015-01-01
Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania´s antigens. This work is the first to compare modifications in amastigotes’ proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression. PMID:25692783
Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C
2014-11-01
It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.
Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.
2017-01-01
Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395
Johnson, Jeff J.; Miller, Daniel L.; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R.; Stack, M. Sharon
2016-01-01
Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors. PMID:26839311
Johnson, Jeff J; Miller, Daniel L; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R; Stack, M Sharon
2016-03-25
Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hook, Gregory; Hook, Vivian; Kindy, Mark
2015-01-01
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740
Masked Chimeric Antigen Receptor for Tumor-Specific Activation.
Han, Xiaolu; Bryson, Paul D; Zhao, Yifan; Cinay, Gunce E; Li, Si; Guo, Yunfei; Siriwon, Natnaree; Wang, Pin
2017-01-04
Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Ahmad, Rafiq; Zuily-Fodil, Yasmine; Passaquet, Chantal; Bethenod, Olivier; Roche, Romain; Repellin, Anne
2014-08-01
Among the different classes of endoproteases, cysteine proteases are consistently associated with senescence, defense signaling pathways and cellular responses to abiotic stresses. The objectives of this work were to study the effects of various concentrations of ozone on gene expression and enzymatic activity for papain-like cysteine proteases (PLCPs), in the leaves of maize plants grown under field conditions. Leaves from ranks 12 and 10 (cob leaf) were harvested regularly over a long-term artificial ozone fumigation experiment (50 d). Tissues were tested for transcriptional and activity changes concerning cysteine proteases, using qRT-PCR for the newly identified ozone-responsive PLCP gene (Mor-CP) and synthetic oligopeptide Boc-Val-Leu-Lys-AMC as a PLCP-specific substrate, respectively. Results showed that developmental senescence induced a significant and progressive rise in CP activity, only in the older leaves 10 and had no effect on Mor-CP gene expression levels. On the other hand, ozone dramatically enhanced Mor-CP mRNA levels and global PLCP enzymatic activity in leaves 12 and 10, particularly toward the end of the treatment. Ozone impact was more pronounced in the older leaves 10. Together, these observations concurred to conclude that ozone stress enhances natural senescence processes, such as those related to proteolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Funkelstein, Lydiane; Lu, W. Douglas; Koch, Britta; Mosier, Charles; Toneff, Thomas; Taupenot, Laurent; O'Connor, Daniel T.; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian
2012-01-01
Proteases are required for processing precursors into active neuropeptides that function as neurotransmitters for cell-cell communication. This study demonstrates the novel function of human cathepsin V protease for producing the neuropeptides enkephalin and neuropeptide Y (NPY). Cathepsin V is a human-specific cysteine protease gene. Findings here show that expression of cathepsin V in neuroendocrine PC12 cells and human neuronal SK-N-MC cells results in production of (Met)enkephalin from proenkephalin. Gene silencing of cathepsin V by siRNA in human SK-N-MC cells results in reduction of (Met)enkephalin by more than 80%, illustrating the prominent role of cathepsin V for neuropeptide production. In vitro processing of proenkephalin by cathepsin V occurs at dibasic residue sites to generate enkephalin-containing peptides and an ∼24-kDa intermediate present in human brain. Cathepsin V is present in human brain cortex and hippocampus where enkephalin and NPY are produced and is present in purified human neuropeptide secretory vesicles. Colocalization of cathepsin V with enkephalin and NPY in secretory vesicles of human neuroblastoma cells was illustrated by confocal microscopy. Furthermore, expression of cathepsin V with proNPY results in NPY production. These findings indicate the unique function of human cathepsin V for producing enkephalin and NPY neuropeptides required for neurotransmission in health and neurological diseases. PMID:22393040
Butler, G S; Overall, C M
2007-01-01
We illustrate the use of quantitative proteomics, namely isotope-coded affinity tag labelling and tandem mass spectrometry, to assess the targets and effects of the blockade of matrix metalloproteinases by an inhibitor drug in a breast cancer cell culture system. Treatment of MT1-MMP-transfected MDA-MB-231 cells with AG3340 (Prinomastat) directly affected the processing a multitude of matrix metalloproteinase substrates, and indirectly altered the expression of an array of other proteins with diverse functions. Therefore, broad spectrum blockade of MMPs has wide-ranging biological consequences. In this human breast cancer cell line, secreted substrates accumulated uncleaved in the conditioned medium and plasma membrane protein substrates were retained on the cell surface, due to reduced processing and shedding of these proteins (cell surface receptors, growth factors and bioactive molecules) to the medium in the presence of the matrix metalloproteinase inhibitor. Hence, proteomic investigation of drug-perturbed cellular proteomes can identify new protease substrates and at the same time provides valuable information for target validation, drug efficacy and potential side effects prior to commitment to clinical trials.
Protease activity, localization and inhibition in the human hair follicle.
Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A
2014-02-01
In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen) and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (U.K., Brazil, China, first-generation Mexicans in the U.S.A., Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen and climbazole. This technology may have potential to reduce excessive hair shedding. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Lee, Yi-Nan; Yeh, Hung-I; Tian, Tin-Yi; Lu, Wen-Wei; Ko, Yu-Shien; Tsai, Cheng-Ho
2002-09-30
We examined the effect of 2',5'-dihydroxychalcone on connexin43 (Cx43) expression and gap-junctional communication in human umbilical vein endothelial cells (HUVEC). The result showed that expression of Cx43 is rapidly reduced by 2',5'-dihydroxychalcone in a dose-dependent manner, Concomitantly, the communication function, determined by fluorescence recovery after photobleaching (FRAP), is decreased. We further investigated whether the mitogen-activated protein (MAP) kinase and the degradation pathway of gap junctions are involved in these processes. Although the change of Cx43 is not affected by the level of fetal calf serum (FCS) used in the medium, activation of MAP kinase varies, depending on the FCS level. At a low level (0.5%), the chalcone inhibits the activation, like PD98059, a specific inhibitor of MAP kinase kinase. However, at a high level (20%), MAP kinase is activated. On the other hand, the chalcone's down-regulating effect on Cx43, while is totally blocked by protease inhibitors leupeptin and N-acetyl-leucyl-norleucinal (ALLN), persists in the presence of PD98059, We concluded that 2',5'-dihydroxychalcone down-regulates Cx43 expression and gap-junctional communication in the HUVEC via enhancement of the proteolysis pathway, and this compound possesses dual effects on MAP kinase activation.
Hackett, Fiona; Atid, Jonathan; Tan, Michele Ser Ying
2017-01-01
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. PMID:28683142
Balakrishnan, Meenakshi P; Cilenti, Lucia; Mashak, Zineb; Popat, Paiyal; Alnemri, Emad S; Zervos, Antonis S
2009-08-01
Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes.
Goel, Chhavi; Gaur, S N; Bhati, Gaurav; Arora, Naveen
2015-10-01
Cockroach proteases are important risk factors for asthma development in predisposed individuals. In the present study, effect of allergic status of patients on DCs polarization in response to protease allergen Per a 10 was investigated. Cockroach-allergic, other-allergic patients and healthy individuals were selected following the guidelines of ATS/ARIA. Monocyte-derived dendritic cells (DCs) were generated from the selected individuals and stimulated with Per a 10. Flow cytometric analysis showed a significantly high expression of CD80 and CD86 on DCs from cockroach-allergic patients after Per a 10 stimulation as compared to healthy individuals or other-allergic patients (P<0.05). Per a 10 induced comparable level of CD83 expression on DCs from all the 3 groups, showing it was irrespective of the allergic status. CD40 expression was significantly low (P<0.05) on the DCs from cockroach-allergic patients as compared to healthy individuals or other-allergic patients. Further, proteolytically active Per a 10 induced lower CD40 expression on DCs than the heat-inactivated Per a 10 (P<0.05) indicating role of protease activity in the generation of an immune response. The sCD40 level in active Per a 10 stimulated DC cultures was significantly higher than in heat-inactivated Per a 10 (P<0.05). There was two-fold decrease (P<0.05) in IL-12 production by active Per a 10-stimulated DCs than heat-inactivated Per a 10-stimulated DCs. Per a 10-stimulated DCs from cockroach-allergic patients secreted high levels of IL-5, IL-6, TNF-α than that from healthy individuals or other-allergic patients (P<0.05). Furthermore, Per a 10-stimulated DCs from cockroach-allergic patients induced increased secretions of IL-4, IL-5, IL-6, TNF-α and low IL-12 by T cells as compared to those from other groups (P<0.05). Thus, in presence of Per a 10 allergen, polarization of DCs shifts toward type 2 in cockroach-allergic patients but not in the healthy individuals or other-allergic patients. In conclusion, both allergic status of the individual and protease activity of Per a 10 are important parameters that participate in DCs polarization. Copyright © 2015 Elsevier GmbH. All rights reserved.
Skjoedt, Mikkel-Ole; Palarasah, Yaseelan; Rasmussen, Karina; Vitved, Lars; Salomonsen, Jan; Kliem, Anette; Hansen, Soren; Koch, Claus; Skjodt, Karsten
2010-01-01
The lectin complement pathway has important functions in vertebrate host defence and accumulating evidence of primordial complement components trace its emergence to invertebrate phyla. We introduce two putative mannose-binding lectin homologues (CioMBLs) from the urochordate species Ciona intestinalis. The CioMBLs display similarities with vertebrate MBLs and comprise a collagen-like region, alpha-helical coiled-coils and a carbohydrate recognition domain (CRD) with conserved residues involved in calcium and carbohydrate binding. Structural analysis revealed an oligomerization through interchain disulphide bridges between N-terminal cysteine residues and cysteines located between the neck region and the CRD. RT-PCR showed a tissue specific expression of CioMBL in the gut and by immunohistochemistry analysis we also demonstrated that CioMBL co-localize with an MBL-associated serine protease in the epithelia cells lining the stomach and intestine. In conclusion we present two urochordate MBLs and identify an associated serine protease, which support the concept of an evolutionary ancient origin of the lectin complement pathway.
PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.
Ray, Tanusree; Pal, Amit
2016-05-01
Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.
Schneider, Katharina S; Groß, Christina J; Dreier, Roland F; Saller, Benedikt S; Mishra, Ritu; Gorka, Oliver; Heilig, Rosalie; Meunier, Etienne; Dick, Mathias S; Ćiković, Tamara; Sodenkamp, Jan; Médard, Guillaume; Naumann, Ronald; Ruland, Jürgen; Kuster, Bernhard; Broz, Petr; Groß, Olaf
2017-12-26
Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 C284A , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 C284A , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis.
Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda
2014-10-01
Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Taborda, Natalia; Zapata-Builes, Wildeman; Montoya, Carlos; Rugeles, María Teresa
2012-09-01
The exposure to human immunodeficiency virus type 1 (HIV-1) does not always result in infection. Indeed, there are individuals who have been repeatedly exposed to HIV-1 but do not exhibit clinical or serological evidence of infection; they are known as HIV-exposed seronegative individuals (HESN). To determine if secretory leukocyte protease inhibitor (SLPI), a soluble factor secreted by epithelial cells lining mucosal surfaces that showed anti-HIV activity in vitro, was associated with natural resistance to HIV infection, we measured by real time RT-PCR the expression of SLPI in oral mucosa of a cohort of Colombian HESN, in chronically HIV-1-infected individuals and in healthy controls. The HESN expressed significantly higher levels of SLPI mRNA than healthy controls (p=0.033) and chronically infected subjects (p=0.011). These findings suggest an association between SLPI expression and the natural resistance to HIV-1 infection exhibited by our HESN cohort.
Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G
1998-10-13
Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.
Vassar, Robert; Kuhn, Peer-Hendrik; Haass, Christian; Kennedy, Matthew E; Rajendran, Lawrence; Wong, Philip C; Lichtenthaler, Stefan F
2014-07-01
The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease. © 2014 International Society for Neurochemistry.
N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness
Nothaft, Harald; Zheng, Jing
2013-01-01
Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522
Protease activity of Per a 10 potentiates Th2 polarization by increasing IL-23 and OX40L.
Agrawal, Komal; Kale, Sagar L; Arora, Naveen
2015-12-01
Proteases are implicated in exacerbation of allergic diseases. In this study, the role of proteolytic activity of Per a 10 was evaluated on Th2 polarization. Intranasal administration of Per a 10 in mice led to allergic airway inflammation as seen by higher IgE levels, cellular infiltration, IL-17A, and Th2 cytokines, whereas, inactive (Δ)Per a 10 showed attenuated response. There was an increased OX40L expression on lung and lymph node dendritic cells in Per a 10 immunized group and on Per a 10 stimulated BMDCs. Reduction in CD40 expression without any change at transcript level in lungs of Per a 10 immunized mice suggested CD40 cleavage. BMDCs pulsed with Per a 10 showed reduced CD40 expression with lower IL-12p70 secretion as compared to heat inactivated Per a 10. IL-23, TNF-α, and IL-6 levels were significantly higher in Per a 10 stimulated BMDCs supernatant. In DC-T cell coculture studies, Per a 10 pulsed BMDCs showed higher levels of IL-4 and IL-13 that were reduced on blocking of either IL-23 or OX40L. In conclusion, the data suggests a critical role of protease activity of Per a 10 in promoting Th2 polarization by increasing IL-23 secretion and OX40L expression on dendritic cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation.
Kim, Taeyoon; Loh, Y Peng
2006-02-01
Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation.
Protease Nexin-1 Promotes Secretory Granule Biogenesis by Preventing Granule Protein Degradation
Kim, Taeyoon; Loh, Y. Peng
2006-01-01
Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation. PMID:16319172
Yang, Xiaoxue; Cong, Hua; Song, Jinzhu; Zhang, Junzheng
2013-11-01
Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25-60 °C and pH 3.0-9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL(-1). In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.
2011-01-01
Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089
Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.
2012-01-01
Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases. PMID:22652201
Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro.
Bacha, Usman; Barrila, Jennifer; Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto
2004-05-04
SARS (severe acute respiratory syndrome) is caused by a newly discovered coronavirus. A key enzyme for the maturation of this virus and, therefore, a target for drug development is the main protease 3CL(pro) (also termed SARS-CoV 3CL(pro)). We have cloned and expressed in Escherichia coli the full-length SARS-CoV 3CL(pro) as well as a truncated form containing only the catalytic domains. The recombinant proteins have been characterized enzymatically using a fluorescently labeled substrate; their structural stability in solution has been determined by differential scanning calorimetry, and novel inhibitors have been discovered. Expression of the catalytic region alone yields a protein with a reduced catalytic efficiency consistent with the proposed regulatory role of the alpha-helical domain. Differential scanning calorimetry indicates that the alpha-helical domain does not contribute to the structural stability of the catalytic domains. Analysis of the active site cavity reveals the presence of subsites that can be targeted with specific chemical functionalities. In particular, a cluster of serine residues (Ser139, Ser144, and Ser147) was identified near the active site cavity and was susceptible to being targeted by compounds containing boronic acid. This cluster is highly conserved in similar proteases from other coronaviruses, defining an attractive target for drug development. It was found that bifunctional aryl boronic acid compounds were particularly effective at inhibiting the protease, with inhibition constants as strong as 40 nM. Isothermal titration microcalorimetric experiments indicate that these inhibitors bind reversibly to 3CL(pro) in an enthalpically favorable fashion, implying that they establish strong interactions with the protease molecule, thus defining attractive molecular scaffolds for further optimization.
Frey, María Eugenia; D'Ippolito, Sebastián; Pepe, Alfonso; Daleo, Gustavo Raúl; Guevara, María Gabriela
2018-05-01
The plant-specific insert of Solanum tuberosum aspartic proteases (StAP-PSI) has high structural similarity with NK-lysin and granulysin, two saposin-like proteins (SAPLIPs) with antimicrobial activity. Recombinant StAP-PSI and some SAPLIPs show antimicrobial activity against pathogens that affect human and plants. In this work, we transformed Arabidopsis thaliana plants with StAP-PSI encoding sequence with its corresponding signal peptide under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Results obtained show that StAP-PSI significantly enhances Arabidopsis resistance against Botrytis cinerea infection. StAP-PSI is secreted into the leaf apoplast and acts directly against pathogens; thereby complementing plant innate immune responses. Data obtained from real-time PCR assays show that the constitutive expression of StAP-PSI induces the expression of genes that regulate jasmonic acid signalling pathway, such as PDF1.2, in response to infection due to necrotrophic pathogens. On the other hand, according to the data described for other antimicrobial peptides, the presence of the StAP-PSI protein in the apoplast of A. thaliana leaves is responsible for the expression of salicylic acid-associated genes, such as PR-1, irrespective of infection with B. cinerea. These results indicate that the increased resistance demonstrated by A. thaliana plants that constitutively express StAP-PSI owing to B. cinerea infection compared to the wild-type plants is a consequence of two factors, i.e., the antifungal activity of StAP-PSI and the overexpression of A. thaliana defense genes induced by the constitutive expression of StAP-PSI. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the use of pesticides. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the spreading of resistance of agriculturally important pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rivera-Ciprian, José Pedro; Aceituno-Medina, Marysol; Guillen, Karina
2017-01-01
Abstract In this study, we examined the activity of two serine proteases (chymotrypsin and trypsin) and two metalloproteases (carboxypeptidases A and B) during larval development in Anastrepha obliqua fed natural (mango fruit) and artificial (formulation used in mass-rearing) diets. Proteolytic activity of chymotrypsin, trypsin, carboxypeptidase A, and carboxypeptidase B was detected in the midgut of different instars of A. obliqua and was strongly affected by the pH and diet type. The protein content of the natural and artificial diets was similar. Enzymatic activity was higher in the midgut of the larvae fed the natural diet than in larvae fed the artificial diet. The activity of the endopeptidases (chymotrypsin and trypsin) was lower than those of the exopeptidases (carboxypeptidases A and B). The pH of the midgut varied from acidic to neutral. The results indicate that in the midgut of the larvae reared on both types of diet, the level of carboxypeptidase activity was approximately 100-fold greater than the level of chymotrypsin activity and 10,000-fold greater than the level of trypsin. In conclusion, carboxypeptidase A and B are the main proteases involved in the digestion of proteins in the larvae of A. obliqua. The natural diet showed a high bioaccessibility. A clear tendency to express high activities of chymotrypsin and trypsin was observed by the third instar. Our research contributes to the planning and development of novel bioaccessibility assays to understand the nutrition processing of A. obliqua larvae under mass-rearing conditions for sterile insect technique.
Protease-activated receptor-2 (PAR(2)) in human periodontitis.
Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N
2010-09-01
No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.
Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong
2015-01-01
A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.
Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann
2014-01-17
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.
Faller, Nicolas; Gautschi, Ivan; Schild, Laurent
2014-01-01
Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.
Ibrahim, Ahmed Ragaa Nour; Kawamoto, Seiji; Aki, Tsunehiro; Shimada, Yayoi; Rikimaru, Satoshi; Onishi, Nobukazu; Babiker, Elfadil Elfadl; Oiso, Isao; Hashimoto, Kunihiko; Hayashi, Takaharu; Ono, Kazuhisa
2010-01-01
Japanese cedar (Cryptomeria japonica) pollen is a major cause of seasonal pollinosis in Japan. Protease activity in the pollen grains may trigger pro-allergic responses but no such proteases have yet been identified as pollen allergens. We report the molecular cloning and immunochemical characterization of a novel C. japonica pollen allergen belonging to the aspartic protease family. We focused on the C. japonica pollen allergen spot No. 63 (CPA63, 47.5% IgE binding frequency) on our 2-dimensional IgE immunoblot map. The internal amino acid sequences were determined using time-of-flight mass spectrometry. Full-length cpa63 cDNA was cloned by rapid amplification of cDNA ends (RACE)-PCR. Recombinant CPA63 (r-CPA63) was expressed using the baculovirus-insect cell culture system and its IgE binding capacity was analyzed by enzyme-linked immunosorbent assay (ELISA). The proteolytic activity of r-CPA63 was also assessed using a putative mature enzyme produced upon autolysis. cpa63 cDNA encoded a 472 amino acid polypeptide showing about 40% sequence identity to members of the plant atypical aspartic protease family. ELISA showed that r-CPA63 was recognized by IgE antibodies in the serum of 58% (18/31) of Japanese cedar pollinosis patients. We also demonstrated an aspartic protease-like enzyme activity of the putative mature r-CPA63. We have identified the first plant aspartic protease allergen from Japanese cedar pollen. The availability of the CPA63 sequence and its recombinant allergen production system are useful not only for pharmaceutical applications but also for further examination of the role of protease activity in the pathogenesis of cedar pollinosis. 2010 S. Karger AG, Basel.
Balasubramanian, Sivaraman A; Pye, David C; Willcox, Mark D P
2013-03-01
Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.
Schuhmann, Holger; Adamska, Iwona
2012-05-01
Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent serine endopeptidases found in almost every organism. Database searches revealed that 16 Deg paralogues are encoded by the genome of Arabidopsis thaliana, six of which were experimentally shown to be located in chloroplasts, one in peroxisomes, one in mitochondria and one in the nucleus. Two more Deg proteases are predicted to reside in chloroplasts, five in mitochondria (one of them with a dual chloroplastidial/mitochondrial localization) and the subcellular location of one protein is uncertain. This review summarizes the current knowledge on the role of Deg proteases in maintaining protein homeostasis and protein processing in various subcompartments of the plant cell. The chloroplast Deg proteases are the best examined so far, especially with respect to their role in the degradation of photodamaged photosynthetic proteins and in biogenesis of photosystem II (PSII). A combined action of thylakoid lumen and stroma Deg proteases in the primary cleavage of photodamaged D1 protein from PSII reaction centre is discussed on the basis of a recently resolved crystal structure of plant Deg1. The peroxisomal Deg protease is a processing enzyme responsible for the cleavage of N-terminal peroxisomal targeting signals (PTSs). A. thaliana mutants lacking this enzyme show reduced peroxisomal β-oxidation, indicating for the first time the impact of protein processing on peroxisomal functions in plants. Much less data is available for mitochondrial and nuclear Deg proteases. Based on the available expression data we hypothesize a role in general protein quality control and during acquired heat resistance. Copyright © Physiologia Plantarum 2011.
Felicioli, Antonio; Turchi, Barbara; Fratini, Filippo; Giusti, Matteo; Nuvoloni, Roberta; Dani, Francesca Romana; Sagona, Simona
2018-05-15
American foulbrood disease (AFB) is the main devastating disease that affects honeybees' brood, caused by Paenibacillus larvae. The trend of the research on AFB has addressed the mechanisms by which P. larvae bacteria kill honeybee larvae. Since prepupae could react to the infection of AFB by increasing protease synthesis, the aim of this work was to compare protease activity in worker prepupae belonging to healthy colonies and to colonies affected by AFB. This investigation was performed by zymography. In gel, proteolytic activity was observed in prepupae extracts belonging only to the healthy colonies. In the prepupae extracts, 2D zimography followed by protein identification by MS allowed to detect Trypsin-1 and Chymotrypsin-1, which were not observed in diseased specimens. Further investigations are needed to clarify the involvement of these proteinases in the immune response of honeybee larvae and the mechanisms by which P. larvae inhibits protease production in its host. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.
Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.
Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants
Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992
Reddy, Vemuri B; Lerner, Ethan A
2017-10-20
Cysteine and serine proteases function via protease-activated and mas-related G-protein-coupled receptors (Mrgprs) to contribute to allergy and inflammation. Der p1 is a cysteine protease and major allergen from the house dust mite and is associated with allergic rhinitis and allergic asthma. Der p1 activates protease-activated receptor 2 and induces the release of the pro-inflammatory cytokine IL-6 from cells. However, the possibility that Der p1 acts on Mrgprs has not been considered. We report here that ratiometric calcium imaging reveals that Der p1 activates the human receptor MRGPRX1 and the mouse homolog MrgprC11, implicated previously in itch. Der p1 cleavage of N-terminal receptor peptides followed by site-directed mutagenesis of the cleavage sites links receptor activation to specific amino acid residues. Der p1 also induced the release of IL-6 from heterologous cells expressing MRGPRX1. In summary, activation of Mrgprs by the allergen Der p1 may contribute to inflammation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Learning and memory deficits in mice lacking protease activated receptor-1
Almonte, Antoine G.; Hamill, Cecily E.; Chhatwal, Jasmeer P.; Wingo, Thomas S.; Barber, Jeremy A.; Lyuboslavsky, Polina N.; Sweatt, J. David; Ressler, Kerry J.; White, David A.; Traynelis, Stephen F.
2007-01-01
The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally-motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1−/− animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally-motivated learning. PMID:17544303
A Dual Protease Approach for Expression and Affinity Purification of Recombinant Proteins
Raran-Kurussi, Sreejith; Waugh, David S.
2016-01-01
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. PMID:27105777
Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.
Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J
2016-02-02
Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A dual protease approach for expression and affinity purification of recombinant proteins.
Raran-Kurussi, Sreejith; Waugh, David S
2016-07-01
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.
Ferraretto, L F; Fredin, S M; Shaver, R D
2015-10-01
Exogenous protease addition may be an option to increase proteolysis of zein proteins and thus starch digestibility in rehydrated and high-moisture corn (HMC) ensiled for short periods. In addition, microbial inoculation may accelerate fermentation and increase acid production and thus increase solubilization of zein proteins. Four experiments were performed to evaluate the effect on fermentation profile, N fractions, and ruminal in vitro starch digestibility (ivSD) of the following: (1) rehydration and ensiling of dry ground corn; (2) exogenous protease addition to rehydrated un-ensiled and ensiled corn; (3) exogenous protease addition or inoculation in rehydrated ensiled corn; and (4) exogenous protease addition or inoculation in HMC. Experiments 1, 2, and 3 were performed with 7 treatments: dry ground corn (DGC); DGC rehydrated to a targeted dry matter content of 70% (REH); REH treated with exogenous protease (REH+); REH ensiled for 30 d (ENS); ENS treated with exogenous protease (ENS+); ENS treated with a microbial inoculant containing Lactobacillus plantarum, Lactobacillus casei, Enterococcus faecium, and Pediococcus sp. (ENSI); and ENS treated with exogenous protease and microbial inoculant (ENSI+). Experiment 1 compared DGC, REH, and ENS with ivSD being greater for ENS (64.9%) than DGC and REH (51.7% on average). Experiment 2 compared REH and ENS without or with exogenous protease addition (REH+ and ENS+, respectively). Ensiling and exogenous protease addition increased ivSD, but exogenous protease addition was more effective in ENS than REH (6.4 vs. 2.6 percentage unit increase). Experiment 3 compared the effects of exogenous protease addition and inoculation in ENS corn (ENS, ENS+, ENSI, and ENSI+). The addition of protease, but not inoculant, increased ivSD. Inoculation reduced pH and acetate, propionate, and ethanol concentrations, and increased lactate and total acid concentrations. In experiment 4, 8 treatments were a combination of HMC noninoculated or inoculated with 1 of 3 microbial inoculants and with or without exogenous protease addition. The inoculant treatments contained (1) Lactobacillus buchneri 40788 and Pediococcus pentosaceus, (2) L. buchneri 40788, and (3) a mixture of P. pentosaceus and Propionibacterium freudenreichii. Protease, but not inoculation, increased ivSD by 7.5 percentage units (44.4 vs. 51.9%). Protease addition increased ivSD in rehydrated corn and HMC. Microbial inoculation improved fermentation profiles but did not affect ivSD. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping
2016-12-01
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains. Copyright © 2016 Elsevier Inc. All rights reserved.
Regulated Proteolysis in Bacteria.
Mahmoud, Samar A; Chien, Peter
2018-06-20
Regulated proteolysis is a vital process that affects all living things. Bacteria use energy-dependent AAA+ proteases to power degradation of misfolded and native regulatory proteins. Given that proteolysis is an irreversible event, specificity and selectivity in degrading substrates are key. Specificity is often augmented through the use of adaptors that modify the inherent specificity of the proteolytic machinery. Regulated protein degradation is intricately linked to quality control, cell-cycle progression, and physiological transitions. In this review, we highlight recent work that has shed light on our understanding of regulated proteolysis in bacteria. We discuss the role AAA+ proteases play during balanced growth as well as how these proteases are deployed during changes in growth. We present examples of how protease selectivity can be controlled in increasingly complex ways. Finally, we describe how coupling a core recognition determinant to one or more modifying agents is a general theme for regulated protein degradation.
Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata
2013-01-01
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies. PMID:23405188
Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata
2013-01-01
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
The protease-activated receptor-2 upregulates keratinocyte phagocytosis.
Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M
2000-09-01
The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.
Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen
2015-09-01
Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.
Bertram, Stephanie; Glowacka, Ilona; Müller, Marcel A.; Lavender, Hayley; Gnirss, Kerstin; Nehlmeier, Inga; Niemeyer, Daniela; He, Yuxian; Simmons, Graham; Drosten, Christian; Soilleux, Elizabeth J.; Jahn, Olaf; Steffen, Imke; Pöhlmann, Stefan
2011-01-01
The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients. PMID:21994442
Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane
2016-05-01
Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification.
A microRNA-mRNA expression network during oral siphon regeneration in Ciona.
Spina, Elijah J; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S; Smith, William C
2017-05-15
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta , and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. © 2017. Published by The Company of Biologists Ltd.
A microRNA-mRNA expression network during oral siphon regeneration in Ciona
Spina, Elijah J.; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S.
2017-01-01
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. PMID:28432214
USDA-ARS?s Scientific Manuscript database
Suppression subtractive hybridization (SSH) was employed to identify lettuce (Lactuca sativa) genes that are differentially expressed in symptomatic leaves infected with Verticillium dahliae. Genes expressed only in symptomatic leaves included those with homology to pathogenesis-related (PR) protei...
Ge, Shuqing; Li, Tao; Yao, Qijian; Yan, Hongling; Huiyun, Zhang; Zheng, Yanshan; Zhang, Bin; He, Shaoheng
2016-12-01
Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH 2 , and PAR-2 agonist peptide tc-LIGRLO-NH 2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH 2 -induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH 2 , an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH 2 -induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.
Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers
Miotto, D; Hollenberg, M; Bunnett, N; Papi, A; Braccioni, F; Boschetto, P; Rea, F; Zuin, A; Geppetti, P; Saetta, M; Maestrelli, P; Fabbri, L; Mapp, C
2002-01-01
Background: Protease activated receptor-2 (PAR-2) is a transmembrane G protein coupled receptor preferentially activated by trypsin and tryptase. The protease activated receptors play an important role in most components of injury responses including cell proliferation, migration, matrix remodelling, and inflammation. Cigarette smoking causes an inflammatory process in the central airways, peripheral airways, lung parenchyma, and adventitia of pulmonary arteries. Methods: To quantify the expression of PAR-2 in the central airways of smokers and non-smokers, surgical specimens obtained from 30 subjects undergoing lung resection for localised pulmonary lesions (24 with a history of cigarette smoking and six non-smoking control subjects) were examined. Central airways were immunostained with an antiserum specific for PAR-2 and PAR-2 expression was quantified using light microscopy and image analysis. Results: PAR-2 expression was found in bronchial smooth muscle, epithelium, glands, and in the endothelium and smooth muscle of bronchial vessels. PAR-2 expression was similar in the central airways of smokers and non-smokers. When smokers were divided according to the presence of symptoms of chronic bronchitis and chronic airflow limitation, PAR-2 expression was increased in smooth muscle (median 3.8 (interquartile range 2.9–5.8) and 1.4 (1.07–3.4) respectively); glands (33.3 (18.2–43.8) and 16.2 (11.5–22.2), respectively); and bronchial vessels (54.2 (48.7–56.8) and 40.0 (36–40.4), respectively) of smokers with symptoms of chronic bronchitis with normal lung function compared with smokers with chronic airflow limitation (COPD), but the increase was statistically significant (p<0.005) only for bronchial vessels. Conclusions: PAR-2 is present in bronchial smooth muscle, glands, and bronchial vessels of both smokers and non-smokers. An increased expression of PAR-2 was found in bronchial vessels of patients with bronchitis compared with those with COPD. PMID:11828045
Melnick, Laurence; Yang, Shiow-Shong; Rossi, Rick; Zepp, Charlie; Heefner, Donald
1998-01-01
We have developed a recombinant Escherichia coli screening system for the rapid detection and identification of amino acid substitutions in the human immunodeficiency virus (HIV) protease associated with decreased susceptibility to the protease inhibitor indinavir (MK-639; Merck & Co.). The assay depends upon the correct processing of a segment of the HIV-1 HXB2 gag-pol polyprotein followed by detection of HIV reverse transcriptase activity by a highly sensitive, colorimetric enzyme-linked immunosorbent assay. The highly sensitive system detects the contributions of single substitutions such as I84V, L90M, and L63P. The combination of single substitutions further decreases the sensitivity to indinavir. We constructed a library of HIV protease variant genes containing dispersed mutations and, using the E. coli recombinant system, screened for mutants with decreased indinavir sensitivity. The discovered HIV protease variants contain amino acid substitutions commonly associated with indinavir resistance in clinical isolates, including the substitutions L90M, L63P, I64V, V82A, L24I, and I54T. One substitution, W6R, is also frequently found by the screen and has not been reported elsewhere. Of a total of 12,000 isolates that were screened, 12 protease variants with decreased sensitivity to indinavir were found. The L63P substitution, which is also associated with indinavir resistance, increases the stability of the isolated protease relative to that of the native HXB2 protease. The rapidity, sensitivity, and accuracy of this screen also make it useful for screening for novel inhibitors. We have found the approach described here to be useful for the detection of amino acid substitutions in HIV protease that have been associated with drug resistance as well as for the screening of novel compounds for inhibitory activity. PMID:9835523
Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.
Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo
2015-09-01
Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Pyoverdine and Proteases Affect the Response of Pseudomonas aeruginosa to Gallium in Human Serum
Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco
2015-01-01
Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986
Serpin-9 and -13 regulate hemolymph proteases during immune responses of Manduca sexta.
He, Yan; Wang, Yang; Zhao, Picheng; Rayaprolu, Subrahmanyam; Wang, Xiuhong; Cao, Xiaolong; Jiang, Haobo
2017-11-01
Serpins are a superfamily of proteins, most of which inhibit cognate serine proteases by forming inactive acyl-enzyme complexes. In the tobacco hornworm Manduca sexta, serpin-1, -3 through -7 negatively regulate a hemolymph serine protease system that activates precursors of the serine protease homologs (SPHs), phenoloxidases (POs), Spätzles, and other cytokines. Here we report the cloning and characterization of M. sexta serpin-9 and -13. Serpin-9, a 402-residue protein most similar to Drosophila Spn77Ba, has R 366 at the P1 position right before the cleavage site; Serpin-13, a 444-residue ortholog of Drosophila Spn28Dc, is longer than the other seven serpins and has R 410 as the P1 residue. Both serpins are mainly produced in fat body and secreted into plasma to function. While their mRNA and protein levels were not up-regulated upon immune challenge, they blocked protease activities and affected proPO activation in hemolymph. Serpin-9 inhibited human neutrophil elastase, cathepsin G, trypsin, and chymotrypsin to different extents; serpin-13 reduced trypsin activity to approximately 10% at a molar ratio of 4:1 (serpin: enzyme). Serpin-9 was cleaved at Arg 366 by the enzymes with different specificity, but serpin-13 had four P1 sites (Arg 410 for trypsin-like proteases, Gly 406 and Ala 409 for the elastase and Thr 404 for cathepsin G). Supplementation of induced cell-free hemolymph (IP, P for plasma) with recombinant serpin-9 did not noticeably affect proPO activation, but slightly reduced the PO activity increase after 0-50% ammonium sulfate fraction of the IP had been elicited by bacteria. In comparison, addition of recombinant serpin-13 significantly inhibited proPO activation in IP and the suppression was stronger in the fraction of IP. Serpin-9- and -13-containing protein complexes were isolated from IP using their antibodies. Hemolymph protease-1 precursor (proHP1), HP6 and HP8 were found to be associated with serpin-9, whereas proHP1, HP2 and HP6 were pulled downed with serpin-13. These results indicate that both serpins regulate immune proteases in hemolymph of M. sexta larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R
2016-02-15
Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.
Hettinger, A M; Allen, M R; Zhang, B R; Goad, D W; Malayer, J R; Geisert, R D
2001-08-01
Noninvasive, epitheliochorial placental attachment in the pig is regulated through endometrial production of protease inhibitors. The objective of the present study was to determine if the light-chain serine protease inhibitor of the inter-alpha-trypsin inhibitor family, bikunin, is produced by the porcine endometrium during the estrous cycle and early pregnancy. Western blot analysis revealed the presence of bikunin in uterine flushings of gilts collected during the luteal phase of the estrous cycle and early pregnancy (Days 12-18). However, bikunin unbound to the inter-alpha-trypsin heavy chains was detected only in endometrial explant culture medium obtained from estrus and pregnant (Days 12, 15, and 18) gilts. Endometrial bikunin gene expression was lowest on Day 10 of the estrous cycle and pregnancy, followed by a 30- to 77-fold increase on Day 15 of the estrous cycle and pregnancy. Bikunin gene expression decreased on Day 18 of the estrous cycle, whereas endometrial bikunin gene expression continued to increase in pregnant gilts. Bikunin mRNA was localized to the uterine glands between Days 15 and 18 of the estrous cycle and pregnancy. In addition to its role as a protease inhibitor, bikunin functions in stabilization of the extracellular matrix, which suggests that bikunin could be involved with facilitating placental attachment to the uterine epithelial surface in the pig.
Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce
2015-06-01
Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J
2013-11-01
Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.
Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons
2011-01-01
Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt) protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease activities may contribute to toxicity whereas others are consistent with protection. These discrepancies may be due to a number of mechanisms including distinct effects of the specific intermediate digestion products of mutant huntingtin generated by different proteases. These observations suggested a critical need to investigate the consequence of upregulation of individual lysosomal enzyme in mutant huntingtin accumulation and toxicity. Results In this study, we used molecular approaches to enhance lysosomal protease activities and examined their effects on mutant huntingtin level and toxicity. We found that enhanced expression of lysosomal cathepsins D and B resulted in their increased enzymatic activities and reduced both full-length and fragmented huntingtin in transfected HEK cells. Furthermore, enhanced expression of cathepsin D or B protected against mutant huntingtin toxicity in primary neurons, and their neuroprotection is dependent on macroautophagy. Conclusions These observations demonstrate a neuroprotective effect of enhancing lysosomal cathepsins in reducing mutant huntingtin level and toxicity in transfected cells. They highlight the potential importance of neuroprotection mediated by cathepsin D or B through macroautophagy. PMID:21631942
Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Hankaniemi, Minna M; Larsson, Pär G; Domsgen, Erna; Stone, Virginia M; Määttä, Juha A E; Hyöty, Heikki; Hytönen, Vesa P; Flodström-Tullberg, Malin
2018-05-01
Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2A pro and 3C pro ), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2A pro cause direct damage to the infected heart and tools to investigate 2A pro and 3C pro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2A pro and 3C pro ; Two monoclonal 2A pro antibodies and one 3C pro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3C pro antibody detects all of the EV species B (EV-B) viruses tested and that the 2A pro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2A pro and 3C pro , and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.
Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R
1997-01-01
Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617
Regulation of protein degradation in muscle by calcium
NASA Technical Reports Server (NTRS)
Zeman, Richard J.; Kameyama, Tsuneo; Matsumoto, Kazue; Bernstein, Paul; Etlinger, Joseph D.
1985-01-01
Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. The effect of different classes of protease inhibitors was tested to determine the responsible proteolytic systems involved in calcium-dependent degradation. The results suggest that nonlysosomal leupetin- and E-64-c-sensitive proteases are resposible for calcium-dependent proteolysis in muscle.
Olukosi, O. A.; Beeson, L. A.; Englyst, K.; Romero, L. F.
2015-01-01
The objective of the current study was to evaluate the effect of a subtilisin protease, without or with inclusion of carbohydrases, on digestibility and retention of energy and protein, as well as the solubilization and disappearance of non-starch polysaccharides (NSP) from corn-soybean meal based diets fed to broiler chickens. Two hundred eighty-eight Ross 308 male broiler chickens were used for the experiment. On d 14, the birds were weighed and allocated to 6 treatments and 8 replicates per treatment with 6 birds per replicate. Treatments were: 1) corn-soybean meal based control diet; 2) control diet plus supplemental protease at 5,000 (P5000) protease units (PU)/kg); 3) control plus 10,000 PU/kg protease (P10000); or control plus an enzyme combination containing xylanase, amylase, and protease (XAP) added to achieve protease activity of: 4) 2,500 PU/kg (XAP2500); 5) 5,000 PU/kg (XAP5000); or 6) 10,000 PU/kg (XAP10000). The enzymes in XAP were combined at fixed ratios of 10:1:25 of xylanase:amylase:protease. Data were analyzed by ANOVA and specific orthogonal contrasts between treatments were performed. Addition of xylanase and amylase increased (P < 0.05) the ileal digestibility of protein by 4.2% and 2.1% at XAP5000 and XAP10000, respectively (relative to P5000 and P10000, respectively), exhibiting a plateau after the XAP5000 dose. Increment (P < 0.05) in AME due to protease was evident, particularly in P10000. At the ileal level, XAP reduced (P < 0.05) the flow of insoluble xylose and arabinose, which indicates an increase in the solubilization of arabinoxylan polymers in the small intestine. Protease on its own reduced (P < 0.05) the flow of insoluble arabinose but did not affect the flow of insoluble xylose. XAP reduced (P < 0.05) the pre-cecal flow of insoluble and total glucose and galactose. It was concluded that whereas protease by itself improved nutrient utilization and increased solubilization of NSP components, at the lower dose, a combination of xylanase, amylase, and protease produced effects greater than those of protease alone. PMID:26371327
Altered Substrate Specificity of Drug-Resistant Human Immunodeficiency Virus Type 1 Protease
Dauber, Deborah S.; Ziermann, Rainer; Parkin, Neil; Maly, Dustin J.; Mahrus, Sami; Harris, Jennifer L.; Ellman, Jon A.; Petropoulos, Christos; Craik, Charles S.
2002-01-01
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV. PMID:11773410
Targeting of a chlamydial protease impedes intracellular bacterial growth.
Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar
2011-09-01
Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.
Legumain is activated in macrophages during pancreatitis
Wartmann, Thomas; Fleming, Alicia K.; Gocheva, Vasilena; van der Linden, Wouter A.; Withana, Nimali P.; Verdoes, Martijn; Aurelio, Luigi; Edgington-Mitchell, Daniel; Lieu, TinaMarie; Parker, Belinda S.; Graham, Bim; Reinheckel, Thomas; Furness, John B.; Joyce, Johanna A.; Storz, Peter; Halangk, Walter; Bogyo, Matthew; Bunnett, Nigel W.
2016-01-01
Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68+ macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer. PMID:27514475
el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H
1990-07-01
Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.
Yang, Jingjie; Leen, Eoin N.; Maree, Francois F.
2016-01-01
The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A—one of the seven serotypes of FMDV—adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3Cpro amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3Cpro from SAT2/GHA/8/91. PMID:27168976
Donnelly, Mark I.; Zhou, Min; Millard, Cynthia Sanville; Clancy, Shonda; Stols, Lucy; Eschenfeldt, William H.; Collart, Frank R.; Joachimiak, Andrzej
2009-01-01
Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his6-tag–maltose-binding protein (MBP), intended to facilitate purification and enhance proteins’ solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his6-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his6-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his6-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his6-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his6-tag. PMID:16497515
USDA-ARS?s Scientific Manuscript database
A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a differ...
Liao, Shunyao; Liu, Yunqiang; Zheng, Bing; Cho, Pyo Yun; Song, Hyun Ok; Lee, Yun-Seok; Jung, Suk-Yul; Park, Hyun
2011-12-01
The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-1α is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-1α in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-1α expressed by a lentiviral vector (LV HNF-1α) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-1α was observed to influence promoter activity, suggesting that host HNF-1α interacts with the Sub2 gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, S.; Murty, V.V.V.S.; Chaganti, R.S.K.
The human fibroblast activation protein {alpha} (FAP{alpha}) is an inducible cell surface glycoprotein of M{sub r} 95,000 recognized by a number of monoclonal antibodies (mAbs), including the prototype mAb F19. Immunohistochemical studies have shown that FAP{alpha} expression in vivo is tightly regulated, with transient expression in some fetal mesenchymal tissues but absence of expression in most normal adult tissues. Reexpression of FAP{alpha} is observed in the reactive stromal fibroblasts of several common types of epithelial cancers, including >90% of breast, colorectal, and lung carcinomas and healing wounds. Cloning and sequence analysis of an FAP{alpha}-specific cDNA has revealed that the moleculemore » is encoded by a novel gene, FAP, which shows sequence similarity to members of the serine protease family of integral membrane proteins, namely dipeptidyl peptidase IV (DPPIV, also known as lymphocyte activation antigen, CD26, or adenosine dearoinase binding protein) and DPPX, a DPPIV-related molecule of unknown function. 15 refs., 1 fig.« less
Liu, Yang; Jiang, Guoqiao; Cui, Yaya; Mukherjee, Asita; Ma, Wei Lei; Chatterjee, Arun K.
1999-01-01
Erwinia carotovora subsp. carotovora produces extracellular pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel), and protease (Prt). The concerted actions of these enzymes largely determine the virulence of this plant-pathogenic bacterium. E. carotovora subsp. carotovora also produces HarpinEcc, the elicitor of the hypersensitive reaction. We document here that KdgREcc (Kdg, 2-keto-3-deoxygluconate; KdgR, general repressor of genes involved in pectin and galacturonate catabolism), a homolog of the E. chrysanthemi repressor, KdgREch and the Escherichia coli repressor, KdgREco, negatively controls not only the pectinases, Pel and Peh, but also Cel, Prt, and HarpinEcc production in E. carotovora subsp. carotovora. The levels of pel-1, peh-1, celV, and hrpNEcc transcripts are markedly affected by KdgREcc. The KdgREcc− mutant is more virulent than the KdgREcc+ parent. Thus, our data for the first time establish a global regulatory role for KdgREcc in E. carotovora subsp. carotovora. Another novel observation is the negative effect of KdgREcc on the transcription of rsmB (previously aepH), which specifies an RNA regulator controlling exoenzyme and HarpinEcc production. The levels of rsmB RNA are higher in the KdgREcc− mutant than in the KdgREcc+ parent. Moreover, by DNase I protection assays we determined that purified KdgREcc protected three 25-bp regions within the transcriptional unit of rsmB. Alignment of the protected sequences revealed the 21-mer consensus sequence of the KdgREcc-binding site as 5′-G/AA/TA/TGAAA[N6]TTTCAG/TG/TA-3′. Two such KdgREcc-binding sites occur in rsmB DNA in a close proximity to each other within nucleotides +79 and +139 and the third KdgREcc-binding site within nucleotides +207 and +231. Analysis of lacZ transcriptional fusions shows that the KdgR-binding sites negatively affect the expression of rsmB. KdgREcc also binds the operator DNAs of pel-1 and peh-1 genes and represses expression of a pel1-lacZ and a peh1-lacZ transcriptional fusions. We conclude that KdgREcc affects extracellular enzyme production by two ways: (i) directly, by inhibiting the transcription of exoenzyme genes; and (ii) indirectly, by preventing the production of a global RNA regulator. Our findings support the idea that KdgREcc affects transcription by promoter occlusion, i.e., preventing the initiation of transcription, and by a roadblock mechanism, i.e., by affecting the elongation of transcription. PMID:10198003
Pillay, Davita; Boulangé, Alain F; Coetzer, Theresa H T
2010-12-01
Congopain, the major cysteine peptidase of Trypanosoma congolense is an attractive candidate for an anti-disease vaccine and target for the design of specific inhibitors. A complicating factor for the inclusion of congopain in a vaccine is that multiple variants of congopain are present in the genome of the parasite. In order to determine whether the variant congopain-like genes code for peptidases with enzymatic activities different to those of congopain, two variants were cloned and expressed. Two truncated catalytic domain variants were recombinantly expressed in Pichia pastoris. The two expressed catalytic domain variants differed slightly from one another in substrate preferences and also from that of C2 (the recombinant truncated form of congopain). Surprisingly, a variant with the catalytic triad Ser(25), His(159) and Asn(175) was shown to be active against classical cysteine peptidase substrates and inhibited by E-64, a class-specific cysteine protease inhibitor. Both catalytic domain clones and C2 had pH optima of either 6.0 or 6.5 implying that these congopain-like proteases are likely to be expressed and active in the bloodstream of the host animal. Copyright © 2010 Elsevier Inc. All rights reserved.
Upregulation of cathepsin S in psoriatic keratinocytes.
Schönefuss, Alexander; Wendt, Wiebke; Schattling, Benjamin; Schulten, Roxane; Hoffmann, Klaus; Stuecker, Markus; Tigges, Christian; Lübbert, Hermann; Stichel, Christine
2010-08-01
Cathepsin S (CATS) is a cysteine protease, well known for its role in MHC class II-mediated antigen presentation and extracellular matrix degradation. Disturbance of the expression or metabolism of this protease is a concomitant feature of several diseases. Given this importance we studied the localization and regulation of CATS expression in normal and pathological human/mouse skin. In normal human skin CATS-immunostaining is mainly present in the dermis and is localized in macrophages, Langerhans, T- and endothelial cells, but absent in keratinocytes. In all analyzed pathological skin biopsies, i.e. atopic dermatitis, actinic keratosis and psoriasis, CATS staining is strongly increased in the dermis. But only in psoriasis, CATS-immunostaining is also detectable in keratinocytes. We show that cocultivation with T-cells as well as treatment with cytokines can trigger expression and secretion of CATS, which is involved in MHC II processing in keratinocytes. Our data provide first evidence that CATS expression (i) is selectively induced in psoriatic keratinocytes, (ii) is triggered by T-cells and (iii) might be involved in keratinocytic MHC class II expression, the processing of the MHC class II-associated invariant chain and remodeling of the extracellular matrix. This paper expands our knowledge on the important role of keratinocytes in dermatological disease.
Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues
Kawaguchi, Makiko; Kataoka, Hiroaki
2014-01-01
Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases. PMID:25268161
Xu, Defeng; Pan, Li; Zhao, Haifeng; Zhao, Mouming; Sun, Jiaxin; Liu, Dongmei
2011-09-01
Acid protease is essential for degradation of proteins during soy sauce fermentation. To breed more suitable koji molds with high activity of acid protease, interspecific genome recombination between A. oryzae and A. niger was performed. Through stabilization with d-camphor and haploidization with benomyl, several stable fusants with higher activity of acid protease were obtained, showing different degrees of improvement in acid protease activity compared with the parental strain A. oryzae. In addition, analyses of mycelial morphology, expression profiles of extracellular proteins, esterase isoenzyme profiles, and random amplified polymorphic DNA (RAPD) were applied to identify the fusants through their phenotypic and genetic relationships. Morphology analysis of the mycelial shape of fusants indicated a phenotype intermediate between A. oryzae and A. niger. The profiles of extracellular proteins and esterase isoenzyme electrophoresis showed the occurrence of genome recombination during or after protoplast fusion. The dendrogram constructed from RAPD data revealed great heterogeneity, and genetic dissimilarity indices showed there were considerable differences between the fusants and their parental strains. This investigation suggests that genome recombination is a powerful tool for improvement of food-grade industrial strains. Furthermore, the presented strain improvement procedure will be applicable for widespread use for other industrial strains.
Szabo, Roman; Peters, Diane E; Kosa, Peter; Camerer, Eric; Bugge, Thomas H
2014-07-01
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival.
Szabo, Roman; Peters, Diane E.; Kosa, Peter; Camerer, Eric; Bugge, Thomas H.
2014-01-01
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival. PMID:25078604
Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder
2018-01-01
A family of 11 cell surface-associated aspartyl proteases (CgYps1–11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata. However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1–11Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1–11Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1–11Δ–induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1–11Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1–11Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. PMID:29491142
Li, Junhua; Zhang, Yang; Shen, Fei; Yang, Yanjun
2012-10-15
A fusion tag that can be purified by the cheap ion-exchanger based on the ionic binding force may provide a cost-effective scheme over other affinity fusion tags. Small ubiquitin-like modifier (SUMO) protease derived from Saccharomyces cerevisiae was fused with a poly lysine tag containing 10 lysine residues at its C-terminus and then expressed in Escherichia coli. The ionic binding force provided by the ploy lysine tag allowed the selective recovery of the small ubiquitin-like modifier protease from recombinant E. coli cell extracts. A preliminary comparative study of the adsorption and elution of poly lysine tagged SUMO protease on Amberlite Cobalamion and magnetite carboxymethyl chitosan nanoparticles was performed. Amberlite Cobalamion and magnetite nanoparticles had the similar elution profile due to the common functional groups - carboxyl groups. The maximum dynamic adsorption capacity of Amberlite Cobalamion and magnetite nanoparticles reached 36.8 and 211.4 mg/g, respectively. The lysine-tagged protease can be simply purified by magnetite nanoparticles from cell extracts with higher purity than that by Amberlite Cobalamion. The superparamagnetic nanoparticles possess the advantages of highly specific, fast and excellent binding of a larger amount of lysine tagged SUMO modifier protease, and it is also easier to separate from the crude biological process liquors compared with the conventional separation techniques of polycationic amino acids fusion proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
Vicente, Rebeca L.; Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.
2016-01-01
Overproduction of Sec-proteins in S. lividans accumulates misfolded proteins outside of the cytoplasmic membrane where the accumulated proteins interfere with the correct functioning of the secretion machinery and with the correct cell functionality, triggering the expression in S. lividans of a CssRS two-component system which regulates the degradation of the accumulated protein, the so-called secretion stress response. Optimization of secretory protein production via the Sec route requires the identification and characterisation of quality factors involved in this process. The phosphorylated regulator (CssR) interacts with the regulatory regions of three genes encoding three different HtrA-like proteases. Individual mutations in each of these genes render degradation of the misfolded protein inoperative, and propagation in high copy number of any of the three proteases encoding genes results on indiscriminate alpha-amylase degradation. None of the proteases could complement the other two deficiencies and only propagation of each single copy protease gene can restore its own deficiency. The obtained results strongly suggest that the synthesis of the three HtrA-like proteases needs to be properly balanced to ensure the effective degradation of misfolded overproduced secretory proteins and, at the same time, avoid negative effects in the secreted proteins and the secretion machinery. This is particularly relevant when considering the optimisation of Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application. PMID:27977736
Shao, Xuan; Ran, Li-Yuan; Liu, Chang; Chen, Xiu-Lan; Zhang, Xi-Ying; Qin, Qi-Long; Zhou, Bai-Cheng; Zhang, Yu-Zhong
2015-06-29
The protease myroilysin is the most abundant protease secreted by marine sedimental bacterium Myroides profundi D25. As a novel elastase of the M12 family, myroilysin has high elastin-degrading activity and strong collagen-swelling ability, suggesting its promising biotechnological potential. Because myroilysin cannot be maturely expressed in Escherichia coli, it is important to be able to improve the production of myroilysin in the wild strain D25. We optimized the culture conditions of strain D25 for protease production by using single factor experiments. Under the optimized conditions, the protease activity of strain D25 reached 1137 ± 53.29 U/mL, i.e., 174% of that before optimization (652 ± 23.78 U/mL). We then conducted small scale fermentations of D25 in a 7.5 L fermentor. The protease activity of strain D25 in small scale fermentations reached 1546.4 ± 82.65 U/mL after parameter optimization. Based on the small scale fermentation results, we further conducted pilot scale fermentations of D25 in a 200 L fermentor, in which the protease production of D25 reached approximately 1100 U/mL. These results indicate that we successfully set up the small and pilot scale fermentation processes of strain D25 for myroilysin production, which should be helpful for the industrial production of myroilysin and the development of its biotechnological potential.
PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.
Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D
2017-12-01
Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.
Wygrecka, Malgorzata; Markart, Philipp; Fink, Ludger; Guenther, Andreas; Preissner, Klaus T
2007-01-01
Background The acute respiratory distress syndrome (ARDS) is characterised by inflammation of the lung parenchyma and changes in alveolar haemostasis with extravascular fibrin deposition. Factor VII activating protease (FSAP) is a recently described serine protease in plasma and tissues known to be involved in haemostasis, cell proliferation and migration. Methods The level of FSAP protein expression was examined by western blotting/ELISA/immunohistochemistry and its activity was investigated by coagulation/fibrinolysis assays in plasma, bronchoalveolar lavage (BAL) fluid and lung tissue of mechanically ventilated patients with early ARDS and compared with patients with cardiogenic pulmonary oedema and healthy controls. Cell culture experiments were performed to assess the influence of different inflammatory stimuli on FSAP expression by various cell populations of the lung. Results FSAP protein level and activity were markedly increased in the plasma and BAL fluid of patients with ARDS with a significant contribution to the increased alveolar procoagulant activity. Immunoreactivity for FSAP was observed in alveolar macrophages, bronchial epithelial and endothelial cells of lungs of patients with ARDS, while in controls the immunoreactivity for FSAP was restricted to alveolar macrophages. Only a low basal level of FSAP expression was detected in these cell populations. However, FSAP‐specific mRNA expression was induced by lipopolysaccharide and interleukin‐8 in human lung microvascular endothelial cells and in bronchial epithelial cells. FSAP was also found to be taken up by alveolar macrophages and degraded within the lysosomal compartment. Conclusions Increased levels of FSAP and an altered cellular expression pattern are found in the lungs of patients with ARDS. This may represent a novel pathological mechanism which contributes to pulmonary extravascular fibrin deposition and may also modulate inflammation in the acutely injured lung via haemostasis‐independent cellular activities of FSAP. PMID:17483138
NASA Astrophysics Data System (ADS)
Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.
2016-07-01
The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g
PAR-2 regulates dental pulp inflammation associated with caries.
Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A
2010-07-01
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.
Vitamin D3 affects innate immune status of European sea bass (Dicentrarchus labrax L.).
Dioguardi, M; Guardiola, F A; Vazzana, M; Cuesta, A; Esteban, M A; Cammarata, M
2017-08-01
The effects of vitamin D 3 dietary administration on certain innate immune parameters on the expression of immune-related genes in head-kidney (HK) and gut were investigated in European sea bass Dicentrarchus labrax. Vitamin D 3 (vD 3 ) was orally administered to fish in a commercial pellet food supplemented with 0 (control); 3750; 18,750; or 37,500 U kg -1 . Furthermore, gut histology was considered. This study showed a modulation in the activities examined in fish fed with the addition of vD 3 . After just 2 weeks of administration, diet supplementation with the vitamin resulted in increased phagocytic ability, while serum peroxidase content was increased in fish fed with all experimental diets after 4 weeks, no significant differences were observed in protease, anti-protease, natural haemolytic complement activities and total IgM level. At gene level, fbl and rbl transcripts were up-regulated in HK in fish fed with the highest concentration of vD 3 -supplemented diets after 4 weeks, while in the gut, an up-regulation of hep gene was observed in fish fed with the different doses of vD 3 . These results suggest that vD 3 may be of great interest for immunostimulatory purposes in fish farms.
Rasoolizadeh, Asieh; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique
2016-04-01
A causal link has been reported between positively selected amino acids in plant cystatins and the inhibitory range of these proteins against insect digestive cysteine (Cys) proteases. Here we assessed the impact of single substitutions to closely related amino acids on the contribution of positive selection to cystatin diversification. Cystatin sequence alignments, while confirming hypervariability, indicated a preference for related amino acids at positively selected sites. For example, the non-polar residues leucine (Leu), isoleucine (Ile) and valine (Val) were shown to predominate at positively selected site 2 in the N-terminal region, unlike selected sites 6 and 10, where polar residues are preferred. The model cystatin SlCYS8 and single variants with Leu, Ile or Val at position 2 were compared with regard to their ability to bind digestive proteases of the coleopteran pest Leptinotarsa decemlineata and to induce compensatory responses in this insect. A functional proteomics procedure to capture target Cys proteases in midgut extracts allowed confirmation of distinct binding profiles for the cystatin variants. A shotgun proteomics procedure to monitor whole Cys protease complements revealed protease family specific compensatory responses in the insect, dependent on the variant ingested. Our data confirm the contribution of closely related amino acids to the functional diversity of positively selected plant cystatins in a broader structure/function context imposing physicochemical constraints to primary structure alterations. They also underline the complexity of protease/inhibitor interactions in plant-insect systems, and the challenges still to be met in order to harness the full potential of ectopically expressed protease inhibitors in crop protection. © 2016 Federation of European Biochemical Societies.
Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium
Peitsch, Catharina; Klenk, Hans-Dieter; Garten, Wolfgang
2014-01-01
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways. PMID:24155384
Basel, Matthew T; Shrestha, Tej B; Troyer, Deryl L; Bossmann, Stefan H
2011-03-22
Liposomes have become useful and well-known drug delivery vehicles because of their ability to entrap drugs without chemically modifying them and to deliver them somewhat selectively to tumorous tissue via the enhanced permeation and retention (EPR) effect. Although useful, liposome preparations are still less than ideal because of imperfect specificity, slow release kinetics in the tumor, and leakiness prior to reaching the tumor site. Cancer-associated proteases (CAPs), which are differentially expressed in tumors, have also gained traction recently as a method for tumor targeting and drug delivery. By combining the EPR effect with CAPs sensitivity, a much more specific liposome can be produced. The method described here creates an improved liposome system that can target more specifically, with faster release kinetics and lower general leaking, by deliberately producing a very unstable liposome (loaded with hyperosmotic vehicle) that is subsequently stabilized by a cross-linked polymer shell containing consensus sequences for cancer-associated proteases (protease-triggered, caged liposomes). A cholesterol-anchored, graft copolymer, composed of a short peptide sequence for urokinase plasminogen activator (uPA) and poly(acrylic acid), was synthesized and incorporated into liposomes prepared at high osmolarities. Upon cross-linking of the polymers, the protease-triggered, caged liposomes showed significant resistance to osmotic swelling and leaking of contents. Protease-triggered, caged liposomes also showed significant and substantial differential release of contents in the presence of uPA, while bare liposomes showed no differential effect in the presence of uPA. Thus a protease-sensitive liposome system with fast release kinetics was developed that could be used for more specific targeting to tumors.
Targeting cysteine proteases in trypanosomatid disease drug discovery.
Ferreira, Leonardo G; Andricopulo, Adriano D
2017-12-01
Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.
Dueholm, Morten S; Søndergaard, Mads T; Nilsson, Martin; Christiansen, Gunna; Stensballe, Allan; Overgaard, Michael T; Givskov, Michael; Tolker-Nielsen, Tim; Otzen, Daniel E; Nielsen, Per H
2013-01-01
The fap operon, encoding functional amyloids in Pseudomonas (Fap), is present in most pseudomonads, but so far the expression and importance for biofilm formation has only been investigated for P. fluorescens strain UK4. In this study, we demonstrate the capacity of P. aeruginosa PAO1, P. fluorescens Pf-5, and P. putida F1 to express Fap fibrils, and investigated the effect of Fap expression on aggregation and biofilm formation. The fap operon in all three Pseudomonas species conferred the ability to express Fap fibrils as shown using a recombinant approach. This Fap overexpression consistently resulted in highly aggregative phenotypes and in increased biofilm formation. Detailed biophysical investigations of purified fibrils confirmed FapC as the main fibril monomer and supported the role of FapB as a minor, nucleating constituent as also indicated by bioinformatic analysis. Bioinformatics analysis suggested FapF and FapD as a potential β-barrel membrane pore and protease, respectively. Manipulation of the fap operon showed that FapA affects monomer composition of the final amyloid fibril, and that FapB is an amyloid protein, probably a nucleator for FapC polymerization. Our study highlights the fap operon as a molecular machine for functional amyloid formation. PMID:23504942
Kuster, Christian J; Von Elert, Eric
2013-01-01
It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids' tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC(-) contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC(-), the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease inhibitors.
Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph
2015-06-15
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta
2011-05-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.
Whitman, Shannon D.; Dutch, Rebecca Ellis
2007-01-01
Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F. PMID:17328935
Molina, Diana; Patiño, Luisa; Quintero, Mónica; Cortes, José; Bastos, Sara
2014-02-01
The coffee berry borer Hypothenemus hampei is a pest that causes great economic damage to coffee grains worldwide. Because the proteins consumed are digested by aspartic proteases in the insect's midgut, the inhibition of these proteases by transferring a gene encoding an aspartic protease inhibitor from Lupinus bogotensis Benth. to coffee plants could provide a promising strategy to control this pest. Five aspartic protease inhibitors from L. bogotensis (LbAPI) were accordingly purified and characterized. The gene encoding the L. bogotensis aspartic protease inhibitor (LbAPI), with the highest inhibitory activity against H. hampei, was expressed in Escherichia coli and the purified recombinant protein (rLbAPI), with a molecular mass of 15 kDa, was subsequently assessed for its ability to inhibit the aspartic protease activity present in the H. hampei midgut in vitro, as well as its effects on the growth and development of H. hampei in vivo. The in vitro experiments showed that rLbAPI was highly effective against aspartic proteases from H. hampei guts, with a half maximal inhibitory concentration (IC50) of 2.9 μg. The in vivo experiments showed that the concentration of rLbAPI (w/w) in the artificial diet necessary to cause 50% mortality (LD50) of the larvae was 0.91%. The amino acid sequence of LbAPI had high homology (52-80%) to the seed storage proteins, vicilin and β-conglutin, suggesting that this protein was generated by evolutionary events from a β-conglutin precursor. Based on these results, LbAPI may have a dual function as storage protein, and as defense protein against H. hampei. These results provide a promising alternative to obtain a coffee plant resistant to H. hampei. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ahn, J-E; Lovingshimer, M R; Salzman, R A; Presnail, J K; Lu, A L; Koiwa, H; Zhu-Salzman, K
2007-06-01
Cowpea bruchids, when challenged by consumption of the soybean cysteine protease inhibitor scN, reconfigure expression of their major CmCP digestive proteases and resume normal feeding and development. Previous evidence indicated that insects selectively induced CmCPs from subfamily B, that were more efficient in autoprocessing and possessed not only higher proteolytic, but also scN-degrading activities. In contrast, dietary scN only marginally up-regulated genes from the more predominant CmCP subfamily A that were inferior to subfamily B. To gain further molecular insight into this adaptive adjustment, we performed domain swapping between the two respective subfamily members B1 and A16, the latter unable to autoprocess or degrade scN even after intermolecular processing. Swapping the propeptides did not qualitatively alter autoprocessing in either protease isoform. Incorporation of either the N- (pAmBA) or C-terminal (pAmAB) mature B1 segment into A16, however, was sufficient to prime autoprocessing of A16 to its mature form. Further, the swap at the N-terminal mature A16 protein region (pAmBA) resulted in four amino acid changes. Replacement of these amino acid residues by the corresponding B1 residues, singly and pair-wise, revealed that autoprocessing activation in pAmBA resulted from cumulative and/or coordinated individual effects. Bacterially expressed isolated propeptides (pA16 and pB1) differed in their ability to inhibit mature B1 enzyme. Lower inhibitory activity in pB1 is likely attributable to its lack of protein stability. This instability in the cleaved propeptide is necessary, although insufficient by itself, for scN-degradation by the mature B1 enzyme. Taken together, cowpea bruchids modulate proteolysis of their digestive enzymes by controlling proCmCP cleavage and propeptide stability, which explains at least in part the plasticity cowpea bruchids demonstrate in response to protease inhibitors.
Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad
2000-06-01
Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.
Koh, Eugene; Carmieli, Raanan; Mor, Avishai; Fluhr, Robert
2016-07-01
Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. © 2016 American Society of Plant Biologists. All Rights Reserved.
Carmieli, Raanan; Mor, Avishai; Fluhr, Robert
2016-01-01
Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487
Kumar VR, Santhosh; Darisipudi, Murthy N.; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P.; Mulay, Shrikant R.; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D.; Lindenmeyer, Maja T.; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W.; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido
2016-01-01
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia–induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68+ intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage–derived circulating PAR2 agonist and mediator of endothelial dysfunction–related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242
De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain
2016-01-01
ABSTRACT Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae. Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum. IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates. PMID:27822542
Tran, Van Du T; De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain; Pagni, Marco; Monod, Michel
2016-01-01
Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae . Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum . IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete's foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae . Comparing gene expression during infection on guinea pigs with keratin degradation in vitro , which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo , encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates.
ERIC Educational Resources Information Center
Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong
2008-01-01
We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…
The subtilisin-like protease SBT3 contributes to insect resistance in tomato
Meyer, Michael; Huttenlocher, Franziska; Cedzich, Anna; Procopio, Susanne; Stroeder, Jasper; Pau-Roblot, Corinne; Lequart-Pillon, Michelle; Pelloux, Jérôme; Stintzi, Annick; Schaller, Andreas
2016-01-01
Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect’s digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype. PMID:27259555
Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J
2014-05-01
The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.
Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells
NASA Technical Reports Server (NTRS)
Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.
2001-01-01
Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.
Jeon, Won Bae
2015-01-01
Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value. PMID:20510014
Li, Zhi; Bian, Li-Juan; Li, Yang; Liang, Ying-Jie; Liang, Hui-Zhen
2009-01-01
We aimed at determining whether the expression of protease-activated receptor 2 (PAR-2) is involved in the progression of nasopharyngeal carcinoma (NPC) and correlated with latent membrane protein 1 (LMP-1), matrix metalloproteinases-9 (MMP9), and angiogenesis of tumor. PAR-2, LMP-1, and MMP9 expressions were detected in 57 biopsies of primary NPC by immunohistochemistry. The presence of Epstein-Barr virus (EBV) was determined using EBER in situ hybridization, and intratumoral microvessels were highlighted by staining endothelial cells for anti-CD34. The correlations with immunostainings and clinicopathological factors, as well as the follow-up data of patients, were analyzed statistically. Strong expression of PAR-2 in 61.4% (35/57) of the biopsies was correlated with extensive lymph node metastasis and advanced stage of NPC. The patients with PAR-2/LMP-1 or PAR-2/MMP9 dual high-expression tumors had a significant worse prognosis than those with single protein high expression and dual low or negative expression tumors (P=0.013 and 0.004, respectively). Angiogenesis in the tumor is related to overall survival of NPC patients (P=0.001), and exhibits strong PAR-2 expression or LMP-1 expression in tumors associated with increased intratumoral microvessel density (P=0.026 and 0.006, respectively). PAR-2 is a possible mediator cooperating with LMP-1 and MMP9 to influence the progression of NPC by inducing angiogenesis and promoting lymph node metastasis.
Sakai, Kouji; Ami, Yasushi; Tahara, Maino; Kubota, Toru; Anraku, Masaki; Abe, Masako; Nakajima, Noriko; Sekizuka, Tsuyoshi; Shirato, Kazuya; Suzaki, Yuriko; Ainai, Akira; Nakatsu, Yuichiro; Kanou, Kazuhiko; Nakamura, Kazuya; Suzuki, Tadaki; Komase, Katsuhiro; Nobusawa, Eri; Maenaka, Katsumi; Kuroda, Makoto; Hasegawa, Hideki; Kawaoka, Yoshihiro; Tashiro, Masato; Takeda, Makoto
2014-05-01
Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.
Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence.
Amatngalim, Gimano D; Schrumpf, Jasmijn A; Dishchekenian, Fernanda; Mertens, Tinne C J; Ninaber, Dennis K; van der Linden, Abraham C; Pilette, Charles; Taube, Christian; Hiemstra, Pieter S; van der Does, Anne M
2018-04-01
It is currently unknown how cigarette smoke-induced airway remodelling affects highly expressed respiratory epithelial defence proteins and thereby mucosal host defence.Localisation of a selected set of highly expressed respiratory epithelial host defence proteins was assessed in well-differentiated primary bronchial epithelial cell (PBEC) cultures. Next, PBEC were cultured at the air-liquid interface, and during differentiation for 2-3 weeks exposed daily to whole cigarette smoke. Gene expression, protein levels and epithelial cell markers were subsequently assessed. In addition, functional activities and persistence of the cigarette smoke-induced effects upon cessation were determined.Expression of the polymeric immunoglobulin receptor, secretory leukocyte protease inhibitor and long and short PLUNC (palate, lung and nasal epithelium clone protein) was restricted to luminal cells and exposure of differentiating PBECs to cigarette smoke resulted in a selective reduction of the expression of these luminal cell-restricted respiratory host defence proteins compared to controls. This reduced expression was a consequence of cigarette smoke-impaired end-stage differentiation of epithelial cells, and accompanied by a significant decreased transepithelial transport of IgA and bacterial killing.These findings shed new light on the importance of airway epithelial cell differentiation in respiratory host defence and could provide an additional explanation for the increased susceptibility of smokers and patients with chronic obstructive pulmonary disease to respiratory infections. Copyright ©ERS 2018.
Tulpule, Asmin; Kelley, James M.; Lensch, M. William; McPherson, Jade; Park, In Hyun; Hartung, Odelya; Nakamura, Tomoka; Schlaeger, Thorsten M.; Shimamura, Akiko; Daley, George Q.
2013-01-01
Summary Shwachman-Diamond syndrome (SDS), a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS by knock-down of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two SDS patients. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated auto-digestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease. PMID:23602541
Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway
List, Karin; Kosa, Peter; Szabo, Roman; Bey, Alexandra L.; Wang, Chao Becky; Molinolo, Alfredo; Bugge, Thomas H.
2009-01-01
A pericellular proteolytic pathway initiated by the transmembrane serine protease matriptase plays a critical role in the terminal differentiation of epidermal tissues. Matriptase is constitutively expressed in multiple other epithelia, suggesting a putative role of this membrane serine protease in general epithelial homeostasis. Here we generated mice with conditional deletion of the St14 gene, encoding matriptase, and show that matriptase indeed is essential for the maintenance of multiple types of epithelia in the mouse. Thus, embryonic or postnatal ablation of St14 in epithelial tissues of diverse origin and function caused severe organ dysfunction, which was often associated with increased permeability, loss of tight junction function, mislocation of tight junction-associated proteins, and generalized epithelial demise. The study reveals that the homeostasis of multiple simple and stratified epithelia is matriptase-dependent, and provides an important animal model for the exploration of this membrane serine protease in a range of physiological and pathological processes. PMID:19717635
Adaptive Evolution and Divergence of SERPINB3: A Young Duplicate in Great Apes
Gomes, Sílvia; Marques, Patrícia I.; Matthiesen, Rune; Seixas, Susana
2014-01-01
A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (∼30 Mya) and the emergence of SERPINB3 in Homininae (∼9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1. A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents. Finally, similar patterns of expression and the sharing of many regulatory motifs suggest neofunctionalization as the best fitted model of the functional divergence of SERPINB3 and B4 duplicates. PMID:25133778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereasmore » EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.« less
Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya
2016-07-01
Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.
Olsen, Randall J.; Sitkiewicz, Izabela; Ayeras, Ara A.; Gonulal, Vedia E.; Cantu, Concepcion; Beres, Stephen B.; Green, Nicole M.; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P.; Montgomery, Charles A.; Cartwright, Joiner; McGeer, Allison; Low, Donald E.; Whitney, Adeline R.; Cagle, Philip T.; Blasdel, Terry L.; DeLeo, Frank R.; Musser, James M.
2010-01-01
Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis (“flesh-eating disease”). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the ΔmtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research. PMID:20080771
NASA Technical Reports Server (NTRS)
Lah, T. T.; Hawley, M.; Rock, K. L.; Goldberg, A. L.
1995-01-01
Previous studies have indicated that acid-optimal cysteine proteinase(s) in the endosomal-lysosomal compartments, cathepsins, play a critical role in the proteolytic processing of endocytosed proteins to generate the antigenic peptides presented to the immune system on major histocompatibility complex (MHC) class II molecules. The presentation of these peptides and the expression of MHC class II molecules by macrophages and lymphocytes are stimulated by gamma-interferon (gamma-IFN). We found that treatment of human U-937 monocytes with gamma-IFN increased the activities and the content of the two major lysosomal cysteine proteinases, cathepsins B and L. Assays of protease activity, enzyme-linked immunosorbant assays (ELISA) and immunoblotting showed that this cytokine increased the amount of cathepsin B 5-fold and cathepsin L 3-fold in the lysosomal fraction. By contrast, the aspartic proteinase, cathepsin D, in this fraction was not significantly altered by gamma-IFN treatment. An induction of cathepsins B and L was also observed in mouse macrophages, but not in HeLa cells. These results suggest coordinate regulation in monocytes of the expression of cathepsins B and L and MHC class II molecules. Presumably, this induction of cysteine proteases contributes to the enhancement of antigen presentation by gamma-IFN.
Olsen, Randall J; Sitkiewicz, Izabela; Ayeras, Ara A; Gonulal, Vedia E; Cantu, Concepcion; Beres, Stephen B; Green, Nicole M; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P; Montgomery, Charles A; Cartwright, Joiner; McGeer, Allison; Low, Donald E; Whitney, Adeline R; Cagle, Philip T; Blasdel, Terry L; DeLeo, Frank R; Musser, James M
2010-01-12
Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the DeltamtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.
Mikami, Yoshikazu; Fukushima, Atsushi; Komiyama, Yusuke; Iwase, Takashi; Tsuda, Hiromasa; Higuchi, Yasuhiko; Hayakawa, Satoshi; Kuyama, Kayo; Komiyama, Kazuo
2016-08-28
Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that diminishes tissue destruction during inflammation. A recent report revealed high levels of SLPI expression in the oral carcinoma cell. In addition, overexpression of SLPI up-regulates metastasis in lung carcinoma cells. On the other hand, matrix metalloproteinases (MMPs) are proteinases that participate in extracellular matrix degradation. SLPI and MMPs are involved as accelerators of the tumor invasion process; however, their exact roles are not fully understood. Understanding the mechanism of tumor invasion requires models that take the effect of microenvironmental factors into account. In one such in vitro model, different carcinoma cells have been shown to invade myoma tissue in highly distinct patterns. We have used this myoma model, as it provides a more natural stroma-like environment, to investigate the role of SLPI in tumor invasion. Our results indicate that the model provides a relevant matrix for tumor invasion studies, and that SLPI is important for the invasion of oral carcinoma Ca9-22 cells in conjunction with MMPs. Furthermore, using bioinformatics analysis, we have identified candidates as key molecules involved in SLPI-mediated tumor invasion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica.
Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi
2012-12-01
Cysteine proteases are important antigens in the liver fluke genus Fasciola, essential for infection, protection and nutrition. While their biochemistry, biological roles and application as vaccines have been thoroughly studied there is a lack of data concerning their regulation. In the present study we have continued our investigation of cysteine protease inhibitors in Fasciola gigantica and demonstrate, in comparison with FgStefin-1 and human cystatin C, that a second type 1 cystatin of the parasite, FgStefin-2, has been evolutionary adapted to block cathepsin B. The protein, which unusually for a type 1 cystatin carries a signal peptide, is expressed from the metacercarial to adult stage and located in the epithelial cells of the intestinal tract in all stages and in the prostate gland cells in adults. Both cell types may contribute to the released FgStefin-2 observed in the ES product of the parasite. Distinct isoforms of cathepsin B are essential for host tissue penetration during the early infection process and FgStefin-2 may act as key regulator, required to protect the minute juvenile from autoproteolysis. Expression in the prostate gland in the adult stage suggests an additional regulative role of cysteine protease activity in the reproductive system. Copyright © 2012 Elsevier B.V. All rights reserved.
Endostatin expression in a pancreatic cell line is modulated by a TNFα-dependent elastase
Brammer, R D; Bramhall, S R; Eggo, M C
2005-01-01
Endostatin, an inhibitor of angiogenesis, is a 20 kDa fragment of the basement membrane protein, collagen XVIII. The formation of endostatin relies upon the action of proteases on collagen XVIII. TNFα, produced by activated macrophages, is a multifunctional proinflammatory cytokine with known effects on endothelial function. We postulated that TNFα may modulate the activities of proteases and thus regulate endostatin formation in pancreatic cells. Collagen XVIII/endostatin mRNA was expressed in one pancreatic cell line, SUIT-2, but not in BxPc-3. The 20 kDa endostatin was found in the cell-conditioned medium of SUIT-2 cells. Precursor forms only were found in the cells. Exogenous endostatin was degraded by cellular lysates of SUIT-2 cells. Elastase activity was found in cell extracts but not the cell-conditioned media of SUIT-2 cells. Incubation of SUIT-2 cells with TNFα increased intracellular elastase activity and also increased secretion of endostatin into the medium. We conclude that endostatin is released by SUIT-2 cells and that increases in intracellular elastase, induced by TNFα, are correlated with increased secretion. Endostatin is however susceptible to degradation by intracellular proteases and if tissue injury accompanies inflammation, endostatin may be degraded, allowing angiogenesis to occur. PMID:16234817
Kataoka, Hiroaki; Kawaguchi, Makiko; Fukushima, Tsuyoshi; Shimomura, Takeshi
2018-03-01
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis.
Kadek, Alan; Tretyachenko, Vyacheslav; Mrazek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr
2014-03-01
Carnivorous plants of the genus Nepenthes produce their own aspartic proteases, nepenthesins, to digest prey trapped in their pitchers. Nepenthesins differ significantly in sequence from other aspartic proteases in the animal or even plant kingdoms. This difference, which also brings more cysteine residues into the structure of these proteases, can be a cause of uniquely high temperature and pH stabilities of nepenthesins. Their detailed structure characterization, however, has not previously been possible due to low amounts of protease present in the pitcher fluid and also due to limited accessibility of Nepenthes plants. In the present study we describe a convenient way for obtaining high amounts of nepenthesin-1 from Nepenthes gracilis using heterologous production in Escherichia coli. The protein can be easily refolded in vitro and its characteristics are very close to those described for a natural enzyme isolated from the pitcher fluid. Similarly to the natural enzyme, recombinant nepenthesin-1 is sensitive to denaturing and reducing agents. It also has maximal activity around pH 2.5, shows unusual stability at high pH and its activity is not irreversibly inhibited even after prolonged incubation in the basic pH range. On the other hand, temperature stability of the recombinant enzyme is lower in comparison with the natural enzyme, which can be attributed to missing N-glycosylation in the recombinant protein. Copyright © 2013 Elsevier Inc. All rights reserved.
The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum
DOE Office of Scientific and Technical Information (OSTI.GOV)
M El Bakkouri; A Pow; A Mulichak
The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperonesmore » and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.« less