Sample records for proteasomal dub poh1

  1. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  2. Ubiquitinated Proteins Activate the Proteasomal ATPases by Binding to Usp14 or Uch37 Homologs*

    PubMed Central

    Peth, Andreas; Kukushkin, Nikolay; Bossé, Marc; Goldberg, Alfred L.

    2013-01-01

    Degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis, but it is unclear how the proteasomal ATPases are regulated and how proteolysis, substrate deubiquitination, degradation, and ATP hydrolysis are coordinated. Polyubiquitinated proteins were shown to stimulate ATP hydrolysis by purified proteasomes, but only if the proteins contain a loosely folded domain. If they were not ubiquitinated, such proteins did not increase ATPase activity. However, they did so upon addition of ubiquitin aldehyde, which mimics the ubiquitin chain and binds to 26 S-associated deubiquitinating enzymes (DUBs): in yeast to Ubp6, which is essential for the ATPase activation, and in mammalian 26 S to the Ubp6 homolog, Usp14, and Uch37. Occupancy of either DUB by a ubiquitin conjugate leads to ATPase stimulation, thereby coupling deubiquitination and ATP hydrolysis. Thus, ubiquitinated loosely folded proteins, after becoming bound to the 26 S, interact with Ubp6/Usp14 or Uch37 to activate ATP hydrolysis and enhance their own destruction. PMID:23341450

  3. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer.

    PubMed

    Hernández-Pérez, S; Cabrera, E; Salido, E; Lim, M; Reid, L; Lakhani, S R; Khanna, K K; Saunus, J M; Freire, R

    2017-08-17

    Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E-08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.

  4. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase.

    PubMed

    Yue, Xin; Zuo, Yinglin; Ke, Hongpeng; Luo, Jiaming; Lou, Lanlan; Qin, Wenjing; Wang, Youqiao; Liu, Ziyi; Chen, Daoyuan; Sun, Haixia; Zheng, Weichao; Zhu, Cuige; Wang, Ruimin; Wen, Gesi; Du, Jun; Zhou, Binhua; Bu, Xianzhang

    2017-08-01

    The proteasomal 19S regulatory particle (RP) associated deubiquitinases (DUBs) have attracted much attention owing to their potential as a therapeutic target for cancer therapy. Identification of new entities against 19S RP associated DUBs and illustration of the underlying mechanisms is crucial for discovery of novel proteasome blockers. In this study, a series of 4-arylidene curcumin analogues were identified as potent proteasome inhibitor by preferentially blocking deubiquitinase function of proteasomal 19S RP with moderate 20S CP inhibition. The most active compound 33 exhibited a major inhibitory effect on 19S RP-associated ubiquitin-specific proteases 14, along with a minor effect on ubiquitin C-terminal hydrolase 5, which resulted in dysfunction of proteasome, and subsequently accumulated ubiquitinated proteins (such as IκB) in several cancer cells. Remarkably, though both 19S RP and 20S CP inhibition induced significantly endoplasmic reticulum stress and triggered caspase-12/9 pathway activation to promote cancer cell apoptosis, the 19S RP inhibition by 33 avoided slow onset time, Bcl-2 overexpression, and PERK-phosphorylation, which contribute to the deficiencies of clinical drug Bortezomib. These systematic studies provided insights in the development of novel proteasome inhibitors for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy.

    PubMed

    Goru, Santosh Kumar; Kadakol, Almesh; Gaikwad, Anil Bhanudas

    2017-06-01

    Diabetic nephropathy (DN) is the major cause of end stage renal failure. Although, several therapeutic targets have emerged to prevent the progression of DN, the number of people with DN still continues to rise worldwide, suggesting an urgent need of novel targets to prevent DN completely. Currently, the role of ubiquitin proteasome system (UPS) has been highlighted in the pathogenesis and progression of various diseases like obesity, insulin resistance, atherosclerosis, cancers, neurodegerative disorders and including secondary complications of diabetes. UPS mainly involves in protein homeostatis through ubiquitination (post translational modification) and proteasomal degradation of various proteins. Ubiquitination, not only involves in proteasomal degradation, but also directs the substrate proteins to participate in multitude of cell signalling pathways. However, very little is known about ubiquitination and UPS in the progression of DN. This review mainly focuses on UPS and its components including E2 conjugating enzymes, E3 ligases and deubiquitinases (DUBs) in the development of DN and thus may help us to find novel therapeutic targets with in UPS to prevent DN completely in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of comb dubbing on the performance of laying stocks.

    PubMed

    Fairfull, R W; Crober, D C; Gowe, R S

    1985-03-01

    Three studies were conducted with birds dubbed at hatch vs. dubbed and dewattled at 118 days or 255 to 260 days of age or with normal hens. In the first, involving 5928 pullets of four strains housed 1 per cage, dubbing and dewattling at 255 to 260 days caused small adverse effects on egg numbers as compared with nondubbed controls. Body size was reduced, and both egg weight (EW) and shell strength were increased slightly. In the second study, involving 8180 pullets of nine strains housed 1 per cage, dubbing and dewattling at 118 days slightly increased survivor egg production (SEP) and laying house mortality, and reduced age at first egg, 240-day EW, and 450-day Haugh units (HU), as compared with dubbing only at hatch. There were significant strain by dubbing treatment interactions for hen-day rate of lay (HDR) and SEP. In the third study, involving 1824 pullets of three strain crosses housed 2 and 3 birds per cage (three different cage sizes), there were no significant differences between birds dubbed at hatch and those not dubbed. Variation in age at 50% production, SEP, and HDR was reduced for the dubbed groups. These studies show that the older the birds are when dubbed, the greater the negative effects of dubbing. Hens dubbed at hatch exhibit no effects with the early dubbing or adverse effects in the laying house.

  7. Digital Data Dubbing Capability.

    DTIC Science & Technology

    1987-10-13

    DUBBING CAPABILITY 12. PERSONAL AUTHOR(S) WILLIAM B. BRIERLY...NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP DIGITAL DATA DUBBING ...34 ."*~ " ** "." ...- ,.-...." . . " ." .. ." " "."." .. " ","" ."e"....". "’"’ .*.." . """ ’. "."’,"’."’ TENTH ANNUAL ARMY TOPO CONFERENCE, OCTOBER 1987 DIGITAL DATA DUBBING

  8. Computer Program User’s Manual for FIREFINDER Digital Topographic Data Verification Library Dubbing System. Volume II. Dubbing.

    DTIC Science & Technology

    1982-01-29

    N - Nw .VA COMPUTER PROGRAM USER’S MANUAL FOR . 0FIREFINDER DIGITAL TOPOGRAPHIC DATA VERIFICATION LIBRARY DUBBING SYSTEM VOLUME II DUBBING 29 JANUARY...Digital Topographic Data Verification Library Dubbing System, Volume II, Dubbing 6. PERFORMING ORG. REPORT NUMER 7. AUTHOR(q) S. CONTRACT OR GRANT...Software Library FIREFINDER Dubbing 20. ABSTRACT (Continue an revWee *Ide II necessary end identify by leek mauber) PThis manual describes the computer

  9. Birt-Hogg-Dubé syndrome and intracranial vascular pathologies.

    PubMed

    Kapoor, Rahul; Evins, Alexander I; Steitieh, Diala; Bernardo, Antonio; Stieg, Philip E

    2015-12-01

    Birt-Hogg-Dubé syndrome, first described in 1977, is a rare autosomal dominant condition that commonly presents with skin lesions, including fibrofolliculomas and trichodiscomas; pulmonary cysts; spontaneous pneumothoraces; and renal cancer. We present the only known cases of intracranial vascular pathologies in patients with Birt-Hogg-Dubé syndrome. We present three cases (three female; age range 18-50) of intracranial vascular lesions in Birt-Hogg-Dubé patients, including two aneurysms and one arteriovenous malformation, and review one previously reported case of carotid aplasia. Due to the rarity of Birt-Hogg-Dubé syndrome and significant variations in its clinical presentation, it is difficult to assess whether or not Birt-Hogg-Dubé patients are predisposed to intracranial vascular pathologies. We hypothesize that increased transcription of hypoxia-inducible factor 1-alpha, resulting from a mutated form of the protein folliculin transcribed by the Birt-Hogg-Dubé gene, may be associated with vascular pathogenesis in Birt-Hogg-Dubé patients and thus provide a possible molecular basis for a link between these two conditions.

  10. Possible roles of the transcription factor Nrf1 (NFE2L1) in neural homeostasis by regulating the gene expression of deubiquitinating enzymes.

    PubMed

    Taniguchi, Hiroaki; Okamuro, Shota; Koji, Misaki; Waku, Tsuyoshi; Kubo, Kaori; Hatanaka, Atsushi; Sun, Yimeng; Chowdhury, A M Masudul Azad; Fukamizu, Akiyoshi; Kobayashi, Akira

    2017-02-26

    The transcription factor Nrf1 (NFE2L1) maintains protein homeostasis (proteostasis) by regulating the gene expression of proteasome subunits in response to proteasome inhibition. The deletion of the Nrf1 gene in neural stem/progenitor cells causes severe neurodegeneration due to the accumulation of ubiquitinated proteins in Purkinje cells and motor neurons (Nrf1 NKO mice). However, the molecular mechanisms governing this neurodegenerative process remain unclear. We demonstrate herein that the loss of Nrf1 leads to the reduced gene expression of the deubiquitinating enzymes (DUBs) but not proteasome subunits in Nrf1 NKO mice between P7 and P18. First, we show that K48-linked polyubiquitinated proteins accumulate in Nrf1-deficient Purkinje cells and cerebral cortex neurons. Nevertheless, loss of Nrf1 does not alter the expression and proteolytic activity of proteasome. A significantly reduced expression of deubiquitinating enzymes was also demonstrated in Nrf1-deficient cerebellar tissue using microarray analysis. The genome database further reveals species-conserved ARE, a Nrf1 recognition element, in the regulatory region of certain DUB genes. Furthermore, we show that Nrf1 can activate Usp9x gene expression related to neurodegeneration. Altogether these findings suggest that neurodegeneration in Nrf1 NKO mice may stem from the dysfunction of the ubiquitin-mediated regulation of neuronal proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Factors in Dubbing Television Comedy.

    ERIC Educational Resources Information Center

    Zabalbeascoa, Patrick

    1994-01-01

    Advocates a greater awareness of the factors involved with dubbing television comedies. Considers the translation of jokes and provides an outline of the various kinds of jokes in television shows. Calls for more research on comedy dubbing and television translation in general. (HB)

  12. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  13. Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation.

    PubMed

    Kurimoto, Eiji; Satoh, Tadashi; Ito, Yuri; Ishihara, Eri; Okamoto, Kenta; Yagi-Utsumi, Maho; Tanaka, Keiji; Kato, Koichi

    2017-05-01

    The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets. © 2017 The Protein Society.

  14. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.

    PubMed

    Vuong, Bao Q; Arenzana, Teresita L; Showalter, Brian M; Losman, Julie; Chen, X Peter; Mostecki, Justin; Banks, Alexander S; Limnander, Andre; Fernandez, Neil; Rothman, Paul B

    2004-10-01

    The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.

  15. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  16. Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells.

    PubMed

    García-Giménez, José Luis; Seco-Cervera, Marta; Aguado, Carmen; Romá-Mateo, Carlos; Dasí, Francisco; Priego, Sonia; Markovic, Jelena; Knecht, Erwin; Sanz, Pascual; Pallardó, Federico V

    2013-12-01

    Thioredoxin 1 (Trx1) is a key regulator of cellular redox balance and participates in cellular signaling events. Recent evidence from yeast indicates that members of the Trx family interact with the 20S proteasome, indicating redox regulation of proteasome activity. However, there is little information about the interrelationship of Trx proteins with the proteasome system in mammalian cells, especially in the nucleus. Here, we have investigated this relationship under various cellular conditions in mammalian cells. We show that Trx1 levels and its subcellular localization (cytosol, endoplasmic reticulum, and nucleus) depend on proteasome activity during the cell cycle in NIH3T3 fibroblasts and under stress conditions, when proteasomes are inhibited. In addition, we also studied in these cells how the main cellular antioxidant systems are stimulated when proteasome activity is inhibited. Finally, we describe a reduction in Trx1 levels in Lafora disease fibroblasts and demonstrate that the nuclear colocalization of Trx1 with 20S proteasomes in laforin-deficient cells is altered compared with control cells. Our results indicate a close relationship between Trx1 and the 20S nuclear proteasome and give a new perspective to the study of diseases or physiopathological conditions in which defects in the proteasome system are associated with oxidative stress. © 2013 Elsevier Inc. All rights reserved.

  17. Regulation of proteasomal degradation by modulating proteasomal initiation regions

    PubMed Central

    Takahashi, Kazunobu; Matouschek, Andreas; Inobe, Tomonao

    2016-01-01

    Methods for regulating the concentrations of specific cellular proteins are valuable tools for biomedical studies. Artificial regulation of protein degradation by the proteasome is receiving increasing attention. Efficient proteasomal protein degradation requires a degron with two components: a ubiquitin tag that is recognized by the proteasome and a disordered region at which the proteasome engages the substrate and initiates degradation. Here we show that degradation rates can be regulated by modulating the disordered initiation region by the binding of modifier molecules, in vitro and in vivo. These results suggest that artificial modulation of proteasome initiation is a versatile method for conditionally inhibiting the proteasomal degradation of specific proteins. PMID:26278914

  18. Calcitonin Gene-Related Peptide Induces HIV-1 Proteasomal Degradation in Mucosal Langerhans Cells.

    PubMed

    Bomsel, Morgane; Ganor, Yonatan

    2017-12-01

    The neuroimmune dialogue between peripheral neurons and Langerhans cells (LCs) within mucosal epithelia protects against incoming pathogens. LCs rapidly internalize human immunodeficiency virus type 1 (HIV-1) upon its sexual transmission and then trans -infect CD4 + T cells. We recently found that the neuropeptide calcitonin gene-related peptide (CGRP), secreted mucosally from peripheral neurons, inhibits LC-mediated HIV-1 trans -infection. In this study, we investigated the mechanism of CGRP-induced inhibition, focusing on HIV-1 degradation in LCs and its interplay with trans -infection. We first show that HIV-1 degradation occurs in endolysosomes in untreated LCs, and functionally blocking such degradation with lysosomotropic agents results in increased trans -infection. We demonstrate that CGRP acts via its cognate receptor and at a viral postentry step to induce faster HIV-1 degradation, but without affecting the kinetics of endolysosomal degradation. We reveal that unexpectedly, CGRP shifts HIV-1 degradation from endolysosomes toward the proteasome, providing the first evidence for functional HIV-1 proteasomal degradation in LCs. Such efficient proteasomal degradation significantly inhibits the first phase of trans -infection, and proteasomal, but not endolysosomal, inhibitors abrogate CGRP-induced inhibition. Together, our results establish that CGRP controls the HIV-1 degradation mode in LCs. The presence of endogenous CGRP within innervated mucosal tissues, especially during the sexual response, to which CGRP contributes, suggests that HIV-1 proteasomal degradation predominates in vivo Hence, proteasomal, rather than endolysosomal, HIV-1 degradation in LCs should be enhanced clinically to effectively restrict HIV-1 trans -infection. IMPORTANCE During sexual transmission, HIV-1 is internalized and degraded in LCs, the resident antigen-presenting cells in mucosal epithelia. Yet during trans -infection, infectious virions escaping degradation are transferred

  19. Calcitonin Gene-Related Peptide Induces HIV-1 Proteasomal Degradation in Mucosal Langerhans Cells

    PubMed Central

    Bomsel, Morgane

    2017-01-01

    ABSTRACT The neuroimmune dialogue between peripheral neurons and Langerhans cells (LCs) within mucosal epithelia protects against incoming pathogens. LCs rapidly internalize human immunodeficiency virus type 1 (HIV-1) upon its sexual transmission and then trans-infect CD4+ T cells. We recently found that the neuropeptide calcitonin gene-related peptide (CGRP), secreted mucosally from peripheral neurons, inhibits LC-mediated HIV-1 trans-infection. In this study, we investigated the mechanism of CGRP-induced inhibition, focusing on HIV-1 degradation in LCs and its interplay with trans-infection. We first show that HIV-1 degradation occurs in endolysosomes in untreated LCs, and functionally blocking such degradation with lysosomotropic agents results in increased trans-infection. We demonstrate that CGRP acts via its cognate receptor and at a viral postentry step to induce faster HIV-1 degradation, but without affecting the kinetics of endolysosomal degradation. We reveal that unexpectedly, CGRP shifts HIV-1 degradation from endolysosomes toward the proteasome, providing the first evidence for functional HIV-1 proteasomal degradation in LCs. Such efficient proteasomal degradation significantly inhibits the first phase of trans-infection, and proteasomal, but not endolysosomal, inhibitors abrogate CGRP-induced inhibition. Together, our results establish that CGRP controls the HIV-1 degradation mode in LCs. The presence of endogenous CGRP within innervated mucosal tissues, especially during the sexual response, to which CGRP contributes, suggests that HIV-1 proteasomal degradation predominates in vivo. Hence, proteasomal, rather than endolysosomal, HIV-1 degradation in LCs should be enhanced clinically to effectively restrict HIV-1 trans-infection. IMPORTANCE During sexual transmission, HIV-1 is internalized and degraded in LCs, the resident antigen-presenting cells in mucosal epithelia. Yet during trans-infection, infectious virions escaping degradation are transferred

  20. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.

    PubMed

    Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V

    2012-09-01

    Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.

  1. Computer Program User’s Manual for FIREFINDER Digital Topographic Data Verification Library Dubbing System,

    DTIC Science & Technology

    1981-11-30

    COMPUTER PROGRAM USER’S MANUAL FOR FIREFINDER DIGITAL TOPOGRAPHIC DATA VERIFICATION LIBRARY DUBBING SYSTEM 30 NOVEMBER 1981 by: Marie Ceres Leslie R...Library .............................. 1-2 1.2.3 Dubbing .......................... 1-2 1.3 Library Process Overview ..................... 1-3 2 LIBRARY...RPOSE AND SCOPE This manual describes the computer programs for the FIREFINDER Digital Topographic Data Veri fication-Library- Dubbing System (FFDTDVLDS

  2. α-Keto phenylamides as P1'-extended proteasome inhibitors.

    PubMed

    Voss, Constantin; Scholz, Christoph; Knorr, Sabine; Beck, Philipp; Stein, Martin L; Zall, Andrea; Kuckelkorn, Ulrike; Kloetzel, Peter-Michael; Groll, Michael; Hamacher, Kay; Schmidt, Boris

    2014-11-01

    The major challenge for proteasome inhibitor design lies in achieving high selectivity for, and activity against, the target, which requires specific interactions with the active site. Novel ligands aim to overcome off-target-related side effects such as peripheral neuropathy, which is frequently observed in cancer patients treated with the FDA-approved proteasome inhibitors bortezomib (1) or carfilzomib (2). A systematic comparison of electrophilic headgroups recently identified the class of α-keto amides as promising for next generation drug development. On the basis of crystallographic knowledge, we were able to develop a structure-activity relationship (SAR)-based approach for rational ligand design using an electronic parameter (Hammett's σ) and in silico molecular modeling. This resulted in the tripeptidic α-keto phenylamide BSc4999 [(S)-3-(benzyloxycarbonyl-(S)-leucyl-(S)-leucylamino)-5-methyl-2-oxo-N-(2,4-dimethylphenyl)hexanamide, 6 a], a highly potent (IC50 = 38 nM), cell-permeable, and slowly reversible covalent inhibitor which targets both the primed and non-primed sites of the proteasome's substrate binding channel as a special criterion for selectivity. The improved inhibition potency and selectivity of this new α-keto phenylamide makes it a promising candidate for targeting a wider range of tumor subtypes than commercially available proteasome inhibitors and presents a new candidate for future studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The deubiquitinating enzyme DUBAI stabilizes DIAP1 to suppress Drosophila apoptosis

    PubMed Central

    Yang, C-S; Sinenko, S A; Thomenius, M J; Robeson, A C; Freel, C D; Horn, S R; Kornbluth, S

    2014-01-01

    Deubiquitinating enzymes (DUBs) counteract ubiquitin ligases to modulate the ubiquitination and stability of target signaling molecules. In Drosophila, the ubiquitin–proteasome system has a key role in the regulation of apoptosis, most notably, by controlling the abundance of the central apoptotic regulator DIAP1. Although the mechanism underlying DIAP1 ubiquitination has been extensively studied, the precise role of DUB(s) in controlling DIAP1 activity has not been fully investigated. Here we report the identification of a DIAP1-directed DUB using two complementary approaches. First, a panel of putative Drosophila DUBs was expressed in S2 cells to determine whether DIAP1 could be stabilized, despite treatment with death-inducing stimuli that would induce DIAP1 degradation. In addition, RNAi fly lines were used to detect modifiers of DIAP1 antagonist-induced cell death in the developing eye. Together, these approaches identified a previously uncharacterized protein encoded by CG8830, which we named DeUBiquitinating-Apoptotic-Inhibitor (DUBAI), as a novel DUB capable of preserving DIAP1 to dampen Drosophila apoptosis. DUBAI interacts with DIAP1 in S2 cells, and the putative active site of its DUB domain (C367) is required to rescue DIAP1 levels following apoptotic stimuli. DUBAI, therefore, represents a novel locus of apoptotic regulation in Drosophila, antagonizing cell death signals that would otherwise result in DIAP1 degradation. PMID:24362437

  4. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch.

    PubMed

    Minoia, Melania; Boncoraglio, Alessandra; Vinet, Jonathan; Morelli, Federica F; Brunsting, Jeanette F; Poletti, Angelo; Krom, Sabine; Reits, Eric; Kampinga, Harm H; Carra, Serena

    2014-09-01

    Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the "BAG-instructed proteasomal to autophagosomal switch and sorting" (BIPASS).

  5. Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes

    PubMed Central

    Issaenko, Olga A.; Amerik, Alexander Yu

    2012-01-01

    The ubiquitin-proteasome system (UPS) is usurped by many if not all cancers to regulate their survival, proliferation, invasion, angiogenesis and metastasis. Bioflavonoids curcumin and chalcones exhibit anti-neoplastic selectivity through inhibition of the 26S proteasome-activity within the UPS. Here, we provide evidence for a novel mechanism of action of chalcone-based derivatives AM146, RA-9 and RA-14, which exert anticancer activity by targeting deubiquitinating enzymes (DUB) without affecting 20S proteasome catalytic-core activity. The presence of the α,β-unsaturated carbonyl group susceptible to nucleophilic attack from the sulfhydryl of cysteines in the active sites of DUB determines the capacity of novel small-molecules to act as cell-permeable, partly selective DUB inhibitors and induce rapid accumulation of polyubiquitinated proteins and deplete the pool of free ubiquitin. These chalcone-derivatives directly suppress activity of DUB UCH-L1, UCH-L3, USP2, USP5 and USP8, which are known to regulate the turnover and stability of key regulators of cell survival and proliferation. Inhibition of DUB-activity mediated by these compounds downregulates cell-cycle promoters, e.g., cyclin D1 and upregulates tumor suppressors p53, p27Kip1 and p16Ink4A. These changes are associated with arrest in S-G2/M, abrogated anchorage-dependent growth and onset of apoptosis in breast, ovarian and cervical cancer cells without noticeable alterations in primary human cells. Altogether, this work provides evidence of antitumor activity of novel chalcone-based derivatives mediated by their DUB-targeting capacity; supports the development of pharmaceuticals to directly target DUB as a most efficient strategy compared with proteasome inhibition and also provides a clear rationale for the clinical evaluation of these novel small-molecule DUB inhibitors. PMID:22510564

  6. Phosphorylation Regulates the Ubiquitin-independent Degradation of Yeast Pah1 Phosphatidate Phosphatase by the 20S Proteasome*

    PubMed Central

    Hsieh, Lu-Sheng; Su, Wen-Min; Han, Gil-Soo; Carman, George M.

    2015-01-01

    Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. PMID:25809482

  7. Targeting the proteasome pathway.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2009-05-01

    The ubiquitin-proteasome pathway functions as a main pathway in intracellular protein degradation and plays a vital role in almost all cellular events. Various inhibitors of this pathway have been developed for research purposes. The recent approval of bortezomib (PS-341, Velcade, a proteasome inhibitor, for the treatment of multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and other components of the ubiquitin-proteasome pathway. We review the current understanding of the ubiquitin-proteasome pathway and inhibitors targeting this pathway, including proteasome inhibitors, as candidate drugs for chemical therapy. Preclinical and clinical data for inhibitors of the proteasome and the ubiquitin-proteasome pathway are discussed. The proteasome and other members in the ubiquitin-proteasome pathway have emerged as novel therapeutic targets.

  8. Quercetin suppresses the chymotrypsin-like activity of proteasome via inhibition of MEK1/ERK1/2 signaling pathway in hepatocellular carcinoma HepG2 cells.

    PubMed

    Ding, Youming; Chen, Xiaoyan; Wang, Bin; Yu, Bin; Ge, Jianhui; Shi, Xiaokang

    2018-05-01

    The proteasomal system is a promising target for cancer treatment. Quercetin (Que), a flavonoid compound with antitumor ability, displays the inhibitory effect on proteasome activity. However, the underlying molecular mechanisms are ill defined. The present study found that Que treatment significantly reduced the chymotrypsin-like protease activity of proteasome whereas the trypsin- and caspase-like protease activities remained unchanged in HepG2 cancer cells, along with activation of p38 MAPK and JNK and reduction of ERK1/2 phosphorylation. Que-reduced proteasome activity could not be reverted by inhibition of p38 MAPK and JNK signaling pathway. In addition, MEK1 overexpression or knockdown upregulated or downregulated the chymotrypsin-like protease activity of proteasome, respectively. Both Que and MEK1/ERK1/2 inhibitor attenuated the expression levels of proteasome β subunits. These results indicate that Que-induced suppression of MEK1/ERK1/2 signaling and subsequent reduction of proteasome β subunits is responsible for its inhibitory impacts on proteasome activity.

  9. Structural Defects in the Regulatory Particle-Core Particle Interface of the Proteasome Induce a Novel Proteasome Stress Response*

    PubMed Central

    Park, Soyeon; Kim, Woong; Tian, Geng; Gygi, Steven P.; Finley, Daniel

    2011-01-01

    Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α7β7β7α7 structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5K66A and α6K62A resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6K62A proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function. PMID:21878652

  10. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana

    PubMed Central

    Montacié, Charlotte; Durut, Nathalie; Opsomer, Alison; Palm, Denise; Comella, Pascale; Picart, Claire; Carpentier, Marie-Christine; Pontvianne, Frederic; Carapito, Christine; Schleiff, Enrico; Sáez-Vásquez, Julio

    2017-01-01

    In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity. PMID:29104584

  11. Cell Attachment to the Extracellular Matrix Induces Proteasomal Degradation of p21CIP1 via Cdc42/Rac1 Signaling

    PubMed Central

    Bao, Wenjie; Thullberg, Minna; Zhang, Hongquan; Onischenko, Anatoli; Strömblad, Staffan

    2002-01-01

    The cyclin-dependent kinase 2 (Cdk2) inhibitors p21CIP1 and p27KIP1 are negatively regulated by anchorage during cell proliferation, but it is unclear how integrin signaling may affect these Cdk2 inhibitors. Here, we demonstrate that integrin ligation led to rapid reduction of p21CIP1 and p27KIP1 protein levels in three distinct cell types upon attachment to various extracellular matrix (ECM) proteins, including fibronectin (FN), or to immobilized agonistic anti-integrin monoclonal antibodies. Cell attachment to FN did not rapidly influence p21CIP1 mRNA levels, while the protein stability of p21CIP1 was decreased. Importantly, the down-regulation of p21CIP1 and p27KIP1 was completely blocked by three distinct proteasome inhibitors, demonstrating that integrin ligation induced proteasomal degradation of these Cdk2 inhibitors. Interestingly, ECM-induced proteasomal proteolysis of a ubiquitination-deficient p21CIP1 mutant (p21K6R) also occurred, showing that the proteasomal degradation of p21CIP1 was ubiquitin independent. Concomitant with our finding that the small GTPases Cdc42 and Rac1 were activated by attachment to FN, constitutively active (ca) Cdc42 and ca Rac1 promoted down-regulation of p21CIP1. However, dominant negative (dn) Cdc42 and dn Rac1 mutants blocked the anchorage-induced degradation of p21CIP1, suggesting that an integrin-induced Cdc42/Rac1 signaling pathway activates proteasomal degradation of p21CIP1. Our results indicate that integrin-regulated proteasomal proteolysis might contribute to anchorage-dependent cell cycle control. PMID:12052868

  12. Embryonic demise caused by targeted disruption of a cysteine protease Dub-2.

    PubMed

    Baek, Kwang-Hyun; Lee, Heyjin; Yang, Sunmee; Lim, Soo-Bin; Lee, Wonwoo; Lee, Jeoung Eun; Lim, Jung-Jin; Jun, Kisun; Lee, Dong-Ryul; Chung, Young

    2012-01-01

    A plethora of biological metabolisms are regulated by the mechanisms of ubiquitination, wherein this process is balanced with the action of deubiquitination system. Dub-2 is an IL-2-inducible, immediate-early gene that encodes a deubiquitinating enzyme with growth regulatory activity. DUB-2 presumably removes ubiquitin from ubiquitin-conjugated target proteins regulating ubiquitin-mediated proteolysis, but its specific target proteins are unknown yet. To elucidate the functional role of Dub-2, we generated genetically modified mice by introducing neo cassette into the second exon of Dub-2 and then homologous recombination was done to completely abrogate the activity of DUB-2 proteins. We generated Dub-2+/- heterozygous mice showing a normal phenotype and are fertile, whereas new born mouse of Dub-2-/- homozygous alleles could not survive. In addition, Dub-2-/- embryo could not be seen between E6.5 and E12.5 stages. Furthermore, the number of embryos showing normal embryonic development for further stages is decreased in heterozygotes. Even embryonic stem cells from inner cell mass of Dub-2-/- embryos could not be established. Our study suggests that the targeted disruption of Dub-2 may cause embryonic lethality during early gestation, possibly due to the failure of cell proliferation during hatching process.

  13. Yeast Pah1p Phosphatidate Phosphatase Is Regulated by Proteasome-mediated Degradation*

    PubMed Central

    Pascual, Florencia; Hsieh, Lu-Sheng; Soto-Cardalda, Aníbal; Carman, George M.

    2014-01-01

    Yeast PAH1-encoded phosphatidate phosphatase is the enzyme responsible for the production of the diacylglycerol used for the synthesis of triacylglycerol that accumulates in the stationary phase of growth. Paradoxically, the growth phase-mediated inductions of PAH1 and phosphatidate phosphatase activity do not correlate with the amount of Pah1p; enzyme abundance declined in a growth phase-dependent manner. Pah1p from exponential phase cells was a relatively stable protein, and its abundance was not affected by incubation with an extract from stationary phase cells. Recombinant Pah1p was degraded upon incubation with the 100,000 × g pellet fraction of stationary phase cells, although the enzyme was stable when incubated with the same fraction of exponential phase cells. MG132, an inhibitor of proteasome function, prevented degradation of the recombinant enzyme. Endogenously expressed and plasmid-mediated overexpressed levels of Pah1p were more abundant in the stationary phase of cells treated with MG132. Pah1p was stabilized in mutants with impaired proteasome (rpn4Δ, blm10Δ, ump1Δ, and pre1 pre2) and ubiquitination (hrd1Δ, ubc4Δ, ubc7Δ, ubc8Δ, and doa4Δ) functions. The pre1 pre2 mutations that eliminate nearly all chymotrypsin-like activity of the 20 S proteasome had the greatest stabilizing effect on enzyme levels. Taken together, these results supported the conclusion that Pah1p is subject to proteasome-mediated degradation in the stationary phase. That Pah1p abundance was stabilized in pah1Δ mutant cells expressing catalytically inactive forms of Pah1p and dgk1Δ mutant cells with induced expression of DGK1-encoded diacylglycerol kinase indicated that alteration in phosphatidate and/or diacylglycerol levels might be the signal that triggers Pah1p degradation. PMID:24563465

  14. Homopiperazine Derivatives as a Novel Class of Proteasome Inhibitors with a Unique Mode of Proteasome Binding

    PubMed Central

    Kikuchi, Jiro; Shibayama, Naoya; Yamada, Satoshi; Wada, Taeko; Nobuyoshi, Masaharu; Izumi, Tohru; Akutsu, Miyuki; Kano, Yasuhiko; Sugiyama, Kanako; Ohki, Mio; Park, Sam-Yong; Furukawa, Yusuke

    2013-01-01

    The proteasome is a proteolytic machinery that executes the degradation of polyubiquitinated proteins to maintain cellular homeostasis. Proteasome inhibition is a unique and effective way to kill cancer cells because they are sensitive to proteotoxic stress. Indeed, the proteasome inhibitor bortezomib is now indispensable for the treatment of multiple myeloma and other intractable malignancies, but is associated with patient inconvenience due to intravenous injection and emerging drug resistance. To resolve these problems, we attempted to develop orally bioavailable proteasome inhibitors with distinct mechanisms of action and identified homopiperazine derivatives (HPDs) as promising candidates. Biochemical and crystallographic studies revealed that some HPDs inhibit all three catalytic subunits (ß 1, ß 2 and ß 5) of the proteasome by direct binding, whereas bortezomib and other proteasome inhibitors mainly act on the ß5 subunit. Proteasome-inhibitory HPDs exhibited cytotoxic effects on cell lines from various hematological malignancies including myeloma. Furthermore, K-7174, one of the HPDs, was able to inhibit the growth of bortezomib-resistant myeloma cells carrying a ß5-subunit mutation. Finally, K-7174 had additive effects with bortezomib on proteasome inhibition and apoptosis induction in myeloma cells. Taken together, HPDs could be a new class of proteasome inhibitors, which compensate for the weak points of conventional ones and overcome the resistance to bortezomib. PMID:23593271

  15. Video Dubbing Projects in the Foreign Language Curriculum

    ERIC Educational Resources Information Center

    Burston, Jack

    2005-01-01

    The dubbing of muted video clips offers an excellent opportunity to develop the skills of foreign language learners at all linguistic levels. In addition to its motivational value, soundtrack dubbing provides a rich source of activities in all language skill areas: listening, reading, writing, speaking. With advanced students, it also lends itself…

  16. Image/Music/Voice: Song Dubbing in Hollywood Musicals.

    ERIC Educational Resources Information Center

    Siefert, Marsha

    1995-01-01

    Uses the practice of song dubbing in the Hollywood film musical to explore the implications and consequences of the singing voice for imaging practices in the 1930s through 1960s. Discusses the ideological, technological, and socioeconomic basis for song dubbing. Discusses gender, race, and ethnicity patterns of image-sound practices. (SR)

  17. The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia.

    PubMed

    Chepelev, Nikolai L; Bennitz, Joshua D; Huang, Ting; McBride, Skye; Willmore, William G

    2011-01-01

    Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully. We found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O(2)) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine. Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status. © 2011 Chepelev et al.

  18. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard S.; Vierstra, Richard D.

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  19. Proteasome storage granules protect proteasomes from autophagic degradation upon carbon starvation

    DOE PAGES

    Marshall, Richard S.; Vierstra, Richard D.

    2018-04-06

    26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required formore » granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.« less

  20. Dubbing Projects for the Language Learner: A Framework for Integrating Audiovisual Translation into Task-Based Instruction

    ERIC Educational Resources Information Center

    Danan, Martine

    2010-01-01

    This article describes a series of exploratory L1 to L2 dubbing projects for which students translated and used editing software to dub short American film and TV clips into their target language. Translating and dubbing into the target language involve students in multifaceted, high-level language production tasks that lead to enhanced vocabulary…

  1. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    PubMed

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  2. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication.

    PubMed

    Fernandez-Garcia, Maria-Dolores; Meertens, Laurent; Bonazzi, Matteo; Cossart, Pascale; Arenzana-Seisdedos, Fernando; Amara, Ali

    2011-03-01

    The ubiquitin ligase CBLL1 (also known as HAKAI) has been proposed to be a critical cellular factor exploited by West Nile virus (WNV) for productive infection. CBLL1 has emerged as a major hit in a recent RNA interference screen designed to identify cellular factors required for the early stages of the WNV life cycle. Follow-up experiments showed that HeLa cells knocked down for CBLL1 by a small interfering RNA (siRNA) failed to internalize WNV particles and resisted infection. Furthermore, depletion of a free-ubiquitin pool by the proteasome inhibitor MG132 abolished WNV endocytosis, suggesting that CBLL1 acts in concert with the ubiquitin proteasome system to mediate virus internalization. Here, we examined the effect of CBLL1 knockdown and proteasome inhibitors on infection by WNV and other flaviviruses. We identified new siRNAs that repress the CBLL1 protein and strongly inhibit the endocytosis of Listeria monocytogenes, a bacterial pathogen known to require CBLL1 to invade host cells. Strikingly, however, we detected efficient WNV, dengue virus, and yellow fever virus infection of human cells, despite potent downregulation of CBLL1 by RNA interference. In addition, we found that the proteasome inhibitors MG132 and lactacystin did not affect WNV internalization but strongly repressed flavivirus RNA translation and replication. Together, these data do not support a requirement for CBLL1 during flavivirus entry and rather suggest an essential role of the ubiquitin/proteasome pathway for flavivirus genome amplification.

  3. Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System*

    PubMed Central

    Singh, Rajesh K.; Zerath, Sylvia; Kleifeld, Oded; Scheffner, Martin; Glickman, Michael H.; Fushman, David

    2012-01-01

    Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin. PMID:23105008

  4. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system.

    PubMed

    Poirson, Juline; Biquand, Elise; Straub, Marie-Laure; Cassonnet, Patricia; Nominé, Yves; Jones, Louis; van der Werf, Sylvie; Travé, Gilles; Zanier, Katia; Jacob, Yves; Demeret, Caroline; Masson, Murielle

    2017-10-01

    Protein ubiquitination and its reverse reaction, deubiquitination, regulate protein stability, protein binding activity, and their subcellular localization. These reactions are catalyzed by the enzymes E1, E2, and E3 ubiquitin (Ub) ligases and deubiquitinases (DUBs). The Ub-proteasome system (UPS) is targeted by viruses for the sake of their replication and to escape host immune response. To identify novel partners of human papillomavirus 16 (HPV16) E6 and E7 proteins, we assembled and screened a library of 590 cDNAs related to the UPS by using the Gaussia princeps luciferase protein complementation assay. HPV16 E6 was found to bind to the homology to E6AP C terminus-type Ub ligase (E6AP), three really interesting new gene (RING)-type Ub ligases (MGRN1, LNX3, LNX4), and the DUB Ub-specific protease 15 (USP15). Except for E6AP, the binding of UPS factors did not require the LxxLL-binding pocket of HPV16 E6. LNX3 bound preferentially to all high-risk mucosal HPV E6 tested, whereas LNX4 bound specifically to HPV16 E6. HPV16 E7 was found to bind to several broad-complex tramtrack and bric-a-brac domain-containing proteins (such as TNFAIP1/KCTD13) that are potential substrate adaptors of Cullin 3-RING Ub ligases, to RING-type Ub ligases implicated in innate immunity (RNF135, TRIM32, TRAF2, TRAF5), to the substrate adaptor DCAF15 of Cullin 4-RING Ub ligase and to some DUBs (USP29, USP33). The binding to UPS factors did not require the LxCxE motif but rather the C-terminal region of HPV16 E7 protein. The identified UPS factors interacted with most of E7 proteins across different HPV types. This study establishes a strategy for the rapid identification of interactions between host or pathogen proteins and the human ubiquitination system. © 2017 Federation of European Biochemical Societies.

  5. Changes in the Expression and the Enzymic Properties of the 20S Proteasome in Sugar-Starved Maize Roots. Evidence for an in Vivo Oxidation of the Proteasome1

    PubMed Central

    Basset , Gilles; Raymond, Philippe; Malek, Lada; Brouquisse, Renaud

    2002-01-01

    The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of α3 and β6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations. PMID:11891269

  6. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nelson L.S.; Wang Huan; Wang Yun

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 {mu}M of POH was effectivemore » in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.« less

  7. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells.

    PubMed

    Chan, Nelson L S; Wang, Huan; Wang, Yun; Leung, Hau Yi; Leung, Lai K

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 microM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.

  8. Sperm proteasome and fertilization.

    PubMed

    Sutovsky, Peter

    2011-07-01

    The omnipresent ubiquitin-proteasome system (UPS) is an ATP-dependent enzymatic machinery that targets substrate proteins for degradation by the 26S proteasome by tagging them with an isopeptide chain composed of covalently linked molecules of ubiquitin, a small chaperone protein. The current knowledge of UPS involvement in the process of sperm penetration through vitelline coat (VC) during human and animal fertilization is reviewed in this study, with attention also being given to sperm capacitation and acrosome reaction/exocytosis. In ascidians, spermatozoa release ubiquitin-activating and conjugating enzymes, proteasomes, and unconjugated ubiquitin to first ubiquitinate and then degrade the sperm receptor on the VC; in echinoderms and mammals, the VC (zona pellucida/ZP in mammals) is ubiquitinated during oogenesis and the sperm receptor degraded during fertilization. Various proteasomal subunits and associated enzymes have been detected in spermatozoa and localized to sperm acrosome and other sperm structures. By using specific fluorometric substrates, proteasome-specific proteolytic and deubiquitinating activities can be measured in live, intact spermatozoa and in sperm protein extracts. The requirement of proteasomal proteolysis during fertilization has been documented by the application of various proteasome-specific inhibitors and antibodies. A similar effect was achieved by depletion of sperm-surface ATP. Degradation of VC/ZP-associated sperm receptor proteins by sperm-borne proteasomes has been demonstrated in ascidians and sea urchins. On the applied side, polyspermy has been ameliorated by modulating sperm-associated deubiquitinating enzymes. Diagnostic and therapeutic applications could emerge in human reproductive medicine. Altogether, the studies on sperm proteasome indicate that animal fertilization is controlled in part by a unique, gamete associated, extracellular UPS.

  9. A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14

    PubMed Central

    Lee, Byung-Hoon; Finley, Daniel; King, Randall W.

    2013-01-01

    Deubiquitinating enzymes (DUBs) reverse the process of ubiquitination, and number nearly 100 in humans. In principle, DUBs represent promising drug targets, as several of the enzymes have been implicated in human diseases. The isopeptidase activity of DUBs can be selectively inhibited by targeting the catalytic site with drug-like compounds. Notably, the mammalian 26S proteasome is associated with three major DUBs: RPN11, UCH37 and USP14. Because the ubiquitin ‘chain-trimming’ activity of USP14 can inhibit proteasome function, inhibitors of USP14 can stimulate proteasomal degradation. We recently established a high-throughput screening (HTS) method to discover small-molecule inhibitors specific for USP14. The protocols in this article cover the necessary procedures for preparing assay reagents, performing HTS for USP14 inhibitors, and carrying out post-HTS analysis. PMID:23788557

  10. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effectsmore » of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress

  11. Structural basis for histone H2B deubiquitination by the SAGA DUB module

    DOE PAGES

    Morgan, Michael T.; Haj-Yahya, Mahmood; Ringel, Alison E.; ...

    2016-02-12

    Monoubiquitinated histone H2B plays multiple roles in transcription activation. H2B is deubiquitinated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator, which contains a four-protein subcomplex known as the deubiquitinating (DUB) module. In this paper, the crystal structure of the Ubp8/Sgf11/Sus1/Sgf73 DUB module bound to a ubiquitinated nucleosome reveals that the DUB module primarily contacts H2A/H2B, with an arginine cluster on the Sgf11 zinc finger domain docking on the conserved H2A/H2B acidic patch. The Ubp8 catalytic domain mediates additional contacts with H2B, as well as with the conjugated ubiquitin. Finally, we find that the DUB module deubiquitinates H2B both in the context ofmore » the nucleosome and in H2A/H2B dimers complexed with the histone chaperone, FACT, suggesting that SAGA could target H2B at multiple stages of nucleosome disassembly and reassembly during transcription.« less

  12. Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome.

    PubMed

    Hasumi, Hisashi; Baba, Masaya; Hasumi, Yukiko; Furuya, Mitsuko; Yao, Masahiro

    2016-03-01

    Birt-Hogg-Dubé syndrome is an autosomal dominantly inherited disease that predisposes patients to develop fibrofolliculoma, lung cysts and bilateral multifocal renal tumors, histologically hybrid oncocytic/chromophobe tumors, chromophobe renal cell carcinoma, oncocytoma, papillary renal cell carcinoma and clear cell renal cell carcinoma. The predominant forms of Birt-Hogg-Dubé syndrome-associated renal tumors, hybrid oncocytic/chromophobe tumors and chromophobe renal cell carcinoma are typically less aggressive, and a therapeutic principle for these tumors is a surgical removal with nephron-sparing. The timing of surgery is the most critical element for postoperative renal function, which is one of the important prognostic factors for Birt-Hogg-Dubé syndrome patients. The folliculin gene (FLCN) that is responsible for Birt-Hogg-Dubé syndrome was isolated as a novel tumor suppressor for kidney cancer. Recent studies using murine models for FLCN, a protein encoded by the FLCN gene, and its two binding partners, folliculin-interacting protein 1 (FNIP1) and folliculin-interacting protein 2 (FNIP2), have uncovered important roles for FLCN, FNIP1 and FNIP2 in cell metabolism, which include AMP-activated protein kinase-mediated energy sensing, Ppargc1a-driven mitochondrial oxidative phosphorylation and mTORC1-dependent cell proliferation. Birt-Hogg-Dubé syndrome is a hereditary hamartoma syndrome, which is triggered by metabolic alterations under a functional loss of FLCN/FNIP1/FNIP2 complex, a critical regulator of kidney cell proliferation rate; a mechanistic insight into the FLCN/FNIP1/FNIP2 pathway could provide us a basis for developing new therapeutics for kidney cancer. © 2015 The Japanese Urological Association.

  13. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    PubMed Central

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  14. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta

    PubMed Central

    Minoia, Melania; Boncoraglio, Alessandra; Vinet, Jonathan; Morelli, Federica F; Brunsting, Jeanette F; Poletti, Angelo; Krom, Sabine; Reits, Eric; Kampinga, Harm H; Carra, Serena

    2014-01-01

    Eukaryotic cells use autophagy and the ubiquitin–proteasome system as their major protein degradation pathways. Upon proteasomal impairment, cells switch to autophagy to ensure proper clearance of clients (the proteasome-to-autophagy switch). The HSPA8 and HSPA1A cochaperone BAG3 has been suggested to be involved in this switch. However, at present it is still unknown whether and to what extent BAG3 can indeed reroute proteasomal clients to the autophagosomal pathway. Here, we show that BAG3 induces the sequestration of ubiquitinated clients into cytoplasmic puncta colabeled with canonical autophagy linkers and markers. Following proteasome inhibition, BAG3 upregulation significantly contributes to the compensatory activation of autophagy and to the degradation of the (poly)ubiquitinated proteins. BAG3 binding to the ubiquitinated clients occurs through the BAG domain, in competition with BAG1, another BAG family member, that normally directs ubiquitinated clients to the proteasome. Therefore, we propose that following proteasome impairment, increasing the BAG3/BAG1 ratio ensures the “BAG-instructed proteasomal to autophagosomal switch and sorting” (BIPASS). PMID:25046115

  15. Impaired proteasome function in sporadic amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Strong, Michael J; Durham, Heather D

    2012-06-01

    Abstract The ubiquitin-proteasome system, important for maintaining protein quality control, is compromised in experimental models of familial ALS. The objective of this study was to determine if proteasome function is impaired in sporadic ALS. Proteasomal activities and subunit composition were evaluated in homogenates of spinal cord samples obtained at autopsy from sporadic ALS and non-neurological control cases, compared to cerebellum as a clinically spared tissue. The level of 20S α structural proteasome subunits was assessed in motor neurons by immunohistochemistry. Catalysis of peptide substrates of the three major proteasomal activities was substantially reduced in ALS thoracic spinal cord, but not in cerebellum, accompanied by alterations in the constitutive proteasome machinery. Chymotrypsin-like activity was decreased to 60% and 65% of control in ventral and dorsal spinal cord, respectively, concomitant with reduction in the β5 subunit with this catalytic activity. Caspase- and trypsin-like activities were reduced to a similar extent (46% - 68% of control). Proteasome levels, although generally maintained, appeared reduced specifically in motor neurons by immunolabelling. In conclusion, there are commonalities of findings in sporadic ALS patients and presymptomatic SOD1-G93A transgenic mice and these implicate inadequate proteasome function in the pathogenesis of both familial and sporadic ALS.

  16. Reconfiguration of the proteasome during chaperone-mediated assembly

    PubMed Central

    Park, Soyeon; Li, Xueming; Kim, Ho Min; Singh, Chingakham Ranjit; Tian, Geng; Hoyt, Martin A.; Lovell, Scott; Battaile, Kevin P.; Zolkiewski, Michal; Coffino, Philip; Roelofs, Jeroen; Cheng, Yifan; Finley, Daniel

    2013-01-01

    The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt C-terminal tails inserting into pockets of the α ring1–4. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit5–10. We report that the base subassembly of the proteasome, which includes the Rpt ring, forms a high affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6, and Rpn14. Chaperone-mediated dissociation was abrogated by a nonhydrolyzable ATP analog, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3 pocket. Although the Rpt6 tail is not visualized within an α pocket in mature proteasomes2–4, it inserts into the α2/α3 pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. PMID:23644457

  17. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells.

    PubMed

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-11-15

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCF β-TrCP ) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine's potential as an anti-tumor agent for clinical cancer therapy.

  18. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    PubMed Central

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-01-01

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy. PMID:27854312

  19. Bifunctional Anti-Huntingtin Proteasome-Directed Intrabodies Mediate Efficient Degradation of Mutant Huntingtin Exon 1 Protein Fragments

    PubMed Central

    Butler, David C.; Messer, Anne

    2011-01-01

    Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)n repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ∼80–90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation. PMID:22216210

  20. DUB: A Format for Writing Descriptive Literature. Dissemination Document No. 9.

    ERIC Educational Resources Information Center

    Levine, S. Joseph; Keith, Kitty

    Presented is DUB (description, use, and benefits of an idea), a format for special education teachers to use in writing descriptions of self-developed materials and methods; and included are six examples of the format. The DUB format prescribes the inclusion in brief essay form of the following information: descriptive material (structural…

  1. Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS).

    PubMed

    Keil, Jeffrey M; Shen, Zhouxin; Briggs, Steven P; Patrick, Gentry N

    2010-10-18

    The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca(2+) entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3's), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca(2+) homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function.

  2. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts

    PubMed Central

    Taylor, David M.; Kabashi, Edor; Agar, Jeffrey N.; Minotti, Sandra; Durham, Heather D.

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Sα], a nonpeptidase beta subunit [20Sβ3], or 2 regulatory subunits [19S subunit 6b, 11Sα]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes. PMID:16184768

  3. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    PubMed

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  4. Changes in proteasome structure and function caused by HAMLET in tumor cells.

    PubMed

    Gustafsson, Lotta; Aits, Sonja; Onnerfjord, Patrik; Trulsson, Maria; Storm, Petter; Svanborg, Catharina

    2009-01-01

    Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells.

  5. HIV-1 Envelope Resistance to Proteasomal Cleavage: Implications for Vaccine Induced Immune Responses

    PubMed Central

    Steers, Nicholas J.; Ratto-Kim, Silvia; de Souza, Mark S.; Currier, Jeffrey R.; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Rao, Mangala

    2012-01-01

    Background Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. Methods In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4+ T-cell lines derived from RV144 volunteers. Results Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4+ T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. Conclusions Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4+T cell and antibody responses in the RV144 vaccinees. PMID:22880042

  6. PROTEASOME INHIBITOR TREATMENT REDUCED FATTY ACID, TRIACYLGLYCEROL AND CHOLESTEROL SYNTHESIS

    PubMed Central

    Oliva, Joan; French, Samuel W.; Li, Jun; Bardag-Gorce, Fawzia

    2014-01-01

    In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade®), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly down regulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to down regulate the enzymes 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were down regulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly down regulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one

  7. Birt-Hogg-Dubé syndrome.

    PubMed

    Godbolt, Amanda M; Robertson, Ivan M; Weedon, David

    2003-02-01

    We present three members of a Queensland family with clinical and histopathological features consistent with Birt-Hogg-Dubé syndrome. Two of the three family members were able to be screened for associated disorders. The mother of the family was found to have a solitary colonic polyp, a large ovarian cyst and two chorioretinal scars. No associated disorders were found on investigation of one of the two affected sons.

  8. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    PubMed

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral

  9. Targeting proteasomes in infectious organisms to combat disease.

    PubMed

    Bibo-Verdugo, Betsaida; Jiang, Zhenze; Caffrey, Conor R; O'Donoghue, Anthony J

    2017-05-01

    Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein degradation. Proteasomes in pathogenic organisms such as Mycobacterium tuberculosis and Plasmodium falciparum also have a nucleophilic threonine residue in the proteasome active site and are therefore sensitive to these anticancer drugs. This review summarizes efforts to validate the proteasome in pathogenic organisms as a therapeutic target. We describe several strategies that have been used to develop inhibitors with increased potency and selectivity for the pathogen proteasome relative to the human proteasome. In addition, we highlight a cell-based chemical screening approach that identified a potent, allosteric inhibitor of proteasomes found in Leishmania and Trypanosoma species. Finally, we discuss the development of proteasome inhibitors as anti-infective agents. © 2017 Federation of European Biochemical Societies.

  10. Aaptamine, an alkaloid from the sponge Aaptos suberitoides, functions as a proteasome inhibitor.

    PubMed

    Tsukamoto, Sachiko; Yamanokuchi, Rumi; Yoshitomi, Makiko; Sato, Kohei; Ikeda, Tsuyoshi; Rotinsulu, Henki; Mangindaan, Remy E P; de Voogd, Nicole J; van Soest, Rob W M; Yokosawa, Hideyoshi

    2010-06-01

    Aaptamine (1), isoaaptamine (2), and demethylaaptamine (3) were isolated from the marine sponge Aaptossuberitoides collected in Indonesia as inhibitors of the proteasome. They inhibited the chymotrypsin-like and caspase-like activities of the proteasome with IC(50) values of 1.6-4.6 microg/mL, while they showed less inhibition of the trypsin-like activity of the proteasome. The three compounds showed cytotoxic activities against HeLa cells, but their cytotoxicity did not correlate with their potency as proteasome inhibitors, strongly suggesting that their proteasomal inhibitory activity is dispensable to their cytotoxicity. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. A novel heterozygous mutation in the Birt-Hogg-Dubé Syndrome.

    PubMed

    Gómez Rivas, Juan; Carrión, Diego M; Alonso Y Gregorio, Sergio; Álvarez-Maestro, Mario; Tabernero Gómez, Ángel; Cisneros Ledo, Jesus

    2017-09-01

    Our aim is to present a novel mutation of the Birt-Hogg-Dubé Syndrome. We present a case report of a 70-year-old male with three solid nodulary lesions of 4, 2.6, and 3 cm each in the right kidney, and two lesions of 1.5 and 1.3 cm in the left kidney. Needle biopsy was performed. The pathological analysis of right kidney lesions revealed a renal tumor suggestive of chromophobe renal cell carcinoma and medullar tumor with zones that suggested oncocytosis. Genetic test results were positive for a novel heterozygous mutation c.1198G>A; p.V400I in exon 11 of the FLCN gene. In patients presenting with bilateral multifocal renal tumors of oncocytic hybrid histology, Birt- Hogg-Dubé syndrome should be the first diagnosis in mind. The mutation found in this patient has not been previously described in the literature in the context of BHD.

  12. Structure and Function of the 26S Proteasome.

    PubMed

    Bard, Jared A M; Goodall, Ellen A; Greene, Eric R; Jonsson, Erik; Dong, Ken C; Martin, Andreas

    2018-06-20

    As the endpoint for the ubiquitin-proteasome system, the 26S proteasome is the principal proteolytic machine responsible for regulated protein degradation in eukaryotic cells. The proteasome's cellular functions range from general protein homeostasis and stress response to the control of vital processes such as cell division and signal transduction. To reliably process all the proteins presented to it in the complex cellular environment, the proteasome must combine high promiscuity with exceptional substrate selectivity. Recent structural and biochemical studies have shed new light on the many steps involved in proteasomal substrate processing, including recognition, deubiquitination, and ATP-driven translocation and unfolding. In addition, these studies revealed a complex conformational landscape that ensures proper substrate selection before the proteasome commits to processive degradation. These advances in our understanding of the proteasome's intricate machinery set the stage for future studies on how the proteasome functions as a major regulator of the eukaryotic proteome.

  13. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2006-01-01

    The ubiquitin-proteasome proteolytic pathway plays a major role in selective protein degradation and regulates various cellular events including cell cycle progression, transcription, DNA repair, signal transduction, and immune response. Ubiquitin, a highly conserved small protein in eukaryotes, attaches to a target protein prior to degradation. The polyubiquitin chain tagged to the target protein is recognized by the 26S proteasome, a high-molecular-mass protease subunit complex, and the protein portion is degraded by the 26S proteasome. The potential of specific proteasome inhibitors, which act as anti-cancer agents, is now under intensive investigation, and bortezomib (PS-341), a proteasome inhibitor, has been recently approved by FDA for multiple myeloma treatment. Since ubiquitination of proteins requires the sequential action of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), and polyubiquitination is a prerequisite for proteasome-mediated protein degradation, inhibitors of E1, E2, and E3 are reasonably thought to be drug candidates for treatment of diseases related to ubiquitination. Recently, various compounds inhibiting the ubiquitin-proteasome pathway have been isolated from natural resources. We also succeeded in isolating inhibitors against the proteasome and E1 enzyme from marine natural resources. In this review, we summarize the structures and biological activities of natural products that inhibit the ubiquitin-proteasome proteolytic pathway.

  14. Proteasome subunit Rpn13 is a novel ubiquitin receptor

    PubMed Central

    Husnjak, Koraljka; Elsasser, Suzanne; Zhang, Naixia; Chen, Xiang; Randles, Leah; Shi, Yuan; Hofmann, Kay; Walters, Kylie; Finley, Daniel; Dikic, Ivan

    2010-01-01

    Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin via a conserved N-terminal region termed the Pru domain (Pleckstrin-like receptor for ubiquitin), which binds K48-linked diubiquitin with an affinity of ∼90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like domains of the UBL/UBA family of ubiquitin receptors. A synthetic phenotype results in yeast when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Since Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome. PMID:18497817

  15. Features of proteasome functioning in malignant tumors

    NASA Astrophysics Data System (ADS)

    Kondakova, I. V.; Spirina, L. V.; Shashova, E. E.; Kolegova, E. S.; Slonimskaya, E. M.; Kolomiets, L. A.; Afanas'ev, S. G.; Choinzonov, Y. L.

    2017-09-01

    Proteasome ubiquitin system is the important system of intracellular proteolysis. The activity of the proteasomes may undergo changes during cancer development. We studied the chymotrypsin-like activity of proteasomes, their subunit composition, and their association with tumor stage in breast cancer, head and neck squamous cell carcinoma, endometrial cancer, renal cancer, bladder cancer, stomach cancer, ovarian cancer, and colorectal cancer. The increase in chymotrypsin-like activity of proteasomes and decrease in total proteasome pool compared with adjacent tissues were shown in all malignant tumors excluding kidney cancer. The increase in chymotrypsin-like activity of proteasomes was found in primary tumors with all types of metastasis: lymphogenous of head and neck squamous cell carcinoma, intraperitoneal metastasis of ovarian cancer, hematogenous metastasis colorectal cancer. The exception was kidney cancer, in which there was a decrease in chymotrypsin-like activity with distant metastasis.

  16. Cystic lung disease in birt-hogg-dubé syndrome: a case series of three patients.

    PubMed

    Kilincer, Abidin; Ariyurek, Orhan Macit; Karabulut, Nevzat

    2014-06-01

    Birt-Hogg-Dubé syndrome is characterized by clinical manifestations such as hamartomas of the skin, renal tumors and lung cysts with spontaneous pneumothoraces. Patients with Birt-Hogg-Dubé syndrome may present with only multiple lung cysts. We report the chest computerized tomography (CT) features of three patients with Birt-Hogg-Dubé syndrome. Each patient had multiple lung cysts of various sizes according to chest CT evaluation, most of which were located in lower lobes and related to pleura. The identification of unique characteristics in the chest CT of patients with Birt-Hogg-Dubé syndrome may provide an efficient mechanism for diagnosis.

  17. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    PubMed Central

    Felley-Bosco, Emanuela; Bender, Florent C.; Courjault-Gautier, Françoise; Bron, Claude; Quest, Andrew F. G.

    2000-01-01

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway. PMID:11114180

  18. Bladder cancer detection using a peptide substrate of the 20S proteasome.

    PubMed

    Gruba, Natalia; Wysocka, Magdalena; Brzezińska, Magdalena; Dębowski, Dawid; Sieńczyk, Marcin; Gorodkiewicz, Ewa; Guszcz, Tomasz; Czaplewski, Cezary; Rolka, Krzysztof; Lesner, Adam

    2016-08-01

    The 20S catalytic core of the human 26S proteasome can be secreted from cells, and high levels of extracellular 20S proteasome have been linked to many types of cancers and autoimmune diseases. Several diagnostic approaches have been developed that detect 20S proteasome activity in plasma, but these suffer from problems with efficiency and sensitivity. In this report, we describe the optimization and synthesis of an internally quenched fluorescent substrate of the 20S proteasome, and investigate its use as a potential diagnostic test in bladder cancer. This peptide, 2-aminobenzoic acid (ABZ)-Val-Val-Ser-Tyr-Ala-Met-Gly-Tyr(3-NO2 )-NH2 , is cleaved by the chymotrypsin 20S proteasome subunit and displays an excellent specificity constant value (9.7 × 10(5)  m(-1) ·s(-1) ) and a high kcat (8 s(-1) ). Using this peptide, we identified chymotrypsin-like proteasome activity in the majority of urine samples obtained from patients with bladder cancer, whereas the proteasome activity in urine samples from healthy volunteers was below the detection limit (0.5 pm). These findings were confirmed by an inhibitory study and immunochemistry methods. © 2016 Federation of European Biochemical Societies.

  19. Proteasome phosphorylation regulates cocaine-induced sensitization.

    PubMed

    Gonzales, Frankie R; Howell, Kristin K; Dozier, Lara E; Anagnostaras, Stephan G; Patrick, Gentry N

    2018-04-01

    Repeated exposure to cocaine produces structural and functional modifications at synapses from neurons in several brain regions including the nucleus accumbens. These changes are thought to underlie cocaine-induced sensitization. The ubiquitin proteasome system plays a crucial role in the remodeling of synapses and has recently been implicated in addiction-related behavior. The ATPase Rpt6 subunit of the 26S proteasome is phosphorylated by Ca 2+ /calmodulin-dependent protein kinases II alpha at ser120 which is thought to regulate proteasome activity and distribution in neurons. Here, we demonstrate that Rpt6 phosphorylation is involved in cocaine-induced locomotor sensitization. Cocaine concomitantly increases proteasome activity and Rpt6 S120 phosphorylation in cultured neurons and in various brain regions of wild type mice including the nucleus accumbens and prefrontal cortex. In contrast, cocaine does not increase proteasome activity in Rpt6 phospho-mimetic (ser120Asp) mice. Strikingly, we found a complete absence of cocaine-induced locomotor sensitization in the Rpt6 ser120Asp mice. Together, these findings suggest a critical role for Rpt6 phosphorylation and proteasome function in the regulation cocaine-induced behavioral plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry.

    PubMed

    Scharf, Andrea; Rockel, Thomas Dino; von Mikecz, Anna

    2007-06-01

    Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.

  1. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  2. Genetics Home Reference: Birt-Hogg-Dubé syndrome

    MedlinePlus

    ... B, Schmidt LS. Expression of Birt-Hogg-Dubé gene mRNA in normal and neoplastic human tissues. Mod Pathol. 2004 Aug;17(8):998-1011. ... are genome editing and CRISPR-Cas9? What is precision medicine? What ...

  3. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery

    PubMed Central

    Cook, Gemma S.; Grønlund, Anne Lentz; Siciliano, Ilario; Spadafora, Natasha; Amini, Maryam; Herbert, Robert J.; Bitonti, M. Beatrice; Graumann, Katja; Francis, Dennis; Rogers, Hilary J.

    2013-01-01

    In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome. PMID:23536609

  4. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  5. cIAPs promote the proteasomal degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis.

    PubMed

    Choi, Jin Sun; Kim, Kidae; Lee, Do Hee; Cho, Sayeon; Ha, Jae Du; Park, Byoung Chul; Kim, Sunhong; Park, Sung Goo; Kim, Jeong-Hoon

    2016-11-18

    Although the ubiquitin-proteasome system is believed to play an important role in the pathogenesis of familial amyotrophic lateral sclerosis (FALS), caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1), the mechanism of how mutant SOD1 protein is regulated in cells is still poorly understood. Here we have demonstrated that cellular inhibitor of apoptosis proteins (cIAPs) are specifically associated with FALS-linked mutant SOD1 (mSOD1) and that this interaction promotes the ubiquitin-dependent proteasomal degradation of mutant SOD1. By utilizing cumate inducible SOD1 cells, we also showed that knock-down or pharmacologic depletion of cIAPs leads to H 2 O 2 induced cytotoxicity in mSOD1 expressing cells. Altogether, our results reveal a novel role of cIAPs in FALS-associated mutant SOD1 regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. USP19-Mediated Deubiquitination Facilitates the Stabilization of HRD1 Ubiquitin Ligase.

    PubMed

    Harada, Kumi; Kato, Masako; Nakamura, Nobuhiro

    2016-11-02

    In the endoplasmic reticulum (ER), misfolded and unfolded proteins are eliminated by a process called ER-associated protein degradation (ERAD) in order to maintain cell homeostasis. In the ERAD pathway, several ER-localized E3 ubiquitin ligases target ERAD substrate proteins for ubiquitination and subsequent proteasomal degradation. However, little is known about how the functions of the ERAD ubiquitin ligases are regulated. Recently, USP19, an ER-anchored deubiquitinating enzyme (DUB), has been suggested to be involved in the regulation of ERAD. In this study, HRD1, an ERAD ubiquitin ligase, is shown to be a novel substrate for USP19. We demonstrate that USP19 rescues HRD1 from proteasomal degradation by deubiquitination of K48-linked ubiquitin chains. In addition, the altered expression of USP19 affects the steady-state levels of HRD1. These results suggest that USP19 regulates the stability of HRD1 and provide insight into the regulatory mechanism of the ERAD ubiquitin ligases.

  7. Airbag Trail Dubbed 'Magic Carpet'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Airbag Trail Dubbed 'Magic Carpet' (QTVR)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Magic Carpet Close-upMagic Carpet Close-up HD

    This section of the first color image from the Mars Exploration Rover Spirit has been further processed to produce a sharper look at a trail left by the one of rover's airbags. The drag mark was made after the rover landed and its airbags were deflated and retracted. Scientists have dubbed the region the 'Magic Carpet' after a crumpled portion of the soil that appears to have been peeled away (lower left side of the drag mark). Rocks were also dragged by the airbags, leaving impressions and 'bow waves' in the soil. The mission team plans to drive the rover over to this site to look for additional clues about the composition of the martian soil. This image was taken by Spirit's panoramic camera.

    This extreme close-up image (see insets above) highlights the martian feature that scientists have named 'Magic Carpet' because of its resemblance to a crumpled carpet fold. Scientists think the soil here may have detached from its underlying layer, possibly due to interaction with the Mars Exploration Rover Spirit's airbag after landing. This image was taken on Mars by the rover's panoramic camera.

  8. 20S proteasome in the blood plasma of boys with cryptorchidism.

    PubMed

    Toliczenko-Bernatowicz, D; Matuszczak, E; Tylicka, M; Sankiewicz, A; Komarowska, M; Gorodkiewicz, E; Debek, W; Hermanowicz, A

    2018-02-15

    To evaluate the concentration of 20S proteasome in the blood plasma of boys with cryptorchidism. Patients-50 boys aged 1-4 years (median = 2.4 years) with unilateral cryptorchidism. The control group-50 healthy, age-matched boys (aged 1-4 years, median = 2.1 years), admitted for planned herniotomy. In our study, we used a novel technique Surface PLASMON RESONANCE Imaging. The median concentration of 20S proteasome in the blood plasma of boys with cryptorchidism was 2.5-fold higher than in boys with inguinal hernia. We noticed statistically significant difference between 20S proteasome levels in boys with cryptorchidism up to 2 years old and above 2 years old. We believe that the 20S proteasome concentrations in the blood plasma of boys with cryptorchidism reflect the heat-induced apoptosis of germ cells.

  9. Base-CP proteasome can serve as a platform for stepwise lid formation

    PubMed Central

    Yu, Zanlin; Livnat-Levanon, Nurit; Kleifeld, Oded; Mansour, Wissam; Nakasone, Mark A.; Castaneda, Carlos A.; Dixon, Emma K.; Fushman, David; Reis, Noa; Pick, Elah; Glickman, Michael H.

    2015-01-01

    26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes. PMID:26182356

  10. Rpn9 Is Required for Efficient Assembly of the Yeast 26S Proteasome

    PubMed Central

    Takeuchi, Junko; Fujimuro, Masahiro; Yokosawa, Hideyosi; Tanaka, Keiji; Toh-e, Akio

    1999-01-01

    We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Δrpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Δrpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Δrpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Δrpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome. PMID:10490597

  11. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Taylor, David M; Minotti, Sandra; Durham, Heather D

    2004-06-01

    Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis (fALS). The present study demonstrated impaired proteasomal function in the lumbar spinal cord of transgenic mice expressing human SOD-1 with the ALS-causing mutation G93A (SOD-1(G93A)) compared to non-transgenic littermates (LM) and SOD-1(WT) transgenic mice. Chymotrypsin-like activity was decreased as early as 45 days of age. By 75 days, chymotrypsin-, trypsin-, and caspase-like activities of the proteasome were impaired, at about 50% of control activity in lumbar spinal cord, but unchanged in thoracic spinal cord and liver. Both total and specific activities of the proteasome were reduced to a similar extent, indicating that a change in proteasome function, rather than a decrease in proteasome levels, had occurred. Similar decreases of total and specific activities of the proteasome were observed in NIH 3T3 cell lines expressing fALS mutants SOD-1(G93A) and SOD-1(G41S), but not in SOD-1(WT) controls. Although overall levels of proteasome were maintained in spinal cord of SOD-1(G93A) transgenic mice, the level of 20S proteasome was substantially reduced in lumbar spinal motor neurons relative to the surrounding neuropil. It is concluded that impairment of the proteasome is an early event and contributes to ALS pathogenesis.

  12. Harnessing Proteasome Dynamics and Allostery in Drug Design

    PubMed Central

    Osmulski, Pawel A.

    2014-01-01

    Abstract Significance: The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. Recent Advances: Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. Critical Issues: Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. Future Directions: New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases. Antioxid. Redox Signal. 21, 2286–2301. PMID:24410482

  13. Proteasomal and lysosomal protein degradation and heart disease.

    PubMed

    Wang, Xuejun; Robbins, Jeffrey

    2014-06-01

    In the cell, the proteasome and lysosomes represent the most important proteolytic machineries, responsible for the protein degradation in the ubiquitin-proteasome system (UPS) and autophagy, respectively. Both the UPS and autophagy are essential to protein quality and quantity control. Alterations in cardiac proteasomal and lysosomal degradation are remarkably associated with most heart disease in humans and are implicated in the pathogenesis of congestive heart failure. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteasomal functional insufficiency or lysosomal insufficiency as a major pathogenic factor in the heart. This review article highlights some recent advances in the research into proteasome and lysosome protein degradation in relation to cardiac pathology and examines the emerging evidence for enhancing degradative capacities of the proteasome and/or lysosome as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy". Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Higher-order assembly of BRCC36–KIAA0157 is required for DUB activity and biological function

    DOE PAGES

    Zeqiraj, Elton; Tian, Lei; Piggott, Christopher  A.; ...

    2015-09-03

    BRCC36 is a Zn 2+-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN + domain protein BRCC36 associates with pseudo DUB MPN– proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. Here, to understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer ofmore » heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. Lastly, these data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function.« less

  15. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii

    DOE PAGES

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; ...

    2010-01-01

    Promore » teasomes are composed of 20S core particles (CPs) of α - and β -type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeonHaloferax volcaniias a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of α 1 and α 2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including α 1 Thr147, α 2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to α 1 , thus, revealing a new type of proteasomal modification. bing the biological role of α 1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for α 1 variants including Thr147Ala, Thr158Ala and Ser58Ala. AnH. volcaniiRio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to α 1 . The α 1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.« less

  16. AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells.

    PubMed

    Huang, Kai-Peng; Chen, Cheng; Hao, Jie; Huang, Jun-Ying; Liu, Pei-Qing; Huang, He-Qing

    2015-01-01

    We previously demonstrated that advanced glycation-end products (AGEs) promote the pathological progression of diabetic nephropathy by decreasing silent information regulator 2-related protein 1 (Sirt1) expression in glomerular mesangial cells (GMCs). Here, we investigated whether AGEs-receptor for AGEs (RAGE) system down-regulated Sirt1 expression through ubiquitin-proteasome pathway and whether Sirt1 ubiquitination affected fibronectin (FN) and TGF-β1, 2 fibrotic indicators in GMCs. Sirt1 was polyubiquitinated and subsequently degraded by proteasome. AGEs increased Sirt1 ubiquitination and proteasome-mediated degradation, shortened Sirt1 half-life, and promoted FN and TGF-β1 expression. Ubiquitin-specific protease 22 (USP22) reduced Sirt1 ubiquitination and degradation and decreased FN and TGF-β1 expression in GMCs under both basal and AGEs-treated conditions. USP22 depletion enhanced Sirt1 degradation and displayed combined effects with AGEs to further promote FN and TGF-β1 expression. RAGE functioned crucial mediating roles in these processes via its C-terminal cytosolic domain. Inhibiting Sirt1 by EX-527 substantially suppressed the down-regulation of FN and TGF-β1 resulting from USP22 overexpression under both normal and AGEs-treated conditions, eventually leading to their up-regulation in GMCs. These results indicated that the AGEs-RAGE system increased the ubiquitination and subsequent proteasome-mediated degradation of Sirt1 by reducing USP22 level, and AGEs-RAGE-USP22-Sirt1 formed a cascade pathway that regulated FN and TGF-β1 level, which participated in the pathological progression of diabetic nephropathy.

  17. The ubiquitin–proteasome system regulates membrane fusion of yeast vacuoles

    PubMed Central

    Kleijnen, Maurits F; Kirkpatrick, Donald S; Gygi, Steven P

    2007-01-01

    Ubiquitination is known to regulate early stages of intracellular vesicular transport, without proteasomal involvement. We now show that, in yeast, ubiquitination regulates a late-stage, membrane fusion, with proteasomal involvement. A known proteasome mutant had a vacuolar fragmentation phenotype in vivo often associated with vacuolar membrane fusion defects, suggesting a proteasomal role in fusion. Inhibiting vacuolar proteasomes interfered with membrane fusion in vitro, showing that fusion cannot occur without proteasomal degradation. If so, one would expect to find ubiquitinated proteins on vacuolar membranes. We found a small number of these, identified the most prevalent one as Ypt7 and mapped its two major ubiquitination sites. Ubiquitinated Ypt7 was linked to the degradation event that is necessary for fusion: vacuolar Ypt7 and vacuolar proteasomes were interdependent, ubiquitinated Ypt7 became a proteasomal substrate during fusion, and proteasome inhibitors reduced fusion to greater degree when we decreased Ypt7 ubiquitination. The strongest model holds that fusion cannot proceed without proteasomal degradation of ubiquitinated Ypt7. As Ypt7 is one of many Rab GTPases, ubiquitin–proteasome regulation may be involved in membrane fusion elsewhere. PMID:17183369

  18. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specificmore » compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.« less

  19. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    PubMed Central

    Oliva, Joan; Dedes, Jennifer; Li, Jun; French, Samuel W; Bardag-Gorce, Fawzia

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade™) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betaine-homocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption. PMID:19222094

  20. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    PubMed

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Birt-Hogg-Dubé Syndrome.

    PubMed

    Gupta, Nishant; Sunwoo, Bernie Y; Kotloff, Robert M

    2016-09-01

    Birt-Hogg-Dubé syndrome (BHD) is a rare autosomal dominant disorder caused by mutations in the Folliculin gene and is characterized by the formation of fibrofolliculomas, early onset renal cancers, pulmonary cysts, and spontaneous pneumothoraces. The exact pathogenesis of tumor and lung cyst formation in BHD remains unclear. There is great phenotypic variability in the clinical features of BHD, and patients can present with any combination of skin, pulmonary, or renal findings. More than 80% of adult patients with BHD have pulmonary cysts on high-resolution computed tomography scan of the chest. Published by Elsevier Inc.

  2. A rare cause of cystic lung disease - Birt-Hogg-Dubé syndrome.

    PubMed

    Minnis, P; Riddell, P; Keane, M P

    2016-01-01

    Birt-Hogg-Dubé syndrome, initially described in 1977, is an autosomal dominant inherited condition characterised by basal pulmonary cysts often resulting in pneumothorax, renal tumours and cutaneous involvement. Lung cysts have been described in up to 90% of patients with a corresponding risk of pneumothorax of 50 times greater than the normal population. We describe here a case of Birt-Hogg-Dubé diagnosed in the 9th decade of life and discuss the radiological findings and clinical implications.

  3. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, G.; Li, D; Sorio de Carvalho, L

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-onemore » compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.« less

  4. The ubiquitin-proteasome system is required for African swine fever replication.

    PubMed

    Barrado-Gil, Lucía; Galindo, Inmaculada; Martínez-Alonso, Diego; Viedma, Sergio; Alonso, Covadonga

    2017-01-01

    Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.

  5. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A

    PubMed Central

    Kale, Andrew J.; McGlinchey, Ryan P.; Lechner, Anna; Moore, Bradley S.

    2011-01-01

    Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β 5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes. PMID:21882868

  6. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-03

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease. Copyright © 2013 Federation of European Biochemical Societies. All rights reserved.

  7. "They Don't Speak Proper English": A New Look at the Dubbing and Subtitling Debate.

    ERIC Educational Resources Information Center

    Kilborn, Richard

    1989-01-01

    Compares dubbing and subtitling as alternative language conversion methods for audiovisual media. European television experiences are reviewed and the two methods are contrasted economically, technically, aesthetically, and in terms of audience response. The development of dubbing and subtitling traditions in various countries is also explored and…

  8. Bee venom effects on ubiquitin proteasome system in hSOD1(G85R)-expressing NSC34 motor neuron cells.

    PubMed

    Kim, Seon Hwy; Jung, So Young; Lee, Kang-Woo; Lee, Sun Hwa; Cai, MuDan; Choi, Sun-Mi; Yang, Eun Jin

    2013-07-18

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from a progressive loss of motor neurons. Familial ALS (fALS) is caused by missense mutations in Cu, Zn-superoxide dismutase 1 (SOD1) that frequently result in the accumulation of mutant protein aggregates that are associated with impairments in the ubiquitin-proteasome system (UPS). UPS impairment has been implicated in many neurological disorders. Bee venom (BV) extracted from honey bees has been used as a traditional medicine for treating inflammatory diseases and has been shown to attenuate the neuroinflammatory events that occur in a symptomatic ALS animal model. NSC34 cells were transiently transfected with a WT or G85R hSOD1-GFP construct for 24 hrs and then stimulated with 2.5 μg/ml BV for 24 hrs. To determine whether a SOD1 mutation affects UPS function in NSC34 cells, we examined proteasome activity and performed western blotting and immunofluorescence using specific antibodies, such as anti-misfolded SOD1, anti-ubiquitin, anti-GRP78, anti-LC3, and anti-ISG15 antibodies. We found that GFP-hSOD1G85R overexpression induced SOD1 inclusions and reduced proteasome activity compared with the overexpression of GFP alone in NSC34 motor neuronal cells. In addition, we also observed that BV treatment restored proteasome activity and reduced the accumulation of ubiquitinated and misfolded SOD1 in GFP-hSOD1G85R-overexpressing NSC34 motor neuronal cells. However, BV treatment did not activate the autophagic pathway in these cells. Our findings suggest that BV may rescue the impairment of the UPS in ALS models.

  9. The Translation of Films: Sub-Titling versus Dubbing

    ERIC Educational Resources Information Center

    Voge, Hans

    1977-01-01

    A study of film translation. Well-documented opinions are given on the advantages and disadvantages of both dubbing and sub-titling. One of the tentative conclusions is that sub-titling is to be preferred because it preserves the original dialogue and allows the audience verying degrees of comprehension. A bibliography is provided. (AMH)

  10. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast

    PubMed Central

    Gu, Zhu Chao; Wu, Edwin; Sailer, Carolin; Jando, Julia; Styles, Erin; Eisenkolb, Ina; Kuschel, Maike; Bitschar, Katharina; Wang, Xiaorong; Huang, Lan; Vissa, Adriano; Yip, Christopher M.; Yedidi, Ravikiran S.; Friesen, Helena; Enenkel, Cordula

    2017-01-01

    Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation. PMID:28768827

  11. Lead discovery and chemical biology approaches targeting the ubiquitin proteasome system.

    PubMed

    Akinjiyan, Favour A; Carbonneau, Seth; Ross, Nathan T

    2017-10-15

    Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches. Copyright © 2017. Published by Elsevier Ltd.

  12. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    PubMed Central

    Wang, Tao; Li, Hua; Lin, Gang; Tang, Chunyan; Li, Dongyang; Nathan, Carl; Darwin, K. Heran; Li, Huilin

    2009-01-01

    Summary Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPγS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved inter-domain showed a five-stranded double β-barrel structure containing a Greek key motif. The structure and mutagenesis indicate a major role of the inter-domain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome. PMID:19836337

  13. [Chymotripsin-like activity and subunit composition of proteasomes in human cancers].

    PubMed

    Kondakova, I V; Spirina, L V; Koval, V D; Shashova, E E; Choinzonov, E L; Ivanova, E V; Kolomiets, L A; Chernyshova, A L; Slonimskaya, E M; Usynin, E A; Afanasyev, S G

    2014-01-01

    Activity of the proteasome, polyfunctional enzymatic complex, is known to undergo changes during cancer development. This phenomenon is, probably, caused by the changes in subunit composition of proteasomes. In present work, we studied chymotrypsin-like activity of proteasomes, subunit composition and their association in breast cancer, head and neck squamous cell carcinoma, endometrial cancer, renal cancer, bladder cancer, stomach cancer and colorectal cancer. The increase of proteasome activity was revealed in most cancer tissues compared with adjacent tissues except for the renal cell carcinoma. Changes in proteasome activity in cancer tissues compared with correspondent normal tissues were accompanied by modification of its subunit composition. High proteasome activity was observed in combination with an increased expression of immune subunits and/or proteasome activator PA28, associated with activity of 20S proteasome. In breast cancer, head and neck squamous cell carcinoma, bladder cancer, stomach cancer and colorectal cancer we additionally found higher expression of Rpt6 subunit of 26S proteasome. Correlations between chymotrypsin like proteasome activity and subunit expressions were found in human cancer tissues. In summary, we suggest that proteasome ac- tivation and changes in its subunit composition plays an important role in cancer pathogenesis.

  14. Association of proteasomal activity with metastasis in luminal breast cancer

    NASA Astrophysics Data System (ADS)

    Shashova, E. E.; Fesik, E. A.; Doroshenko, A. V.

    2017-09-01

    Chimotrypsin-like (ChTL) and caspase-like (CL) proteasomal activities were investigated in different variants of the tumor progression of luminal breast cancer. Patients with primary luminal breast cancer (n = 123) in stage T1-3N0-2M0 who had not received neoadjuvant treatment were included in this study. Proteasome ChTL and CL activities were determined in the samples of tumor and adjacent tissues. The coefficients of chymotrypsin-like (kChTL) and caspase-like (kCL) proteasome activity were also calculated as the ratio of the corresponding activity in the tumor tissue to activity in the adjacent tissue. ChTL, CL, kChTL and kCL in the tissues of luminal A and B breast cancer with lymphogenic metastasis were compared, and their association with hematogenous metastasis was evaluated. On the one hand, CL activity of proteasomes increased in luminal A breast cancer with extensive lymphogenic metastasis (N2), on the other hand it decreased in the luminal B subtype of cancer. The ratio of proteasomal activity in the tumor and adjacent tissues plays a significant role in the hematogenic pathway of breast cancer progression and is associated with poor metastatic-free survival.

  15. The Akt DUBbed InAktive.

    PubMed

    Lin, Kui

    2013-01-08

    Akt is a central node in the phosphoinositide-3 kinase-Akt-mammalian target of rapamycin pathway and is activated by a multistep process in response to growth factor stimulation. An additional layer of posttranslational modification has emerged as a new paradigm in the regulation of Akt. The identification of an E3 ligase for Lys(63)-linked ubiquitination of Akt has now been complemented with the discovery of the tumor suppressor cylindromatosis as a deubiquitinating enzyme (DUB) for Akt. Thus, like phosphorylation and dephosphorylation, cycles of ubiquitination and deubiquitination provide additional on-off switches that keep Akt activity in balance, and disturbances in this balance have pathological consequences.

  16. Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27.

    PubMed

    Gan, Nanqin; Wu, Yu-Chieh; Brunet, Mathilde; Garrido, Carmen; Chung, Fung-Lung; Dai, Chengkai; Mi, Lixin

    2010-11-12

    It is conceivable that stimulating proteasome activity for rapid removal of misfolded and oxidized proteins is a promising strategy to prevent and alleviate aging-related diseases. Sulforaphane (SFN), an effective cancer preventive agent derived from cruciferous vegetables, has been shown to enhance proteasome activities in mammalian cells and to reduce the level of oxidized proteins and amyloid β-induced cytotoxicity. Here, we report that SFN activates heat shock transcription factor 1-mediated heat shock response. Specifically, SFN-induced expression of heat shock protein 27 (Hsp27) underlies SFN-stimulated proteasome activity. SFN-induced proteasome activity was significantly enhanced in Hsp27-overexpressing cells but absent in Hsp27-silenced cells. The role of Hsp27 in regulating proteasome activity was further confirmed in isogenic REG cells, in which SFN-induced proteasome activation was only observed in cells stably overexpressing Hsp27, but not in the Hsp27-free parental cells. Finally, we demonstrated that phosphorylation of Hsp27 is irrelevant to SFN-induced proteasome activation. This study provides a novel mechanism underlying SFN-induced proteasome activity. This is the first report to show that heat shock response by SFN, in addition to the antioxidant response mediated by the Keap1-Nrf2 pathway, may contribute to cytoprotection.

  17. Immunoproteasome in the blood plasma of children with acute appendicitis, and its correlation with proteasome and UCHL1 measured by SPR imaging biosensors.

    PubMed

    Matuszczak, E; Sankiewicz, A; Debek, W; Gorodkiewicz, E; Milewski, R; Hermanowicz, A

    2018-01-01

    The aim of this study was to determinate the immunoproteasome concentration in the blood plasma of children with appendicitis, and its correlation with circulating proteasome and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). Twenty-seven children with acute appendicitis, managed at the Paediatric Surgery Department, were included randomly into the study (age 2 years 9 months up to 14 years, mean age 9·5 ± 1 years). There were 10 girls and 17 boys; 18 healthy, age-matched subjects, admitted for planned surgeries served as controls. Mean concentrations of immunoproteasome, 20S proteasome and UCHL1 in the blood plasma of children with appendicitis before surgery 24 h and 72 h after the appendectomy were higher than in the control group. The immunoproteasome, 20S proteasome and UCHL1 concentrations in the blood plasma of patients with acute appendicitis were highest before surgery. The immunoproteasome, 20S proteasome and UCHL1 concentration measured 24 and 72 h after the operation decreased slowly over time and still did not reach the normal range (P < 0·05). There was no statistical difference between immunoproteasome, 20S proteasome and UCHL1 concentrations in children operated on laparoscopically and children after classic appendectomy. The immunoproteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation may thus be helpful in the assessment of the efficacy of treatment. The method of operation - classic open appendectomy or laparoscopic appendectomy - does not influence the general trend in immunoproteasome concentration in children with appendicitis. © 2017 British Society for Immunology.

  18. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  19. Lysine ubiquitination and acetylation of human cardiac 20S proteasomes.

    PubMed

    Zong, Nobel; Ping, Peipei; Lau, Edward; Choi, Howard Jh; Ng, Dominic Cm; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie Py

    2014-08-01

    Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The 26S Proteasome Complex: An Attractive Target for Cancer Therapy

    PubMed Central

    Frankland-Searby, Sarah; Bhaumik, Sukesh R.

    2011-01-01

    The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers. PMID:22037302

  1. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway.

    PubMed

    Ugun-Klusek, Aslihan; Tatham, Michael H; Elkharaz, Jamal; Constantin-Teodosiu, Dumitru; Lawler, Karen; Mohamed, Hala; Paine, Simon M L; Anderson, Glen; John Mayer, R; Lowe, James; Ellen Billett, E; Bedford, Lynn

    2017-01-05

    The ubiquitin-proteasome system (UPS) and macroautophagy (autophagy) are central to normal proteostasis and interdependent in that autophagy is known to compensate for the UPS to alleviate ensuing proteotoxic stress that impairs cell function. UPS and autophagy dysfunctions are believed to have a major role in the pathomechanisms of neurodegenerative disease. Here we show that continued 26S proteasome dysfunction in mouse brain cortical neurons causes paranuclear accumulation of fragmented dysfunctional mitochondria, associated with earlier recruitment of Parkin and lysine 48-linked ubiquitination of mitochondrial outer membrane (MOM) proteins, including Mitofusin-2. Early events also include phosphorylation of p62/SQSTM1 (p62) and increased optineurin, as well as autophagosomal LC3B and removal of some mitochondria, supporting the induction of selective autophagy. Inhibition of the degradation of ubiquitinated MOM proteins with continued 26S proteasome dysfunction at later stages may impede efficient mitophagy. However, continued 26S proteasome dysfunction also decreases the levels of essential autophagy proteins ATG9 and LC3B, which is characterised by decreases in their gene expression, ultimately leading to impaired autophagy. Intriguingly, serine 351 phosphorylation of p62 did not enhance its binding to Keap1 or stabilise the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor in this neuronal context. Nrf2 protein levels were markedly decreased despite transcriptional activation of the Nrf2 gene. Our study reveals novel insights into the interplay between the UPS and autophagy in neurons and is imperative to understanding neurodegenerative disease where long-term proteasome inhibition has been implicated.

  2. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways

    PubMed Central

    Botolin, Daniela; Wang, Yun; Christian, Barbara; Jump, Donald B.

    2009-01-01

    Insulin induces and dietary n-3 PUFAs suppress hepatic de novo lipogenesis by controlling sterol-regulatory element binding protein-1 nuclear abundance (nSREBP-1). Our goal was to define the mechanisms involved in this regulatory process. Insulin treatment of rat primary hepatocytes rapidly augments nSREBP-1 and mRNASREBP-1c while suppressing mRNAInsig-2 but not mRNAInsig-1. These events are preceded by rapid but transient increases in Akt and Erk phosphorylation. Removal of insulin from hepatocytes leads to a rapid decline in nSREBP-1 [half-time (T1/2) ~ 10 h] that is abrogated by inhibitors of 26S proteasomal degradation. 22:6,n-3, the major n-3 PUFA accumulating in livers of fish oil-fed rats, suppresses hepatocyte levels of nSREBP-1, mRNASREBP-1c, and mRNAInsig-2 but modestly and transiently induces mRNAInsig-1. More importantly, 22:6,n-3 accelerates the disappearance of hepatocyte nSREBP-1 (T1/2 ~ 4 h) through a 26S proteasome-dependent process. 22:6,n-3 has minimal effects on microsomal SREBP-1 and sterol-regulatory element binding protein cleavage-activating protein or nuclear SREBP-2. 22:6,n-3 transiently inhibits insulin-induced Akt phosphorylation but induces Erk phosphorylation. Inhibitors of Erk phosphorylation, but not overexpressed constitutively active Akt, rapidly attenuate 22:6,n-3 suppression of nSREBP-1. Thus, 22:6,n-3 suppresses hepatocyte nSREBP-1 through 26S proteasome- and Erk-dependent pathways. These studies reveal a novel mechanism for n-3 PUFA regulation of hepatocyte nSREBP-1 and lipid metabolism.—Botolin, D., Y. Wang, B. Christian, and D. B. Jump. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways. PMID:16222032

  3. p53 mutations promote proteasomal activity.

    PubMed

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  4. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3.

    PubMed

    Shi, Z; Li, Z; Li, Z J; Cheng, K; Du, Y; Fu, H; Khuri, F R

    2015-05-07

    The cyclin-dependent kinase (CDK) inhibitor 1A, p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle-promoting kinases, CDK2 and CDK4. Thus delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Abl enzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability and support the model that the tumor-suppressive function of Cables1 occurs at least in part through enhancing the tumor-suppressive activity of p21.

  5. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  6. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.

    PubMed

    Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R

    2017-03-01

    In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hsp83 loss suppresses proteasomal activity resulting in an upregulation of caspase-dependent compensatory autophagy.

    PubMed

    Choutka, Courtney; DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2017-09-02

    The 2 main degradative pathways that contribute to proteostasis are the ubiquitin-proteasome system and autophagy but how they are molecularly coordinated is not well understood. Here, we demonstrate an essential role for an effector caspase in the activation of compensatory autophagy when proteasomal activity is compromised. Functional loss of Hsp83, the Drosophila ortholog of human HSP90 (heat shock protein 90), resulted in reduced proteasomal activity and elevated levels of the effector caspase Dcp-1. Surprisingly, genetic analyses showed that the caspase was not required for cell death in this context, but instead was essential for the ensuing compensatory autophagy, female fertility, and organism viability. The zymogen pro-Dcp-1 was found to interact with Hsp83 and undergo proteasomal regulation in an Hsp83-dependent manner. Our work not only reveals unappreciated roles for Hsp83 in proteasomal activity and regulation of Dcp-1, but identifies an effector caspase as a key regulatory factor for sustaining adaptation to cell stress in vivo.

  8. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

    PubMed

    Tilignac, Thomas; Temparis, Sandrine; Combaret, Lydie; Taillandier, Daniel; Pouch, Marie-Noëlle; Cervek, Matjaz; Cardenas, Diana M; Le Bricon, Thierry; Debiton, Eric; Samuels, Susan E; Madelmont, Jean-Claude; Attaix, Didier

    2002-05-15

    Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skeletal muscles from both healthy and colon 26 adenocarcinoma-bearing mice, an appropriate model for testing the impact of cytostatic agents. Muscle wasting was seen in both groups of mice 4 days after a single cystemustine injection, and the drug further increased the loss of muscle proteins already apparent in tumor-bearing animals. Cystemustine cured the tumor-bearing mice with 100% efficacy. Surprisingly, within 11 days of treatment, rates of muscle proteolysis progressively decreased below basal levels observed in healthy control mice and contributed to the cessation of muscle wasting. Proteasome-dependent proteolysis was inhibited by mechanisms that include reduced mRNA levels for 20S and 26S proteasome subunits, decreased protein levels of 20S proteasome subunits and the S14 non-ATPase subunit of the 26S proteasome, and impaired chymotrypsin- and trypsin-like activities of the enzyme. A combination of cisplatin and ifosfamide, two drugs that are widely used in the treatment of cancer patients, also depressed the expression of proteasomal subunits in muscles from rats bearing the MatB adenocarcinoma below basal levels. Thus, a down-regulation of ubiquitin-proteasome-dependent proteolysis is observed with various cytostatic agents and contributes to reverse the chemotherapy-induced muscle wasting.

  9. Adult-Type Rhabdomyoma of the Larynx in Birt-Hogg-Dubé Syndrome: Evidence for a Real Association.

    PubMed

    Balakumar, Ramkishan; Farr, Matthew R B; Fernando, Malee; Jebreel, Ala; Ray, Jaydip; Sionis, Sara

    2018-05-09

    The autosomal dominant Birt-Hogg-Dubé syndrome is known to be associated with skin, lung and kidney lesions. It is caused by heterozygous germline mutations in the folliculin gene and has a high penetrance. We report the case of a 51 year old woman with Birt-Hogg-Dubé syndrome who presented with a laryngeal mass. Imaging confirmed a mass centered on the piriform sinus and following excision histological examination confirmed the lesion was composed of polygonal cells with abundant eosinophilic cytoplasm consistent with a rhabdomyoma. Laryngeal rhabdomyoma is rare condition and has not been previously described in association with Birt-Hogg-Dubé. In patients with Birt-Hogg-Dubé syndrome who develop upper aerodigestive tract symptoms secondary to mass lesion an adult-type rhabdomyoma might be considered as a differential, with endoscopic excision being the treatment of choice.

  10. Gpn3 is polyubiquitinated on lysine 216 and degraded by the proteasome in the cell nucleus in a Gpn1-inhibitable manner.

    PubMed

    Méndez-Hernández, Lucía E; Robledo-Rivera, Angelica Y; Macías-Silva, Marina; Calera, Mónica R; Sánchez-Olea, Roberto

    2017-11-01

    Gpn1 associates with Gpn3, and both are required for RNA polymerase II nuclear targeting. Global studies have identified by mass spectrometry that human Gpn3 is ubiquitinated on lysines 189 and 216. Our goals here were to determine the type, physiological importance, and regulation of Gpn3 ubiquitination. After inhibiting the proteasome with MG132, Gpn3-Flag was polyubiquitinated on K216, but not K189, in HEK293T cells. Gpn3-Flag exhibited nucleo-cytoplasmic shuttling, but polyubiquitination and proteasomal degradation of Gpn3-Flag occurred only in the cell nucleus. Polyubiquitination-deficient Gpn3-Flag K216R displayed a longer half-life than Gpn3-Flag in two cell lines. Interestingly, Gpn1-EYFP inhibited Gpn3-Flag polyubiquitination in a dose-dependent manner. In conclusion, Gpn1-inhibitable, nuclear polyubiquitination on lysine 216 regulates the half-life of Gpn3 by tagging it for proteasomal degradation. © 2017 Federation of European Biochemical Societies.

  11. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.

  12. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaozhen; Institute of Systems Biology, Peking University, Beijing 100191; Lu, Guang

    2014-02-14

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the controlmore » of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.« less

  13. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaozhen; Institute of Systems Biology, Peking University, Beijing 100191; Lu, Guang

    2014-02-21

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control ofmore » BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.« less

  14. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α

    PubMed Central

    Campbell, Edward M.; Perez, Omar; Anderson, Jenny L.; Hope, Thomas J.

    2008-01-01

    TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5α restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5α (rhTRIM5α)–mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5α protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5α and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5α cytoplasmic body–like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5α cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5α-mediated loss of capsid protein requires proteasome activity. PMID:18250195

  15. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  16. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

    DOE PAGES

    Fu, Xian; Liu, Rui; Sanchez, Iona; ...

    2016-05-17

    The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself wasmore » not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. IMPORTANCEThis study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N

  17. Trial Watch: Proteasomal inhibitors for anticancer therapy.

    PubMed

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.

  18. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  19. Crude and purified proteasome activity assays are affected by type of microplate.

    PubMed

    Cui, Ziyou; Gilda, Jennifer E; Gomes, Aldrin V

    2014-02-01

    Measurement of proteasome activity is fast becoming a commonly used assay in many laboratories. The most common method to measure proteasome activity involves measuring the release of fluorescent tags from peptide substrates in black microplates. Comparisons of black plates used for measuring fluorescence with different properties show that the microplate properties significantly affect the measured activities of the proteasome. The microplate that gave the highest reading of trypsin-like activity of the purified 20S proteasome gave the lowest reading of chymotrypsin-like activity of the 20S proteasome. Plates with medium binding surfaces from two different companies showed an approximately 2-fold difference in caspase-like activity for purified 20S proteasomes. Even standard curves generated using free 7-amino-4-methylcoumarin (AMC) were affected by the microplate used. As such, significantly different proteasome activities, as measured in nmol AMC released/mg/min, were obtained for purified 20S proteasomes as well as crude heart and liver samples when using different microplates. The naturally occurring molecule betulinic acid activated the chymotrypsin-like proteasome activity in three different plates but did not affect the proteasome activity in the nonbinding surface microplate. These findings suggest that the type of proteasome activity being measured and sample type are important when selecting a microplate. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cell Cycle-Dependent Expression of Dub3, Nanog and the p160 Family of Nuclear Receptor Coactivators (NCoAs) in Mouse Embryonic Stem Cells

    PubMed Central

    van der Laan, Siem; Golfetto, Eleonora; Vanacker, Jean-Marc; Maiorano, Domenico

    2014-01-01

    Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation. PMID:24695638

  1. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs) in mouse embryonic stem cells.

    PubMed

    van der Laan, Siem; Golfetto, Eleonora; Vanacker, Jean-Marc; Maiorano, Domenico

    2014-01-01

    Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.

  2. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Lin; Hu, Kuan; Wang, Tong

    Here, the human pathogen Mycobacterium tuberculosis ( Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly,more » the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  3. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGES

    Bai, Lin; Hu, Kuan; Wang, Tong; ...

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis ( Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly,more » the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  4. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells.

    PubMed

    Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.

  5. Substrate degradation by the proteasome: a single-molecule kinetic analysis

    PubMed Central

    Lu, Ying; Lee, Byung-hoon; King, Randall W; Finley, Daniel; Kirschner, Marc W

    2015-01-01

    To address how the configuration of conjugated ubiquitins determines the recognition of substrates by the proteasome, we analyzed the degradation kinetics of substrates with chemically defined ubiquitin configurations. Contrary to the view that a tetraubiquitin chain is the minimal signal for efficient degradation, we find that distributing the ubiquitins as diubiquitin chains provides a more efficient signal. To understand how the proteasome actually discriminates among ubiquitin configurations, we developed single-molecule assays that distinguished intermediate steps of degradation kinetically. The level of ubiquitin on a substrate drives proteasome-substrate interaction, whereas the chain structure of ubiquitin affects translocation into the axial channel on the proteasome. Together these two features largely determine the susceptibility of substrates for proteasomal degradation. PMID:25859050

  6. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

    PubMed

    Murakawa, Yasuhiro; Sonoda, Eiichiro; Barber, Louise J; Zeng, Weihua; Yokomori, Kyoko; Kimura, Hiroshi; Niimi, Atsuko; Lehmann, Alan; Zhao, Guang Yu; Hochegger, Helfrid; Boulton, Simon J; Takeda, Shunichi

    2007-09-15

    Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.

  7. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-07-20

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors.

  8. Caveolin and Proteasome in Tocotrienol Mediated Myocardial Protection

    PubMed Central

    Das, Manika; Das, Samarjit; Wang, Ping; Powell, Saul R.; Das, Dipak K.

    2008-01-01

    The effect of different isomers of tocotrienol was tested on myocardial ischemia reperfusion injury. Although all of the tocotrienol isomers offered some degree of cardioprotection, gamma-tocotrienol was the most protective as evident from the result of myocardial apoptosis. To study the mechanism of tocotrienol mediated cardioprotection, we examined the interaction and/or translocation of different signaling components to caveolins and activity of proteasome. The results suggest that differential interaction of MAP kinases with caveolin 1/3 in conjuncture with proteasome stabilization play a unique role in tocotrienol mediated cardioprotection possibly by altering the availability of pro-survival and anti-survival proteins. PMID:18769056

  9. Therapeutic proteasome inhibition in experimental acute pancreatitis

    PubMed Central

    Letoha, Tamás; Fehér, Liliána Z; Pecze, László; Somlai, Csaba; Varga, Ilona; Kaszaki, József; Tóth, Gábor; Vizler, Csaba; Tiszlavicz, László; Takács, Tamás

    2007-01-01

    AIM: To establish the therapeutic potential of proteasome inhibition, we examined the therapeutic effects of MG132 (Z-Leu-Leu-Leu-aldehyde) in an experimental model of acute pancreatitis. METHODS: Pancreatitis was induced in rats by two hourly intraperitoneal (ip) injections of cholecystokinin octapeptide (CCK; 2 × 100 μg/kg) and the proteasome inhibitor MG132 (10 mg/kg ip) was administered 30 min after the second CCK injection. Animals were sacrificed 4 h after the first injection of CCK. RESULTS: Administering the proteasome inhibitor MG132 (at a dose of 10 mg/kg, ip) 90 min after the onset of pancreatic inflammation induced the expression of cell-protective 72 kDa heat shock protein (HSP72) and decreased DNA-binding of nuclear factor-κB (NF-κB). Furthermore MG132 treatment resulted in milder inflammatory response and cellular damage, as revealed by improved laboratory and histological parameters of pancreatitis and associated oxidative stress. CONCLUSION: Our findings suggest that proteasome inhibition might be beneficial not only for the prevention, but also for the therapy of acute pancreatitis. PMID:17724800

  10. Fate of Pup inside the Mycobacterium Proteasome Studied by in-Cell NMR

    PubMed Central

    Maldonado, Andres Y.; Burz, David S.; Reverdatto, Sergey; Shekhtman, Alexander

    2013-01-01

    The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE, targets proteins for proteasome-mediated degradation. We demonstrate that Pup-GGQ, a precursor of Pup-GGE, is not a substrate for proteasomal degradation. Using STINT-NMR, an in-cell NMR technique, we studied the interactions between Pup-GGQ, mycobacterial proteasomal ATPase, Mpa, and Mtb proteasome core particle (CP) inside a living cell at amino acid residue resolution. We showed that under in-cell conditions, in the absence of the proteasome CP, Pup-GGQ interacts with Mpa only weakly, primarily through its C-terminal region. When Mpa and non-stoichiometric amounts of proteasome CP are present, both the N-terminal and C-terminal regions of Pup-GGQ bind strongly to Mpa. This suggests a mechanism by which transient binding of Mpa to the proteasome CP controls the fate of Pup. PMID:24040288

  11. Re-evaluating the generation of a "proteasome-independent" MHC class I-restricted CD8 T cell epitope.

    PubMed

    Wherry, E John; Golovina, Tatiana N; Morrison, Susan E; Sinnathamby, Gomathinayagam; McElhaugh, Michael J; Shockey, David C; Eisenlohr, Laurence C

    2006-02-15

    The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.

  12. Effect of cellular ubiquitin levels on the regulation of oxidative stress response and proteasome function via Nrf1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Donghee; Ryu, Kwon-Yul

    The polyubiquitin genes Ubb and Ubc are upregulated under oxidative stress induced by arsenite [As(III)]. However, the role of ubiquitin (Ub) under As(III) exposure is not known in detail. In a previous study, we showed that the reduced viability observed in Ubc{sup −/−} mouse embryonic fibroblasts under As(III) exposure was not due to dysregulation of the Nrf2–Keap1 pathway, which prompted us to investigate another NFE2 family protein, nuclear factor erythroid 2-related factor 1 (Nrf1). In this study, we found that Ub deficiency due to Ubc knockdown in N2a cells reduced cell viability and proteasome activity under As(III) exposure. Furthermore, mRNAmore » levels of the proteasome subunit Psma1 were also reduced. In addition, Ub deficiency led to the nuclear accumulation of the p65 isoform of Nrf1 under As(III) exposure. Interestingly, the overexpression of p65-Nrf1 recapitulated the phenotypes of Ub-deficient N2a cells under As(III) exposure. On the other hand, Nrf1 knockdown suppressed the death of Ub-deficient N2a cells upon exposure to As(III). Therefore, the levels of p65-Nrf1 may play an important role in the maintenance of cell viability under oxidative stress induced by As(III). - Highlights: • N2a cells exhibit reduced viability upon exposure to As(III) via Ubc knockdown. • As(III)-induced proteasomal regulation is impaired in Ub-deficient N2a cells. • Ub deficiency leads to the nuclear accumulation of p65-Nrf1 under As(III) exposure. • p65 expression recapitulates As(III)-induced phenotypes of Ub-deficient N2a cells. • Nrf1 knockdown suppressed As(III)-induced death of Ub-deficient N2a cells.« less

  13. Nitric Oxide Regulates Lung Carcinoma Cell Anoikis through Inhibition of Ubiquitin-Proteasomal Degradation of Caveolin-1*

    PubMed Central

    Chanvorachote, Pithi; Nimmannit, Ubonthip; Lu, Yongju; Talbott, Siera; Jiang, Bing-Hua; Rojanasakul, Yon

    2009-01-01

    Anoikis, a detachment-induced apoptosis, is a principal mechanism of inhibition of tumor cell metastasis. Tumor cells can acquire anoikis resistance which is frequently observed in metastatic lung cancer. This phenomenon becomes an important obstacle of efficient cancer therapy. Recently, signaling mediators such as caveolin-1 (Cav-1) and nitric oxide (NO) have garnered attention in metastasis research; however, their role and the underlying mechanisms of metastasis regulation are largely unknown. Using human lung carcinoma H460 cells, we show that NO impairs the apoptotic function of the cells after detachment. The NO donors sodium nitroprusside and diethylenetriamine NONOate inhibit detachment-induced apoptosis, whereas the NO inhibitors aminoguanidine and 2-(4-carboxyphenyl) tetramethylimidazoline-1-oxyl-3-oxide promote this effect. Resistance to anoikis in H460 cells is mediated by Cav-1, which is significantly down-regulated after cell detachment through a non-transcriptional mechanism involving ubiquitin-proteasomal degradation. NO inhibits this down-regulation by interfering with Cav-1 ubiquitination through a process that involves protein S-nitrosylation, which prevents its proteasomal degradation and induction of anoikis by cell detachment. These findings indicate a novel pathway for NO regulation of Cav-1, which could be a key mechanism of anoikis resistance in tumor cells. PMID:19706615

  14. Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1.

    PubMed

    Chanvorachote, Pithi; Nimmannit, Ubonthip; Lu, Yongju; Talbott, Siera; Jiang, Bing-Hua; Rojanasakul, Yon

    2009-10-09

    Anoikis, a detachment-induced apoptosis, is a principal mechanism of inhibition of tumor cell metastasis. Tumor cells can acquire anoikis resistance which is frequently observed in metastatic lung cancer. This phenomenon becomes an important obstacle of efficient cancer therapy. Recently, signaling mediators such as caveolin-1 (Cav-1) and nitric oxide (NO) have garnered attention in metastasis research; however, their role and the underlying mechanisms of metastasis regulation are largely unknown. Using human lung carcinoma H460 cells, we show that NO impairs the apoptotic function of the cells after detachment. The NO donors sodium nitroprusside and diethylenetriamine NONOate inhibit detachment-induced apoptosis, whereas the NO inhibitors aminoguanidine and 2-(4-carboxyphenyl) tetramethylimidazoline-1-oxyl-3-oxide promote this effect. Resistance to anoikis in H460 cells is mediated by Cav-1, which is significantly down-regulated after cell detachment through a non-transcriptional mechanism involving ubiquitin-proteasomal degradation. NO inhibits this down-regulation by interfering with Cav-1 ubiquitination through a process that involves protein S-nitrosylation, which prevents its proteasomal degradation and induction of anoikis by cell detachment. These findings indicate a novel pathway for NO regulation of Cav-1, which could be a key mechanism of anoikis resistance in tumor cells.

  15. The ubiquitin-proteasome system in spongiform degenerative disorders

    PubMed Central

    Whatley, Brandi R.; Li, Lian; Chin, Lih-Shen

    2008-01-01

    Summary Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders. PMID:18790052

  16. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae.

    PubMed

    Yedidi, Ravikiran S; Fatehi, Amatullah K; Enenkel, Cordula

    The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].

  17. Proteasome expression and activity in cancer and cancer stem cells.

    PubMed

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  18. Intracellular colocalization of HAP1/STBs with steroid hormone receptors and its enhancement by a proteasome inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujinaga, Ryutaro; Takeshita, Yukio; Yoshioka, Kazuhiro

    2011-07-15

    The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition,more » it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.« less

  19. Could inhibition of the proteasome cause mad cow disease?

    PubMed

    Hooper, Nigel M

    2003-04-01

    The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases.

  20. A mammalian nervous system-specific plasma membrane proteasome complex that modulates neuronal function

    PubMed Central

    Ramachandran, Kapil V.; Margolis, Seth S.

    2017-01-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632

  1. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    PubMed Central

    Khare, Shilpi; Nagle, Advait S.; Biggart, Agnes; Lai, Yin H.; Liang, Fang; Davis, Lauren C.; Barnes, S. Whitney; Mathison, Casey J. N.; Myburgh, Elmarie; Gao, Mu-Yun; Gillespie, J. Robert; Liu, Xianzhong; Tan, Jocelyn L.; Stinson, Monique; Rivera, Ianne C.; Ballard, Jaime; Yeh, Vince; Groessl, Todd; Federe, Glenn; Koh, Hazel X. Y.; Venable, John D.; Bursulaya, Badry; Shapiro, Michael; Mishra, Pranab K.; Spraggon, Glen; Brock, Ansgar; Mottram, Jeremy C.; Buckner, Frederick S.; Rao, Srinivasa P. S.; Wen, Ben G.; Walker, John R.; Tuntland, Tove; Molteni, Valentina; Glynne, Richard J.; Supek, Frantisek

    2016-01-01

    Chagas disease, leishmaniasis, and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually1. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drug(s) modulating the activity of a conserved parasite target2. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases. PMID:27501246

  2. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  3. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    PubMed

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  4. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  5. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; ...

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  6. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells.

    PubMed

    Liu, Yanying; Qiao, Fangfang; Leiferman, Patricia C; Ross, Alan; Schlenker, Evelyn H; Wang, Hongmin

    2017-11-15

    Although it has been speculated that proteasome dysfunction may contribute to the pathogenesis of Huntington's disease (HD), a devastating neurodegenerative disorder, how proteasome activity is regulated in HD affected stem cells and somatic cells remains largely unclear. To better understand the pathogenesis of HD, we analyzed proteasome activity and the expression of FOXO transcription factors in three wild-type (WT) and three HD induced-pluripotent stem cell (iPSC) lines. HD iPSCs exhibited elevated proteasome activity and higher levels of FOXO1 and FOXO4 proteins. Knockdown of FOXO4 but not FOXO1 expression decreased proteasome activity. Following neural differentiation, the HD-iPSC-derived neural progenitor cells (NPCs) demonstrated lower levels of proteasome activity and FOXO expressions than their WT counterparts. More importantly, overexpression of FOXO4 but not FOXO1 in HD NPCs dramatically enhanced proteasome activity. When HD NPCs were further differentiated into DARPP32-positive neurons, these HD neurons were more susceptible to death than WT neurons and formed Htt aggregates under the condition of oxidative stress. Similar to HD NPCs, HD-iPSC-derived neurons showed reduced proteasome activity and diminished FOXO4 expression compared to WT-iPSC-derived neurons. Furthermore, HD iPSCs had lower AKT activities than WT iPSCs, whereas the neurons derived from HD iPSC had higher AKT activities than their WT counterparts. Inhibiting AKT activity increased both FOXO4 level and proteasome activity, indicating a potential role of AKT in regulating FOXO levels. These data suggest that FOXOs modulate proteasome activity, and thus represents a potentially valuable therapeutic target for HD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism.

    PubMed

    Mitroi, Daniel N; Deutschmann, André U; Raucamp, Maren; Karunakaran, Indulekha; Glebov, Konstantine; Hans, Michael; Walter, Jochen; Saba, Julie; Gräler, Markus; Ehninger, Dan; Sopova, Elena; Shupliakov, Oleg; Swandulla, Dieter; van Echten-Deckert, Gerhild

    2016-11-24

    The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPL fl/fl/Nes ) but not postnatal neuronal forebrain-restricted SPL deletion (SPL fl/fl/CaMK ) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPL fl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.

  8. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro

    PubMed Central

    Garrett, I.R.; Chen, D.; Gutierrez, G.; Zhao, M.; Escobedo, A.; Rossini, G.; Harris, S.E.; Gallwitz, W.; Kim, K.B.; Hu, S.; Crews, C.M.; Mundy, G.R.

    2003-01-01

    We have found that the ubiquitin-proteasome pathway exerts exquisite control of osteoblast differentiation and bone formation in vitro and in vivo in rodents. Structurally different inhibitors that bind to specific catalytic β subunits of the 20S proteasome stimulated bone formation in bone organ cultures in concentrations as low as 10 nM. When administered systemically to mice, the proteasome inhibitors epoxomicin and proteasome inhibitor–1 increased bone volume and bone formation rates over 70% after only 5 days of treatment. Since the ubiquitin-proteasome pathway has been shown to modulate expression of the Drosophila homologue of the bone morphogenetic protein-2 and -4 (BMP-2 and BMP-4) genes, we examined the effects of noggin, an endogenous inhibitor of BMP-2 and BMP-4 on bone formation stimulated by these compounds and found that it was abrogated. These compounds increased BMP-2 but not BMP-4 or BMP-6 mRNA expression in osteoblastic cells, suggesting that BMP-2 was responsible for the observed bone formation that was inhibited by noggin. We show proteasome inhibitors regulate BMP-2 gene expression at least in part through inhibiting the proteolytic processing of Gli3 protein. Our results suggest that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation and that inhibition of specific components of this system may be useful therapeutically in common diseases of bone loss. PMID:12782679

  9. CERAMIDE SYNTHASE 1 IS REGULATED BY PROTEASOMAL MEDIATED TURNOVER

    PubMed Central

    Sridevi, Priya; Alexander, Hannah; Laviad, Elad L.; Pewzner-Jung, Yael; Hannink, Mark; Futerman, Anthony H.; Alexander, Stephen

    2009-01-01

    Ceramide is an important bioactive lipid, intimately involved in many cellular functions, including the regulation of cell death, and in cancer and chemotherapy. Ceramide is synthesized de novo from sphinganine and acyl CoA via a family of 6 ceramide synthase enzymes, each having a unique preference for different fatty acyl CoA substrates and a unique tissue distribution. However, little is known regarding the regulation of these important enzymes. In this study we focus on ceramide synthase 1 (CerS1) which is the most structurally and functionally distinct of the enzymes, and describe a regulatory mechanism that specifically controls the level of CerS1 via ubiquitination and proteasome dependent protein turnover. We show that both endogenous and ectopically expressed CerS1 have rapid basal turnover and that diverse stresses including chemotherapeutic drugs, UV light and DTT can induce CerS1 turnover. The turnover requires CerS1 activity and is regulated by the opposing actions of p38 MAP kinase and protein kinase C (PKC). p38 MAP kinase is a positive regulator of turnover, while PKC is a negative regulator of turnover. CerS1 is phosphorylated in vivo and activation of PKC increases the phosphorylation of the protein. This study reveals a novel and highly specific mechanism by which CerS1 protein levels are regulated and which directly impacts ceramide homeostasis. PMID:19393694

  10. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana.

    PubMed

    Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin

    2016-04-01

    Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    PubMed

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  12. Apigenin Reduces Proteasome Inhibition-Induced Neuronal Apoptosis by Suppressing the Cell Death Process.

    PubMed

    Kim, Arum; Nam, Yoon Jeong; Lee, Min Sung; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2016-11-01

    Impairment of proteasomal function has been shown to be implicated in neuronal cell degeneration. The compounds which have antioxidant and anti-inflammatory abilities appear to provide a neuroprotective effect. Flavone apigenin is known to exhibits antioxidant and anti-inflammatory effects. Nevertheless, the effect of apigenin on the proteasome inhibition-induced neuronal apoptosis has not been studied. Therefore, we assessed the effect of apigenin on the proteasome inhibition-induced apoptotic neuronal cell death using differentiated PC12 cells and human neuroblastoma SH-SY5Y cells. Apigenin attenuated the proteasome inhibitors (MG132 and MG115)-induced decrease in the levels of Bid and Bcl-2, increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases (-8, -9 and -3), cleavage of PARP-1 and cell death in both cell lines. Apigenin attenuated the production of reactive oxygen species, the depletion and oxidation of glutathione, the formations of malondialdehyde and carbonyls in cell lines treated with proteasome inhibitors. The results show that apigenin appears to attenuate the proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells by suppressing the activation of the mitochondrial pathway, and of the caspase-8- and Bid-dependent pathways. The inhibitory effect of apigenin on the proteasome inhibitor-induced apoptosis appears to be attributed to the suppressive effect on the production of reactive oxygen species, the depletion and oxidation of glutathione and the formations of malondialdehyde and carbonyls.

  13. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide

    PubMed Central

    Samanovic, Marie I.; Tu, Shengjiang; Novák, Ondřej; Iyer, Lakshminarayan M.; McAllister, Fiona E.; Aravind, L.; Gygi, Steven P.; Hubbard, Stevan R.; Strnad, Miroslav; Darwin, K. Heran

    2015-01-01

    Summary One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO-resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homologue of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report for the first time that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO. PMID:25728768

  14. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway.

    PubMed

    Lu, Mengchen; Liu, Tian; Jiao, Qiong; Ji, Jianai; Tao, Mengmin; Liu, Yijun; You, Qidong; Jiang, Zhengyu

    2018-02-25

    Induced protein degradation by PROTACs has emerged as a promising strategy to target nonenzymatic proteins inside the cell. The aim of this study was to identify Keap1, a substrate adaptor protein for ubiquitin E3 ligase involved in oxidative stress regulation, as a novel candidate for PROTACs that can be applied in the degradation of the nonenzymatic protein Tau. A peptide PROTAC by recruiting Keap1-Cul3 ubiquitin E3 ligase was developed and applied in the degradation of intracellular Tau. Peptide 1 showed strong in vitro binding with Keap1 and Tau. With proper cell permeability, peptide 1 was found to colocalize with cellular Keap1 and resulted in the coimmunoprecipitation of Tau and Keap1. The results of flow cytometry and western blotting assays showed that peptide 1 can downregulate the intracellular Tau level in both time- and concentration-dependent manner. The application of Keap1 siRNA silencing and the proteasome inhibitor MG132 confirmed that peptide 1 could promote the Keap1-dependent poly-ubiquitination and proteasome-dependent degradation of Tau. The results suggested that using PROTACs to recruit Keap1 to induce the degradation of Tau may show promising character in the treatment of neurodegenerative disease. Besides, our research demonstrated that Keap1 should be a promising E3 ligase adaptor to be used in the design of novel PROTACs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation

    PubMed Central

    Lau, Alan F.

    2009-01-01

    The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins. PMID:19468686

  16. RA190, a Proteasome Subunit ADRM1 Inhibitor, Suppresses Intrahepatic Cholangiocarcinoma by Inducing NF-KB-Mediated Cell Apoptosis.

    PubMed

    Yu, Guang-Yang; Wang, Xuan; Zheng, Su-Su; Gao, Xiao-Mei; Jia, Qing-An; Zhu, Wen-Wei; Lu, Lu; Jia, Hu-Liang; Chen, Jin-Hong; Dong, Qiong-Zhu; Lu, Ming; Qin, Lun-Xiu

    2018-06-15

    Effective drug treatment for intrahepatic cholangiocarcinoma (ICC) is currently lacking. Therefore, there is an urgent need for new targets and new drugs that can prolong patient survival. Recently targeting the ubiquitin proteasome pathway has become an attractive anti-cancer strategy. In this study, we aimed to evaluate the therapeutic effect of and identify the potential mechanisms involved in targeting the proteasome subunit ADRM1 for ICC. The expression of ADRM1 and its prognostic value in ICC was analyzed using GEO and TCGA datasets, tumor tissues, and tumor tissue arrays. The effects of RA190 on the proliferation and survival of both established ICC cell lines and primary ICC cells were examined in vitro. Annexin V/propidium iodide staining, western blotting and immunohistochemical staining were performed. The in vivo anti-tumor effect of RA190 on ICC was validated in subcutaneous xenograft and patient-derived xenograft (PDX) models. ADRM1 levels were significantly higher in ICC tissues than in normal bile duct tissues. ICC patients with high ADRM1 levels had worse overall survival (hazard ratio [HR] = 2.383, 95% confidence interval [CI] =1.357 to 4.188) and recurrence-free survival (HR = 1.710, 95% CI =1.045 to 2.796). ADRM1 knockdown significantly inhibited ICC growth in vitro and in vivo. The specific inhibitor RA190 targeting ADRM1 suppressed proliferation and reduced cell vitality of ICC cell lines and primary ICC cells significantly in vitro. Furthermore, RA190 significantly inhibited the proteasome by inactivating ADRM1, and the consequent accumulation of ADRM1 substrates decreased the activating levels of NF-κB to aggravate cell apoptosis. The therapeutic benefits of RA190 treatment were further demonstrated in both subcutaneous implantation and PDX models. Our findings indicate that up-regulated ADRM1 was involved in ICC progression and suggest the potential clinical application of ADRM1 inhibitors (e.g., RA190 and KDT-11) for ICC treatment.

  17. Antiatherogenic effect of quercetin is mediated by proteasome inhibition in the aorta and circulating leukocytes.

    PubMed

    Pashevin, Denis A; Tumanovska, Lesya V; Dosenko, Victor E; Nagibin, Vasyl S; Gurianova, Veronika L; Moibenko, Alexey A

    2011-01-01

    Quercetin, a plant-derived flavonoid, has attracted considerable attention as promising compound for heart disease prevention and therapy. It has been linked to decreased mortality from heart disease and decreased incidence of stroke. Here, we report new data showing the angioprotective properties of quercetin mediated by its effect on proteasomal proteolysis. This study was designed to investigate the ability of quercetin to modulate proteasomal activity in a rabbit model of cholesterol-induced atherosclerosis. First, we show proteasomal trypsin-like (TL) activity increased up to 2.4-fold, chymotrypsin-like (CTL) activity increased by up to 43% and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activity increased by up to 10% after 8 weeks of a cholesterol-rich diet. A single intravenous injection of the water-soluble form of quercetin (Corvitin) significantly decreased proteasomal TL activity 1.85-fold in monocytes, and decreased the CTL and PGPH activities more than 2-fold in polymorphonuclear leukocytes (PMNL) after 2 h. Prolonged administration (1 month) of Corvitin to animals following a cholesterol-rich diet significantly decreased all types of proteolytic proteasome activities both in tissues and in circulating leukocytes and was associated with the reduction of atherosclerotic lesion areas in the aorta. Additionally, the pharmacological form of quercetin (Quertin) was shown to have an antiatherogenic effect and an ability to inhibit proteasome activities.

  18. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo.

    PubMed

    Milacic, Vesna; Banerjee, Sanjeev; Landis-Piwowar, Kristin R; Sarkar, Fazlul H; Majumdar, Adhip P N; Dou, Q Ping

    2008-09-15

    Curcumin (diferuloylmethane) is the major active ingredient of turmeric (Curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiologic conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the NH(2)-terminal threonine of the proteasomal chymotrypsin-like (CT-like) subunit. Consistently, curcumin potently inhibits the CT-like activity of a purified rabbit 20S proteasome (IC(50) = 1.85 micromol/L) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor-bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression, and apoptosis induction in tumor tissues. Our study shows that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early-stage and late-stage/refractory colon cancer.

  19. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo

    PubMed Central

    Milacic, Vesna; Banerjee, Sanjeev; Landis-Piwowar, Kristin R.; Sarkar, Fazlul H.; Majumdar, Adhip P.N.; Dou, Q. Ping

    2008-01-01

    Curcumin (diferuloylmethane) is the major active ingredient of turmeric (curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiological conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the N-terminal threonine of the proteasomal chymotrypsin-like subunit. Consistently, curcumin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50=1.85 µM) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor–bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression and apoptosis induction in tumor tissues. Our study demonstrates that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapaeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early stage and late stage/refractory colon cancer. PMID:18794115

  20. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  1. Shikonin Exerts Antitumor Activity via Proteasome Inhibition and Cell Death Induction in vitro and in vivo

    PubMed Central

    Yang, Huanjie; Zhou, Ping; Huang, Hongbiao; Chen, Di; Ma, Ningfang; Cui, Cindy Qiuzhi; Shen, Shouxing; Dong, Weihua; Zhang, Xiaoyan; Lian, Wen; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2009-01-01

    Dysregulation of the ubiquitin-proteasome pathway plays an essential role in tumor growth and development. Shikonin, a natural naphthoquinone isolated from the traditional Chinese medicine Zi Cao (gromwell), has been reported to possess tumor cell-killing activity, and results from a clinical study using a shikonin-containing mixture demonstrated its safety and efficacy for the treatment of late-stage lung cancer. In the present study, we reported that shikonin is an inhibitor of tumor proteasome activity in vitro and in vivo. Our computational modeling predicts that the carbonyl carbons C1 and C4 of shikonin potentially interact with the catalytic site of β5 chymotryptic subunit of the proteasome. Indeed, shikonin potently inhibits the chymotrypsin-like activity of purified 20S proteasome (IC50 12.5 μmol/L) and tumor cellular 26S proteasome (IC50 between 2-16 μmol/L). Inhibition of the proteasome by shikonin in murine hepatoma H22, leukemia P388 and human prostate cancer PC-3 cultures resulted in accumulation of ubiquitinated proteins and several proteasome target proapoptotic proteins (IκB-α, Bax and p27), followed by induction of cell death. Shikonin treatment resulted in tumor growth inhibition in both H22 allografts and PC-3 xenografts, associated with suppression of the proteasomal activity and induction of cell death in vivo. Finally, shikonin treatment significantly prolonged the survival period of mice bearing P388 leukemia. Our results indicate that the tumor proteasome is one of the cellular targets of shikonin, and inhibition of the proteasome activity by shikonin contributes to its anti-tumor property. PMID:19165859

  2. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway.

    PubMed

    Broekaart, Diede W M; van Scheppingen, Jackelien; Geijtenbeek, Karlijne W; Zuidberg, Mark R J; Anink, Jasper J; Baayen, Johannes C; Mühlebner, Angelika; Aronica, Eleonora; Gorter, Jan A; van Vliet, Erwin A

    2017-08-01

    Inhibition of the mammalian target of rapamycin (mTOR) pathway reduces epileptogenesis in various epilepsy models, possibly by inhibition of inflammatory processes, which may include the proteasome system. To study the role of mTOR inhibition in the regulation of the proteasome system, we investigated (immuno)proteasome expression during epileptogenesis, as well as the effects of the mTOR inhibitor rapamycin. The expression of constitutive (β1, β5) and immunoproteasome (β1i, β5i) subunits was investigated during epileptogenesis using immunohistochemistry in the electrical post-status epilepticus (SE) rat model for temporal lobe epilepsy (TLE). The effect of rapamycin was studied on (immuno)proteasome subunit expression in post-SE rats that were treated for 6 weeks. (Immuno)proteasome expression was validated in the brain tissue of patients who had SE or drug-resistant TLE and the effect of rapamycin was studied in primary human astrocyte cultures. In post-SE rats, increased (immuno)proteasome expression was detected throughout epileptogenesis in neurons and astrocytes within the hippocampus and piriform cortex and was most evident in rats that developed a progressive form of epilepsy. Rapamycin-treated post-SE rats had reduced (immuno)proteasome protein expression and a lower number of spontaneous seizures compared to vehicle-treated rats. (Immuno)proteasome expression was also increased in neurons and astrocytes within the human hippocampus after SE and in patients with drug-resistant TLE. In vitro studies using cultured human astrocytes showed that interleukin (IL)-1β-induced (immuno)proteasome gene expression could be attenuated by rapamycin. Because dysregulation of the (immuno)proteasome system is observed before the occurrence of spontaneous seizures in rats, is associated with progression of epilepsy, and can be modulated via the mTOR pathway, it may represent an interesting novel target for drug treatment in epilepsy. Wiley Periodicals, Inc. © 2017

  3. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, William Ka Kei, E-mail: wukakei@cuhk.edu.hk; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong; Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85more » S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.« less

  4. Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells.

    PubMed

    Bhanumathy, Cunnigaiper D; Nakao, Steven K; Joseph, Suresh K

    2006-02-10

    myo-Inositol 1,4,5-trisphosphate receptor (IP3R) degradation occurs in response to carbachol (Cch) stimulation of CHO-K1 cells. The response was mediated by endogenous muscarinic receptors and was blocked by atropine or proteasomal inhibitors. We have used these cells to identify the sites of ubiquitination on IP3Rs and study the role of Ca2+ and substrate recognition properties of the degradation system using exogenously expressed IP3R constructs. Employing caspase-3 for IP3R cleavage, we show that Cch promotes polyubiquitination in the N-terminal domain and monoubiquitination in the C-terminal domain. The addition of extracellular Ca2+ to Ca2+-depleted Chinese hamster ovary (CHO) cells initiates IP3R degradation provided Cch is present. This effect is inhibited by thapsigargin. The data suggest that both a sustained elevation of IP3 and a minimal content of Ca2+ in the endoplasmic reticulum lumen is required to initiate IP3R degradation. Transient transfection of IP3R constructs into CHO cells indicated the selective degradation of only the SI+ splice variant of the type I IP3R. This was also the splice form present endogenously in these cells. A pore-defective, nonfunctional SI+ IP3R mutant (D2550A) was also degraded in Cch-stimulated cells. The Cch-mediated response in CHO cells provides a convenient model system to further analyze the Ca2+ dependence and structural requirements of the IP3R proteasomal degradation pathway.

  5. Transfer of Ho Endonuclease and Ufo1 to the Proteasome by the UbL-UbA Shuttle Protein, Ddi1, Analysed by Complex Formation In Vitro

    PubMed Central

    Voloshin, Olga; Bakhrat, Anya; Herrmann, Sharon; Raveh, Dina

    2012-01-01

    The F-box protein, Ufo1, recruits Ho endonuclease to the SCFUfo1 complex for ubiquitylation. Both ubiquitylated Ho and Ufo1 are transferred by the UbL-UbA protein, Ddi1, to the 19S Regulatory Particle (RP) of the proteasome for degradation. The Ddi1-UbL domain binds Rpn1 of the 19S RP, the Ddi1-UbA domain binds ubiquitin chains on the degradation substrate. Here we used complex reconstitution in vitro to identify stages in the transfer of Ho and Ufo1 from the SCFUfo1 complex to the proteasome. We report SCFUfo1 complex at the proteasome formed in the presence of Ho. Subsequently Ddi1 is recruited to this complex by interaction between the Ddi1-UbL domain and Ufo1. The core of Ddi1 binds both Ufo1 and Rpn1; this interaction confers specificity of SCFUfo1 for Ddi1. The substrate-shield model predicts that Ho would protect Ufo1 from degradation and we find that Ddi1 binds Ho, Ufo1, and Rpn1 simultaneously forming a complex for transfer of Ho to the 19S RP. In contrast, in the absence of Ho, Rpn1 displaces Ufo1 from Ddi1 indicating a higher affinity of the Ddi1-UbL for the 19S RP. However, at high Rpn1 levels there is synergistic binding of Ufo1 to Ddi1 that is dependent on the Ddi1-UbA domain. Our interpretation is that in the absence of substrate, the Ddi1-UbL binds Rpn1 while the Ddi1-UbA binds ubiquitin chains on Ufo1. This would promote degradation of Ufo1 and disassembly of SCFUfo1 complexes. PMID:22815701

  6. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival

    PubMed Central

    Princiotta, Michael F.; Schubert, Ulrich; Chen, Weisan; Bennink, Jack R.; Myung, Jayhyuk; Crews, Craig M.; Yewdell, Jonathan W.

    2001-01-01

    The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases. PMID:11149939

  7. Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival.

    PubMed

    Princiotta, M F; Schubert, U; Chen, W; Bennink, J R; Myung, J; Crews, C M; Yewdell, J W

    2001-01-16

    The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases.

  8. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

    NASA Astrophysics Data System (ADS)

    Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.

    2015-09-01

    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

  9. Absence of the Birt-Hogg-Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility.

    PubMed

    Preston, R S; Philp, A; Claessens, T; Gijezen, L; Dydensborg, A B; Dunlop, E A; Harper, K T; Brinkhuizen, T; Menko, F H; Davies, D M; Land, S C; Pause, A; Baar, K; van Steensel, M A M; Tee, A R

    2011-03-10

    Under conditions of reduced tissue oxygenation, hypoxia-inducible factor (HIF) controls many processes, including angiogenesis and cellular metabolism, and also influences cell proliferation and survival decisions. HIF is centrally involved in tumour growth in inherited diseases that give rise to renal cell carcinoma (RCC), such as Von Hippel-Lindau syndrome and tuberous sclerosis complex. In this study, we examined whether HIF is involved in tumour formation of RCC in Birt-Hogg-Dubé syndrome. For this, we analysed a Birt-Hogg-Dubé patient-derived renal tumour cell line (UOK257) that is devoid of the Birt-Hogg-Dubé protein (BHD) and observed high levels of HIF activity. Knockdown of BHD expression also caused a threefold activation of HIF, which was not as a consequence of more HIF1α or HIF2α protein. Transcription of HIF target genes VEGF, BNIP3 and CCND1 was also increased. We found nuclear localization of HIF1α and increased expression of VEGF, BNIP3 and GLUT1 in a chromophobe carcinoma from a Birt-Hogg-Dubé patient. Our data also reveal that UOK257 cells have high lactate dehydrogenase, pyruvate kinase and 3-hydroxyacyl-CoA dehydrogenase activity. We observed increased expression of pyruvate dehydrogenase kinase 1 (a HIF gene target), which in turn leads to increased phosphorylation and inhibition of pyruvate dehydrogenase. Together with increased protein levels of GLUT1, our data reveal that UOK257 cells favour glycolytic rather than lipid metabolism (a cancer phenomenon termed the 'Warburg effect'). UOK257 cells also possessed a higher expression level of the L-lactate influx monocarboxylate transporter 1 and consequently utilized L-lactate as a metabolic fuel. As a result of their higher dependency on glycolysis, we were able to selectively inhibit the growth of these UOK257 cells by treatment with 2-deoxyglucose. This work suggests that targeting glycolytic metabolism may be used therapeutically to treat Birt-Hogg-Dubé-associated renal lesions.

  10. Endothelin-1 (ET-1) induces resistance to bortezomib in human multiple myeloma cells via a pathway involving the ETB receptor and upregulation of proteasomal activity.

    PubMed

    Vaiou, Maria; Pangou, Evanthia; Liakos, Panagiotis; Sakellaridis, Nikos; Vassilopoulos, George; Dimas, Konstantinos; Papandreou, Christos

    2016-10-01

    Bortezomib (BTZ) is used for the treatment of multiple myeloma (MM). However, a significant proportion of patients may be refractory to the drug. This study aimed to investigate whether the endothelin (ET-1) axis may act as an escape mechanism to treatment with bortezomib in MM cells. NCI-H929 and RPMI-8226 (human MM cell lines) were cultured with or without ET-1, BTZ, and inhibitors of the endothelin receptors. ET-1 levels were determined by ELISA, while the protein levels of its receptors and of the PI3K and MAPK pathways' components by western blot. Effects of ET-1 on cell proliferation were studied by MTT and on the ubiquitin proteasome pathway by assessing the chymotryptic activity of the 20S proteasome in cell lysates. Endothelin receptors A and B (ETAR and ETBR, respectively) were found to be expressed in both cell lines, with the RPMI-8226 cells that are considered resistant to BTZ, expressing higher levels of ETBR and in addition secreting ET-1. Treatment of the NCI-H929 cells with ET-1 increased proliferation, while co-incubation of these cells with ET-1 and BTZ decreased BTZ efficacy with concomitant upregulation of 20S proteasomal activity. Si-RNA silencing or chemical blockade of ETBR abrogated the protective effects of ET-1. Finally, data suggest that the predominant signaling pathway involved in ET-1/ETBR-induced BTZ resistance in MM cells may be the MAPK pathway. Our data suggest a possible role of the ET-1/ETBR axis in regulating the sensitivity of MM cells to BTZ. Thus, combining bortezomib with strategies to target the ET-1 axis could prove to be a novel promising therapeutic approach in MM.

  11. Combined autophagy and proteasome inhibition

    PubMed Central

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-01-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy. PMID:24991834

  12. Mmi1, the Yeast Homologue of Mammalian TCTP, Associates with Stress Granules in Heat-Shocked Cells and Modulates Proteasome Activity

    PubMed Central

    Grousl, Tomas; Stradalova, Vendula; Heeren, Gino; Richter, Klaus; Breitenbach-Koller, Lore; Malinsky, Jan; Hasek, Jiri; Breitenbach, Michael

    2013-01-01

    As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells. PMID:24204967

  13. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    PubMed

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    PubMed

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells.

    PubMed

    Liu, Bao-Qin; Du, Zhen-Xian; Zong, Zhi-Hong; Li, Chao; Li, Ning; Zhang, Qiang; Kong, De-Hui; Wang, Hua-Qin

    2013-06-01

    Emerging lines of evidence have shown that blockade of ubiquitin-proteasome system (UPS) activates autophagy. The molecular players that regulate the relationship between them remain to be elucidated. Bcl-2 associated athanogene 3 (BAG3) is a member of the BAG co-chaperone family that regulates the ATPase activity of heat shock protein 70 (HSP70) chaperone family. Studies on BAG3 have demonstrated that it plays multiple roles in physiological and pathological processes, including antiapoptotic activity, signal transduction, regulatory role in virus infection, cell adhesion and migration. Recent studies have attracted much attention on its role in initiation of autophagy. The current study, for the first time, demonstrates that proteasome inhibitors elicit noncanonical autophagy, which was not suppressed by inhibitors of class III phosphatidylinositol 3-kinase (PtdIns3K) or shRNA against Beclin 1 (BECN1). In addition, we demonstrate that BAG3 is ascribed to activation of autophagy elicited by proteasome inhibitors and MAPK8/9/10 (also known as JNK1/2/3 respectively) activation is also implicated via upregulation of BAG3. Moreover, we found that noncanonical autophagy mediated by BAG3 suppresses responsiveness of HepG2 cells to proteasome inhibitors.

  16. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program.

    PubMed

    Matsushita, Akane; Inoue, Haruhiko; Goto, Shingo; Nakayama, Akira; Sugano, Shoji; Hayashi, Nagao; Takatsuji, Hiroshi

    2013-01-01

    The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  18. The Effectiveness of Predict-Observe-Explain Technique in Probing Students' Understanding about Acid-Base Chemistry: A Case for the Concepts of pH, pOH, and Strength

    ERIC Educational Resources Information Center

    Kala, Nesli; Yaman, Fatma; Ayas, Alipasa

    2013-01-01

    The present study describes high school students' conceptions about acids and bases in terms of pH, pOH, microscopic level, strength, and concentration. A total of 27 high school students participated in the study. The data was collected using 3 POE tasks and a semi-structured interview. The data analysis demonstrated that most of the students had…

  19. Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis.

    PubMed

    Velentzas, Panagiotis D; Velentzas, Athanassios D; Mpakou, Vassiliki E; Antonelou, Marianna H; Margaritis, Lukas H; Papassideri, Issidora S; Stravopodis, Dimitrios J

    2013-02-01

    In eukaryotes, the ubiquitin-proteasome machinery regulates a number of fundamental cellular processes through accurate and tightly controlled protein degradation pathways. We have, herein, examined the effects of proteasome functional disruption in Dmp53 (+/+) (wild-type) and Dmp53 (-/-) Drosophila melanogaster fly strains through utilization of Bortezomib, a proteasome-specific inhibitor. We report that proteasome inhibition drastically shortens fly life-span and impairs climbing performance, while it also causes larval lethality and activates developmentally irregular cell death programs during oogenesis. Interestingly, Dmp53 gene seems to play a role in fly longevity and climbing ability. Moreover, Bortezomib proved to induce endoplasmic reticulum (ER) stress that was able to result in the engagement of unfolded protein response (UPR) signaling pathway, as respectively indicated by fly Xbp1 activation and Ref(2)P-containing protein aggregate formation. Larva salivary gland and adult brain both underwent strong ER stress in response to Bortezomib, thus underscoring the detrimental role of proteasome inhibition in larval development and brain function. We also propose that the observed upregulation of autophagy operates as a protective mechanism to "counterbalance" Bortezomib-induced systemic toxicity, which is tightly associated, besides ER stress, with activation of apoptosis, mainly mediated by functional Drice caspase and deregulated dAkt kinase. The reduced life-span of exposed to Bortezomib flies overexpressing Atg1_RNAi or Atg18_RNAi supports the protective nature of autophagy against proteasome inhibition-induced stress. Our data reveal the in vivo significance of proteasome functional integrity as a major defensive system against cellular toxicity likely occurring during critical biological processes and morphogenetic courses.

  20. Proteasome activity and their subunit composition in endometrial cancer tissue: correlations with clinical morphological parameters.

    PubMed

    Spirina, L V; Kondakova, I V; Koval', V D; Kolomiets, L A; Chernyshova, A L; Choinzonov, E L; Sharova, N P

    2012-08-01

    The development of endometrial cancer is related to the status of the intracellular proteasome system. Total proteasome activity and pools 26S and 20S activities are higher in tumor tissue than in intact endometrium, and their composition is different. The expression of α1α2α3α5α6α7 is lower in endometrial cancer tissue in comparison with intact endometrium and the content of immune subunits LMP7, LMP2, and PA28β is increased. Total proteasome activity depends on the disease stage.

  1. High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.

    PubMed

    Ausseil, Frederic; Samson, Arnaud; Aussagues, Yannick; Vandenberghe, Isabelle; Creancier, Laurent; Pouny, Isabelle; Kruczynski, Anna; Massiot, Georges; Bailly, Christian

    2007-02-01

    To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Z factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products.

  2. Defining the human deubiquitinating enzyme interaction landscape.

    PubMed

    Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade

    2009-07-23

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

  3. Defining the Human Deubiquitinating Enzyme Interaction Landscape

    PubMed Central

    Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade

    2009-01-01

    Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732

  4. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  5. Heat shock proteins and proteasomal degradation in normal and tumor cells.

    PubMed

    Karademir, Betul; Bozaykut, Perinur; Kartal Ozer, Nesrin

    2014-10-01

    Proteasomal degradation of oxidized proteins is a crucial mechanism to prevent the accumulation of cellular damage. The removal of the damage is generally a required process for healthy organisms to keep the integrity while in cancer cells the situation may be different. In normal conditions, cancer cells have higher proteasome activity compared to normal cells. During cancer treatment, cellular damage by chemotherapy is an expected process to be able to kill the tumor cells. And the accumulation of this damage accompanied by the decrease in protein repair and removal systems may increase the efficacy of the cancer therapy. Heat shock proteins (Hsp) as molecular chaperones are involved in the folding, activation and assembly of a variety of proteins. Among these Hsp40, Hsp70 and Hsp90 are believed to act as a chaperone system to regulate the proteasomal degradation. In this study, we tested the role of heat stress response on the proteasomal degradation of oxidized proteins. We used two different cell lines to observe the difference in normal and tumor cells. First the effect of heat stress (42°C, 1h) were tested in terms of protein oxidation tested by protein carbonyl formation and proteasomal degradation. The results were extremely different in normal fibroblast cells and hippocampal tumor cells. In the same direction, the expressions of Hsp40, Hsp70 and Hsp90 were affected in a different manner in two cell lines, will be discussed in detail. Supported by TUBITAK COST-CM1001-110S281. Copyright © 2014. Published by Elsevier Inc.

  6. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

    PubMed Central

    van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.

    2016-01-01

    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717

  7. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin.

    PubMed

    Liebl, Martina P; Hoppe, Thorsten

    2016-08-01

    Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. Copyright © 2016 the American Physiological Society.

  8. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.

    PubMed

    Baumann, Cory W; Liu, Haiming M; Thompson, LaDora V

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle's intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6-8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling.

  9. Inhibition of the ubiquitin-proteasome system by natural products for cancer therapy.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2010-08-01

    The ubiquitin-proteasome system plays a critical role in selective protein degradation and regulates almost all cellular events such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein quality control, development, and neuronal function. The recent approval of bortezomib, a synthetic proteasome inhibitor, for the treatment of relapsed multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and ubiquitinating and deubiquitinating enzymes as well as the delivery system. To date, various synthetic and natural products have been reported to inhibit the components of the ubiquitin-proteasome system. Here, we review natural products targeting the ubiquitin-proteasome system as well as synthetic compounds with potent inhibitory effects. Georg Thieme Verlag KG Stuttgart-New York.

  10. Regulation of the Proteasome by Neuronal Activity and Calcium/Calmodulin-dependent Protein Kinase II*

    PubMed Central

    Djakovic, Stevan N.; Schwarz, Lindsay A.; Barylko, Barbara; DeMartino, George N.; Patrick, Gentry N.

    2009-01-01

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation. PMID:19638347

  11. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.

    PubMed

    Djakovic, Stevan N; Schwarz, Lindsay A; Barylko, Barbara; DeMartino, George N; Patrick, Gentry N

    2009-09-25

    Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-D-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.

  12. Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway

    PubMed Central

    Polge, Cécile; Jaquinod, Michel; Holzer, Frances; Bourguignon, Jacques; Walling, Linda; Brouquisse, Renaud

    2009-01-01

    Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 μm cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress. PMID:19822524

  13. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis

    PubMed Central

    Wen, Fu-Ping; Guo, Yue-Shuai; Hu, Yang; Liu, Wei-Xiao; Wang, Qian; Wang, Yuan-Ting; Yu, Hai-Yan; Tang, Chao-Ming; Yang, Jun; Zhou, Tao; Xie, Zhi-Ping; Sha, Jia-Hao; Guo, Xuejiang; Li, Wei

    2016-01-01

    ABSTRACT Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions. PMID:27050457

  14. Distinct temporal requirements for autophagy and the proteasome in yeast meiosis.

    PubMed

    Wen, Fu-ping; Guo, Yue-shuai; Hu, Yang; Liu, Wei-xiao; Wang, Qian; Wang, Yuan-ting; Yu, Hai-Yan; Tang, Chao-ming; Yang, Jun; Zhou, Tao; Xie, Zhi-ping; Sha, Jia-hao; Guo, Xuejiang; Li, Wei

    2016-01-01

    Meiosis is a special type of cellular renovation that involves 2 successive cell divisions and a single round of DNA replication. Two major degradation systems, the autophagy-lysosome and the ubiquitin-proteasome, are involved in meiosis, but their roles have yet to be elucidated. Here we show that autophagy mainly affects the initiation of meiosis but not the nuclear division. Autophagy works not only by serving as a dynamic recycling system but also by eliminating some negative meiotic regulators such as Ego4 (Ynr034w-a). In a quantitative proteomics study, the proteasome was found to be significantly upregulated during meiotic divisions. We found that proteasomal activity is essential to the 2 successive meiotic nuclear divisions but not for the initiation of meiosis. Our study defines the roles of autophagy and the proteasome in meiosis: Autophagy mainly affects the initiation of meiosis, whereas the proteasome mainly affects the 2 successive meiotic divisions.

  15. Proteomic Profiling of Radiation-Induced Skin Fibrosis in Rats: Targeting the Ubiquitin-Proteasome System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Cyrus Tang Hematology Center, Soochow University, Suzhou; Luo, Judong

    Purpose: To investigate the molecular changes underlying the pathogenesis of radiation-induced skin fibrosis. Methods and Materials: Rat skin was irradiated to 30 or 45 Gy with an electron beam. Protein expression in fibrotic rat skin and adjacent normal tissues was quantified by label-free protein quantitation. Human skin cells HaCaT and WS-1 were treated by x-ray irradiation, and the proteasome activity was determined with a fluorescent probe. The effect of proteasome inhibitors on Transforming growth factor Beta (TGF-B) signaling was measured by Western blot and immunofluorescence. The efficacy of bortezomib in wound healing of rat skin was assessed by the skin injurymore » scale. Results: We found that irradiation induced epidermal and dermal hyperplasia in rat and human skin. One hundred ninety-six preferentially expressed and 80 unique proteins in the irradiated fibrotic skin were identified. Through bioinformatic analysis, the ubiquitin-proteasome pathway showed a significant fold change and was investigated in greater detail. In vitro experiments demonstrated that irradiation resulted in a decline in the activity of the proteasome in human skin cells. The proteasome inhibitor bortezomib suppressed profibrotic TGF-β downstream signaling but not TGF-β secretion stimulated by irradiation in HaCaT and WS-1 cells. Moreover, bortezomib ameliorated radiation-induced skin injury and attenuated epidermal hyperplasia. Conclusion: Our findings illustrate the molecular changes during radiation-induced skin fibrosis and suggest that targeting the ubiquitin-proteasome system would be an effective countermeasure.« less

  16. Knockdown of human deubiquitinase PSMD14 induces cell cycle arrest and senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Ann; McLaren, Rajashree P.; Mason, Paul

    2010-01-15

    The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21{sup /Cip} and p27{sup /Kip1}. Mostmore » notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.« less

  17. Understanding the mechanism of proteasome 20S core particle gating

    PubMed Central

    Latham, Michael P.; Sekhar, Ashok; Kay, Lewis E.

    2014-01-01

    The 20S core particle proteasome is a molecular machine playing an important role in cellular function by degrading protein substrates that no longer are required or that have become damaged. Regulation of proteasome activity occurs, in part, through a gating mechanism controlling the sizes of pores at the top and bottom ends of the symmetric proteasome barrel and restricting access to catalytic sites sequestered in the lumen of the structure. Although atomic resolution models of both open and closed states of the proteasome have been elucidated, the mechanism by which gates exchange between these states remains to be understood. Here, this is investigated by using magnetization transfer NMR spectroscopy focusing on the 20S proteasome core particle from Thermoplasma acidophilum. We show from viscosity-dependent proteasome gating kinetics that frictional forces originating from random solvent motions are critical for driving the gating process. Notably, a small effective hydrodynamic radius (EHR; <4Å) is obtained, providing a picture in which gate exchange proceeds through many steps involving only very small segment sizes. A small EHR further suggests that the kinetics of gate interconversion will not be affected appreciably by large viscogens, such as macromolecules found in the cell, so long as they are inert. Indeed, measurements in cell lysate reveal that the gate interconversion rate decreases only slightly, demonstrating that controlled studies in vitro provide an excellent starting point for understanding regulation of 20S core particle function in complex, biologically relevant environments. PMID:24706783

  18. Insulin-like Growth Factor-I Mediates Neuroprotection in Proteasome Inhibition-Induced Cytotoxicity in SH-SY5Y Cells

    PubMed Central

    Cheng, Benxu; Maffi, Shivani Kaushal; Martinez, Alex Anthony; Acosta, Yolanda P Villarreal; Morales, Liza D; Roberts, James L

    2011-01-01

    The proteasome is an enzyme complex responsible for targeted intracellular proteolysis. Alterations in proteasome-mediated protein clearance have been implicated in the pathogenesis of aging, Alzheimer's disease (AD) and Parkinson's disease (PD). In such diseases, proteasome inhibition may contribute to formation of abnormal protein aggregates, which in turn activate intracellular unfolded protein responses that cause oxidative stress and apoptosis. In this study, we investigated the protective effect of Insulin-like Growth Factor-I (IGF-1) for neural SH-SY5Y cells treated with the proteasomal inhibitor, Epoxomicin, In SH-SY5Y cells, Epoxomicin treatment results in accumulation of intracellular ubiquitinated proteins and cytochrome c release from damaged mitochondria, leading to cell death, in Epoxomicin time- and dose-dependent manner. In cells treated with small amounts of IGF-1, the same dosages of Epoxomicin reduced both mitochondrial damage (cytochrome c release) and reduced caspase-3 activation and PARP cleavage, both of which are markers of apoptosis. Notably, however, IGF-1-treated SH-SY5Y cells still contained ubiquitinated protein aggregates. This result indicates that IGF-1 blocks the downstream apoptotic consequences of Epoxomicin treatment leading to decreased proteasome function. Clues as to the mechanism for this protective effect come from (a) increased AKT phosphorylation observed in IGF-1-protected cells, vs. cells exposed to Epoxomicin without IGF-1, and (b) reduction of IGF-1 protection by pretreatment of the cells with LY294002 (an inhibitor of PI3-kinase). Together these findings suggest that activation of PI3/AKT pathways by IGF-1 is involved in IGF-1 neuroprotection against apoptosis following proteasome inhibition. PMID:21545837

  19. Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region.

    PubMed

    Yu, Houqing; Kago, Grace; Yellman, Christopher M; Matouschek, Andreas

    2016-07-15

    Ubiquitin and some of its homologues target proteins to the proteasome for degradation. Other ubiquitin-like domains are involved in cellular processes unrelated to the proteasome, and proteins containing these domains remain stable in the cell. We find that the 10 yeast ubiquitin-like domains tested bind to the proteasome, and that all 11 identified domains can target proteins for degradation. Their apparent proteasome affinities are not directly related to their stabilities or functions. That is, ubiquitin-like domains in proteins not part of the ubiquitin proteasome system may bind the proteasome more tightly than domains in proteins that are bona fide components. We propose that proteins with ubiquitin-like domains have properties other than proteasome binding that confer stability. We show that one of these properties is the absence of accessible disordered regions that allow the proteasome to initiate degradation. In support of this model, we find that Mdy2 is degraded in yeast when a disordered region in the protein becomes exposed and that the attachment of a disordered region to Ubp6 leads to its degradation. © 2016 The Authors.

  20. Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation.

    PubMed

    Zhang, Yuchen; Cheng, Junjun; Zhang, Junmeng; Wu, Xiaofan; Chen, Fang; Ren, Xuejun; Wang, Yunlong; Li, Quan; Li, Yu

    2016-09-02

    Apoptotic and necrotic macrophages have long been known for their existence in atherosclerotic lesions. However, the mechanisms underlying the choice of their death pattern have not been fully elucidated. Here, we report the effects of PS-341, a potent and specific proteasome inhibitor, on the cell death of primary bone marrow-derived macrophages (BMDMs) in vitro. The results showed that PS-341 could not induce macrophage apoptosis or promote TNF-induced macrophage apoptosis, on the other hand, PS-341 could significantly inhibit macrophage necroptosis induced by TNF and pan-caspase inhibitor z-VAD treatment. Remarkably, high-dose of PS-341 showed similar inhibitory effects on macrophage necroptosis comparable to that of kinase inhibition of RIP1 through specific inhibitor Nec-1 or inhibition of RIP3 via specific genetical ablation. Furthermore, the degradation of cellular inhibitor of apoptosis proteins (cIAPs) was suppressed by PS-341, which could antagonize the activation of RIP1 kinase via post-translational mechanism. Further evidences demonstrated reduced levels of both RIP1 and RIP 3 upon PS-341 treatment, concomitantly, a more strong association of RIP1 with cIAPs and less with RIP3 was found following PS-341 treatment, these findings suggested that PS-341 may disrupt the formation of RIP1-RIP3 complex (necrosome) through stabilizing cIAPs. Collectively, our results indicated that the proteasome-mediated degradation of cIAPs could be inhibited by PS-341 and followed by limited RIP1 and RIP3 kinase activities, which were indispensable for necroptosis, thus eliciting a significant necroptosis rescue in BMDMs in vitro. Overall, our study has identified a new role of PS-341 in the cell death of BMDMs and provided a novel insight into the atherosclerotic inflammation caused by proteasome-mediated macrophage necroptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Blm10 facilitates nuclear import of proteasome core particles

    PubMed Central

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-01-01

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor–cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast. PMID:23982732

  2. Effect of cellular ubiquitin levels on the regulation of oxidative stress response and proteasome function via Nrf1.

    PubMed

    Lee, Donghee; Ryu, Kwon-Yul

    2017-04-01

    The polyubiquitin genes Ubb and Ubc are upregulated under oxidative stress induced by arsenite [As(III)]. However, the role of ubiquitin (Ub) under As(III) exposure is not known in detail. In a previous study, we showed that the reduced viability observed in Ubc -/- mouse embryonic fibroblasts under As(III) exposure was not due to dysregulation of the Nrf2-Keap1 pathway, which prompted us to investigate another NFE2 family protein, nuclear factor erythroid 2-related factor 1 (Nrf1). In this study, we found that Ub deficiency due to Ubc knockdown in N2a cells reduced cell viability and proteasome activity under As(III) exposure. Furthermore, mRNA levels of the proteasome subunit Psma1 were also reduced. In addition, Ub deficiency led to the nuclear accumulation of the p65 isoform of Nrf1 under As(III) exposure. Interestingly, the overexpression of p65-Nrf1 recapitulated the phenotypes of Ub-deficient N2a cells under As(III) exposure. On the other hand, Nrf1 knockdown suppressed the death of Ub-deficient N2a cells upon exposure to As(III). Therefore, the levels of p65-Nrf1 may play an important role in the maintenance of cell viability under oxidative stress induced by As(III). Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Apigenin manipulates the ubiquitin-proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells.

    PubMed

    Singh, Vishal; Sharma, Vikas; Verma, Vikas; Pandey, Deepti; Yadav, Santosh K; Maikhuri, Jagdamba P; Gupta, Gopal

    2015-12-01

    To investigate apigenin (5,7,4-trihydroxyflavone), a dietary flavonoid with proteasome-inhibitory activity (desired for the management of multiple types of cancers), against FDA-approved anticancer proteasome inhibitor bortezomib in context to its effects on the tumor suppressor estrogen receptor-beta (ER-β) in prostate cancer cells. Prostate cancer (PC-3) cells were treated with either apigenin or bortezomib, and proliferation inhibition was correlated with proteasomal biochemistry, ER-degradation and cell apoptosis. Apigenin specifically inhibited only chymotrypsin-like activity of proteasome without affecting trypsin and caspase-like activities, which was in contrast to the non-specific inhibition of all the three activities by bortezomib. Apigenin selectively increased the protein levels of ER-β at 1.8 and 10.0 µM (without affecting mRNA levels) and preferentially accumulated ubiquitinated ER-β over ER-α in PC-3. Apigenin-treated cells exhibited increased ER-β interactions with ubiquitin-protein ligase E6AP, downregulated PSMA5 (α-5 subunit for assembly of 20S proteasome) without affecting PSMB1 (β-1 subunit), PSMB2 (β-2 subunit) and PSMB5 (β-5 subunit, whose overexpression by bortezomib causes drug resistance) of proteasome at mRNA levels. Caspase-3 activation in PC-3 by apigenin was dependent on caspase-8 activity but independent of mitochondrial membrane depolarization. The deubiquitinase USP14 activity, which antagonizes degradation of proteins via proteasome, was significantly increased by apigenin treatment. Apigenin selectively inhibits proteasomal degradation of tumor suppressor ER-β by specifically inhibiting chymotrypsin-like activity of proteasome, preventing its assembly via PSMA5 and inhibiting USP14 enzyme activity in prostate cancer cells, resulting in cancer cell apoptosis. Unlike bortezomib, apigenin's actions are subtle, precise, mechanistically distinct and capable of abstaining drug resistance.

  4. Integration of the ubiquitin-proteasome pathway with a cytosolic oligopeptidase activity

    PubMed Central

    Wang, Evelyn W.; Kessler, Benedikt M.; Borodovsky, Anna; Cravatt, Benjamin F.; Bogyo, Matthew; Ploegh, Hidde L.; Glas, Rickard

    2000-01-01

    Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability. PMID:10954757

  5. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome*

    PubMed Central

    Yu, Houqing; Singh Gautam, Amit K.; Wilmington, Shameika R.; Wylie, Dennis; Martinez-Fonts, Kirby; Kago, Grace; Warburton, Marie; Chavali, Sreenivas; Inobe, Tomonao; Finkelstein, Ilya J.; Babu, M. Madan

    2016-01-01

    The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness. PMID:27226608

  6. A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy.

    PubMed

    Wang, Xiao J; Yu, Jun; Wong, Sunny H; Cheng, Alfred S L; Chan, Francis K L; Ng, Simon S M; Cho, Chi H; Sung, Joseph J Y; Wu, William K K

    2013-10-01

    Eukaryotes have two major intracellular protein degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Inhibition of proteasomal activities has been previously shown to induce autophagy, indicating a coordinated and complementary relationship between these two systems. However, little is known about the regulation of the UPS by autophagy. In this study, we showed for the first time that proteasomes were activated in response to pharmacological inhibition of autophagy as well as disruption of autophagy-related genes by RNA interference under nutrient-deficient conditions in cultured human colon cancer cells. The induction was evidenced by the increased proteasomal activities and the upregulation of proteasomal subunits, including the proteasome β5 subunit, PSMB5. Co-inhibition of the proteasome and autophagy also synergistically increased the accumulation of polyubiquitinated proteins. Collectively, our findings suggest that proteasomes are activated in a compensatory manner for protein degradation upon autophagy inhibition. Our studies unveiled a novel regulatory mechanism between the two protein degradation pathways.

  7. Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit.

    PubMed

    Chojnacki, Michal; Mansour, Wissam; Hameed, Dharjath S; Singh, Rajesh K; El Oualid, Farid; Rosenzweig, Rina; Nakasone, Mark A; Yu, Zanlin; Glaser, Fabian; Kay, Lewis E; Fushman, David; Ovaa, Huib; Glickman, Michael H

    2017-04-20

    Ubiquitin (Ub) signaling is a diverse group of processes controlled by covalent attachment of small protein Ub and polyUb chains to a range of cellular protein targets. The best documented Ub signaling pathway is the one that delivers polyUb proteins to the 26S proteasome for degradation. However, studies of molecular interactions involved in this process have been hampered by the transient and hydrophobic nature of these interactions and the lack of tools to study them. Here, we develop Ub-phototrap (Ub PT ), a synthetic Ub variant containing a photoactivatable crosslinking side chain. Enzymatic polymerization into chains of defined lengths and linkage types provided a set of reagents that led to identification of Rpn1 as a third proteasome ubiquitin-associating subunit that coordinates docking of substrate shuttles, unloading of substrates, and anchoring of polyUb conjugates. Our work demonstrates the value of Ub PT , and we expect that its future uses will help define and investigate the ubiquitin interactome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni

    PubMed Central

    de Paula, Renato G.; Ornelas, Alice M. M.; Moreira, Érika B. C.; Badoco, Fernanda Rafacho; Magalhães, Lizandra G.; Verjovski-Almeida, Sergio; Rodrigues, Vanderlei

    2017-01-01

    Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis

  9. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    PubMed

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  10. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets

    PubMed Central

    Pinto-Fernandez, Adan; Kessler, Benedikt M.

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors. PMID:27516771

  11. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes

    PubMed Central

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael PH; Mishto, Michele

    2015-01-01

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. DOI: http://dx.doi.org/10.7554/eLife.07545.001 PMID:26393687

  12. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4.

    PubMed

    Tsubouchi, Kazuya; Araya, Jun; Minagawa, Shunsuke; Hara, Hiromichi; Ichikawa, Akihiro; Saito, Nayuta; Kadota, Tsukasa; Sato, Nahoko; Yoshida, Masahiro; Kurita, Yusuke; Kobayashi, Kenji; Ito, Saburo; Fujita, Yu; Utsumi, Hirofumi; Yanagisawa, Haruhiko; Hashimoto, Mitsuo; Wakui, Hiroshi; Yoshii, Yutaka; Ishikawa, Takeo; Numata, Takanori; Kaneko, Yumi; Asano, Hisatoshi; Yamashita, Makoto; Odaka, Makoto; Morikawa, Toshiaki; Nakayama, Katsutoshi; Nakanishi, Yoichi; Kuwano, Kazuyoshi

    2017-08-03

    Accumulation of profibrotic myofibroblasts is involved in the process of fibrosis development during idiopathic pulmonary fibrosis (IPF) pathogenesis. TGFB (transforming growth factor β) is one of the major profibrotic cytokines for myofibroblast differentiation and NOX4 (NADPH oxidase 4) has an essential role in TGFB-mediated cell signaling. Azithromycin (AZM), a second-generation antibacterial macrolide, has a pleiotropic effect on cellular processes including proteostasis. Hence, we hypothesized that AZM may regulate NOX4 levels by modulating proteostasis machineries, resulting in inhibition of TGFB-associated lung fibrosis development. Human lung fibroblasts (LF) were used to evaluate TGFB-induced myofibroblast differentiation. With respect to NOX4 regulation via proteostasis, assays for macroautophagy/autophagy, the unfolded protein response (UPR), and proteasome activity were performed. The potential anti-fibrotic property of AZM was examined by using bleomycin (BLM)-induced lung fibrosis mouse models. TGFB-induced NOX4 and myofibroblast differentiation were clearly inhibited by AZM treatment in LF. AZM-mediated NOX4 reduction was restored by treatment with MG132, a proteasome inhibitor. AZM inhibited autophagy and enhanced the UPR. Autophagy inhibition by AZM was linked to ubiquitination of NOX4 via increased protein levels of STUB1 (STIP1 homology and U-box containing protein 1), an E3 ubiquitin ligase. An increased UPR by AZM was associated with enhanced proteasome activity. AZM suppressed lung fibrosis development induced by BLM with concomitantly reduced NOX4 protein levels and enhanced proteasome activation. These results suggest that AZM suppresses NOX4 by promoting proteasomal degradation, resulting in inhibition of TGFB-induced myofibroblast differentiation and lung fibrosis development. AZM may be a candidate for the treatment of the fibrotic lung disease IPF.

  13. The many faces of ubiquitinated histone H2A: insights from the DUBs

    PubMed Central

    Vissers, Joseph HA; Nicassio, Francesco; van Lohuizen, Maarten; Di Fiore, Pier Paolo; Citterio, Elisabetta

    2008-01-01

    Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a challenging question. Work in the past years linked uH2A to transcriptional repression by the Polycomb group proteins of developmental regulators. Recently, a number of mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been discovered. These studies provide convincing evidence that H2A deubiquitination is connected with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular response to DNA damage and in cell cycle progression. In this review we will discuss new insights into uH2A biology, with emphasis on the H2A DUBs. PMID:18430235

  14. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Hotaru; Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp; Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of themore » SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.« less

  15. Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

    PubMed

    Eo, Hyun Ji; Park, Gwang Hun; Song, Hun Min; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation.

    PubMed

    Goitea, Victor E; Hallak, Marta E

    2015-06-26

    Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Renal cell tumour characteristics in patients with the Birt-Hogg-Dubé cancer susceptibility syndrome: a retrospective, multicentre study.

    PubMed

    Benusiglio, Patrick R; Giraud, Sophie; Deveaux, Sophie; Méjean, Arnaud; Correas, Jean-Michel; Joly, Dominique; Timsit, Marc-Olivier; Ferlicot, Sophie; Verkarre, Virginie; Abadie, Caroline; Chauveau, Dominique; Leroux, Dominique; Avril, Marie-Françoise; Cordier, Jean-François; Richard, Stéphane

    2014-10-29

    The Birt-Hogg-Dubé syndrome is a rare cancer susceptibility syndrome characterised by renal tumours, lung cysts and pneumothoraces, and fibrofolliculomas. It is caused by dominantly inherited mutations in FLCN. Our objective was to report renal tumour characteristics in a large series of patients with the Birt-Hogg-Dubé syndrome. We studied French Birt-Hogg-Dubé patients with a history of renal tumour. We included 33 patients with 21 distinct germline FLCN mutations. Median age at diagnosis of first renal tumour was 46, and age varied from 20 to 83. Twenty cases had one renal tumour, the remainder had two or more tumours. Most cases (23/33, 70%) had oncocytoma or renal cell carcinoma of the chromophobe or hybrid chromophobe-oncocytoma type, three had clear cell carcinoma (9%), and the other seven had carcinoma of papillary, undifferentiated or undetermined histology. Four cases had metastatic disease, although none died of it. Age at renal tumour diagnosis was highly variable, highlighting the need for regular surveillance from young adulthood to old age. Most cases had tumour types classically associated with Birt-Hogg-Dubé, i.e. oncocytoma or renal cell carcinoma of the chromophobe or hybrid type. Nevertheless, 9% had clear cell renal cell carcinoma. Geneticists, urologists and oncologists should therefore be alert to the possibility of Birt-Hogg-Dubé in patients with renal cell carcinoma of clear cell histology, especially if there are associated manifestations. Finally, the behaviour of metastatic carcinoma seemed more indolent than in sporadic renal cancers.

  18. The Semantics and Pragmatics of Translating Culture-Bound References in Film Dubbing

    ERIC Educational Resources Information Center

    Bendus, Maryana

    2012-01-01

    This work deals with a number of issues relating to the multifaceted phenomenon of audiovisual translation. The primary concern of the dissertation is with the evaluation of translation strategies of extralinguistic culture-bound references, in particular, in films dubbed from English (as the source language) into Ukrainian (as the target…

  19. Small acidic protein 1 and SCFTIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots.

    PubMed

    Takahashi, Maho; Umetsu, Kana; Oono, Yutaka; Higaki, Takumi; Blancaflor, Elison B; Rahman, Abidur

    2017-03-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCF TIR 1 ubiquitin proteasome components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  20. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors.

    PubMed

    Lu, Zhimin; Hunter, Tony

    2010-06-15

    The expression levels of the p21(Cip1) family CDK inhibitors (CKIs), p21(Cip1), p27(Kip1) and p57(Kip2), play a pivotal role in the precise regulation of cyclin-dependent kinase (CDK) activity, which is instrumental to proper cell cycle progression. The stabilities of p21(Cip1), p27(Kip1) and p57(Kip2) are all tightly and differentially regulated by ubiquitylation and proteasome-mediated degradation during various stages of the cell cycle, either in steady state or in response to extracellular stimuli, which often elicit site-specific phosphorylation of CKIs triggering their degradation.

  1. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in Caenorhabditis elegans and Neuronal Cultures.

    PubMed

    Papaevgeniou, Nikoletta; Sakellari, Marianthi; Jha, Sweta; Tavernarakis, Nektarios; Holmberg, Carina I; Gonos, Efstathios S; Chondrogianni, Niki

    2016-12-01

    Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. Feeding of wild-type Caenorhabditis elegans with 18α-glycyrrhetinic acid (18α-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasome activation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased Aβ deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18α-GA treatment. This is the first report of the use of 18α-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet. Antioxid. Redox Signal. 25, 855-869.

  2. High-resolution cryo-EM proteasome structures in drug development

    PubMed Central

    da Fonseca, Paula C. A.

    2017-01-01

    With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein–ligand inter­actions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein–ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction. PMID:28580914

  3. Ubiquitin Proteasome System in Parkinson Disease: a keeper or a witness?

    PubMed Central

    Martins-Branco, Diogo; Esteves, Ana R.; Santos, Daniel; Arduino, Daniela M.; Swerdlow, Russell H.; Oliveira, Catarina R.; Januario, Cristina; Cardoso, Sandra M.

    2014-01-01

    Objective The aim of this work was to evaluate the role of Ubiquitin-Proteasome System (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson disease (PD) cellular models. Method We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patients population we evaluated aSN levels in plasma and the influence of several demographic characteristics in the above mentioned determinations. Results We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a down regulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomers levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. Interpretation aSN oligomers are ubiquitinated and we identified an ubiquitin-dependent clearance insufficiency with accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. PMID:22921536

  4. Ubiquitin proteasome system in Parkinson's disease: a keeper or a witness?

    PubMed

    Martins-Branco, Diogo; Esteves, Ana R; Santos, Daniel; Arduino, Daniela M; Swerdlow, Russell H; Oliveira, Catarina R; Januario, Cristina; Cardoso, Sandra M

    2012-12-01

    The aim of this work was to evaluate the role of ubiquitin-proteasome system (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson's disease (PD) cellular models. We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patient population we evaluated the aSN levels in the plasma and the influence of several demographic characteristics in the above mentioned determinations. We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a downregulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomer levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. aSN oligomers are ubiquitinated and we identified a ubiquitin-dependent clearance insufficiency with the accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development

    PubMed Central

    Mtango, Namdori R.; Sutovsky, Miriam; Susor, Andrej; Zhong, Zhisheng; Latham, Keith E.; Sutovsky, Peter

    2015-01-01

    Posttranslational protein modification by ubiquitination, a signal for lysosomal or proteasomal proteolysis, can be regulated and reversed by deubiquitinating enzymes (DUBs). This study examined the roles of UCHL1 and UCHL3, two members of ubiquitin C-terminal hydrolase (UCH) family of DUBs, in murine fertilization and preimplantation development. Before fertilization, these proteins were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Intracytoplasmic injection of the general UCH-family inhibitor ubiquitin-aldehyde (UBAL) or antibodies against UCHL3 into mature metaphase II oocytes blocked fertilization by reducing sperm penetration of the zona pellucida and incorporation into the ooplasm, suggesting a role for cortical UCHL1 in sperm incorporation. Both UBAL and antibodies against UCHL1 injected at the onset of oocyte maturation (germinal vesicle stage) reduced the fertilizing ability of oocytes. The subfertile Uchl1gad−/− mutant mice showed an intriguing pattern of switched UCH localization, with UCHL3 replacing UCHL1 in the oocyte cortex. While fertilization defects were not observed, the embryos from homozygous Uchl1gad−/− mutant females failed to undergo morula compaction and did not form blastocysts in vivo, indicating a maternal effect related to UCHL1 deficiency. We conclude that the activity of oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex. PMID:21678411

  6. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1.

    PubMed

    Kim, Eugene Y; Sudini, Kuladeep; Singh, Anil K; Haque, Mahamudul; Leaman, Douglas; Khuder, Sadik; Ahmed, Salahuddin

    2018-05-25

    Rheumatoid arthritis (RA) is characterized by hyperplastic pannus formation mediated by activated synovial fibroblasts (RASFs) that cause joint destruction. We have shown earlier that RASFs exhibit resistance to apoptosis, primarily as a result of enhanced expression of myeloid cell leukemia-1 (Mcl-1). In this study, we discovered that ursolic acid (UA), a plant-derived pentacyclic triterpenoid, selectively induces B-cell lymphoma 2 homology 3-only protein Noxa in human RASFs. We observed that UA-induced Noxa expression was followed by a consequent decrease in Mcl-1 expression in a dose-dependent manner. Subsequent evaluation of the signaling pathways showed that UA-induced Noxa is primarily mediated by the JNK pathway in human RASFs. Chromatin immunoprecipitation (IP) studies into the promoter region of Noxa indicated the role of transcription factor specificity protein 1 in JNK-mediated Noxa expression. Furthermore, the results from IP studies and proximity ligation assays indicated that UA-induced Noxa colocalizes and associates with Mcl-1 to prime it for proteasomal degradation through K 48 -linked ubiquitination by the selective recruitment of Mcl-1 ubiquitin ligase E3, a homologous to E6-associated protein C terminus domain-containing E3 ubiquitin ligase. These findings unveil a novel mechanism of inducing apoptosis in RASFs and a potential adjunct therapeutic strategy of regulating synovial hyperplasia in RA.-Kim, E. Y., Sudini, K., Singh, A. K., Haque, M., Leaman, D., Khuder, S., Ahmed, S. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1.

  7. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis.

    PubMed

    Xie, Youming; Varshavsky, Alexander

    2002-12-01

    The ubiquitin system recognizes degradation signals of protein substrates through E3-E2 ubiquitin ligases, which produce a substrate-linked multi-ubiquitin chain. Ubiquitinated substrates are degraded by the 26S proteasome, which consists of the 20S protease and two 19S particles. We previously showed that UBR1 and UFD4, two E3 ligases of the yeast Saccharomyces cerevisiae, interact with specific proteasomal subunits. Here we advance this analysis for UFD4 and show that it interacts with RPT4 and RPT6, two subunits of the 19S particle. The 201-residue amino-terminal region of UFD4 is essential for its binding to RPT4 and RPT6. UFD4(DeltaN), which lacks this N-terminal region, adds ubiquitin to test substrates with apparently wild-type activity, but is impaired in conferring short half-lives on these substrates. We propose that interaction of a targeted substrate with the 26S proteasome involves contacts of specific proteasomal subunits with the substrate-bound ubiquitin ligase, with the substrate-linked multi-ubiquitin chain and with the substrate itself. This multiple-site binding may function to slow down dissociation of the substrate from the proteasome and to facilitate the unfolding of substrate through ATP-dependent movements of the chaperone subunits of the 19S particle.

  8. Ubiquitin and Proteasomes in Transcription

    PubMed Central

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.

    2013-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  9. Inhibition of tumor cellular proteasome activity by triptolide extracted from the Chinese medicinal plant 'thunder god vine'.

    PubMed

    Lu, Li; Kanwar, Jyoti; Schmitt, Sara; Cui, Qiuzhi Cindy; Zhang, Chuanyin; Zhao, Cong; Dou, Q Ping

    2011-01-01

    The molecular mechanisms of triptolide responsible for its antitumor properties are not yet fully understood. The ubiquitin/proteasome system is an important pathway of protein degradation in cells. This study investigated whether triptolide may inhibit proteasomal activity and induce apoptosis in human cancer cells. In vitro proteasome inhibition was measured by incubation of a purified 20S proteasome with triptolide. Human breast and prostate cancer cell lines were also treated with different doses of triptolide for different times, followed by measurement of proteasome inhibition (levels of the chymotrypsin-like activity, ubiquitinated proteins and three well-known proteasome target proteins, p27, IκB-α and Bax) and apoptosis induction (caspase-3 activity and PARP cleavage). Triptolide did not inhibit the chymotrypsin-like activity of purified 20S proteasome. However, treatment of triptolide was able to cause decreased levels of cellular proteasomal chymotrypsin-like activity and accumulation of ubiquitinated proteins and three well-known proteasome target proteins in human breast and prostate cancer cells, associated with apoptosis induction. It is possible that at least one of metabolites of triptolide has proteasome-inhibitory activity.

  10. Chronic aspirin via dose-dependent and selective inhibition of cardiac proteasome possibly contributed a potential risk to the ischemic heart.

    PubMed

    Tan, Chunjiang; Chen, Wenlie; Wu, Yanbin; Lin, Jiumao; Lin, Ruhui; Tan, Xuerui; Chen, Songming

    2013-08-01

    Impaired cardiac proteasome has been reported in ischemic heart and heart failure. Recent data highlighted aspirin as an inhibitor of the ubiquitin-proteasome system, however, it's unclear whether it affects cardiac proteasome functions. Myocardial infarction (MI), sham or normal male SD rats were injected intraperitoneally with high (300 mg/kg), low (5 mg/kg) aspirin or saline (control) once a day for seven weeks. Parallel experiments were performed in the hypoxia/reoxygenated human ventricular myocytes. Dose-related increases in heart and ventricular weight, and impaired cardiac functions, were found more exacerbated in the aspirin-treated MI rat hearts than the saline-treated MI counterparts. The activity of 26S, 20S and 19S declined by about 30%, or the 20S proteasome subunits β5, β2 and β1 decreased by 40%, 20% and 30%, respectively, in the MI rats compared with the non-MI rats (P<0.05). Compared with the saline-treated MI rats, 26S and 20S in high or low dose aspirin-treated MI rats further decreased by 30% and 20%, β5 by 30% and 12%, and β1 by 40% and 30%, respectively, and the lost activity was correlated with the compromised cardiac functions or the decreased cell viability. The dose-related and selective inhibition of 26S and 20S proteasome, or the 20S proteasome subunits β5 and β1 by aspirin was comparable to their protein expressions in the MI rats and in the cultured cells. The impaired cardiac proteasome, enhanced by chronic aspirin treatment, attenuated the removal of oxidative and ubiquitinated proteins, and chronic aspirin treatment via selective and dose-dependent inhibition of cardiac proteasome possibly constituted a potential risk to ischemic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib

    PubMed Central

    Berezniuk, Iryna; Dasgupta, Sayani; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.; Fricker, Lloyd D.

    2013-01-01

    Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug. PMID:23308178

  12. Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Kabashi, Edor; Agar, Jeffrey N; Hong, Yu; Taylor, David M; Minotti, Sandra; Figlewicz, Denise A; Durham, Heather D

    2008-06-01

    In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.

  13. Proteasomal interaction as a critical activity modulator of the human constitutive androstane receptor

    PubMed Central

    Chen, Tao; Laurenzana, Elizabeth M.; Coslo, Denise M.; Chen, Fengming; Omiecinski, Curtis J.

    2014-01-01

    The CAR (constitutive androstane receptor; NR1I3) is a critical xenobiotic sensor that regulates xenobiotic metabolism, drug clearance, energy and lipid homoeostasis, cell proliferation and development. Although constitutively active, in hepatocytes CAR is normally held quiescent through a tethering mechanism in the cytosol, anchored to a protein complex that includes several components, including heat-shock protein 90. Release and subsequent nuclear translocation of CAR is triggered through either direct binding to ligand activators such as CITCO {6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime} or through indirect chemical activation, such as with PB (phenobarbital). In the present study, we demonstrate that proteasomal inhibition markedly disrupts CAR function, repressing CAR nuclear trafficking, disrupting CAR’s interaction with nuclear co-activators and inhibiting induction of CAR target gene responses in human primary hepatocytes following treatment with either PB or CITCO. Paradoxically, these effects occur following accumulation of ubiquitinated hCAR (human CAR). Furthermore, a non-proteolytic function was indicated by its interaction with a SUG1 (suppressor for Gal1), a subunit of the 26S proteasome. Taken together, these data demonstrate that the proteasome complex functions at multiple levels to regulate the functional biology of hCAR activity. PMID:24224465

  14. Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone

    PubMed Central

    Li, Frances; Tian, Geng; Langager, Deanna; Sokolova, Vladyslava; Finley, Daniel; Park, Soyeon

    2017-01-01

    The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base–CP interaction. Here, we show that the Nas6 chaperone also obstructs base–lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base–lid, but not base–CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base–CP, but not base–lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base–lid affinity and base–CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis–blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis–competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome. PMID:28137839

  15. Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition

    PubMed Central

    Lu, Li; Qin, Aiping; Huang, Hongbiao; Zhou, Ping; Zhang, Chuanyin; Liu, Ningning; Li, Shujue; Wen, Guanmei; Zhang, Change; Dong, Weihua; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2012-01-01

    Shikonin, extracted from medicinal Chinese herb (Lithospermum erythrorhizo), was reported to exert anti-inflammatory and anti-cancer effects both in vitro and in vivo. We have found that proteasome was a molecular target of shikonin in tumor cells, but whether shikonin targets macrophage proteasome needs to be investigated. In the current study, we report that shikonin inhibited inflammation in mouse models as efficiently as dexamethasone. Shikonin at 4 μM reduced the Lipopolysaccharides (LPS)-mediated TNFα release in rat primary macrophage cultures, and blocked the translocation of p65-NF-κB from the cytoplasm to the nucleus, associated with decreased proteasomal activity. Consistently, shikonin accumulated IκB-α, an inhibitor of NF-κB, and ubiquitinated proteins in rat primary macrophage cultures, demonstrating that the proteasome is a target of shikonin under inflammatory conditions. Shikonin also induced macrophage cell apoptosis and cell death. These results demonstrate for the first time that proteasome inhibition by shikonin contributes to its anti-inflammatory effect. The novel finding about macrophage proteasome as a target of shikonin suggests that this medicinal compound has great potential to be developed into an anti-inflammatory agent. PMID:21392503

  16. Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition.

    PubMed

    Lu, Li; Qin, Aiping; Huang, Hongbiao; Zhou, Ping; Zhang, Chuanyin; Liu, Ningning; Li, Shujue; Wen, Guanmei; Zhang, Change; Dong, Weihua; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2011-05-11

    Shikonin, extracted from medicinal Chinese herb (Lithospermum erythrorhizo), was reported to exert anti-inflammatory and anti-cancer effects both in vitro and in vivo. We have found that proteasome was a molecular target of shikonin in tumor cells, but whether shikonin targets macrophage proteasome needs to be investigated. In the current study, we report that shikonin inhibited inflammation in mouse models as efficiently as dexamethasone. Shikonin at 4 μM reduced the Lipopolysaccharides (LPS)-mediated TNFα release in rat primary macrophage cultures, and blocked the translocation of p65-NF-κB from the cytoplasm to the nucleus, associated with decreased proteasomal activity. Consistently, shikonin accumulated IκB-α, an inhibitor of NF-κB, and ubiquitinated proteins in rat primary macrophage cultures, demonstrating that the proteasome is a target of shikonin under inflammatory conditions. Shikonin also induced macrophage cell apoptosis and cell death. These results demonstrate for the first time that proteasome inhibition by shikonin contributes to its anti-inflammatory effect. The novel finding about macrophage proteasome as a target of shikonin suggests that this medicinal compound has great potential to be developed into an anti-inflammatory agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The Proteasome and Oxidative Stress in Alzheimer's Disease.

    PubMed

    Bonet-Costa, Vicent; Pomatto, Laura Corrales-Diaz; Davies, Kelvin J A

    2016-12-01

    Alzheimer's disease is a neurodegenerative disorder that is projected to exceed more than 100 million cases worldwide by 2050. Aging is considered the primary risk factor for some 90% of Alzheimer's cases but a significant 10% of patients suffer from aggressive, early-onset forms of the disease. There is currently no effective Alzheimer's treatment and this, coupled with a growing aging population, highlights the necessity to understand the mechanism(s) of disease initiation and propagation. A major hallmark of Alzheimer's disease pathology is the accumulation of amyloid-β (Aβ) aggregates (an early marker of Alzheimer's disease), and neurofibrillary tangles, comprising the hyper-phosphorylated microtubule-associated protein Tau. Recent Advances: Protein oxidation is frequently invoked as a potential factor in the progression of Alzheimer's disease; however, whether it is a cause or a consequence of the pathology is still being debated. The Proteasome complex is a major regulator of intracellular protein quality control and an essential proteolytic enzyme for the processing of both Aβ and Tau. Recent studies have indicated that both protein oxidation and excessive phosphorylation may limit Proteasomal processing of Aβ and Tau in Alzheimer's disease. Thus, the Proteasome may be a key factor in understanding the development of Alzheimer's disease pathology; however, its significance is still very much under investigation. Discovering how the proteasome is affected, regulated, or dysregulated in Alzheimer's disease could be a valuable tool in the efforts to understand and, ultimately, eradicate the disease. Antioxid. Redox Signal. 25, 886-901.

  18. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome

    PubMed Central

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-01

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  19. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome.

    PubMed

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-26

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β.

  20. Proteolysis, proteasomes and antigen presentation

    NASA Technical Reports Server (NTRS)

    Goldberg, A. L.; Rock, K. L.

    1992-01-01

    Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.

  1. A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome.

    PubMed

    Gunderwala, Amber; Porter, John

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes a large global burden of disease, with a high mortality rate in healthy and immuno-compromised patients. A number of molecular targets have been identified for treatment of this disease, including the Mtb proteasome. The Mtb proteasome enhances Mtb survival during nitrosative and oxidative stress in the latent, non-replicative phase. Therefore, Mtb proteasome inhibition could help to combat Mtb infections that do not respond to current therapies. To develop and validate a novel biochemical assay to assess Mtb proteasome activity in the presence of organic and aqueous plant test extracts. Fluorescence (photoluminescence) and luminescence (chemiluminescence) assays were investigated as potential methods to determine the robustness and repeatability for use in screening natural product extracts for Mtb proteasome inhibitors. The fluorescence assay, used widely for Mtb proteasome activity assays, was subject to interference due to the natural fluorescence of compounds in many of the extracts; there is little interference with the luminescence approach. As proof of principle, we used the luminescence assay to screen a small set of plant test extracts. Luminescence is the more suitable assay for assay of plant natural product extracts. The sensitivities of the luminescence and fluorescence assays are comparable. A Z'-factor of 0.58 for the luminescence assay makes it suitable for medium-to-high throughput screening efforts. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing.

    PubMed

    Soave, Claire L; Guerin, Tracey; Liu, Jinbao; Dou, Q Ping

    2017-12-01

    In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.

  3. Sulforaphane attenuates postnatal proteasome inhibition and improves spatial learning in adult mice.

    PubMed

    Sunkaria, Aditya; Bhardwaj, Supriya; Yadav, Aarti; Halder, Avishek; Sandhir, Rajat

    2018-01-01

    Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A new structural class of proteasome inhibitors that prevent NF-kappa B activation.

    PubMed

    Lum, R T; Kerwar, S S; Meyer, S M; Nelson, M G; Schow, S R; Shiffman, D; Wick, M M; Joly, A

    1998-05-01

    The multicatalytic proteinase or proteasome is a highly conserved cellular structure that is responsible for the ATP-dependent proteolysis of many proteins involved in important regulatory cellular processes. We have identified a novel class of inhibitors of the chymotrypsin-like proteolytic activity of the 20S proteasome that exhibit IC50 values ranging from 0.1 to 0.5 microgram/mL (0.1 to 1 microM). In cell proliferation assays, these compounds inhibit growth with an IC50 ranging from 5 to 10 micrograms/mL (10-20 microM). A representative member of this class of inhibitors was tested in other biological assays. CVT-634 (5-methoxy-1-indanone-3-acetyl-leu-D-leu-1-indanylamide) prevented lipopolysaccharide (LPS), tumor necrosis factor (TNF)-, and phorbol ester-induced activation of nuclear factor kappa B (NF-kappa B) in vitro by preventing signal-induced degradation of I kappa B-alpha. In these studies, the I kappa B-alpha that accumulated was hyperphosphorylated, indicating that CVT-634 did not inhibit I kappa B-alpha kinase, the enzyme responsible for signal-induced phosphorylation of I kappa B-alpha. In vivo studies indicated that CVT-634 prevented LPS-induced TNF synthesis in a murine macrophage cell line. In addition, in mice pretreated with CVT-634 at 25 and 50 mg/kg and subsequently treated with LPS, serum TNF levels were significantly lower (225 +/- 59 and 83 +/- 41 pg/mL, respectively) than in those mice that were treated only with LPS (865 +/- 282 pg/mL). These studies suggest that specific inhibition of the chymotrypsin-like activity of the proteasome is sufficient to prevent signal-induced NF-kappa B activation and that the proteasome is a novel target for the identification of agents that may be useful in the treatment of diseases whose etiology is dependent upon the activation of NF-kappa B.

  5. The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6.

    PubMed

    Üstün, Suayib; Börnke, Frederik

    2015-05-01

    Many animal and plant pathogenic bacteria inject type III effector (T3E) proteins into their eukaryotic host cells to suppress immunity. The Yersinia outer protein J (YopJ) family of T3Es is a widely distributed family of effector proteins found in both animal and plant pathogens, and its members are highly diversified in virulence functions. Some members have been shown to possess acetyltransferase activity; however, whether this is a general feature of YopJ family T3Es is currently unknown. The T3E Xanthomonas outer protein J (XopJ), a YopJ family effector from the plant pathogen Xanthomonas campestris pv vesicatoria, interacts with the proteasomal subunit Regulatory Particle AAA-ATPase6 (RPT6) in planta to suppress proteasome activity, resulting in the inhibition of salicylic acid-related immune responses. Here, we show that XopJ has protease activity to specifically degrade RPT6, leading to reduced proteasome activity in the cytoplasm as well as in the nucleus. Proteolytic degradation of RPT6 was dependent on the localization of XopJ to the plasma membrane as well as on its catalytic triad. Mutation of the Walker B motif of RPT6 prevented XopJ-mediated degradation of the protein but not XopJ interaction. This indicates that the interaction of RPT6 with XopJ is dependent on the ATP-binding activity of RPT6, but proteolytic cleavage additionally requires its ATPase activity. Inhibition of the proteasome impairs the proteasomal turnover of Nonexpressor of Pathogenesis-Related1 (NPR1), the master regulator of salicylic acid responses, leading to the accumulation of ubiquitinated NPR1, which likely interferes with the full induction of NPR1 target genes. Our results show that YopJ family T3Es are not only highly diversified in virulence function but also appear to possess different biochemical activities. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes.

    PubMed

    Otero, María Gabriela; Fernandez Bessone, Ivan; Hallberg, Alan Earle; Cromberg, Lucas Eneas; De Rossi, María Cecilia; Saez, Trinidad M; Levi, Valeria; Almenar-Queralt, Angels; Falzone, Tomás Luis

    2018-06-11

    Alzheimer disease (AD) pathology includes the accumulation of poly-ubiquitylated (also known as poly-ubiquitinated) proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. By using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescence cross-correlation analyses and membrane internalization blockage experiments showed that plasma membrane APP does not contribute to transport defects. Moreover, by western blotting and double-color APP imaging, we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery, where β-cleavage is induced. Taken together, we found that proteasomes control the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates the intracellular APP dynamics, and defects in proteasome activity can be considered a contributing factor that leads to abnormal APP metabolism in AD.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  7. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    PubMed

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  8. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers

    PubMed Central

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A.; Gupta, Piyush B.; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-01

    The use of proteasome inhibitors to target cancer’s dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers. PMID:28028240

  9. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    PubMed Central

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  10. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review).

    PubMed

    Zhang, Zhen; Wang, Huiyun; Yan, Maocai; Wang, Huannan; Zhang, Chunyan

    2017-01-01

    The use of metal complexes in the pharmaceutical industry has recently increased and as a result, novel metal‑based complexes have initiated an interest as potential anticancer agents. Copper (Cu), which is an essential trace element in all living organisms, is important in maintaining the function of numerous proteins and enzymes. It has recently been demonstrated that Cu complexes may be used as tumor‑specific proteasome inhibitors and apoptosis inducers, by targeting the ubiquitin‑proteasome pathway (UPP). Cu complexes have demonstrated promising results in preclinical studies. The UPP is important in controlling the expression, activity and location of various proteins. Therefore, selective proteasome inhibition and apoptotic induction in cancer cells have been regarded as potential anticancer strategies. The present short review discusses recent progress in the development of Cu complexes, including clioquinol, dithiocarbamates and Schiff bases, as proteasome inhibitors for cancer treatment. A discussion of recent research regarding the understanding of metal inhibitors based on Cu and ligand platforms is presented.

  11. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.

    PubMed

    Funakoshi, Minoru; Tomko, Robert J; Kobayashi, Hideki; Hochstrasser, Mark

    2009-05-29

    The central protease of eukaryotes, the 26S proteasome, has a 20S proteolytic core particle (CP) and an attached 19S regulatory particle (RP). The RP is further subdivided into lid and base subcomplexes. Little is known about RP assembly. Here, we show that four conserved assembly factors govern biogenesis of the yeast RP base. Nas2 forms a complex with the Rpt4 and Rpt5 ATPases and enhances 26S proteasome formation in vivo and in vitro. Other RP subcomplexes contain Hsm3, which is related to mammalian proteasome subunit S5b. Hsm3 also contributes to base assembly. Larger Hsm3-containing complexes include two additional proteins, Nas6 and Rpn14, which function as assembly chaperones as well. Specific deletion combinations affecting these four factors cause severe perturbations to RP assembly. Our results demonstrate that proteasomal RP biogenesis requires multiple, functionally overlapping chaperones and suggest a model in which subunits form specific subcomplexes that then assemble into the base.

  12. Stress-induced NQO1 controls stability of C/EBPα against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer.

    PubMed

    Patrick, B A; Jaiswal, A K

    2012-10-04

    Previously, we have shown a role of cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) in the stabilization of p63 against 20S proteasomal degradation resulting in thinning of the epithelium and chemical-induced skin cancer (Oncogene (2011) 30, 1098-1107). Current studies have demonstrated that NQO1 control of CCAAT-enhancer binding protein (C/EBPα) against 20S proteasomal degradation also contributes to the upregulation of p63 expression and protection. Western and immunohistochemistry analysis revealed that disruption of the NQO1 gene in mice and mouse keratinocytes led to degradation of C/EBPα and loss of p63 gene expression. p63 promoter mutagenesis, transfection and chromatin immunoprecipitation assays identified a C/EBPα-binding site between nucleotide position -185 and -174 that bound to C/EBPα and upregulated p63 gene expression. Co-immunoprecipitation and immunoblot analysis demonstrated that 20S proteasomes directly interacted and degraded C/EBPα. NQO1 direct interaction with C/EBPα led to stabilization of C/EBPα against 20S proteasomal degradation. NQO1 protection of C/EBPα required binding of NADH with NQO1. Exposure of skin and keratinocytes to the chemical stress agent benzo(a)pyrene led to induction of NQO1 and stabilization of C/EBPα protein, resulting in an increase in p63 RNA and protein in wild-type but not in NQO1-/- mice. Collectively, the current data combined with previous data suggest that stress induction of NQO1 through both stabilization of C/EBPα and increase in p63 and direct stabilization of p63 controls keratinocyte differentiation, leading to protection against chemical-induced skin carcinogenesis. The studies are significant as 2-4% human individuals are homozygous and 23% are heterozygous for the NQO1P187S mutation and might be susceptible to stress-induced skin diseases.

  13. 26S proteasome and insulin-like growth factor-1 in serum of dogs suffering from malignant tumors.

    PubMed

    Gerke, Ingrid; Kaup, Franz-Josef; Neumann, Stephan

    2018-04-01

    Studies in humans have shown that the ubiquitin-proteasome pathway and the insulin-like growth factor axis are involved in carcinogenesis, thus, components of these systems might be useful as prognostic markers and constitute potential therapeutic targets. In veterinary medicine, only a few studies exist on this topic. Here, serum concentrations of 26S proteasome (26SP) and insulin-like growth factor-1 (IGF-1) were measured by canine enzyme-linked immunosorbent assay (ELISA) in 43 dogs suffering from malignant tumors and 21 clinically normal dogs (control group). Relationships with tumor size, survival time, body condition score (BCS), and tumor entity were assessed. The median 26SP concentration in the tumor group was non-significantly higher than in the control group. However, dogs with mammary carcinomas displayed significantly increased 26SP levels compared to the control group and dogs with tumor size less than 5 cm showed significantly increased 26SP concentrations compared to dogs with larger tumors and control dogs. 26SP concentrations were not correlated to survival time or BCS. No significant difference in IGF-1 levels was found between the tumor group and the control group; however, IGF-1 concentrations displayed a larger range of values in the tumor group. Dogs with tumors greater than 5 cm showed significantly higher IGF-1 levels than dogs with smaller tumors. The IGF-1 concentrations were positively correlated to survival time, but no correlation with BCS was found. Consequently, serum 26SP concentrations seem to be increased in some dogs suffering from malignant tumors, especially in dogs with mammary carcinoma and smaller tumors. Increased serum IGF-1 concentrations could be an indication of large tumors and a poor prognosis.

  14. Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II.

    PubMed

    Dennis, Andrew P; Lonard, David M; Nawaz, Zafar; O'Malley, Bert W

    2005-03-01

    In the present study, we investigated the involvement of protein degradation via the 26S proteasome during progesterone receptor (PR)-mediated transcription in T-47D cells containing a stably integrated MMTV-CAT reporter construct (CAT0 cells). Progesterone induced CAT and HSD11beta2 transcription while co-treatment with the proteasome inhibitor, MG132, blocked PR-induced transcription in a time-dependent fashion. MG132 treatment also inhibited transcription of beta-actin and cyclophilin, but not two proteasome subunit genes, PSMA1 and PSMC1, indicating that proteasome inhibition affects a subset of RNA polymerase II (RNAP(II))-regulated genes. Progesterone-mediated recruitment of RNAP(II) was blocked by MG132 treatment at time points later than 1 h that was not dependent on the continued presence of PR, associated cofactors, and components of the general transcription machinery, supporting the concept that proteasome-mediated degradation is needed for continued transcription. Surprisingly, progesterone-mediated acetylation of histone H4 was inhibited by MG132 with the concomitant recruitment of HDAC3, NCoR, and SMRT. We demonstrate that the steady-state protein levels of SMRT and NCoR are higher in the presence of MG132 in CAT0 cells, consistent with other reports that SMRT and NCoR are targets of the 26S proteasome. However, inhibition of histone deacetylation by trichostatin A (TSA) treatment or SMRT/NCoR knockdown by siRNA did not restore MG132-inhibited progesterone-dependent transcription. Therefore, events other than histone deacetylation and stability of SMRT and NCoR must also play a role in inhibition of PR-mediated transcription.

  15. Early cysteine-dependent inactivation of 26S proteasomes does not involve particle disassembly.

    PubMed

    Hugo, Martín; Korovila, Ioanna; Köhler, Markus; García-García, Carlos; Cabrera-García, J Daniel; Marina, Anabel; Martínez-Ruiz, Antonio; Grune, Tilman

    2018-06-01

    Under oxidative stress 26S proteasomes suffer reversible disassembly into its 20S and 19S subunits, a process mediated by HSP70. This inhibits the degradation of polyubiquitinated proteins by the 26S proteasome and allows the degradation of oxidized proteins by a free 20S proteasome. Low fluxes of antimycin A-stimulated ROS production caused dimerization of mitochondrial peroxiredoxin 3 and cytosolic peroxiredoxin 2, but not peroxiredoxin overoxidation and overall oxidation of cellular protein thiols. This moderate redox imbalance was sufficient to inhibit the ATP stimulation of 26S proteasome activity. This process was dependent on reversible cysteine oxidation. Moreover, our results show that this early inhibition of ATP stimulation occurs previous to particle disassembly, indicating an intermediate step during the redox regulation of the 26S proteasome with special relevance under redox signaling rather than oxidative stress conditions. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Effects of an inhibitor of tripeptidyl peptidase II (Ala-Ala-Phe-chloromethylketone) and its combination with an inhibitor of the chymotrypsin-like activity of the proteasome (PSI) on apoptosis, cell cycle and proteasome activity in U937 cells.

    PubMed

    Bury, M; Młynarczuk, I; Pleban, E; Hoser, G; Kawiak, J; Wójcik, C

    2001-01-01

    AAF-AMC is not a specific TPP II substrate, since it is also hydrolyzed by purified proteasomes. Moreover, AAF-cmk, claimed to be a specific TPP II inhibitor, also inhibits the chymotrypsin-like activity of the proteasome. While AAF-cmk itself is mildly cytostatic to U-937 cells and induces cell cycle block in G1, its combination with PSI does not induce an increase in the cytostatic/cytotoxic effects. This suggests that TPP II is possibly less important for cell metabolism than it was previously believed and it is less probable that it can be able to fully compensate for the loss of the proteasome function.

  17. A giant protease with potential to substitute for some functions of the proteasome.

    PubMed

    Geier, E; Pfeifer, G; Wilm, M; Lucchiari-Hartz, M; Baumeister, W; Eichmann, K; Niedermann, G

    1999-02-12

    An alanyl-alanyl-phenylalanyl-7-amino-4-methylcoumarin-hydrolyzing protease particle copurifying with 26S proteasomes was isolated and identified as tripeptidyl peptidase II (TPPII), a cytosolic subtilisin-like peptidase of unknown function. The particle is larger than the 26S proteasome and has a rod-shaped, dynamic supramolecular structure. TPPII exhibits enhanced activity in proteasome inhibitor-adapted cells and degrades polypeptides by exo- as well as predominantly trypsin-like endoproteolytic cleavage. TPPII may thus participate in extralysosomal polypeptide degradation and may in part account for nonproteasomal epitope generation as postulated for certain major histocompatibility complex class I alleles. In addition, TPPII may be able to substitute for some metabolic functions of the proteasome.

  18. Inactivation of USP14 Perturbs Ubiquitin Homeostasis and Delays the Cell Cycle in Mouse Embryonic Fibroblasts and in Fruit Fly Drosophila.

    PubMed

    Lee, Jung Hoon; Park, Seoyoung; Yun, Yejin; Choi, Won Hoon; Kang, Min-Ji; Lee, Min Jae

    2018-01-01

    The 26S proteasome is the key proteolytic complex for recognition and degradation of polyubiquitinated target substrates in eukaryotes. Among numerous proteasome-associated proteins, a deubiquitinating enzyme (DUB) USP14 has been identified as an endogenous inhibitor of the proteasome. Here, we explored the complex regulatory functions of USP14 that involve ubiquitin (Ub) homeostasis and substrate degradation in flies and mammals. USP14-null primary and immortalized mouse embryonic fibroblasts (MEFs) and USP14 knocked-down Drosophila were analyzed in this study. We measured proteasome and DUB activities using fluorogenic reporter substrates and adduct-forming probes. To examine the levels of ubiquitin, we performed immunoblotting and immunohistochemistry. Mass spectrometry (MS) was used to examine polyUb chain linkages and USP14-interacing proteins. Cell cycle was analyzed by flow cytometry, BrdU labeling, and phospho-histone H3 staining. The homeostasis of Ub in USP14-/-MEFs was markedly perturbed because of facilitated clearance of Ub. This phenomenon was recapitulated in muscles of USP14-deficient Drosophila with old ages. Absolute quantitation using MS also revealed that USP14-/- MEFs contained significantly increased amounts of Ub, compared with wild-type. The key phenotype of USP14-/- MEFs was their delayed proliferation originated from prolonged interphase possibly through aberrant degradation of cyclins A and B1. We found that knocking down USP14 in Drosophila resulted in delayed eye development associated with reduced mitotic activity. Our study identifies novel cellular functions of USP14 not only in cellular Ub hometostasis but also in cell cycle progression. USP14 was also essential for proper Drosophila eye development. These results strongly suggest that the USP14-mediated proteasome activity regulation may be directly related to various human diseases including cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo

    PubMed Central

    Cheryan, Vino T.; Wu, Wenjuan; Cui, Cindy Qiuzhi; Polin, Lisa A.; Pass, Harvey I.; Dou, Q. Ping; Rishi, Arun K.; Wali, Anil

    2012-01-01

    The medicinal plant Withania somnifera has been used for over centuries in Indian Ayurvedic Medicine to treat a wide spectrum of disorders. Withaferin A (WA), a bioactive compound that is isolated from this plant, has anti-inflammatory, immuno-modulatory, anti-angiogenic, and anti-cancer properties. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of WA and the molecular mechanisms involved. WA inhibited growth of the murine as well as patient-derived MPM cells in part by decreasing the chymotryptic activity of the proteasome that resulted in increased levels of ubiquitinated proteins and pro-apoptotic proteasome target proteins (p21, Bax, IκBα). WA suppression of MPM growth also involved elevated apoptosis as evidenced by activation of pro-apoptotic p38 stress activated protein kinase (SAPK) and caspase-3, elevated levels of pro-apoptotic Bax protein and cleavage of poly-(ADP-ribose)-polymerase (PARP). Our studies including gene-array based analyses further revealed that WA suppressed a number of cell growth and metastasis-promoting genes including c-myc. WA treatments also stimulated expression of the cell cycle and apoptosis regulatory protein (CARP)-1/CCAR1, a novel transducer of cell growth signaling. Knock-down of CARP-1, on the other hand, interfered with MPM growth inhibitory effects of WA. Intra-peritoneal administration of 5 mg/kg WA daily inhibited growth of murine MPM cell-derived tumors in vivo in part by inhibiting proteasome activity and stimulating apoptosis. Together our in vitro and in vivo studies suggest that WA suppresses MPM growth by targeting multiple pathways that include blockage of proteasome activity and stimulation of apoptosis, and thus holds promise as an anti-MPM agent. PMID:22912669

  20. Introduction to a Dubbing Activity for a College First-Year Japanese Language Course

    ERIC Educational Resources Information Center

    Koyama, Nobuko

    2016-01-01

    This case study presents a description and outline of a dubbing activity in which students utilized their basic linguistic skills holistically. Authentic materials such as television dramas and feature films are "a rich repository of various speech acts, lexicon and linguistic emotivity" (Koyama, 2009) and as such have the potential to…

  1. Oxadiazole-isopropylamides as Potent and Non-covalent Proteasome Inhibitors

    PubMed Central

    Ozcan, Sevil; Kazi, Aslamuzzaman; Marsilio, Frank; Fang, Bin; Guida, Wayne C.; Koomen, John; Lawrence, Harshani R.; Sebti, Saïd M.

    2013-01-01

    Screening of the 50,000 ChemBridge compound library led to the identification of the oxadiazole-isopropylamide 1 (PI-1833) which inhibited CT-L activity (IC50 0.60 μM) with little effects on the other 2 major proteasome proteolytic activities, T-L and PGPH-L. LC/MS-MS and dialysis show that 1 is a non-covalent and rapidly reversible CT-L inhibitor. Focused library synthesis provided 11ad (PI-1840) with CT-L activity (IC50 27 nM). Detailed SAR studies indicate that the amide moiety and the 2 phenyl rings are sensitive toward modifications. Hydrophobic residues, such as propyl or butyl, in the para-position (not ortho or meta) of the A-ring and a meta-pyridyl group as B-ring significantly improve activity. Compound 11ad (IC50 0.37 μM) is more potent than 1 (IC50 3.5 μM) at inhibiting CT-L activity in intact MDA-MB-468 human breast cancer cells and inhibiting their survival. The activity of 11ad warrants further pre-clinical investigation of this class as non-covalent proteasome inhibitors. PMID:23547706

  2. Inhibitor-binding mode of homobelactosin C to proteasomes: New insights into class I MHC ligand generation

    PubMed Central

    Groll, Michael; Larionov, Oleg V.; Huber, Robert; de Meijere, Armin

    2006-01-01

    Most class I MHC ligands are generated from the vast majority of cellular proteins by proteolysis within the ubiquitin–proteasome pathway and are presented on the cell surface by MHC class I molecules. Here, we present the crystallographic analysis of yeast 20S proteasome in complex with the inhibitor homobelactosin C. The structure reveals a unique inhibitor-binding mode and provides information about the composition of proteasomal primed substrate-binding sites. IFN-γ inducible substitution of proteasomal constitutive subunits by immunosubunits modulates characteristics of generated peptides, thus producing fragments with higher preference for binding to MHC class I molecules. The structural data for the proteasome:homobelactosin C complex provide an explanation for involvement of immunosubunits in antigen generation and open perspectives for rational design of ligands, inhibiting exclusively constitutive proteasomes or immunoproteasomes. PMID:16537370

  3. Proteasome inhibitors enhance endothelial thrombomodulin expression via induction of Krüppel-like transcription factors

    PubMed Central

    Hiroi, Toyoko; Deming, Clayton B.; Zhao, Haige; Hansen, Baranda S.; Arkenbout, Elisabeth K.; Myers, Thomas J.; McDevitt, Michael A.; Rade, Jeffrey J.

    2009-01-01

    Objective Impairment of the thrombomodulin-protein C anticoagulant pathway has been implicated in pathologic thrombosis associated with malignancy. Patients who receive proteasome inhibitors as part of their chemotherapeutic regimen appear to be at decreased risk for thromboembolic events. We investigated the effects of proteasome inhibitors on endothelial thrombomodulin expression and function. Methods and Results Proteasome inhibitors as a class markedly induced the expression thrombomodulin and enhanced the protein C activating capacity of endothelial cells. Thrombomodulin upregulation was independent of NF-κB signaling, a principal target of proteasome inhibitors, but was instead a direct consequence of increased expression of the Krüppel-like transcription factors, KLF2 and KLF4. These effects were confirmed in vivo, where systemic administration of a proteasome inhibitor enhanced thrombomodulin expression that was paralleled by changes in the expression of KLF2 and KLF4. Conclusions These findings identify a novel mechanism of action of proteasome inhibitors that may help to explain their clinically observed thromboprotective effects. PMID:19661484

  4. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly

    PubMed Central

    Sokolova, Vladyslava; Li, Frances; Polovin, George; Park, Soyeon

    2015-01-01

    In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1–α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome. PMID:26449534

  5. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  6. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  7. Proteasome 20S in multiple myeloma: comparison of concentration and chymotrypsin-like activity in plasma and serum.

    PubMed

    Romaniuk, Wioletta; Kalita, Joanna; Ostrowska, Halina; Kloczko, Janusz

    2018-03-05

    The ubiquitin-proteasome system is relevant in the pathobiology of many haematological malignancies, including multiple myeloma. The assessment of proteasome concentration and chymotrypsin-like (ChT-L) activity might constitute a new approach to diagnosis, prognosis and monitoring of anticancer treatment of patients with haematological malignancies and other diseases. The aim of our study was to determine which material, plasma or serum, is better for measuring chymotrypsin-like (ChT-L) activity and proteasome concentration. We analysed proteasome concentration and chymotrypsin-like (ChT-L) activity in 70 plasma and serum samples drawn from 28 patients at different treatment stages for multiple myeloma (MM) and 31 healthy volunteers. Proteasome ChT-L activity and concentration in multiple myeloma patients were significantly higher in plasma compared to serum. In this group we observed significant and positive correlations both between the plasma and serum proteasome ChT-L activity and plasma and serum proteasome concentration. The higher values of proteasome concentration and ChT-L activity in plasma than in serum and their better correlations with parameters of tumour load and prognosis suggest that plasma constitutes a better biological material for measuring ChT-L activity and proteasome concentration than serum in multiple myeloma patients.

  8. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  9. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness.

    PubMed

    Khare, Shilpi; Nagle, Advait S; Biggart, Agnes; Lai, Yin H; Liang, Fang; Davis, Lauren C; Barnes, S Whitney; Mathison, Casey J N; Myburgh, Elmarie; Gao, Mu-Yun; Gillespie, J Robert; Liu, Xianzhong; Tan, Jocelyn L; Stinson, Monique; Rivera, Ianne C; Ballard, Jaime; Yeh, Vince; Groessl, Todd; Federe, Glenn; Koh, Hazel X Y; Venable, John D; Bursulaya, Badry; Shapiro, Michael; Mishra, Pranab K; Spraggon, Glen; Brock, Ansgar; Mottram, Jeremy C; Buckner, Frederick S; Rao, Srinivasa P S; Wen, Ben G; Walker, John R; Tuntland, Tove; Molteni, Valentina; Glynne, Richard J; Supek, Frantisek

    2016-09-08

    Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.

  10. Proteasome inhibition by new dual warhead containing peptido vinyl sulfonyl fluorides.

    PubMed

    Brouwer, Arwin J; Herrero Álvarez, Natalia; Ciaffoni, Adriano; van de Langemheen, Helmus; Liskamp, Rob M J

    2016-08-15

    The success of inhibition of the proteasome by formation of covalent bonds is a major victory over the long held-view that this would lead to binding the wrong targets and undoubtedly lead to toxicity. Great challenges are now found in uncovering ensembles of new moieties capable of forming long lasting ties. We have introduced peptido sulfonyl fluorides for this purpose. Tuning the reactivity of this electrophilic trap may be crucial for modulating the biological action. Here we describe incorporation of a vinyl moiety into a peptido sulfonyl fluoride backbone, which should lead to a combined attack of the proteasome active site threonine on the double bond and the sulfonyl fluoride. Although this led to strong proteasome inhibitors, in vitro studies did not unambiguously demonstrate the formation of the proposed seven-membered ring structure. Possibly, formation of a seven-membered covalent adduct with the proteosomal active site threonine can only be achieved within the context of the enzyme. Nevertheless, this dual warhead concept may provide exclusive possibilities for duration and selectivity of proteasome inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors

    PubMed Central

    Hui, Kwai Fung; Tam, Kam Pui

    2017-01-01

    Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers. PMID:29160853

  12. Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors.

    PubMed

    Hui, Kwai Fung; Tam, Kam Pui; Chiang, Alan Kwok Shing

    2017-11-21

    Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers.

  13. A novel interplay between the ubiquitin–proteasome system and serine proteases during Drosophila development.

    PubMed

    Lipinszki, Zoltán; Klement, Eva; Hunyadi-Gulyas, Eva; Medzihradszky, Katalin F; Márkus, Róbert; Pál, Margit; Deák, Péter; Udvardy, Andor

    2013-09-15

    The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I). Its expression increases sharply at the L1-L2 larval stages, remains high until the second half of the L3 stage, then declines dramatically. This sharp decrease coincides precisely with the increase of polyubiquitin receptor concentrations in late L3 larvae, which suggests a tight developmental co-regulation. RNAi-induced down-regulation of endoproteinase I results in pupal lethality. Interestingly, we found a cross-talk between the 26S proteasome and this larval protease: transgenic overexpression of the in vivo target of endoproteinase I, the C-terminal half of the proteasomal polyubiquitin receptor subunit p54/Rpn10 results in transcriptional down-regulation of endoproteinase I and consequently a lower level of proteolytic elimination of the polyubiquitin receptors. Another larval protease, Jonah65A-IV, which degrades only unfolded proteins and exhibits similar cross-talk with the proteasome has also been purified and characterized. It may prevent the accumulation of polyubiquitylated proteins in larvae contrary to the low polyubiquitin receptor concentration.

  14. High Levels of Serum Ubiquitin and Proteasome in a Case of HLA-B27 Uveitis.

    PubMed

    Rossi, Settimio; Gesualdo, Carlo; Maisto, Rosa; Trotta, Maria Consiglia; Di Carluccio, Nadia; Brigida, Annalisa; Di Iorio, Valentina; Testa, Francesco; Simonelli, Francesca; D'Amico, Michele; Di Filippo, Clara

    2017-02-26

    In this paper, the authors describe a case of high serum levels of ubiquitin and proteasome in a woman under an acute attack of autoimmune uveitis. The woman was 52 years old, diagnosed as positive for the Human leukocyte antigen-B27 gene, and came to our observation in January 2013 claiming a severe uveitis attack that involved the right eye. During the acute attack of uveitis, this woman had normal serum biochemical parameters but higher levels of serum ubiquitin and proteasome 20S subunit, with respect to a healthy volunteer matched for age and sex. These levels correlated well with the clinical score attributed to uveitis. After the patient was admitted to therapy, she received oral prednisone in a de-escalation protocol (doses from 50 to 5 mg/day) for four weeks. Following this therapy, she had an expected reduction of clinical signs and score for uveitis, but concomitantly she had a reduction of the serum levels of ubiquitin, poliubiquitinated proteins (MAb-FK1) and proteasome 20S activity. Therefore, a role for ubiquitin and proteasome in the development of human autoimmune uveitis has been hypothesized.

  15. Sperm Proteasomes Degrade Sperm Receptor on the Egg Zona Pellucida during Mammalian Fertilization

    PubMed Central

    Zimmerman, Shawn W.; Manandhar, Gaurishankar; Yi, Young-Joo; Gupta, Satish K.; Sutovsky, Miriam; Odhiambo, John F.; Powell, Michael D.; Miller, David J.; Sutovsky, Peter

    2011-01-01

    Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced

  16. Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1b expression.

    PubMed

    Choe, Jung-Yoon; Jung, Hyun-Young; Park, Ki-Yeun; Kim, Seong-Kyu

    2014-06-01

    Evidence for the role of autophagy in the regulation of inflammation, especially IL-1b expression in response to monosodium urate (MSU) crystals, is presented. This study investigated the role of p62, a selective autophagy receptor in autophagy, in IL-1b production in MSU crystal-induced inflammation. IL-1b, TNF-a and IL-6 mRNA expression was measured by quantitative real-time PCR (qRTPCR). Autophagy-related molecules such as p62, Cullin-3, microtubule-associated protein 1 light-chain 3 (LC3) I/II, ubiquitin, caspase-1 and mitogen-activated protein kinase (MAPK)-related proteins were measured by immunoblotting. Small interfering RNAs (siRNAs) for Atg16L1, IL-1b and p62 were used to silence each target gene. MSU crystals accelerate the process of autophagosome formation and also induce impairment of proteasomal degradation, resulting in p62 accumulation in autophagy. Enhanced p62 accumulation by MSU crystals leads to IL-1b expression through activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38, of the MAPK pathway and is also involved in activation of caspase-1 in inflammasomes. Impaired autophagosome formation by Atg16L1 siRNA significantly amplified p62 levels, thereby producing enhanced inflammatory responses, including overexpression of IL-1b under stimulation of MSU crystals. IL-1b also induces p62 protein, and blocking IL-1b under stimulation of MSU crystals greatly reduced p62 levels. This study demonstrates that enhanced p62 expression through impaired proteasomal degradation by MSU crystals plays a crucial role in caspase-1 activation in MSU crystal-induced IL-1b production. p62 is required for activation of inflammasomes during acute inflammation in gout.

  17. Impairment of the Ubiquitin-Proteasome Pathway by Methyl N-(6-Phenylsulfanyl-1H-benzimidazol-2-yl)carbamate Leads to a Potent Cytotoxic Effect in Tumor Cells

    PubMed Central

    Dogra, Nilambra; Mukhopadhyay, Tapas

    2012-01-01

    In recent years, there has been a great deal of interest in proteasome inhibitors as a novel class of anticancer drugs. We report that fenbendazole (FZ) (methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate) exhibits a potent growth-inhibitory activity against cancer cell lines but not normal cells. We show here, using fluorogenic substrates, that FZ treatment leads to the inhibition of proteasomal activity in the cells. Succinyl-Leu-Leu-Val-Tyr-methylcoumarinamide (MCA), benzyloxycarbonyl-Leu-Leu-Glu-7-amido-4-MCA, and t-butoxycarbonyl-Gln-Ala-Arg-7-amido-4-MCA fluorescent derivatives were used to assess chymotrypsin-like, post-glutamyl peptidyl-hydrolyzing, and trypsin-like protease activities, respectively. Non-small cell lung cancer cells transiently transfected with an expression plasmid encoding pd1EGFP and treated with FZ showed an accumulation of the green fluorescent protein in the cells due to an increase in its half-life. A number of apoptosis regulatory proteins that are normally degraded by the ubiquitin-proteasome pathway like cyclins, p53, and IκBα were found to be accumulated in FZ-treated cells. In addition, FZ induced distinct ER stress-associated genes like GRP78, GADD153, ATF3, IRE1α, and NOXA in these cells. Thus, treatment of human NSCLC cells with fenbendazole induced endoplasmic reticulum stress, reactive oxygen species production, decreased mitochondrial membrane potential, and cytochrome c release that eventually led to cancer cell death. This is the first report to demonstrate the inhibition of proteasome function and induction of endoplasmic reticulum stress/reactive oxygen species-dependent apoptosis in human lung cancer cell lines by fenbendazole, which may represent a new class of anticancer agents showing selective toxicity against cancer cells. PMID:22745125

  18. Inhibition of the Host Proteasome Facilitates Papaya Ringspot Virus Accumulation and Proteosomal Catalytic Activity Is Modulated by Viral Factor HcPro

    PubMed Central

    Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2012-01-01

    The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant–pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro – PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation. PMID:23300704

  19. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2012-01-01

    The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  20. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis.

    PubMed

    Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia

    2016-12-01

    During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  2. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition

    PubMed Central

    Clerc, Jérôme; Groll, Michael; Illich, Damir J.; Bachmann, André S.; Huber, Robert; Schellenberg, Barbara; Dudler, Robert; Kaiser, Markus

    2009-01-01

    Syrbactins, a family of natural products belonging either to the syringolin or glidobactin class, are highly potent proteasome inhibitors. Although sharing similar structural features, they differ in their macrocyclic lactam core structure and exocyclic side chain. These structural variations critically influence inhibitory potency and proteasome subsite selectivity. Here, we describe the total synthesis of syringolin A and B, which together with enzyme kinetic and structural studies, allowed us to elucidate the structural determinants underlying the proteasomal subsite selectivity and binding affinity of syrbactins. These findings were used successfully in the rational design and synthesis of a syringolin A-based lipophilic derivative, which proved to be the most potent syrbactin-based proteasome inhibitor described so far. With a Ki′ of 8.65 ± 1.13 nM for the chymotryptic activity, this syringolin A derivative displays a 100-fold higher potency than the parent compound syringolin A. In light of the medicinal relevance of proteasome inhibitors as anticancer compounds, the present findings may assist in the rational design and development of syrbactin-based chemotherapeutics. PMID:19359491

  3. Molecular modeling on porphyrin derivatives as β5 subunit inhibitor of 20S proteasome.

    PubMed

    Arba, Muhammad; Nur-Hidayat, Andry; Ruslin; Yusuf, Muhammad; Sumarlin; Hertadi, Rukman; Wahyudi, Setyanto Tri; Surantaadmaja, Slamet Ibrahim; Tjahjono, Daryono H

    2018-06-01

    The ubiquitin-proteasome system plays an important role in protein quality control. Currently, inhibition of the proteasome has been validated as a promising approach in anticancer therapy. The 20S core particle of the proteasome harbors β5 subunit which is a crucial active site in proteolysis. Targeting proteasome β5 subunit which is responsible for the chymotrypsin-like activity of small molecules has been regarded as an important way for achieving therapeutics target. In the present study, a series of porphyrin derivatives bearing either pyridine or pyrazole rings as meso-substituents were designed and evaluated as an inhibitor for the β5 subunit of the proteasome by employing molecular docking and dynamics simulations. The molecular docking was performed with the help of AutoDock 4.2, while molecular dynamics simulation was done using AMBER 14. All compounds bound to the proteasome with similar binding modes, and each porphyrin-proteasome complex was stable during 30 ns MD simulation as indicated by root-mean-square-deviation (RMSD) value. An analysis on protein residue fluctuation of porphyrin binding demonstrates that in all complexes, porphyrin binding produces minor fluctuation on amino acid residues. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation shows that the binding affinities of mono-H 2 PyP, bis-H 2 PzP, and tetra-H 2 PyP were comparable with that of the potential inhibitor, HU10. It is noted that the electrostatic interaction increases with the number of meso-substituents, which was favourable for porphyrin binding. The present study shows that both electrostatic and van der Waals interaction are the main force which controls the interaction of porphyrin compounds with the proteasome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Delayed diagnosis of Birt-Hogg-Dubé syndrome due to marked intrafamilial clinical variability: a case report.

    PubMed

    Sattler, E C; Steinlein, O K

    2018-03-16

    Birt-Hogg-Dubé syndrome is a genetic syndrome caused by mutations in the FLCN gene. The main symptoms are lung bullae and pneumothorax, benign and malignant kidney tumors, and facial fibrofolliculoma. The risk of pneumothorax is considerable between ages 20-40 years, but decreases markedly after this age range and first-time pneumothorax after age 50 years is rare. Fibrofolliculomas usually occur between ages 35 and 45 years, while the risk for kidney cancer increases steadily with age, starting in young adulthood. However, we demonstrate here that within the same family patients might develop symptoms significantly before or after the usual age range, obscuring the typical clinical pattern and delaying diagnosis. The 43 year old index patient had a history of lung bullae and recurrent pneumothoraces starting 14 years earlier. His father (age 83 years) and one of the paternal uncles experienced their first pneumothorax unusually late after the age of 60 years. The uncle subsequently had four more pneumothoraces, and was diagnosed with kidney in his early 70s. Considerable differences in age of onset were also observed with regard to facial fibrofolliculomas that both paternal uncles developed very early around age 20 years, but which the father only started to show in his eighth decade. Birt-Hogg-Dubé syndrome was finally diagnosed when the index patient started to develop fibrofolliculomas within the typical age range. The family described here illustrates that Birt-Hogg-Dubé syndrome can be difficult to recognize, if presenting with considerable intrafamilial clinical variability. With a life-time kidney cancer risk of about 14-35% the consequences of delayed diagnosis might be grave for the affected family members. The possibility of Birt-Hogg-Dubé syndrome should therefore be taken into consideration in apparently sporadic patients presenting with lung bullae and pneumothorax.

  5. The Role of Proteasome Inhibitor MG132 in 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis in NC/Nga Mice.

    PubMed

    Ohkusu-Tsukada, Kozo; Ito, Daiki; Takahashi, Kimimasa

    2018-01-01

    Although immunosuppressants for therapy of atopic dermatitis (AD) are still being sought, proteasome inhibitors are also potential candidates for the treatment of AD. Proteasome inhibitors exert various effects by blocking proteasomal degradation and help regulate processes such as apoptosis induction via caspase-9, cell cycle progression via cyclins, NF-κB inactivation via IκB, and downregulation of antigen cross-presentation. The cells targeted by proteasome inhibitors are therefore activated cells undergoing proliferation or differentiation, and antigen-presenting cells carrying out protein degradation. This study investigated the therapeutic effects and side effects of a proteasome inhibitor, MG132, on the treatment of AD. AD-like disease in NC/Nga mice housed under specific pathogen-free conditions was induced by repeated application of 2,4-dinitrofluorobenzene (DNFB). Disease progression was evaluated by inflammation score, histopathology, and serum IgE level, and the effects of systemic MG132 administration were investigated. The percentages and absolute numbers for each population of Th1, Th2, and Th17 cells in the axillary lymph nodes were analyzed by flow cytometry. DNFB application increased the expression of a unique major histocompatibility complex class I mutant molecule D/Ldm7 in dendritic cells (DCs), and increased Th1 and Th17 cells in NC/Nga mice. In vivo MG132 administration to NC/Nga mice with DNFB-induced dermatitis reduced Th17 cells but maintained the level of Th1 cells, resulting in the alleviation of dermatitis lesions by decreasing both serum IgE hyperproduction and mast cell migration. To understand the mechanisms maintaining Th1 cell levels following in vivo MG132-administration, we focused on the role of proteasomes regulating D/Ldm7 expression. Interestingly, 20S proteasome activity was higher in NC/Nga DCs than in BALB/c DCs. In vitro MG132 administration partially increased D/Ldm7 expression in a dose-dependent manner during DC

  6. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome.

    PubMed

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation.

  7. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells

    PubMed Central

    Li, Hewang; Armando, Ines; Yu, Peiying; Escano, Crisanto; Mueller, Susette C.; Asico, Laureano; Pascua, Annabelle; Lu, Quansheng; Wang, Xiaoyan; Villar, Van Anthony M.; Jones, John E.; Wang, Zheng; Periasamy, Ammasi; Lau, Yuen-Sum; Soares-da-Silva, Patricio; Creswell, Karen; Guillemette, Gaétan; Sibley, David R.; Eisner, Gilbert; Felder, Robin A.; Jose, Pedro A.

    2008-01-01

    Hypertension is a multigenic disorder in which abnormal counterregulation between dopamine and Ang II plays a role. Recent studies suggest that this counterregulation results, at least in part, from regulation of the expression of both the antihypertensive dopamine 5 receptor (D5R) and the prohypertensive Ang II type 1 receptor (AT1R). In this report, we investigated the in vivo and in vitro interaction between these GPCRs. Disruption of the gene encoding D5R in mice increased both blood pressure and AT1R protein expression, and the increase in blood pressure was reversed by AT1R blockade. Activation of D5R increased the degradation of glycosylated AT1R in proteasomes in HEK cells and human renal proximal tubule cells heterologously and endogenously expressing human AT1R and D5R. Confocal microscopy, Förster/fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy revealed that activation of D5R initiated ubiquitination of the glycosylated AT1R at the plasma membrane. The regulated degradation of AT1R via a ubiquitin/proteasome pathway by activation of D5R provides what we believe to be a novel mechanism whereby blood pressure can be regulated by the interaction of 2 counterregulatory GPCRs. Our results therefore suggest that treatments for hypertension might be optimized by designing compounds that can target the AT1R and the D5R. PMID:18464932

  8. Effects of Radiation on Proteasome Function in Prostate Cancer Cells

    DTIC Science & Technology

    2011-02-01

    multiple myeloma progressing on prior therapy. Oncologist 8, 508-513. Kurita T., Medina R.T., Mills A.A., Cunha G.R., 2004. Role of p63 and basal cells in...tumor activity and their combination with radiotherapy or established anti- cancer agents seems to be more promising. Many chemotherapeutic agents as...proteasome inhibitors in the clinic. Investigating the role of the proteasome in different prostate cancer cell subpopulations could be fundamental for the

  9. Proteasomal Ubiquitin Receptor RPN-10 Controls Sex Determination in Caenorhabditis elegans

    PubMed Central

    Shimada, Masumi; Kanematsu, Kenji; Tanaka, Keiji; Yokosawa, Hideyoshi

    2006-01-01

    The ubiquitin-binding RPN-10 protein serves as a ubiquitin receptor that delivers client proteins to the 26S proteasome. Although ubiquitin recognition is an essential step for proteasomal destruction, deletion of the rpn-10 gene in yeast does not influence viability, indicating redundancy of the substrate delivery pathway. However, their specificity and biological relevance in higher eukaryotes is still enigmatic. We report herein that knockdown of the rpn-10 gene, but not any other proteasome subunit genes, sexually transforms hermaphrodites to females by eliminating hermaphrodite spermatogenesis in Caenorhabditis elegans. The feminization phenotype induced by deletion of the rpn-10 gene was rescued by knockdown of tra-2, one of sexual fate decision genes promoting female development, and its downstream target tra-1, indicating that the TRA-2–mediated sex determination pathway is crucial for the Δrpn-10–induced sterile phenotype. Intriguingly, we found that co-knockdown of rpn-10 and functionally related ubiquitin ligase ufd-2 overcomes the germline-musculinizing effect of fem-3(gf). Furthermore, TRA-2 proteins accumulated in rpn-10-defective worms. Our results show that the RPN-10–mediated ubiquitin pathway is indispensable for control of the TRA-2–mediated sex-determining pathway. PMID:17050737

  10. [A new mechanism of ubiquitin-dependent proteolytic pathway--polyubiquitin chain recognition and proteasomal targeting].

    PubMed

    Kawahara, Hiroyuki; Yokosawa, Hideyoshi

    2008-01-01

    The RPN10 subunit of 26S proteasome and several UBA domain proteins can bind to the polyubiquitin chain and play a role as ubiquitin receptors of the 26S proteasome. Although it was thought that substrate recognition is an essential step in the proteasome-mediated protein degradation, deletion of rpn10 genes in yeast does not influence the viability of cells but instead causes only a mild phenotype, suggesting that the above ubiquitin receptors are redundantly involved in substrate delivery to the proteasome. However, their functional difference is still enigmatic. In this review, we summarize recent advances in polyubiquitin chain recognition/delivery system and provide potential applications to modulate this system as a probable target for drug development.

  11. A Proteasome Cap Subunit Required for Spindle Pole Body Duplication in Yeast

    PubMed Central

    McDonald, Heather B.; Byers, Breck

    1997-01-01

    Proteasome-mediated protein degradation is a key regulatory mechanism in a diversity of complex processes, including the control of cell cycle progression. The selection of substrates for degradation clearly depends on the specificity of ubiquitination mechanisms, but further regulation may occur within the proteasomal 19S cap complexes, which attach to the ends of the 20S proteolytic core and are thought to control entry of substrates into the core. We have characterized a gene from Saccharomyces cerevisiae that displays extensive sequence similarity to members of a family of ATPases that are components of the 19S complex, including human subunit p42 and S. cerevisiae SUG1/ CIM3 and CIM5 products. This gene, termed PCS1 (for proteasomal cap subunit), is identical to the recently described SUG2 gene (Russell, S.J., U.G. Sathyanarayana, and S.A. Johnston. 1996. J. Biol. Chem. 271:32810– 32817). We have shown that PCS1 function is essential for viability. A temperature-sensitive pcs1 strain arrests principally in the second cycle after transfer to the restrictive temperature, blocking as large-budded cells with a G2 content of unsegregated DNA. EM reveals that each arrested pcs1 cell has failed to duplicate its spindle pole body (SPB), which becomes enlarged as in other monopolar mutants. Additionally, we have shown localization of a functional Pcs1–green fluorescent protein fusion to the nucleus throughout the cell cycle. We hypothesize that Pcs1p plays a role in the degradation of certain potentially nuclear component(s) in a manner that specifically is required for SPB duplication. PMID:9151663

  12. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  13. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone

    DOE PAGES

    Marshall, Richard S.; McLoughlin, Fionn; Vierstra, Richard D.

    2016-07-28

    The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 kinase participates only in starvation-induced proteaphagy. Following inactivation, 26S proteasomes become extensively modified with ubiquitin. Although prior studies with Arabidopsis implicated RPN10 in tethering ubiquitylated proteasomes to ATG8 lining the autophagic membranes, yeast proteaphagy employs the evolutionarily distinct receptor Cue5,more » which simultaneously binds ubiquitin and Atg8. Proteaphagy of inactivated proteasomes also requires the oligomeric Hsp42 chaperone, suggesting that ubiquitylated proteasomes are directed by Hsp42 to insoluble protein deposit (IPOD)-type structures before encapsulation. Together, Cue5 and Hsp42 provide a quality control checkpoint in yeast directed at recycling dysfunctional 26S proteasomes.« less

  15. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard S.; McLoughlin, Fionn; Vierstra, Richard D.

    The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 kinase participates only in starvation-induced proteaphagy. Following inactivation, 26S proteasomes become extensively modified with ubiquitin. Although prior studies with Arabidopsis implicated RPN10 in tethering ubiquitylated proteasomes to ATG8 lining the autophagic membranes, yeast proteaphagy employs the evolutionarily distinct receptor Cue5,more » which simultaneously binds ubiquitin and Atg8. Proteaphagy of inactivated proteasomes also requires the oligomeric Hsp42 chaperone, suggesting that ubiquitylated proteasomes are directed by Hsp42 to insoluble protein deposit (IPOD)-type structures before encapsulation. Together, Cue5 and Hsp42 provide a quality control checkpoint in yeast directed at recycling dysfunctional 26S proteasomes.« less

  16. Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain

    PubMed Central

    Giannini, Carolin; Kloß, Alexander; Gohlke, Sabrina; Mishto, Michele; Nicholson, Thomas P.; Sheppard, Paul W.; Kloetzel, Peter-Michael; Dahlmann, Burkhardt

    2013-01-01

    Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process. PMID:23667697

  17. Proteasome, but Not Autophagy, Disruption Results in Severe Eye and Wing Dysmorphia: A Subunit- and Regulator-Dependent Process in Drosophila

    PubMed Central

    Pantazi, Asimina D.; Mpakou, Vassiliki E.; Zervas, Christos G.; Papassideri, Issidora S.; Stravopodis, Dimitrios J.

    2013-01-01

    Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable

  18. Proteasome, but not autophagy, disruption results in severe eye and wing dysmorphia: a subunit- and regulator-dependent process in Drosophila.

    PubMed

    Velentzas, Panagiotis D; Velentzas, Athanassios D; Pantazi, Asimina D; Mpakou, Vassiliki E; Zervas, Christos G; Papassideri, Issidora S; Stravopodis, Dimitrios J

    2013-01-01

    Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}Bx(MS1096) genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly's eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing's, but not eye's, morphogenetic organization and architecture. However, Atg9 proved indispensable for

  19. Baicalin and scutellarin are proteasome inhibitors that specifically target chymotrypsin-like catalytic activity.

    PubMed

    Wu, Yi-Xin; Sato, Eiji; Kimura, Wataru; Miura, Naoyuki

    2013-09-01

    Baicalin and scutellarin are the major active principal flavonoids extracted from the Chinese herbal medicines Scutellaria baicalensis and Erigeron breviscapus (Vant.) Hand-Mazz. It has recently been reported that baicalin and scutellarin have antitumor activity. However, the mechanisms of action are unknown. We previously reported that some flavonoids have a specific role in the inhibition of the activity of proteasome subunits and induced apoptosis in tumor cells. To further investigate these pharmacological effects, we examined the inhibitory activity of baicalin and scutellarin on the extracted proteasomes from mice and cancer cells. Using fluorogenic substrates for proteasome catalytic subunits, we found that baicalin and scutellarin specifically inhibited chymotrypsin-like activity but did not inhibit trypsin-like and peptidyl-glutamyl peptide hydrolyzing activities. These data suggested that baicalin and scutellarin specifically inhibit chymotrypsin-like catalytic activity in the proteasome. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Activation of Cell Surface Bound 20S Proteasome Inhibits Vascular Cell Growth and Arteriogenesis

    PubMed Central

    Ito, Wulf D.; Lund, Natalie; Zhang, Ziyang; Buck, Friedrich; Lellek, Heinrich; Horst, Andrea; Machens, Hans-Günther; Schunkert, Heribert; Schaper, Wolfgang; Meinertz, Thomas

    2015-01-01

    Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa β3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo. PMID:26146628

  1. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma.

    PubMed

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-08-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.

  2. Tripeptidyl peptidase II is dispensable for the generation of both proteasome-dependent and proteasome-independent ligands of HLA-B27 and other class I molecules.

    PubMed

    Marcilla, Miguel; Villasevil, Eugenia M; de Castro, José Antonio López

    2008-03-01

    A significant fraction of the HLA-B27-bound peptide repertoire is resistant to proteasome inhibitors. The possible implication of tripeptidyl peptidase II (TPPII) in generating this subset was analyzed by quantifying the surface re-expression of HLA-B*2705 after acid stripping in the presence of two TPPII inhibitors, butabindide and Ala-Ala-Phe-chloromethylketone. Neither decreased HLA-B27 re-expression under conditions in which TPPII activity was largely inhibited. This was in contrast to a significant effect of the proteasome inhibitor epoxomicin. The failure of TPPII inhibition to decrease surface re-expression was not limited to HLA-B27, since it was also observed in several HLA-B27-negative cell lines, including Mel JuSo. Actually, HLA class I re-expression in Mel JuSo cells increased as a function of butabindide concentration, which is consistent with an involvement of TPPII in destroying HLA class I ligands. Inhibition of TPPII with small interfering RNA also failed to decrease the surface expression of HLA class I molecules on 143B cells. Our results indicate that TPPII is dispensable for the generation of proteasome-dependent HLA class I ligands and, without excluding its role in producing some individual epitopes, this enzyme is not involved to any quantitatively significant extent, in generating the proteasome-independent HLA-B27-bound peptide repertoire.

  3. Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits

    PubMed Central

    Acosta-Alvear, Diego; Cho, Min Y; Wild, Thomas; Buchholz, Tonia J; Lerner, Alana G; Simakova, Olga; Hahn, Jamie; Korde, Neha; Landgren, Ola; Maric, Irina; Choudhary, Chunaram; Walter, Peter; Weissman, Jonathan S; Kampmann, Martin

    2015-01-01

    Hallmarks of cancer, including rapid growth and aneuploidy, can result in non-oncogene addiction to the proteostasis network that can be exploited clinically. The defining example is the exquisite sensitivity of multiple myeloma (MM) to 20S proteasome inhibitors, such as carfilzomib. However, MM patients invariably acquire resistance to these drugs. Using a next-generation shRNA platform, we found that proteostasis factors, including chaperones and stress-response regulators, controlled the response to carfilzomib. Paradoxically, 19S proteasome regulator knockdown induced resistance to carfilzomib in MM and non-MM cells. 19S subunit knockdown did not affect the activity of the 20S subunits targeted by carfilzomib nor their inhibition by the drug, suggesting an alternative mechanism, such as the selective accumulation of protective factors. In MM patients, lower 19S levels predicted a diminished response to carfilzomib-based therapies. Together, our findings suggest that an understanding of network rewiring can inform development of new combination therapies to overcome drug resistance. DOI: http://dx.doi.org/10.7554/eLife.08153.001 PMID:26327694

  4. The Effect of Low-Dose Proteasome Inhibition on Pre-Existing Atherosclerosis in LDL Receptor-Deficient Mice

    PubMed Central

    Wilck, Nicola; Fechner, Mandy; Dan, Cristian; Stangl, Verena; Stangl, Karl; Ludwig, Antje

    2017-01-01

    Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in atherosclerosis development. However, the nature of UPS dysfunction has been proposed to be specific to certain stages of atherosclerosis development, which has implications for proteasome inhibition as a potential treatment option. Recently, low-dose proteasome inhibition with bortezomib has been shown to attenuate early atherosclerosis in low-density lipoprotein receptor-deficient (LDLR−/−) mice. The present study investigates the effect of low-dose proteasome inhibition with bortezomib on pre-existing advanced atherosclerosis in LDLR−/− mice. We found that bortezomib treatment of LDLR−/− mice with pre-existing atherosclerosis does not alter lesion burden. Additionally, macrophage infiltration of aortic root plaques, total plasma cholesterol levels, and pro-inflammatory serum markers were not influenced by bortezomib. However, plaques of bortezomib-treated mice exhibited larger necrotic core areas and a significant thinning of the fibrous cap, indicating a more unstable plaque phenotype. Taking recent studies on favorable effects of proteasome inhibition in early atherogenesis into consideration, our data support the hypothesis of stage-dependent effects of proteasome inhibition in atherosclerosis. PMID:28387708

  5. Discovery of an Inhibitor of the Proteasome Subunit Rpn11.

    PubMed

    Perez, Christian; Li, Jing; Parlati, Francesco; Rouffet, Matthieu; Ma, Yuyong; Mackinnon, Andrew L; Chou, Tsui-Fen; Deshaies, Raymond J; Cohen, Seth M

    2017-02-23

    The proteasome plays a crucial role in degradation of normal proteins that happen to be constitutively or inducibly unstable, and in this capacity it plays a regulatory role. Additionally, it degrades abnormal/damaged/mutant/misfolded proteins, which serves a quality-control function. Inhibitors of the proteasome have been validated in the treatment of multiple myeloma, with several FDA-approved therapeutics. Rpn11 is a Zn 2+ -dependent metalloisopeptidase that hydrolyzes ubiquitin from tagged proteins that are trafficked to the proteasome for degradation. A fragment-based drug discovery (FBDD) approach was utilized to identify fragments with activity against Rpn11. Screening of a library of metal-binding pharmacophores (MBPs) revealed that 8-thioquinoline (8TQ, IC 50 value ∼2.5 μM) displayed strong inhibition of Rpn11. Further synthetic elaboration of 8TQ yielded a small molecule compound (35, IC 50 value ∼400 nM) that is a potent and selective inhibitor of Rpn11 that blocks proliferation of tumor cells in culture.

  6. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development.

    PubMed

    Gräwert, Melissa Ann; Groll, Michael

    2012-02-01

    Cancer is the No. 2 cause of death in the Western world and one of the most expensive diseases to treat. Thus, it is not surprising, that every major pharmaceutical and biotechnology company has a blockbuster oncology product. In 2003, Millennium Pharmaceuticals entered the race with Velcade®, a first-in-class proteasome inhibitor that has been approved by the FDA for treatment of multiple myeloma and its sales have passed the billion dollar mark. Velcade®'s extremely toxic boronic acid pharmacophore, however, contributes to a number of severe side effects. Nevertheless, the launching of this product has validated the proteasome as a target in fighting cancer and further proteasome inhibitors have entered the market as anti-cancer drugs. Additionally, proteasome inhibitors have found application as crop protection agents, anti-parasitics, immunosuppressives, as well as in new therapies for muscular dystrophies and inflammation. Many of these compounds are based on microbial metabolites. In this review, we emphasize the important role of the structural elucidation of the various unique binding mechanisms of these compounds that have been optimized throughout evolution to target the proteasome. Based on this knowledge, medicinal chemists have further optimized these natural products, resulting in potential drugs with reduced off-target activities. This journal is © The Royal Society of Chemistry 2012

  7. BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death

    PubMed Central

    Mañas, Adriana; Chen, Wenjing; Nelson, Adam; Yao, Qi; Xiang, Jialing

    2018-01-01

    Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors. PMID:29291406

  8. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    PubMed

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation

    PubMed Central

    Boehringer, Jonas; Riedinger, Christiane; Paraskevopoulos, Konstantinos; Johnson, Eachan O. D.; Lowe, Edward D.; Khoudian, Christina; Smith, Dominique; Noble, Martin E. M.; Gordon, Colin; Endicott, Jane A.

    2012-01-01

    The ubiquitin–proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein. The structure helps to define a core structural motif for the PCI domain and identifies potential sites through which Rpn12 might form protein–protein interactions. We demonstrate that mutating residues at one of these sites impairs Rpn12 binding to Rpn10 in vitro and reduces Rpn10 incorporation into proteasomes in vivo. PMID:22906049

  10. Treatment with phosphotidylglycerol-based nanoparticles prevents motor deficits induced by proteasome inhibition: implications for Parkinson's disease.

    PubMed

    Fitzgerald, Patrick; Mandel, Arkady; Bolton, Anthony E; Sullivan, Aideen M; Nolan, Yvonne

    2008-12-22

    Failure of the ubiquitin-proteasome system to degrade abnormal proteins may underlie the accumulation of alpha-synuclein and dopaminergic neuronal degeneration that occurs in Parkinson's disease. Consequently, a reduction of functional proteasome activity has been implicated in Parkinson's disease. VP025 (Vasogen Inc.) is a preparation of phospholipid nanoparticles incorporating phosphatidylglycerol that has been shown to have neuroprotective effects. We show that VP025 prevents the deficits in motor coordination and dopamine observed in a proteasome inhibitor rat model of PD. Thus, VP025 may have a therapeutic effect on the impairment of dopaminergic-mediated motor activity induced by proteasome inhibition.

  11. Formation and dissociation of proteasome storage granules are regulated by cytosolic pH.

    PubMed

    Peters, Lee Zeev; Hazan, Rotem; Breker, Michal; Schuldiner, Maya; Ben-Aroya, Shay

    2013-05-27

    The 26S proteasome is the major protein degradation machinery of the cell and is regulated at many levels. One mode of regulation involves accumulation of proteasomes in proteasome storage granules (PSGs) upon glucose depletion. Using a systematic robotic screening approach in yeast, we identify trans-acting proteins that regulate the accumulation of proteasomes in PSGs. Our dataset was enriched for subunits of the vacuolar adenosine triphosphatase (V-ATPase) complex, a proton pump required for vacuole acidification. We show that the impaired ability of V-ATPase mutants to properly govern intracellular pH affects the kinetics of PSG formation. We further show that formation of other protein aggregates upon carbon depletion also is triggered in mutants with impaired activity of the plasma membrane proton pump and the V-ATPase complex. We thus identify cytosolic pH as a specific cellular signal involved both in the glucose sensing that mediates PSG formation and in a more general mechanism for signaling carbon source exhaustion.

  12. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Ourmore » work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.« less

  13. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Ourmore » work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.« less

  14. Terminating protein ubiquitination: Hasta la vista, ubiquitin.

    PubMed

    Stringer, Daniel K; Piper, Robert C

    2011-09-15

    Ubiquitination is a post-translational modification that generally directs proteins for degradation by the proteasome or by lysosomes. However, ubiquitination has been implicated in many other cellular processes, including transcriptional regulation, DNA repair, regulation of protein-protein interactions and association with ubiquitin-binding scaffolds. Ubiquitination is a dynamic process. Ubiquitin is added to proteins by E3 ubiquitin ligases as a covalent modification to one or multiple lysine residues as well as non-lysine amino acids. Ubiquitin itself contains seven lysines, each of which can also be ubiquitinated, leading to polyubiquitin chains that are best characterized for linkages occurring through K48 and K63. Ubiquitination can also be reversed by the action of deubiquitination enzymes (DUbs). Like E3 ligases, DUbs play diverse and critical roles in cells. ( 1) Ubiquitin is expressed as a fusion protein, as a linear repeat or as a fusion to ribosomal subunits, and DUbs are necessary to liberate free ubiquitin, making them the first enzyme of the ubiquitin cascade. Proteins destined for degradation by the proteasome or by lysosomes are deubiquitinated prior to their degradation, which allows ubiquitin to be recycled by the cell, contributing to the steady-state pool of free ubiquitin. Proteins destined for degradation by lysosomes are also acted upon by both ligases and DUbs. Deubiquitination can also act as a means to prevent protein degradation, and many proteins are thought to undergo rounds of ubiquitination and deubiquitination, ultimately resulting in either the degradation or stabilization of those proteins. Despite years of study, examining the effects of the ubiquitination of proteins remains quite challenging. This is because the methods that are currently being employed to study ubiquitination are limiting. Here, we briefly examine current strategies to study the effects of ubiquitination and describe an additional novel approach that we have

  15. NAD(P)H:quinone oxidoreductase 1 (NQO1) competes with 20S proteasome for binding with C/EBPα leading to its stabilization and protection against radiation-induced myeloproliferative disease.

    PubMed

    Xu, Junkang; Jaiswal, Anil K

    2012-12-07

    NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that protects cells against radiation and chemical-induced oxidative stress. Disruption of NQO1 gene in mice leads to increased susceptibility to myeloproliferative disease. In this report, we demonstrate that NQO1 controls the stability of myeloid differentiation factor C/EBPα against 20S proteasomal degradation during radiation exposure stress. Co-immunoprecipitation studies showed that NQO1, C/EBPα, and 20S all interacted with each other. C/EBPα interaction with 20S led to the degradation of C/EBPα. NQO1 in presence of its cofactor NADH protected C/EBPα against 20S degradation. Deletion and site-directed mutagenesis demonstrated that NQO1 and 20S competed for the same binding region (268)SGAGAGKAKKSV(279) in C/EBPα. Mutagenesis studies also revealed that NQO1Y127/Y129 required for NADH binding is essential for NQO1 stabilization of C/EBPα. Exposure of mice and HL-60 cells to 3 Grays of γ-radiation led to increased NQO1 that stabilized C/EBPα against 20S proteasomal degradation. This mechanism of NQO1 regulation of C/EBPα may provide protection to bone marrow against adverse effects of radiation exposure. The studies have significance for human individuals carrying hetero- or homozygous NQO1P187S mutation and are deficient or lack NQO1 protein.

  16. A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞

    PubMed Central

    Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.

    2008-01-01

    Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798

  17. Protection against murine osteoarthritis by inhibition of the 26S proteasome and lysine-48 linked ubiquitination.

    PubMed

    Radwan, Marta; Wilkinson, David J; Hui, Wang; Destrument, Auriane P M; Charlton, Sarah H; Barter, Matt J; Gibson, Beth; Coulombe, Josée; Gray, Douglas A; Rowan, Andrew D; Young, David A

    2015-08-01

    To determine whether the process of ubiquitination and/or activity of the 26S proteasome are involved in the induction of osteoarthritis (OA). Bovine cartilage resorption assays, chondrocyte cell-line SW1353 and primary human articular chondrocytes were used with the general proteasome inhibitor MG132 or vehicle to identify a role of the ubiquitin-proteasome system (UPS) in cartilage destruction and matrix metalloproteinase-13 (MMP13) expression. In vivo, MG132 or vehicle, were delivered subcutaneously to mice following destabilisation of the medial meniscus (DMM)-induced OA. Subsequently, DMM was induced in Lys-to-Arg (K48R and K63R) mutant ubiquitin (Ub) transgenic mice. Cytokine signalling in SW1353s was monitored by immunoblotting and novel ubiquitinated substrates identified using Tandem Ubiquitin Binding Entities purification followed by mass spectrometry. The ubiquitination of TRAFD1 was assessed via immunoprecipitation and immunoblotting and its role in cytokine signal-transduction determined using RNA interference and real-time RT-PCR for MMP13 and interleukin-6 (IL6). Supplementation with the proteasome inhibitor MG132 protected cartilage from cytokine-mediated resorption and degradation in vivo in mice following DMM-induced OA. Using transgenic animals only K48R-mutated Ub partially protected against OA compared to wild-type or wild-type Ub transgenic mice, and this was only evident on the medial femoral condyle. After confirming ubiquitination was vital for NF-κB signalling and MMP13 expression, a screen for novel ubiquitinated substrates involved in cytokine-signalling identified TRAFD1; the depletion of which reduced inflammatory mediator-induced MMP13 and IL6 expression. Our data for the first time identifies a role for ubiquitination and the proteasome in the induction of OA via regulation of inflammatory mediator-induced MMP13 expression. These data open avenues of research to determine whether the proteasome, or K48-linked ubiquitination, are

  18. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis

    DOE PAGES

    Marshall, Richard S.; Li, Faqiang; Gemperline, David C.; ...

    2015-05-21

    Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. In this paper, we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuingmore » proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Finally and collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes.« less

  19. Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes.

    PubMed

    Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew

    2014-08-15

    The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.

  20. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism

    DOE PAGES

    VanderLinden, Ryan T.; Hemmis, Casey W.; Yao, Tingting; ...

    2017-04-25

    This work presents that the 26S proteasome is a large cellular assembly that mediates the selective degradation of proteins in the nucleus and cytosol and is an established target for anticancer therapeutics. Protein substrates are typically targeted to the proteasome through modification with a polyubiquitin chain, which can be recognized by several proteasome-associated ubiquitin receptors. One of these receptors, RPN13/ADRM1, is recruited to the proteasome through direct interaction with the large scaffolding protein RPN2 within the 19S regulatory particle. To better understand the interactions between RPN13, RPN2, and ubiquitin, we used human proteins to map the RPN13-binding epitope to themore » C-terminal 14 residues of RPN2, which, like ubiquitin, binds the N-terminal pleckstrin-like receptor of ubiquitin (PRU) domain of RPN13. We also report the crystal structures of the RPN13 PRU domain in complex with peptides corresponding to the RPN2 C terminus and ubiquitin. Through mutational analysis, we validated the RPN2-binding interface revealed by our structures and quantified binding interactions with surface plasmon resonance and fluorescence polarization. In contrast to a previous report, we find that RPN13 binds ubiquitin with an affinity similar to that of other proteasome-associated ubiquitin receptors and that RPN2, ubiquitin, and the deubiquitylase UCH37 bind to RPN13 with independent energetics. In conclusion, these findings provide a detailed characterization of interactions that are important for proteasome function, indicate ubiquitin affinities that are consistent with the role of RPN13 as a proteasomal ubiquitin receptor, and have major implications for the development of novel anticancer therapeutics.« less

  1. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism.

    PubMed

    VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting; Robinson, Howard; Hill, Christopher P

    2017-06-09

    The 26S proteasome is a large cellular assembly that mediates the selective degradation of proteins in the nucleus and cytosol and is an established target for anticancer therapeutics. Protein substrates are typically targeted to the proteasome through modification with a polyubiquitin chain, which can be recognized by several proteasome-associated ubiquitin receptors. One of these receptors, RPN13/ADRM1, is recruited to the proteasome through direct interaction with the large scaffolding protein RPN2 within the 19S regulatory particle. To better understand the interactions between RPN13, RPN2, and ubiquitin, we used human proteins to map the RPN13-binding epitope to the C-terminal 14 residues of RPN2, which, like ubiquitin, binds the N-terminal pleckstrin-like receptor of ubiquitin (PRU) domain of RPN13. We also report the crystal structures of the RPN13 PRU domain in complex with peptides corresponding to the RPN2 C terminus and ubiquitin. Through mutational analysis, we validated the RPN2-binding interface revealed by our structures and quantified binding interactions with surface plasmon resonance and fluorescence polarization. In contrast to a previous report, we find that RPN13 binds ubiquitin with an affinity similar to that of other proteasome-associated ubiquitin receptors and that RPN2, ubiquitin, and the deubiquitylase UCH37 bind to RPN13 with independent energetics. These findings provide a detailed characterization of interactions that are important for proteasome function, indicate ubiquitin affinities that are consistent with the role of RPN13 as a proteasomal ubiquitin receptor, and have major implications for the development of novel anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Marizomib, a potent second generation proteasome inhibitor from natural origin.

    PubMed

    Ma, Long; Diao, Aipo

    2015-01-01

    The malignance of cancers reinforces the need to find potent antineoplastic agents. In the past decades, proteasome has been witnessed as a potential target to fulfil this purpose, as evidenced by the fact that the first-in-class proteasome inhibitor Bortezomib was marketed in 2003. Marizomib (Salinosporamide A, NPI-0052), as a marine natural product, promises to be of high efficacy against multiple myeloma (MM), relapsed/refractory MM and other types of solid tumours. Compared with Bortezomib, it arguably has fewer severe side effects. Marizomib has been termed as orphan drug against multiple myeloma by US Food and Drug Administration (FDA) in 2013 and by European Medicines Agency (EMA) in 2014. As one of the second generation proteasome inhibitors (PIs), Marizomib is expected to bring about a sustained and complete therapeutic to extend cancer patients' life span. In this article, we intended to briefly review the historical developments, mechanisms, pharmacology, biosynthesis and side effects of this agent, aiming to provide concise coverage for a broad readership. In the end, we proposed our perspective for its futuristic applications.

  3. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  4. The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia.

    PubMed

    Fioravante, Diasinou; Liu, Rong-Yu; Byrne, John H

    2008-10-08

    The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

  5. Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways

    PubMed Central

    Delgado, M E; Dyck, L; Laussmann, M A; Rehm, M

    2014-01-01

    Autophagic and proteasomal degradation constitute the major cellular proteolysis pathways. Their physiological and pathophysiological adaptation and perturbation modulates the relative abundance of apoptosis-transducing proteins and thereby can positively or negatively adjust cell death susceptibility. In addition to balancing protein expression amounts, components of the autophagic and proteasomal degradation machineries directly interact with and co-regulate apoptosis signal transduction. The influence of autophagic and proteasomal activity on apoptosis susceptibility is now rapidly gaining more attention as a significant modulator of cell death signalling in the context of human health and disease. Here we present a concise and critical overview of the latest knowledge on the molecular interplay between apoptosis signalling, autophagy and proteasomal protein degradation. We highlight that these three pathways constitute an intricate signalling triangle that can govern and modulate cell fate decisions between death and survival. Owing to rapid research progress in recent years, it is now possible to provide detailed insight into the mechanisms of pathway crosstalk, common signalling nodes and the role of multi-functional proteins in co-regulating both protein degradation and cell death. PMID:24457955

  6. The putative roles of the ubiquitin/proteasome pathway in resistance to anticancer therapy.

    PubMed

    Smith, Laura; Lind, Michael J; Drew, Philip J; Cawkwell, Lynn

    2007-11-01

    The ubiquitin/proteasome (UP) pathway plays a significant role in many important biological functions and alterations in this pathway have been shown to contribute to the pathology of many human diseases, including cancer. Proteasome inhibition has been well established as a rational strategy for the treatment of multiple myeloma and is currently under investigation for the treatment of other haematological malignancies and solid tumours. Recent evidence suggests that proteasome inhibition may also sensitise tumour cells to the actions of both conventional chemotherapy and radiotherapy, suggesting that this pathway may modify clinical response to anticancer therapy. However, conflicting evidence exists as to the roles of the UP pathway in resistance to treatment. This review endeavours to discuss such roles.

  7. Computer program user's manual for FIREFINDER digital topographic data verification library dubbing system

    NASA Astrophysics Data System (ADS)

    Ceres, M.; Heselton, L. R., III

    1981-11-01

    This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.

  8. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma

  9. Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes.

    PubMed

    Book, Adam J; Gladman, Nicholas P; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2010-08-13

    Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.

  10. Affinity Purification of the Arabidopsis 26 S Proteasome Reveals a Diverse Array of Plant Proteolytic Complexes*

    PubMed Central

    Book, Adam J.; Gladman, Nicholas P.; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2010-01-01

    Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis. PMID:20516081

  11. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome

    PubMed Central

    Saeki, Yasushi; Kudo, Tai; Sone, Takayuki; Kikuchi, Yoshiko; Yokosawa, Hideyoshi; Toh-e, Akio; Tanaka, Keiji

    2009-01-01

    Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48-linked polyubiquitin chain. In contrast, modifications with the Lys63-linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome-independent cellular processes. Nevertheless, the ubiquitin chain-type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin-ligase in budding yeast, catalyzes the formation of Lys63-linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63-linked ubiquitinated substrate in vitro. To examine whether Lys63-linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2-p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63-linkages, and the Lys63-linked chains were sufficient for the proteasome-binding and subsequent p120-processing. In addition, Lys63-linked chains as well as Lys48-linked chains were detected in the 26S proteasome-bound polyubiquitinated proteins. These results raise the possibility that Lys63-linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo. PMID:19153599

  12. FLCN: The causative gene for Birt-Hogg-Dubé syndrome.

    PubMed

    Schmidt, Laura S; Linehan, W Marston

    2018-01-15

    Germline mutations in the novel tumor suppressor gene FLCN are responsible for the autosomal dominant inherited disorder Birt-Hogg-Dubé (BHD) syndrome that predisposes to fibrofolliculomas, lung cysts and spontaneous pneumothorax, and an increased risk for developing kidney tumors. Although the encoded protein, folliculin (FLCN), has no sequence homology to known functional domains, x-ray crystallographic studies have shown that the C-terminus of FLCN has structural similarity to DENN (differentially expressed in normal cells and neoplasia) domain proteins that act as guanine nucleotide exchange factors (GEFs) for small Rab GTPases. FLCN forms a complex with folliculin interacting proteins 1 and 2 (FNIP1, FNIP2) and with 5' AMP-activated protein kinase (AMPK). This review summarizes FLCN functional studies which support a role for FLCN in diverse metabolic pathways and cellular processes that include modulation of the mTOR pathway, regulation of PGC1α and mitochondrial biogenesis, cell-cell adhesion and RhoA signaling, control of TFE3/TFEB transcriptional activity, amino acid-dependent activation of mTORC1 on lysosomes through Rag GTPases, and regulation of autophagy. Ongoing research efforts are focused on clarifying the primary FLCN-associated pathway(s) that drives the development of fibrofolliculomas, lung cysts and kidney tumors in BHD patients carrying germline FLCN mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of an Anticarcinogenic Bowman-Birk Protease Inhibitor on Purified 20S Proteasome and MCF-7 Breast Cancer Cells

    PubMed Central

    Souza, Larissa da Costa; Camargo, Ricardo; Demasi, Marilene; Santana, Jaime Martins; de Freitas, Sonia Maria

    2014-01-01

    Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis. PMID:24475156

  14. The pathogenesis of pneumothorax in Birt-Hogg-Dubé syndrome: a hypothesis.

    PubMed

    Johannesma, Paul Christiaan; Houweling, Arjan C; van Waesberghe, Jan-Hein T M; van Moorselaar, R J Jeroen A; Starink, Theo M; Menko, Fred H; Postmus, Pieter E

    2014-11-01

    The development and natural course of lung cysts in patients with Birt-Hogg-Dubé syndrome (BHD) is still unclear, and the relationship between lung cysts and pneumothorax is not fully clarified. Based on the follow-up results of thoracic imaging in six patients with BHD, we hypothesize that decreased potential for stretching of the cysts' wall and extensive contact with the visceral pleura are probably responsible for rupture of the cyst wall resulting in increased risk for pneumothorax. © 2014 Asian Pacific Society of Respirology.

  15. Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice.

    PubMed

    Yang, Huanjie; Chen, Di; Cui, Qiuzhi Cindy; Yuan, Xiao; Dou, Q Ping

    2006-05-01

    Interest in the use of traditional medicines for cancer prevention and treatment is increasing. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as novel anticancer drugs. Celastrol, an active compound extracted from the root bark of the Chinese medicine "Thunder of God Vine" (Tripterygium wilfordii Hook F.), was used for years as a natural remedy for inflammatory conditions. Although Celastrol has been shown to induce leukemia cell apoptosis, the molecular target involved has not been identified. Furthermore, whether Celastrol has antitumor activity in vivo has never been conclusively shown. Here, we report, for the first time, that Celastrol potently and preferentially inhibits the chymotrypsin-like activity of a purified 20S proteasome (IC(50) = 2.5 micromol/L) and human prostate cancer cellular 26S proteasome (at 1-5 micromol/L). Inhibition of the proteasome activity by Celastrol in PC-3 (androgen receptor- or AR-negative) or LNCaP (AR-positive) cells results in the accumulation of ubiquitinated proteins and three natural proteasome substrates (IkappaB-alpha, Bax, and p27), accompanied by suppression of AR protein expression (in LNCaP cells) and induction of apoptosis. Treatment of PC-3 tumor-bearing nude mice with Celastrol (1-3 mg/kg/d, i.p., 1-31 days) resulted in significant inhibition (65-93%) of the tumor growth. Multiple assays using the animal tumor tissue samples from both early and end time points showed in vivo inhibition of the proteasomal activity and induction of apoptosis after Celastrol treatment. Our results show that Celastrol is a natural proteasome inhibitor that has a great potential for cancer prevention and treatment.

  16. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro

    PubMed Central

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M. Maral; Lee, Gwang

    2016-01-01

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α–synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles. PMID:27378605

  17. Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic β-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghwan; Hur, Eu-gene; Ryoo, In-geun

    2012-11-01

    The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2‐related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma β-cell line, βTC-6. shRNA-mediated silencing of Nrf2 expression in βTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ERmore » stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in βTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated‐like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic β-cells by enhancing proteasome-mediated ERAD. -- Highlights: ► Nrf2 silencing in pancreatic β-cells enhanced tunicamycin-mediated ER stress. ► Expression of the proteasome was inducible by Nrf2 signaling. ► Nrf2 activator D3T protected β-cells from tunicamycin-mediated ER stress. ► Protective effect of D3T was associated with Nrf2-dependent proteasome

  18. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis.

    PubMed

    Karademir, Betul; Corek, Ceyda; Ozer, Nesrin Kartal

    2015-11-01

    Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Molecular mechanisms for synergistic effect of proteasome inhibitors with platinum-based therapy in solid tumors.

    PubMed

    Chao, Angel; Wang, Tzu-Hao

    2016-02-01

    The successful development of the proteasome inhibitor bortezomib as an anticancer drug has improved survival in patients with multiple myeloma. With the emergence of the newly US Food and Drug Administration-approved proteasome inhibitor carfilzomib, ongoing trials are investigating this compound and other proteasome inhibitors either alone or in combination with other chemotherapy drugs. However, in solid tumors, the efficacy of proteasome inhibitors has not lived up to expectations. Results regarding the potential clinical efficacy of bortezomib combined with other agents in the treatment of solid tumors are eagerly awaited. Recent identification of the molecular mechanisms (involving apoptosis and autophagy) by which bortezomib and cisplatin can overcome chemotherapy resistance and sensitize tumor cells to anticancer therapy can provide insights into the development of novel therapeutic strategies for patients with solid malignancies. Copyright © 2016. Published by Elsevier B.V.

  20. Top-Down Protein Identification of Proteasome Proteins with nanoLC FT-ICR MS Employing Data-Independent Fragmentation Methods

    PubMed Central

    Lakshmanan, Rajeswari; Wolff, Jeremy J.; Alvarado, Rudy; Loo, Joseph A.

    2014-01-01

    A comparison of different data-independent fragmentation methods combined with liquid chromatography (LC) coupled to high resolution Fourier-transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS) is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complex and their post-translational modifications were identified using a 15-Tesla FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty cycle measurements that better suit on-line LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (Continuous Accumulation of Selected Ions)-CAD. The N-terminus for 9 out of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass measurement accuracy with the LC-FT-ICR system for the 20–30 kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100 kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact protein fragmentation and is an effective addition to the growing inventory of dissociation methods which are compatible with on-line protein separation coupled to FT-ICR MS. PMID:24478249

  1. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    PubMed

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  2. Carfilzomib induces leukaemia cell apoptosis via inhibiting ELK1/KIAA1524 (Elk-1/CIP2A) and activating PP2A not related to proteasome inhibition.

    PubMed

    Liu, Chun-Yu; Hsieh, Feng-Shu; Chu, Pei-Yi; Tsai, Wen-Chun; Huang, Chun-Teng; Yu, Yuan-Bin; Huang, Tzu-Ting; Ko, Po-Shen; Hung, Man-Hsin; Wang, Wan-Lun; Shiau, Chung-Wai; Chen, Kuen-Feng

    2017-06-01

    Enhancing the tumour suppressive activity of protein phosphatase 2A (PP2A) has been suggested to be an anti-leukaemic strategy. KIAA1524 (also termed CIP2A), an oncoprotein inhibiting PP2A, is associated with disease progression in chronic myeloid leukaemia and may be prognostic in cytogenetically normal acute myeloid leukaemia. Here we demonstrated that the selective proteasome inhibitor, carfilzomib, induced apoptosis in sensitive primary leukaemia cells and in sensitive leukaemia cell lines, associated with KIAA1524 protein downregulation, increased PP2A activity and decreased p-Akt, but not with the proteasome inhibition effect of carfilzomib. Ectopic expression of KIAA1524, or pretreatment with the PP2A inhibitor, okadaic acid, suppressed carfilzomib-induced apoptosis and KIAA1524 downregulation in sensitive cells, whereas co-treatment with the PP2A agonist, forskolin, enhanced carfilzomib-induced apoptosis in resistant cells. Mechanistically, carfilzomib affected KIAA1524 transcription through disturbing ELK1 (Elk-1) binding to the KIAA1524 promoter. Moreover, the drug sensitivity and mechanism of carfilzomib in xenograft mouse models correlated well with the effects of carfilzomib on KIAA1524 and p-Akt expression, as well as PP2A activity. Our data disclosed a novel drug mechanism of carfilzomib in leukaemia cells and suggests the potential therapeutic implication of KIAA1524 in leukaemia treatment. © 2017 John Wiley & Sons Ltd.

  3. Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome.

    PubMed

    Yu, Zanlin; Kleifeld, Oded; Lande-Atir, Avigail; Bsoul, Maisa; Kleiman, Maya; Krutauz, Daria; Book, Adam; Vierstra, Richard D; Hofmann, Kay; Reis, Noa; Glickman, Michael H; Pick, Elah

    2011-04-01

    Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.

  4. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  5. Archaeal Tuc1/Ncs6 Homolog Required for Wobble Uridine tRNA Thiolation Is Associated with Ubiquitin-Proteasome, Translation, and RNA Processing System Homologs

    PubMed Central

    Chavarria, Nikita E.; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A.

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNALys UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNALys UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems. PMID:24906001

  6. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    PubMed

    Chavarria, Nikita E; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A

    2014-01-01

    While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNA(Lys)UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(Lys)UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  7. Design, synthesis and docking studies of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids.

    PubMed

    Shi, Jingmiao; Lei, Meng; Wu, Wenkui; Feng, Huayun; Wang, Jia; Chen, Shanshan; Zhu, Yongqiang; Hu, Shihe; Liu, Zhaogang; Jiang, Cheng

    2016-04-15

    A series of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids were designed and synthesized. Their structures were elucidated by (1)H NMR, (13)C NMR, LC-MS and HRMS. These compounds were evaluated for their β5 subunit inhibitory activities of human proteasome. The results showed that dipeptidyl boronic acid inhibitors composed of αα-amino acids were as active as bortezomib. Interestingly, the activities of those derived from αβ-amino acids lost completely. Of all the inhibitors, compound 22 (IC50=4.82 nM) was the most potent for the inhibition of proteasome activity. Compound 22 was also the most active against three MM cell lines with IC50 values less than 5 nM in inhibiting cell growth assays. Molecular docking studies displayed that 22 fitted very well in the β5 subunit active pocket of proteasome. Copyright © 2016. Published by Elsevier Ltd.

  8. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome.

    PubMed

    Reeg, Sandra; Jung, Tobias; Castro, José P; Davies, Kelvin J A; Henze, Andrea; Grune, Tilman

    2016-10-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    PubMed Central

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting. PMID:9202072

  10. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    PubMed

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-07-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

  11. Birt-Hogg-Dubé syndrome in two Chinese families with mutations in the FLCN gene.

    PubMed

    Hou, Xiaocan; Zhou, Yuan; Peng, Yun; Qiu, Rong; Xia, Kun; Tang, Beisha; Zhuang, Wei; Jiang, Hong

    2018-01-22

    Birt-Hogg-Dubé syndrome is an autosomal dominant hereditary condition caused by mutations in the folliculin-encoding gene FLCN (NM_144997). It is associated with skin lesions such as fibrofolliculoma, acrochordon and trichodiscoma; pulmonary lesions including spontaneous pneumothorax and pulmonary cysts and renal cancer. Genomic DNA was extracted from peripheral venous blood samples of the propositi and their family members. Genetic analysis was performed by whole exome sequencing and Sanger sequencing aiming at corresponding exons in FLCN gene to explore the genetic mutations of these two families. In this study, we performed genetic analysis by whole exome sequencing and Sanger sequencing aiming at corresponding exons in FLCN gene to explore the genetic mutations in two Chinese families. Patients from family 1 mostly suffered from pneumothorax and pulmonary cysts, several of whom also mentioned skin lesions or kidney lesions. While in family 2, only thoracic lesions were found in the patients, without any other clinical manifestations. Two FLCN mutations have been identified: One is an insertion mutation (c.1579_1580insA/p.R527Xfs on exon 14) previously reported in three Asian families (one mainland family and two Taiwanese families); while the other is a firstly reviewed mutation in Asian population (c.649C > T / p.Gln217X on exon 7) that ever been detected in a French family. Overall, The detection of these two mutations expands the spectrum of FLCN mutations and will provide insight into genetic diagnosis and counseling of Birt-Hogg-Dubé syndrome.

  12. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity

    PubMed Central

    Li, Hao; Ponder, Elizabeth L.; Verdoes, Martijn; Asbjornsdottir, Kristijana H.; Deu, Edgar; Edgington, Laura E.; Lee, Jeong Tae; Kirk, Christopher J.; Demo, Susan D.; Williamson, Kim C.; Bogyo, Matthew

    2012-01-01

    Summary The Plasmodium proteasome has been suggested to be a potential anti-malarial drug target, however toxicity of inhibitors has prevented validation of this enzyme in vivo. We report here a screen of a library of 670 analogs of the recently FDA approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in P. berghei infected mice without host toxicity, thus validating the proteasome as a viable anti-malarial drug target. PMID:23142757

  13. Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle.

    PubMed

    Lu, Ying; Wu, Jiayi; Dong, Yuanchen; Chen, Shuobing; Sun, Shuangwu; Ma, Yong-Bei; Ouyang, Qi; Finley, Daniel; Kirschner, Marc W; Mao, Youdong

    2017-07-20

    The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties.

    PubMed

    Fuchs, Adrian C D; Maldoner, Lorena; Hipp, Katharina; Hartmann, Marcus D; Martin, Jörg

    2018-01-19

    Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties

    PubMed Central

    Fuchs, Adrian C. D.; Maldoner, Lorena; Hipp, Katharina; Hartmann, Marcus D.; Martin, Jörg

    2018-01-01

    Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases. PMID:29183996

  16. Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm.

    PubMed

    Smuder, Ashley J; Nelson, W Bradley; Hudson, Matthew B; Kavazis, Andreas N; Powers, Scott K

    2014-07-01

    Mechanical ventilation (MV) is a life-saving intervention in patients with acute respiratory failure. However, prolonged MV results in ventilator-induced diaphragm dysfunction (VIDD), a condition characterized by both diaphragm fiber atrophy and contractile dysfunction. Previous work has shown that calpain, caspase-3, and the ubiquitin-proteasome pathway (UPP) are all activated in the diaphragm during prolonged MV. However, although it is established that both calpain and caspase-3 are important contributors to VIDD, the role that the UPP plays in the development of VIDD remains unknown. These experiments tested the hypothesis that inhibition of the UPP will protect the diaphragm against VIDD. The authors tested this prediction in an established animal model of MV using a highly specific UPP inhibitor, epoxomicin, to prevent MV-induced activation of the proteasome in the diaphragm (n = 8 per group). The results of this study reveal that inhibition of the UPP did not prevent ventilator-induced diaphragm muscle fiber atrophy and contractile dysfunction during 12 h of MV. Also, inhibition of the UPP does not affect MV-induced increases in calpain and caspase-3 activity in the diaphragm. Finally, administration of the proteasome inhibitor did not protect against the MV-induced increases in the expression of the E3 ligases, muscle ring finger-1 (MuRF1), and atrogin-1/MaFbx. Collectively, these results indicate that proteasome activation does not play a required role in VIDD development during the first 12 h of MV.

  17. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle.

    PubMed

    Sánchez, R; Deppe, M; Schulz, M; Bravo, P; Villegas, J; Morales, P; Risopatrón, J

    2011-04-01

    In this work, we have investigated the role of the bovine sperm proteasome during in vitro fertilisation (IVF) and the acrosome reaction (AR). Motile spermatozoa, obtained by a swim-up method in Sperm-Talp medium, were capacitated for 3.5 h and incubated in the presence or absence of the specific proteasome inhibitor epoxomicin for 30 and 60 min. Then, the spermatozoa were co-incubated with mature bovine cumulus oocytes and after 48 h the cleavage rate of inseminated oocytes was evaluated. In addition, we evaluated the participation of the sperm proteasome during the progesterone-induced AR. Capacitated spermatozoa were incubated for 30 min with or without epoxomicin, then progesterone was added and the ARs were evaluated using the dual fluorescent staining technique 'Hoechst and chlortetracycline'. The results indicate that the proteasome inhibitor decreased the cleavage rate of oocytes inseminated with treated spermatozoa. In addition, acrosomal exocytosis levels were statistically significantly higher in the samples treated with the AR inducer progesterone than in control samples in the absence of the inducer. However, the progesterone-induced AR was significantly reduced by previous treatment of the spermatozoa with epoxomicin (P < 0.001). These observations indicate that the bovine sperm proteasome participates in the IVF and AR processes. © 2011 Blackwell Verlag GmbH.

  18. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.

  19. A Double-Edged Sword Role for Ubiquitin-Proteasome System in Brain Stem Cardiovascular Regulation During Experimental Brain Death

    PubMed Central

    Wu, Carol H. Y.; Chan, Julie Y. H.; Chan, Samuel H. H.; Chang, Alice Y. W.

    2011-01-01

    Background Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. Methodology/Principal Findings In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. Conclusions/Significance We conclude that UPS participates in the defunct and

  20. Access, quality, and costs of care at physician owned hospitals in the United States: observational study.

    PubMed

    Blumenthal, Daniel M; Orav, E John; Jena, Anupam B; Dudzinski, David M; Le, Sidney T; Jha, Ashish K

    2015-09-02

    To compare physician owned hospitals (POHs) with non-POHs on metrics around patient populations, quality of care, costs, and payments. Observational study. Acute care hospitals in 95 hospital referral regions in the United States, 2010. 2186 US acute care hospitals (219 POHs and 1967 non-POHs). Proportions of patients using Medicaid and those from ethnic and racial minority groups; hospital performance on patient experience metrics, care processes, risk adjusted 30 day mortality, and readmission rates; costs of care; care payments; and Medicare market share. The 219 POHs were more often small (<100 beds), for profit, and in urban areas. 120 of these POHs were general (non-specialty) hospitals. Compared with patients from non-POHs, those from POHs were younger (77.4 v 78.4 years, P<0.001), less likely to be admitted through an emergency department (23.2% v. 29.0%, P<0.001), equally likely to be black (5.1% v 5.5%, P=0.85) or to use Medicaid (14.9% v 15.4%, P=0.75), and had similar numbers of chronic diseases and predicted mortality scores. POHs and non-POHs performed similarly on patient experience scores, processes of care, risk adjusted 30 day mortality, 30 day readmission rates, costs, and payments for acute myocardial infarction, congestive heart failure, and pneumonia. Although POHs may treat slightly healthier patients, they do not seem to systematically select more profitable or less disadvantaged patients or to provide lower value care. © Blumenthal et al 2015.

  1. A phase I and pharmacologic trial of two schedules of the proteasome inhibitor, PS-341 (bortezomib, velcade), in patients with advanced cancer.

    PubMed

    Dy, Grace K; Thomas, James P; Wilding, George; Bruzek, Laura; Mandrekar, Sumithra; Erlichman, Charles; Alberti, Dona; Binger, Kim; Pitot, Henry C; Alberts, Steven R; Hanson, Lorelei J; Marnocha, Rebecca; Tutsch, Kendra; Kaufmann, Scott H; Adjei, Alex A

    2005-05-01

    To define the toxicities, pharmacodynamics, and clinical activity of the proteasome inhibitor, PS-341 (bortezomib), in patients with advanced malignancies. Twenty-eight patients (14 male and 14 female) received PS-341 twice weekly for 4 of 6 weeks (schedule I). Because toxicity necessitated dose omissions on this schedule, 16 additional patients (12 male and 4 female) received PS-341 twice weekly for 2 of every 3 weeks (schedule II). A total of 73 courses of treatment was given (median, 2; range, 1-4). Inhibition of 20S proteasome activity in peripheral blood mononuclear cells (PBMC) and accumulation of proteasome-targeted polypeptides in tumor tissue were evaluated as pharmacodynamic markers of PS-341 activity. The most common toxicity was thrombocytopenia, which was dose limiting at 1.7 mg/m2 (schedule I) and 1.6 mg/m2 (schedule II), respectively. Sensory neuropathy was dose-limiting in a patient in schedule I. Grade > or =3 toxicities for schedule I were constipation, fatigue, myalgia, and sensory neuropathy. Grade > or =3 toxicities for schedule II were dehydration resulting from diarrhea, nausea and vomiting, fatigue, hypoglycemia, and hypotension. The maximum tolerated dose was 1.5 mg/m2 for both schedules. Reversible dose-dependent decreases in 20S proteasome activity in PBMCs were observed, with 36% inhibition at 0.5 mg/m2, 52% at 0.9 mg/m2, and 75% at 1.25 mg/m2. Accumulation of proteasome-targeted polypeptides was detected in tumor samples after treatment with PS-341. A patient with multiple myeloma had a partial response. PS-341 given 1.5 mg/m2 twice weekly for 2 of every 3 weeks is well tolerated and should be further studied.

  2. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  3. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugden, Scott, E-mail: scott.sugden@ircm.qc.ca

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process bymore » recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.« less

  4. Sulforaphane Induced Apoptosis via Promotion of Mitochondrial Fusion and ERK1/2-Mediated 26S Proteasome Degradation of Novel Pro-survival Bim and Upregulation of Bax in Human Non-Small Cell Lung Cancer Cells.

    PubMed

    Geng, Yang; Zhou, Yan; Wu, Sai; Hu, Yabin; Lin, Kai; Wang, Yalin; Zheng, Zhongnan; Wu, Wei

    2017-01-01

    Previous studies in our laboratory showed that sulforaphane (SFN) induced apoptosis by sustained activation of extracellular regulated protein kinases 1/2 (ERK1/2). However, the underlying mechanisms associated with SFN-induced apoptosis and downstream cascades which are modulated by ERK1/2 were not elucidated. Herein we demonstrated for the first time that alteration of mitochondrial dynamics contributed to SFN-induced apoptosis in human non-small cell lung cancer (NSCLC) cells. Reports showed that protein Bim not only induced apoptosis but also promoted proliferation under certain circumstances. We found that Bim was related to cell growth in NSCLC cells. Pro-survival Bim downregulation was shown to induce apoptosis in response to SFN. Further, Using the ERK1/2 inhibitor, PD98059, we found that SFN upregulated Bax and downregulated Bim through the ERK1/2-dependent signaling pathway. Furthermore, SFN activated ERK1/2 to increase 26S proteasome activity to degrade Bim, while the proteasome inhibitor MG132 reversed this effect. Therefore, SFN phosphorylated ERK1/2 and activated the proteasome system leading to the degradation of Bim, which contributed to apoptosis in NSCLC cells. These findings provided a novel insight into SFN-related therapeutics in cancer treatment.

  5. Regulators of the Proteasome Pathway, Uch37 and Rpn13, Play Distinct Roles in Mouse Development

    PubMed Central

    Al-Shami, Amin; Jhaver, Kanchan G.; Vogel, Peter; Wilkins, Carrie; Humphries, Juliane; Davis, John J.; Xu, Nianhua; Potter, David G.; Gerhardt, Brenda; Mullinax, Robert; Shirley, Cynthia R.; Anderson, Stephen J.; Oravecz, Tamas

    2010-01-01

    Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival. Deletion of Uch37 resulted in prenatal lethality in mice associated with severe defect in embryonic brain development. In contrast, the majority of Rpn13-deficient mice survived to adulthood, although they were smaller at birth and fewer in number than wild-type littermates. Absence of Rpn13 produced tissue-specific effects on proteasomal function: increased proteasome activity in adrenal gland and lymphoid organs, and decreased activity in testes and brain. Adult Rpn13−/− mice reached normal body weight but had increased body fat content and were infertile due to defective gametogenesis. Additionally, Rpn13−/− mice showed increased T-cell numbers, resembling growth hormone-mediated effects. Indeed, serum growth hormone and follicular stimulating hormone levels were significantly increased in Rpn13−/− mice, while growth hormone receptor expression was reduced in the testes. In conclusion, this is the first report characterizing the physiological roles of Uch37 and Rpn13 in murine development and implicating a non-ATPase proteasomal protein, Rpn13, in the process of gametogenesis. PMID:21048919

  6. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression and sensitizes resistant human melanoma to TCR-engineered CTLs

    PubMed Central

    Jazirehi, Ali R.; Economou, James S.

    2012-01-01

    Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR) α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in melanoma patients. We hypothesized that MART-1 down-modulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1+/HLA-A*0201+ F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and over-expression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL selective pressure which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phopspho-ERK1/2, increased phospho-JNK levels, reduced expression of resistance-factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL-killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression. PMID:22532603

  7. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

    PubMed Central

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-01

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates. PMID:22307589

  8. Incidence of Postoperative Hematomas Requiring Surgical Treatment in Neurosurgery: A Retrospective Observational Study.

    PubMed

    Lillemäe, Kadri; Järviö, Johanna Annika; Silvasti-Lundell, Marja Kaarina; Antinheimo, Jussi Juha-Pekka; Hernesniemi, Juha Antero; Niemi, Tomi Tapio

    2017-12-01

    We aimed to characterize the occurrence of postoperative hematoma (POH) after neurosurgery overall and according to procedure type and describe the prevalence of possible confounders. Patient data between 2010 and 2012 at the Department of Neurosurgery in Helsinki University Hospital were retrospectively analyzed. A data search was performed according to the type of surgery including craniotomies; shunt procedures, spine surgery, and spinal cord stimulator implantation. We analyzed basic preoperative characteristics, as well as data about the initial intervention, perioperative period, revision operation and neurologic recovery (after craniotomy only). The overall incidence of POH requiring reoperation was 0.6% (n = 56/8783) to 0.6% (n = 26/4726) after craniotomy, 0% (n = 0/928) after shunting procedure, 1.1% (n = 30/2870) after spine surgery, and 0% (n = 0/259) after implantation of a spinal cord stimulator. Craniotomy types with higher POH incidence were decompressive craniectomy (7.9%, n = 7/89), cranioplasty (3.6%, n = 4/112), bypass surgery (1.7%, n = 1/60), and epidural hematoma evacuation (1.6%, n = 1/64). After spinal surgery, POH was observed in 1.1% of cervical and 2.1% of thoracolumbar operations, whereas 46.7% were multilevel procedures. 64.3% of patients with POH and 84.6% of patients undergoing craniotomy had postoperative hypertension (systolic blood pressure >160 mm Hg or lower if indicated). Poor outcome (Glasgow Outcome Scale score 1-3), whereas death at 6 months after craniotomy was detected in 40.9% and 21.7%. respectively, of patients with POH who underwent craniotomy. POH after neurosurgery was rare in this series but was associated with poor outcome. Identification of risk factors of bleeding, and avoiding them, if possible, might decrease the incidence of POH. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.

  10. On the Trails of the Proteasome Fold: Structural and Functional Analysis of the Ancestral β-Subunit Protein Anbu.

    PubMed

    Vielberg, Marie-Theres; Bauer, Verena C; Groll, Michael

    2018-03-02

    The 20S proteasome is a key player in eukaryotic and archaeal protein degradation, but its progenitor in eubacteria is unknown. Recently, the ancestral β-subunit protein (Anbu) was predicted to be the evolutionary precursor of the proteasome. We crystallized Anbu from Hyphomicrobium sp. strain MC1 in four different space groups and solved the structures by SAD-phasing and Patterson search calculation techniques. Our data reveal that Anbu adopts the classical fold of Ntn-hydrolases, but its oligomeric state differs from that of barrel-shaped proteases. In contrast to their typical architecture, the Anbu protomer is a tightly interacting dimer that can assemble into a helical superstructure. Although Anbu features a catalytic triad of Thr1O γ , Asp17O δ1 and Lys32N ε , it is unable to hydrolyze standard protease substrates. The lack of activity might be caused by the incapacity of Thr1NH 2 to function as a Brønsted acid during substrate cleavage due to its missing activation via hydrogen bonding. Altogether, we demonstrate that the topology of the proteasomal fold is conserved in Anbu, but whether it acts as a protease still needs to be clarified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation

    ERIC Educational Resources Information Center

    Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

    2008-01-01

    Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

  12. Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells.

    PubMed

    Ghosh, Rajeshwary; Hwang, Soyun M; Cui, Ziyou; Gilda, Jennifer E; Gomes, Aldrin V

    2016-05-01

    The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    PubMed Central

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999

  14. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB.

    PubMed

    Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta

    2014-10-01

    Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.

  15. The 19S proteasome activator promotes human cytomegalovirus immediate early gene expression through proteolytic and nonproteolytic mechanisms.

    PubMed

    Winkler, Laura L; Kalejta, Robert F

    2014-10-01

    Proteasomes are large, multisubunit complexes that support normal cellular activities by executing the bulk of protein turnover. During infection, many viruses have been shown to promote viral replication by using proteasomes to degrade cellular factors that restrict viral replication. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasomal degradation of Daxx, a cellular transcriptional repressor that can silence viral immediate early (IE) gene expression. We previously showed that this degradation requires both the proteasome catalytic 20S core particle (CP) and the 19S regulatory particle (RP). The 19S RP associates with the 20S CP to facilitate protein degradation but also plays a 20S CP-independent role promoting transcription. Here, we present a nonproteolytic role of the 19S RP in HCMV IE gene expression. We demonstrate that 19S RP subunits are recruited to the major immediate early promoter (MIEP) that directs IE transcription. Depletion of 19S RP subunits generated a defect in RNA polymerase II elongation through the MIE locus during HCMV infection. Our results reveal that HCMV commandeers proteasome components for both proteolytic and nonproteolytic roles to promote HCMV lytic infection. Importance: Proteasome inhibitors decrease or eliminate 20S CP activity and are garnering increasing interest as chemotherapeutics. However, an increasing body of evidence implicates 19S RP subunits in important proteolytic-independent roles during transcription. Thus, pharmacological inhibition of the 20S CP as a means to modulate proteasome function toward therapeutic effect is an incomplete capitalization on the potential of this approach. Here, we provide an additional example of nonproteolytic 19S RP function in promoting HCMV transcription. These data provide a novel system with which to study the roles of different proteasome components during transcription, a rationale for previously described shifts in 19S RP subunit localization during

  16. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.

    PubMed

    Sawamura, Naoya; Wakabayashi, Satoru; Matsumoto, Kodai; Yamada, Haruka; Asahi, Toru

    2015-09-04

    Cereblon (CRBN) is encoded by a candidate gene for autosomal recessive nonsyndromic intellectual disability (ID). The nonsense mutation, R419X, causes deletion of 24 amino acids at the C-terminus of CRBN, leading to mild ID. Although abnormal CRBN function may be associated with ID disease onset, its cellular mechanism is still unclear. Here, we examine the role of CRBN in aggresome formation and cytoprotection. In the presence of a proteasome inhibitor, exogenous CRBN formed perinuclear inclusions and co-localized with aggresome markers. Endogenous CRBN also formed perinuclear inclusions under the same condition. Treatment with a microtubule destabilizer or an inhibitor of the E3 ubiquitin ligase activity of CRBN blocked formation of CRBN inclusions. Biochemical analysis showed CRBN containing inclusions were high-molecular weight, ubiquitin-positive. CRBN overexpression in cultured cells suppressed cell death induced by proteasome inhibitor. Furthermore, knockdown of endogenous CRBN in cultured cells increased cell death induced by proteasome inhibitor, compared with control cells. Our results show CRBN is recruited to aggresome and has functional roles in cytoprotection against ubiquitin-proteasome system impaired condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Fundamental Reaction Pathway for Peptide Metabolism by Proteasome: Insights from First-principles Quantum Mechanical/Molecular Mechanical Free Energy Calculations

    PubMed Central

    Wei, Donghui; Fang, Lei; Tang, Mingsheng; Zhan, Chang-Guo

    2013-01-01

    Proteasome is the major component of the crucial nonlysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-Oγ. The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-Oγ, followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-Nz. Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-Nz to Thr1-Oγ. According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3b) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally-derived activation free energy of ~18.3–19.4 kcal/mol, suggesting that the computational results are reasonable. PMID:24111489

  18. Perioperative hypoxemia is common with horizontal positioning during general anesthesia and is associated with major adverse outcomes: a retrospective study of consecutive patients

    PubMed Central

    2014-01-01

    Background Reported perioperative pulmonary aspiration (POPA) rates have substantial variation. Perioperative hypoxemia (POH), a manifestation of POPA, has been infrequently studied beyond the PACU, for patients undergoing a diverse array of surgical procedures. Methods Consecutive adult patients with ASA I-IV and pre-operative pulmonary stability who underwent a surgical procedure requiring general anesthesia were investigated. Using pulse oximetry, POH was documented in the operating room and during the 48 hours following PACU discharge. POPA was the presence of an acute pulmonary infiltrate with POH. Results The 500 consecutive, eligible patients had operative body-positions of prone 13%, decubitus 8%, sitting 1%, and supine/lithotomy 78%, with standard practice of horizontal recumbency. POH was found in 150 (30%) patients. Post-operative stay with POH was 3.7 ± 4.7 days and without POH was 1.7 ± 2.3 days (p < 0.0001). POH rate varied from 14% to 58% among 11 of 12 operative procedure-categories. Conditions independently associated with POH (p < 0.05) were acute trauma, BMI, ASA level, glycopyrrolate administration, and duration of surgery. POPA occurred in 24 (4.8%) patients with higher mortality (8.3%), when compared to no POPA (0.2%; p = 0.0065). Post-operative stay was greater with POPA (7.7 ± 5.7 days), when compared to no POPA (2.0 ± 2.9 days; p = 0.0001). Conditions independently associated with POPA (p < 0.05) were cranial procedure, ASA level, and duration of surgery. POPA, acute trauma, duration of surgery, and inability to extubate in the OR were independently associated with post-operative stay (p < 0.05). POH, gastric dysmotility, acute trauma, cranial procedure, emergency procedure, and duration of surgery had independent correlations with post-operative length of stay (p < 0.05). Conclusions Adult surgical patients undergoing general anesthesia with horizontal recumbency have substantial POH and

  19. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib

    PubMed Central

    Wirth, Matthias; Stojanovic, Natasa; Christian, Jan; Paul, Mariel C.; Stauber, Roland H.; Schmid, Roland M.; Häcker, Georg; Krämer, Oliver H.; Saur, Dieter; Schneider, Günter

    2014-01-01

    The c-MYC (MYC afterward) oncogene is well known for driving numerous oncogenic programs. However, MYC can also induce apoptosis and this function of MYC warrants further clarification. We report here that a clinically relevant proteasome inhibitor significantly increases MYC protein levels and that endogenous MYC is necessary for the induction of apoptosis. This kind of MYC-induced cell death is mediated by enhanced expression of the pro-apoptotic BCL2 family members NOXA and BIM. Quantitative promoter-scanning chromatin immunoprecipitations (qChIP) further revealed binding of MYC to the promoters of NOXA and BIM upon proteasome inhibition, correlating with increased transcription. Both promoters are further characterized by the presence of tri-methylated lysine 4 of histone H3, marking active chromatin. We provide evidence that in our apoptosis models cell death occurs independently of p53 or ARF. Furthermore, we demonstrate that recruitment of MYC to the NOXA as well as to the BIM gene promoters depends on MYC's interaction with the zinc finger transcription factor EGR1 and an EGR1-binding site in both promoters. Our study uncovers a novel molecular mechanism by showing that the functional cooperation of MYC with EGR1 is required for bortezomib-induced cell death. This observation may be important for novel therapeutic strategies engaging the inherent pro-death function of MYC. PMID:25147211

  20. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology.

    PubMed

    Belle, Jad I; Nijnik, Anastasia

    2014-05-01

    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: basic and clinical aspects

    PubMed Central

    Shahshahan, Mohammad A; Beckley, Maureen N; Jazirehi, Ali R

    2011-01-01

    Protein degradation by proteasome is essential to the regulation of important cellular functions including cell cycle progression, proliferation, differentiation and apoptosis. Abnormal proteasomal degradation of key regulatory proteins perturbs the normal dynamics of these cellular processes culminating in uncontrolled cell cycle progression and decreased apoptosis leading to the characteristic cancer cell phenotype. Proteasome inhibitors are a novel group of therapeutic agents designed to oppose the increased proteasomal degradation observed in various cancers while restoring key cellular functions such as apoptosis, cell cycle progression, and the inhibition of angiogenesis. Several proteasome inhibitors have been evaluated in pre- and clinical studies for their potential usage in clinical oncology. Bortezomib (Velcade, PS-341) is the first Food and Drug Administration-approved proteasome inhibitor for the treatment of multiple myeloma and mantle cell lymphoma. Bortezomib's ability to preferentially induce toxicity and cell death in tumor cells while rendering healthy cells unaffected makes it a powerful therapeutic agent and has extended its use in other types of malignancies. The ability of bortezomib and other proteasome inhibitors to synergize with conventional therapies in killing tumors in various in vitro and in vivo models makes this class of drugs a powerful tool in overcoming acquired and inherent resistance observed in many cancers. This is achieved through modulation of aberrant cellular survival signal transduction pathways and their downstream anti-apoptotic gene products. This review will discuss the anti-neoplastic effects of various proteasome inhibitors in a variety of cancers with a special emphasis on bortezomib, its mechanism of action and role in cancer therapy. We further discuss the potential use of bortezomib in the treatment of metastatic melanoma. PMID:22016836

  2. Next-generation proteasome inhibitor oprozomib synergizes with modulators of the unfolded protein response to suppress hepatocellular carcinoma.

    PubMed

    Vandewynckel, Yves-Paul; Coucke, Céline; Laukens, Debby; Devisscher, Lindsey; Paridaens, Annelies; Bogaerts, Eliene; Vandierendonck, Astrid; Raevens, Sarah; Verhelst, Xavier; Van Steenkiste, Christophe; Libbrecht, Louis; Geerts, Anja; Van Vlierberghe, Hans

    2016-06-07

    Hepatocellular carcinoma (HCC) responds poorly to conventional systemic therapies. The first-in-class proteasome inhibitor bortezomib has been approved in clinical use for hematologic malignancies and has shown modest activity in solid tumors, including HCC. However, a considerable proportion of patients fail to respond and experience important adverse events. Recently, the next-generation orally bioavailable irreversible proteasome inhibitor oprozomib was developed. Here, we assessed the efficacy of oprozomib and its effects on the unfolded protein response (UPR), a signaling cascade activated through the ATF6, PERK and IRE1 pathways by accumulation of unfolded proteins in the endoplasmic reticulum, in HCC. The effects of oprozomib and the role of the UPR were evaluated in HCC cell lines and in diethylnitrosamine-induced and xenograft mouse models for HCC. Oprozomib dose-dependently reduced the viability and proliferation of human HCC cells. Unexpectedly, oprozomib-treated cells displayed diminished cytoprotective ATF6-mediated signal transduction as well as unaltered PERK and IRE1 signaling. However, oprozomib increased pro-apoptotic UPR-mediated protein levels by prolonging their half-life, implying that the proteasome acts as a negative UPR regulator. Supplementary boosting of UPR activity synergistically improved the sensitivity to oprozomib via the PERK pathway. Oral oprozomib displayed significant antitumor effects in the orthotopic and xenograft models for HCC, and importantly, combining oprozomib with different UPR activators enhanced the antitumor efficacy by stimulating UPR-induced apoptosis without cumulative toxicity. In conclusion, next-generation proteasome inhibition by oprozomib results in dysregulated UPR activation in HCC. This finding can be exploited to enhance the antitumor efficacy by combining oprozomib with clinically applicable UPR activators.

  3. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease.

    PubMed

    Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate

    2013-10-01

    Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures. © 2013 Published by Elsevier Inc.

  4. The RAD23 Family Provides an Essential Connection between the 26S Proteasome and Ubiquitylated Proteins in Arabidopsis[W

    PubMed Central

    Farmer, Lisa M.; Book, Adam J.; Lee, Kwang-Hee; Lin, Ya-Ling; Fu, Hongyong; Vierstra, Richard D.

    2010-01-01

    The ubiquitin (Ub)/26S proteasome system (UPS) directs the turnover of numerous regulatory proteins, thereby exerting control over many aspects of plant growth, development, and survival. The UPS is directed in part by a group of Ub-like/Ub-associated (UBL/UBA) proteins that help shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Here, we describe the collection of UBL/UBA proteins in Arabidopsis thaliana, including four isoforms that comprise the RADIATION SENSITIVE23 (RAD23) family. The nuclear-enriched RAD23 proteins bind Ub conjugates, especially those linked internally through Lys-48, via their UBA domains, and associate with the 26S proteasome Ub receptor RPN10 via their N-terminal UBL domains. Whereas homozygous mutants individually affecting the four RAD23 genes are without phenotypic consequences (rad23a, rad23c, and rad23d) or induce mild phyllotaxy and sterility defects (rad23b), higher-order mutant combinations generate severely dwarfed plants, with the quadruple mutant displaying reproductive lethality. Both the synergistic effects of a rad23b-1 rpn10-1 combination and the response of rad23b plants to mitomycin C suggest that RAD23b regulates cell division. Taken together, RAD23 proteins appear to play an essential role in the cell cycle, morphology, and fertility of plants through their delivery of UPS substrates to the 26S proteasome. PMID:20086187

  5. Tubulin chaperone E binds microtubules and proteasomes and protects against misfolded protein stress.

    PubMed

    Voloshin, Olga; Gocheva, Yana; Gutnick, Marina; Movshovich, Natalia; Bakhrat, Anya; Baranes-Bachar, Keren; Bar-Zvi, Dudy; Parvari, Ruti; Gheber, Larisa; Raveh, Dina

    2010-06-01

    Mutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds alpha-tubulin and promotes alpha/beta dimerization. We show that Pac2 functions in MT dynamics: the CAP-Gly domain binds alpha-tubulin and MTs, and functions in suppression of benomyl sensitivity of pac2Delta mutants. Pac2 binds proteasomes: the LRR binds Rpn1, and the UbL binds Rpn10; the latter interaction mediates Pac2 turnover. The UbL also binds the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex; these competing interactions for the UbL may impact on MT dynamics. pac2Delta mutants are sensitive to misfolded protein stress. This is suppressed by ectopic PAC2 with both the CAP-Gly and UbL domains being essential. We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes.

  6. Activation of the proteasomes of sand dollar eggs at fertilization depends on the intracellular pH rise.

    PubMed

    Chiba, K; Alderton, J M; Hoshi, M; Steinhardt, R A

    1999-05-01

    The mechanism of the activation of intracellular proteasomes at fertilization was measured in living sand dollar eggs using the membrane-impermeant fluorogenic substrate, succinyl-Phe-Leu-Arg-coumarylamido-4-methanesulfonic acid. When the substrate was microinjected into unfertilized eggs, the initial velocity of hydrolysis of the substrate (V0) was low. V0 measured 5 to 10 min after fertilization was five to nine times the prefertilization level and remained high throughout the first cell cycle. Hydrolysis of the substrate was inhibited by clasto-lactacystin beta-lactone, a specific inhibitor of the proteasome. There has been in vitro evidence that calcium may be involved in regulation of proteasome activity to either inhibit the increase in peptidase activity associated with PA 28 binding to the 20S proteasome or stimulate activity of the PA 700-proteasome complex. Since both intracellular free Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) increase after fertilization, hydrolysis of the proteasome substrate was measured under conditions in which [Ca2+]i and pHi were varied independently during activation. When the pHi of unfertilized eggs was elevated by exposure to 15 mM ammonium chloride in pH 9 seawater, V0 increased to a level comparable to that measured after fertilization. In contrast, [Ca2+]i elevation without pHi change, induced by calcium ionophore in sodium-free seawater, had no effect on V0 in the unfertilized egg. Moreover, when unfertilized eggs were microinjected with buffers modulating pHi, V0 increased in a pH-dependent manner. These results indicate that the pHi rise at fertilization is the necessary prerequisite for activation of the proteasome, an essential component in the regulation of the cell cycle. Copyright 1999 Academic Press.

  7. Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells.

    PubMed

    Dasgupta, Sayani; Castro, Leandro M; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S; Fricker, Lloyd D

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.

  8. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  9. Recurrent renal cancer in Birt-Hogg-Dubé syndrome: A case report.

    PubMed

    Ather, Hammad; Zahid, Nida

    2018-01-01

    Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant disease. It is caused by constitutional mutations in the FLCN gene. Since BHDS is a rare syndrome therefore it is unknown to many physicians. However, it is important to identify this rare syndrome at early stages because incidence of renal cancer in BHD patients is very high and its detection at early stages can prevent its metastasis. Hence, we want to present a case of BHDS and draw the attention of the treating physician to this rare inherited disorder and discuss its appropriate diagnosis and management. We present a case of a 50-year old male presented to the consulting clinics of a University Hospital with right flank pain since the last 2 months. The Computed Tomography (CT) and biopsy on the right renal mass indicated clear cell type renal cell carcinoma with significant lymphadenopathy. Past history of cystic lung disease and pneumothorax along with positive finding of renal cell carcinoma on CT and biopsy suggested Birt-Hogg-Dub́e (BHD) syndrome. The patient underwent right radical nephrectomy and lymph node dissection. His 3 months post- surgery follow up CT scan indicated disease recurrence. In conclusion, it is important to identify this rare syndrome at early stages. Diagnosis for the patients with a positive family history for renal cell cancer and pneumothorax should be considered. FLCN sequencing should also be taken into account in patients and their families because incidence of renal cancer in BHD patients is very high and detection at early stages can prevent its metastasis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease

    PubMed Central

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  11. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease.

    PubMed

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems.

  12. 1. Post card view of the bridge, c. 1910. Post ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Post card view of the bridge, c. 1910. Post card courtesy Carol Poh Miller. Photocopy by Berni Rich, Score Photographers Cleveland, OH - B & O Railroad Bridge Number 464, Spanning Old Ship Canal & Cuyahoga River, Cleveland, Cuyahoga County, OH

  13. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jinbin, E-mail: hanjinbin@gmail.com; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032; Shanghai Clinical Center, Chinese Academy of Sciences/Xuhui Central Hospital, Shanghai 200031

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and themore » possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.« less

  14. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  15. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    PubMed

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  16. Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    PubMed Central

    Singh Gautam, Amit Kumar; Balakrishnan, Satish; Venkatraman, Prasanna

    2012-01-01

    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases

  17. Effects of inhibition of ubiquitin-proteasome pathway on human primary leukemic cells.

    PubMed

    Lan, Yu; Zhang, Xuemin; Yang, Pingdi; Hu, Meiru; Yu, Ming; Yang, Yi; Shen, Beifen

    2002-12-01

    Though there were a lot of reports about the totally different responses to the inhibition of ubiquitin-proteasome pathway in different kinds of cell lines, much less has been known about the responses in primary human leukemic cells. In this study, the effects of inhibition of ubiquitin-proteasome pathway on human bone marrow (BM) mononuclear cells (MNCs) obtained from 10 normal persons and 8 leukemia patients were examined. The results showed that the responses obviously varied individually. Among them, BM MNCs in 3 cases of leukemic patients were extremely sensitive, demonstrated by that > 90% cells were induced to undergo apoptosis within 24 h, but MNCs in 10 cases of normal persons showed resistance to the inhibition and no apoptosis was observed. Furthermore, Western blots revealed that the Bcl-2 expression was relatively high in the sensitive primary leukemia cells, and especially the cleavage of 26 ku Bcl-2 into a 22 ku fragment occurred during the induction of apoptosis. In contrast, the Bcl-2 expression was either undetectable or detectable but no cleavage of that above was observed in the cells insensitive to the inhibition of the pathway (including BM MNCs in normal persons). Together with the observations on the leukemic cell lines, these findings suggested the correlation of the specific cleavage of Bcl-2 into a shortened fragment with the sensitivity of cells to the inhibition of ubiquitin-proteasome pathway, which provides clues to the further understanding of the mechanisms of that dramatically different responses existing in different kinds of cells to the inhibition of ubiquitin-proteasome pathway.

  18. Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit.

    PubMed

    Zhao, Wenting; Bonem, Matthew; McWhite, Claire; Silberg, Jonathan J; Segatori, Laura

    2014-04-08

    The ubiquitin proteasome system (UPS) has emerged as a drug target for diverse diseases characterized by altered proteostasis, but pharmacological agents that enhance UPS activity have been challenging to establish. Here we report the Deg-On system, a genetic inverter that translates proteasomal degradation of the transcriptional regulator TetR into a fluorescent signal, thereby linking UPS activity to an easily detectable output, which can be tuned using tetracycline. We demonstrate that this circuit responds to modulation of UPS activity in cell culture arising from the inhibitor MG-132 and activator PA28γ. Guided by predictive modelling, we enhanced the circuit's signal sensitivity and dynamic range by introducing a feedback loop that enables self-amplification of TetR. By linking UPS activity to a simple and tunable fluorescence output, these genetic inverters will enable a variety of applications, including screening for UPS activating molecules and selecting for mammalian cells with different levels of proteasome activity.

  19. Specialized proteasome subunits play an essential role in thymic selection of CD8+ T cells

    PubMed Central

    Kincaid, Eleanor Z.; Murata, Shigeo; Tanaka, Keiji; Rock, Kenneth L.

    2016-01-01

    The cells that stimulate positive selection express different specialized proteasome β-subunits than all other cells, including those involved in negative selection. Mice that lack all four specialized proteasome β-subunits, and therefore express only constitutive proteasomes in all cells, had a profound defect in the generation of CD8+ T cells. While a defect in positive selection would reflect an inability to generate the appropriate positively selecting peptides, a block at negative selection would point to the potential need to switch peptides between positive and negative selection to avoid the two processes often cancelling each other out. We found that the block in T cell development occurred around the checkpoints of positive and, surprisingly, also negative selection. PMID:27294792

  20. PDK1 inhibitor GSK2334470 synergizes with proteasome inhibitor MG‑132 in multiple myeloma cells by inhibiting full AKT activity and increasing nuclear accumulation of the PTEN protein.

    PubMed

    Zhang, Jin; Yang, Chunmei; Zhou, Fengping; Chen, Xiaohui

    2018-06-01

    Phosphoinositide‑dependent kinase 1 (PDK1) is generally active in multiple myeloma (MM) and higher expression than other hematopoietic cells, which is associated with the drug resistance and the disease progression. Previous studies have demonstrated that PDK1 can be targeted therapeutically in MM. In the present study, we examined the combination effect of GSK2334470 (GSK‑470), a novel and highly specific inhibitor of PDK1, with proteasome inhibitor MG‑132 in MM cell lines. GSK‑470 monotherapy significantly inhibited growth of MM cell lines and induced apoptosis that was associated with the activation of both the intrinsic mitochondrial pathway and the extrinsic death receptor pathway. Moreover, GSK‑470 demonstrated synergistic growth inhibitory effects with MG‑132. Notably, treatment with these inhibitors resulted in an almost complete inhibition of phosphorylation of mammalian target of rapamycin on Ser2448 and Ser2481 and full activation of AKT. The combination therapy also caused an upregulation of PTEN and an increased nuclear accumulation of PTEN protein. Collectively, our results provide the rationale for novel combination treatment with PDK1 inhibitor and proteasome inhibitors to improve outcomes in patients with MM.

  1. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  2. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways

    PubMed Central

    Doyle, Alexander; Zhang, Guohua; Abdel Fattah, Elmoataz A.; Eissa, N. Tony; Li, Yi-Ping

    2011-01-01

    Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.—Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., Li, Y.-P. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. PMID:20826541

  3. Ethanol extracts from the branch of Taxillus yadoriki parasitic to Neolitsea sericea induces cyclin D1 proteasomal degradation through cyclin D1 nuclear export.

    PubMed

    Park, Su Bin; Park, Gwang Hun; Kim, Ha Na; Song, Hun Min; Son, Ho-Jun; Park, Ji Ae; Kim, Hyun-Seok; Jeong, Jin Boo

    2018-06-20

    Although the inhibitory effect of mistletoe on cancer cell growth has been reported, the underlying mechanisms to explain its anti-proliferative activity are not fully studied. Thus, we elucidated the potential molecular mechanism of the branch from Taxillus yadoriki (TY) parasitic to Neolitsea sericea (NS) (TY-NS-B) for the anti-proliferative effect. Anti-cell proliferative effect was evaluated by MTT assay. The change of cyclin D1 protein or mRNA level was evaluated by Western blot and RT-RCR, respectively. In comparison of anti-proliferative effect of TY from the host trees such as Cryptomeria japonica (CJ), Neolitsea sericea (NS), Prunus serrulata (PS), Cinnamomum camphora (CC) and Quercus acutissima (QA), TY-NS showed higher anti-cell proliferative effect than TY-CJ, TY-PS, TY-CC or TY-QA. In addition, the anti-proliferative effect of branch from TY from all host trees was better than leaves. Thus, we selected the branch from Taxillus yadoriki parasitic to Neolitsea sericea (TY-NS-B) for the further study. TY-NS-B inhibited the cell proliferation in the various cancer cells and downregulated cyclin D1 protein level. MG132 treatment attenuated cyclin D1 downregulation of cyclin D1 protein level by TY-NS-B. In addition, TY-NS-B increased threonine-286 (T286) phosphorylation of cyclin D1, and the mutation of T286 to alanine (T286A) blocked cyclin D1 proteasomal degradation by TY-NS-B. But the upstream factors related to cyclin D1 degradation such as ERK1/2, p38, JNK, GSK3β, PI3K, IκK or ROS did not affect cyclin D1 degradation by TY-NS-B. However, LMB treatment was observed to inhibit cyclin D1 degradation by TY-NS-B, and T286A blocked cyclin D1 degradation through suppressing cyclin D1 redistribution from nucleus to cytoplasm by TY-NS-B. In addition, TY-NS-B activated CRM1 expression. Our results suggest that TY-NS-B may suppress cell proliferation by downregulating cyclin D1 protein level through proteasomal degradation via T286 phosphorylation

  4. FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells

    PubMed Central

    Tonelli, Francesca; Lim, Keng Gat; Loveridge, Carolyn; Long, Jaclyn; Pitson, Stuart M.; Tigyi, Gabor; Bittman, Robert; Pyne, Susan; Pyne, Nigel J.

    2010-01-01

    Sphingosine kinase 1 (SK1) is an enzyme that catalyses the phosphorylation of sphingosine to produce the bioactive lipid sphingosine 1-phosphate (S1P). We demonstrate here that FTY720 (Fingolimod™) and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 catalytic activity and induce the proteasomal degradation of this enzyme in human pulmonary artery smooth muscle cells, MCF-7 breast cancer cells and androgen-independent LNCaP-AI prostate cancer cells. Proteasomal degradation of SK1 in response to FTY720 and (S)-FTY720 vinylphosphonate is associated with the down-regulation of the androgen receptor in LNCaP-AI cells. (S)-FTY720 vinylphosphonate also induces the apoptosis of these cells. These findings indicate that SK1 is involved in protecting LNCaP-AI from apoptosis. This protection might be mediated by so-called ‘inside-out’ signalling by S1P, as LNCaP-AI cells exhibit increased expression of S1P2/3 receptors and reduced lipid phosphate phosphatase expression (compared with androgen-sensitive LNCaP cells) thereby potentially increasing the bioavailability of S1P at S1P2/3 receptors. PMID:20570726

  5. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp; Tanabe-Fujimura, Chiaki; Fujita, Yu

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targetingmore » of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.« less

  6. Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells.

    PubMed

    McNaughton, Melissa; Pitman, Melissa; Pitson, Stuart M; Pyne, Nigel J; Pyne, Susan

    2016-03-29

    Sphingosine kinases (two isoforms termed SK1 and SK2) catalyse the formation of the bioactive lipid sphingosine 1-phosphate. We demonstrate here that the SK2 inhibitor, ABC294640 (3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide) or the SK1/SK2 inhibitor, SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole)) induce the proteasomal degradation of SK1a (Mr = 42 kDa) and inhibit DNA synthesis in androgen-independent LNCaP-AI prostate cancer cells. These effects are recapitulated by the dihydroceramide desaturase (Des1) inhibitor, fenretinide. Moreover, SKi or ABC294640 reduce Des1 activity in Jurkat cells and ABC294640 induces the proteasomal degradation of Des1 (Mr = 38 kDa) in LNCaP-AI prostate cancer cells. Furthermore, SKi or ABC294640 or fenretinide increase the expression of the senescence markers, p53 and p21 in LNCaP-AI prostate cancer cells. The siRNA knockdown of SK1 or SK2 failed to increase p53 and p21 expression, but the former did reduce DNA synthesis in LNCaP-AI prostate cancer cells. Moreover, N-acetylcysteine (reactive oxygen species scavenger) blocked the SK inhibitor-induced increase in p21 and p53 expression but had no effect on the proteasomal degradation of SK1a. In addition, siRNA knockdown of Des1 increased p53 expression while a combination of Des1/SK1 siRNA increased the expression of p21. Therefore, Des1 and SK1 participate in regulating LNCaP-AI prostate cancer cell growth and this involves p53/p21-dependent and -independent pathways. Therefore, we propose targeting androgen-independent prostate cancer cells with compounds that affect Des1/SK1 to modulate both de novo and sphingolipid rheostat pathways in order to induce growth arrest.

  7. Glucose Deprivation Triggers Protein Kinase C-dependent β-Catenin Proteasomal Degradation*

    PubMed Central

    Choi, Seung-Won; Song, Jun-Kyu; Yim, Ye-Seal; Yun, Ho-Geun; Chun, Kyung-Hee

    2015-01-01

    Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy. PMID:25691573

  8. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome

    PubMed Central

    Lee, Yun-Tzai Cloud; Chang, Chia-Yun; Chen, Szu-Yu; Pan, Yun-Ru; Ho, Meng-Ru; Hsu, Shang-Te Danny

    2017-01-01

    Human ubiquitin C-terminal hydrolyase UCH-L5 is a topologically knotted deubiquitinase that is activated upon binding to the proteasome subunit Rpn13. The length of its intrinsically disordered cross-over loop is essential for substrate recognition. Here, we showed that the catalytic domain of UCH-L5 exhibits higher equilibrium folding stability with an unfolding rate on the scale of 10−8 s−1, over four orders of magnitudes slower than its paralogs, namely UCH-L1 and -L3, which have shorter cross-over loops. NMR relaxation dynamics analysis confirmed the intrinsic disorder of the cross-over loop. Hydrogen deuterium exchange analysis further revealed a positive correlation between the length of the cross-over loop and the degree of local fluctuations, despite UCH-L5 being thermodynamically and kinetically more stable than the shorter UCHs. Considering the role of UCH-L5 in removing K48-linked ubiquitin to prevent proteasomal degradation of ubiquitinated substrates, our findings offered mechanistic insights into the evolution of UCH-L5. Compared to its paralogs, it is entropically stabilized to withstand mechanical unfolding by the proteasome while maintaining structural plasticity. It can therefore accommodate a broad range of substrate geometries at the cost of unfavourable entropic loss. PMID:28338014

  9. Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells.

    PubMed

    Dron, Michel; Dandoy-Dron, Françoise; Farooq Salamat, Muhammad Khalid; Laude, Hubert

    2009-08-01

    Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected.

  10. Elastase-like Activity Is Dominant to Chymotrypsin-like Activity in 20S Proteasome's β5 Catalytic Subunit.

    PubMed

    Bensinger, Dennis; Neumann, Theresa; Scholz, Christoph; Voss, Constantin; Knorr, Sabine; Kuckelkorn, Ulrike; Hamacher, Kay; Kloetzel, Peter-Michael; Schmidt, Boris

    2016-07-15

    The ubiquitin/proteasome system is the major protein degradation pathway in eukaryotes with several key catalytic cores. Targeting the β5 subunit with small-molecule inhibitors is an established therapeutic strategy for hematologic cancers. Herein, we report a mouse-trap-like conformational change that influences molecular recognition depending on the substitution pattern of a bound ligand. Variation of the size of P1 residues from the highly β5-selective proteasome inhibitor BSc2118 allows for discrimination between inhibitory strength and substrate conversion. We found that increasing molecular size strengthens inhibition, whereas decreasing P1 size accelerates substrate conversion. Evaluation of substrate hydrolysis after silencing of β5 activity reveals significant residual activity for large residues exclusively. Thus, classification of the β5 subunit as chymotrypsin-like and the use of the standard tyrosine-containing substrate should be reconsidered.

  11. Regulation of PSMB5 Protein and β Subunits of Mammalian Proteasome by Constitutively Activated Signal Transducer and Activator of Transcription 3 (STAT3)

    PubMed Central

    Vangala, Janakiram Reddy; Dudem, Srikanth; Jain, Nishant; Kalivendi, Shasi V.

    2014-01-01

    The ubiquitin-proteasome system facilitates the degradation of ubiquitin-tagged proteins and performs a regulatory role in cells. Elevated proteasome activity and subunit expression are found in several cancers. However, the inherent molecular mechanisms responsible for increased proteasome function in cancers remain unclear despite the well investigated and defined role of the mammalian proteasome. This study was initiated to elucidate the mechanisms involved in the regulation of β subunits of the mammalian proteasome. Suppression of STAT3 tyrosine phosphorylation coordinately decreased the mRNA and protein levels of the β subunits of the 20 S core complex in DU145 cells. Notably, PSMB5, a molecular target of bortezomib, was shown to be a target of STAT3. Knockdown of STAT3 decreased PSMB5 protein. Inhibition of phospho-STAT3 substantially reduced PSMB5 protein levels in cells expressing constitutively active-STAT3. Accumulation of activated STAT3 resulted in the induction of PSMB5 promoter and protein levels. In addition, a direct correlation was observed between the endogenous levels of PSMB5 and constitutively active STAT3. PSMB5 and STAT3 protein levels remained unaltered following the inhibition of proteasome activity. The EGF-induced concerted increase of β subunits was blocked by inhibition of the EGF receptor or STAT3 but not by the PI3K/AKT or MEK/ERK pathways. Decreased proteasome activities were due to reduced protein levels of catalytic subunits of the proteasome in STAT3-inhibited cells. Combined treatments with bortezomib and inhibitor of STAT3 abrogated proteasome activity and enhanced cellular apoptosis. Overall, we demonstrate that aberrant activation of STAT3 regulates the expression of β subunits, in particular PSMB5, and the catalytic activity of the proteasome. PMID:24627483

  12. Recognition of Poly-Ubiquitins by the Proteasome through Protein Refolding Guided by Electrostatic and Hydrophobic Interactions.

    PubMed

    Zhang, Yi; Vuković, Lela; Rudack, Till; Han, Wei; Schulten, Klaus

    2016-08-25

    Specificity of protein degradation by cellular proteasomes comes from tetra-ubiquitin recognition. We carry out molecular dynamics simulations to characterize how the ubiquitin receptor Rpn10 recognizes in the 26S proteasome K48-linked tetra-ubiquitin. In the binding pose, ubiquitin and Rpn10 interact primarily through hydrophobic patches. However, K48-linked tetra-ubiquitin mostly assumes a closed form in solution prior to binding, in which its hydrophobic patches are not exposed to solvent. Likewise, the hydrophobic ubiquitin interacting motifs (UIMs) of Rpn10 are mostly protected prior to binding. As a result, ubiquitin recognition in the proteasome requires refolding of both K48-linked tetra-ubiquitin and Rpn10. Simulations suggest that conserved complementary electrostatic patterns of Rpn10 and ubiquitins guide protein association (stage 1 in the recognition process), which induces refolding (stage 2), and then facilitates formation of hydrophobic contacts (stage 3). The simulations also explain why Rpn10 has a higher affinity for K48-linked tetra-ubiquitin than for mono-ubiquitin and K48-linked di- and tri-ubiquitins. Simulation results expand on the current view that the flexible arm of Rpn10 acts as an extended fragment of α-helices and flexible coils in the recognition process.

  13. Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention.

    PubMed

    Chang, Tsui-Ling; Wang, Chi-Hsien

    2013-04-01

    To look for oral proteasome inhibitors, daily injested food is the best source for cancer chemoprevention. A combination of active components from vegetables, coffee, tea, and fruit could be more efficient to inhibit 26S proteasome activities for preventing cancer diseases. Tannic acid and quercetin have been shown to strongly inhibit 26S proteasome activity, but the molecular target involved remains unknown. Overlay assay, peptide assay, Western blot, and 2-D gels were used to assess the combination of quercetin and tannic acid as a potential inhibitor. Here, we demonstrated that the combination of quercetin and tannic acid (1) synergistically suppresses chymotrypsin-, caspase-, and trypsin-like proteolytic activities, (2) are tightly binding substrates, (3) do not perturb the proteasome structure, (4) inhibit the 26S proteasome affected by ubiquitin, ATP, or β-casein, and (5) inhibit β-casein degradation by the 26S proteasome in vitro. Finally, the inhibition of the proteasome by a combination of quercetin plus tannic acid in Hep-2 cells resulted in the induction of S5a at low dose, accumulation of ubiquitin, and the cleavage of pro-caspase-3, followed by the induction of apoptotic cell death. Evaluating the combination of quercetin and tannic acid as an oral drug to prevent cancer may provide a pharmacological rationale to pursue preclinical trials of this combination.

  14. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    PubMed

    Jagoe, R T; Goldberg, A L

    2001-05-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  15. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    NASA Technical Reports Server (NTRS)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  16. The ubiquitin-proteasome pathway an emerging anticancer strategy for therapeutics: a patent analysis.

    PubMed

    Jain, Chakresh K; Arora, Shivam; Khanna, Aparna; Gupta, Money; Wadhwa, Gulshan; Sharma, Sanjeev K

    2015-01-01

    The degradation of intracellular proteins is targeted by ubiquitin via non-lysosomal proteolytic pathway in the cell system. These ubiquitin molecules have been found to be conserved from yeast to humans. Ubiquitin proteasome machinery utilises ATP and other mechanisms for degrading proteins of cytosol as well as nucleus. This process of ubiquitination is regulated by activating the E3 enzyme ligase, involved in phosphorylation. In humans, proteins which regulate the cell cycle are controlled by ubiquitin; therefore the ubiquitin-proteasome pathway can be targeted for novel anti-cancer strategies. Dysregulation of the components of the ubiquitin system has been linked to many diseases like cancer and inflammation. The primary triggering mechanism (apoptosis) of these diseases can also be induced when TNF-related apoptosis-inducing ligand (TRAIL) binds to its specific receptor DR4 and DR5. In this review, the emerging prospects and importance of ubiquitin proteasome pathway as an evolving anticancer strategy have been discussed. Current challenges in the field of drug discovery have also been discussed on the basis of recent patents on cancer diagnosis and therapeutics.

  17. Biochemical and Physical Properties of the Methanococcus jannaschii 20S Proteasome and PAN, a Homolog of the ATPase (Rpt) Subunits of the Eucaryal 26S Proteasome†

    PubMed Central

    Wilson, Heather L.; Ou, Mark S.; Aldrich, Henry C.; Maupin-Furlow, Julie

    2000-01-01

    The 20S proteasome is a self-compartmentalized protease which degrades unfolded polypeptides and has been purified from eucaryotes, gram-positive actinomycetes, and archaea. Energy-dependent complexes, such as the 19S cap of the eucaryal 26S proteasome, are assumed to be responsible for the recognition and/or unfolding of substrate proteins which are then translocated into the central chamber of the 20S proteasome and hydrolyzed to polypeptide products of 3 to 30 residues. All archaeal genomes which have been sequenced are predicted to encode proteins with up to ∼50% identity to the six ATPase subunits of the 19S cap. In this study, one of these archaeal homologs which has been named PAN for proteasome-activating nucleotidase was characterized from the hyperthermophile Methanococcus jannaschii. In addition, the M. jannaschii 20S proteasome was purified as a 700-kDa complex by in vitro assembly of the α and β subunits and has an unusually high rate of peptide and unfolded-polypeptide hydrolysis at 100°C. The 550-kDa PAN complex was required for CTP- or ATP-dependent degradation of β-casein by archaeal 20S proteasomes. A 500-kDa complex of PAN(Δ1–73), which has a deletion of residues 1 to 73 of the deduced protein and disrupts the predicted N-terminal coiled-coil, also facilitated this energy-dependent proteolysis. However, this deletion increased the types of nucleotides hydrolyzed to include not only ATP and CTP but also ITP, GTP, TTP, and UTP. The temperature optimum for nucleotide (ATP) hydrolysis was reduced from 80°C for the full-length protein to 65°C for PAN(Δ1–73). Both PAN protein complexes were stable in the absence of ATP and were inhibited by N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid. Kinetic analysis reveals that the PAN protein has a relatively high Vmax for ATP and CTP hydrolysis of 3.5 and 5.8 μmol of Pi per min per mg of protein as well as a relatively low affinity for CTP and ATP with Km values of 307 and 497

  18. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein.

    PubMed

    Chiappetta, Gennaro; Basile, Anna; Arra, Claudio; Califano, Daniela; Pasquinelli, Rosa; Barbieri, Antonio; De Simone, Veronica; Rea, Domenica; Giudice, Aldo; Pezzullo, Luciano; De Laurenzi, Vincenzo; Botti, Gerardo; Losito, Simona; Conforti, Daniela; Turco, Maria Caterina

    2012-01-01

    Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms. The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth. We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism. BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132. BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.

  19. Placing a Disrupted Degradation Motif at the C Terminus of Proteasome Substrates Attenuates Degradation without Impairing Ubiquitylation*

    PubMed Central

    Alfassy, Omri S.; Cohen, Itamar; Reiss, Yuval; Tirosh, Boaz; Ravid, Tommer

    2013-01-01

    Protein elimination by the ubiquitin-proteasome system requires the presence of a cis-acting degradation signal. Efforts to discern degradation signals of misfolded proteasome substrates thus far revealed a general mechanism whereby the exposure of cryptic hydrophobic motifs provides a degradation determinant. We have previously characterized such a determinant, employing the yeast kinetochore protein Ndc10 as a model substrate. Ndc10 is essentially a stable protein that is rapidly degraded upon exposure of a hydrophobic motif located at the C-terminal region. The degradation motif comprises two distinct and essential elements: DegA, encompassing two amphipathic helices, and DegB, a hydrophobic sequence within the loosely structured C-terminal tail of Ndc10. Here we show that the hydrophobic nature of DegB is irrelevant for the ubiquitylation of substrates containing the Ndc10 degradation motif, but is essential for proteasomal degradation. Mutant DegB, in which the hydrophobic sequence was disrupted, acted as a dominant degradation inhibitory element when expressed at the C-terminal regions of ubiquitin-dependent and -independent substrates of the 26S proteasome. This mutant stabilized substrates in both yeast and mammalian cells, indicative of a modular recognition moiety. The dominant function of the mutant DegB provides a powerful experimental tool for evaluating the physiological implications of stabilization of specific proteasome substrates in intact cells and for studying the associated pathological effects. PMID:23519465

  20. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  1. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells

    PubMed Central

    Stępiński, D.

    2012-01-01

    In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system. PMID:22688294

  2. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    PubMed

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  3. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  4. Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI

    PubMed Central

    2010-01-01

    Background Cooperation of constituents of the ubiquitin proteasome system (UPS) with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. Results To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. Conclusions It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition. PMID:20704702

  5. Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy

    PubMed Central

    Huang, Rui; Pérez, Felipe; Kay, Lewis E.

    2017-01-01

    The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of substrates that might otherwise enter the proteasome. Previously, we showed that the N-terminal residues of the α-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that, on average, two of the seven termini are localized inside the lumen of the proteasome, thereby plugging the entry pore and functioning as a gate. However, the mechanism of gating remains unclear. Using solution NMR and a labeling procedure in which a series of mixed proteasome rings are prepared such that the percentage of gate-containing subunits is varied, we address the energetics of gating and establish whether gating is a cooperative process involving the concerted action of residues from more than a single protomer. Our results establish that the intrinsic probability of a gate entering the lumen favors the in state by close to 20-fold, that entry of each gate is noncooperative, with the number of gates that can be accommodated inside the lumen a function of the substrate entry pore size and the bulkiness of the gating residues. Insight into the origin of the high affinity for the in state is obtained from spin-relaxation experiments. More generally, our approach provides an avenue for dissecting interactions of individual protomers in homo-oligomeric complexes. PMID:29087330

  6. Predictors of patients who will develop prolonged occult hypoperfusion following blunt trauma.

    PubMed

    Schulman, Andrew M; Claridge, Jeffrey A; Carr, Gordon; Diesen, Diana L; Young, Jeffrey S

    2004-10-01

    Prolonged occult hypoperfusion or POH (serum lactate >2.4 mmol/L persisting >12 hours from admission) represents a reversible risk factor for adverse outcomes following traumatic injury. We hypothesized that patients at increased risk for POH could be identified at the time of admission. Prospective data from adult trauma admissions between January 1, 1998 and December 31, 2000 were analyzed. Potential risk factors for POH were determined by univariate analysis (p < or =0.10= significant). Significant factors were tested in a logistic regression model (LR) (p < or =0.05= significant). The predictive ability of the LR was tested by receiver operating curve (ROC) analysis (p < or =0.05= significant). Three hundred seventy-eight patients were analyzed, 129 with POH. Injury Severity Score (ISS), emergency department Glasgow Coma Scale score, hypotension, and the individual Abbreviated Injury Scale score (AIS) for Head (H), Abdominal/Pelvic Viscera (A) and Pelvis/Bony Extremity (P) were significantly associated with POH. LR demonstrated that ISS, A-AIS > or =3 and P-AIS > or =3 were independent predictors of POH (p <0.05). ROC analysis of the LR equation was statistically significant (Area=0.69, p <0.001). We identified factors at admission that placed patients at higher risk for developing POH. Select patients may benefit from rapid, aggressive monitoring and resuscitation, possibly preventing POH and its associated morbidity and mortality.

  7. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system.

    PubMed

    Bragoszewski, Piotr; Turek, Michal; Chacinska, Agnieszka

    2017-04-01

    Mitochondria are pivotal organelles in eukaryotic cells. The complex proteome of mitochondria comprises proteins that are encoded by nuclear and mitochondrial genomes. The biogenesis of mitochondrial proteins requires their transport in an unfolded state with a high risk of misfolding. The mislocalization of mitochondrial proteins is deleterious to the cell. The electron transport chain in mitochondria is a source of reactive oxygen species that damage proteins. Mitochondrial dysfunction is linked to many pathological conditions and, together with the loss of cellular protein homeostasis (proteostasis), are hallmarks of ageing and ageing-related degeneration diseases. The pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, has been associated with mitochondrial and proteostasis failure. Thus, mitochondrial proteins require sophisticated surveillance mechanisms. Although mitochondria form a proteasome-exclusive compartment, multiple lines of evidence indicate a crucial role for the cytosolic ubiquitin-proteasome system (UPS) in the quality control of mitochondrial proteins. The proteasome affects mitochondrial proteins at stages of their biogenesis and maturity. The effects of the UPS go beyond the removal of damaged proteins and include the adjustment of mitochondrial proteome composition, the regulation of organelle dynamics and the protection of cellular homeostasis against mitochondrial failure. In turn, mitochondrial activity and mitochondrial dysfunction adjust the activity of the UPS, with implications at the cellular level. © 2017 The Authors.

  8. Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system

    PubMed Central

    Bragoszewski, Piotr; Turek, Michal

    2017-01-01

    Mitochondria are pivotal organelles in eukaryotic cells. The complex proteome of mitochondria comprises proteins that are encoded by nuclear and mitochondrial genomes. The biogenesis of mitochondrial proteins requires their transport in an unfolded state with a high risk of misfolding. The mislocalization of mitochondrial proteins is deleterious to the cell. The electron transport chain in mitochondria is a source of reactive oxygen species that damage proteins. Mitochondrial dysfunction is linked to many pathological conditions and, together with the loss of cellular protein homeostasis (proteostasis), are hallmarks of ageing and ageing-related degeneration diseases. The pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, has been associated with mitochondrial and proteostasis failure. Thus, mitochondrial proteins require sophisticated surveillance mechanisms. Although mitochondria form a proteasome-exclusive compartment, multiple lines of evidence indicate a crucial role for the cytosolic ubiquitin–proteasome system (UPS) in the quality control of mitochondrial proteins. The proteasome affects mitochondrial proteins at stages of their biogenesis and maturity. The effects of the UPS go beyond the removal of damaged proteins and include the adjustment of mitochondrial proteome composition, the regulation of organelle dynamics and the protection of cellular homeostasis against mitochondrial failure. In turn, mitochondrial activity and mitochondrial dysfunction adjust the activity of the UPS, with implications at the cellular level. PMID:28446709

  9. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility

    PubMed Central

    Young, Barry P.; Loewen, Christopher J.; Mayor, Thibault

    2016-01-01

    Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207

  10. Pulmonary manifestations of Birt-Hogg-Dubé syndrome

    PubMed Central

    Seyama, Kuniaki; McCormack, Francis X.

    2015-01-01

    Birt-Hogg-Dubé syndrome (BHD) is a rare, autosomal dominant disorder characterized by the development of hair follicle tumors, renal tumors and pulmonary cysts. BHD is caused by heterozygous, predominantly truncating mutations in the folliculin (FLCN) gene located on chromosome 17, which encodes a highly conserved tumor suppressor protein. Although management of renal tumors of low malignant potential is the primary focus of longitudinal care, pulmonary manifestations including cyst formation and spontaneous pneumothorax are among the most common manifestations in BHD. Due to the lack of awareness, there is commonly a delay in the pulmonary diagnosis of BHD and patients are frequently mislabeled as having chronic obstructive lung disease, emphysema or common bullae/blebs. A family history of pneumothorax is present in 35 % of patients with BHD. Certain imaging characteristics of the cysts, including size, basilar and peripheral predominance, perivascular and periseptal localization, and elliptical or lentiform shape can suggest the diagnosis of BHD based on inspection of the chest CT scan alone. Recurrent pneumothoraces are common and early pleurodesis is recommended. A better understanding of role of FLCN in pulmonary cyst formation and long term studies to define the natural history of the pulmonary manifestations of BHD are needed. PMID:23715758

  11. Sporadic renal angiomyolipoma in a patient with Birt-Hogg-Dubé: chaperones in pathogenesis.

    PubMed

    Sager, Rebecca A; Woodford, Mark R; Shapiro, Oleg; Mollapour, Mehdi; Bratslavsky, Gennady

    2018-04-24

    Birt-Hogg-Dubé (BHD) is an autosomal dominant genetic syndrome caused by germline mutations in the FLCN gene that predisposes patients to develop renal tumors. Renal angiomyolipoma (AML) is not a renal tumor sub-type associated with BHD. AML is, however, a common phenotypic manifestation of Tuberous Sclerosis Complex (TSC) syndrome caused by mutations in either the TSC1 or TSC2 tumor suppressor genes. Previous case reports of renal AML in patients with BHD have speculated on the molecular and clinical overlap of these two syndromes as a result of described involvement of the gene products in the mTOR pathway. Our recent work provided a new molecular link between these two syndromes by identifying FLCN and Tsc2 as clients of the molecular chaperone Hsp90. Folliculin interacting proteins FNIP1/2 and Tsc1 are important for FLCN and Tsc2 stability as new Hsp90 co-chaperones. Here we present a case of sporadic AML as a result of somatic Tsc1/2 loss in a patient with BHD. We further demonstrate that FNIP1 and Tsc1 are capable of compensating for each other in the chaperoning of mutated FLCN tumor suppressor. Our findings demonstrate interconnectivity and compensatory mechanisms between the BHD and TSC pathways.

  12. Inhibition of the ubiquitin-proteasome activity prevents glutamate transporter degradation and morphine tolerance.

    PubMed

    Yang, Liling; Wang, Shuxing; Lim, Grewo; Sung, Backil; Zeng, Qing; Mao, Jianren

    2008-12-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis and neurotoxicity. Recently, we have shown that downregulation of glutamate transporters after chronic morphine exposure contributed to the development of morphine tolerance. In the present study, we examined whether regulation of the glutamate transporter expression with the proposed proteasome inhibitor MG-132 would contribute to the development of tolerance to repeated intrathecal (twice daily x 7 days) morphine administration in rats. The results showed that MG-132 (5 nmol) given intrathecally blocked morphine-induced glutamate transporter downregulation and the decrease in glutamate uptake activity within the spinal cord dorsal horn. Co-administration of morphine (15 nmol) with MG-132 (vehicle=1<2.5<5=10 nmol) also dose-dependently prevented the development of morphine tolerance in rats. These findings suggest that prevention of spinal glutamate transporter downregulation may regulate the glutamatergic function that has been implicated in the development of morphine tolerance. The possible relationship between MG-132-mediated regulation of glutamate transporters, ubiquitin-proteasome system, and the cellular mechanisms of morphine tolerance is discussed in light of these findings.

  13. Response of the Ubiquitin-Proteasome System to Memory Retrieval After Extended-Access Cocaine or Saline Self-Administration.

    PubMed

    Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E

    2015-12-01

    The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.

  14. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  15. The cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells.

    PubMed

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on γ-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (GαsQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of GαsQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after γ-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2'-O-Me-cAMP and restored XRCC1 protein level following γ-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. CSN-associated USP48 confers stability to nuclear NF-κB/RelA by trimming K48-linked Ub-chains.

    PubMed

    Schweitzer, Katrin; Naumann, Michael

    2015-02-01

    Diligent balance of nuclear factor kappa B (NF-κB) activity is essential owing to NF-κB's decisive role in cellular processes including inflammation, immunity and cell survival. Ubiquitin/proteasome-system (UPS)-dependent degradation of activated NF-κB/RelA involves the cullin-RING-ubiquitin-ligase (CRL) ECS(SOCS1). The COP9 signalosome (CSN) controls ubiquitin (Ub) ligation by CRLs through the removal of the CRL-activating Ub-like modifier NEDD8 from their cullin subunits and through deubiquitinase (DUB) activity of associated DUBs. However, knowledge about DUBs involved in the regulation of NF-κB activity within the nucleus is scarce. In this study we observed that USP48, a DUB of hitherto ill-defined function identified through a siRNA screen, associates with the CSN and RelA in the nucleus. We show that USP48 trims rather than completely disassembles long K48-linked free and substrate-anchored Ub-chains, a catalytic property only shared with ataxin-3 (Atx3) and otubain-1 (OTU1), and that USP48 Ub-chain-trimming activity is regulated by casein-kinase-2 (CK2)-mediated phosphorylation in response to cytokine-stimulation. Functionally, we demonstrate for the first time the CSN and USP48 to cooperatively stabilize the nuclear pool of RelA, thereby facilitating timely induction and shutoff of NF-κB target genes. In summary, this study demonstrates that USP48, a nuclear DUB regulated by CK2, controls the UPS-dependent turnover of activated NF-κB/RelA in the nucleus together with the CSN. Thereby USP48 contributes to a timely control of immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins.

    PubMed

    Bonuccelli, Gloria; Sotgia, Federica; Schubert, William; Park, David S; Frank, Philippe G; Woodman, Scott E; Insabato, Luigi; Cammer, Michael; Minetti, Carlo; Lisanti, Michael P

    2003-10-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.

  18. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation

    PubMed Central

    Śledź, Paweł; Unverdorben, Pia; Beck, Florian; Pfeifer, Günter; Schweitzer, Andreas; Förster, Friedrich; Baumeister, Wolfgang

    2013-01-01

    The 26S proteasome is a 2.5-MDa, ATP-dependent multisubunit proteolytic complex that processively destroys proteins carrying a degradation signal. The proteasomal ATPase heterohexamer is a key module of the 19S regulatory particle; it unfolds substrates and translocates them into the 20S core particle where degradation takes place. We used cryoelectron microscopy single-particle analysis to obtain insights into the structural changes of 26S proteasome upon the binding and hydrolysis of ATP. The ATPase ring adopts at least two distinct helical staircase conformations dependent on the nucleotide state. The transition from the conformation observed in the presence of ATP to the predominant conformation in the presence of ATP-γS induces a sliding motion of the ATPase ring over the 20S core particle ring leading to an alignment of the translocation channels of the ATPase and the core particle gate, a conformational state likely to facilitate substrate translocation. Two types of intersubunit modules formed by the large ATPase domain of one ATPase subunit and the small ATPase domain of its neighbor exist. They resemble the contacts observed in the crystal structures of ClpX and proteasome-activating nucleotidase, respectively. The ClpX-like contacts are positioned consecutively and give rise to helical shape in the hexamer, whereas the proteasome-activating nucleotidase-like contact is required to close the ring. Conformational switching between these forms allows adopting different helical conformations in different nucleotide states. We postulate that ATP hydrolysis by the regulatory particle ATPase (Rpt) 5 subunit initiates a cascade of conformational changes, leading to pulling of the substrate, which is primarily executed by Rpt1, Rpt2, and Rpt6. PMID:23589842

  19. Characterization of Puma-Dependent and Puma-Independent Neuronal Cell Death Pathways following Prolonged Proteasomal Inhibition▿

    PubMed Central

    Tuffy, Liam P.; Concannon, Caoimhín G.; D'Orsi, Beatrice; King, Matthew A.; Woods, Ina; Huber, Heinrich J.; Ward, Manus W.; Prehn, Jochen H. M.

    2010-01-01

    Proteasomal stress and the accumulation of polyubiquitinated proteins are key features of numerous neurodegenerative disorders. Previously we demonstrated that stabilization of p53 and activation of its target gene, puma (p53-upregulated mediator of apoptosis), mediated proteasome inhibitor-induced apoptosis in cancer cells. Here we demonstrated that Puma also contributed to proteasome inhibitor-induced apoptosis in mouse neocortical neurons. Although protection afforded by puma gene deletion was incomplete, we found little evidence indicating contributions from other proapoptotic BH3-only proteins. Attenuation of bax expression did not further reduce Puma-independent apoptosis, suggesting that pathways other than the mitochondrial apoptosis pathway were activated. Real-time imaging experiments in wild-type and puma-deficient neurons using a fluorescence resonance energy transfer (FRET)-based caspase sensor confirmed the involvement of a second cell death pathway characterized by caspase activation prior to mitochondrial permeabilization and, more prominently, a third, caspase-independent and Puma-independent pathway characterized by rapid cell shrinkage and nuclear condensation. This pathway involved lysosomal permeabilization in the absence of autophagy activation and was sensitive to cathepsin but not autophagy inhibition. Our data demonstrate that proteasomal stress activates distinct cell death pathways in neurons, leading to both caspase-dependent and caspase-independent apoptosis, and demonstrate independent roles for Puma and lysosomal permeabilization in this model. PMID:20921277

  20. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding.

    PubMed

    Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G

    2005-05-01

    Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).

  1. Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin

    PubMed Central

    Chemaly, Elie R; Kang, Soojeong; Zhang, Shihong; McCollum, LaTronya; Chen, Jiqiu; Bénard, Ludovic; Purushothaman, K-Raman; Hajjar, Roger J; Lebeche, Djamel

    2013-01-01

    Pathological left ventricle (LV) hypertrophy (LVH) results in reactive and replacement fibrosis. Volume overload LVH (VOH) is less profibrotic than pressure overload LVH (POH). Studies attribute subendocardial fibrosis in POH to ischaemia, and reduced fibrosis in VOH to collagen degradation favouring dilatation. However, the mechanical origin of the relative lack of fibrosis in VOH is incompletely understood. We hypothesized that reduced ischaemia propensity in VOH compared to POH accounted for the reduced replacement fibrosis, along with reduced reactive fibrosis. Rats with POH (ascending aortic banding) evolved into either compensated-concentric POH (POH-CLVH) or dilated cardiomyopathy (POH-DCM); they were compared to VOH (aorta–caval fistula). We quantified LV fibrosis, structural and haemodynamic factors of ischaemia propensity, and the activation of profibrotic pathways. Fibrosis in POH-DCM was severe, subendocardial and subepicardial, in contrast with subendocardial fibrosis in POH-CLVH and nearly no fibrosis in VOH. The propensity for ischaemia was more important in POH versus VOH, explaining different patterns of replacement fibrosis. LV collagen synthesis and maturation, and matrix metalloproteinase-2 expression, were more important in POH. The angiotensin II-transforming growth-factor β axis was enhanced in POH, and connective tissue growth factor (CTGF) was overexpressed in all types of LVH. LV resistin expression was markedly elevated in POH, mildly elevated in VOH and independently reflected chronic ischaemic injury after myocardial infarction. In vitro, resistin is induced by angiotensin II and induces CTGF in cardiomyocytes. Based on these findings, we conclude that a reduced ischaemia propensity and attenuated upstream reactive fibrotic pathways account for the attenuated fibrosis in VOH versus POH. PMID:24018949

  2. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    PubMed

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc

  3. Effects of Physician-Based Preventive Oral Health Services on Dental Caries.

    PubMed

    Kranz, Ashley M; Preisser, John S; Rozier, R Gary

    2015-07-01

    Most Medicaid programs reimburse nondental providers for preventive dental services. We estimate the impact of comprehensive preventive oral health services (POHS) on dental caries among kindergarten students, hypothesizing improved oral health among students with medical visits with POHS. We conducted a retrospective study in 29,173 kindergarten students by linking Medicaid claims (1999-2006) with public health surveillance data (2005-2006). Zero-inflated regression models estimated the association between number of visits with POHS and (1) decayed, missing, and filled primary teeth (dmft) and (2) untreated decayed teeth while adjusting for confounding. Kindergarten students with ≥4 POHS visits averaged an adjusted 1.82 dmft (95% confidence interval: 1.55 to 2.09), which was significantly less than students with 0 visits (2.21 dmft; 95% confidence interval: 2.16 to 2.25). The mean number of untreated decayed teeth was not reduced for students with ≥4 POHS visits compared with those with 0 visits. POHS provided by nondental providers in medical settings were associated with a reduction in caries experience in young children but were not associated with improvement in subsequent use of treatment services in dental settings. Efforts to promote oral health in medical settings should continue. Strategies to promote physician-dentist collaborations are needed to improve continuity of care for children receiving dental services in medical settings. Copyright © 2015 by the American Academy of Pediatrics.

  4. Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness

    NASA Technical Reports Server (NTRS)

    Harris, Todd S.; Baicu, Catalin F.; Conrad, Chester H.; Koide, Masaaki; Buckley, J. Michael; Barnes, Mary; Cooper, George 4th; Zile, Michael R.

    2002-01-01

    Recent studies have suggested that pressure overload hypertrophy (POH) alters the viscoelastic properties of individual cardiocytes when studied in isolation. However, whether these changes in cardiocyte properties contribute causally to changes in the material properties of the cardiac muscle as a whole is unknown. Accordingly, a selective, isolated, acute change in cardiocyte constitutive properties was imposed in an in vitro system capable of measuring the resultant effect on the material properties of the composite cardiac muscle. POH caused an increase in both myocardial elastic stiffness, from 20.5 +/- 1.3 to 28.4 +/- 1.8, and viscous damping, from 15.2 +/- 1.1 to 19.8 +/- 1.5 s (normal vs. POH, P < 0.05), respectively. Recent studies have shown that cardiocyte constitutive properties could be acutely altered by depolymerizing the microtubules with colchicine. Colchicine caused a significant decrease in the viscous damping in POH muscles (19.8 +/- 1.5 s at baseline vs. 14.7 +/- 1.3 s after colchicine, P < 0.05). Therefore, myocardial material properties can be altered by selectively changing the constitutive properties of one element within this muscle tissue, the cardiocyte. Changes in the constitutive properties of the cardiocytes themselves contribute to the abnormalities in myocardial stiffness and viscosity that develop during POH.

  5. Molecular genetics and clinical features of Birt-Hogg-Dubé syndrome.

    PubMed

    Schmidt, Laura S; Linehan, W Marston

    2015-10-01

    Birt-Hogg-Dubé (BHD) syndrome is an inherited renal cancer syndrome in which affected individuals are at risk of developing benign cutaneous fibrofolliculomas, bilateral pulmonary cysts and spontaneous pneumothoraces, and kidney tumours. Bilateral multifocal renal tumours that develop in BHD syndrome are most frequently hybrid oncocytic tumours and chromophobe renal carcinoma, but can present with other histologies. Germline mutations in the FLCN gene on chromosome 17 are responsible for BHD syndrome--BHD-associated renal tumours display inactivation of the wild-type FLCN allele by somatic mutation or chromosomal loss, confirming that FLCN is a tumour suppressor gene that fits the classic two-hit model. FLCN interacts with two novel proteins, FNIP1 and FNIP2, and with AMPK, a negative regulator of mTOR. Studies with FLCN-deficient cell and animal models support a role for FLCN in modulating the AKT-mTOR pathway. Emerging evidence links FLCN with a number of other molecular pathways and cellular processes important for cell homeostasis that are frequently deregulated in cancer, including regulation of TFE3 and/or TFEB transcriptional activity, amino-acid-dependent mTOR activation through Rag GTPases, TGFβ signalling, PGC1α-driven mitochondrial biogenesis, and autophagy. Currently, surgical intervention is the only therapy available for BHD-associated renal tumours, but improved understanding of the FLCN pathway will hopefully lead to the development of effective forms of targeted systemic therapy for this disease.

  6. Molecular Genetics and Clinical Features of Birt-Hogg-Dubé-Syndrome

    PubMed Central

    Schmidt, Laura S.; Linehan, W. Marston

    2016-01-01

    Birt-Hogg-Dubé (BHD) syndrome is an inherited renal cancer syndrome in which affected individuals are at risk to develop benign, cutaneous fibrofolliculomas, bilateral pulmonary cysts and spontaneous pneumothoraces, and kidney tumors. Bilateral multifocal renal tumors that develop in BHD syndrome are most frequently hybrid oncocytic tumors and chromophobe renal carcinoma, but may present with other histologies. Germline mutations in the FLCN gene on chromosome 17 are responsible for BHD syndrome. BHD-associated renal tumors show inactivation of the wild-type FLCN allele by somatic mutation or chromosomal loss, confirming that FLCN is a tumor suppressor gene that fits the classic two-hit model. FLCN interacts with two novel proteins, FNIP1 and FNIP2, and with AMPK, a negative regulator of mTOR. Studies with FLCN-deficient cell and animal models support a role for FLCN in modulating the AKT-mTOR pathway. Emerging evidence links FLCN with a number of other molecular pathways and cellular processes important for cell homeostasis that are frequently deregulated in cancer, including regulation of TFE3/TFEB transcriptional activity, amino acid-dependent mTOR activation through Rag GTPases, TGF-β signaling, PGC1α-driven mitochondrial biogenesis, and autophagy. Currently, surgical intervention is the only therapy available for BHD-associated renal tumors. Further understanding of the FLCN pathway will hopefully lead to the development of effective forms of therapy for this disease. PMID:26334087

  7. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  8. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain

    PubMed Central

    Sakata, Eri; Yamaguchi, Yoshiki; Kurimoto, Eiji; Kikuchi, Jun; Yokoyama, Shigeyuki; Yamada, Shingo; Kawahara, Hiroyuki; Yokosawa, Hideyoshi; Hattori, Nobutaka; Mizuno, Yoshikuni; Tanaka, Keiji; Kato, Koichi

    2003-01-01

    Parkin, a product of the causative gene of autosomal-recessive juvenile parkinsonism (AR-JP), is a RING-type E3 ubiquitin ligase and has an amino-terminal ubiquitin-like (Ubl) domain. Although a single mutation that causes an Arg to Pro substitution at position 42 of the Ubl domain (the Arg 42 mutation) has been identified in AR-JP patients, the function of this domain is not clear. In this study, we determined the three-dimensional structure of the Ubl domain of parkin by NMR, in particular by extensive use of backbone 15N-1H residual dipolar-coupling data. Inspection of chemical-shift-perturbation data showed that the parkin Ubl domain binds the Rpn10 subunit of 26S proteasomes via the region of parkin that includes position 42. Our findings suggest that the Arg 42 mutation induces a conformational change in the Rpn10-binding site of Ubl, resulting in impaired proteasomal binding of parkin, which could be the cause of AR-JP. PMID:12634850

  9. Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro.

    PubMed

    Yi, Young-Joo; Manandhar, Gaurishankar; Sutovsky, Miriam; Jonáková, Vera; Park, Chang-Sik; Sutovsky, Peter

    2010-03-01

    The 26S proteoasome is a multi-subunit protease specific to ubiquitinated substrate proteins. It is composed of a 20S proteasomal core with substrate degradation activity, and a 19S regulatory complex that acts in substrate recognition, deubiquitination, priming and transport to the 20S core. Inhibition of proteolytic activities associated with the sperm acrosome-borne 20S core prevents fertilization in mammals, ascidians and echinoderms. Less is known about the function of the proteasomal 19S complex during fertilization. The present study examined the role of PSMD8, an essential non-ATPase subunit of the 19S complex, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Immunofluorescence localized PSMD8 to the outer acrosomal membrane, acrosomal matrix and the inner acrosomal membrane. Colloidal gold transmission electron microscopy detected PSMD8 on the surface of vesicles in the acrosomal shroud, formed as a result of zona pellucida-induced acrosomal exocytosis. Contrary to the inhibition of fertilization by blocking of the 20S core activities, fertilization and polyspermy rates were increased by adding anti-PSMD8 antibody to fertilization medium. This observation is consistent with a possible role of PSMD8 in substrate deubiquitination, a process which when blocked, may actually accelerate substrate proteolysis by the 26S proteasome. Subunit PSMD8 co-immunoprecipitated with acrosomal surface-associated spermadhesin AQN1. This association indicates that the sperm acrosome-borne proteasomes become exposed onto the sperm surface following the acrosomal exocytosis. Since immunological blocking of subunit PSMD8 increases the rate of polyspermy during porcine fertilization, the activity of the 19S complex may be a rate-limiting factor contributing to anti-polyspermy defense during porcine fertilization. Copyright 2009. Published by Elsevier Ireland Ltd.

  10. Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system.

    PubMed

    Patrick, Gentry N

    2006-02-01

    The formation of synaptic connections during the development of the nervous system requires the precise targeting of presynaptic and postsynaptic compartments. Furthermore, synapses are continually modified in the brain by experience. Recently, the ubiquitin proteasome system has emerged as a key regulator of synaptic development and function. The modification of proteins by ubiquitin, and in many cases their subsequent proteasomal degradation, has proven to be an important mechanism to control protein stability, activity and localization at synapses. Recent work has highlighted key questions of the UPS during the development and remodeling of synaptic connections in the nervous system.

  11. Proteasome inhibitor bortezomib enhances the effect of standard chemotherapy in small cell lung cancer.

    PubMed

    Taromi, Sanaz; Lewens, Florentine; Arsenic, Ruza; Sedding, Dagmar; Sänger, Jörg; Kunze, Almut; Möbs, Markus; Benecke, Joana; Freitag, Helma; Christen, Friederike; Kaemmerer, Daniel; Lupp, Amelie; Heilmann, Mareike; Lammert, Hedwig; Schneider, Claus-Peter; Richter, Karen; Hummel, Michael; Siegmund, Britta; Burger, Meike; Briest, Franziska; Grabowski, Patricia

    2017-11-14

    Small cell lung cancer (SCLC) is an aggressive cancer showing a very poor prognosis because of metastasis formation at an early stage and acquisition of chemoresistance. One key driver of chemoresistance is the transcription factor Forkhead box protein M1 (FOXM1) that regulates cell cycle proliferation, maintenance of genomic stability, DNA damage response, and cell differentiation in numerous tumor entities. In this study we investigated the role of FOXM1 in SCLC progression and analyzed the effect of FOXM1 inhibition using two proteasome inhibitors, bortezomib and siomycin A. FOXM1 was strongly expressed in patient-derived SCLC samples (n=123) and its nuclear localization was associated with the proliferation marker Ki-67. Both proteasome inhibitors successfully inhibited FOXM1 expression leading to a significantly reduced proliferation and a decreased mitotic rate along with cell cycle arrest and apoptosis induction. These effects were further enhanced by addition of bortezomib to standard chemotherapy. Treatment of mice bearing chemoresistant SCLC xenografts with bortezomib reduced the mean bioluminescence signal of tumors by 54%. Similarly, treatment with cisplatin as a standard chemotherapy reduced the mean bioluminescence signal of tumors by 58%. However, in combination with standard chemotherapy bortezomib further reduced the mean bioluminescence signal by 93% (p=0.0258). In conclusion, we demonstrate the effect of bortezomib in inhibiting FOXM1 expression and thus in sensitizing resistant SCLC cells to standard chemotherapy. Thus, addition of bortezomib to standard chemotherapy might potently improve SCLC therapy, particularly in an extensive cancer stage.

  12. Genetic myostatin decrease in the golden retriever muscular dystrophy model does not significantly affect the ubiquitin proteasome system despite enhancing the severity of disease.

    PubMed

    Cotten, Steven W; Kornegay, Joe N; Bogan, Daniel J; Wadosky, Kristine M; Patterson, Cam; Willis, Monte S

    2013-01-01

    Recent studies suggest that inhibiting the protein myostatin, a negative regulator of skeletal muscle mass, may improve outcomes in patients with Duchenne muscular dystrophy by enhancing muscle mass. When the dystrophin-deficient golden retriever muscular dystrophy (GRMD) dog was bred with whippets having a heterozygous mutation for the myostatin gene, affected GRMD dogs with decreased myostatin (GRippets) demonstrated an accelerated physical decline compared to related affected GRMD dogs with full myostatin. To examine the role of the ubiquitin proteasome and calpain systems in this accelerated decline, we determined the expression of the muscle ubiquitin ligases MuRF1, Atrogin-1, RNF25, RNF11, and CHIP: the proteasome subunits PSMA6, PSMB4, and PSME1: and calpain 1/2 by real time PCR in the cranial sartorius and vastus lateralis muscles in control, affected GRMD, and GRippet dogs. While individual affected GRMD and GRippet dogs contributed to an increased variability seen in ubiquitin ligase expression, neither group was significantly different from the control group. The affected GRMD dogs demonstrated significant increases in caspase-like and trypsin-like activity in the cranial sartorius; however, all three proteasome activities in the GRippet muscles did not differ from controls. Increased variability in calpain 1 and calpain 2 expression and activity in the affected GRMD and GRippet groups were identified, but no statistical differences from the control group were seen. These studies suggest a role of myostatin in the disease progression of GRMD, which does not significantly involve key components of the ubiquitin proteasome and calpain systems involved in the protein quality control of sarcomere and other structural skeletal muscle proteins.

  13. Synthesis and Proteasome Inhibition of Glycyrrhetinic Acid Derivatives

    PubMed Central

    Huang, Li; Yu, Donglei; Ho, Phong; Qian, Keduo; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2008-01-01

    This study discovered that glycyrrhetinic acid inhibited the human 20S proteasome at 22.3 µM. Esterification of the C-3 hydroxyl group on glycyrrhetinic acid with various carboxylic acid reagents yielded a series of analogs with marked improved potency. Among the derivatives, glycyrrhetinic acid 3-O-isophthalate (17) was the most potent compound with IC50 of 0.22 µM, which was approximately 100-fold more potent than glycyrrhetinic acid. PMID:18562200

  14. STAT3 Potentiates SIAH-1 Mediated Proteasomal Degradation of β-Catenin in Human Embryonic Kidney Cells.

    PubMed

    Shin, Minkyung; Yi, Eun Hee; Kim, Byung-Hak; Shin, Jae-Cheon; Park, Jung Youl; Cho, Chung-Hyun; Park, Jong-Wan; Choi, Kang-Yell; Ye, Sang-Kyu

    2016-11-30

    The β-catenin functions as an adhesion molecule and a component of the Wnt signaling pathway. In the absence of the Wnt ligand, β-catenin is constantly phosphorylated, which designates it for degradation by the APC complex. This process is one of the key regulatory mechanisms of β-catenin. The level of β-catenin is also controlled by the E3 ubiquitin protein ligase SIAH-1 via a phosphorylation-independent degradation pathway. Similar to β-catenin, STAT3 is responsible for various cellular processes, such as survival, proliferation, and differentiation. However, little is known about how these molecules work together to regulate diverse cellular processes. In this study, we investigated the regulatory relationship between STAT3 and β-catenin in HEK293T cells. To our knowledge, this is the first study to report that β-catenin-TCF-4 transcriptional activity was suppressed by phosphorylated STAT3; furthermore, STAT3 inactivation abolished this effect and elevated activated β-catenin levels. STAT3 also showed a strong interaction with SIAH-1, a regulator of active β-catenin via degradation, which stabilized SIAH-1 and increased its interaction with β-catenin. These results suggest that activated STAT3 regulates active β-catenin protein levels via stabilization of SIAH-1 and the subsequent ubiquitin-dependent proteasomal degradation of β-catenin in HEK293T cells.

  15. Schizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening.

    PubMed

    Calcaterra, Nicholas E; Hoeppner, Daniel J; Wei, Huijun; Jaffe, Andrew E; Maher, Brady J; Barrow, James C

    2016-02-16

    The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K(+)channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor trafficking via the lack of an intact channel-stabilizing Per-Ant-Sim (PAS) domain. Here we characterize Kv11.1-3.1 cellular localization and show decreased channel expression and cell surface trafficking relative to the PAS-domain containing major isoform, Kv11.1-1A. Using small molecule inhibition of proteasome degradation, cellular expression and plasma membrane trafficking are rescued. These findings implicate the importance of the unfolded-protein response and endoplasmic reticulum associated degradation pathways in the expression and regulation of this schizophrenia risk factor. Utilizing this identified phenomenon, an electrophysiological and high throughput in-vitro fluorescent assay platform has been developed for drug discovery in order to explore a potentially new class of cognitive therapeutics.

  16. The ABCs of BHD: An In-Depth Review of Birt-Hogg-Dubé Syndrome.

    PubMed

    Gupta, Shiva; Kang, Hyunseon C; Ganeshan, Dhakshinamoorthy; Morani, Ajaykumar; Gautam, Rabindra; Choyke, Peter L; Kundra, Vikas

    2017-12-01

    Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant inherited syndrome involving multiple organs. In young patients, renal neoplasms that are multiple, bilateral, or both, such as oncocytomas, chromophobe renal cell carcinoma (RCC), hybrid chromophobe RCC-oncocytomas, clear cell RCC, and papillary RCC, can suggest BHD syndrome. Extrarenal findings, including dermal lesions, pulmonary cysts, and spontaneous pneumothoraces, also aid in diagnosis. Radiologists may be one of the first medical specialists to suggest the diagnosis of BHD syndrome. Knowledge of pathogenesis and management, including the importance of the types of renal neoplasms in a given patient, is needed to properly recognize this rare condition.

  17. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia.

    PubMed

    Graham, Steven H; Liu, Hao

    2017-03-01

    The ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), an important component of the UPP in the neuron, is covalently modified and its activity inhibited by reactive lipids produced after ischemia. As a result, degradation of toxic proteins is impaired which may exacerbate neuronal function and cell death in stroke and neurodegenerative diseases. Preserving or restoring UCHL1 activity may be an effective therapeutic strategy in stroke and neurodegenerative diseases. Published by Elsevier B.V.

  18. Proteasome and NF-kappaB inhibiting phaeophytins from the green alga Cladophora fascicularis.

    PubMed

    Huang, Xinping; Li, Min; Xu, Bo; Zhu, Xiaobin; Deng, Zhiwei; Lin, Wenhan

    2007-03-21

    Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1), along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-alpha) induced nuclear factor-kappaB (NF-kappaB) activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.

  19. Smoking Cessation Can Reduce the Incidence of Postoperative Hypoxemia After On-Pump Coronary Artery Bypass Grafting Surgery.

    PubMed

    Guan, Zheng; Lv, Yi; Liu, Jingjie; Liu, Lin; Yuan, Hui; Shen, Xin

    2016-12-01

    To determine whether smoking cessation can reduce the incidence of postoperative hypoxemia (POH) after on-pump coronary artery bypass grafting (CABG) surgery. Prospective, single-center, observational study. Single-center university teaching hospital. The study comprised 300 patients undergoing on-pump CABG surgery who met the inclusion criteria. Patients were divided into the following 3 groups according to smoking status: sustained quitters (n = 132)-smoking cessation for more than 1 month and less than 1 year; quitters (n = 95)-smoking cessation for more than 1 week and less than 1 month; and smokers (n = 73)-smoking at least 1 cigarette per day for at least 1 year. None. The primary outcome was the incidence of POH after on-pump CABG surgery. Secondary outcomes included length of postoperative mechanical ventilation and intensive care unit stay between the POH group and non-POH group. There were significant decreases of POH incidence in the sustained quitters and quitters compared with the smokers both after intensive care unit (ICU) admission and 24 hours after surgery (18.2%, 18.9%, v 32.9%; p = 0.036 and 9.8%, 10.5%, v 26%; p = 0.003, respectively), and there was no significant difference in POH incidence between the sustained quitters and quitters. The length of postoperative mechanical ventilation was longer in smokers than in sustained quitters and quitters (15.9±6.1 h v 11.9±5.3 h and 13.0±5.8 h, respectively; p<0.05), but there were no significant differences in the length of ICU stay among the 3 groups (54.2±7.5 h v 55.1±7.5 h and 53.7±6.6 h, respectively; p = 0.333). Smoking cessation can reduce POH after on-pump CABG surgery, and it also can shorten the length of postoperative mechanical ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Ubiquitin–Proteasome System of Saccharomyces cerevisiae

    PubMed Central

    Finley, Daniel; Ulrich, Helle D.; Sommer, Thomas; Kaiser, Peter

    2012-01-01

    Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell. PMID:23028185

  1. A Case of Recurrent Pneumothorax Associated with Birt-Hogg-Dubé Syndrome Treated with Bilateral Simultaneous Surgery and Total Pleural Covering.

    PubMed

    Takegahara, Kyoshiro; Yoshino, Naoyuki; Usuda, Jitsuo

    2017-12-20

    Birt-Hogg-Dubé syndrome is an autosomal dominant genetic disorder characterized by a triad of skin tumors, renal tumors, and multiple pulmonary cysts. Our patient was a 40-year-old man with a history of recurrent bilateral pneumothorax and a family history of pneumothorax. The patient visited our department with chest pain and was diagnosed with left pneumothorax based on a chest X-ray. Thoracic computed tomography (CT) showed multiple cysts in both lungs. We performed thoracoscopic bilateral bullectomy with curative intent. Intraoperative observation showed numerous cysts in the lung apex, interlobular region, and mediastinum. We resected the cysts that we suspected to be responsible for the symptoms and ligated the lesions, and then performed total pleural covering. After surgery, genetic testing was performed. The result enabled us to diagnose Birt-Hogg-Dubé syndrome in this patient. Although the patient has developed neither recurrent pneumothorax nor any renal tumors, to date, long-term monitoring is necessary.

  2. Clinical and genetic characteristics of chinese patients with Birt-Hogg-Dubé syndrome.

    PubMed

    Liu, Yaping; Xu, Zhiyan; Feng, Ruie; Zhan, Yongzhong; Wang, Jun; Li, Guozhen; Li, Xue; Zhang, Weihong; Hu, Xiaowen; Tian, Xinlun; Xu, Kai-Feng; Zhang, Xue

    2017-05-30

    Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder, the main manifestations of which are fibrofolliculomas, renal tumors, pulmonary cysts and recurrent pneumothorax. The known causative gene for BHD syndrome is the folliculin (FLCN) gene on chromosome 17p11.2. Studies of the FLCN mutation for BHD syndrome are less prevalent in Chinese populations than in Caucasian populations. Our study aims to investigate the genotype spectrum in a group of Chinese patients with BHD. We enrolled 51 patients with symptoms highly suggestive of BHD from January 2014 to February 2017. The FLCN gene was examined using PCR and Sanger sequencing in every patient, for those whose Sanger sequencing showed negative mutation results, multiplex ligation-dependent probe amplification (MLPA) testing was conducted to detect any losses of large segments. Among the 51 patients, 27 had FLCN germline mutations. In total, 20 mutations were identified: 14 were novel mutations, including 3 splice acceptor site mutations, 2 different deletions, 6 nonsense mutations, 1 missense mutation, 1 small insertion, and 1 deletion of the whole exon 8. We found a similar genotype spectrum but different mutant loci in Chinese patients with BHD compared with European and American patients, thus providing stronger evidence for the clinical molecular diagnosis of BHD in China. It suggests that mutation analysis of the FLCN gene should be systematically conducted in patients with cystic lung diseases.

  3. The role of the ubiquitin proteasome system in the memory process.

    PubMed

    Lip, Philomena Z Y; Demasi, Marilene; Bonatto, Diego

    2017-01-01

    Quite intuitive is the notion that memory formation and consolidation is orchestrated by protein synthesis because of the synaptic plasticity necessary for those processes. Nevertheless, recent advances have begun accumulating evidences of a high requirement for protein degradation on the molecular mechanisms of the memory process in the mammalian brain. Because degradation determines protein half-life, degradation has been increasingly recognized as an important intracellular regulatory mechanism. The proteasome is the main player in the degradation of intracellular proteins. Proteasomal substrates are mainly degraded after a post-translational modification by a poly-ubiquitin chain. Latter process, namely poly-ubiquitination, is highly regulated at the step of the ubiquitin molecule transferring to the protein substrate mediated by a set of proteins whose genes represent almost 2% of the human genome. Understanding the role of polyubiquitin-mediated protein degradation has challenging researchers in many fields of investigation as a new source of targets for therapeutic intervention, e.g. E3 ligases that transfer ubiquitin moieties to the substrate. The goal of present work was to uncover mechanisms underlying memory processes regarding the role of the ubiquitin-proteasome system (UPS). For that purpose, preceded of a short review on UPS and memory processes a top-down systems biology approach was applied to establish central proteins involved in memory formation and consolidation highlighting their cross-talking with the UPS. According to that approach, the pattern of expression of several elements of the UPS were found overexpressed in regions of the brain involved in processing cortical inputs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington's disease.

    PubMed

    Liu, Yanying; Hettinger, Casey L; Zhang, Dong; Rezvani, Khosrow; Wang, Xuejun; Wang, Hongmin

    2014-05-01

    The ubiquitin proteasome system (UPS) is impaired in Huntington's disease, a devastating neurodegenerative disorder. Sulforaphane, a naturally occurring compound, has been shown to stimulate UPS activity in cell cultures. To test whether sulforaphane enhances UPS function in vivo, we treated UPS function reporter mice ubiquitously expressing the green fluorescence protein (GFP) fused to a constitutive degradation signal that promotes its rapid degradation in the conditions of a healthy UPS. The modified GFP is termed GFP UPS reporter (GFPu). We found that both GFPu and ubiquitinated protein levels were significantly reduced and the three peptidase activities of the proteasome were increased in the brain and peripheral tissues of the mice. Interestingly, sulforaphane treatment also enhanced autophagy activity in the brain and the liver. To further examine whether sulforaphane promotes mutant huntingtin (mHtt) degradation, we treated Huntington's disease cells with sulforaphane and found that sulforaphane not only enhanced mHtt degradation but also reduced mHtt cytotoxicity. Sulforaphane-mediated mHtt degradation was mainly through the UPS pathway as the presence of a proteasome inhibitor abolished this effect. Taken together, these data indicate that sulforaphane activates protein degradation machineries in both the brain and peripheral tissues and may be a therapeutic reagent for Huntington's disease and other intractable disorders. Accumulation of mutant huntingtin (mHtt) protein causes Huntington's disease (HD). Sulforaphane (SFN), a naturally occurring compound, increased proteasome and autophagy activities in vivo and enhanced mHtt turnover and cell survival in HD cell models. SFN-mediated mHtt degradation is mainly through the proteasome pathway. These data suggest that SFN can be a therapeutic reagent for treating HD and other intractable disorders. © 2014 International Society for Neurochemistry.

  5. Targeting the 19S proteasomal subunit, Rpt4, for the treatment of colon cancer.

    PubMed

    Boland, Karen; Flanagan, Lorna; McCawley, Niamh; Pabari, Ritesh; Kay, Elaine W; McNamara, Deborah A; Murray, Frank; Byrne, Annette T; Ramtoola, Zebunnissa; Concannon, Caoimhín G; Prehn, Jochen H M

    2016-06-05

    Deregulation of the ubiquitin-proteasome pathway has been frequently observed in a number of malignancies. Using quantitative Western blotting of normal and matched tumour tissue, we here identified a significant increase in the 19S proteasome subunit Rpt4 in response to chemoradiation in locally advanced rectal cancer patients with unfavourable outcome. We therefore explored the potential of Rpt4 reduction as a therapeutic strategy in colorectal cancer (CRC). Utilizing siRNA to down regulate Rpt4 expression, we show that silencing of Rpt4 reduced proteasomal activity and induced endoplasmic reticulum stress. Gene silencing of Rpt4 also inhibited cell proliferation, reduced clonogenic survival and induced apoptosis in HCT-116 colon cancer cells. We next developed a cell penetrating peptide-based nanoparticle delivery system to achieve in vivo gene silencing of Rpt4. Administration of Rpt4 siRNA nanoparticles reduced tumour growth and improved survival in a HCT-116 colon cancer xenograft tumour model in vivo. Collectively, our data suggest that inhibition of Rpt4 represents a novel strategy for the treatment of CRC. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Biological and Pathological Implications of an Alternative ATP-Powered Proteasomal Assembly With Cdc48 and the 20S Peptidase.

    PubMed

    Esaki, Masatoshi; Johjima-Murata, Ai; Islam, Md Tanvir; Ogura, Teru

    2018-01-01

    The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.

  7. The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells.

    PubMed

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  8. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    PubMed Central

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142

  9. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together

    PubMed Central

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP. PMID:22187461

  10. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors.

    PubMed

    Chen, Yun-Ju; Yeh, Ming-Hsin; Yu, Meng-Chieh; Wei, Ya-Ling; Chen, Wen-Shu; Chen, Jhen-Yu; Shih, Chih-Yu; Tu, Chih-Yen; Chen, Chia-Hung; Hsia, Te-Chun; Chien, Pei-Hsuan; Liu, Shu-Hui; Yu, Yung-Luen; Huang, Wei-Chien

    2013-11-12

    Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinical benefit from currently available targeted therapies is limited, and new therapeutic strategies are urgently needed. Triple-negative breast cancer cell lines were treated with proteasome inhibitors in combination with lapatinib (a dual epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor). Their in vitro and in vivo viability was examined by MTT assay, clonogenic analysis, and orthotopic xenograft mice model. Luciferase reporter gene, immunoblot, and RT-qPCR, immunoprecipitation assays were used to investigate the molecular mechanisms of action. Our data showed that nuclear factor (NF)-κB activation was elicited by lapatinib, independent of EGFR/HER2 inhibition, in TNBCs. Lapatinib-induced constitutive activation of NF-κB involved Src family kinase (SFK)-dependent p65 and IκBα phosphorylations, and rendered these cells more vulnerable to NF-κB inhibition by p65 small hairpin RNA. Lapatinib but not other EGFR inhibitors synergized the anti-tumor activity of proteasome inhibitors both in vitro and in vivo. Our results suggest that treatment of TNBCs with lapatinib may enhance their oncogene addiction to NF-κB, and thus augment the anti-tumor activity of proteasome inhibitors. These findings suggest that combination therapy of a proteasome inhibitor with lapatinib may benefit TNBC patients.

  11. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    PubMed Central

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  12. 6-Shogaol induces caspase-independent paraptosis in cancer cells via proteasomal inhibition.

    PubMed

    Nedungadi, Divya; Binoy, Anupama; Pandurangan, Nanjan; Pal, Sanjay; Nair, Bipin G; Mishra, Nandita

    2018-03-15

    An α, β-unsaturated carbonyl compound of ginger, 6-Shogaol (6S), induced extensive cytoplasmic vacuolation and cell death in breast cancer cell (MDA-MB-231) and non-small lung cancer (A549) cells. In the presence of autophagic inhibitors the cells continued to exhibit cytoplasmic vacuolation and cell death clearly distinguishing it from the classic autophagic process. 6S induced death did not exhibit the characteristic apoptotic features like caspase cleavage, phosphatidyl serine exposure and DNA fragmentation. The immunofluorescence with the Endoplasmic Reticulum (ER) resident protein, calreticulin indicated that the vacuoles were of ER origin, typical of paraptosis. This was supported by the increase in level of microtubule associated protein light chain 3B (LC3 I and LC3 II) and polyubiquitin binding protein, p62. The level of ER stress markers like polyubiquitinated proteins, Bip and CHOP also consistently increased. We have found that 6S inhibits the 26S proteasome. The proteasomal inhibitory activity was elucidated by a) molecular docking of 6S onto the active site of β5 subunit and b) reduced fluorescence by the fluorogenic substrate of the chymotrypsin-like subunit. In conclusion these studies demonstrate for the first time that proteasomal inhibition by 6S induces cell death via paraptosis. So 6-shogaol may act as a template for anti-cancer lead discovery against the apoptosis resistant cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2

    PubMed Central

    Vennemann, Astrid; Hofmann, Thomas G.

    2013-01-01

    FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASHK1792R, is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies. PMID:23673342

  14. Proteasome inhibitor bortezomib enhances the effect of standard chemotherapy in small cell lung cancer

    PubMed Central

    Taromi, Sanaz; Lewens, Florentine; Arsenic, Ruza; Sedding, Dagmar; Sänger, Jörg; Kunze, Almut; Möbs, Markus; Benecke, Joana; Freitag, Helma; Christen, Friederike; Kaemmerer, Daniel; Lupp, Amelie; Heilmann, Mareike; Lammert, Hedwig; Schneider, Claus-Peter; Richter, Karen; Hummel, Michael; Siegmund, Britta; Burger, Meike; Briest, Franziska; Grabowski, Patricia

    2017-01-01

    Small cell lung cancer (SCLC) is an aggressive cancer showing a very poor prognosis because of metastasis formation at an early stage and acquisition of chemoresistance. One key driver of chemoresistance is the transcription factor Forkhead box protein M1 (FOXM1) that regulates cell cycle proliferation, maintenance of genomic stability, DNA damage response, and cell differentiation in numerous tumor entities. In this study we investigated the role of FOXM1 in SCLC progression and analyzed the effect of FOXM1 inhibition using two proteasome inhibitors, bortezomib and siomycin A. FOXM1 was strongly expressed in patient-derived SCLC samples (n=123) and its nuclear localization was associated with the proliferation marker Ki-67. Both proteasome inhibitors successfully inhibited FOXM1 expression leading to a significantly reduced proliferation and a decreased mitotic rate along with cell cycle arrest and apoptosis induction. These effects were further enhanced by addition of bortezomib to standard chemotherapy. Treatment of mice bearing chemoresistant SCLC xenografts with bortezomib reduced the mean bioluminescence signal of tumors by 54%. Similarly, treatment with cisplatin as a standard chemotherapy reduced the mean bioluminescence signal of tumors by 58%. However, in combination with standard chemotherapy bortezomib further reduced the mean bioluminescence signal by 93% (p=0.0258). In conclusion, we demonstrate the effect of bortezomib in inhibiting FOXM1 expression and thus in sensitizing resistant SCLC cells to standard chemotherapy. Thus, addition of bortezomib to standard chemotherapy might potently improve SCLC therapy, particularly in an extensive cancer stage. PMID:29228593

  15. Composition of M1 Shoe Impregnite

    DTIC Science & Technology

    1946-12-25

    SPRMD 470.72, Rq, ASF, B April 1944, on letter, O-QMG, 2 March 194·4, sub- ject: Study of . Dubbing and Shoe Tmpregnite, to CG, ASF. c. 1st Ind, SPROG...Hq, ASF, 6 September 1945, on letter, SPQRD 438, O-QMG, 7 August 1915, subject: Dubbing protective, to CG, ASF. 2. D.iscussion: B~ Ruferenc,e a...serve both as B. shoe dubbing and as ash De imp reg n it e • B n sed 0 n are p or t 0 f t h (~ res tl 1 t s of this pr~lininary work, Hoadquarters

  16. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    PubMed

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluation of serum insulin-like growth factor-1 and 26S proteasome concentrations in healthy dogs and dogs with chronic diseases depending on body condition score.

    PubMed

    Gerke, Ingrid; Kaup, Franz-Josef; Neumann, Stephan

    2018-06-01

    In patients suffering from chronic diseases, the objective assessment of metabolic states could be of interest for disease prognosis and therapeutic options. Therefore, the aim of this study was to assess insulin-like growth factor-1 (IGF-1) and 26S proteasome (26SP) in healthy dogs and dogs suffering from chronic diseases depending on their body condition score (BCS) and to examine their potential for objective assessment of anabolic and catabolic states. Serum concentrations of IGF-1, an anabolic hormone, and 26SP, a multiprotein complex which is part of the ubiquitin-proteasome pathway, by which the majority of endogenous proteins including the muscle proteins are degraded, were measured in 21 healthy dogs and 20 dogs with chronic diseases by canine ELISA. The concentrations of IGF-1, 26SP and their ratio (IGF-1/26SP) were set in relationship to the BCS of the dogs. When examining healthy and chronically diseased dogs separately, a positive correlation between IGF-1 and the BCS was observed in the healthy group and a negative correlation between 26SP and the BCS was noted in dogs with chronic diseases. Further, dogs suffering from chronic diseases showed higher 26SP concentrations and lower values for IGF-1/26SP than the healthy dogs. Overall, we detected a negative correlation between 26SP and the BCS and a positive correlation between IGF-1/26SP and the BCS. The results of our study indicate usability of IGF-1 for description of anabolic states, while 26SP could be useful for detection and description of catabolic states. Finally, the ratio IGF-1/26SP seems to be promising for assessment of metabolic states. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail: kawamots@mail.nih.gov

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here wemore » find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.« less

  19. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes,more » its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.« less

  20. Proteasome inhibitor associated thrombotic microangiopathy.

    PubMed

    Yui, Jennifer C; Van Keer, Jan; Weiss, Brendan M; Waxman, Adam J; Palmer, Matthew B; D'Agati, Vivette D; Kastritis, Efstathios; Dimopoulos, Meletios A; Vij, Ravi; Bansal, Dhruv; Dingli, David; Nasr, Samih H; Leung, Nelson

    2016-09-01

    A variety of medications have been implicated in the causation of thrombotic microangiopathy (TMA). Recently, a few case reports have emerged of TMA attributed to the proteasome inhibitors (PI) bortezomib and carfilzomib in patients with multiple myeloma. The aim of this case series was to better characterize the role of PI in the etiology of drug-induced TMA. We describe eleven patients from six medical centers from around the world who developed TMA while being treated with PI. The median time between medication initiation and diagnosis of TMA was 21 days (range 5 days to 17 months). Median laboratory values at diagnosis included hemoglobin-7.5 g dL(-1) , platelet count-20 × 10(9) /L, LDH-698 U L(-1) , creatinine-3.12 mg dL(-1) . No patient had any other cause of TMA, including ADAMTS13 inhibition, other malignancy or use of any other medication previously associated with TMA. Nine patients had resolution of TMA without evidence of hemolysis after withdrawal of PI. Two patients had stabilization of laboratory values but persistent evidence of hemolysis despite medication withdrawal. One patient had recurrence of TMA with rechallenge of PI. There is a strong level of evidence that PI can cause DITMA. In evaluating patients with suspected TMA, PI use should be recognized as a potential etiology, and these medications should be discontinued promptly if thought to be the cause of TMA. Am. J. Hematol. 91:E348-E352, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.