Science.gov

Sample records for proteasome component genes

  1. Interaction of Gcn4 with target gene chromatin is modulated by proteasome function

    PubMed Central

    Howard, Gregory C.; Tansey, William P.

    2016-01-01

    The ubiquitin–proteasome system (UPS) influences gene transcription in multiple ways. One way in which the UPS affects transcription centers on transcriptional activators, the function of which can be stimulated by components of the UPS that also trigger their destruction. Activation of transcription by the yeast activator Gcn4, for example, is attenuated by mutations in the ubiquitin ligase that mediates Gcn4 ubiquitylation or by inhibition of the proteasome, leading to the idea that ubiquitin-mediated proteolysis of Gcn4 is required for its activity. Here we probe the steps in Gcn4 activity that are perturbed by disruption of the UPS. We show that the ubiquitylation machinery and the proteasome control different steps in Gcn4 function and that proteasome activity is required for the ability of Gcn4 to bind to its target genes in the context of chromatin. Curiously, the effect of proteasome inhibition on Gcn4 activity is suppressed by mutations in the ubiquitin-selective chaperone Cdc48, revealing that proteolysis per se is not required for Gcn4 activity. Our data highlight the role of Cdc48 in controlling promoter occupancy by Gcn4 and support a model in which ubiquitylation of activators—not their destruction—is important for function. PMID:27385344

  2. Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies.

    PubMed

    Upadhya, Sudarshan C; Hegde, Ashok N

    2005-01-01

    In the central nervous system (CNS), abnormal deposition of insoluble protein aggregates or inclusion bodies within nerve cells is commonly observed in association with several neurodegenerative diseases. The ubiquitinated protein aggregates are believed to result from malfunction or overload of the ubiquitin-proteasome pathway or from structural changes in the protein substrates which prevent their recognition and degradation by the ubiquitin-proteasome pathway. Impaired proteolysis might also contribute to the synaptic dysfunction seen early in neurodegenerative diseases because the ubiquitin-proteasome pathway is known to play a role in normal functioning of synapses. Because specificity of the ubiquitin proteasome mediated proteolysis is determined by specific ubiquitin ligases (E3s), identification of specific E3s and their allosteric modulators are likely to provide effective therapeutic targets for the treatment of several CNS disorders. Another unexplored area for the discovery of drug targets is the proteasome. Although many inhibitors of the proteasome are available, no effective drugs exist that can stimulate the proteasome. Since abnormal protein aggregation is a common feature of different neurodegenerative diseases, enhancement of proteasome activity might be an efficient way to remove the aggregates that accumulate in the brain. In this review, we discuss how the components of the ubiquitin-proteasome pathway could be potential targets for therapy of CNS diseases and disorders.

  3. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice.

    PubMed

    Jeon, J; Kim, W; Jang, J; Isacson, O; Seo, H

    2016-06-02

    Huntington's disease (HD) is neurologically characterized by involuntary movements, associated with degeneration of the medium-sized spiny neurons (MSNs) and ubiquitin-positive neuronal intranuclear inclusions (NIIs). It has been reported that the proteolytic activities of the ubiquitin-proteasome system (UPS) are generally inhibited in HD patient's brain. We previously discovered that a proteasome activator (PA), PA28γ enhances proteasome activities and cell survival in in vitro HD model. In this study, we aimed to find whether PA28γ gene transfer improves the proteasome activities and pathological symptoms in in vivo HD model. We stereotaxically injected lenti-PA28γ virus into the striatum of mutant (MT) YAC128 HD mice and littermate (LM) controls at 14-18months of age, and validated their behavioral and biochemical changes at 12weeks after the injection. YAC128 mice showed a significant increase in their peptidyl-glutamyl preferring hydrolytic (PGPH) proteasome activity and the mRNA or protein levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF after lenti-PA28γ injection. The number of ubiquitin-positive inclusion bodies was reduced in the striatum of YAC128 mice after lenti-PA28γ injection. YAC128 mice showed significant improvement of latency to fall on the rota-rod test after lenti-PA28γ injection. These data demonstrate that the gene therapy with PA, PA28γ can improve UPS function as well as behavioral abnormalities in HD model mice.

  4. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    PubMed

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  5. A Sporadic Parkinson Disease Model via Silencing of the Ubiquitin-Proteasome/E3 Ligase Component SKP1A*

    PubMed Central

    Fishman-Jacob, Tali; Reznichenko, Lydia; Youdim, Moussa B. H.; Mandel, Silvia A.

    2009-01-01

    The aim of this study was to develop a new model of sporadic Parkinson disease (PD) based on silencing of the SKP1A gene, a component of the ubiquitin-proteasome/E3 ligase complex, Skp1, Cullin 1, F-box protein, which was found to be highly decreased in the substantia nigra of sporadic PD patients. Initially, an embryonic mouse substantia nigra-derived cell line (SN4741 cells) was infected with short hairpin RNA lentiviruses encoding the murine transcript of the SKP1A gene or with scrambled vector. SKP1A silencing resulted in increased susceptibility to neuronal damages induced by the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium ion and serum starvation, in parallel with a decline in the expression of the dopaminergic markers, dopamine transporter and vesicular monoamine transporter-2. SKP1A-deficient cells presented a delay in completion of the cell cycle and the inability to arrest at the G0/G1 phase when induced to differentiate. Instead, the cells progressed through S phase, developing rounded aggregates with characteristics of aggresomes including immunoreactivity for γ-tubulin, α-synuclein, ubiquitin, tyrosine hydroxylase, Hsc-70 (70-kDa heat shock cognate protein), and proteasome subunit, and culminating in a lethal phenotype. Conversely, stably enforced expression of wild type SKP1A duplicated the survival index of naïve SN4741 cells under proteasomal inhibition injury, suggesting a new structural role of SKP1 in dopaminergic neuronal function, besides its E3 ligase activity. These results link, for the first time, SKP1 to dopamine neuronal function and survival, suggesting an essential role in sporadic PD. In summary, this new model has reproduced to a significant extent the molecular alterations described in sporadic PD at the cellular level, implicating Skp1 as a potential modifier in sporadic PD neurodegeneration. PMID:19748892

  6. A sporadic Parkinson disease model via silencing of the ubiquitin-proteasome/E3 ligase component SKP1A.

    PubMed

    Fishman-Jacob, Tali; Reznichenko, Lydia; Youdim, Moussa B H; Mandel, Silvia A

    2009-11-20

    The aim of this study was to develop a new model of sporadic Parkinson disease (PD) based on silencing of the SKP1A gene, a component of the ubiquitin-proteasome/E3 ligase complex, Skp1, Cullin 1, F-box protein, which was found to be highly decreased in the substantia nigra of sporadic PD patients. Initially, an embryonic mouse substantia nigra-derived cell line (SN4741 cells) was infected with short hairpin RNA lentiviruses encoding the murine transcript of the SKP1A gene or with scrambled vector. SKP1A silencing resulted in increased susceptibility to neuronal damages induced by the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium ion and serum starvation, in parallel with a decline in the expression of the dopaminergic markers, dopamine transporter and vesicular monoamine transporter-2. SKP1A-deficient cells presented a delay in completion of the cell cycle and the inability to arrest at the G(0)/G(1) phase when induced to differentiate. Instead, the cells progressed through S phase, developing rounded aggregates with characteristics of aggresomes including immunoreactivity for gamma-tubulin, alpha-synuclein, ubiquitin, tyrosine hydroxylase, Hsc-70 (70-kDa heat shock cognate protein), and proteasome subunit, and culminating in a lethal phenotype. Conversely, stably enforced expression of wild type SKP1A duplicated the survival index of naïve SN4741 cells under proteasomal inhibition injury, suggesting a new structural role of SKP1 in dopaminergic neuronal function, besides its E3 ligase activity. These results link, for the first time, SKP1 to dopamine neuronal function and survival, suggesting an essential role in sporadic PD. In summary, this new model has reproduced to a significant extent the molecular alterations described in sporadic PD at the cellular level, implicating Skp1 as a potential modifier in sporadic PD neurodegeneration.

  7. Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related f...

  8. Dendrite development regulated by the schizophrenia-associated gene FEZ1 involves the ubiquitin proteasome system.

    PubMed

    Watanabe, Yasuhito; Khodosevich, Konstantin; Monyer, Hannah

    2014-04-24

    Downregulation of the schizophrenia-associated gene DISC1 and its interacting protein FEZ1 positively regulates dendrite growth in young neurons. However, little is known about the mechanism that controls these molecules during neuronal development. Here, we identify several components of the ubiquitin proteasome system and the cell-cycle machinery that act upstream of FEZ1. We demonstrate that the ubiquitin ligase cell division cycle 20/anaphase-promoting complex (Cdc20/APC) controls dendrite growth by regulating the degradation of FEZ1. Furthermore, dendrite growth is modulated by BubR1, whose known function so far has been restricted to control Cdc20/APC activity during the cell cycle. The modulatory function of BubR1 is dependent on its acetylation status. We show that BubR1 is deacetylated by Hdac11, thereby disinhibiting the Cdc20/APC complex. Because dendrite growth is affected both in hippocampal dentate granule cells and olfactory bulb neurons upon modifying expression of these genes, we conclude that the proposed mechanism governs neuronal development in a general fashion.

  9. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    PubMed Central

    Fuse, Yuji; Tamaoki, Junya; Akiyama, Shin-ichi; Muratani, Masafumi

    2016-01-01

    The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7) and 2 enzymes involved in glucose metabolism (pgd and fbp1a) were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates. PMID:28116036

  10. Proteasome-dependent degradation of replisome components regulates faithful DNA replication.

    PubMed

    Roseaulin, Laura C; Noguchi, Chiaki; Noguchi, Eishi

    2013-08-15

    The replication machinery, or the replisome, collides with a variety of obstacles during the normal process of DNA replication. In addition to damaged template DNA, numerous chromosome regions are considered to be difficult to replicate owing to the presence of DNA secondary structures and DNA-binding proteins. Under these conditions, the replication fork stalls, generating replication stress. Stalled forks are prone to collapse, posing serious threats to genomic integrity. It is generally thought that the replication checkpoint functions to stabilize the replisome and replication fork structure upon replication stress. This is important in order to allow DNA replication to resume once the problem is solved. However, our recent studies demonstrated that some replisome components undergo proteasome-dependent degradation during DNA replication in the fission yeast Schizosaccharomyces pombe. Our investigation has revealed the involvement of the SCF(Pof3) (Skp1-Cullin/Cdc53-F-box) ubiquitin ligase in replisome regulation. We also demonstrated that forced accumulation of the replisome components leads to abnormal DNA replication upon replication stress. Here we review these findings and present additional data indicating the importance of replisome degradation for DNA replication. Our studies suggest that cells activate an alternative pathway to degrade replisome components in order to preserve genomic integrity.

  11. Genetic mapping of the LMP2 proteasome subunit gene to the BoLA class IIb region

    SciTech Connect

    Shalhevet, D.; Da, Y.; Beever, J.E.; Eijk, M.J.T. van; Ma, R.; Lewin, H.A.; Gaskins, H.R.

    1995-01-01

    Recent identification of four tightly-linked genes within the class II region of the major histocompatibility complex (MHC) in humans and rodents has led to a better understanding of class I antigen processing mechanisms. Two of these genes, LMP2 and LMP7, encode subunits of a low molecular mass poypeptide (LMP) complex. Several observations suggest that the LMP complex may be the proteolytic system responsible for generating the size-restricted peptides required for MHC class I assembly. For example, the LMP complex is a large cytoplasmic structure that is antigenically and biochemically related to the proteasome, a proteolytic complex that mediates degradation of ubiquitinated substrates. Data regarding proteolytic specificity indicates that the LMP complex may specifically produce nonamers, the appropriate peptide size for class I binding. In addition, similar to all components of the class I assembly process, intra-MHC LMP genes are regulated by IFN{gamma}. 26 refs., 2 figs., 1 tab.

  12. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway.

    PubMed Central

    Bailey, J L; Wang, X; England, B K; Price, S R; Ding, X; Mitch, W E

    1996-01-01

    Chronic renal failure (CRF) is associated with negative nitrogen balance and loss of lean body mass. To identify specific proteolytic pathways activated by CRF, protein degradation was measured in incubated epitrochlearis muscles from CRF and sham-operated, pair-fed rats. CRF stimulated muscle proteolysis, and inhibition of lysosomal and calcium-activated proteases did not eliminate this increase. When ATP production was blocked, proteolysis in CRF muscles fell to the same level as that in control muscles. Increased proteolysis was also prevented by feeding CRF rats sodium bicarbonate, suggesting that activation depends on acidification. Evidence that the ATP-dependent ubiquitin-proteasome pathway is stimulated by the acidemia of CRF includes the following findings: (a) An inhibitor of the proteasome eliminated the increase in muscle proteolysis; and (b) there was an increase in mRNAs encoding ubiquitin (324%) and proteasome subunits C3 (137%) and C9 (251%) in muscle. This response involved gene activation since transcription of mRNAs for ubiquitin and the C3 subunit were selectively increased in muscle of CRF rats. We conclude that CRF stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasome-dependent pathway. The mechanism depends on acidification and increased expression of genes encoding components of the system. These responses could contribute to the loss of muscle mass associated with CRF. PMID:8617877

  13. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei.

    PubMed

    Huang, L; Shen, M; Chernushevich, I; Burlingame, A L; Wang, C C; Robertson, C D

    1999-08-20

    We have determined peptide sequences of three Trypanosoma brucei proteasome subunit proteins by mass spectrometry of tryptic digests of the proteins purified by two-dimensional (2-D) polyacrylamide gel electrophoresis. Three genes identified by the sequence of their cDNA encode the peptides identified in these three proteins. The three proteins predicted from the gene sequences have significant similarity to other known proteasome subunits and represent an alpha6 type subunit (TbPSA6), and two beta-type subunits belonging to the beta1-type (TbPSB1) and beta2 type (TbPSB2). The sequences of both beta-subunits predict formation of catalytically active subunits through proteolytic processing. The prediction is supported by the presence in each of the two beta-subunits of a tryptic peptide that has the correctly processed N-terminus that creates the threonine nucleophile of the mature protein. This peptide cannot be generated by trypsin because of the required cleavage of a glycine-threonine bond. It is thus likely that there are at least two catalytically active beta-subunits, TbPSB1 and TbPSB2, present in the mature 20S proteasome from T. brucei.

  14. Proteasome Accessory Factor C (pafC) Is a novel gene Involved in Mycobacterium Intrinsic Resistance to broad-spectrum antibiotics--Fluoroquinolones.

    PubMed

    Li, Qiming; Xie, Longxiang; Long, Quanxin; Mao, Jinxiao; Li, Hui; Zhou, Mingliang; Xie, Jianping

    2015-07-03

    Antibiotics resistance poses catastrophic threat to global public health. Novel insights into the underlying mechanisms of action will inspire better measures to control drug resistance. Fluoroquinolones are potent and widely prescribed broad-spectrum antibiotics. Bacterial protein degradation pathways represent novel druggable target for the development of new classes of antibiotics. Mycobacteria proteasome accessory factor C (pafC), a component of bacterial proteasome, is involved in fluoroquinolones resistance. PafC deletion mutants are hypersensitive to fluoroquinolones, including moxifloxacin, norfloxacin, ofloxacin, ciprofloxacin, but not to other antibiotics such as isoniazid, rifampicin, spectinomycin, chloramphenicol, capreomycin. This phenotype can be restored by complementation. The pafC mutant is hypersensitive to H2O2 exposure. The iron chelator (bipyridyl) and a hydroxyl radical scavenger (thiourea) can abolish the difference. The finding that pafC is a novel intrinsic selective resistance gene provided new evidence for the bacterial protein degradation pathway as druggable target for the development of new class of antibiotics.

  15. Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast.

    PubMed

    Chaves, Susana; Baskerville, Chris; Yu, Veronica; Reed, Steven I

    2010-11-01

    Cks1, Cdk1 (Cdc28), and the proteasome are required for efficient transcriptional induction of GAL1 and other genes in Saccharomyces cerevisiae. We show here that one function of these proteins is to reduce nucleosome density on chromatin in a gene induction-specific manner. The transcriptional requirement for Cks1 can be bypassed if nucleosome density is reduced by an alternative pathway, indicating that this is the primary function of Cks1 in the context of gene induction. We further show that Cks1, Cdk1, and the 19S subunit of the proteasome are recruited to chromatin by binding directly to the histone H4 amino-terminal tail. However, this activity of the proteasome does not require the protease activity associated with the 20S subunit. These data suggest a model where binding of a complex consisting of Cks1, Cdk1, and the 19S proteasome to histone H4 leads to removal of nucleosomes via a nonproteolytic activity of the proteasome.

  16. 15-Deoxy-Δ12,14-Prostaglandin J2 Modifies Components of the Proteasome and Inhibits Inflammatory Responses in Human Endothelial Cells

    PubMed Central

    Marcone, Simone; Evans, Paul; Fitzgerald, Desmond J.

    2016-01-01

    15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an electrophilic lipid mediator derived from PGD2 with potent anti-inflammatory effects. These are likely to be due to the covalent modification of cellular proteins, via a reactive α,β-unsaturated carbonyl group in its cyclopentenone ring. This study was carried out to identify novel cellular target(s) for covalent modification by 15d-PGJ2 and to investigate the anti-inflammatory effects of the prostaglandin on endothelial cells (EC). The data presented here show that 15d-PGJ2 modifies and inhibits components of the proteasome and consequently inhibits the activation of the NF-κB pathway in response to TNF-α. This, in turn, inhibits the adhesion and migration of monocytes toward activated EC, by reducing the expression of adhesion molecules and chemokines in the EC. The effects are consistent with the covalent modification of 13 proteins in the 19S particle of the proteasome identified by mass spectrometry and the suppression of proteasome function, and were similar to the effects seen with a known proteasome inhibitor (MG132). The ubiquitin–proteasome system has been implicated in the regulation of several inflammatory processes and the observation that 15d-PGJ2 profoundly affects the proteasome functions in human EC suggests that 15d-PGJ2 may regulate the progression of inflammatory disorders such as atherosclerosis. PMID:27833612

  17. Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise

    PubMed Central

    Stefanetti, Renae J.; Zacharewicz, Evelyn; Della Gatta, Paul; Garnham, Andrew; Russell, Aaron P.; Lamon, Séverine

    2014-01-01

    Skeletal muscle atrophy is a critical component of the ageing process. Age-related muscle wasting is due to disrupted muscle protein turnover, a process mediated in part by the ubiquitin proteasome pathway (UPP). Additionally, older subjects have been observed to have an attenuated anabolic response, at both the molecular and physiological levels, following a single-bout of resistance exercise (RE). We investigated the expression levels of the UPP-related genes and proteins involved in muscle protein degradation in 10 older (60–75 years) vs. 10 younger (18–30 years) healthy male subjects at basal as well as 2 h after a single-bout of RE. MURF1, atrogin-1 and FBXO40, their substrate targets PKM2, myogenin, MYOD, MHC and EIF3F as well as MURF1 and atrogin-1 transcriptional regulators FOXO1 and FOXO3 gene and/or protein expression levels were measured via real time PCR and western blotting, respectively. At basal, no age-related difference was observed in the gene/protein levels of atrogin-1, MURF1, myogenin, MYOD and FOXO1/3. However, a decrease in FBXO40 mRNA and protein levels was observed in older subjects, while PKM2 protein was increased. In response to RE, MURF1, atrogin-1 and FBXO40 mRNA were upregulated in both the younger and older subjects, with changes observed in protein levels. In conclusion, UPP-related gene/protein expression is comparably regulated in healthy young and old male subjects at basal and following RE. These findings suggest that UPP signaling plays a limited role in the process of age-related muscle wasting. Future studies are required to investigate additional proteolytic mechanisms in conjunction with skeletal muscle protein breakdown (MPB) measurements following RE in older vs. younger subjects. PMID:24550841

  18. Proteasome dynamics.

    PubMed

    Enenkel, Cordula

    2014-01-01

    Proteasomes are highly conserved multisubunit protease complexes and occur in the cyto- and nucleoplasm of eukaryotic cells. In dividing cells proteasomes exist as holoenzymes and primarily localize in the nucleus. During quiescence they dissociate into proteolytic core and regulatory complexes and are sequestered into motile cytosolic clusters. Proteasome clusters rapidly clear upon the exit from quiescence, where proteasome core and regulatory complexes reassemble and localize to the nucleus again. The mechanisms underlying proteasome transport and assembly are not yet understood. Here, I summarize our present knowledge about nuclear transport and assembly of proteasomes in yeast and project our studies in this eukaryotic model organism to the mammalian cell system. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.

  19. [Effect of proteasome inhibitor bortezomib on proliferation, apoptosis and SHIP gene expression in K562 cells].

    PubMed

    Jia, Zhi-Qiang; Wei, Yu-Tao; Li, Ai-Ming; Cheng, Zhi-Yong

    2013-08-01

    This study was aimed to investigate the effects of proteasome inhibitor bortezomib on proliferation, apoptosis and the SHIP expression of K562 cells. K562 cells were treated with bortezomib of different concentrations. Cell proliferation was analyzed by MTT assay, cell apoptosis was detected by flow cytometry and SHIP mRNA expression was assayed by RT-PCR.The results showed that after being treated with 10, 20, 50 and 100 nmol/L bortezomib for 24 h, the inhibitory rates of K562 cells were (5.76 ± 1.47)%, (10.55 ± 1.59)%, (17.14 ± 2.05)% and (27.69 ± 3.57)% respectively, and were higher than that in control (1.30 ± 0.10); when K562 cells were treated with 20 nmol/L bortezomib for 24, 48 and 72 h, the inhibitory rates of cell proliferation were (10.55 ± 1.59)%, (16.33 ± 2.53)% and (19.78 ± 1.56)% respectively, there was statistic difference of cell proliferation rate between 24 h group and 48 h group (P < 0.05). After being treated with 10,20,50,100 nmol/L bortezomib for 24 h, the apoptotic rates of K562 cells were (12.7 ± 0.6)%, (26.9 ± 0.9)%, (32.6 ± 1.2)% and (72.5 ± 1.5)% respectively,and all higher than that in control (1.0 ± 0.5)% (P < 0.05). According to results of RT-PCR detection, the expression level of SHIP mRNA was obviously up-regulated after treatment with bortezomib, and showed statistical difference in comparison with control. It is concluded that bortezomib inhibits proliferation of K562 cells in time and concentration-dependent manner and induces apoptosis through up-regulation of SHIP gene.

  20. Ubiquitin-proteasome system and hereditary cardiomyopathies.

    PubMed

    Schlossarek, Saskia; Frey, Norbert; Carrier, Lucie

    2014-06-01

    Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the maintenance of protein homeostasis, including molecular chaperones and co-chaperones, the autophagy-lysosomal pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunctional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS impairment, including activation of the unfolded protein response, and underline some therapeutic options available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".

  1. The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors

    PubMed Central

    Myung, Jayhyuk; Kim, Kyung Bo

    2008-01-01

    The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases. PMID:11410931

  2. Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells.

    PubMed

    Walcott, Shantel E; Heikkila, John J

    2010-06-01

    In eukaryotes, the ubiquitin-proteasome system (UPS) is responsible for the degradation of most proteins. Proteasome inhibition, which has been associated with various diseases, can cause alterations in various intracellular processes including the expression of heat shock protein (hsp) genes. In this study, we show that celastrol, a quinone methide triterpene and anti-inflammatory agent, inhibited proteasome activity and enhanced HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Treatment of cells with celastrol induced the accumulation of ubiquitinated protein and inhibited chymotrypsin-like activity. This was accompanied by a dose- and time-dependent accumulation of HSP30 and HSP70. Celastrol-induced HSP accumulation was mediated by HSF1-DNA binding activity since this response was inhibited by the HSF1 activation inhibitor, KNK437. Simultaneous exposure of cells with celastrol plus either mild heat shock or the proteasome inhibitor, MG132, produced an enhanced accumulation of HSP30 that was greater than the sum of the individual stressors alone. Immunocytochemical analysis revealed that celastrol-induced HSP30 accumulation occurred in the cytoplasm in a granular pattern supplemented with larger circular HSP30 staining structures. HSP30 was also noted in the nucleus with less staining in the nucleolus. In some cells, celastrol induced the collapse of the actin cytoskeleton and conversion to a rounder morphology. In conclusion, this study has shown that celastrol inhibited proteasome activity and induced HSF1-mediated expression of hsp genes in amphibian cells.

  3. The Proteasome Inhibitor Bortezomib Is a Potent Inducer of Zinc Finger AN1-type Domain 2a Gene Expression

    PubMed Central

    Rossi, Antonio; Riccio, Anna; Coccia, Marta; Trotta, Edoardo; La Frazia, Simone; Santoro, M. Gabriella

    2014-01-01

    The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment. PMID:24619424

  4. Molecular cloning and functional analysis of three subunits of yeast proteasome.

    PubMed Central

    Emori, Y; Tsukahara, T; Kawasaki, H; Ishiura, S; Sugita, H; Suzuki, K

    1991-01-01

    The genes encoding three subunits of Saccharomyces cerevisiae proteasome were cloned and sequenced. The deduced amino acid sequences were homologous not only to each other (30 to 40% identity) but also to those of rat and Drosophila proteasomes (25 to 65% identity). However, none of these sequences showed any similarity to any other known sequences, including various proteases, suggesting that these proteasome subunits may constitute a unique gene family. Gene disruption analyses revealed that two of the three subunits (subunits Y7 and Y8) are essential for growth, indicating that the proteasome and its individual subunits play an indispensable role in fundamental biological processes. On the other hand, subunit Y13 is not essential; haploid cells with a disrupted Y13 gene can proliferate, although the doubling time is longer than that of cells with nondisrupted genes. In addition, biochemical analysis revealed that proteasome prepared from the Y13 disrupted cells contains tryptic and chymotryptic activities equivalent to those of nondisrupted cells, indicating that the Y13 subunit is not essential for tryptic or chymotryptic activity. However, the chymotryptic activity of the Y13 disrupted cells is not dependent on sodium dodecyl sulfate (SDS), an activator of proteasome, since nearly full activity was observed in the absence of SDS. Thus, the activity in proteasome of the Y13 disrupted cells might result in unregulated intracellular proteolysis, thus leading to the prolonged cell cycle. These results indicate that cloned proteasome subunits having similar sequences to the yeast Y13 subunit are structural, but not catalytic, components of proteasome. It is also suggested that two subunits (Y7 and Y8) might occupy positions essential to proteasome structure or activity, whereas subunit Y13 is in a nonessential but important position. Images PMID:1898763

  5. 4-Hydroxynonenal differentially regulates adiponectin gene expression and secretion via activating PPARγ and accelerating ubiquitin–proteasome degradation

    PubMed Central

    Wanga, Zhigang; Dou, Xiaobing; Gu, Dongfang; Shen, Chen; Yao, Tong; Nguyen, Van; Braunschweig, Carol; Song, Zhenyuan

    2011-01-01

    Although well-established, the underlying mechanisms involved in obesity-related plasma adiponectin decline remain elusive. Oxidative stress is associated with obesity and insulin resistance and considered to contribute to the progression toward obesity-related metabolic disorders. In this study, we investigated the effects of 4-hydroxynonenal (4-HNE), the most abundant lipid peroxidation end product, on adiponectin production and its potential implication in obesity-related adiponectin decrease. Long-term high-fat diet feeding led to obesity in mouse, accompanied by decreased plasma adiponectin and increased adipose tissue 4-HNE content. Exposure of adipocytes to exogenous 4-HNE resulted in decreased adiponectin secretion in a dose-dependent manner, which was consistent with significantly decreased intracellular adiponectin protein abundance. In contrast, adiponectin gene expression was significantly elevated by 4-HNE treatment, which was concomitant with increased peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression and transactivity. The effect was abolished by T0070907, a PPAR-γ antagonist, suggesting that PPAR-γ activation plays a critical role in this process. To gain insight into mechanisms involved in adiponectin protein decrease, we examined the effects of 4-HNE on adiponectin protein degradation. Cycloheximide (CHX)-chase assay revealed that 4-HNE exposure accelerated adiponectin protein degradation, which was prevented by MG132, a potent proteasome inhibitor. Immunoprecipitation assay showed that 4-HNE exposure increased ubiquitinated adiponectin protein levels. These data altogether indicated that 4-HNE enhanced adiponectin protein degradation via ubiquitin–proteasome system. Finally, we demonstrated that supplementation of HF diet with betaine, an antioxidant and methyl donor, alleviated high-fat-induced adipose tissue 4-HNE increase and attenuated plasma adiponectin decline. Taken together, our findings suggest that the lipid

  6. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum.

    PubMed

    Koyama, Fernanda C; Azevedo, Mauro F; Budu, Alexandre; Chakrabarti, Debopam; Garcia, Célia R S

    2014-12-03

    There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  7. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  8. Dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) of ectothermic tetrapods originated in multiple independent evolutionary events.

    PubMed

    Huang, Ching-Huei; Tanaka, Yuta; Fujito, Naoko T; Nonaka, Masaru

    2013-11-01

    The proteasome subunit beta type 8 gene (PSMB8) encodes one of the beta subunits of the immunoproteasome responsible for the generation of peptides presented by major histocompatibility complex class I molecules. Dimorphic alleles of the PSMB8 gene, termed A and F types, based on the deduced 31st amino acid residue of the mature protein have been reported from various vertebrates. Phylogenetic analysis revealed the presence of dichotomous ancient lineages, one comprising the F-type PSMB8 of basal ray-finned fishes, and the other comprising the A-type PSMB8 of these animals and both the F- and A-type PSMB8 of Xenopus and acanthopterygians, indicating that evolutionary history of the PSMB8 dimorphism was not straightforward. We analyzed the PSMB8 gene of five reptile and one amphibian species and found both the A and F types from all six. Phylogenetic analysis indicated that the PSMB8 F type was apparently regenerated from the PSMB8 A type at least five times independently during tetrapod evolution. Genomic typing of wild individuals of geckos and newts indicated that the frequencies of the A- and F-type alleles are not highly biased in these species. Phylogenetic analysis of each exon of the reptile PSMB8 gene suggested interallelic sequence homogenization as a possible evolutionary mechanism for the apparent recurrent regeneration of PSMB8 dimorphism in tetrapods. An extremely strong balancing selection acting on PSMB8 dimorphism was implicated in an unprecedented pattern of allele evolution.

  9. Regulation of Feedback between Protein Kinase A and the Proteasome System Worsens Huntington's Disease

    PubMed Central

    Lin, Jiun-Tsai; Chang, Wei-Cheng; Chen, Hui-Mei; Lai, Hsing-Lin; Chen, Chih-Yeh; Tao, Mi-Hua

    2013-01-01

    Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a CAG repeat in the Huntingtin (HTT) gene. Abnormal regulation of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway occurs during HD progression. Here we found that lower PKA activity was associated with proteasome impairment in the striatum for two HD mouse models (R6/2 and N171-82Q) and in mutant HTT (mHTT)-expressing striatal cells. Because PKA regulatory subunits (PKA-Rs) are proteasome substrates, the mHTT-evoked proteasome impairment caused accumulation of PKA-Rs and subsequently inhibited PKA activity. Conversely, activation of PKA enhanced the phosphorylation of Rpt6 (a component of the proteasome), rescued the impaired proteasome activity, and reduced mHTT aggregates. The dominant-negative Rpt6 mutant (Rpt6S120A) blocked the ability of a cAMP-elevating reagent to enhance proteasome activity, whereas the phosphomimetic Rpt6 mutant (Rpt6S120D) increased proteasome activity, reduced HTT aggregates, and ameliorated motor impairment. Collectively, our data demonstrated that positive feedback regulation between PKA and the proteasome is critical for HD pathogenesis. PMID:23275441

  10. ARS5 is a component of the 26S proteasome complex and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis

    PubMed Central

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2010-01-01

    Summary A forward genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 is the strongest arsenate and arsenite resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and the arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knockout mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by over expression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild type Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in wild type and this arsenic-induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5 compared to WT suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  11. Characterization of the 26S proteasome network in Plasmodium falciparum.

    PubMed

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R; Becker, Katja

    2015-12-07

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system.

  12. Proteasome stress responses in Schistosoma mansoni.

    PubMed

    de Paula, Renato Graciano; de Magalhães Ornelas, Alice Maria; Morais, Enyara Rezende; de Souza Gomes, Matheus; de Paula Aguiar, Daniela; Magalhães, Lizandra Guidi; Rodrigues, Vanderlei

    2015-05-01

    The proteasome proteolytic system is the major ATP-dependent protease in eukaryotic cells responsible for intracellular protein turnover. Schistosoma mansoni has been reported to contain an ubiquitin-proteasome proteolytic pathway, and many studies have suggested a biological role of proteasomes in the development of this parasite. Additionally, evidence has suggested diversity in proteasome composition under several cellular conditions, and this might contribute to the regulation of its function in this parasite. The proteasomal system has been considered important to support the protein homeostasis during cellular stress. In this study, we described in vitro effects of oxidative stress, heat shock, and chemical stress on S. mansoni adults. Our findings showed that chemical stress induced with curcumin, IBMX, and MG132 modified the gene expression of the proteasomal enzymes SmHul5 and SmUbp6. Likewise, the expression of these genes was upregulated during oxidative stress and heat shock. Analyses of the S. mansoni life cycle showed differential gene expression in sporocysts, schistosomulae, and miracidia. These results suggested that proteasome accessory proteins participate in stress response during the parasite development. The expression level of SmHul5 and SmUbp6 was decreased by 16-fold and 9-fold, respectively, by the chemical stress induced with IBMX, which suggests proteasome disassembly. On the other hand, curcumin, MG132, oxidative stress, and heat shock increased the expression of these genes. Furthermore, the gene expression of maturation proteasome protein (SmPOMP) was increased in stress conditions induced by curcumin, MG132, and H₂O₂, which could be related to the synthesis of new proteasomes. S. mansoni adult worms were found to utilize similar mechanisms to respond to different conditions of stress. Our results demonstrated that oxidative stress, heat shock, and chemical stress modified the expression profile of genes related to the ubiquitin-proteasome

  13. A Mutation in a Novel Yeast Proteasomal Gene, RPN11/MPR1, Produces a Cell Cycle Arrest, Overreplication of Nuclear and Mitochondrial DNA, and an Altered Mitochondrial Morphology

    PubMed Central

    Rinaldi, Teresa; Ricci, Carlo; Porro, Danilo; Bolotin-Fukuhara, Monique; Frontali, Laura

    1998-01-01

    We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis. PMID:9763452

  14. Dominant-negative mutation in the beta2 and beta6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage.

    PubMed

    Schweisguth, F

    1999-09-28

    In Drosophila, dominant-negative mutations in the beta2 and beta6 proteasome catalytic subunit genes have been identified as dominant temperature-sensitive (DTS) mutations. At restrictive temperature, beta2 and beta6 DTS mutations confer lethality at the pupal stage. I investigate here the role of proteasome activity in regulating cell fate decisions in the sense organ lineage at the early pupal stage. Temperature-shift experiments in beta2 and beta6 DTS mutant pupae occasionally resulted in external sense organs with two sockets and no shaft. This double-socket phenotype was strongly enhanced in conditions in which Notch signaling was up-regulated. Furthermore, conditional overexpression of the beta6 dominant-negative mutant subunit led to shaft-to-socket and to neuron-to-sheath cell fate transformations, which are both usually associated with increased Notch signaling activity. Finally, expression of the beta6 dominant-negative mutant subunit led to the stabilization of an ectopically expressed nuclear form of Notch in imaginal wing discs. This study demonstrates that mutations affecting two distinct proteasome catalytic subunits affect two alternative cell fate decisions and enhance Notch signaling activity in the sense organ lineage. These findings raise the possibility that the proteasome targets an active form of the Notch receptor for degradation in Drosophila.

  15. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    SciTech Connect

    Sundstrom, Magnus; Chatterji, Udayan; Schaffer, Lana; Rozieres, Sohela de; Elder, John H.

    2008-02-20

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication.

  16. Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets.

    PubMed

    Keller, J; Ringseis, R; Koc, A; Lukas, I; Kluge, H; Eder, K

    2012-01-01

    Supplementation of carnitine has been shown to improve performance characteristics such as protein accretion in growing pigs. The molecular mechanisms underlying this phenomenon are largely unknown. Based on recent results from DNA microchip analysis, we hypothesized that carnitine supplementation leads to a downregulation of genes of the ubiquitin proteasome system (UPS). The UPS is the most important system for protein breakdown in tissues, which in turn could be an explanation for increased protein accretion. To test this hypothesis, we fed sixteen male, four-week-old piglets either a control diet or the same diet supplemented with carnitine and determined the expression of several genes involved in the UPS in the liver and skeletal muscle. To further determine whether the effects of carnitine on the expression of genes of the UPS are mediated directly or indirectly, we also investigated the effect of carnitine on the expression of genes of the UPS in cultured C2C12 myotubes and HepG2 liver cells. In the liver of piglets fed the carnitine-supplemented diet, the relative mRNA levels of atrogin-1, E214k and Psma1 were lower than in those of the control piglets (P < 0.05). In skeletal muscle, the relative mRNA levels of atrogin-1, MuRF1, E214k, Psma1 and ubiquitin were lower in piglets fed the carnitine-supplemented diet than that in control piglets (P < 0.05). Incubating C2C12 myotubes and HepG2 liver cells with increasing concentrations of carnitine had no effect on basal and/or hydrocortisone-stimulated mRNA levels of genes of the UPS. In conclusion, this study shows that dietary carnitine decreases the transcript levels of several genes involved in the UPS in skeletal muscle and liver of piglets, whereas carnitine has no effect on the transcript levels of these genes in cultivated HepG2 liver cells and C2C12 myotubes. These data suggest that the inhibitory effect of carnitine on the expression of genes of the UPS is mediated indirectly, probably via modulating

  17. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation

    PubMed Central

    Lin, Chang-Te; Tung, Chun-Liang; Shen, Cheng-Huang; Tsai, Hsin-Tzu; Yang, Wen-Horng; Chang, Hung-I; Chen, Syue-Yi; Tzai, Tzong-Shin

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) can control a transcriptional factor forkhead box P3 (Foxp3) protein expression in T lymphocyte differentiation through proteasome-mediated degradation. In this study, we unveil a reverse regulatory mechanism contributing to bladder cancer progression; Foxp3 expression attenuates HIF-1α degradation. We first demonstrated that Foxp3 expression positively correlates with the metastatic potential in T24 cells and can increase the expression of HIF-1α-target genes, such as vascular endothelial growth factor (VEGF) and glucose transporter (GLUT). Foxp3 protein can bind with HIF-1α, particularly under hypoxia. In vivo ubiquination assay demonstrated that Foxp3 can decrease HIF-1α degradation in a dose-dependent manner. Knocking-down of Foxp3 expression blocks in vivo tumor growth in mice and prolongs mice's survival, which is associated with von Willebrand factor expression. Thirty-three of 145 (22.8 %) bladder tumors exhibit Foxp3 expression. Foxp3 expression is an independent predictor for disease progression in superficial bladder cancer patients (p = 0.032), associated with less number of intratumoral CD8+ lymphocyte. The metaanalysis from 2 published datasets showed Foxp3 expression is positively associated with GLUT−4, −9, and VEGF-A, B-, D expression. This reverse post-translational regulation of HIF-1α protein by Foxp3 provides a new potential target for developing new therapeutic strategy for bladder cancer. PMID:27557492

  18. Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits.

    PubMed

    Fernández Murray, P; Biscoglio, M J; Passeron, S

    2000-03-15

    The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.

  19. Phosphorylation regulates mycobacterial proteasome.

    PubMed

    Anandan, Tripti; Han, Jaeil; Baun, Heather; Nyayapathy, Seeta; Brown, Jacob T; Dial, Rebekah L; Moltalvo, Juan A; Kim, Min-Seon; Yang, Seung Hwan; Ronning, Donald R; Husson, Robert N; Suh, Joowon; Kang, Choong-Min

    2014-09-01

    Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

  20. Homogeneous, bioluminescent proteasome assays.

    PubMed

    O'Brien, Martha A; Moravec, Richard A; Riss, Terry L; Bulleit, Robert F

    2015-01-01

    Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

  1. Proteasome modulator 9 gene SNPs, responsible for anti-depressant response, are in linkage with generalized anxiety disorder.

    PubMed

    Gragnoli, Claudia

    2014-09-01

    Proteasome modulator 9 (PSMD9) gene single nucleotide polymorphism (SNP) rs1043307/rs2514259 (E197G) is associated with significant clinical response to the anti-depressant desipramine. PSMD9 SNP rs74421874 [intervening sequence (IVS) 3 + nt460 G>A], rs3825172 (IVS3 + nt437 C>T) and rs1043307/rs2514259 (E197G A>G) are all linked to type 2 diabetes (T2D), maturity-onset-diabetes-of the young 3 (MODY3), obesity and waist circumference, hypertension, hypercholesterolemia, T2D-macrovascular and T2D-microvascular disease, T2D-neuropathy, T2D-carpal tunnel syndrome, T2D-nephropathy, T2D-retinopathy, non-diabetic retinopathy and depression. PSMD9 rs149556654 rare SNP (N166S A>G) and the variant S143G A>G also contribute to T2D. PSMD9 is located in the chromosome 12q24 locus, which per se is in linkage with depression, bipolar disorder and anxiety. In the present study, we wanted to determine whether PSMD9 is linked to general anxiety disorder in Italian T2D families. Two-hundred Italian T2D families were phenotyped for generalized anxiety disorder, using the diagnostic criteria of DSM-IV. When the diagnosis was unavailable or unclear, the trait was reported as unknown. The 200 Italians families were tested for the PSMD9 T2D risk SNPs rs74421874 (IVS3 + nt460 G>A), rs3825172 (IVS3 +nt437 T>C) and for the T2D risk and anti-depressant response SNP rs1043307/rs2514259 (E197G A>G) for evidence of linkage with generalized anxiety disorder. Non-parametric linkage analysis was executed via Merlin software. One-thousand simulation tests were performed to exclude results due to random chance. In our study, the PSMD9 gene SNPs rs74421874, rs3825172, and rs1043307/rs2514259 result in linkage to generalized anxiety disorder. This is the first report describing PSMD9 gene SNPs in linkage to generalized anxiety disorder in T2D families.

  2. Role of proteasomes in disease

    PubMed Central

    Dahlmann, Burkhardt

    2007-01-01

    A functional ubiquitin proteasome system is essential for all eukaryotic cells and therefore any alteration to its components has potential pathological consequences. Though the exact underlying mechanism is unclear, an age-related decrease in proteasome activity weakens cellular capacity to remove oxidatively modified proteins and favours the development of neurodegenerative and cardiac diseases. Up-regulation of proteasome activity is characteristic of muscle wasting conditions including sepsis, cachexia and uraemia, but may not be rate limiting. Meanwhile, enhanced presence of immunoproteasomes in aging brain and muscle tissue could reflect a persistent inflammatory defence and anti-stress mechanism, whereas in cancer cells, their down-regulation reflects a means by which to escape immune surveillance. Hence, induction of apoptosis by synthetic proteasome inhibitors is a potential treatment strategy for cancer, whereas for other diseases such as neurodegeneration, the use of proteasome-activating or -modulating compounds could be more effective. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047740

  3. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    SciTech Connect

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  4. Cereblon inhibits proteasome activity by binding to the 20S core proteasome subunit beta type 4.

    PubMed

    Lee, Kwang Min; Lee, Jongwon; Park, Chul-Seung

    2012-10-26

    In humans, mutations in the gene encoding cereblon (CRBN) are associated with mental retardation. Although CRBN has been investigated in several cellular contexts, its function remains unclear. Here, we demonstrate that CRBN plays a role in regulating the ubiquitin-proteasome system (UPS). Heterologous expression of CRBN inhibited proteasome activity in a human neuroblastoma cell line. Furthermore, proteasome subunit beta type 4 (PSMB4), the β7 subunit of the 20S core complex, was identified as a direct binding partner of CRBN. These findings suggest that CRBN may modulate proteasome activity by directly interacting with the β7 subunit.

  5. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics.

    PubMed

    Deng, Shishan; Zhou, Hongying; Xiong, Ruohong; Lu, Youguang; Yan, Dazhong; Xing, Tianyong; Dong, Lihua; Tang, Enjie; Yang, Huijun

    2007-07-01

    The ubiquitin-proteasome system facilitates the degradation of damaged proteins and regulators of growth and stress response. Alterations in this proteolytic system are associated with a variety of human pathologies. By restriction fragment differential display polymerase chain reaction (RFDD-PCR) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) based on two-dimensional polyacrylamide gel electrophoresis (2-DE), differentially expressed genes and proteins of ubiquitin specific proteases (USPs), proteasome subuinits (PSs) and ubiquitin protein ligase E3A (UBE3A) were analyzed between breast cancer and adjacent normal tissues. Some of them were further verified as over-expression by immunohistochemical stain. Five genes of proteasome subunits (PSs), including PSMB5, PSMD1, PSMD2, PSMD8 and PSMD11, four genes of USPs, including USP9X, USP9Y, USP10 and USP25, and ubiquitin protein ligase E3A (UBE3A) were over-expressed (>3-fold) in breast cancer tissue compared to adjacent normal tissue, and over-expression (>4-fold) of proteins of PSMA1 and SMT3A were observed in breast cancer tissue. PSMD8, PSMD11 and UBE3A were further verified as over-expression by immunohistochemical stain. The action of ubiquitin-proteasome system were obviously enhanced in breast cancer, and selectively intervention in action of ubiquitin-proteasome system may be a useful method of treating human breast cancer.

  6. Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system.

    PubMed

    Sengupta, Satyaki; Henry, R William

    2015-10-01

    The retinoblastoma tumor suppressor (RB) and its related family members p107 and p130 regulate cell proliferation through the transcriptional repression of genes involved in cellular G1 to S phase transition. However, RB proteins are functionally versatile, and numerous genetic and biochemical studies point to expansive roles in cellular growth control, pluripotency, and apoptotic response. For the vast majority of genes, RB family members target the E2F family of transcriptional activators as an integral component of its gene regulatory mechanism. These interactions are regulated via reversible phosphorylation by Cyclin/Cyclin-dependent kinase (Cdk) complexes, a major molecular mechanism that regulates transcriptional output of RB/E2F target genes. Recent studies indicate an additional level of regulation involving the ubiquitin-proteasome system that renders pervasive control over each component of the RB pathway. Disruption of the genetic circuitry for proteasome-mediated targeting of the RB pathway has serious consequences on development and cellular transformation, and is associated with several forms of human cancer. In this review, we discuss the role of the ubiquitin-proteasome system in proteolytic control of RB-E2F pathway components, and recent data that points to surprising non-proteolytic roles for the ubiquitin-proteasome system in novel transcriptional regulatory mechanisms.

  7. Novel interactions between actin and the proteasome revealed by complex haploinsufficiency.

    PubMed

    Haarer, Brian; Aggeli, Dimitra; Viggiano, Susan; Burke, Daniel J; Amberg, David C

    2011-09-01

    Saccharomyces cerevisiae has been a powerful model for uncovering the landscape of binary gene interactions through whole-genome screening. Complex heterozygous interactions are potentially important to human genetic disease as loss-of-function alleles are common in human genomes. We have been using complex haploinsufficiency (CHI) screening with the actin gene to identify genes related to actin function and as a model to determine the prevalence of CHI interactions in eukaryotic genomes. Previous CHI screening between actin and null alleles for non-essential genes uncovered ∼240 deleterious CHI interactions. In this report, we have extended CHI screening to null alleles for essential genes by mating a query strain to sporulations of heterozygous knock-out strains. Using an act1Δ query, knock-outs of 60 essential genes were found to be CHI with actin. Enriched in this collection were functional categories found in the previous screen against non-essential genes, including genes involved in cytoskeleton function and chaperone complexes that fold actin and tubulin. Novel to this screen was the identification of genes for components of the TFIID transcription complex and for the proteasome. We investigated a potential role for the proteasome in regulating the actin cytoskeleton and found that the proteasome physically associates with actin filaments in vitro and that some conditional mutations in proteasome genes have gross defects in actin organization. Whole-genome screening with actin as a query has confirmed that CHI interactions are important phenotypic drivers. Furthermore, CHI screening is another genetic tool to uncover novel functional connections. Here we report a previously unappreciated role for the proteasome in affecting actin organization and function.

  8. Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System*

    PubMed Central

    Singh, Rajesh K.; Zerath, Sylvia; Kleifeld, Oded; Scheffner, Martin; Glickman, Michael H.; Fushman, David

    2012-01-01

    Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin. PMID:23105008

  9. Proteasomal dysfunction in sporadic Parkinson's disease.

    PubMed

    McNaught, Kevin St P; Jackson, Tehone; JnoBaptiste, Ruth; Kapustin, Alexander; Olanow, C Warren

    2006-05-23

    The cause and mechanism of neuronal death in sporadic Parkinson's disease (PD) continue to elude investigators. Recently, alterations in proteasomal function have been detected in the brain of patients with the illness. The biochemical basis of the defect and its relevance to the disease process are now being studied. The available results suggest that proteasomal dysfunction could underlie protein accumulation, Lewy body formation, and neuron death in PD. The cause of proteasomal dysfunction is unknown at present, but this could relate to gene mutations, oxidative damage, ATP depletion, or the actions of environmental toxins. It remains to be established if proteasomal dysfunction plays a primary or a secondary role in the initiation or progression of the neurodegenerative process in PD.

  10. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    PubMed Central

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation. PMID:24563857

  11. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells

    PubMed Central

    Young, Jordan T. F.

    2009-01-01

    Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge. PMID:19838833

  12. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16.

    PubMed

    Dudnik, Alexey; Bigler, Laurent; Dudler, Robert

    2014-06-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.

  13. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition.

    PubMed

    Haratake, Kousuke; Sato, Akitsugu; Tsuruta, Fuminori; Chiba, Tomoki

    2016-06-01

    Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.

  14. Proteasome Inhibitors Enhance Gene Delivery by AAV Virus Vectors Expressing Large Genomes in Hemophilia Mouse and Dog Models: A Strategy for Broad Clinical Application

    PubMed Central

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-01-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration–approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 1013 vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy. PMID:20700109

  15. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  16. Detection of Genes Modifying Sensitivity to Proteasome Inhibitors Using a shRNA Library in Breast Cancer

    DTIC Science & Technology

    2009-03-01

    and sequence -verified more than 200,000 shRNAs covering almost all of the predicted genes in the mouse and human genomes15 and have used these...The Human DiGeorge Syndrome Critical Region Gene 8 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis. Curr Biol 14, 2162

  17. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast

    SciTech Connect

    Mannen, Taro; Andoh, Tomoko; Tani, Tokio

    2008-01-25

    Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1{sup +} gene ({delta}dss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A){sup +} RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in {delta}dss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1{sup +} gene, which encodes a component of the 26S proteasome, as a suppressor for the ts{sup -} phenotype of {delta}dss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.

  18. Similarities between methamphetamine toxicity and proteasome inhibition.

    PubMed

    Fornai, F; Lenzi, P; Gesi, M; Ferrucci, M; Lazzeri, G; Capobianco, L; de Blasi, A; Battaglia, G; Nicoletti, F; Ruggieri, S; Paparelli, A

    2004-10-01

    The monoamine neurotoxin methamphetamine (METH) is commonly used as an experimental model for Parkinson's disease (PD). In fact, METH-induced striatal dopamine (DA) loss is accompanied by damage to striatal nerve endings arising from the substantia nigra. On the other hand, PD is characterized by neuronal inclusions within nigral DA neurons. These inclusions contain alpha-synuclein, ubiquitin, and various components of a metabolic pathway named the ubiquitin-proteasome (UP) system, while mutation of genes coding for various components of the UP system is responsible for inherited forms of PD. In this presentation we demonstrate for the first time the occurrence of neuronal inclusions in vivo in the nigrostriatal system of the mouse following administration of METH. We analyzed, in vivo and in vitro, the shape and the fine structure of these neuronal bodies by using transmission electron microscopy. Immunocytochemical investigation showed that these METH-induced cytosolic inclusions stain for ubiquitin, alpha-synuclein, and UP-related molecules, thus sharing similar components with Lewy bodies occurring in PD, with an emphasis on enzymes belonging to the UP system. In line with this, blockade of this multicatalytic pathway by the selective inhibitor epoxomycin produced cell inclusions with similar features. Moreover, using a multifaceted pharmacological approach, we could demonstrate the need for endogenous DA in order to form neuronal inclusions.

  19. Inhibition of nuclear factor-{kappa}B and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma

    SciTech Connect

    Van Waes, Carter . E-mail: vanwaesc@nidcd.nih.gov; Chang, Angela A.; Lebowitz, Peter F.; Druzgal, Colleen H.; Chen, Zhong; Elsayed, Yusri A.; Sunwoo, John B.; Rudy, Susan; Morris, John C.; Mitchell, James B.; Camphausen, Kevin; Gius, David; Adams, Julian; Sausville, Edward A.; Conley, Barbara A.

    2005-12-01

    Purpose: To examine the effects the proteasome inhibitor bortezomib (VELCADE) on transcription factor nuclear factor-{kappa}B (NF-{kappa}B) and target genes and the feasibility of combination therapy with reirradiation in patients with recurrent head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: The tolerability and response to bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2} given twice weekly concurrent with daily reirradiation to 50-70 Gy was explored. Blood proteasome inhibition and NF-{kappa}B-modulated cytokines and factors were measured. Proteasome inhibition, nuclear localization of NF-{kappa}B phospho-p65, apoptosis, and expression of NF-{kappa}B-modulated mRNAs were compared in serial biopsies from accessible tumors. Results: The maximally tolerated dose was exceeded, and study was limited to 7 and 2 patients, respectively, given bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2}/dose with reirradiation. Grade 3 hypotension and hyponatremia were dose limiting. Mucositis was Grade 3 or less and was delayed. The mean blood proteasome inhibition at 1, 24, and 48 h after 0.6 mg/m{sup 2} was 32%, 16%, and 7% and after 0.9 mg/m{sup 2} was 56%, 26%, and 14%, respectively. Differences in proteasome and NF-{kappa}B activity, apoptosis, and expression of NF-{kappa}B-modulated cell cycle, apoptosis, and angiogenesis factor mRNAs were detected in 2 patients with minor tumor reductions and in serum NF-{kappa}B-modulated cytokines in 1 patient with a major tumor reduction. Conclusions: In combination with reirradiation, the maximally tolerated dose of bortezomib was exceeded at a dose of 0.6 mg/m{sup 2} and the threshold of proteasome inhibition. Although this regimen with reirradiation is not feasible, bortezomib induced detectable differences in NF-{kappa}B localization, apoptosis, and NF-{kappa}B-modulated genes and cytokines in tumor and serum in association with tumor reduction, indicating that other schedules of bortezomib combined with primary

  20. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A

    PubMed Central

    Kale, Andrew J.; McGlinchey, Ryan P.; Lechner, Anna; Moore, Bradley S.

    2011-01-01

    Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β 5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes. PMID:21882868

  1. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots

    PubMed Central

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N.; Misas-Villamil, Johana C.; Xin, Bo T.; Kaiser, Markus; Overkleeft, Herman S.; Tari, Irma; van der Hoorn, Renier A. L.

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress. PMID:28217134

  2. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots.

    PubMed

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N; Misas-Villamil, Johana C; Xin, Bo T; Kaiser, Markus; Overkleeft, Herman S; Tari, Irma; van der Hoorn, Renier A L

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.

  3. The transcriptional repressor protein PRH interacts with the proteasome.

    PubMed Central

    Bess, Kirstin L; Swingler, Tracey E; Rivett, A Jennifer; Gaston, Kevin; Jayaraman, Padma-Sheela

    2003-01-01

    PRH (proline-rich homeodomain protein)/Hex is important in the control of cell proliferation and differentiation. We have shown previously that PRH contains two domains that can bring about transcriptional repression independently; the PRH homeodomain represses transcription by binding to TATA box sequences, whereas the proline-rich N-terminal domain can repress transcription by interacting with members of the Groucho/TLE (transducin-like enhancer of split) family of co-repressor proteins. The proteasome is a multi-subunit protein complex involved in the processing and degradation of proteins. Some proteasome subunits have been suggested to play a role in the regulation of transcription. In the present study, we show that PRH interacts with the HC8 subunit of the proteasome in the context of both 20 and 26 S proteasomes. Moreover, we show that PRH is associated with the proteasome in haematopoietic cells and that the proline-rich PRH N-terminal domain is responsible for this interaction. Whereas PRH can be cleaved by the proteasome, it does not appear to be degraded rapidly in vitro or in vivo, and the proteolytic activity of the proteasome is not required for transcriptional repression by PRH. However, proteasomal digestion of PRH can liberate truncated PRH proteins that retain the ability to bind to DNA. We discuss these findings in terms of the biological role of PRH in gene regulation and the control of cell proliferation. PMID:12826010

  4. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program.

    PubMed

    Matsushita, Akane; Inoue, Haruhiko; Goto, Shingo; Nakayama, Akira; Sugano, Shoji; Hayashi, Nagao; Takatsuji, Hiroshi

    2013-01-01

    The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis.

  5. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma.

    PubMed

    Manasanch, Elisabet E; Korde, Neha; Zingone, Adriana; Tageja, Nishant; Fernandez de Larrea, Carlos; Bhutani, Manisha; Wu, Peter; Roschewski, Mark; Landgren, Ola

    2014-08-01

    Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.

  6. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  7. The 26S proteasome is a multifaceted target for anti-cancer therapies.

    PubMed

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G; Garabadzhiu, Alexander V; Melino, Gerry; Barlev, Nickolai A

    2015-09-22

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.

  8. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    PubMed

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  9. The proteasome and epigenetics: zooming in on histone modifications.

    PubMed

    Bach, Svitlana V; Hegde, Ashok N

    2016-08-01

    The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.

  10. ATPase and ubiquitin-binding proteins of the yeast proteasome.

    PubMed

    Rubin, D M; van Nocker, S; Glickman, M; Coux, O; Wefes, I; Sadis, S; Fu, H; Goldberg, A; Vierstra, R; Finley, D

    1997-03-01

    The 26S proteasome is a 2-Megadalton proteolytic complex with over 30 distinct subunits. The 19S particle, a subcomplex of the 26S proteasome, is thought to confer ATP-dependence and ubiquitin-dependence on the proteolytic core particle of the proteasome. Given the complexity of the 19S particle, genetic approaches are likely to play an important role in its analysis. We have initiated biochemical and genetic studies of the 19S particle in Saccharomyces cerevisiae. Here we describe the localization to the proteasome of several ATPases that were previously proposed to be involved in transcription. Independent studies indicate that the mammalian 26S proteasome contains closely related ATPases. We have also found that the multiubiquitin chain binding protein Mcb1, a homolog of the mammalian S5a protein, is a subunit of the yeast proteasome. However, contrary to expectation, MCB1 is not an essential gene in yeast. The mcb1 mutant grows at a nearly wild-type rate, and the breakdown of most ubiquitin-protein conjugates is unaffected in this strain. One substrate, Ub-Proline-beta gal, was found to require MCB1 for its breakdown, but it remains unclear whether Mcb1 serves as a ubiquitin receptor in this process. Our data suggest that the recognition of ubiquitin conjugates by the proteasome is a complex process which must involve proteins other than Mcb1.

  11. Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway

    SciTech Connect

    Kwak, Mi-Kyoung . E-mail: mkwak@yumail.ac.kr; Kensler, Thomas W.

    2006-07-14

    The 26S proteasome is responsible for degradation of abnormal intracellular proteins, including oxidatively damaged proteins and may play a role as a component of a cellular antioxidative system. However, little is known about regulation of proteasome expression. In the present study, regulation of proteasome expression by the bifunctional enzyme inducer and a specific signaling pathway for this regulation were investigated in murine neuroblastoma cells. Expression of catalytic core subunits including PSMB5 and peptidase activities of the proteasome were elevated following incubation with 3-methylcholanthrene (3-MC). Studies using reporter genes containing the murine Psmb5 promoter showed that transcriptional activity of this gene was enhanced by 3-MC. Overexpression of AhR/Arnt did not affect activation of the Pmsb5 promoter by 3-MC and deletion of the xenobiotic response elements (XREs) from this promoter exerted modest effects on inducibility in response to 3-MC. However, mutation of the proximal AREs of the Psmb5 promoter largely abrogated its inducibility by 3-MC. In addition, this promoter showed a blunted response toward 3-MC in the absence of nrf2; 3-MC incubation increased nuclear levels of Nrf2 only in wild-type cells. Collectively, these results indicate that expression of proteasome subunit PSMB5 is modulated by bifunctional enzyme inducers in a manner independent of the AhR/Arnt-XRE pathway but dependent upon the Nrf2-ARE pathway.

  12. Independent component analysis of Alzheimer's DNA microarray gene expression data

    PubMed Central

    Kong, Wei; Mou, Xiaoyang; Liu, Qingzhong; Chen, Zhongxue; Vanderburg, Charles R; Rogers, Jack T; Huang, Xudong

    2009-01-01

    Background Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA) and independent component analysis (ICA) have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics. Results ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD) hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In comparison to the PCA and support

  13. Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis

    PubMed Central

    Hines, John; Groll, Michael; Fahnestock, Margaret; Crews, Craig M.

    2008-01-01

    SUMMARY Neurotrophic small molecules have the potential to aid in the treatment of neuronal injury and neurodegenerative diseases. The natural product fellutamide B, originally isolated from Penicillium fellutanum, potently induces nerve growth factor (NGF) release from fibroblasts and glial-derived cells, although the mechanism for this neurotrophic activity has not been elucidated. Here, we report that fellutamide B potently inhibits proteasome catalytic activity. High resolution structural information obtained from co-crystallization of the 20S proteasome reveals novel aspects regarding β-subunit binding and adduct formation by fellutamide B to inhibit their hydrolytic activity. We demonstrate that fellutamide B and other proteasome inhibitors increased NGF gene transcription via a cis-acting element (or elements) in the promoter. These results demonstrate an unrecognized connection between proteasome inhibition and NGF production, suggesting a possible new strategy in the development of neurotrophic agents. PMID:18482702

  14. Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles.

    PubMed

    Waite, Kenrick A; De-La Mota-Peynado, Alina; Vontz, Gabrielle; Roelofs, Jeroen

    2016-02-12

    The proteasome is responsible for the degradation of many cellular proteins. If and how this abundant and normally stable complex is degraded by cells is largely unknown. Here we show that in yeast, upon nitrogen starvation, proteasomes are targeted for vacuolar degradation through autophagy. Using GFP-tagged proteasome subunits, we observed that autophagy of a core particle (CP) subunit depends on the deubiquitinating enzyme Ubp3, although a regulatory particle (RP) subunit does not. Furthermore, upon blocking of autophagy, RP remained largely nuclear, although CP largely localized to the cytosol as well as granular structures within the cytosol. In all, our data reveal a regulated process for the removal of proteasomes upon nitrogen starvation. This process involves CP and RP dissociation, nuclear export, and independent vacuolar targeting of CP and RP. Thus, in addition to the well characterized transcriptional up-regulation of genes encoding proteasome subunits, cells are also capable of down-regulating cellular levels of proteasomes through proteaphagy.

  15. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.

    PubMed

    Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R

    2017-03-01

    In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response.

  16. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly*

    PubMed Central

    Li, Xia; Li, Yanjie; Arendt, Cassandra S.; Hochstrasser, Mark

    2016-01-01

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining. PMID:26627836

  17. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly.

    PubMed

    Li, Xia; Li, Yanjie; Arendt, Cassandra S; Hochstrasser, Mark

    2016-01-22

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.

  18. Proteasomes: Isolation and Activity Assays

    PubMed Central

    Li, Yanjie; Tomko, Robert J.; Hochstrasser, Mark

    2015-01-01

    In eukaryotes, damaged or unneeded proteins are typically degraded by the ubiquitin-proteasome system. In this system, the protein substrate is often first covalently modified with a chain of ubiquitin polypeptides. This chain serves as a signal for delivery to the 26S proteasome, a 2.5 MDa, ATP-dependent multisubunit protease complex. The proteasome consists of a barrel-shaped 20S core particle (CP) that is capped on one or both of its ends by a 19S regulatory particle (RP). The RP is responsible for recognizing the substrate, unfolding it, and translocating it into the CP for destruction. Here we describe simple, one-step purifications scheme for isolating the 26S proteasome and its 19S RP and 20S CP subcomplexes from the yeast Saccharomyces cerevisiae, as well as assays for measuring ubiquitin-dependent and ubiquitin-independent proteolytic activity in vitro. PMID:26061243

  19. Proteomic remodeling of proteasome in right heart failure.

    PubMed

    Fessart, Delphine; Martin-Negrier, Marie-Laure; Claverol, Stéphane; Thiolat, Marie-Laure; Crevel, Huguette; Toussaint, Christian; Bonneu, Marc; Muller, Bernard; Savineau, Jean-Pierre; Delom, Frederic

    2014-01-01

    The development of right heart failure (RHF) is characterized by alterations of right ventricle (RV) structure and function, but the mechanisms of RHF remain still unknown. Thus, understanding the RHF is essential for improved therapies. Therefore, identification by quantitative proteomics of targets specific to RHF may have therapeutic benefits to identify novel potential therapeutic targets. The objective of this study was to analyze the molecular mechanisms changing RV function in the diseased RHF and thus, to identify novel potential therapeutic targets. For this, we have performed differential proteomic analysis of whole RV proteins using two experimental rat models of RHF. Differential protein expression was observed for hundred twenty six RV proteins including proteins involved in structural constituent of cytoskeleton, motor activity, structural molecule activity, cytoskeleton protein binding and microtubule binding. Interestingly, further analysis of down-regulated proteins, reveals that both protein and gene expressions of proteasome subunits were drastically decreased in RHF, which was accompanied by an increase of ubiquitinated proteins. Interestingly, the proteasomal activities chymotrypsin and caspase-like were decreased whereas trypsin-like activity was maintained. In conclusion, this study revealed the involvement of ubiquitin-proteasome system (UPS) in RHF. Three deregulated mechanisms were discovered: (1) decreased gene and protein expressions of proteasome subunits, (2) decreased specific activity of proteasome; and (3) a specific accumulation of ubiquitinated proteins. This modulation of UPS of RV may provide a novel therapeutic avenue for restoration of cardiac function in the diseased RHF.

  20. The capture proteasome assay (CAPA) to evaluate subtype-specific proteasome inhibitors.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-09-01

    We recently developed a new assay to measure proteasome activity in vitro (CAPA for capture proteasome assay) [1], based on proteasome capture on an antibody-coated plate. When used with lysates originating from cells expressing either standard proteasome, immunoproteasome or intermediate proteasomes β5i or β1i-β5i, this assay allows the individual monitoring of the chymotrypsin-like, trypsin-like and caspase-like activities of the corresponding proteasome subtypes. The efficiency and specificity of four proteasome inhibitors were studied using the CAPA assay, demonstrating the potential of this assay for the development of subtype-specific proteasome inhibitors.

  1. Structural analysis of Mycobacterium tuberculosis homologues of the eukaryotic proteasome assembly chaperone 2 (PAC2).

    PubMed

    Bai, Lin; Jastrab, Jordan B; Isasa, Marta; Hu, Kuan; Yu, Hongjun; Gygi, Steven P; Darwin, K Heran; Li, Huilin

    2017-02-13

    A previous bioinformatics analysis identified the Mycobacterium tuberculosis (M. tuberculosis) proteins Rv2125 and Rv2714 as orthologs of the eukaryotic proteasome assembly chaperone 2 (PAC2). We set out to investigate whether Rv2125 or Rv2714 could function in proteasome assembly. We solved the crystal structure of Rv2125 at 3.0 Å resolution, which showed an overall fold similar to that of the PAC2 family proteins that include the archaeal PbaB and the yeast Pba1. However, Rv2125 and Rv2714 formed trimers, whereas PbaB forms tetramers and Pba1 dimerizes with Pba2. We also found that purified Rv2125 and Rv2714 could not bind to M. tuberculosis 20S core particles. Finally, proteomic analysis showed that the levels of known proteasome component and substrate proteins were not affected by disruption of Rv2125 in M. tuberculosis Our work suggests that Rv2125 does not participate in bacterial proteasome assembly or function.Importance Although many bacteria do not encode proteasomes, M. tuberculosis not only uses proteasomes, it has also evolved a post-translational modification system called pupylation to deliver proteins to the proteasome. Proteasomes are essential for M. tuberculosis to cause lethal infections in animals, thus determining how proteasomes are assembled may help identify new ways to combat tuberculosis. We solved the structure of a predicted proteasome assembly factor, Rv2125, and isolated a genetic mutant of Rv2125 in M. tuberculosis Our structural, biochemical, and genetic studies indicate that Rv2125 and Rv2714 do not function as proteasome assembly chaperones and are unlikely to have roles in proteasome biology in mycobacteria.

  2. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  3. Differential expression of 26S proteasome subunits and functional activity during neonatal development.

    PubMed

    Claud, Erika C; McDonald, Julie A K; He, Shu-Mei; Yu, Yueyue; Duong, Lily; Sun, Jun; Petrof, Elaine O

    2014-08-29

    Proteasomes regulate many essential cellular processes by degrading intracellular proteins. While aging is known to be associated with dysfunction of the proteasome, there are few reports detailing activity and function of proteasomes in the early stages of life. To elucidate the function and development of mammalian proteasomes, 26S proteasomes were affinity-purified from rat intestine, spleen and liver. The developmental expression of core, regulatory and immunoproteasome subunits was analyzed by immunoblotting and reverse-transcriptase PCR of mRNA subunits, and proteasome catalytic function was determined by fluorogenic enzymatic assays. The expression of core (β2, β5, α7 and β1) and regulatory (Rpt5) subunits was found to be present at low levels at birth and increased over time particularly at weaning. In contrast, while gradual developmental progression of proteasome structure was also seen with the immunoproteasome subunits (β1i, β5i, and β2i), these were not present at birth. Our studies demonstrate a developmental pattern to 26S proteasome activity and subunit expression, with low levels of core proteasome components and absence of immunoproteasomes at birth followed by increases at later developmental stages. This correlates with findings from other studies of a developmental hyporesponsiveness of the adaptive immune system to allow establishment of microbial colonization immediately after birth.

  4. The Ubiquitination, Disaggregation and Proteasomal Degradation Machineries in Polyglutamine Disease

    PubMed Central

    Nath, Samir R.; Lieberman, Andrew P.

    2017-01-01

    Polyglutamine disorders are chronic, progressive neurodegenerative diseases caused by expansion of a glutamine tract in widely expressed genes. Despite excellent models of disease, a well-documented clinical history and progression, and established genetic causes, there are no FDA approved, disease modifying treatments for these disorders. Downstream of the mutant protein, several divergent pathways of toxicity have been identified over the last several decades, supporting the idea that targeting only one of these pathways of toxicity is unlikely to robustly alleviate disease progression. As a result, a vast body of research has focused on eliminating the mutant protein to broadly prevent downstream toxicity, either by silencing mutant protein expression or leveraging the endogenous protein quality control machinery. In the latter approach, a focus has been placed on four critical components of mutant protein degradation that are active in the nucleus, a key site of toxicity: disaggregation, ubiquitination, deubiquitination, and proteasomal activity. These machineries have unique functional components, but work together as a cellular defense system that can be successfully leveraged to alleviate disease phenotypes in several models of polyglutamine toxicity. This review will highlight recent advances in understanding both the potential and role of these components of the protein quality control machinery in polyglutamine disease pathophysiology. PMID:28381987

  5. The Ubiquitination, Disaggregation and Proteasomal Degradation Machineries in Polyglutamine Disease.

    PubMed

    Nath, Samir R; Lieberman, Andrew P

    2017-01-01

    Polyglutamine disorders are chronic, progressive neurodegenerative diseases caused by expansion of a glutamine tract in widely expressed genes. Despite excellent models of disease, a well-documented clinical history and progression, and established genetic causes, there are no FDA approved, disease modifying treatments for these disorders. Downstream of the mutant protein, several divergent pathways of toxicity have been identified over the last several decades, supporting the idea that targeting only one of these pathways of toxicity is unlikely to robustly alleviate disease progression. As a result, a vast body of research has focused on eliminating the mutant protein to broadly prevent downstream toxicity, either by silencing mutant protein expression or leveraging the endogenous protein quality control machinery. In the latter approach, a focus has been placed on four critical components of mutant protein degradation that are active in the nucleus, a key site of toxicity: disaggregation, ubiquitination, deubiquitination, and proteasomal activity. These machineries have unique functional components, but work together as a cellular defense system that can be successfully leveraged to alleviate disease phenotypes in several models of polyglutamine toxicity. This review will highlight recent advances in understanding both the potential and role of these components of the protein quality control machinery in polyglutamine disease pathophysiology.

  6. Wheat sprout extract-induced apoptosis in human cancer cells by proteasomes modulation.

    PubMed

    Bonfili, Laura; Amici, Manila; Cecarini, Valentina; Cuccioloni, Massimiliano; Tacconi, Rosalia; Angeletti, Mauro; Fioretti, Evandro; Keller, Jeffrey N; Eleuteri, Anna Maria

    2009-09-01

    Natural occurring modulators of proteasome functionality are extensively investigated for their implication in cancer therapy. On the basis of our previous evidences both on proteasomal inhibition by monomeric polyphenols, and on the characterization of wheat sprout hydroalcoholic extract, herein we thoroughly report on a comparative study of the effect of wheat sprout extract on both normal and tumour cells. Treatment of isolated 20S proteasomes with wheat sprout extracts induced a gradual inhibition of all proteasome activities. Next, two wheat sprout extract components were separated: a polyphenol and a protein fraction. Both components exerted an in vitro inhibitory effect on proteasome activity. HeLa tumour cells and FHs 74 Int normal cells were exposed to both fractions, resulting in different rates of proteasome inhibition, with tumour cells showing a significantly higher degree of proteasome impairment and apoptosis induction. Furthermore, a decrease in proteasome activities and in cell survival of the human plasmacytoma RPMI 8226 cell line, upon the same treatments, was observed. Collectively, our results provide additional evidences supporting the possible use of natural extracts as coadjuvants in cancer treatments.

  7. The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence

    PubMed Central

    Börnke, Frederik

    2013-01-01

    The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) requires type III effector proteins (T3Es) for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA) and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed. PMID:23785289

  8. Intron retention as a component of regulated gene expression programs.

    PubMed

    Jacob, Aishwarya G; Smith, Christopher W J

    2017-04-08

    Intron retention has long been an exemplar of regulated splicing with case studies of individual events serving as models that provided key mechanistic insights into the process of splicing control. In organisms such as plants and budding yeast, intron retention is well understood as a major mechanism of gene expression regulation. In contrast, in mammalian systems, the extent and functional significance of intron retention have, until recently, remained greatly underappreciated. Technical challenges to the global detection and quantitation of transcripts with retained introns have often led to intron retention being overlooked or dismissed as "noise". Now, however, with the wealth of information available from high-throughput deep sequencing, combined with focused computational and statistical analyses, we are able to distinguish clear intron retention patterns in various physiological and pathological contexts. Several recent studies have demonstrated intron retention as a central component of gene expression programs during normal development as well as in response to stress and disease. Furthermore, these studies revealed various ways in which intron retention regulates protein isoform production, RNA stability and translation efficiency, and rapid induction of expression via post-transcriptional splicing of retained introns. In this review, we highlight critical findings from these transcriptomic studies and discuss commonalties in the patterns prevalent in intron retention networks at the functional and regulatory levels.

  9. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly

    PubMed Central

    Sun, Peng; Feng, Li-xing; Zhang, Dong-mei; Liu, Miao; Liu, Wang; Mi, Tian; Wu, Wan-ying; Jiang, Bao-hong; Yang, Min; Hu, Li-hong; Guo, De-an; Liu, Xuan

    2016-01-01

    Aim: Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. Methods: A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. Results: The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. Conclusion: BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly

  10. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription?

    PubMed

    Nawaz, Zafar; O'Malley, Bert W

    2004-03-01

    The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.

  11. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans

    PubMed Central

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos, Efstathios S.

    2015-01-01

    Protein homeostasis (proteostasis) is one of the nodal points that need to be preserved to retain physiologic cellular/organismal balance. The ubiquitin-proteasome system (UPS) is responsible for the removal of both normal and damaged proteins, with the proteasome being the downstream effector. The proteasome is the major cellular protease with progressive impairment of function during aging and senescence. Despite the documented age-retarding properties of proteasome activation in various cellular models, simultaneous enhancement of the 20S core proteasome content, assembly, and function have never been reported in any multicellular organism. Consequently, the possible effects of the core proteasome modulation on organismal life span are elusive. In this study, we have achieved activation of the 20S proteasome at organismal level. We demonstrate enhancement of proteasome levels, assembly, and activity in the nematode Caenorhabditis elegans, resulting in life span extension and increased resistance to stress. We also provide evidence that the observed life span extension is dependent on the transcriptional activity of Dauer formation abnormal/Forkhead box class O (DAF-16/FOXO), skinhead-1 (SKN-1), and heat shock factor-1 (HSF-1) factors through regulation of downstream longevity genes. We further show that the reported beneficial effects are not ubiquitous but they are dependent on the genetic context. Finally, we provide evidence that proteasome core activation might be a potential strategy to minimize protein homeostasis deficiencies underlying aggregation-related diseases, such as Alzheimer’s disease (AD) or Huntington’s disease (HD). In summary, this is the first report demonstrating that 20S core proteasome up-regulation in terms of both content and activity is feasible in a multicellular eukaryotic organism and that in turn this modulation promotes extension of organismal health span and life span.—Chondrogianni, N., Georgila, K., Kourtis, N

  12. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  13. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  14. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes.

    PubMed

    Djébali, Naceur; Jauneau, Alain; Ameline-Torregrosa, Carine; Chardon, Fabien; Jaulneau, Valérie; Mathé, Catherine; Bottin, Arnaud; Cazaux, Marc; Pilet-Nayel, Marie-Laure; Baranger, Alain; Aouani, Mohamed Elarbi; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard; Huguet, Thierry; Jacquet, Christophe

    2009-09-01

    A pathosystem between Aphanomyces euteiches, the causal agent of pea root rot disease, and the model legume Medicago truncatula was developed to gain insights into mechanisms involved in resistance to this oomycete. The F83005.5 French accession and the A17-Jemalong reference line, susceptible and partially resistant, respectively, to A. euteiches, were selected for further cytological and genetic analyses. Microscopy analyses of thin root sections revealed that a major difference between the two inoculated lines occurred in the root stele, which remained pathogen free in A17. Striking features were observed in A17 roots only, including i) frequent pericycle cell divisions, ii) lignin deposition around the pericycle, and iii) accumulation of soluble phenolic compounds. Genetic analysis of resistance was performed on an F7 population of 139 recombinant inbred lines and identified a major quantitative trait locus (QTL) near the top of chromosome 3. A second study, with near-isogenic line responses to A. euteiches confirmed the role of this QTL in expression of resistance. Fine-mapping allowed the identification of a 135-kb sequenced genomic DNA region rich in proteasome-related genes. Most of these genes were shown to be induced only in inoculated A17. Novel mechanisms possibly involved in the observed partial resistance are proposed.

  15. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  16. Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor b-AP15

    PubMed Central

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R.; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2016-01-01

    The ubiquitin–proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure–activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  17. Development and Characterization of Proteasome Inhibitors

    PubMed Central

    Kim, Kyung Bo; Fonseca, Fabiana N.; Crews, Craig M.

    2008-01-01

    Although many proteasome inhibitors have been either synthesized or identified from natural sources, the development of more sophisticated, selective proteasome inhibitors is important for a detailed understanding of proteasome function. We have found that antitumor natural product epoxomicin and eponemycin, both of which are linear peptides containing a α,β-epoxyketone pharmacophore, target proteasome for their antitumor activity. Structural studies of the proteasome–epoxomicin complex revealed that the unique specificity of the natural product toward proteasome is due to the α,β-epoxyketone pharmacophore, which forms an unusual six-membered morpholino ring with the amino terminal catalytic Thr-1 of the 20S proteasome. Thus, we believe that a facile synthetic approach for α,β-epoxyketone linear peptides provides a unique opportunity to develop proteasome inhibitors with novel activities. In this chapter, we discuss the detailed synthetic procedure of the α′,β′-epoxyketone natural product epoxomicin and its derivatives. PMID:16338383

  18. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors1[OPEN

    PubMed Central

    Sheikh, Arsheed; Gimenez-Ibanez, Selena

    2016-01-01

    Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR. In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors. PMID:27613851

  19. Characterization of the gene encoding mouse serum amyloid P component. Comparison with genes encoding other pentraxins.

    PubMed Central

    Whitehead, A S; Rits, M

    1989-01-01

    A CBA/J-strain mouse serum amyloid P component (SAP) genomic clone was isolated and analysed. The clone contains the entire SAP gene and specifies a primary transcript of 1065 nucleotide residues. This comprises a first exon of 206 nucleotide residues containing the mRNA 5'-untranslated region and sequence encoding the pre-SAP leader peptide and the first two amino acid residues of mature SAP separated by a single 110-base intron from a 749-nucleotide-residue second exon containing sequence encoding the bulk of the mature SAP and specifying the mRNA 3'-untranslated region. The overall organization is similar to that of the human SAP gene, and the coding region and intron sequences are highly conserved. The SAP RNA cap site was defined by primer extension analysis of polyadenylated acute-phase liver RNA. The 5'-region of the mouse SAP gene contains modified CAAT and TATA promoter elements preceded by a putative hepatocyte-nuclear-factor-1-recognition site; these structures are in a region that is highly homologous to the corresponding region of the human SAP gene. Comparisons of the mouse SAP gene structure and derived amino acid sequence with those of other mammalian pentraxins were made. Images Fig. 3. PMID:2481440

  20. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  1. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1.

    PubMed Central

    Kominami, K; Okura, N; Kawamura, M; DeMartino, G N; Slaughter, C A; Shimbara, N; Chung, C H; Fujimuro, M; Yokosawa, H; Shimizu, Y; Tanahashi, N; Tanaka, K; Toh-e, A

    1997-01-01

    Nin1p, a component of the 26S proteasome of Saccharomyces cerevisiae, is required for activation of Cdc28p kinase at the G1-S-phase and G2-M boundaries. By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and characterized two new multicopy suppressors, SUN1 and SUN2, of the nin1-1 mutation. SUN1 can suppress a null nin1 mutation, whereas SUN2, an essential gene, does not. Sun1p is a 268-amino acid protein which shows strong similarity to MBP1 of Arabidopsis thaliana, a homologue of the S5a subunit of the human 26S proteasome. Sun1p binds ubiquitin-lysozyme conjugates as do S5a and MBP1. Sun2p (523 amino acids) was found to be homologous to the p58 subunit of the human 26S proteasome. cDNA encoding the p58 component was cloned. Furthermore, expression of a derivative of p58 from which the N-terminal 150 amino acids had been removed restored the function of a null allele of SUN2. During glycerol density gradient centrifugation, both Sun1p and Sun2p comigrated with the known proteasome components. These results, as well as other structural and functional studies, indicate that both Sun1p and Sun2p are components of the regulatory module of the yeast 26S proteasome. Images PMID:9017604

  2. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans.

    PubMed

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos, Efstathios S

    2015-02-01

    Protein homeostasis (proteostasis) is one of the nodal points that need to be preserved to retain physiologic cellular/organismal balance. The ubiquitin-proteasome system (UPS) is responsible for the removal of both normal and damaged proteins, with the proteasome being the downstream effector. The proteasome is the major cellular protease with progressive impairment of function during aging and senescence. Despite the documented age-retarding properties of proteasome activation in various cellular models, simultaneous enhancement of the 20S core proteasome content, assembly, and function have never been reported in any multicellular organism. Consequently, the possible effects of the core proteasome modulation on organismal life span are elusive. In this study, we have achieved activation of the 20S proteasome at organismal level. We demonstrate enhancement of proteasome levels, assembly, and activity in the nematode Caenorhabditis elegans, resulting in life span extension and increased resistance to stress. We also provide evidence that the observed life span extension is dependent on the transcriptional activity of Dauer formation abnormal/Forkhead box class O (DAF-16/FOXO), skinhead-1 (SKN-1), and heat shock factor-1 (HSF-1) factors through regulation of downstream longevity genes. We further show that the reported beneficial effects are not ubiquitous but they are dependent on the genetic context. Finally, we provide evidence that proteasome core activation might be a potential strategy to minimize protein homeostasis deficiencies underlying aggregation-related diseases, such as Alzheimer's disease (AD) or Huntington's disease (HD). In summary, this is the first report demonstrating that 20S core proteasome up-regulation in terms of both content and activity is feasible in a multicellular eukaryotic organism and that in turn this modulation promotes extension of organismal health span and life span.

  3. The capture proteasome assay: A method to measure proteasome activity in vitro.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-08-01

    Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i-β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome-Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome-Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.

  4. Targeting the ubiquitin–proteasome system for cancer therapy

    PubMed Central

    Shen, Min; Schmitt, Sara; Buac, Daniela; Dou, Q Ping

    2013-01-01

    Introduction The ubiquitin–proteasome system (UPS) degrades 80 – 90% of intracellular proteins. Cancer cells take advantage of the UPS for their increased growth and decreased apoptotic cell death. Thus, the components that make up the UPS represent a diverse group of potential anti-cancer targets. The success of the first-in-class proteasome inhibitor bortezomib not only proved that the proteasome is a feasible and valuable anti-cancer target, but also inspired researchers to extensively explore other potential targets of this pathway. Areas covered This review provides a broad overview of the UPS and its role in supporting cancer development and progression, especially in aspects of p53 inactivation, p27 turnover and NF-κB activation. Also, efforts toward the development of small molecule inhibitors (SMIs) targeting different steps in this pathway for cancer treatment are reviewed and discussed. Expert opinion Whereas some of the targets in the UPS, such as the 20S pro-teasome, Nedd8 activating enzyme and HDM2, have been well-established and validated, there remains a large pool of candidates waiting to be investigated. Development of SMIs targeting the UPS has been largely facilitated by state-of-the-art technologies such as high-throughput screening and computer-assisted drug design, both of which require a better understanding of the targets of interest. PMID:23822887

  5. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition.

    PubMed

    Radhakrishnan, Senthil K; den Besten, Willem; Deshaies, Raymond J

    2014-01-01

    Proteasome inhibition elicits an evolutionarily conserved response wherein proteasome subunit mRNAs are upregulated, resulting in recovery (i.e., 'bounce-back') of proteasome activity. We previously demonstrated that the transcription factor Nrf1/NFE2L1 mediates this homeostatic response in mammalian cells. We show here that Nrf1 is initially translocated into the lumen of the ER, but is rapidly and efficiently retrotranslocated to the cytosolic side of the membrane in a manner that depends on p97/VCP. Normally, retrotranslocated Nrf1 is degraded promptly by the proteasome and active species do not accumulate. However, in cells with compromised proteasomes, retrotranslocated Nrf1 escapes degradation and is cleaved N-terminal to Leu-104 to yield a fragment that is no longer tethered to the ER membrane. Importantly, this cleavage event is essential for Nrf1-dependent activation of proteasome gene expression upon proteasome inhibition. Our data uncover an unexpected role for p97 in activation of a transcription factor by relocalizing it from the ER lumen to the cytosol. DOI: http://dx.doi.org/10.7554/eLife.01856.001.

  6. Transgenic pig carrying green fluorescent proteasomes

    PubMed Central

    Miles, Edward L.; O’Gorman, Chad; Zhao, Jianguo; Samuel, Melissa; Walters, Eric; Yi, Young-Joo; Prather, Randall S.; Wells, Kevin D.; Sutovsky, Peter

    2013-01-01

    Among its many functions, the ubiquitin–proteasome system regulates substrate-specific proteolysis during the cell cycle, apoptosis, and fertilization and in pathologies such as Alzheimer’s disease, cancer, and liver cirrhosis. Proteasomes are present in human and boar spermatozoa, but little is known about the interactions of proteasomal subunits with other sperm proteins or structures. We have created a transgenic boar with green fluorescent protein (GFP) tagged 20S proteasomal core subunit α-type 1 (PSMA1-GFP), hypothesizing that the PSMA1-GFP fusion protein will be incorporated into functional sperm proteasomes. Using direct epifluorescence imaging and indirect immunofluorescence detection, we have confirmed the presence of PSMA1-GFP in the sperm acrosome. Western blotting revealed a protein band corresponding to the predicted mass of PSMA1-GFP fusion protein (57 kDa) in transgenic spermatozoa. Transgenic boar fertility was confirmed by in vitro fertilization, resulting in transgenic blastocysts, and by mating, resulting in healthy transgenic offspring. Immunoprecipitation and proteomic analysis revealed that PSMA1-GFP copurifies with several acrosomal membrane-associated proteins (e.g., lactadherin/milk fat globule E8 and spermadhesin alanine-tryptophan-asparagine). The interaction of MFGE8 with PSMA1-GFP was confirmed through cross-immunoprecipitation. The identified proteasome-interacting proteins may regulate sperm proteasomal activity during fertilization or may be the substrates of proteasomal proteolysis during fertilization. Proteomic analysis also confirmed the interaction/coimmunoprecipitation of PSMA1-GFP with 13/14 proteasomal core subunits. These results demonstrate that the PSMA1-GFP was incorporated in the assembled sperm proteasomes. This mammal carrying green fluorescent proteasomes will be useful for studies of fertilization and wherever the ubiquitin–proteasome system plays a role in cellular function or pathology. PMID:23550158

  7. Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer.

    PubMed

    Steg, Adam D; Burke, Mata R; Amm, Hope M; Katre, Ashwini A; Dobbin, Zachary C; Jeong, Dae Hoon; Landen, Charles N

    2014-08-30

    The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.

  8. An evolutionarily conserved pathway controls proteasome homeostasis

    PubMed Central

    Rousseau, Adrien; Bertolotti, Anne

    2016-01-01

    The proteasome is essential for the selective degradation of most cellular proteins but how cells maintain adequate amounts of proteasome is unclear. Here we found an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1 whose inhibition induced all known yeast 19S regulatory particle assembly-chaperones (RACs) as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, ensured that the supply of RACs and proteasome subunits increased under challenging conditions to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and Erk5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/Erk5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance to the rising needs. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  9. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.

  10. Proteasome Modulates Mitochondrial Function During Cellular Senescence

    PubMed Central

    Torres, Claudio A.; Perez, Viviana I.

    2009-01-01

    Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidences that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence have significant effects on the intra and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a pro-oxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo. PMID:17976388

  11. Molecular shredders: how proteasomes fulfill their role.

    PubMed

    Groll, Michael; Clausen, Tim

    2003-12-01

    The 20S proteasome is a large, cylinder-shaped protease that is found in all domains of life and plays a crucial role in cellular protein turnover. It has multiple catalytic centers located within the hollow cavity of a molecular cage. This architecture prevents unwanted degradation of endogenous proteins and promotes processive degradation of substrates by restricting the dissociation of partially digested polypeptides. Although this kind of self-compartmentalization is generally conserved, the proteasomes of bacteria, archaea and eukaryotes show many differences in architecture, subunit composition and regulation. The structure of the 20S proteasome and its inherent role in the regulation of proteasome function are gradually being elucidated.

  12. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  13. Proteasome, but Not Autophagy, Disruption Results in Severe Eye and Wing Dysmorphia: A Subunit- and Regulator-Dependent Process in Drosophila

    PubMed Central

    Pantazi, Asimina D.; Mpakou, Vassiliki E.; Zervas, Christos G.; Papassideri, Issidora S.; Stravopodis, Dimitrios J.

    2013-01-01

    Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable

  14. Mitochondrial and Nuclear Genes of Mitochondrial Components in Cancer

    PubMed Central

    Kirches, E

    2009-01-01

    Although the observation of aerobic glycolysis of tumor cells by Otto v. Warburg had demonstrated abnormalities of mitochondrial energy metabolism in cancer decades ago, there was no clear evidence for a functional role of mutant mitochondrial proteins in cancer development until the early years of the 21st century. In the year 2000, a major breakthrough was achieved by the observation, that several genes coding for subunits of the respiratory chain (ETC) complex II, succinate dehydrogenase (SDH) are tumor suppressor genes in heritable paragangliomas, fulfilling Knudson’s classical two-hit hypothesis. A functional inactivation of both alleles by germline mutations and chromosomal losses in the tumor tissue was found in the patients. Later, SDH mutations were also identified in sporadic paragangliomas and pheochromocytomas. Genes of the mitochondrial ATP-synthase and of mitochondrial iron homeostasis have been implicated in cancer development at the level of cell culture and mouse experiments. In contrast to the well established role of some nuclear SDH genes, a functional impact of the mitochondrial genome itself (mtDNA) in cancer development remains unclear. Nevertheless, the extremely high frequency of mtDNA mutations in solid tumors raises the question, whether this small circular genome might be applicable to early cancer detection. This is a meaningful approach, especially in cancers, which tend to spread tumor cells early into bodily fluids or faeces, which can be screened by non-invasive methods. PMID:19949549

  15. The ubiquitin proteasome system in neuropathology.

    PubMed

    Lehman, Norman L

    2009-09-01

    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy

  16. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo.

    PubMed

    Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zhao, Chong; Liao, Siyan; Yang, Changshan; Liu, Yurong; Zhao, Canguo; Li, Shujue; Lu, Xiaoyu; Liu, Chunjiao; Guan, Lixia; Zhao, Kai; Shi, Xiaoqing; Song, Wenbin; Zhou, Ping; Dong, Xiaoxian; Guo, Haiping; Wen, Guanmei; Zhang, Change; Jiang, Lili; Ma, Ningfang; Li, Bing; Wang, Shunqing; Tan, Huo; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2013-01-31

    Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  17. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  18. The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up?

    PubMed

    Schröter, Friederike; Adjaye, James

    2014-02-18

    The proteasome is a multi-enzyme complex responsible for orchestrating protein quality control by degrading misfolded, damaged, abnormal and foreign proteins. Studies related to the association of the proteasomal system in the preservation of self-renewal in both human and mouse pluripotent cells are sparse, and therefore a clear indication of the emergence of a new and important field of research. Under specific conditions the standard proteasome switches to the newly synthesized immunoproteasome, a catalytically active protein chamber also involved in the regulation of protein homeostasis, cell signaling and gene expression. Herein we review recent data to help elucidate and highlight the pivotal role of the proteasome complex, constitutive as well as inducible, in the regulation of self-renewal, pluripotency and differentiation of both embryonic and induced pluripotent stem cells. The proteasome that is endowed with enhanced proteolytic activity maintains self-renewal by regulating gene expression. In addition to protein degradation, the proteasome activator PA28, compartments of the 19S regulatory particle and key members of the ubiquitin pathway dictate the fate of a pluripotent stem cell. We anticipate that our observations will stimulate active research in this new and emerging theme related to stem cell biology, disease and regenerative medicine.

  19. THE PROTEASOME REGULATES BACTERIAL CpG DNA-INDUCED SIGNALING PATHWAYS IN MURINE MACROPHAGES

    PubMed Central

    Gao, Jian Jun; Shen, Jing; Kolbert, Christopher; Raghavakaimal, Sreekumar; Papasian, Christopher J.; Qureshi, Asaf A.; Vogel, Stefanie N.; Morrison, David C.; Qureshi, Nilofer

    2010-01-01

    Our previous work has provided strong evidence that the proteasome is central to the vast majority of genes induced in mouse macrophages in response to lipopolysaccharide (LPS) stimulation. In the studies presented here, we evaluated the role of the macrophage proteasome in response to a second microbial product CpG DNA (unmethylated bacterial DNA). For these studies, we applied Affymetrix microarray analysis of RNA derived from murine macrophages stimulated with CpG DNA in the presence or absence of proteasome inhibitor, lactacystin. The results of these studies revealed that similar to LPS, a vast majority of those macrophage genes regulated by CpG DNA are also under the control of the proteasome at 4 h. In contrast to LPS stimulation, however, many of these genes were induced much later than 4 h, at 18 h, in response to CpG DNA. Lactacystin treatment of macrophages completely blocked the CpG DNA-induced gene expression of TNF-α and other genes involved in production of inflammatory mediators. These data strongly support the conclusion that, similar to LPS, the macrophage proteasome is a key regulator of CpG DNA-induced signaling pathways. PMID:20160661

  20. Molecular mechanisms of proteasome plasticity in aging.

    PubMed

    Rodriguez, Karl A; Gaczynska, Maria; Osmulski, Pawel A

    2010-02-01

    The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multi-subunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the proteasome we surveyed content, composition and catalytic properties of the enzyme in cytosolic, microsomal and nuclear fractions obtained from mouse livers subjected to organismal aging. We found that during aging subunit composition and subcellular distribution of proteasomes changed without substantial alterations in the total level of core complexes. We observed that the general decline in proteasomes functions was limited to nuclear and cytosolic compartments. Surprisingly, the observed changes in activity and specificity were linked to the amount of the activator module and distinct composition of the catalytic subunits. In contrast, activity, specificity and composition of the microsomal-associated proteasomes remained mostly unaffected by aging; however their relative contribution to the total activity was substantially elevated. Unexpectedly, the nuclear proteasomes were affected most profoundly by aging possibly triggering significant changes in cellular signaling and transcription. Collectively, the data indicate an age-related refocusing of proteasome from the compartment-specific functions towards general protein maintenance.

  1. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  2. Distribution, structure and diversity of "bacterial" genes encoding two-component proteins in the Euryarchaeota.

    PubMed

    Ashby, Mark K

    2006-08-01

    The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.

  3. Compensatory role of the Nrf2-ARE pathway against paraquat toxicity: Relevance of 26S proteasome activity.

    PubMed

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsushima, Sayaka; Yamamoto, Takamori; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2015-11-01

    Oxidative stress and the ubiquitin-proteasome system play a key role in the pathogenesis of Parkinson disease. Although the herbicide paraquat is an environmental factor that is involved in the etiology of Parkinson disease, the role of 26S proteasome in paraquat toxicity remains to be determined. Using PC12 cells overexpressing a fluorescent protein fused to the proteasome degradation signal, we report here that paraquat yielded an inhibitory effect on 26S proteasome activity without an obvious decline in 20S proteasome activity. Relative low concentrations of proteasome inhibitors caused the accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is targeted to the ubiquitin-proteasome system, and activated the antioxidant response element (ARE)-dependent transcription. Paraquat also upregulated the protein level of Nrf2 without increased expression of Nrf2 mRNA, and activated the Nrf2-ARE pathway. Consequently, paraquat induced expression of Nrf2-dependent ARE-driven genes, such as γ-glutamylcysteine synthetase, catalase, and hemeoxygenase-1. Knockdown of Nrf2 or inhibition of γ-glutamylcysteine synthetase and catalase exacerbated paraquat-induced toxicity, whereas suppression of hemeoxygenase-1 did not. These data indicate that the compensatory activation of the Nrf2-ARE pathway via inhibition of 26S proteasome serves as part of a cellular defense mechanism to protect against paraquat toxicity.

  4. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study

    PubMed Central

    Santoro, Anna Maria; Monaco, Irene; Attanasio, Francesco; Lanza, Valeria; Pappalardo, Giuseppe; Tomasello, Marianna Flora; Cunsolo, Alessandra; Rizzarelli, Enrico; De Luigi, Ada; Salmona, Mario; Milardi, Danilo

    2016-01-01

    Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components. PMID:27633879

  5. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  6. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.

    PubMed

    Todgham, Anne E; Crombie, Timothy A; Hofmann, Gretchen E

    2017-02-01

    There is an accumulating body of evidence suggesting that the sub-zero Antarctic marine environment places physiological constraints on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, 20S proteasome activity and mRNA expression of many proteins involved in both the Ub tagging of damaged proteins as well as the different complexes of the 26S proteasome were measured to examine whether there is thermal compensation of the Ub-proteasome pathway in Antarctic fishes to better understand the efficiency of the protein degradation machinery in polar species. Both Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) notothenioids were included in this study to investigate the mechanisms of cold adaptation of this pathway in polar species. Overall, there were significant differences in the levels of Ub-conjugated proteins between the Antarctic notothenioids and B. variegatus, with N. angustata possessing levels very similar to those of the Antarctic fishes. Proteasome activity in the gills of Antarctic fishes demonstrated a high degree of temperature compensation such that activity levels were similar to activities measured in their temperate relatives at ecologically relevant temperatures. A similar level of thermal compensation of proteasome activity was not present in the liver of two Antarctic fishes. Higher gill proteasome activity is likely due in part to higher cellular levels of proteins involved in the Ub-proteasome pathway, as evidenced by high mRNA expression of relevant genes. Reduced activity of the Ub-proteasome pathway does not appear to be the mechanism responsible for elevated levels of denatured proteins in Antarctic fishes, at least in the gills.

  7. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    PubMed

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  8. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins

    PubMed Central

    Dhar, Jayeeta; Barik, Sailen

    2016-01-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar. PMID:27905537

  9. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome.

    PubMed

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-09-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.

  10. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene.

    PubMed Central

    Tsien, H C; Hanson, R S

    1992-01-01

    Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Fragments produced by digestion of DNA with rare cutting restriction endonucleases were separated by pulsed-field gel electrophoresis and transferred to Zeta-Probe membrane (Bio-Rad) for Southern blot analysis. Samples were also analyzed for the presence of soluble MMO by Western blot analysis and the ability to degrade TCE. The physiological groups of methanotrophs in each sample were determined by hybridizing cells with fluorescence-labelled signature probes. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Bath also produces a soluble MMO. Images PMID:1349468

  11. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor

    PubMed Central

    Kadowaki, Tomoko; Yukitake, Hideharu; Naito, Mariko; Sato, Keiko; Kikuchi, Yuichiro; Kondo, Yoshio; Shoji, Mikio; Nakayama, Koji

    2016-01-01

    The periodontopathogen Porphyromonas gingivalis secretes potent pathogenic proteases, gingipains, via the type IX secretion system (T9SS). This system comprises at least 11 components; however, the regulatory mechanism of their expression has not yet been elucidated. Here, we found that the PorY (PGN_2001)-PorX (PGN_1019)-SigP (PGN_0274) cascade is involved in the regulation of T9SS. Surface plasmon resonance (SPR) analysis revealed a direct interaction between a recombinant PorY (rPorY) and a recombinant PorX (rPorX). rPorY autophosphorylated and transferred a phosphoryl group to rPorX in the presence of Mn2+. These results demonstrate that PorX and PorY act as a response regulator and a histidine kinase, respectively, of a two component system (TCS), although they are separately encoded on the chromosome. T9SS component-encoding genes were down-regulated in a mutant deficient in a putative extracytoplasmic function (ECF) sigma factor, PGN_0274 (SigP), similar to the porX mutant. Electrophoretic gel shift assays showed that rSigP bound to the putative promoter regions of T9SS component-encoding genes. The SigP protein was lacking in the porX mutant. Co-immunoprecipitation and SPR analysis revealed the direct interaction between SigP and PorX. Together, these results indicate that the PorXY TCS regulates T9SS-mediated protein secretion via the SigP ECF sigma factor. PMID:26996145

  12. Application of Euclidean distance measurement and principal component analysis for gene identification.

    PubMed

    Ghosh, Antara; Barman, Soma

    2016-06-01

    Gene systems are extremely complex, heterogeneous, and noisy in nature. Many statistical tools which are used to extract relevant feature from genes provide fuzzy and ambiguous information. High-dimensional gene expression database available in public domain usually contains thousands of genes. Efficient prediction method is demanding nowadays for accurate identification of such database. Euclidean distance measurement and principal component analysis methods are applied on such databases to identify the genes. In both methods, prediction algorithm is based on homology search approach. Digital Signal Processing technique along with statistical method is used for analysis of genes in both cases. A two-level decision logic is used for gene classification as healthy or cancerous. This binary logic minimizes the prediction error and improves prediction accuracy. Superiority of the method is judged by receiver operating characteristic curve.

  13. A three component latent class model for robust semiparametric gene discovery.

    PubMed

    Alfo', Marco; Farcomeni, Alessio; Tardella, Luca

    2011-01-01

    We propose a robust model for discovering differentially expressed genes which directly incorporates biological significance, i.e., effect dimension. Using the so-called c-fold rule, we transform the expressions into a nominal observed random variable with three categories: below a fixed lower threshold, above a fixed upper threshold or within the two thresholds. Gene expression data is then transformed into a nominal variable with three levels possibly originated by three different distributions corresponding to under expressed, not differential, and over expressed genes. This leads to a statistical model for a 3-component mixture of trinomial distributions with suitable constraints on the parameter space. In order to obtain the MLE estimates, we show how to implement a constrained EM algorithm with a latent label for the corresponding component of each gene. Different strategies for a statistically significant gene discovery are discussed and compared. We illustrate the method on a little simulation study and a real dataset on multiple sclerosis.

  14. Fos family protein degradation by the proteasome.

    PubMed

    Gomard, Tiphanie; Jariel-Encontre, Isabelle; Basbous, Jihane; Bossis, Guillaume; Moquet-Torcy, Gabriel; Mocquet-Torcy, Gabriel; Piechaczyk, Marc

    2008-10-01

    c-Fos proto-oncoprotein defines a family of closely related transcription factors (Fos proteins) also comprising Fra-1, Fra-2, FosB and DeltaFosB, the latter two proteins being generated by alternative splicing. Through the regulation of many genes, most of them still unidentified, they regulate major functions from the cell level up to the whole organism. Thus they are involved in the control of proliferation, differentiation and apoptosis, as well as in the control of responses to stresses, and they play important roles in organogenesis, immune responses and control of cognitive functions, among others. Fos proteins are intrinsically unstable. We have studied how two of them, c-Fos and Fra-1, are degraded. Departing from the classical scenario where unstable key cell regulators are hydrolysed by the proteasome after polyubiquitination, we showed that the bulk of c-Fos and Fra-1 can be broken down independently of any prior ubiquitination. Certain conserved structural domains suggest that similar mechanisms may also apply to Fra-2 and FosB. Computer search indicates that certain motifs shared by the Fos proteins and putatively responsible for instability are found in no other protein, suggesting the existence of degradation mechanisms specific for this protein family. Under particular signalling conditions, others have shown that a part of cytoplasmic c-Fos requires ubiquitination for fast turnover. This poses the question of the multiplicity of degradation pathways that apply to proteins depending on their intracellular localization.

  15. The role of the proteasome in AML

    PubMed Central

    Csizmar, C M; Kim, D-H; Sachs, Z

    2016-01-01

    Acute myeloid leukemia (AML) is deadly hematologic malignancy. Despite a well-characterized genetic and molecular landscape, targeted therapies for AML have failed to significantly improve clinical outcomes. Over the past decade, proteasome inhibition has been demonstrated to be an effective therapeutic strategy in several hematologic malignancies. Proteasome inhibitors, such as bortezomib and carfilzomib, have become mainstays of treatment for multiple myeloma and mantle cell lymphoma. In light of this success, there has been a surge of literature exploring both the role of the proteasome and the effects of proteasome inhibition in AML. Pre-clinical studies have demonstrated that proteasome inhibition disrupts proliferative cell signaling pathways, exhibits cytotoxic synergism with other chemotherapeutics and induces autophagy of cancer-related proteins. Meanwhile, clinical trials incorporating bortezomib into combination chemotherapy regimens have reported a range of responses in AML patients, with complete remission rates >80% in some cases. Taken together, this preclinical and clinical evidence suggests that inhibition of the proteasome may be efficacious in this disease. In an effort to focus further investigation into this area, these recent studies and their findings are reviewed here. PMID:27911437

  16. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  17. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis.

    PubMed

    Guerrero, Cortnie; Milenkovic, Tijana; Przulj, Natasa; Kaiser, Peter; Huang, Lan

    2008-09-09

    Quantitative analysis of tandem-affinity purified cross-linked (x) protein complexes (QTAX) is a powerful technique for the identification of protein interactions, including weak and/or transient components. Here, we apply a QTAX-based tag-team mass spectrometry strategy coupled with protein network analysis to acquire a comprehensive and detailed assessment of the protein interaction network of the yeast 26S proteasome. We have determined that the proteasome network is composed of at least 471 proteins, significantly more than the total number of proteins identified by previous reports using proteasome subunits as baits. Validation of the selected proteasome-interacting proteins by reverse copurification and immunoblotting experiments with and without cross-linking, further demonstrates the power of the QTAX strategy for capturing protein interactions of all natures. In addition, >80% of the identified interactions have been confirmed by existing data using protein network analysis. Moreover, evidence obtained through network analysis links the proteasome to protein complexes associated with diverse cellular functions. This work presents the most complete analysis of the proteasome interaction network to date, providing an inclusive set of physical interaction data consistent with physiological roles for the proteasome that have been suggested primarily through genetic analyses. Moreover, the methodology described here is a general proteomic tool for the comprehensive study of protein interaction networks.

  18. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases

    PubMed Central

    Im, Eunju; Chung, Kwang Chul

    2016-01-01

    Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473] PMID:27312603

  19. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases.

    PubMed

    Im, Eunju; Chung, Kwang Chul

    2016-09-01

    Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473].

  20. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-06-01

    The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.

  1. Estimating exotic gene flow into native pine stands: zygotic vs. gametic components.

    PubMed

    Unger, G M; Vendramin, G G; Robledo-Arnuncio, J J

    2014-11-01

    Monitoring contemporary gene flow from widespread exotic plantations is becoming an important problem in forest conservation genetics. In plants, where both seed and pollen disperse, three components of exotic gene flow with potentially unequal consequences should be, but have not been, explicitly distinguished: zygotic, male gametic and female gametic. Building on a previous model for estimating contemporary rates of zygotic and male gametic gene flow among plant populations, we present here an approach that additionally estimates the third (female gametic) gene flow component, based on a combination of uni- and biparentally inherited markers. Using this method and a combined set of chloroplast and nuclear microsatellites, we estimate gene flow rates from exotic plantations into two Iberian relict stands of maritime pine (Pinus pinaster) and Scots pine (Pinus sylvestris). Results show neither zygotic nor female gametic gene flow but moderate (6-8%) male gametic introgression for both species, implying significant dispersal of pollen, but not of seeds, from exotic plantations into native stands shortly after introduced trees reached reproductive maturity. Numerical simulation results suggest that the model yields reasonably accurate estimates for our empirical data sets, especially for larger samples. We discuss conservation management implications of observed levels of exposure to nonlocal genes and identify research needs to determine potentially associated hazards. Our approach should be useful for plant ecologists and ecosystem managers interested in the vectors of contemporary genetic connectivity among discrete plant populations.

  2. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  3. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-04

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  4. Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility.

    PubMed

    Huang, Lin; Haratake, Kousuke; Miyahara, Hatsumi; Chiba, Tomoki

    2016-03-22

    Protein degradation mediated by the proteasome is important for the protein homeostasis. Various proteasome activators, such as PA28 and PA200, regulate the proteasome function. Here we show double knockout (dKO) mice of Psme3 and Psme4 (genes for PA28γ and PA200), but not each single knockout mice, are completely infertile in male. The dKO sperms exhibited remarkable defects in motility, although most of them showed normal appearance in morphology. The proteasome activity of the mutant sperms decreased notably, and the sperms were strongly positive with ubiquitin staining. Quantitative analyses of proteins expressed in dKO sperms revealed up-regulation of several proteins involved in oxidative stress response. Furthermore, increased 8-OHdG staining was observed in dKO sperms head, suggesting defective response to oxidative damage. This report verified PA28γ and PA200 play indispensable roles in male fertility, and provides a novel insight into the role of proteasome activators in antioxidant response.

  5. Proteasome activators, PA28γ and PA200, play indispensable roles in male fertility

    PubMed Central

    Huang, Lin; Haratake, Kousuke; Miyahara, Hatsumi; Chiba, Tomoki

    2016-01-01

    Protein degradation mediated by the proteasome is important for the protein homeostasis. Various proteasome activators, such as PA28 and PA200, regulate the proteasome function. Here we show double knockout (dKO) mice of Psme3 and Psme4 (genes for PA28γ and PA200), but not each single knockout mice, are completely infertile in male. The dKO sperms exhibited remarkable defects in motility, although most of them showed normal appearance in morphology. The proteasome activity of the mutant sperms decreased notably, and the sperms were strongly positive with ubiquitin staining. Quantitative analyses of proteins expressed in dKO sperms revealed up-regulation of several proteins involved in oxidative stress response. Furthermore, increased 8-OHdG staining was observed in dKO sperms head, suggesting defective response to oxidative damage. This report verified PA28γ and PA200 play indispensable roles in male fertility, and provides a novel insight into the role of proteasome activators in antioxidant response. PMID:27003159

  6. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis.

    PubMed

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L; Shen, Yan; Qiu, Xiao-Bo

    2013-05-23

    Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic β subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.

  7. The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis.

    PubMed

    Tomko, Robert J; Hochstrasser, Mark

    2014-02-06

    The intrinsically disordered yeast protein Sem1 (DSS1 in mammals) participates in multiple protein complexes, including the proteasome, but its role(s) within these complexes is uncertain. We report that Sem1 enforces the ordered incorporation of subunits Rpn3 and Rpn7 into the assembling proteasome lid. Sem1 uses conserved acidic segments separated by a flexible linker to grasp Rpn3 and Rpn7. The same segments are used for protein binding in other complexes, but in the proteasome lid they are uniquely deployed for recognizing separate polypeptides. We engineered TEV protease-cleavage sites into Sem1 to show that the tethering function of Sem1 is important for the biogenesis and integrity of the Rpn3-Sem1-Rpn7 ternary complex but becomes dispensable once the ternary complex incorporates into larger lid precursors. Thus, although Sem1 is a stoichiometric component of the mature proteasome, it has a distinct, chaperone-like function specific to early stages of proteasome assembly.

  8. New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis.

    PubMed

    Liu, Cui-Hua; Goldberg, Alfred L; Qiu, Xiao-Bo

    2007-01-01

    The ubiquitin-proteasome pathway (UPP) is the major system responsible for degradation of intracellular proteins in eukaryotes. By controlling the levels of key proteins, it regulates almost all of the cellular activities, including cell cycle progression, DNA replication and repair, transcription, protein quality control, immune response, and apoptosis. UPP is composed of the ubiquitination system that marks proteins for degradation and the proteasome which degrades the ubiquitinated proteins. The 26S proteasome is a 2400 kDa complex consisting of more than 40 subunits. Following ubiquitination catalyzed by the ubiquitin activating enzyme (El), a ubiquitin-carrier protein (E2), and one of the cell's many ubiquitin-protein ligases (E3s), the protein substrates are targeted to the proteasome for degradation into small peptides. E3s regulate the degradation of protein substrates indirectly by determining both the specificity and timing of substrate ubiquitination, whereas the deubiquitinating enzymes can inhibit this process by releasing ubiquitin from substrates. In this review, we attempt to highlight the recent progress in research on UPP and its role in the regulation of apoptosis by focusing on several of its important components, including the ubiqutin ligase Nrdp 1, which regulates ErbB/EGFR family of receptor tyrosine kinases, the ubiquitin-carrier protein BRUCE/Apollon (an Inhibitor of Apoptosis Protein), and the novel proteasome subunit hRpnl3 (a binding site for the deubiquitinating enzyme, UCH37).

  9. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome

    PubMed Central

    Beenukumar, R. R.; Gödderz, Daniela; Palanimurugan, R.; Dohmen, R. J.

    2015-01-01

    Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC monomers and targets them to the proteasome. Here, we report that polyamines, aside from their role in the control of OAZ synthesis and stability, directly enhance OAZ-mediated ODC degradation by the proteasome. Using a stable mutant of OAZ, we show that polyamines promote ODC degradation in Saccharomyces cerevisiae cells even when OAZ levels are not changed. Furthermore, polyamines stimulated the in vitro degradation of ODC by the proteasome in a reconstituted system using purified components. In these assays, spermine shows a greater effect than spermidine. By contrast, polyamines do not have any stimulatory effect on the degradation of ubiquitin-dependent substrates. PMID:28357293

  10. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections.

    PubMed

    Misas-Villamil, Johana C; van der Burgh, Aranka M; Grosse-Holz, Friederike; Bach-Pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif Emran Khan; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2017-01-24

    The proteasome is a nuclear - cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveals that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 (PtoDC3000(ΔhQ)) whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species. This article is protected by copyright. All rights reserved.

  11. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells.

    PubMed

    Jang, Jiwon; Wang, Yidi; Kim, Hyung-Seok; Lalli, Matthew A; Kosik, Kenneth S

    2014-10-01

    Nuclear factor, erythroid 2-like 2 (Nrf2) is a master transcription factor for cellular defense against endogenous and exogenous stresses by regulating expression of many antioxidant and detoxification genes. Here, we show that Nrf2 acts as a key pluripotency gene and a regulator of proteasome activity in human embryonic stem cells (hESCs). Nrf2 expression is highly enriched in hESCs and dramatically decreases upon differentiation. Nrf2 inhibition impairs both the self-renewal ability of hESCs and re-establishment of pluripotency during cellular reprogramming. Nrf2 activation can delay differentiation. During early hESC differentiation, Nrf2 closely colocalizes with OCT4 and NANOG. As an underlying mechanism, our data show that Nrf2 regulates proteasome activity in hESCs partially through proteasome maturation protein (POMP), a proteasome chaperone, which in turn controls the proliferation of self-renewing hESCs, three germ layer differentiation and cellular reprogramming. Even modest proteasome inhibition skews the balance of early differentiation toward mesendoderm at the expense of an ectodermal fate by decreasing the protein level of cyclin D1 and delaying the degradation of OCT4 and NANOG proteins. Taken together, our findings suggest a new potential link between environmental stress and stemness with Nrf2 and the proteasome coordinately positioned as key mediators.

  12. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  13. Nuclear effects of ethanol-induced proteasome inhibition in liver cells

    PubMed Central

    Bardag-Gorce, Fawzia

    2009-01-01

    Alcohol ingestion causes alteration in several cellular mechanisms, and leads to inflammation, apoptosis, immunological response defects, and fibrosis. These phenomena are associated with significant changes in the epigenetic mechanisms, and subsequently, to liver cell memory. The ubiquitin-proteasome pathway is one of the vital pathways in the cell that becomes dysfunctionial as a result of chronic ethanol consumption. Inhibition of the proteasome activity in the nucleus causes changes in the turnover of transcriptional factors, histone modifying enzymes, and therefore, affects epigenetic mechanisms. Alcohol consumption has been associated with an increase in histone acetylation and a decrease in histone methylation, which leads to gene expression changes. DNA and histone modifications that result from ethanol-induced proteasome inhibition are key players in regulating gene expression, especially genes involved in the cell cycle, immunological responses, and metabolism of ethanol. The present review highlights the consequences of ethanol-induced proteasome inhibition in the nucleus of liver cells that are chronically exposed to ethanol. PMID:19291815

  14. Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle.

    PubMed

    Lim, Sungsu; Kwak, Jaechan; Kim, Minhoo; Lee, Daeyoup

    2013-01-01

    Gene expression is an intricate process tightly linked from gene activation to the nuclear export of mRNA. Recent studies have indicated that the proteasome is essential for gene expression regulation. The proteasome regulatory particle binds to the SAGA complex and affects transcription in an ATP-dependent manner. Here we report that a specific interaction between the proteasomal ATPase, Rpt2p and Sgf73p of the SAGA complex leads to the dissociation of the H2Bub1-deubiquitylating module (herein designated the Sgf73-DUBm) from SAGA both in vitro and in vivo. We show that the localization of the Sgf73-DUBm on chromatin is perturbed in rpt2-1, a strain of Saccharomyces cerevisiae that is specifically defective in the Rpt2p-Sgf73p interaction. The rpt2-1 mutant also exhibits impaired localization of the TREX-2 and MEX67-MTR2 complexes and is defective in mRNA export. Our findings collectively demonstrate that the proteasome-mediated remodelling of the SAGA complex is a prerequisite for proper mRNA export.

  15. funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi

    PubMed Central

    2014-01-01

    Background RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. Description To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. Conclusions funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi. PMID:25522231

  16. Arrangement of ribosomal genes in nucleolar domains revealed by detection of "Christmas tree" components.

    PubMed

    Mosgoeller, W; Schöfer, C; Steiner, M; Sylvester, J E; Hozák, P

    2001-12-01

    We investigated how the transcribing ribosomal genes ("Christmas trees") of HeLa cells are arranged in the nucleolus. Hypotonic conditions let the granular component disperse, while fibrillar centres and parts of the dense fibrillar component were resistant to low ionic strength conditions. Both remained within the former nucleolar territory. We used immunocytochemistry and in situ hybridisation at the light microscopic and ultrastructural level for the analysis of the internal nucleolar structures. The 5' ends of ribosomal RNA and ribosomal DNA sequences were found associated with the periphery of fibrillar centres. The hypotony-resistant parts of the dense fibrillar component did not contain the 5' end of the transcript or the gene. The downstream ribosomal DNA sequences were found in the nucleolar territory but not associated with any hypotony-resistant structures. The downstream ribosomal RNA revealed a similar distribution. We show that transcription initiation and transcript elongation occur in different molecular and structural environments. Transcription initiation is located at the periphery of fibrillar centres. Evidently the dense fibrillar component is non-homogeneous in molecular composition. Transcript elongation is continued in a part of the dense fibrillar component which is dissolved under intermediate hypotonic conditions. A structural model of nucleolar transcription is suggested.

  17. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    PubMed Central

    2013-01-01

    Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification

  18. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component.

    PubMed

    Huang, Changjun; Xie, Yan; Zhou, Xueping

    2009-04-01

    Virus-induced gene silencing (VIGS) is currently recognized as a powerful reverse genetics tool for application in functional genomics. DNA1, a satellite-like and single-stranded DNA molecule associated with begomoviruses (Family Geminiviridae), has been shown to replicate autonomously but requires the helper virus for its dissemination. We developed a VIGS vector based on the DNA1 component of tobacco curly shoot virus (TbCSV), a monopartite begomovirus, by inserting a multiple cloning site between the replication-associated protein open reading frame and the A-rich region for subsequent insertion of DNA fragments of genes targeted for silencing. When a host gene (sulphur, Su) or transgene (green fluorescent protein, GFP) was inserted into the modified DNA1 vector and co-agroinoculated with TbCSV, efficient silencing of the cognate gene was observed in Nicotiana benthamiana plants. More interestingly, we demonstrated that this modified DNA1 could effectively suppress GFP in transgenic N. benthamiana or endogenous Su in tobacco plants when co-agroinoculated with tomato yellow leaf curl China virus (TYLCCNV), another monopartite begomovirus that does not induce any viral symptoms. A gene-silencing system in Nicotiana spp., Solanum lycopersicum and Petunia hybrida plants was then established using TYLCCNV and the modified DNA1 vector. The system can be used to silence genes involved in meristem and flower development. The modified DNA1 vector was used to silence the AtTOM homologous genes (NbTOM1 and NbTOM3) in N. benthamiana. Silencing of NbTOM1 or NbTOM3 can reduce tobamovirus multiplication to a lower level, and silencing of both genes simultaneously can completely inhibit tobamovirus multiplication. Previous studies have reported that DNA1 is associated with both monopartite and bipartite begomoviruses, as well as curtoviruses. This vector system can therefore be applied for the study, analysis and discovery of gene function in a variety of important crop plants.

  19. D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    PubMed

    Barroso-Chinea, Pedro; Thiolat, Marie-Laure; Bido, Simone; Martinez, Audrey; Doudnikoff, Evelyne; Baufreton, Jérôme; Bourdenx, Mathieu; Bloch, Bertrand; Bezard, Erwan; Martin-Negrier, Marie-Laure

    2015-06-01

    Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization.

  20. The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome

    PubMed Central

    Lan, Matthews; Mojsilovic-Petrovic, Jelena; Choi, Won Hoon; Safren, Nathaniel; Barmada, Sami

    2017-01-01

    Abstract An intronic hexanucleotide repeat expansion (HRE) mutation in the C9ORF72 gene is the most common cause of familial ALS and frontotemporal dementia (FTD) and is found in ∼7% of individuals with apparently sporadic disease. Several different diamino acid peptides can be generated from the HRE by noncanonical translation (repeat-associated non-ATG translation, or RAN translation), and some of these peptides can be toxic. Here, we studied the effects of two arginine containing RAN translation products [proline/arginine repeated 20 times (PR20) and glycine/arginine repeated 20 times (GR20)] in primary rat spinal cord neuron cultures grown on an astrocyte feeder layer. We find that PR20 kills motor neurons with an LD50 of 2 µM, but in contrast to the effects of other ALS-causing mutant proteins (i.e., SOD or TDP43), PR20 does not evoke the biochemical signature of mitochondrial dysfunction, ER stress, or mTORC down-regulation. PR20 does result in a time-dependent build-up of ubiquitylated substrates, and this is associated with a reduction of flux through both autophagic and proteasomal degradation pathways. GR20, however, does not have these effects. The effects of PR20 on the proteasome are likely to be direct because (1) PR20 physically associates with proteasomes in biochemical assays, and (2) PR20 inhibits the degradation of a ubiquitylated test substrate when presented to purified proteasomes. Application of a proteasomal activator (IU1) blocks the toxic effects of PR20 on motor neuron survival. This work suggests that proteasomal activators have therapeutic potential in individuals with C9ORF72 HRE. PMID:28197542

  1. Network component analysis provides quantitative insights on an Arabidopsis transcription factor-gene regulatory network

    PubMed Central

    2013-01-01

    Background Gene regulatory networks (GRNs) are models of molecule-gene interactions instrumental in the coordination of gene expression. Transcription factor (TF)-GRNs are an important subset of GRNs that characterize gene expression as the effect of TFs acting on their target genes. Although such networks can qualitatively summarize TF-gene interactions, it is highly desirable to quantitatively determine the strengths of the interactions in a TF-GRN as well as the magnitudes of TF activities. To our knowledge, such analysis is rare in plant biology. A computational methodology developed for this purpose is network component analysis (NCA), which has been used for studying large-scale microbial TF-GRNs to obtain nontrivial, mechanistic insights. In this work, we employed NCA to quantitatively analyze a plant TF-GRN important in floral development using available regulatory information from AGRIS, by processing previously reported gene expression data from four shoot apical meristem cell types. Results The NCA model satisfactorily accounted for gene expression measurements in a TF-GRN of seven TFs (LFY, AG, SEPALLATA3 [SEP3], AP2, AGL15, HY5 and AP3/PI) and 55 genes. NCA found strong interactions between certain TF-gene pairs including LFY → MYB17, AG → CRC, AP2 → RD20, AGL15 → RAV2 and HY5 → HLH1, and the direction of the interaction (activation or repression) for some AGL15 targets for which this information was not previously available. The activity trends of four TFs - LFY, AG, HY5 and AP3/PI as deduced by NCA correlated well with the changes in expression levels of the genes encoding these TFs across all four cell types; such a correlation was not observed for SEP3, AP2 and AGL15. Conclusions For the first time, we have reported the use of NCA to quantitatively analyze a plant TF-GRN important in floral development for obtaining nontrivial information about connectivity strengths between TFs and their target genes as well as TF

  2. Coordination between proteasome impairment and caspase activation leading to TAU pathology: neuroprotection by cAMP

    PubMed Central

    Metcalfe, M J; Huang, Q; Figueiredo-Pereira, M E

    2012-01-01

    Neurofibrillary tangles (NFTs) are hallmarks of Alzheimer's disease (AD). The main component of NFTs is TAU, a highly soluble microtubule-associated protein. However, when TAU is cleaved at Asp421 by caspases it becomes prone to aggregation leading to NFTs. What triggers caspase activation resulting in TAU cleavage remains unclear. We investigated in rat cortical neurons a potential coordination between proteasome impairment and caspase activation. We demonstrate that upon proteasome inhibition, the early accumulation of detergent-soluble ubiquitinated (SUb) proteins paves the way to caspase activation and TAU pathology. This occurs with two drugs that inhibit the proteasome by different means: the product of inflammation prostaglandin J2 (PGJ2) and epoxomicin. Our results pinpoint a critical early event, that is, the buildup of SUb proteins that contributes to caspase activation, TAU cleavage, TAU/Ub-protein aggregation and neuronal death. Furthermore, to our knowledge, we are the first to demonstrate that elevating cAMP in neurons with dibutyryl-cAMP (db-cAMP) or the lipophilic peptide PACAP27 prevents/diminishes caspase activation, TAU cleavage and neuronal death induced by PGJ2, as long as these PGJ2-induced changes are moderate. db-cAMP also stimulated proteasomes, and mitigated proteasome inhibition induced by PGJ2. We propose that targeting cAMP/PKA to boost proteasome activity in a sustainable manner could offer an effective approach to avoid early accumulation of SUb proteins and later caspase activation, and TAU cleavage, possibly preventing/delaying AD neurodegeneration. PMID:22717581

  3. Factors affecting drug and gene delivery: effects of interaction with blood components.

    PubMed

    Opanasopit, Praneet; Nishikawa, Makiya; Hashida, Mitsuru

    2002-01-01

    Targeted drug delivery systems have been used extensively to improve the pharmacological and therapeutic activities of a wide variety of drugs and genes. In this article, we summarize the factors determining the tissue disposition of delivery systems: the physicochemical and biological characteristics of the delivery system and the anatomic and physiological characteristics of the tissues. There are several modes of drug and gene targeting, ranging from passive to active targeting, and each of these can be achieved by optimizing the design of the delivery system to suit a specific aim. After entering the systemic circulation, either by an intravascular injection or through absorption from an administration site, however, a delivery system encounters a variety of blood components, including blood cells and a range of serum proteins. These components are by no means inert as far as interaction with the delivery system is concerned, and they can sometimes markedly effect its tissue disposition. The interaction with blood components is known to occur with particulate delivery systems, such as liposomes, or with cationic charge-mediated delivery systems for genes. In addition to these rather nonspecific ones, interactions via the targeting ligand of the delivery system can occur. We recently found that mannosylated carriers interact with serum mannan binding protein, greatly altering their tissue disposition in a number of ways that depend on the properties of the carriers involved.

  4. Variance components models for gene-environment interaction in twin analysis.

    PubMed

    Purcell, Shaun

    2002-12-01

    Gene-environment interaction is likely to be a common and important source of variation for complex behavioral traits. Often conceptualized as the genetic control of sensitivity to the environment, it can be incorporated in variance components twin analyses by partitioning genetic effects into a mean part, which is independent of the environment, and a part that is a linear function of the environment. The model allows for one or more environmental moderator variables (that possibly interact with each other) that may i). be continuous or binary ii). differ between twins within a pair iii). interact with residual environmental as well as genetic effects iv) have nonlinear moderating properties v). show scalar (different magnitudes) or qualitative (different genes) interactions vi). be correlated with genetic effects acting upon the trait, to allow for a test of gene-environment interaction in the presence of gene-environment correlation. Aspects and applications of a class of models are explored by simulation, in the context of both individual differences twin analysis and, in a companion paper (Purcell & Sham, 2002) sibpair quantitative trait locus linkage analysis. As well as elucidating environmental pathways, consideration of gene-environment interaction in quantitative and molecular studies will potentially direct and enhance gene-mapping efforts.

  5. Functional asymmetries of proteasome translocase pore.

    PubMed

    Erales, Jenny; Hoyt, Martin A; Troll, Fabian; Coffino, Philip

    2012-05-25

    Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.

  6. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  7. Novel strategies to target the ubiquitin proteasome system in multiple myeloma

    PubMed Central

    Lub, Susanne; Maes, Ken; Menu, Eline; De Bruyne, Elke; Vanderkerken, Karin; Van Valckenborgh, Els

    2016-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM. PMID:26695547

  8. The VHSE-based prediction of proteasomal cleavage sites.

    PubMed

    Xie, Jiangan; Xu, Zhiling; Zhou, Shangbo; Pan, Xianchao; Cai, Shaoxi; Yang, Li; Mei, Hu

    2013-01-01

    Prediction of proteasomal cleavage sites has been a focus of computational biology. Up to date, the predictive methods are mostly based on nonlinear classifiers and variables with little physicochemical meanings. In this paper, the physicochemical properties of 14 residues both upstream and downstream of a cleavage site are characterized by VHSE (principal component score vector of hydrophobic, steric, and electronic properties) descriptors. Then, the resulting VHSE descriptors are employed to construct prediction models by support vector machine (SVM). For both in vivo and in vitro datasets, the performance of VHSE-based method is comparatively better than that of the well-known PAProC, MAPPP, and NetChop methods. The results reveal that the hydrophobic property of 10 residues both upstream and downstream of the cleavage site is a dominant factor affecting in vivo and in vitro cleavage specificities, followed by residue's electronic and steric properties. Furthermore, the difference in hydrophobic potential between residues flanking the cleavage site is proposed to favor substrate cleavages. Overall, the interpretable VHSE-based method provides a preferable way to predict proteasomal cleavage sites.

  9. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-03

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.

  10. Stimulation of ubiquitin-proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism.

    PubMed

    Hirai, Takao; Taniura, Hideo; Goto, Yasuaki; Ogura, Masato; Sng, Judy C G; Yoneda, Yukio

    2006-03-01

    In order to elucidate mechanisms underlying modulation by static magnetism of the cellular functionality and/or integrity in the brain, we screened genes responsive to brief magnetism in cultured rat hippocampal neurons using differential display analysis. We have for the first time cloned and identified Ntan1 (amidohydrolase for N-terminal asparagine) as a magnetism responsive gene in rat brain. Ntan1 is an essential component of a protein degradation signal, which is a destabilizing N-terminal residue of a protein, in the N-end rule. In situ hybridization histochemistry revealed abundant expression of Ntan1 mRNA in hippocampal neurons in vivo. Northern blot analysis showed that Ntan1 mRNA was increased about three-fold after 3 h in response to brief magnetism. Brief magnetism also increased the transcriptional activity of Ntan1 promoter by luciferase reporter assay. Brief magnetism induced degradation of microtubule-associated protein 2 (MAP2) without affecting cell morphology and viability, which was prevented by a selective inhibitor of 26S proteasome in hippocampal neurons. Overexpression of Ntan1 using recombinant Ntan1 adenovirus vector resulted in a marked decrease in the MAP2 protein expression in hippocampal neurons. Our results suggest that brief magnetism leads to the induction of Ntan1 responsible for MAP2 protein degradation through ubiquitin-proteasome pathway in rat hippocampal neurons.

  11. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  12. The deubiquitinating enzyme mUBPy interacts with the sperm-specific molecular chaperone MSJ-1: the relation with the proteasome, acrosome, and centrosome in mouse male germ cells.

    PubMed

    Berruti, Giovanna; Martegani, Enzo

    2005-01-01

    The mouse USP8/mUBPy gene codifies a deubiquitinating enzyme expressed preferentially in testis and brain. While the ubiquitin-specific processing proteases (UBPs) are known to be important for the early development in invertebrate organisms, their specific functions remain still unclear in mammals. Using specific antibodies, raised against a recombinant mUBPy protein, we studied mUBPy in mouse testis. The mUBPy is expressed exclusively by the germ cell component and is maintained in epididymal spermatozoa. The enzyme is functionally active, being able to detach ubiquitin moieties from endogenous protein substrates. Protein interaction assays showed that sperm UBPy interacts with MSJ-1, the sperm-specific DnaJ protein evolutionarily conserved for spermiogenesis. Immunocytochemistry revealed that mUBPy shares with MSJ-1 the intracellular localization during spermatid cell differentiation; intriguingly, we show here that the proteasomes also locate in mUBPy/MSJ-1-positive sites, such as the cytoplasmic surface of the developing acrosome and the centrosomal region. These colocalization sites are maintained in epididymal spermatozoa. The demonstration of a protein interaction between a deubiquitinating enzyme and a molecular chaperone and the documentation on the proteasomes in both differentiating and mature mouse male germ cells suggest that members of the chaperone and ubiquitin/proteasome systems could cooperate in the fine control of protein quality to yield functional spermatozoa.

  13. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2012-01-01

    The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  14. Activity-based imaging probes of the proteasome.

    PubMed

    Carmony, Kimberly Cornish; Kim, Kyung Bo

    2013-09-01

    Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.

  15. HUWE1 ubiquitinates MyoD and targets it for proteasomal degradation

    SciTech Connect

    Noy, Tahel; Suad, Oded; Taglicht, Daniel; Ciechanover, Aaron

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HUWE1 ubiquitinates MyoD in vitro and in cells. Black-Right-Pointing-Pointer The ubiquitination by HUWE1 targets MyoD for proteasomal degradation. Black-Right-Pointing-Pointer HUWE1 can modify MyoD on its N-terminal residue. -- Abstract: MyoD is a tissue-specific transcriptional activator that acts as a master switch for muscle development. It activates a broad array of muscle-specific genes, which leads to conversion of proliferating myoblasts into mature myotubes. The ubiquitin proteasome system (UPS) plays an important role in controlling MyoD. Both its N-terminal residue and internal lysines can be targeted by ubiquitin, and both modifications appear to direct it for proteasomal degradation. The protein is short-lived and has a half-life of {approx}45 min in different cells. It was reported that MyoD can be ubiquitinated by MAFbx/AT-1, but accumulating lines of experimental evidence showed that other ligase(s) may also participate in its targeting. Here we describe the involvement of HUWE1 in the ubiquitination and proteasomal degradation of MyoD. Furthermore, we show that the ligase can ubiquitinate the protein in its N-terminal residue.

  16. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.

    PubMed

    Sawamura, Naoya; Wakabayashi, Satoru; Matsumoto, Kodai; Yamada, Haruka; Asahi, Toru

    2015-09-04

    Cereblon (CRBN) is encoded by a candidate gene for autosomal recessive nonsyndromic intellectual disability (ID). The nonsense mutation, R419X, causes deletion of 24 amino acids at the C-terminus of CRBN, leading to mild ID. Although abnormal CRBN function may be associated with ID disease onset, its cellular mechanism is still unclear. Here, we examine the role of CRBN in aggresome formation and cytoprotection. In the presence of a proteasome inhibitor, exogenous CRBN formed perinuclear inclusions and co-localized with aggresome markers. Endogenous CRBN also formed perinuclear inclusions under the same condition. Treatment with a microtubule destabilizer or an inhibitor of the E3 ubiquitin ligase activity of CRBN blocked formation of CRBN inclusions. Biochemical analysis showed CRBN containing inclusions were high-molecular weight, ubiquitin-positive. CRBN overexpression in cultured cells suppressed cell death induced by proteasome inhibitor. Furthermore, knockdown of endogenous CRBN in cultured cells increased cell death induced by proteasome inhibitor, compared with control cells. Our results show CRBN is recruited to aggresome and has functional roles in cytoprotection against ubiquitin-proteasome system impaired condition.

  17. High Levels of Serum Ubiquitin and Proteasome in a Case of HLA-B27 Uveitis

    PubMed Central

    Rossi, Settimio; Gesualdo, Carlo; Maisto, Rosa; Trotta, Maria Consiglia; Di Carluccio, Nadia; Brigida, Annalisa; Di Iorio, Valentina; Testa, Francesco; Simonelli, Francesca; D’Amico, Michele; Di Filippo, Clara

    2017-01-01

    In this paper, the authors describe a case of high serum levels of ubiquitin and proteasome in a woman under an acute attack of autoimmune uveitis. The woman was 52 years old, diagnosed as positive for the Human leukocyte antigen-B27 gene, and came to our observation in January 2013 claiming a severe uveitis attack that involved the right eye. During the acute attack of uveitis, this woman had normal serum biochemical parameters but higher levels of serum ubiquitin and proteasome 20S subunit, with respect to a healthy volunteer matched for age and sex. These levels correlated well with the clinical score attributed to uveitis. After the patient was admitted to therapy, she received oral prednisone in a de-escalation protocol (doses from 50 to 5 mg/day) for four weeks. Following this therapy, she had an expected reduction of clinical signs and score for uveitis, but concomitantly she had a reduction of the serum levels of ubiquitin, poliubiquitinated proteins (MAb-FK1) and proteasome 20S activity. Therefore, a role for ubiquitin and proteasome in the development of human autoimmune uveitis has been hypothesized. PMID:28245629

  18. Improved gene prediction by principal component analysis based autoregressive Yule-Walker method.

    PubMed

    Roy, Manidipa; Barman, Soma

    2016-01-10

    Spectral analysis using Fourier techniques is popular with gene prediction because of its simplicity. Model-based autoregressive (AR) spectral estimation gives better resolution even for small DNA segments but selection of appropriate model order is a critical issue. In this article a technique has been proposed where Yule-Walker autoregressive (YW-AR) process is combined with principal component analysis (PCA) for reduction in dimensionality. The spectral peaks of DNA signal are used to detect protein-coding regions based on the 1/3 frequency component. Here optimal model order selection is no more critical as noise is removed by PCA prior to power spectral density (PSD) estimation. Eigenvalue-ratio is used to find the threshold between signal and noise subspaces for data reduction. Superiority of proposed method over fast Fourier Transform (FFT) method and autoregressive method combined with wavelet packet transform (WPT) is established with the help of receiver operating characteristics (ROC) and discrimination measure (DM) respectively.

  19. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer.

    PubMed

    Walerych, Dawid; Lisek, Kamil; Sommaggio, Roberta; Piazza, Silvano; Ciani, Yari; Dalla, Emiliano; Rajkowska, Katarzyna; Gaweda-Walerych, Katarzyna; Ingallina, Eleonora; Tonelli, Claudia; Morelli, Marco J; Amato, Angela; Eterno, Vincenzo; Zambelli, Alberto; Rosato, Antonio; Amati, Bruno; Wiśniewski, Jacek R; Del Sal, Giannino

    2016-08-01

    In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53-proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP-microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.

  20. Evidence that the Arabidopsis Ubiquitin C-terminal Hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2 complex.

    PubMed

    Tian, Gang; Lu, Qing; Kohalmi, Susanne E; Rothstein, Steven J; Cui, Yuhai

    2012-11-01

    The 26S proteasome interacts with a number of different proteins, while the TREX-2 complex is an important component of the mRNA export machinery. In animals and yeast, members of the Ubiquitin C-terminal Hydrolase 37 (UCH37) family are found to associate with the 26S proteasome, but this has not been demonstrated in plants. The Arabidopsis UCH1 and UCH2 are orthologous to UCH37. Here, we show that UCH1 and UCH2 interact with the 26S proteasome lid subunits. In addition, the two UCHs also interact with TREX-2 components. Our data suggest that Arabidopsis UCHs may serve as a link between the 26S proteasome lid complex and the TREX-2 complex.

  1. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits.

    PubMed

    Livinskaya, Veronika A; Barlev, Nickolai A; Nikiforov, Andrey A

    2014-05-01

    The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells.

  2. Production of Infectious Dengue Virus in Aedes aegypti Is Dependent on the Ubiquitin Proteasome Pathway

    PubMed Central

    Choy, Milly M.; Sessions, October M.; Gubler, Duane J.; Ooi, Eng Eong

    2015-01-01

    Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector. PMID:26566123

  3. Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data.

    PubMed

    Pittelkow, Yvonne; Wilson, Susan R

    2005-06-01

    This note is in response to Wouters et al. (2003, Biometrics 59, 1131-1139) who compared three methods for exploring gene expression data. Contrary to their summary that principal component analysis is not very informative, we show that it is possible to determine principal component analyses that are useful for exploratory analysis of microarray data. We also present another biplot representation, the GE-biplot (Gene Expression biplot), that is a useful method for exploring gene expression data with the major advantage of being able to aid interpretation of both the samples and the genes relative to each other.

  4. Ubiquitin/proteasome-rich particulate cytoplasmic structures (PaCSs) in the platelets and megakaryocytes of ANKRD26-related thrombo-cytopenia.

    PubMed

    Necchi, Vittorio; Balduini, Alessandra; Noris, Patrizia; Barozzi, Serena; Sommi, Patrizia; di Buduo, Christian; Balduini, Carlo L; Solcia, Enrico; Pecci, Alessandro

    2013-02-01

    ANKRD26-related thrombocytopenia (ANKRD26-RT) is an autosomal-dominant thrombocytopenia caused by mutations in the 5'UTR of the ANKRD26 gene. ANKRD26-RT is characterised by dysmegakaryopoiesis and an increased risk of leukaemia. PaCSs are novel particulate cytoplasmic structures with selective immunoreactivity for polyubiquitinated proteins and proteasome that have been detected in a number of solid cancers, in the epithelia of Helicobacter pylori gastritis and related preneoplastic lesions, and in the neutrophils of Schwachman-Diamond syndrome, a genetic disease with neutropenia and increased leukaemia risk. We searched for PaCSs in blood cells from 14 consecutive patients with ANKRD26-RT. Electron microscopy combined with immunogold staining for polyubiquitinated proteins, 20S and 19S proteasome showed PaCSs in most ANKRD26-RT platelets, as in a restricted minority of platelets from healthy controls and from subjects with other inherited or immune thrombocytopenias. In ANKRD26-RT platelets, the PaCS amount exceeded that of control platelets by a factor of 5 (p<0.0001). Immunoblotting showed that the higher PaCS number was associated with increased amounts of polyubiquitinated proteins and proteasome in ANKRD26-RT platelets. PaCSs were also extensively represented in ANKRD26-RT megakaryocytes, but not in healthy control megakaryocytes, and were absent in other ANKRD26-RT and control blood cells. Therefore, large amounts of PaCSs are a characteristic feature of ANKRD26-RT platelets and megakaryocytes, although these novel cell components are also present in a small subpopulation of normal platelets. The widespread presence of PaCSs in inherited diseases with increased leukaemia risk, as well as in solid neoplasms and their preneoplastic lesions, suggests a link of these structures with oncogenesis.

  5. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome

    PubMed Central

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-01

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  6. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  7. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing

    PubMed Central

    del Olmo, Iván; López, Juan A.; Vázquez, Jesús; Raynaud, Cécile; Piñeiro, Manuel; Jarillo, José A.

    2016-01-01

    Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1. We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells. PMID:26980282

  8. Proteasomes and protein conjugation across domains of life.

    PubMed

    Maupin-Furlow, Julie

    2011-12-19

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.

  9. Isolation and purification of proteasomes from primary cells.

    PubMed

    Steers, Nicholas J; Peachman, Kristina K; Alving, Carl R; Rao, Mangala

    2014-11-03

    Proteasomes play an important role in cell homeostasis and in orchestrating the immune response by systematically degrading foreign proteins and misfolded or damaged host cell proteins. We describe a protocol to purify functionally active proteasomes from human CD4(+) T cells and dendritic cells derived from peripheral blood mononuclear cells. The purification is a three-step process involving ion-exchange chromatography, ammonium sulfate precipitation, and sucrose density gradient ultracentrifugation. This method can be easily adapted to purify proteasomes from cell lines or from organs. Methods to characterize and visualize the purified proteasomes are also described.

  10. Phosphoenolpyruvate Phosphotransferase System Components Modulate Gene Transcription and Virulence of Borrelia burgdorferi

    PubMed Central

    Odeh, Evelyn; Gao, Lihui; Jacobs, Mary B.; Philipp, Mario T.; Lin, Tao

    2015-01-01

    The phosphoenolpyruvate phosphotransferase system (PEP-PTS) and adenylate cyclase (AC) IV (encoded by BB0723 [cyaB]) are well conserved in different species of Borrelia. However, the functional roles of PEP-PTS and AC in the infectious cycle of Borrelia have not been characterized previously. We examined 12 PEP-PTS transporter component mutants by needle inoculation of mice to assess their ability to cause mouse infection. Transposon mutants with mutations in the EIIBC components (ptsG) (BB0645, thought to be involved in glucose-specific transport) were unable to cause infection in mice, while all other tested PEP-PTS mutants retained infectivity. Infectivity was partially restored in an in trans-complemented strain of the ptsG mutant. While the ptsG mutant survived normally in unfed as well as fed ticks, it was unable to cause infection in mice by tick transmission, suggesting that the function of ptsG is essential to establish infection by either needle inoculation or tick transmission. In Gram-negative organisms, the regulatory effects of the PEP-PTS are mediated by adenylate cyclase and cyclic AMP (cAMP) levels. A recombinant protein encoded by B. burgdorferi BB0723 (a putative cyaB homolog) was shown to have adenylate cyclase activity in vitro; however, mutants with mutations in this gene were fully infectious in the tick-mouse infection cycle, indicating that its function is not required in this process. By transcriptome analysis, we demonstrated that the ptsG gene may directly or indirectly modulate gene expression of Borrelia burgdorferi. Overall, the PEP-PTS glucose transporter PtsG appears to play important roles in the pathogenesis of B. burgdorferi that extend beyond its transport functions. PMID:26712207

  11. Phosphoenolpyruvate Phosphotransferase System Components Modulate Gene Transcription and Virulence of Borrelia burgdorferi.

    PubMed

    Khajanchi, Bijay K; Odeh, Evelyn; Gao, Lihui; Jacobs, Mary B; Philipp, Mario T; Lin, Tao; Norris, Steven J

    2015-12-28

    The phosphoenolpyruvate phosphotransferase system (PEP-PTS) and adenylate cyclase (AC) IV (encoded by BB0723 [cyaB]) are well conserved in different species of Borrelia. However, the functional roles of PEP-PTS and AC in the infectious cycle of Borrelia have not been characterized previously. We examined 12 PEP-PTS transporter component mutants by needle inoculation of mice to assess their ability to cause mouse infection. Transposon mutants with mutations in the EIIBC components (ptsG) (BB0645, thought to be involved in glucose-specific transport) were unable to cause infection in mice, while all other tested PEP-PTS mutants retained infectivity. Infectivity was partially restored in an in trans-complemented strain of the ptsG mutant. While the ptsG mutant survived normally in unfed as well as fed ticks, it was unable to cause infection in mice by tick transmission, suggesting that the function of ptsG is essential to establish infection by either needle inoculation or tick transmission. In Gram-negative organisms, the regulatory effects of the PEP-PTS are mediated by adenylate cyclase and cyclic AMP (cAMP) levels. A recombinant protein encoded by B. burgdorferi BB0723 (a putative cyaB homolog) was shown to have adenylate cyclase activity in vitro; however, mutants with mutations in this gene were fully infectious in the tick-mouse infection cycle, indicating that its function is not required in this process. By transcriptome analysis, we demonstrated that the ptsG gene may directly or indirectly modulate gene expression of Borrelia burgdorferi. Overall, the PEP-PTS glucose transporter PtsG appears to play important roles in the pathogenesis of B. burgdorferi that extend beyond its transport functions.

  12. Effects of the gene carrier polyethyleneimines on structure and function of blood components.

    PubMed

    Zhong, Dagen; Jiao, Yanpeng; Zhang, Yi; Zhang, Wei; Li, Nan; Zuo, Qinhua; Wang, Qian; Xue, Wei; Liu, Zonghua

    2013-01-01

    As a synthetic polycation, polyethylenimine (PEI) is currently one of the most effective non-viral gene carriers. For in vivo applications, PEI will enter systemic circulation and interact with various blood components and then affect their individual bio-functions. Up to now, overall and systematic investigation on the interaction of PEI with multiple blood components at cellular, membrane, and molecular levels is lacking, even though it is critically important for the in vivo safety of PEI. To learn a structure-activity relationship, we investigated the effects of PEI with different molecular weight (MW) and shape (branched or linear) on key blood components and function, specifically, on RBC aggregation and morphological change, platelet activation, conformation change of albumin (as a representative of plasma proteins), and blood coagulation process. Additionally, more proteins from plasma were screened and identified to have associations with PEI by a proteomic analysis. It was found that, the PEIs have severe impact on RBC membrane structure, albumin conformation, and blood coagulation process, but do not significantly activate platelets at low concentrations. Furthermore, 41 plasma proteins were identified to have some interaction with PEI. This indicates that, besides albumin, PEI does interact with a variety of blood plasma proteins, and could have unexplored effects on their structures and bio-functions. The results provide good insight into the molecular design and blood safety of PEI and other polycations for in vivo applications.

  13. Feature selection in gene expression data using principal component analysis and rough set theory.

    PubMed

    Mishra, Debahuti; Dash, Rajashree; Rath, Amiya Kumar; Acharya, Milu

    2011-01-01

    In many fields such as data mining, machine learning, pattern recognition and signal processing, data sets containing huge number of features are often involved. Feature selection is an essential data preprocessing technique for such high-dimensional data classification tasks. Traditional dimensionality reduction approach falls into two categories: Feature Extraction (FE) and Feature Selection (FS). Principal component analysis is an unsupervised linear FE method for projecting high-dimensional data into a low-dimensional space with minimum loss of information. It discovers the directions of maximal variances in the data. The Rough set approach to feature selection is used to discover the data dependencies and reduction in the number of attributes contained in a data set using the data alone, requiring no additional information. For selecting discriminative features from principal components, the Rough set theory can be applied jointly with PCA, which guarantees that the selected principal components will be the most adequate for classification. We call this method Rough PCA. The proposed method is successfully applied for choosing the principal features and then applying the Upper and Lower Approximations to find the reduced set of features from a gene expression data.

  14. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder

    PubMed Central

    2014-01-01

    Background Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood. Methods Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR. Results A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1

  15. [Structures and functions of the 26S proteasome Rpn10 family].

    PubMed

    Kawahara, Hiroyuki

    2002-09-01

    The ubiquitin-dependent proteolytic pathway is thought to be one of the vital systems for cellular regulations, including control of the cell cycle, differentiation and apoptosis. In this pathway, poly-ubiquitinated proteins are selectively degraded by the 26S proteasome, a multisubunit proteolytic machinery. Recognition of the poly-ubiquitin chain by the 26S proteasome should be a key step leading to the selective degradation of target proteins, and the Rpn10 subunit of the 26S proteasome has been shown to preferentially bind the poly-ubiquitin chain in vitro. We previously reported that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated, alternative splicing. To determine whether such alternative splicing mechanisms occur in organisms other than the mouse, we searched for Rpn10 isoforms in various species. Here we summarize the gene organization of the Rpn10 in lower species and provide evidence that the competence for generating all distinct forms of Rpn10 alternative splicing has expanded through evolution. Some of the Rpn10 family genes were found to be expressed in distinct developmental stages, suggesting that they have distinct functions during embryogenesis. For example, Rpn10c and Rpn10e were exclusively expressed at specific developmental stages and in specific tissues, while Rpn10a was expressed constitutively. Our experimental results indicate that the respective Rpn10 proteins possess distinct roles in the progression of development. Furthermore, some of the Rpn10 variants specifically interacted with important developmental regulators.

  16. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  17. The genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors

    PubMed Central

    Schorn, Michelle; Zettler, Judith; Noel, Joseph P.; Dorrestein, Pieter C.; Moore, Bradley S.; Kaysser, Leonard

    2013-01-01

    The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α′,β′-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anti-cancer drug Kyprolis™, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid non-ribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation. PMID:24168704

  18. Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation.

    PubMed

    Liu, Ningning; Huang, Hongbiao; Liu, Shouting; Li, Xiaofen; Yang, Changshan; Dou, Q Ping; Liu, Jinbao

    2014-04-01

    Verapamil (Ver), an inhibitor of the multidrug resistance gene product, has been proved to be a promising combination partner with other anti-cancer agents including proteasome inhibitor bortezomib. Gambogic acid (GA) has been approved for Phase II clinical trials in cancer therapy in China. We have most recently reported that GA is a potent proteasome inhibitor, with anticancer efficiency comparable to bortezomib but much less toxicity. In the current study we investigated whether Ver can enhance the cytotoxicity of GA. We report that (i) the combination of Ver and GA results in synergistic cytotoxic effect and cell death induction in HepG2 and K562 cancer cell lines; (ii) a combinational treatment with Ver and GA induces caspase activation, endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production; (iii) caspase inhibitor z-VAD blocks GA+Ver-induced apoptosis but not proteasome inhibition; (iv) cysteine-containing compound N-acetylcysteine (NAC) prevents GA+Ver-induced poly(ADP-ribose) polymerase cleavage and proteasome inhibition. These results demonstrate that Ver accelerates GA-induced cytotoxicity via enhancing proteasome inhibition and ROS production. These findings indicate that the natural product GA is a valuable candidate that can be used in combination with Ver, thus representing a compelling anticancer strategy.

  19. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental.

    PubMed

    Guil, Sara; Rodríguez-Castro, Marta; Aguilar, Francisco; Villasevil, Eugenia M; Antón, Luis C; Del Val, Margarita

    2006-12-29

    CD8(+) T lymphocytes recognize infected cells that display virus-derived antigenic peptides complexed with major histocompatibility complex class I molecules. Peptides are mainly byproducts of cellular protein turnover by cytosolic proteasomes. Cytosolic tripeptidyl-peptidase II (TPPII) also participates in protein degradation. Several peptidic epitopes unexpectedly do not require proteasomes, but it is unclear which proteases generate them. We studied antigen processing of influenza virus nucleoprotein epitope NP(147-155), an archetype epitope that is even destroyed by a proteasome-mediated mechanism. TPPII, with the assistance of endoplasmic reticulum trimming metallo-aminopeptidases, probably ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), was crucial for nucleoprotein epitope generation both in the presence of functional proteasomes and when blocked by lactacystin, as shown with specific chemical inhibitors and gene silencing. Different protein contexts and subcellular targeting all allowed epitope processing by TPPII as well as trimming. The results show the plasticity of the cell's assortment of proteases for providing ligands for recognition by antiviral CD8(+) T cells. Our observations identify for the first time a set of proteases competent for antigen processing of an epitope that is susceptible to destruction by proteasomes.

  20. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia

    PubMed Central

    Scott, Madeline R; Rubio, Maria D; Haroutunian, Vahram; Meador-Woodruff, James H

    2016-01-01

    The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness. PMID:26202105

  1. Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population

    PubMed Central

    Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel

    2015-01-01

    Background The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. Objectives We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. Subjects and Methods 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghrelin, lipids, glucose and blood pressure levels were measured, and distribution of SNPs -994CT (rs26312), -604GA (rs27647), -501AC (rs26802), R51Q (rs34911341), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene evaluated. Genotypes were determined by multiplex PCR and SNaPshot minisequencing. MS (IDF criteria) was found in 54.9%. Results No association between any of the SNPs and levels of total fasting circulating ghrelin levels was found. C/A-A/A genotype of M72L was associated with increased risk of central obesity according to IDF criteria, while G/A-G/G genotypes of -604GA with reduced risk. A/A genotype of -501AC polymorphism was associated to decreased BMI. In relation to lipid profile, the same genotypes of -604GA were associated with increased total cholesterol and LDL-cholesterol and -501AC with reduced triglycerides. There were no associations with systolic or diastolic blood pressure levels or with hypertension, glucose levels or diabetes and ghrelin polymorphisms. However, G/G genotype of -604GA was associated with glucose >100 mg/dL. Haplotype analysis showed that only one haplotype is associated with increased risk of waist circumference and central obesity. The analysis of subjects by gender showed an important and different association of these polymorphisms regarding MS parameters. Conclusion Ghrelin gene variants -604GA, -501AC and M72L are associated with certain components of MS, in particular to BMI and lipid profile in elderly Spanish subjects. PMID

  2. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    PubMed

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex.

  3. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  4. Disassembly of the self-assembled, double-ring structure of proteasome α7 homo-tetradecamer by α6.

    PubMed

    Ishii, Kentaro; Noda, Masanori; Yagi, Hirokazu; Thammaporn, Ratsupa; Seetaha, Supaporn; Satoh, Tadashi; Kato, Koichi; Uchiyama, Susumu

    2015-12-14

    The 20S core particle of the eukaryotic proteasome is composed of two α- and two β-rings, each of which is a hetero-heptamer composed of seven homologous but distinct subunits. Although formation of the eukaryotic proteasome is a highly ordered process assisted by assembly chaperones, α7, an α-ring component, has the unique property of self-assembling into a homo-tetradecamer. We used biophysical methods to characterize the oligomeric states of this proteasome subunit and its interaction with α6, which makes direct contacts with α7 in the proteasome α-ring. We determined a crystal structure of the α7 tetradecamer, which has a double-ring structure. Sedimentation velocity analytical ultracentrifugation and mass spectrometric analysis under non-denaturing conditions revealed that α7 exclusively exists as homo-tetradecamer in solution and that its double-ring structure is disassembled upon the addition of α6, resulting in a 1:7 hetero-octameric α6-α7 complex. Our findings suggest that proteasome formation involves the disassembly of non-native oligomers, which are assembly intermediates.

  5. Proteasome activator 200: the heat is on...

    PubMed

    Savulescu, Anca F; Glickman, Michael H

    2011-05-01

    Proteasomes play a key regulatory role in all eukaryotic cells by removing proteins in a timely manner. There are two predominant forms: The 20S core particle (CP) can hydrolyze peptides and certain unstructured proteins, and the 26S holoenzyme is able to proteolyse most proteins conjugated to ubiquitin. The 26S complex consists of a CP barrel with a 19S regulatory particle (RP; a.k.a PA700) attached to its outer surface. Several studies purified another proteasome activator with a MW of 200 kDa (PA200) that attaches to the same outer ring of the CP. A role for PA200 has been demonstrated in spermatogenesis, in response to DNA repair and in maintenance of mitochondrial inheritance. Enhanced levels of PA200-CP complexes are observed under conditions in which either activated or disrupted CP prevail, suggesting it participates in regulating overall proteolytic activity. PA200, or its yeast ortholog Blm10, may also incorporate into 26S proteasomes yielding PA200-CP-RP hybrids. A three-dimensional molecular structure determined by x-ray crystallography of Blm10-CP provides a model for activation. The carboxy terminus of Blm10 inserts into a dedicated pocket in the outer ring of the CP surface, whereas multiple HEAT-like repeats fold into an asymmetric solenoid wrapping around the central pore to stabilize a partially open conformation. The resulting hollow domelike structure caps the entire CP surface. This asymmetric structure may provide insight as to how the 19S RP, with two HEAT repeatlike subunits (Rpn1, Rpn2) alongside six ATPases (Rpt1-6), attaches to the same surface of the CP ring, and likewise, induces pore opening.

  6. Nuclear proteasomes carry a constitutive posttranslational modification which derails SDS-PAGE (but not CTAB-PAGE).

    PubMed

    Pitcher, David S; de Mattos-Shipley, Kate; Wang, Ziming; Tzortzis, Konstantinos; Goudevenou, Katerina; Flynn, Helen; Bohn, Georg; Rahemtulla, Amin; Roberts, Irene; Snijders, Ambrosius P; Karadimitris, Anastasios; Kleijnen, Maurits F

    2014-12-01

    We report that subunits of human nuclear proteasomes carry a previously unrecognised, constitutive posttranslational modification. Subunits with this modification are not visualised by SDS-PAGE, which is used in almost all denaturing protein gel electrophoresis. In contrast, CTAB-PAGE readily visualises such modified subunits. Thus, under most experimental conditions, with identical samples, SDS-PAGE yielded gel electrophoresis patterns for subunits of nuclear proteasomes which were misleading and strikingly different from those obtained with CTAB-PAGE. Initial analysis indicates a novel modification of a high negative charge with some similarity to polyADP-ribose, possibly explaining compatibility with (positively-charged) CTAB-PAGE but not (negatively-charged) SDS-PAGE and providing a mechanism for how nuclear proteasomes may interact with chromatin, DNA and other nuclear components.

  7. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  8. Ubiquitin proteasome system research in gastrointestinal cancer.

    PubMed

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.

  9. Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function.

    PubMed

    Stadtmueller, Beth M; Kish-Trier, Erik; Ferrell, Katherine; Petersen, Charisse N; Robinson, Howard; Myszka, David G; Eckert, Debra M; Formosa, Tim; Hill, Christopher P

    2012-10-26

    The 20S proteasome is an essential, 28-subunit protease that sequesters proteolytic sites within a central chamber, thereby repressing substrate degradation until proteasome activators open the entrance/exit gate. Two established activators, Blm10 and PAN/19S, induce gate opening by binding to the pockets between proteasome α-subunits using C-terminal HbYX (hydrophobic-tyrosine-any residue) motifs. Equivalent HbYX motifs have been identified in Pba1 and Pba2, which function in proteasome assembly. Here, we demonstrate that Pba1-Pba2 proteins form a stable heterodimer that utilizes its HbYX motifs to bind mature 20S proteasomes in vitro and that the Pba1-Pba2 HbYX motifs are important for a physiological function of proteasomes, the maintenance of mitochondrial function. Other factors that contribute to proteasome assembly or function also act in the maintenance of mitochondrial function and display complex genetic interactions with one another, possibly revealing an unexpected pathway of mitochondrial regulation involving the Pba1-Pba2 proteasome interaction. Our determination of a proteasome Pba1-Pba2 crystal structure reveals a Pba1 HbYX interaction that is superimposable with those of known activators, a Pba2 HbYX interaction that is different from those reported previously, and a gate structure that is disrupted but not sufficiently open to allow entry of even small peptides. These findings extend understanding of proteasome interactions with HbYX motifs and suggest multiple roles for Pba1-Pba2 interactions throughout proteasome assembly and function.

  10. Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens.

    PubMed

    Hiscox, Thomas J; Ohtani, Kaori; Shimizu, Tohru; Cheung, Jackie K; Rood, Julian I

    2014-12-01

    Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil.

  11. How the ubiquitin proteasome system regulates the regulators of transcription.

    PubMed

    Ee, Gary; Lehming, Norbert

    2012-01-01

    The ubiquitin proteasome system plays an important role in transcription. Monoubiquitination of activators is believed to aid their function, while the 26S proteasomal degradation of repressors is believed to restrict their function. What remains controversial is the question of whether the degradation of activators aids or restricts their function.

  12. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  13. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    PubMed Central

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2012-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) flies highly active 26S proteasomes are preponderant. Old (43–47 days) flies of both genders also exhibit a decline (~50%) in ATP levels, which is relevant to 26S proteasomes, as their assembly is ATP-dependent. The steep declines in 26S proteasome and ATP levels were observed at an age (43–47 days) when the flies exhibited a marked drop in locomotor performance, attesting that these are “old age” events. Remarkably, treatment with a proteasome inhibitor increases ubiquitinated protein levels and shortens the life span of old but not young flies. In conclusion, our data reveal a previously unknown mechanism that perturbs proteasome activity in “old-age” female and male Drosophila most likely depriving them of the ability to effectively cope with proteotoxic damages caused by environmental and/or genetic factors. PMID:17413001

  14. Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component

    PubMed Central

    1994-01-01

    Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild- type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule- organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis. PMID:8027178

  15. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  16. The mechanism for molecular assembly of the proteasome.

    PubMed

    Sahara, Kazutaka; Kogleck, Larissa; Yashiroda, Hideki; Murata, Shigeo

    2014-01-01

    In eukaryotic cells, the ubiquitin proteasome system plays important roles in diverse cellular processes. The 26S proteasome is a large enzyme complex that degrades ubiquitinated proteins. It consists of 33 different subunits that form two subcomplexes, the 20S core particle and the 19S regulatory particle. Recently, several chaperones dedicated to the accurate assembly of this protease complex have been identified, but the complete mechanism of the 26S proteasome assembly is still unclear. In this review, we summarize what is known about the assembly of proteasome to date and present our group's recent findings on the role of the GET pathway in the assembly of the 26S proteasome, in addition to its role in mediating the insertion of tail-anchored (TA) proteins into the ER membrane.

  17. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  18. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast.

    PubMed

    Morris, May C; Kaiser, Peter; Rudyak, Stanislav; Baskerville, Chris; Watson, Mark H; Reed, Steven I

    2003-06-26

    Cks proteins are small evolutionarily conserved proteins that interact genetically and physically with cyclin-dependent kinases. However, in spite of a large body of genetic, biochemical and structural research, no compelling unifying model of their functions has emerged. Here we show, by investigating the essential role of Cks1 in Saccharomyces cerevisiae, that the protein is primarily involved in promoting mitosis by modulating the transcriptional activation of the APC/C protein-ubiquitin ligase activator Cdc20. Cks1 is required for both the periodic dissociation of Cdc28 kinase from the CDC20 promoter and the periodic association of the proteasome with the promoter. We propose that the essential role of Cks1 is to recruit the proteasome to, and/or dissociate the Cdc28 kinase from, the CDC20 promoter, thus facilitating transcription by remodelling transcriptional complexes or chromatin associated with the CDC20 gene.

  19. Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner

    PubMed Central

    Bremm, Anja; Moniz, Sonia; Mader, Julia; Rocha, Sonia; Komander, David

    2014-01-01

    The transcription factor HIF-1α is essential for cells to rapidly adapt to low oxygen levels (hypoxia). HIF-1α is frequently deregulated in cancer and correlates with poor patient prognosis. Here, we demonstrate that the deubiquitinase Cezanne regulates HIF-1α homeostasis. Loss of Cezanne decreases HIF-1α target gene expression due to a reduction in HIF-1α protein levels. Surprisingly, although the Cezanne-regulated degradation of HIF-1α depends on the tumour suppressor pVHL, hydroxylase and proteasome activity are dispensable. Our data suggest that Cezanne is essential for HIF-1α protein stability and that loss of Cezanne stimulates HIF-1α degradation via proteasome-independent routes, possibly through chaperone-mediated autophagy. Subject Categories Post-translational Modifications, Proteolysis & Proteomics; Signal Transduction PMID:25355043

  20. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium.

    PubMed

    Pereira, Alban R; Kale, Andrew J; Fenley, Andrew T; Byrum, Tara; Debonsi, Hosana M; Gilson, Michael K; Valeriote, Frederick A; Moore, Bradley S; Gerwick, William H

    2012-04-16

    Two new peptidic proteasome inhibitors were isolated as trace components from a Curaçao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived α,β-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the β5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.

  1. Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3

    PubMed Central

    Xu, Yi; Wu, Jianxiang; Fu, Shuai; Li, Chenyang; Zhu, Zeng-Rong

    2015-01-01

    ABSTRACT The ubiquitin/26S proteasome system plays a vital role in regulating host defenses against pathogens. Previous studies have highlighted different roles for the ubiquitin/26S proteasome in defense during virus infection in both mammals and plants, but their role in the vectors that transmit those viruses is still unclear. In this study, we determined that the 26S proteasome is present in the small brown planthopper (SBPH) (Laodelphgax striatellus) and has components similar to those in plants and mammals. There was an increase in the accumulation of Rice stripe virus (RSV) in the transmitting vector SBPH after disrupting the 26S proteasome, indicating that the SBPH 26S proteasome plays a role in defense against RSV infection by regulating RSV accumulation. Yeast two-hybrid analysis determined that a subunit of the 26S proteasome, named RPN3, could interact with RSV NS3. Transient overexpression of RPN3 had no effect on the RNA silencing suppressor activity of RSV NS3. However, NS3 could inhibit the ability of SBPH rpn3 to complement an rpn3 mutation in yeast. Our findings also indicate that the direct interaction between RPN3 and NS3 was responsible for inhibiting the complementation ability of RPN3. In vivo, we found an accumulation of ubiquitinated protein in SBPH tissues where the RSV titer was high, and silencing of rpn3 resulted in malfunction of the SBPH proteasome-mediated proteolysis. Consequently, viruliferous SBPH in which RPN3 was repressed transmitted the virus more effectively as a result of higher accumulation of RSV. Our results suggest that the RSV NS3 protein is able to hijack the 26S proteasome in SBPH via a direct interaction with the RPN3 subunit to attenuate the host defense response. IMPORTANCE We show, for the first time, that the 26S proteasome components are present in the small brown planthopper and play a role in defense against its vectored plant virus (RSV). In turn, RSV encodes a protein that subverts the SBPH 26S proteasome

  2. Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression

    PubMed Central

    Sivaneson, Melissa; Mikkelsen, Helga; Ventre, Isabelle; Bordi, Christophe; Filloux, Alain

    2011-01-01

    Pseudomonas aeruginosa is responsible for chronic and acute infections in humans. Chronic infections are associated with production of fimbriae and the formation of a biofilm. The two-component system Roc1 is named after its role in the regulation of cup genes, which encode components of a machinery allowing assembly of fimbriae. A non-characterized gene cluster, roc2, encodes components homologous to the Roc1 system. We show that cross-regulation occurs between the Roc1 and Roc2 signalling pathways. We demonstrate that the sensors RocS2 and RocS1 converge on the response regulator RocA1 to control cupC gene expression. This control is independent of the response regulator RocA2. Instead, we show that these sensors act via the RocA2 response regulator to repress the mexAB-oprM genes. These genes encode a multidrug efflux pump and are upregulated in the rocA2 mutant, which is less susceptible to antibiotics. It has been reported that in cystic fibrosis lungs, in which P. aeruginosa adopts the biofilm lifestyle, most isolates have an inactive MexAB-OprM pump. The concomitant RocS2-dependent upregulation of cupC genes (biofilm formation) and downregulation of mexAB-oprM genes (antibiotic resistance) is in agreement with this observation. It suggests that the Roc systems may sense the environment in the cystic fibrosis lung. PMID:21205015

  3. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  4. Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Wang, Hua; Luo, Dexian; Zeng, Minhuan; Huang, Hai; Cui, Xiaofeng

    2011-01-01

    The 26S proteasome is a large multisubunit proteolytic complex, regulating growth and development in eukaryotes by selective removal of short-lived regulatory proteins. Here, it is shown that the 26S proteasome and the transcription factor gene REVOLUTA (REV) act together in maintaining inflorescence and floral meristem (IM and FM) functions. The characterization of a newly identified Arabidopsis mutant, designated ae4 (asymmetric leaves1/2 enhancer4), which carries a mutation in the gene encoding the 26S proteasome subunit, RPN2a, is reported. ae4 and rev have minor defects in phyllotaxy structure and meristem initiation, respectively, whereas ae4 rev demonstrated strong developmental defects. Compared with the rev single mutant, an increased percentage of ae4 rev plants exhibited abnormal vegetative shoot apical and axillary meristems. After flowering, ae4 rev first gave rise to a few normal-looking flowers, and then flowers with reduced numbers of all types of floral organs. In late reproductive development, instead of flowers, the ae4 rev IM produced numerous filamentous structures, which contained cells seen only in the floral organs, and then carpelloid organs. In situ hybridization revealed that expression of the WUSCHEL and CLAVATA3 genes was severely down-regulated or absent in the late appearing ae4 rev primordia, but the genes were strongly expressed in top-layer cells of inflorescence tips. Double mutant plants combining rev with other 26S proteasome subunit mutants, rpn1a and rpn9a, resembled ae4 rev, suggesting that the 26S proteasome might act as a whole in regulating IM and FM functions.

  5. Cloning and partial characterization of the proteasome S4 ATPase from Plasmodium falciparum.

    PubMed

    Certad, G; Abrahem, A; Georges, E

    1999-11-01

    Certad, G., Abrahem, A., and Georges, E. 1999. Cloning and Partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Experimental Parasitology 93, 123-131. The ATP-ubiquitin-proteasome pathway mediates the nonlysosomal degradation of cytosolic proteins in eukaryotic cells. The activities of this pathway have been shown to regulate cell growth and differentiation through modulation of regulatory proteins. The proteasome is a large complex consisting of two multisubunit structures, the 20S and 19S(PA700) or P28 complexes, that combine to form the 26S particles. In this study, we describe the cloning of a cDNA encoding the proteasome subunit 4 ATPase homologue from Plasmodium falciparum (PFS4). Analysis of the PFS4 cDNA sequence shows an open reading frame encoding a deduced protein of 455 amino acids. Moreover, comparison of PFS4 cDNA sequence to that of genomic fragments encoding PFS4 showed identical sequences with no detectable introns. Database searches revealed a high sequence identity to those of rice, yeast, mouse, Drosophila, and human S4 ATPases. However, PFS4 contains two unique inserts of nine and seven amino acid residues in the N-terminal domain. Interestingly, only the rice S4 contains the latter (seven amino acids) insert with four identical amino acids. In vitro expression of the full-length cDNA encoding the PFS4, using a transcription-translation-coupled reticulocyte lysate, shows a 50-kDa [(35)S]methionine-labeled protein which was immunoprecipitated with PFS4 anti-peptide antiserum. Southern blot analysis of genomic DNA digests shows a single gene copy of PFS4 in P. falciparum. Of interest was the effect of the proteasome-specific natural product, lactacystin, on the growth of the parasite, with IC(50) values of 0.6-0.92 microM. The latter IC(50) values of lactacystin for different clones of P. falciparum are comparable to those obtained for mammalian cell lines (0.65 microM), suggesting the presence of a conserved

  6. BIM(EL), an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation.

    PubMed

    Wiggins, Ceri M; Tsvetkov, Peter; Johnson, Mark; Joyce, Claire L; Lamb, Christopher A; Bryant, Nia J; Komander, David; Shaul, Yosef; Cook, Simon J

    2011-03-15

    BIM-extra long (BIM(EL)), a pro-apoptotic BH3-only protein and part of the BCL-2 family, is degraded by the proteasome following activation of the ERK1/2 signalling pathway. Although studies have demonstrated poly-ubiquitylation of BIM(EL) in cells, the nature of the ubiquitin chain linkage has not been defined. Using ubiquitin-binding domains (UBDs) specific for defined ubiquitin chain linkages, we show that BIM(EL) undergoes K48-linked poly-ubiquitylation at either of two lysine residues. Surprisingly, BIM(EL)ΔKK, which lacks both lysine residues, was not poly-ubiquitylated but still underwent ERK1/2-driven, proteasome-dependent turnover. BIM has been proposed to be an intrinsically disordered protein (IDP) and some IDPs can be degraded by uncapped 20S proteasomes in the absence of poly-ubiquitylation. We show that BIM(EL) is degraded by isolated 20S proteasomes but that this is prevented when BIM(EL) is bound to its pro-survival target protein MCL-1. Furthermore, knockdown of the proteasome cap component Rpn2 does not prevent BIM(EL) turnover in cells, and inhibition of the E3 ubiquitin ligase β-TrCP, which catalyses poly-Ub of BIM(EL), causes Cdc25A accumulation but does not inhibit BIM(EL) turnover. These results provide new insights into the regulation of BIM(EL) by defining a novel ubiquitin-independent pathway for the proteasome-dependent destruction of this highly toxic protein.

  7. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  8. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  9. Mammalian proteasome subtypes: Their diversity in structure and function.

    PubMed

    Dahlmann, Burkhardt

    2016-02-01

    The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.

  10. Emerging Mechanistic Insights into AAA Complexes Regulating Proteasomal Degradation

    PubMed Central

    Förster, Friedrich; Schuller, Jan M.; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  11. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  12. Proteasome activation as a novel anti-aging strategy.

    PubMed

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011).

  13. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR.

  14. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  15. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M Kristina; Rust, Bret; Raybould, Helen E; Newman, John W; Martin, Roy; Dubcovsky, Jorge

    2015-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch.

  16. Molecular identification of candidate chemoreceptor genes and signal transduction components in the sensory epithelium of Aplysia.

    PubMed

    Cummins, S F; Leblanc, L; Degnan, B M; Nagle, G T

    2009-07-01

    An ability to sense and respond to environmental cues is essential to the survival of most marine animals. How water-borne chemical cues are detected at the molecular level and processed by molluscs is currently unknown. In this study, we cloned two genes from the marine mollusk Aplysia dactylomela which encode multi-transmembrane proteins. We have performed in situ hybridization that reveals expression and spatial distribution within the long-distance chemosensory organs, the rhinophores. This finding suggests that they could be receptors involved in binding water-borne chemicals and coupling to an intracellular signal pathway. In support of this, we found expression of a phospholipase C and an inositol trisphosphate receptor in the rhinophore sensory epithelia and possibly distributed within outer dendrites of olfactory sensory neurons. In Aplysia, mate attraction and subsequent reproduction is initiated by responding to a cocktail of water-borne protein pheromones released by animal conspecifics. We show that the rhinophore contraction in response to pheromone stimulants is significantly altered following phospholipase C inhibition. Overall, these data provide insight into the molecular components of chemosensory detection in a mollusk. An important next step will be the elucidation of how these coordinate the detection of chemical cues present in the marine environment and activation of sensory neurons.

  17. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  18. It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease.

    PubMed

    Tramutola, Antonella; Di Domenico, Fabio; Barone, Eugenio; Perluigi, Marzia; Butterfield, D Allan

    2016-01-01

    Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of "aberrant" proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.

  19. The Impact of Serum Amyloid P-Component on Gene Expression in RAW264.7 Mouse Macrophages

    PubMed Central

    Xi, Dan; Zhao, Jinzhen; Liu, Jichen; Xiong, Haowei; He, Wenshuai; Hu, Jing; Lai, Wenyan; Guo, Zhigang

    2016-01-01

    Serum amyloid P-component (SAP) contributes to host defense and prevents fibrosis. Macrophages are the most abundant inflammatory cell type in atherosclerotic plaques. In the present study, using 3H-cholesterol-labeled counting radioactivity assay, we demonstrated that the apoAI-mediated cholesterol efflux in RAW264.7 macrophages was increased by SAP treatment in a time- and dose-dependent manner. We analyzed global gene expression changes upon SAP treatment using RNA sequencing. As a result, a total of 175 differentially expressed genes were identified, of which 134 genes were downregulated and 41 genes were upregulated in SAP treated cells compared to control cells. Quantitative RT-PCR analysis confirmed decreased expression of 5 genes and an increase in expression of 1 gene upon SAP treatment. Gene ontology analysis showed that genes involved in response to stimulus were significantly enriched in differentially expressed genes. Beyond protein-coding genes, we also identified 8 differentially expressed long noncoding RNAs. Our study may provide new insights into mechanisms underlying the functional role of SAP in macrophages. PMID:27239478

  20. Emerging therapies targeting the ubiquitin proteasome system in cancer

    PubMed Central

    Weathington, Nathaniel M.; Mallampalli, Rama K.

    2014-01-01

    The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics. PMID:24382383

  1. Emerging therapies targeting the ubiquitin proteasome system in cancer.

    PubMed

    Weathington, Nathaniel M; Mallampalli, Rama K

    2014-01-01

    The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics.

  2. Development of proteasome inhibitors as research tools and cancer drugs

    PubMed Central

    2012-01-01

    The proteasome is the primary site for protein degradation in mammalian cells, and proteasome inhibitors have been invaluable tools in clarifying its cellular functions. The anticancer agent bortezomib inhibits the major peptidase sites in the proteasome’s 20S core particle. It is a “blockbuster drug” that has led to dramatic improvements in the treatment of multiple myeloma, a cancer of plasma cells. The development of proteasome inhibitors illustrates the unpredictability, frustrations, and potential rewards of drug development but also emphasizes the dependence of medical advances on basic biological research. PMID:23148232

  3. Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner1[W][OA

    PubMed Central

    Han, Ye; Cao, Hong; Jiang, Jiafu; Xu, Yunyuan; Du, Jizhou; Wang, Xin; Yuan, Ming; Wang, Zhiyong; Xu, Zhihong; Chong, Kang

    2008-01-01

    Root growth is mainly determined by cell division and subsequent elongation in the root apical area. Components regulating cell division in root meristematic cells are largely unknown. Previous studies have identified rice (Oryza sativa) ROOT ARCHITECTURE ASSOCIATED1 (OsRAA1) as a regulator in root development. Yet, the function of OsRAA1 at the cellular and molecular levels is unclear. Here, we show that OsRAA1-overexpressed transgenic rice showed reduced primary root growth, increased numbers of cells in metaphase, and reduced numbers of cells in anaphase, which suggests that OsRAA1 is responsible for limiting root growth by inhibiting the onset of anaphase. The expression of OsRAA1 in fission yeast also induced metaphase arrest, which is consistent with the fact that OsRAA1 functions through a conserved mechanism of cell cycle regulation. Moreover, a colocalization assay has shown that OsRAA1 is expressed predominantly at spindles during cell division. Yeast two-hybrid and pull-down assays, as well as a bimolecular fluorescence complementation assay, all have revealed that OsRAA1 interacts with a rice homolog of REGULATORY PARTICLE TRIPLE-A ATPASE4, a component that is involved in the ubiquitin pathway. Treating transgenic rice with specific inhibitors of the 26S proteasome blocked the degradation of OsRAA1 and increased the number of cells in metaphase. Mutation of a putative ubiquitination-targeting D-box (RGSLDLISL) in OsRAA1 interrupted the destruction of OsRAA1 in transgenic yeast. These results suggest that ubiquitination and proteasomic proteolysis are involved in OsRAA1 degradation, which is essential for the onset of anaphase, and that OsRAA1 may modulate root development mediated by the ubiquitin-proteasome pathway as a novel regulatory factor of the cell cycle. PMID:18701670

  4. The Transcription Activity of Gis1 Is Negatively Modulated by Proteasome-mediated Limited Proteolysis*

    PubMed Central

    Zhang, Nianshu; Oliver, Stephen G.

    2010-01-01

    The transcriptional response to environmental changes has to be prompt but appropriate. Previously, it has been shown that the Gis1 transcription factor is responsible for regulating the expression of postdiauxic shift genes in response to nutrient starvation, and this transcription regulation is dependent upon the Rim15 kinase. Here we demonstrate that the activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. Limited degradation of Gis1 by the proteasome leads to the production of smaller variants, which have weaker transcription activities than the full-length protein. The coiled-coil domain, absent from the smaller variants, is part of the second transcription activation domain in Gis1 and is essential for both the limited proteolysis of Gis1 and its full activity. Endogenous Gis1 and its variants, regardless of their transcription capabilities, activate transcription in a Rim15-dependent manner. However, when the full-length Gis1 accumulates in cells due to overexpression or inhibition of the proteasome function, transcription activation by Gis1 is no longer solely controlled by Rim15. Together, these data strongly indicate that the function of the limited degradation is to ensure that Gis1-dependent transcription is strictly regulated by the Rim15 kinase. Furthermore, we have revealed that the kinase activity of Rim15 is essential for this regulation. PMID:20022953

  5. Proteasome affects the expression of aryl hydrocarbon receptor-regulated proteins.

    PubMed

    Ishida, Takumi; Kawakami, Masayo; Baba, Hiroko; Yahata, Masahiro; Mutoh, Junpei; Takeda, Shuso; Fujita, Hideaki; Tanaka, Yoshitaka; Ishii, Yuji; Yamada, Hideyuki

    2008-11-01

    The effect of proteasome inhibition with N-acetyl-leucyl-leucyl-norleucinal (ALLN) on the protein expression regulated by aryl hydrocarbon receptor (AhR) was studied in T47D breast tumor cells. The luciferase reporter gene assay using a construct which has the xenobiotic responsive element showed that the inducible expression of the reporter with AhR ligands was significantly reduced by co-treatment with ALLN. The same suppressive effect by ALLN was observed for ethoxyresorufin O-deethylase (EROD) activity induced by an AhR ligand, 3-methylcholanthrene (3MC). Despite the above effects, the induced expression of CYP1A1 and CYP1B1 mRNAs was unaffected by ALLN. While lactacystin, another proteasome inhibitor, exhibited the same effect as ALLN on EROD activity induced by 3MC, leupeptin, which is one of the cysteine protease inhibitors, had no such effect. Based on the evidence obtained, it appears that proteasome inhibition results in a reduction in the expression of AhR-regulated proteins.

  6. Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses.

    PubMed

    Hu, Junli; Jiao, Dongxu; Xu, Qin; Ying, Xiaoli; Liu, Wei; Chi, Qingping; Ye, Yuting; Li, Xueyu; Cheng, Luogen

    2016-05-10

    Insecticide deltamethrin resistance has presented a difficult obstacle for pest control and the resistance development is complex and associated with many genes. To better understand the possible molecular mechanisms involved in DM stress, in this study, cDNA microarray analysis was employed. 448 differentially expressed genes with at least a 2-fold expression difference were identified in Drosophila cells after DM exposure. Moreover, some genes were confirmed with qPCR, which yielded results consistent with the microarray analysis. Three members of the ubiquitin-proteasome system were significantly elevated in DM-stressed cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM detoxification. The proteasome beta2 subunit (Prosbeta2) is a member of 20S proteasome subunit family, which forms the proteolytic core of 26S proteasome. Whether Prosbeta2 participates in DM detoxification requires further study. RNAi and heterologous expression were conducted to investigate the contribution of Prosbeta2 in DM detoxification. The results revealed Prosbeta2 knockdown significantly reduce the level of DM detoxification in RNAi-treated cells after 48 h. Overexpression of Prosbeta2 increased cellular viability. These detoxification results represent the first evidence that Prosbeta2 plays a role in the detoxification of DM, which may provide new idea and target for studying the molecular mechanisms of insect resistance.

  7. Ubiquitin-Proteasome System Inhibition Promotes Long-Term Depression and Synaptic Tagging/Capture.

    PubMed

    Li, Qin; Korte, Martin; Sajikumar, Sreedharan

    2016-06-01

    A balance of protein synthesis and degradation is critical for the dynamic regulation and implementation of long-term memory storage. The role of the ubiquitin-proteasome system (UPS) in regulating the plasticity at potentiated synapses is well studied, but its roles in depressed synaptic populations remain elusive. In this study, we probed the possibility of regulating the UPS by inhibiting the proteasome function during the induction of protein synthesis-independent form of hippocampal long-term depression (early-LTD), an important component of synaptic plasticity. Here, we show that protein degradation is involved in early-LTD induction and interfering with this process facilitates early-LTD to late-LTD. We provide evidence here that under the circumstances of proteasome inhibition brain-derived neurotrophic factor is accumulated as plasticity-related protein and it drives the weakly depressed or potentiated synapses to associativity. Thus, UPS inhibition promotes LTD and establishes associativity between weakly depressed or potentiated synapses through the mechanisms of synaptic tagging/capture or cross-capture.

  8. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system

    PubMed Central

    Guharoy, Mainak; Bhowmick, Pallab; Sallam, Mohamed; Tompa, Peter

    2016-01-01

    Specific signals (degrons) regulate protein turnover mediated by the ubiquitin-proteasome system. Here we systematically analyse known degrons and propose a tripartite model comprising the following: (1) a primary degron (peptide motif) that specifies substrate recognition by cognate E3 ubiquitin ligases, (2) secondary site(s) comprising a single or multiple neighbouring ubiquitinated lysine(s) and (3) a structurally disordered segment that initiates substrate unfolding at the 26S proteasome. Primary degron sequences are conserved among orthologues and occur in structurally disordered regions that undergo E3-induced folding-on-binding. Posttranslational modifications can switch primary degrons into E3-binding-competent states, thereby integrating degradation with signalling pathways. Degradation-linked lysines tend to be located within disordered segments that also initiate substrate degradation by effective proteasomal engagement. Many characterized mutations and alternative isoforms with abrogated degron components are implicated in disease. These effects result from increased protein stability and interactome rewiring. The distributed nature of degrons ensures regulation, specificity and combinatorial control of degradation. PMID:26732515

  9. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury.

    PubMed

    Gong, Bing; Radulovic, Miroslav; Figueiredo-Pereira, Maria E; Cardozo, Christopher

    2016-01-01

    The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer's disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick's disease and Down's syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.

  10. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome.

    PubMed

    Groll, Michael; Berkers, Celia R; Ploegh, Hidde L; Ovaa, Huib

    2006-03-01

    The dipeptide boronic acid bortezomib, also termed VELCADE, is a proteasome inhibitor now in use for the treatment of multiple myeloma, and its use for the treatment of other malignancies is being explored. We determined the crystal structure of the yeast 20S proteasome in complex with bortezomib to establish the specificity and binding mode of bortezomib to the proteasome's different catalytically active sites. This structure should enable the rational design of new boronic acid derivatives with improved affinities and specificities for individual active subunits.

  11. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    PubMed

    Sarwar, Zaara; Garza, Anthony G

    2015-09-14

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation.

  12. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes

    PubMed Central

    Sarwar, Zaara

    2015-01-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. PMID:26369581

  13. The mouse and human genes encoding the recognition component of the N-end rule pathway

    PubMed Central

    Kwon, Yong Tae; Reiss, Yuval; Fried, Victor A.; Hershko, Avram; Yoon, Jeong Kyo; Gonda, David K.; Sangan, Pitchai; Copeland, Neal G.; Jenkins, Nancy A.; Varshavsky, Alexander

    1998-01-01

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. The N-end rule pathway is one proteolytic pathway of the ubiquitin system. The recognition component of this pathway, called N-recognin or E3, binds to a destabilizing N-terminal residue of a substrate protein and participates in the formation of a substrate-linked multiubiquitin chain. We report the cloning of the mouse and human Ubr1 cDNAs and genes that encode a mammalian N-recognin called E3α. Mouse UBR1p (E3α) is a 1,757-residue (200-kDa) protein that contains regions of sequence similarity to the 225-kDa Ubr1p of the yeast Saccharomyces cerevisiae. Mouse and human UBR1p have apparent homologs in other eukaryotes as well, thus defining a distinct family of proteins, the UBR family. The residues essential for substrate recognition by the yeast Ubr1p are conserved in the mouse UBR1p. The regions of similarity among the UBR family members include a putative zinc finger and RING-H2 finger, another zinc-binding domain. Ubr1 is located in the middle of mouse chromosome 2 and in the syntenic 15q15-q21.1 region of human chromosome 15. Mouse Ubr1 spans ≈120 kilobases of genomic DNA and contains ≈50 exons. Ubr1 is ubiquitously expressed in adults, with skeletal muscle and heart being the sites of highest expression. In mouse embryos, the Ubr1 expression is highest in the branchial arches and in the tail and limb buds. The cloning of Ubr1 makes possible the construction of Ubr1-lacking mouse strains, a prerequisite for the functional understanding of the mammalian N-end rule pathway. PMID:9653112

  14. Characterization and expression analysis of a complement component gene in sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-12-01

    The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.

  15. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji Saeki, Yasushi

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  16. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome*

    PubMed Central

    Yu, Houqing; Singh Gautam, Amit K.; Wilmington, Shameika R.; Wylie, Dennis; Martinez-Fonts, Kirby; Kago, Grace; Warburton, Marie; Chavali, Sreenivas; Inobe, Tomonao; Finkelstein, Ilya J.; Babu, M. Madan

    2016-01-01

    The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness. PMID:27226608

  17. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation*

    PubMed Central

    Goitea, Victor E.; Hallak, Marta E.

    2015-01-01

    Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm. PMID:25969538

  18. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis

    PubMed Central

    Kraus, William E.; Muoio, Deborah M.; Stevens, Robert; Craig, Damian; Bain, James R.; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H.; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R.; Gregory, Simon G.; Newgard, Christopher B.; Shah, Svati H.

    2015-01-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk. PMID:26540294

  19. Principal Components Analysis Based Unsupervised Feature Extraction Applied to Gene Expression Analysis of Blood from Dengue Haemorrhagic Fever Patients

    PubMed Central

    Taguchi, Y-h.

    2017-01-01

    Dengue haemorrhagic fever (DHF) sometimes occurs after recovery from the disease caused by Dengue virus (DENV), and is often fatal. However, the mechanism of DHF has not been determined, possibly because no suitable methodologies are available to analyse this disease. Therefore, more innovative methods are required to analyse the gene expression profiles of DENV-infected patients. Principal components analysis (PCA)-based unsupervised feature extraction (FE) was applied to the gene expression profiles of DENV-infected patients, and an integrated analysis of two independent data sets identified 46 genes as critical for DHF progression. PCA using only these 46 genes rendered the two data sets highly consistent. The application of PCA to the 46 genes of an independent third data set successfully predicted the progression of DHF. A fourth in vitro data set confirmed the identification of the 46 genes. These 46 genes included interferon- and heme-biosynthesis-related genes. The former are enriched in binding sites for STAT1, STAT2, and IRF1, which are associated with DHF-promoting antibody-dependent enhancement, whereas the latter are considered to be related to the dysfunction of spliceosomes, which may mediate haemorrhage. These results are outcomes that other type of bioinformatic analysis could hardly achieve. PMID:28276456

  20. Reconfiguration of the proteasome during chaperone-mediated assembly.

    PubMed

    Park, Soyeon; Li, Xueming; Kim, Ho Min; Singh, Chingakham Ranjit; Tian, Geng; Hoyt, Martin A; Lovell, Scott; Battaile, Kevin P; Zolkiewski, Michal; Coffino, Philip; Roelofs, Jeroen; Cheng, Yifan; Finley, Daniel

    2013-05-23

    The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme.

  1. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  2. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  3. The proteasome is responsible for caspase-3-like activity during xylem development.

    PubMed

    Han, Jia-Jia; Lin, Wei; Oda, Yoshihisa; Cui, Ke-Ming; Fukuda, Hiroo; He, Xin-Qiang

    2012-10-01

    Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.

  4. Structural Basis for the Assembly and Gate Closure Mechanisms of the Mycobacterium tuberculosis 20S Proteasome

    SciTech Connect

    Lin, D.; Li, H; Wang, T; Pan, H; Lin, G; Li, H

    2010-01-01

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  5. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome

    SciTech Connect

    Li, D.; Li, H.; Li, H.; Wang, T.; Pan, H.; Lin, G.

    2010-06-16

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  6. CD4 Glycoprotein Degradation Induced by Human Immunodeficiency Virus Type 1 Vpu Protein Requires the Function of Proteasomes and the Ubiquitin-Conjugating Pathway

    PubMed Central

    Schubert, Ulrich; Antón, Luis C.; Bačík, Igor; Cox, Josephine H.; Bour, Stéphane; Bennink, Jack R.; Orlowski, Marian; Strebel, Klaus; Yewdell, Jonathan W.

    1998-01-01

    The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic

  7. Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments.

    PubMed

    García-Alonso, Luz; Alonso, Roberto; Vidal, Enrique; Amadoz, Alicia; de María, Alejandro; Minguez, Pablo; Medina, Ignacio; Dopazo, Joaquín

    2012-11-01

    Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.

  8. Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system.

    PubMed

    Scheffner, Martin; Whitaker, Noel J

    2003-02-01

    Certain types of human papillomaviruses have been etiologically associated with malignant lesions, most notably with cervical cancer. The major oncoproteins of these cancer-associated viruses are encoded by the viral E6 and E7 genes. Thorough characterization of these oncoproteins and their interaction with cellular proteins has shown that both E6 and E7 exploit the ubiquitin-proteasome system to degrade and, thus, to functionally inactivate negative cell-regulatory proteins including members of the p110(RB) family and p53. This act of piracy is assumed to contribute to both the efficient propagation of HPVs and HPV-induced carcinogenesis.

  9. Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize.

    PubMed

    Zhou, Mei-Liang; Qi, Lei-Peng; Pang, Jun-Feng; Zhang, Qian; Lei, Zhi; Tang, Yi-Xiong; Zhu, Xue-Mei; Shao, Ji-Rong; Wu, Yan-Min

    2013-06-01

    Nicotianamine (NA) is an important divalent metal chelator and the main precursor of phytosiderophores. NA is synthesized from S-adenosylmethionine in a process catalyzed by nicotianamine synthase (NAS). In this study, a set of structural and phylogenetic analyses have been applied to identify the maize NAS genes based on the maize genome sequence release. Ten maize NAS genes have been mapped; seven of them have not been reported to date. Phylogenetic analysis and expression pattern from microarray data led to their classification into two different orthologous groups. C-terminal fusion of ZmNAS3 with GFP was found in the cytoplasm of Arabidopsis leaf protoplast. Expression analysis by reverse transcription polymerase chain reaction revealed ZmNAS genes are responsive to heavy metal ions (Ni, Fe, Cu, Mn, Zn, and Cd), and all 10 ZmNAS genes were only observed in the root tissue except of ZmNAS6. The promoter of ZmNAS genes was analyzed for the presence of different cis-element response to all kinds of phytohormones and environment stresses. We found that the ZmNAS gene expression of maize seedlings was regulated by jasmonic acid, abscisic acid, and salicylic acid. Microarray data demonstrated that the ZmNAS genes show differential, organ-specific expression patterns in the maize developmental steps. The integrated comparative analysis can improve our current view of ZmNAS genes and facilitate the functional characterization of individual members.

  10. Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention.

    PubMed

    Chang, Tsui-Ling; Wang, Chi-Hsien

    2013-04-01

    To look for oral proteasome inhibitors, daily injested food is the best source for cancer chemoprevention. A combination of active components from vegetables, coffee, tea, and fruit could be more efficient to inhibit 26S proteasome activities for preventing cancer diseases. Tannic acid and quercetin have been shown to strongly inhibit 26S proteasome activity, but the molecular target involved remains unknown. Overlay assay, peptide assay, Western blot, and 2-D gels were used to assess the combination of quercetin and tannic acid as a potential inhibitor. Here, we demonstrated that the combination of quercetin and tannic acid (1) synergistically suppresses chymotrypsin-, caspase-, and trypsin-like proteolytic activities, (2) are tightly binding substrates, (3) do not perturb the proteasome structure, (4) inhibit the 26S proteasome affected by ubiquitin, ATP, or β-casein, and (5) inhibit β-casein degradation by the 26S proteasome in vitro. Finally, the inhibition of the proteasome by a combination of quercetin plus tannic acid in Hep-2 cells resulted in the induction of S5a at low dose, accumulation of ubiquitin, and the cleavage of pro-caspase-3, followed by the induction of apoptotic cell death. Evaluating the combination of quercetin and tannic acid as an oral drug to prevent cancer may provide a pharmacological rationale to pursue preclinical trials of this combination.

  11. The proteasome activator 11 S REG (PA28) and class I antigen presentation.

    PubMed Central

    Rechsteiner, M; Realini, C; Ustrell, V

    2000-01-01

    There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen

  12. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  13. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.

    PubMed

    Collado, Denise; Yoshihara, Takashi; Hamaguchi, Masaaki

    2007-08-31

    Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.

  14. Attenuation of glucocorticoid signaling through targeted degradation of p300 via the 26S proteasome pathway.

    PubMed

    Li, Qiao; Su, Anna; Chen, Jihong; Lefebvre, Yvonne A; Haché, Robert J G

    2002-12-01

    The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.

  15. New insights to the ubiquitin-proteasome pathway (UPP) mechanism during spermatogenesis.

    PubMed

    Hou, Cong-Cong; Yang, Wan-Xi

    2013-04-01

    Spermatogenesis is a complicated and highly ordered process which begins with the differentiation of spermatogonial stem cells and ends with the formation of mature sperm. After meiosis, several morphological changes occur during spermatogenesis. During spermatogenesis, many proteins and organelles are degraded, and the ubiquitin-proteasome pathway (UPP) plays a key role in the process which facilitates the formation of condensed sperm. UPP contains various indispensable components: ubiquitin, ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin ligase enzyme E3 and proteasomes. At some key stages of spermatogenesis, such as meiosis, acrosome biogenesis, and spermatozoa maturation, the ubiquitin-related components (including deubiquitination enzymes) exert positive and active functions. Generally speaking, deficient UPP will block spermatogenesis which may induce infertility at various degrees. Although ubiquitination during spermatogenesis has been widely investigated, further detailed aspects such as the mechanism of ubiquitination during the formation of midpiece and acrosome morphogenesis still remains unknown. The present review will overview current progress on ubiquitination during spermatogenesis, and will provide some suggestions for future studies on the functions of UPP components during spermatogenesis.

  16. On the linkage between the ubiquitin-proteasome system and the mitochondria.

    PubMed

    Lehmann, Gilad; Udasin, Ronald G; Ciechanover, Aaron

    2016-04-22

    Several metabolic pathways critical for cellular homeostasis occur in the mitochondria. Because of the evolution of mitochondria and their physical separation, these pathways have traditionally been thought to be free from regulation by the ubiquitin-proteasome system. This perception has recently been challenged by evidence for the presence of ubiquitin system components in the mitochondria. Furthermore, it has been shown that certain mitochondrial proteins are conjugated by ubiquitin, and some of them are degraded by the proteasome. Of particular interest is the finding that some of these proteins are localized to the inner membrane and matrix, which rules out that their targeting is mediated by the cytosolic ubiquitin system. However, the extent of the involvement of the ubiquitin system in mitochondrial regulation is not known. The present study addresses this surprising finding, employing several independent approaches. First, we identified reported ubiquitin conjugates in human and yeast mitochondria and found that a large fraction of the mitochondrial proteome (62% in human) is ubiquitinated, with most proteins localized to the inner membrane and matrix. Next, we searched the literature and found that numerous ubiquitin system components localize to the mitochondria and/or contain mitochondrial targeting sequences. Finally, we identified reported protein-protein interactions between ubiquitin system components and mitochondrial proteins. These unexpected findings suggest that mitochondrial regulation by the ubiquitin system is fundamental and may have broad biomedical implications.

  17. Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic β-cells

    SciTech Connect

    Lee, Sanghwan; Hur, Eu-gene; Ryoo, In-geun; Jung, Kyeong-Ah; Kwak, Jiyeon; Kwak, Mi-Kyoung

    2012-11-01

    The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2‐related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma β-cell line, βTC-6. shRNA-mediated silencing of Nrf2 expression in βTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ER stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in βTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated‐like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic β-cells by enhancing proteasome-mediated ERAD. -- Highlights: ► Nrf2 silencing in pancreatic β-cells enhanced tunicamycin-mediated ER stress. ► Expression of the proteasome was inducible by Nrf2 signaling. ► Nrf2 activator D3T protected β-cells from tunicamycin-mediated ER stress. ► Protective effect of D3T was associated with Nrf2-dependent proteasome

  18. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro.

  19. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin–proteasome pathway

    PubMed Central

    Ando, Hideya; Wen, Zhi-Ming; Kim, Hee-Yong; Valencia, Julio C.; Costin, Gertrude-E.; Watabe, Hidenori; Yasumoto, Ken-ichi; Niki, Yoko; Kondoh, Hirofumi; Ichihashi, Masamitsu; Hearing, Vincent J.

    2005-01-01

    Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin–proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation. PMID:16232122

  20. Regulatory component analysis: a semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge

    PubMed Central

    Wang, Chen; Xuan, Jianhua; Shih, Ie-Ming; Clarke, Robert; Wang, Yue

    2011-01-01

    With the advent of high-throughput biotechnology capable of monitoring genomic signals, it becomes increasingly promising to understand molecular cellular mechanisms through systems biology approaches. One of the active research topics in systems biology is to infer gene transcriptional regulatory networks using various genomic data; this inference problem can be formulated as a linear model with latent signals associated with some regulatory proteins called transcription factors (TFs). As common statistical assumptions may not hold for genomic signals, typical latent variable algorithms such as independent component analysis (ICA) are incapable to reveal underlying true regulatory signals. Liao et al. [1] proposed to perform inference using an approach named network component analysis (NCA), the optimization of which is achieved by a least-squares fitting approach with biological knowledge constraints. However, the incompleteness of biological knowledge and its inconsistency with gene expression data are not considered in the original NCA solution, which could greatly affect the inference accuracy. To overcome these limitations, we propose a linear extraction scheme, namely regulatory component analysis (RCA), to infer underlying regulatory signals even with partial biological knowledge. Numerical simulations show a significant improvement of our proposed RCA over NCA, not only when signal-to-noise-ratio (SNR) is low, but also when the given biological knowledge is incomplete and inconsistent to gene expression data. Furthermore, real biological experiments on E. coli are performed for regulatory network inference in comparison with several typical linear latent variable methods, which again demonstrates the effectiveness and improved performance of the proposed algorithm. PMID:22685363

  1. Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.

    PubMed

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu; Sakai, Yasuyoshi

    2015-03-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.

  2. Molecular Characterization of Hap Complex Components Responsible for Methanol-Inducible Gene Expression in the Methylotrophic Yeast Candida boidinii

    PubMed Central

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu

    2015-01-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts. PMID:25595445

  3. DNA methylation of genes of the main components of the telomerase complex in Danio rerio.

    PubMed

    Belova, E V; Kozlov, A E; Shubernetskaya, O S; Zvereva, M I; Shpanchenko, O V; Dontsova, O A

    2015-01-01

    The methylation status of the genes of telomerase reverse transcriptase (tert) and telomerase RNA (terc) was determined in brain tissues of Danio rerio of different age. It is found that, regardless of the age of fish, the regulatory region of the tert gene was completely methylated, whereas the coding region remained unmethylated in all cases. The level of methylation of the region located downstream of the coding region of the terc gene changes with age. This region was analyzed in the samples of other tissues, and its methylation status was also nonuniform. The alteration of the methylation status in the 3'-untranslated region of the terc gene suggests the possibility of transcription of the antisense strand in this region.

  4. Proteasome system dysregulation and treatment resistance mechanisms in major depressive disorder

    PubMed Central

    Minelli, A; Magri, C; Barbon, A; Bonvicini, C; Segala, M; Congiu, C; Bignotti, S; Milanesi, E; Trabucchi, L; Cattane, N; Bortolomasi, M; Gennarelli, M

    2015-01-01

    Several studies have demonstrated that allelic variants related to inflammation and the immune system may increase the risk for major depressive disorder (MDD) and reduce patient responsiveness to antidepressant treatment. Proteasomes are fundamental complexes that contribute to the regulation of T-cell function. Only one study has shown a putative role of proteasomal PSMA7, PSMD9 and PSMD13 genes in the susceptibility to an antidepressant response, and sparse data are available regarding the potential alterations in proteasome expression in psychiatric disorders such as MDD. The aim of this study was to clarify the role of these genes in the mechanisms underlying the response/resistance to MDD treatment. We performed a case-control association study on 621 MDD patients, of whom 390 were classified as treatment-resistant depression (TRD), and we collected peripheral blood cells and fibroblasts for mRNA expression analyses. The analyses showed that subjects carrying the homozygous GG genotype of PSMD13 rs3817629 had a twofold greater risk of developing TRD and exhibited a lower PSMD13 mRNA level in fibroblasts than subjects carrying the A allele. In addition, we found a positive association between PSMD9 rs1043307 and the presence of anxiety disorders in comorbidity with MDD, although this result was not significant following correction for multiple comparisons. In conclusion, by confirming the involvement of PSMD13 in the MDD treatment response, our data corroborate the hypothesis that the dysregulation of the complex responsible for the degradation of intracellular proteins and potentially controlling autoimmunity- and immune tolerance–related processes may be involved in several phenotypes, including the TRD. PMID:26624926

  5. Proteasome system dysregulation and treatment resistance mechanisms in major depressive disorder.

    PubMed

    Minelli, A; Magri, C; Barbon, A; Bonvicini, C; Segala, M; Congiu, C; Bignotti, S; Milanesi, E; Trabucchi, L; Cattane, N; Bortolomasi, M; Gennarelli, M

    2015-12-01

    Several studies have demonstrated that allelic variants related to inflammation and the immune system may increase the risk for major depressive disorder (MDD) and reduce patient responsiveness to antidepressant treatment. Proteasomes are fundamental complexes that contribute to the regulation of T-cell function. Only one study has shown a putative role of proteasomal PSMA7, PSMD9 and PSMD13 genes in the susceptibility to an antidepressant response, and sparse data are available regarding the potential alterations in proteasome expression in psychiatric disorders such as MDD. The aim of this study was to clarify the role of these genes in the mechanisms underlying the response/resistance to MDD treatment. We performed a case-control association study on 621 MDD patients, of whom 390 were classified as treatment-resistant depression (TRD), and we collected peripheral blood cells and fibroblasts for mRNA expression analyses. The analyses showed that subjects carrying the homozygous GG genotype of PSMD13 rs3817629 had a twofold greater risk of developing TRD and exhibited a lower PSMD13 mRNA level in fibroblasts than subjects carrying the A allele. In addition, we found a positive association between PSMD9 rs1043307 and the presence of anxiety disorders in comorbidity with MDD, although this result was not significant following correction for multiple comparisons. In conclusion, by confirming the involvement of PSMD13 in the MDD treatment response, our data corroborate the hypothesis that the dysregulation of the complex responsible for the degradation of intracellular proteins and potentially controlling autoimmunity- and immune tolerance-related processes may be involved in several phenotypes, including the TRD.

  6. Proteasome Activators, PA28α and PA28β, Govern Development of Microvascular Injury in Diabetic Nephropathy and Retinopathy

    PubMed Central

    Mahmoudpour, Ali

    2016-01-01

    Diabetic nephropathy (DN) and diabetic retinopathy (DR) are major complications of type 1 and type 2 diabetes. DN and DR are mainly caused by injury to the perivascular supporting cells, the mesangial cells within the glomerulus, and the pericytes in the retina. The genes and molecular mechanisms predisposing retinal and glomerular pericytes to diabetic injury are poorly characterized. In this study, the genetic deletion of proteasome activator genes, PA28α and PA28β genes, protected the diabetic mice in the experimental STZ-induced diabetes model against renal injury and retinal microvascular injury and prolonged their survival compared with wild type STZ diabetic mice. The improved wellbeing and reduced renal damage was associated with diminished expression of Osteopontin (OPN) and Monocyte Chemoattractant Protein-1 (MCP-1) in the glomeruli of STZ-injected PA28α/PA28β double knockout (Pa28αβDKO) mice and also in cultured mesangial cells and retinal pericytes isolated from Pa28αβDKO mice that were grown in high glucose. The mesangial PA28-mediated expression of OPN under high glucose conditions was suppressed by peptides capable of inhibiting the binding of PA28 to the 20S proteasome. Collectively, our findings demonstrate that diabetic hyperglycemia promotes PA28-mediated alteration of proteasome activity in vulnerable perivascular cells resulting in microvascular injury and development of DN and DR. PMID:27830089

  7. Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system

    PubMed Central

    Elharar, Yifat; Roth, Ziv; Hecht, Nir; Rotkopf, Ron; Khalaila, Isam; Gur, Eyal

    2016-01-01

    The proper functioning of any biological system depends on the coordinated activity of its components. Regulation at the genetic level is, in many cases, effective in determining the cellular levels of system components. However, in cases where regulation at the genetic level is insufficient for attaining harmonic system function, posttranslational regulatory mechanisms are often used. Here, we uncover posttranslational regulatory mechanisms in the prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS), the bacterial equivalent of the eukaryotic ubiquitin-proteasome system. Pup, a ubiquitin analog, is conjugated to proteins through the activities of two enzymes, Dop (deamidase of Pup) and PafA (proteasome accessory factor A), the Pup ligase. As Dop also catalyzes depupylation, it was unclear how PPS function could be maintained without Dop and PafA canceling the activity of the other, and how the two activities of Dop are balanced. We report that tight Pup binding and the limited degree of Dop interaction with high-molecular-weight pupylated proteins results in preferred Pup deamidation over protein depupylation by this enzyme. Under starvation conditions, when accelerated protein pupylation is required, this bias is intensified by depletion of free Dop molecules, thereby minimizing the chance of depupylation. We also find that, in contrast to Dop, PafA presents a distinct preference for high-molecular-weight protein substrates. As such, PafA and Dop act in concert, rather than canceling each other's activity, to generate a high-molecular-weight pupylome. This bias in pupylome molecular weight distribution is consistent with the proposed nutritional role of the PPS under starvation conditions. PMID:26951665

  8. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    PubMed

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  9. Variance component score test for time-course gene set analysis of longitudinal RNA-seq data.

    PubMed

    Agniel, Denis; Hejblum, Boris P

    2017-03-10

    As gene expression measurement technology is shifting from microarrays to sequencing, the statistical tools available for their analysis must be adapted since RNA-seq data are measured as counts. It has been proposed to model RNA-seq counts as continuous variables using nonparametric regression to account for their inherent heteroscedasticity. In this vein, we propose tcgsaseq, a principled, model-free, and efficient method for detecting longitudinal changes in RNA-seq gene sets defined a priori. The method identifies those gene sets whose expression varies over time, based on an original variance component score test accounting for both covariates and heteroscedasticity without assuming any specific parametric distribution for the (transformed) counts. We demonstrate that despite the presence of a nonparametric component, our test statistic has a simple form and limiting distribution, and both may be computed quickly. A permutation version of the test is additionally proposed for very small sample sizes. Applied to both simulated data and two real datasets, tcgsaseq is shown to exhibit very good statistical properties, with an increase in stability and power when compared to state-of-the-art methods ROAST (rotation gene set testing), edgeR, and DESeq2, which can fail to control the type I error under certain realistic settings. We have made the method available for the community in the R package tcgsaseq.

  10. Synthetic analogs of green tea polyphenols as proteasome inhibitors.

    PubMed Central

    Smith, David M.; Wang, Zhigang; Kazi, Aslamuzzaman; Li, Lian-Hai; Chan, Tak-Hang; Dou, Q. Ping

    2002-01-01

    BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing

  11. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection

    PubMed Central

    Costa, Vivian V.; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-01-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  12. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma.

    PubMed

    Song, Y; Ray, A; Li, S; Das, D S; Tai, Y T; Carrasco, R D; Chauhan, D; Anderson, K C

    2016-09-01

    Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.

  13. Clioquinol - a novel copper-dependent and independent proteasome inhibitor.

    PubMed

    Schimmer, A D

    2011-03-01

    Clioquinol (5-chloro-7-iodo-quinolin-8-ol) was used in the 1950's-1970's as an oral anti-parasitic agent. More recently, studies have demonstrated that Clioquinol displays preclinical efficacy in the treatment of malignancy. Its anti-cancer activity relates, at least in part, to its ability to inhibit the proteasome through mechanisms dependent and independent of its ability to bind heavy metals such as copper. By acting as a metal ionophore Clioquinol transports metal ions from the extracellular environment into the cell and mobilizes weakly bound intracellular stores. It then directs the metal to the proteasome resulting in disruption of this enzymatic complex. In addition, Clioquinol is capable of directly inhibiting the proteasome at higher concentrations. Thus, Clioquinol represents a novel therapeutic strategy to inhibit the proteasome. Given the prior toxicology and pharmacology studies, Clioquinol could be rapidly repositioned for a new anti-cancer indication. This review highlights the mechanism of action of Clioquinol as a proteasome inhibitor. In addition, it discusses the human pharmacology and toxicology studies and how this information would guide a phase I clinical trial of this agent for patients with malignancy.

  14. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome

    PubMed Central

    Ferrington, Deborah A.; Baumann, Cory W.; Thompson, LaDora V.

    2016-01-01

    The standard 26S proteasome is responsible for the majority of myofibrillar protein degradation leading to muscle atrophy. The immunoproteasome is an inducible form of the proteasome. While its function has been linked to conditions of atrophy, its contribution to muscle proteolysis remains unclear. Therefore, the purpose of this study was to determine if the immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1) mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while control mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and trypsin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome (LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius muscle. Denervation induced significant atrophy and was accompanied by increased activities and protein content of the catalytic subunits in both WT and L7M1 mice. Although denervation resulted in a similar degree of muscle atrophy between strains, the mice lacking two immunoproteasome subunits showed a differential response in the extent and duration of proteasome features, including activities and content of the β1, β5 and LMP2 catalytic subunits. The results indicate that immunoproteasome deficiency alters the proteasome’s composition and activities. However, the immunoproteasome does not appear to be essential for muscle atrophy induced by denervation. PMID:27875560

  15. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  16. The Proteasome Inhibition Model of Parkinson’s Disease

    PubMed Central

    Bentea, Eduard; Verbruggen, Lise; Massie, Ann

    2016-01-01

    The pathological hallmarks of Parkinson’s disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson’s disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson’s disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson’s disease that might provide novel clues to unravel the complex pathogenesis of this disorder. PMID:27802243

  17. Proteasome inhibition alleviates prolonged moderate compression-induced muscle pathology

    PubMed Central

    2011-01-01

    Background The molecular mechanism initiating deep pressure ulcer remains to be elucidated. The present study tested the hypothesis that the ubiquitin proteasome system is involved in the signalling mechanism in pressure-induced deep tissue injury. Methods Adult Sprague Dawley rats were subjected to an experimental compression model to induce deep tissue injury. The tibialis region of the right hind limb was subjected to 100 mmHg of static pressure for six hours on each of two consecutive days. The compression pressure was continuously monitored by a three-axial force transducer within the compression indentor. The left hind limb served as the intra-animal control. Muscle tissues underneath the compressed region were collected and used for analyses. Results Our results demonstrated that the activity of 20S proteasome and the protein abundance of ubiquitin and MAFbx/atrogin-1 were elevated in conjunction with pathohistological changes in the compressed muscle, as compared to control muscle. The administration of the proteasome inhibitor MG132 was found to be effective in ameliorating the development of pathological histology in compressed muscle. Furthermore, 20S proteasome activity and protein content of ubiquitin and MAFbx/atrogin-1 showed no apparent increase in the MG132-treated muscle following compression. Conclusion Our data suggest that the ubiquitin proteasome system may play a role in the pathogenesis of pressure-induced deep tissue injury. PMID:21385343

  18. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  19. Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber.

    PubMed

    He, Yanjun; Liu, Xue; Zou, Tao; Pan, Changtian; Qin, Li; Chen, Lifei; Lu, Gang

    2016-01-01

    Cucumber and watermelon, which belong to Cucurbitaceae family, are economically important cultivated crops worldwide. However, these crops are vulnerable to various adverse environments. Two-component system (TCS), consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays important roles in various plant developmental processes and signaling transduction in responses to a wide range of biotic and abiotic stresses. No systematic investigation has been conducted on TCS genes in Cucurbitaceae species. Based on the completion of the cucumber and watermelon genome draft, we identified 46 and 49 TCS genes in cucumber and watermelon, respectively. The cucumber TCS members included 18 HK(L)s, 7 HPs, and 21 RRs, whereas the watermelon TCS system consisted of 19 HK(L)s, 6 HPs, and 24 RRs. The sequences and domains of TCS members from these two species were highly conserved. Gene duplication events occurred rarely, which might have resulted from the absence of recent whole-genome duplication event in these two Cucurbitaceae crops. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the cucumber TCS genes. Meanwhile, quantitative real-time PCR indicated that most of the TCS genes in cucumber were specifically or preferentially expressed in certain tissues or organs, especially in the early developing fruit. Some TCS genes exhibited diverse patterns of gene expression in response to abiotic stresses as well as exogenous trans-zeatin (ZT) and abscisic acid (ABA) treatment, suggesting that TCS genes might play significant roles in responses to various abiotic stresses and hormones in Cucurbitaceae crops.

  20. Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber

    PubMed Central

    He, Yanjun; Liu, Xue; Zou, Tao; Pan, Changtian; Qin, Li; Chen, Lifei; Lu, Gang

    2016-01-01

    Cucumber and watermelon, which belong to Cucurbitaceae family, are economically important cultivated crops worldwide. However, these crops are vulnerable to various adverse environments. Two-component system (TCS), consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays important roles in various plant developmental processes and signaling transduction in responses to a wide range of biotic and abiotic stresses. No systematic investigation has been conducted on TCS genes in Cucurbitaceae species. Based on the completion of the cucumber and watermelon genome draft, we identified 46 and 49 TCS genes in cucumber and watermelon, respectively. The cucumber TCS members included 18 HK(L)s, 7 HPs, and 21 RRs, whereas the watermelon TCS system consisted of 19 HK(L)s, 6 HPs, and 24 RRs. The sequences and domains of TCS members from these two species were highly conserved. Gene duplication events occurred rarely, which might have resulted from the absence of recent whole-genome duplication event in these two Cucurbitaceae crops. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the cucumber TCS genes. Meanwhile, quantitative real-time PCR indicated that most of the TCS genes in cucumber were specifically or preferentially expressed in certain tissues or organs, especially in the early developing fruit. Some TCS genes exhibited diverse patterns of gene expression in response to abiotic stresses as well as exogenous trans-zeatin (ZT) and abscisic acid (ABA) treatment, suggesting that TCS genes might play significant roles in responses to various abiotic stresses and hormones in Cucurbitaceae crops. PMID:27446129

  1. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex

    PubMed Central

    Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph

    2016-01-01

    RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory. PMID:26943821

  2. Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of "Christmas trees" in situ.

    PubMed

    Koberna, Karel; Malínský, Jan; Pliss, Artem; Masata, Martin; Vecerova, Jaromíra; Fialová, Markéta; Bednár, Jan; Raska, Ivan

    2002-05-27

    T he organization of transcriptionally active ribosomal genes in animal cell nucleoli is investigated in this study in order to address the long-standing controversy with regard to the intranucleolar localization of these genes. Detailed analyses of HeLa cell nucleoli include direct localization of ribosomal genes by in situ hybridization and their indirect localization via nascent ribosomal transcript mappings. On the light microscopy (LM) level, ribosomal genes map in 10-40 fluorescence foci per nucleus, and transcription activity is associated with most foci. We demonstrate that each nucleolar focus observed by LM corresponds, on the EM level, to an individual fibrillar center (FC) and surrounding dense fibrillar components (DFCs). The EM data identify the DFC as the nucleolar subcompartment in which rRNA synthesis takes place, consistent with detection of rDNA within the DFC. The highly sensitive method for mapping nascent transcripts in permeabilized cells on ultrastructural level provides intense and unambiguous clustered immunogold signal over the DFC, whereas very little to no label is detected over the FC. This signal is strongly indicative of nascent "Christmas trees" of rRNA associated with individual rDNA genes, sampled on the surface of thin sections. Stereological analysis of the clustered transcription signal further suggests that these Christmas trees may be contorted in space and exhibit a DNA compaction ratio on the order of 4-5.5.

  3. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation.

    PubMed

    Gastel, J A; Roseboom, P H; Rinaldi, P A; Weller, J L; Klein, D C

    1998-02-27

    The nocturnal increase in circulating melatonin in vertebrates is regulated by 10- to 100-fold increases in pineal serotonin N-acetyltransferase (AA-NAT) activity. Changes in the amount of AA-NAT protein were shown to parallel changes in AA-NAT activity. When neural stimulation was switched off by either light exposure or L-propranolol-induced beta-adrenergic blockade, both AA-NAT activity and protein decreased rapidly. Effects of L-propranolol were blocked in vitro by dibutyryl adenosine 3',5'-monophosphate (cAMP) or inhibitors of proteasomal proteolysis. This result indicates that adrenergic-cAMP regulation of AA-NAT is mediated by rapid reversible control of selective proteasomal proteolysis. Similar proteasome-based mechanisms may function widely as selective molecular switches in vertebrate neural systems.

  4. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  5. Proteasomes play an essential role in thymocyte apoptosis.

    PubMed Central

    Grimm, L M; Goldberg, A L; Poirier, G G; Schwartz, L M; Osborne, B A

    1996-01-01

    Cell death in many different organisms requires the activation of proteolytic cascades involving cytosolic proteases. Here we describe a novel requirement in thymocyte cell death for the 20S proteasome, a highly conserved multicatalytic protease found in all eukaryotes. Specific inhibitors of proteasome function blocked cell death induced by ionizing radiation, glucocorticoids or phorbol ester. In addition to inhibiting apoptosis, these signals prevented the cleavage of poly(ADP-ribose) polymerase that accompanies many cell deaths. Since overall rates of protein degradation were not altered significantly during cell death in thymocytes, these results suggest that the proteasome may either degrade regulatory protein(s) that normally inhibit the apoptotic pathway or may proteolytically activate protein(s) than promote cell death. Images PMID:8670888

  6. Progressively impaired proteasomal capacity during terminal plasma cell differentiation

    PubMed Central

    Cenci, Simone; Mezghrani, Alexandre; Cascio, Paolo; Bianchi, Giada; Cerruti, Fulvia; Fra, Anna; Lelouard, Hugues; Masciarelli, Silvia; Mattioli, Laura; Oliva, Laura; Orsi, Andrea; Pasqualetto, Elena; Pierre, Philippe; Ruffato, Elena; Tagliavacca, Luigina; Sitia, Roberto

    2006-01-01

    After few days of intense immunoglobulin (Ig) secretion, most plasma cells undergo apoptosis, thus ending the humoral immune response. We asked whether intrinsic factors link plasma cell lifespan to Ig secretion. Here we show that in the late phases of plasmacytic differentiation, when antibody production becomes maximal, proteasomal activity decreases. The excessive load for the reduced proteolytic capacity correlates with accumulation of polyubiquitinated proteins, stabilization of endogenous proteasomal substrates (including Xbp1s, IκBα, and Bax), onset of apoptosis, and sensitization to proteasome inhibitors (PI). These events can be reproduced by expressing Ig-μ chain in nonlymphoid cells. Our results suggest that a developmental program links plasma cell death to protein production, and help explaining the peculiar sensitivity of normal and malignant plasma cells to PI. PMID:16498407

  7. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors.

    PubMed

    Owen, Jeremy G; Charlop-Powers, Zachary; Smith, Alexandra G; Ternei, Melinda A; Calle, Paula Y; Reddy, Boojala Vijay B; Montiel, Daniel; Brady, Sean F

    2015-04-07

    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.

  8. Direct Recruitment of ERK Cascade Components to Inducible Genes Is Regulated by Heterogeneous Nuclear Ribonucleoprotein (hnRNP) K*

    PubMed Central

    Mikula, Michal; Bomsztyk, Karol

    2011-01-01

    Components of the ERK cascade are recruited to genes, but it remains unknown how they are regulated at these sites. The RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) K interacts with kinases and is found along genes including the mitogen-inducible early response gene EGR-1. Here, we used chromatin immunoprecipitations to study co-recruitment of hnRNP K and ERK cascade activity along the EGR-1 gene. These measurements revealed that the spatiotemporal binding patterns of ERK cascade transducers (GRB2, SOS, B-Raf, MEK, and ERK) at the EGR-1 locus resemble both hnRNP K and RNA polymerase II (Pol II). Inhibition of EGR-1 transcription with either serum-responsive factor knockdown or 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole altered recruitment of all of the above ERK cascade components along this locus that mirrored the changes in Pol II and hnRNP K profiles. siRNA knockdown of hnRNP K decreased the levels of active MEK and ERK at the EGR-1, changes associated with decreased levels of elongating pre-mRNA and less efficient splicing. The hnRNP K dependence and pattern of ERK cascade activation at the c-MYC locus were different from at EGR-1. Ribonucleoprotein immunoprecipitations revealed that hnRNP K was associated with the EGR-1 but not c-MYC mRNAs. These data suggest a model where Pol II transcription-driven recruitment of hnRNP K along the EGR-1 locus compartmentalizes activation of the ERK cascade at these genes, events that regulate synthesis of mature mRNA. PMID:21233203

  9. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation.

    PubMed

    Wallace, Andrew D; Cao, Yan; Chandramouleeswaran, Sindhu; Cidlowski, John A

    2010-12-01

    Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.

  10. Proteasomal degradation of beta-carotene metabolite--modified proteins.

    PubMed

    Sommerburg, Olaf; Karius, Nicole; Siems, Werner; Langhans, Claus-Dieter; Leichsenring, Michael; Breusing, Nicolle; Grune, Tilman

    2009-01-01

    Free radical attack on beta-carotene results in the formation of high amounts of carotene breakdown products (CBPs) having biological activities. As several of the CBPs are reactive aldehydes, it has to be considered that these compounds are able to modify proteins. Therefore, the aim of the study was to investigate whether CBP-modification of proteins is leading to damaged proteins recognized and degraded by the proteasomal system. We used the model proteins tau and ferritin to test whether CBPs will modify them and whether such modifications lead to enhanced proteasomal degradation. To modify proteins, we used crude CBPs as a mixture obtained after hypochloric acid derived BC degradation, as well as several single compounds, as apo8'-carotenal, retinal, or beta-ionone. The majority of the CBPs found in our reaction mixture are well known metabolites as described earlier after BC degradation using different oxidants. CBPs are able to modify proteins, and in in vitro studies, we were able to demonstrate that the 20S proteasome is able to recognize and degrade CBP-modified proteins preferentially. In testing the proteolytic response of HT22 cells toward CBPs, we could demonstrate an enhanced protein turnover, which is sensitive to lactacystin. Interestingly, the proteasomal activity is resistant to treatment with CBP. On the other hand, we were able to demonstrate that supraphysiological levels of CBPs might lead to the formation of protein-CBP-adducts that are able to inhibit the proteasome. Therefore, the removal of CBP-modified proteins seems to be catalyzed by the proteasomal system and is effective, if the formation of CBPs is not overwhelming and leading to protein aggregates.

  11. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression

    PubMed Central

    Maishman, Luke; Obado, Samson O.; Alsford, Sam; Bart, Jean-Mathieu; Chen, Wei-Ming; Ratushny, Alexander V.; Navarro, Miguel; Horn, David; Aitchison, John D.; Chait, Brian T.; Rout, Michael P.; Field, Mark C.

    2016-01-01

    The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component. PMID:27625397

  12. Poxvirus Exploitation of the Ubiquitin-Proteasome System

    PubMed Central

    Barry, Michele; van Buuren, Nicholas; Burles, Kristin; Mottet, Kelly; Wang, Qian; Teale, Alastair

    2010-01-01

    Ubiquitination plays a critical role in many cellular processes. A growing number of viruses have evolved strategies to exploit the ubiquitin-proteasome system, including members of the Poxviridae family. Members of the poxvirus family have recently been shown to encode BTB/kelch and ankyrin/F-box proteins that interact with cullin-3 and cullin-1 based ubiquitin ligases, respectively. Multiple members of the poxvirus family also encode ubiquitin ligases with intrinsic activity. This review describes the numerous mechanisms that poxviruses employ to manipulate the ubiquitin-proteasome system. PMID:21994622

  13. Stable Allele Frequency Distribution of the Plasmodium falciparum clag Genes Encoding Components of the High Molecular Weight Rhoptry Protein Complex

    PubMed Central

    Alexandre, Jean Semé Fils; Xangsayarath, Phonepadith; Kaewthamasorn, Morakot; Yahata, Kazuhide; Sattabongkot, Jetsumon; Udomsangpetch, Rachanee; Kaneko, Osamu

    2012-01-01

    Plasmodium falciparum Clag protein is a candidate component of the plasmodial surface anion channel located on the parasite-infected erythrocyte. This protein is encoded by 5 separated clag genes and forms a RhopH complex with the other components. Previously, a signature of positive diversifying selection was detected on the hypervariable region of clag2 and clag8 by population-based analyses using P. falciparum originating from Thailand in 1988–1989. In this study, we obtained the sequence of this region of 3 clag genes (clag2, clag8, and clag9) in 2005 and evaluated the changes over time in the frequency distribution of the polymorphism of these gene products by comparison with the sequences obtained in 1988–1989. We found no difference in the frequency distribution of 18 putatively neutral loci between the 2 groups, evidence that the background of the parasite population structure has remained stable over 14 years. Although the frequency distribution of most of the polymorphic sites in the hypervariable region of Clag2, Clag8, and Clag9 was stable over 14 years, we found that a proportion of the major Clag2 group and one amino acid position of Clag8 changed significantly. This may be a response to a certain type of pressure. PMID:23264726

  14. Stable Allele Frequency Distribution of the Plasmodium falciparum clag Genes Encoding Components of the High Molecular Weight Rhoptry Protein Complex.

    PubMed

    Alexandre, Jean Semé Fils; Xangsayarath, Phonepadith; Kaewthamasorn, Morakot; Yahata, Kazuhide; Sattabongkot, Jetsumon; Udomsangpetch, Rachanee; Kaneko, Osamu

    2012-09-01

    Plasmodium falciparum Clag protein is a candidate component of the plasmodial surface anion channel located on the parasite-infected erythrocyte. This protein is encoded by 5 separated clag genes and forms a RhopH complex with the other components. Previously, a signature of positive diversifying selection was detected on the hypervariable region of clag2 and clag8 by population-based analyses using P. falciparum originating from Thailand in 1988-1989. In this study, we obtained the sequence of this region of 3 clag genes (clag2, clag8, and clag9) in 2005 and evaluated the changes over time in the frequency distribution of the polymorphism of these gene products by comparison with the sequences obtained in 1988-1989. We found no difference in the frequency distribution of 18 putatively neutral loci between the 2 groups, evidence that the background of the parasite population structure has remained stable over 14 years. Although the frequency distribution of most of the polymorphic sites in the hypervariable region of Clag2, Clag8, and Clag9 was stable over 14 years, we found that a proportion of the major Clag2 group and one amino acid position of Clag8 changed significantly. This may be a response to a certain type of pressure.

  15. Longitudinal epigenetic and gene expression profiles analyzed by three-component analysis reveal down-regulation of genes involved in protein translation in human aging

    PubMed Central

    Jung, Marc; Jin, Seung-Gi; Zhang, Xiaoying; Xiong, Wenying; Gogoshin, Grigoriy; Rodin, Andrei S.; Pfeifer, Gerd P.

    2015-01-01

    Data on biological mechanisms of aging are mostly obtained from cross-sectional study designs. An inherent disadvantage of this design is that inter-individual differences can mask small but biologically significant age-dependent changes. A serially sampled design (same individual at different time points) would overcome this problem but is often limited by the relatively small numbers of available paired samples and the statistics being used. To overcome these limitations, we have developed a new vector-based approach, termed three-component analysis, which incorporates temporal distance, signal intensity and variance into one single score for gene ranking and is combined with gene set enrichment analysis. We tested our method on a unique age-based sample set of human skin fibroblasts and combined genome-wide transcription, DNA methylation and histone methylation (H3K4me3 and H3K27me3) data. Importantly, our method can now for the first time demonstrate a clear age-dependent decrease in expression of genes coding for proteins involved in translation and ribosome function. Using analogies with data from lower organisms, we propose a model where age-dependent down-regulation of protein translation-related components contributes to extend human lifespan. PMID:25977295

  16. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease

    PubMed Central

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  17. Eukaryotic Cells Producing Ribosomes Deficient in Rpl1 Are Hypersensitive to Defects in the Ubiquitin-Proteasome System

    PubMed Central

    McIntosh, Kerri B.; Bhattacharya, Arpita; Willis, Ian M.; Warner, Jonathan R.

    2011-01-01

    It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132. PMID:21858174

  18. Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin-proteasome system.

    PubMed

    McIntosh, Kerri B; Bhattacharya, Arpita; Willis, Ian M; Warner, Jonathan R

    2011-01-01

    It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.

  19. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    PubMed

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  20. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase

    PubMed Central

    Randall, Matthew J.; Haenen, Guido R.M.M.; Bouwman, Freek G.; van der Vliet, Albert; Bast, Aalt

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5 h followed by stimulation with hydrocortisone for 8 h, or treated simultaneously with LPS and hydrocortisone for 8 h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone. PMID:26481333

  1. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase.

    PubMed

    Randall, Matthew J; Haenen, Guido R M M; Bouwman, Freek G; van der Vliet, Albert; Bast, Aalt

    2016-01-05

    Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5h followed by stimulation with hydrocortisone for 8h, or treated simultaneously with LPS and hydrocortisone for 8h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone.

  2. Transcription of the human EAP1 gene is regulated by upstream components of a puberty-controlling Tumor Suppressor Gene network

    PubMed Central

    Mueller, Johanna K.; Koch, Ines; Lomniczi, Alejandro; Loche, Alberto; Rulfs, Tomke; Castellano, Juan M.; Kiess, Wieland; Ojeda, Sergio; Heger, Sabine

    2012-01-01

    Mammalian puberty is initiated by an increased pulsatile release of gonadotropin-releasing hormone (GnRH) from specialized neurons located in the hypothalamus. GnRH secretion is controlled by neuronal and glial networks, whose activity appears to be coordinated via transcriptional regulation. One of the transcription factors involved in this process is thought to be the recently described gene Enhanced at Puberty 1 (EAP1), which encodes a protein with dual transcriptional activity. In this study we used gene reporter and chromatin immunoprecipitation (ChIP) assays to examine the hypothesis that EAP1 expression is controlled by transcriptional regulators earlier postulated to serve as central nodes of a gene network involved in the neuroendocrine control of puberty. These regulators include Thyroid Transcription Factor 1 (TTF1), Yin Yang 1 (YY1) and CUX1, in addition to EAP1 itself. While TTF1 has been shown to facilitate the advent of puberty, YY1 (a zinc finger protein component of the Polycomb silencing complex) may play a repressive role. The precise role of CUX1 in this context is not known, but like EAP1, CUX1 can either activate or repress gene transcription. We observed that DNA segments of two different lengths (998 and 2744 bp) derived from the 5′-flanking region of the human EAP1 gene display similar transcriptional activity. TTF1 stimulates transcription from both DNA segments with equal potency, whereas YY1, CUX1, and EAP1 itself, behave as transcriptional repressors. All four proteins are recruited in vivo to the EAP1 5′-flanking region. These observations suggest that EAP1 gene expression is under dual transcriptional regulation imposed by a trans-activator (TTF1) and two repressors (YY1 and CUX1) previously postulated to be upstream components of a puberty-controlling gene network. In addition, EAP1 itself appears to control its own expression via a negative auto-feedback loop mechanism. Further studies are needed to determine if the occupancy of

  3. Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenation.

    PubMed

    Piraee, Mahmood; White, Robert L; Vining, Leo C

    2004-01-01

    Five ORFs were detected in a fragment from the Streptomyces venezuelae ISP5230 genomic DNA library by hybridization with a PCR product amplified from primers representing a consensus of known halogenase sequences. Sequencing and functional analyses demonstrated that ORFs 11 and 12 (but not ORFs 13-15) extended the partially characterized gene cluster for chloramphenicol (Cm) biosynthesis in the chromosome. Disruption of ORF11 (cmlK) or ORF12 (cmlS) and conjugal transfer of the insertionally inactivated genes to S. venezuelae gave mutant strains VS1111 and VS1112, each producing a similar series of Cm analogues in which unhalogenated acyl groups replaced the dichloroacetyl substituent of Cm. 1H-NMR established that the principal metabolite in the disrupted strains was the alpha-N-propionyl analogue. The sequence of CmlK implicated the protein in adenylation, and involvement in halogenation was inferred from biosynthesis of analogues by the cmlK-disrupted mutant. A role in generating the dichloroacetyl substituent was supported by partial restoration of Cm biosynthesis when a cloned copy of cmlK was introduced in trans into VS1111. Complementation of the mutant also indicated that inactivation of cmlK rather than a polar effect of the disruption on cmlS expression had interfered with dichloroacetyl biosynthesis. The deduced CmlS sequence resembled sequences of FADH2-dependent halogenases. Conjugal transfer of cmlK or cmlS into S. venezuelae cml-2, a chlorination-deficient strain with a mutation mapped genetically to the Cm biosynthesis gene cluster, did not complement the cml-2 lesion, suggesting that one or more genes in addition to cmlK and cmlS is needed to assemble the dichloroacetyl substituent. Insertional inactivation of ORF13 did not affect Cm production, and the products of ORF14 and ORF15 matched Streptomyces coelicolor A3(2) proteins lacking plausible functions in Cm biosynthesis. Thus cmlS appears to mark the downstream end of the gene cluster.

  4. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network.

    PubMed

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-08-27

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation.

  5. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors

    PubMed Central

    Franke, Niels E.; Kaspers, Gertjan L.; Assaraf, Yehuda G.; van Meerloo, Johan; Niewerth, Denise; Kessler, Floortje L.; Poddighe, Pino J.; Kole, Jeroen; Smeets, Serge J.; Ylstra, Bauke; Bi, Chonglei; Chng, Wee Joo; Horton, Terzah M.; Menezes, Rene X.; Musters, Renée J.P.; Zweegman, Sonja; Jansen, Gerrit; Cloos, Jacqueline

    2016-01-01

    PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress. PMID:27542283

  6. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    PubMed

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  7. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway

    PubMed Central

    Chinchankar, Meghna N.; Ferguson, Annabel A.; Ghazi, Arjumand; Fisher, Alfred L.

    2016-01-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  8. The Saccharomyces Genome Database: Gene Product Annotation of Function, Process, and Component.

    PubMed

    Cherry, J Michael

    2015-12-02

    An ontology is a highly structured form of controlled vocabulary. Each entry in the ontology is commonly called a term. These terms are used when talking about an annotation. However, each term has a definition that, like the definition of a word found within a dictionary, provides the complete usage and detailed explanation of the term. It is critical to consult a term's definition because the distinction between terms can be subtle. The use of ontologies in biology started as a way of unifying communication between scientific communities and to provide a standard dictionary for different topics, including molecular functions, biological processes, mutant phenotypes, chemical properties and structures. The creation of ontology terms and their definitions often requires debate to reach agreement but the result has been a unified descriptive language used to communicate knowledge. In addition to terms and definitions, ontologies require a relationship used to define the type of connection between terms. In an ontology, a term can have more than one parent term, the term above it in an ontology, as well as more than one child, the term below it in the ontology. Many ontologies are used to construct annotations in the Saccharomyces Genome Database (SGD), as in all modern biological databases; however, Gene Ontology (GO), a descriptive system used to categorize gene function, is the most extensively used ontology in SGD annotations. Examples included in this protocol illustrate the structure and features of this ontology.

  9. Human genes and pseudogenes for the 7SL RNA component of signal recognition particle.

    PubMed Central

    Ullu, E; Weiner, A M

    1984-01-01

    Of the several hundred 7SL RNA-like sequences that are dispersed in human DNA, no more than four are likely to represent genes for 7SL RNA; the majority are 7SL pseudogenes which appear to result from the reverse flow of genetic information from 7SL RNA back into genomic DNA. We present the sequence of five 7SL pseudogenes displaying an unprecedented diversity of structures. All are truncated copies of 7SL RNA, but the site of truncation can occur at either the 5' end, the 3' end or at both ends of the RNA sequence. We suggest that such diverse 7SL pseudogenes are generated by different but related pathways. In particular, we argue that two of the loci are secondary 7SL pseudogenes which derive from RNA polymerase III transcripts of primary (preexisting) 7SL pseudogenes. We also report the isolation and characterisation of a human genomic clone carrying two linked 7SL RNA coding regions, 7L30.1 and 7L30.2. The 7L30.2 locus differs by several single base changes from the known human 7SL RNA sequences and does not appear to be expressed at a detectable level in HeLa cells. The 7L30.1 locus is an authentic 7SL RNA gene encoding one of the three sequence variants of human 7SL RNA. Images Fig. 1. Fig. 5. Fig. 6. Fig. 7. PMID:6084597

  10. Peptide-based proteasome inhibitors in anticancer drug design.

    PubMed

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  11. MONOUBIQUITINATION OF RPN10 REGULATES SUBSTRATE RECRUITMENT TO THE PROTEASOME

    PubMed Central

    Isasa, Marta; Katz, Elijah J.; Kim, Woong; Yugo, Verónica; González, Sheyla; Kirkpatrick, Donald S.; Thomson, Timothy M.; Finley, Daniel; Gygi, Steven P.; Crosas, Bernat

    2012-01-01

    The proteasome recognizes its substrates via a diverse set of ubiquitin receptors, including subunits Rpn10/S5a and Rpn13. In addition, shuttling factors, such as Rad23, recruit substrates to the proteasome by delivering ubiquitinated proteins. Despite the increasing understanding of the factors involved in this process, the regulation of substrate delivery remains largely unexplored. Here we report that Rpn10 is monoubiquitinated in vivo and that this modification has profound effects on proteasome function. Monoubiquitination regulates the capacity of Rpn10 to interact with substrates by inhibiting Rpn10’s ubiquitin interacting motif (UIM). We show that Rsp5, a member of NEDD4 ubiquitin-protein ligase family, and Ubp2, a deubiquitinating enzyme, control the levels of Rpn10 monoubiquitination in vivo. Notably, monoubiquitination of Rpn10 is decreased under stress conditions, suggesting a mechanism of control of receptor availability mediated by the Rsp5-Ubp2 system. Our results reveal an unanticipated link between monoubiquitination signal and regulation of proteasome function. PMID:20542005

  12. Blm10 facilitates nuclear import of proteasome core particles.

    PubMed

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-10-16

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor-cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast.

  13. Effects of Radiation on Proteasome Function in Prostate Cancer Cells

    DTIC Science & Technology

    2010-02-01

    proteasomes from irradiated and un-irradiated samples were loaded on a 11cm agarose strip (BioRad) for their separation based on their isoelectric point (pI...25micrograms of pure 26S preparations from PC-3 ZsGreenODC-negative or PC3 ZsGreenODC-positive sorted cells were focused on 11cm strips for the

  14. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  15. The Regulatory Complex of Drosophila melanogaster 26s Proteasomes

    PubMed Central

    Hölzl, Harald; Kapelari, Barbara; Kellermann, Josef; Seemüller, Erika; Sümegi, Máté; Udvardy, Andor; Medalia, Ohad; Sperling, Joseph; Müller, Shirley A.; Engel, Andreas; Baumeister, Wolfgang

    2000-01-01

    Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity. The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete. PMID:10893261

  16. Novel proteasome inhibitors as potential drugs to combat tuberculosis.

    PubMed

    Cheng, Yong; Pieters, Jean

    2010-08-01

    Mycobacterium tuberculosis is one of the most notorious killers worldwide. These pathogens have evolved to infect human beings in a so-called dormant form that is extremely difficult to treat. New work, however, suggests that mycobacterial proteasomes, multicomponent structures that protect the microbe from damaging effects of nitric oxide generated by the host, can be selectively and specifically blocked by small molecules.

  17. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  18. Identifying the Minimal Enzymes Required for Biosynthesis of Epoxyketone Proteasome Inhibitors

    PubMed Central

    Liu, Joyce; Zhu, Xuejun

    2015-01-01

    Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anti-cancer drugs. While the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast-growing heterologous host. This set of enzymes includes a non-ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl-CoA dehydrogenase (ACAD) homolog. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and 13C-labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation. PMID:26477320

  19. The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts.

    PubMed

    Schwarz, Toni; Sohn, Chee; Kaiser, Bria; Jensen, Eric D; Mansky, Kim C

    2010-04-01

    The microphthalmia-associated transcription factor (Mitf) regulates gene expression required for osteoclast differentiation. Genes regulated by Mitf have been previously identified. However, proteins that interact and regulate Mitf's activity in osteoclasts are not well known. Here, we report that POH1, a subunit of the 19S proteasome lid is a regulator of Mitf. We show that POH1 and Mitf interact in osteoclasts and that this interaction is dependent on RANKL signaling. Overexpression of POH1 increased Mitf's activation of 5XGal4-TK and Acp5 promoters. The amino terminus of POH1 mediates the binding to Mitf and is sufficient to increase Mitf's transcriptional activity. Finally, we show that mutations in the JAMM motif of POH1 reduced Mitf activation of promoters. In summary, our results identify a novel mechanism of Mitf regulation in osteoclasts by POH1.

  20. Activity-based profiling of the proteasome pathway during hepatitis C virus infection.

    PubMed

    Nasheri, Neda; Ning, Zhibin; Figeys, Daniel; Yao, Shao; Goto, Natalie K; Pezacki, John Paul

    2015-11-01

    Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.

  1. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli.

    PubMed

    Eguchi, Yoko; Oshima, Taku; Mori, Hirotada; Aono, Rikizo; Yamamoto, Kaneyoshi; Ishihama, Akira; Utsumi, Ryutaro

    2003-10-01

    A constitutively active mutant of histidine kinase sensor EvgS was found to confer multi-drug resistance (MDR) to an acrA-deficient Escherichia coli, indicating the relationship between the two-component system EvgAS and the expression of the MDR system. The observed MDR also depended on an outer-membrane channel, TolC. Microarray and S1 mapping assays indicated that, in the presence of this constitutive mutant EvgS, the level of transcription increased for some MDR genes, including the drug efflux genes emrKY, yhiUV, acrAB, mdfA and tolC. Transcription in vitro of emrK increased by the addition of phosphorylated EvgA. Transcription activation of tolC by the activated EvgS was, however, dependent on both EvgAS and PhoPQ (Mg(2+)-responsive two-component system), in agreement with the presence of the binding site (PhoP box) for the regulator PhoP in the tolC promoter region. Transcription in vitro of yhiUV also appears to require an as-yet-unidentified additional transcriptional factor besides EvgA. Taken together we propose that the expression of the MDR system is under a complex regulatory network, including the phosphorylated EvgA serving as the master regulator.

  2. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism

    PubMed Central

    Soriano, G P; Besse, L; Li, N; Kraus, M; Besse, A; Meeuwenoord, N; Bader, J; Everts, B; den Dulk, H; Overkleeft, H S; Florea, B I; Driessen, C

    2016-01-01

    Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism. PMID:27118406

  3. Molecular analysis of human complement component C5: localization of the structural gene to chromosome 9

    SciTech Connect

    Wetsel, R.A.; Lemons, R.S.; Le Beau, M.M.; Barnum, S.R.; Noack, D.; Tack, B.F.

    1988-03-08

    A human C5 clone (pC5HG2) was isolated from a cDNA library constructed from Hep G2 mRNA. he DNA sequence showed that the pC5HG2 insert was comprised of 3309 base pairs of pro-C5 coding sequence and 404 base pairs of 3'-untranslated sequence. The derived amino acid sequence contained the entire coding sequence of the C5 ..cap alpha..-chain, the ..beta..-..cap alpha..-chain junction region, and 100 amino acids (approximately 50%) of the ..beta..-chain. Protein sequences of four C5 tryptic peptides were aligned exactly to this sequence and demonstrated that C5 synthesized and secreted by Hep G2 cells is probably identical with plasma-derived C5. Coding sequence alignment of the human C5 sequences with those of murine C5 indicated that 80% of the nucleotides and 79% of the amino acids were placed identically in the two species. Amino acid sequence alignment of the homologous family members C3, C4, and ..cap alpha../sub 2/-macroglobulin with that of C5 demonstrated 27%, 25%, and 19% identity, respectively. As was found in murine C5, the corresponding thiol ester region of human C5 contained several conserved amino acids, but the critical cysteine and glutamine residues which give rise to the intramolecular thiol ester bond in C3, C4, and ..cap alpha../sub 2/-macroglobulin were absent in C5, having been replaced by serine and alanine, respectively. With the use of a panel of hamster-human somatic cell hybrids, the C5 gene was mapped to human chromosome 9. In situ chromosomal hybridization studies employing metaphase cells further localized the gene to bands 9q32-34, with the largest cluster of grains at 9q34.1.

  4. Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation*

    PubMed Central

    Yang, Liling; Wang, Shuxing; Sung, Backil; Lim, Grewo; Mao, Jianren

    2008-01-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis, neurotoxicity, and glutamatergic regulation of opioid tolerance. However, how the glutamate transporter turnover is regulated remains poorly understood. Here we show that chronic morphine exposure induced posttranscriptional down-regulation of the glutamate transporter EAAC1 in C6 glioma cells with a concurrent decrease in glutamate uptake and increase in proteasome activity, which were blocked by the selective proteasome inhibitor MG-132 or lactacystin but not the lysosomal inhibitor chloroquin. At the cellular level, chronic morphine induced the PTEN (phosphatase and tensin homolog deleted on chromosome Ten)-mediated up-regulation of the ubiquitin E3 ligase Nedd4 via cAMP/protein kinase A signaling, leading to EAAC1 ubiquitination and proteasomal degradation. Either Nedd4 or PTEN knockdown with small interfering RNA prevented the morphine-induced EAAC1 degradation and decreased glutamate uptake. These data indicate that cAMP/protein kinase A signaling serves as an intracellular regulator upstream to the activation of the PTEN/Nedd4-mediated ubiquitin-proteasome system activity that is critical for glutamate transporter turnover. Under an in vivo condition, chronic morphine exposure also induced posttranscriptional down-regulation of the glutamate transporter EAAC1, which was prevented by MG-132, and transcriptional up-regulation of PTEN and Nedd4 within the spinal cord dorsal horn. Thus, inhibition of the ubiquitin-proteasome-mediated glutamate transporter degradation may be an important mechanism for preventing glutamate overexcitation and may offer a new strategy for treating certain neurological disorders and improving opioid therapy in chronic pain management. PMID:18539596

  5. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria.

    PubMed

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-11-05

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.

  6. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria

    PubMed Central

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-01-01

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROSC73R mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROSP248Q mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROSC73R and UROSP248Q are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (UrosP248Q/P248Q) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones. PMID:24145442

  7. A single-nucleotide deletion in the POMP 5' UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis.

    PubMed

    Dahlqvist, Johanna; Klar, Joakim; Tiwari, Neha; Schuster, Jens; Törmä, Hans; Badhai, Jitendra; Pujol, Ramon; van Steensel, Maurice A M; Brinkhuizen, Tjinta; Brinkhuijzen, Tjinta; Gijezen, Lieke; Chaves, Antonio; Tadini, Gianluca; Vahlquist, Anders; Dahl, Niklas

    2010-04-09

    KLICK syndrome is a rare autosomal-recessive skin disorder characterized by palmoplantar keratoderma, linear hyperkeratotic papules, and ichthyosiform scaling. In order to establish the genetic cause of this disorder, we collected DNA samples from eight European probands. Using high-density genome-wide SNP analysis, we identified a 1.5 Mb homozygous candidate region on chromosome 13q. Sequence analysis of the ten annotated genes in the candidate region revealed homozygosity for a single-nucleotide deletion at position c.-95 in the proteasome maturation protein (POMP) gene, in all probands. The deletion is included in POMP transcript variants with long 5' untranslated regions (UTRs) and was associated with a marked increase of these transcript variants in keratinocytes from KLICK patients. POMP is a ubiquitously expressed protein and functions as a chaperone for proteasome maturation. Immunohistochemical analysis of skin biopsies from KLICK patients revealed an altered epidermal distribution of POMP, the proteasome subunit proteins alpha 7 and beta 5, and the ER stress marker CHOP. Our results suggest that KLICK syndrome is caused by a single-nucleotide deletion in the 5' UTR of POMP resulting in altered distribution of POMP in epidermis and a perturbed formation of the outermost layers of the skin. These findings imply that the proteasome has a prominent role in the terminal differentiation of human epidermis.

  8. Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack

    PubMed Central

    Cacan, Ercan; Spring, Alexander M.; Kumari, Anita; Greer, Susanna F.; Garnett-Benson, Charlie

    2015-01-01

    Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity. PMID:26703577

  9. Regulation of mIκBNS stability through PEST-mediated degradation by proteasome

    SciTech Connect

    Park, Koog Chan; Jeong, Jiyeong; Kim, Keun Il

    2014-01-24

    Highlights: • mIκBNS is degraded rapidly by proteasome without ubiquitylation. • N-terminal PEST sequence is responsible for the unstable nature of mIκBNS. • PEST sequence is not critical for nuclear localization of mIκBNS. • There is single bona fide NLS at the C-terminus of mIκBNS. - Abstract: Negative regulatory proteins in a cytokine signaling play a critical role in restricting unwanted excess activation of the signaling pathway. At the same time, negative regulatory proteins need to be removed rapidly from cells to respond properly to the next incoming signal. A nuclear IκB protein called IκBNS is known to inhibit a subset of NF-κB target genes upon its expression by NF-κB activation. Here, we show a mechanism to control the stability of mIκBNS which might be important for cells to prepare the next round signaling. We found that mIκBNS is a short-lived protein of which the stability is controlled by proteasome, independent of ubiquitylation process. We identified that the N-terminal PEST sequence in mIκBNS was critical for the regulation of stability.

  10. Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Time in Arabidopsis during Vernalization[C][W

    PubMed Central

    Kong, Xiangxiang; Wang, Chuntao; Ma, Lan; Zhao, Jinjie; Wei, Jingjing; Zhang, Xiaoming; Loake, Gary J.; Zhang, Ticao; Huang, Jinling; Yang, Yongping

    2014-01-01

    Winter-annual accessions of Arabidopsis thaliana require either exposure to cold stress or vernalization to initiate flowering via FRIGIDA (FRI). FRI acts as a scaffold protein to recruit several chromatin modifiers that epigenetically modify flowering genes. Here, we report that proteasome-mediated FRI degradation regulates flowering during vernalization in Arabidopsis. Our genetic and biochemical experiments demonstrate that FRI directly interacts with the BTB (Bric-a-Brac/Tramtrack/Broad Complex) proteins LIGHT-RESPONSE BTB1 (LRB1) and LRB2 as well as the CULLIN3A (CUL3A) ubiquitin-E3 ligase in vitro and in vivo, leading to proteasomal degradation of FRI during vernalization. The degradation of FRI is accompanied by an increase in the levels of the long noncoding RNA ColdAIR, which reduces the level of histone H3Lys4 trimethylation (H3K4me3) in FLOWERING LOCUS C chromatin to promote flowering. Furthermore, we found that the cold-induced WRKY34 transcription factor binds to the W-box in the promoter region of CUL3A to modulate CUL3A expression. Deficiency of WRKY34 suppressed CUL3A transcription to enhance FRI protein stability and led to late flowering after vernalization. Conversely, overexpression of WRK34 promoted FRI degradation and early flowering through inducing CUL3A accumulation. Together, these data suggest that WRKY34-induced and CUL3A-dependent proteolysis of FRI modulate flowering in response to vernalization. PMID:25538183

  11. Correction of Cystathionine β-synthase Deficiency in Mice by Treatment with Proteasome Inhibitors

    PubMed Central

    Gupta, Sapna; Wang, Liqun; Anderl, Janet; Slifker, Michael J.; Kirk, Christopher; Kruger, Warren D.

    2013-01-01

    Cystathionine beta-synthase (CBS) deficiency is an inborn error of metabolism characterized by extremely elevated levels of plasma total homocysteine. The vast majority of CBS-deficient patients have missense mutations located in the CBS gene that result in the production of either misfolded or unstable protein. Here, we examine the effect of proteasome inhibitors on mutant CBS function using two different mouse models of CBS deficiency. These mice lack mouse CBS and express a missense mutant human CBS enzyme (either p.I278T or p.S466L) that has less than 5% of normal liver CBS activity, resulting in a 10–30 fold elevation in plasma homocysteine levels. We show that treatment of these mice with two different proteasome inhibitors can induce liver Hsp70, Hsp40, and Hsp27, increase levels of active CBS, and lower plasma homocysteine levels to within the normal range. However, response rates varied, with 100% (8/8) of the p.S466L animals showing correction, but only 38% (10/26) of the p.I278T animals. In total, our data shows that treatment with proteostasis modulators can restore significant enzymatic activity to mutant misfolded CBS enzymes and suggests that they may be useful in treating certain types of genetic diseases caused by missense mutations. PMID:23592311

  12. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma.

    PubMed

    Bhatt, Shruti; Ashlock, Brittany M; Toomey, Ngoc L; Diaz, Luis A; Mesri, Enrique A; Lossos, Izidore S; Ramos, Juan Carlos

    2013-06-01

    Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.

  13. Cullin 7 mediates proteasomal and lysosomal degradations of rat Eag1 potassium channels

    PubMed Central

    Hsu, Po-Hao; Ma, Yu-Ting; Fang, Ya-Ching; Huang, Jing-Jia; Gan, Yu-Ling; Chang, Pei-Tzu; Jow, Guey-Mei; Tang, Chih-Yung; Jeng, Chung-Jiuan

    2017-01-01

    Mammalian Eag1 (Kv10.1) potassium (K+) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K+ channel have been associated with congenital neurodevelopmental anomalies. Currently very little is known about the molecules mediating protein synthesis and degradation of Eag1 channels. Herein we aim to ascertain the protein degradation mechanism of rat Eag1 (rEag1). We identified cullin 7 (Cul7), a member of the cullin-based E3 ubiquitin ligase family, as a novel rEag1 binding partner. Immunoprecipitation analyses confirmed the interaction between Cul7 and rEag1 in heterologous cells and neuronal tissues. Cul7 and rEag1 also exhibited significant co-localization at synaptic regions in neurons. Over-expression of Cul7 led to reduced protein level, enhanced ubiquitination, accelerated protein turn-over, and decreased current density of rEag1 channels. We provided further biochemical and morphological evidence suggesting that Cul7 targeted endoplasmic reticulum (ER)- and plasma membrane-localized rEag1 to the proteasome and the lysosome, respectively, for protein degradation. Cul7 also contributed to protein degradation of a disease-associated rEag1 mutant. Together, these results indicate that Cul7 mediates both proteasomal and lysosomal degradations of rEag1. Our findings provide a novel insight to the mechanisms underlying ER and peripheral protein quality controls of Eag1 channels. PMID:28098200

  14. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum

    PubMed Central

    Verchot, Jeanmarie

    2016-01-01

    The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement. PMID:27869775

  15. RNF20 promotes the polyubiquitination and proteasome-dependent degradation of AP-2α protein.

    PubMed

    Ren, Peng; Sheng, Zhifeng; Wang, Yijun; Yi, Xin; Zhou, Qiuzhi; Zhou, Jianlin; Xiang, Shuanglin; Hu, Xiang; Zhang, Jian

    2014-02-01

    Transcription factor activator protein 2α (AP-2α) is a negative regulator of adipogenesis by repressing the transcription of CCAAT/enhancer binding protein (C/EBPα) gene. During adipogenesis, AP-2α is degraded, leading to transcriptional up-regulation of C/EBPα. However, the mechanism for AP-2α degradation is not clear. Here, using immunoprecipitation assay and mass spectrometry, we identified ring finger protein 20 (RNF20) as an AP-2α-interacting protein in 3T3-L1 preadipocytes. RNF20 has been proved to be an E3 ubiquitin ligase for both histone H2B and tumor suppressor ErbB3-binding protein 1 (Ebp1). In this study, we demonstrated that RNF20 co-localized and interacted with AP-2α, and promoted its polyubiquitination and proteasome-dependent degradation. Over-expression of RNF20 inhibited the activity of AP-2α and rescued the C/EBPα expression which was inhibited by AP-2α. These results suggested that RNF20 may play roles in adipocyte differentiation by stimulating ubiquitin-proteasome-dependent degradation of AP-2α.

  16. Proteasome inhibitors prevent caspase-1-mediated disease in rodents challenged with anthrax lethal toxin.

    PubMed

    Muehlbauer, Stefan M; Lima, Heriberto; Goldman, David L; Jacobson, Lee S; Rivera, Johanna; Goldberg, Michael F; Palladino, Michael A; Casadevall, Arturo; Brojatsch, Jürgen

    2010-08-01

    NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.

  17. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells

    PubMed Central

    Teckchandani, Anjali; Cooper, Jonathan A

    2016-01-01

    Cell migration requires the cyclical assembly and disassembly of focal adhesions. Adhesion induces phosphorylation of focal adhesion proteins, including Cas (Crk-associated substrate/p130Cas/BCAR1). However, Cas phosphorylation stimulates adhesion turnover. This raises the question of how adhesion assembly occurs against opposition from phospho-Cas. Here we show that suppressor of cytokine signaling 6 (SOCS6) and Cullin 5, two components of the CRL5SOCS6 ubiquitin ligase, inhibit Cas-dependent focal adhesion turnover at the front but not rear of migrating epithelial cells. The front focal adhesions contain phospho-Cas which recruits SOCS6. If SOCS6 cannot access focal adhesions, or if cullins or the proteasome are inhibited, adhesion disassembly is stimulated. This suggests that the localized targeting of phospho-Cas within adhesions by CRL5SOCS6 and concurrent cullin and proteasome activity provide a negative feedback loop, ensuring that adhesion assembly predominates over disassembly at the leading edge. By this mechanism, ubiquitination provides a new level of spatio-temporal control over cell migration. DOI: http://dx.doi.org/10.7554/eLife.17440.001 PMID:27656905

  18. UV Irradiation Triggers Cylindromatosis Translocation, Modification, and Degradation in a Proteasome-Independent Manner.

    PubMed

    Zhou, Ping; Hao, Ziwei; Wang, Xincheng; Gao, Jinmin; Li, Dengwen; Xie, Songbo; Zhang, Tong-Cun

    2016-03-01

    The tumor suppressor, cylindromatosis (CYLD), is a negative regulator of NF-κB signaling by removing lysine 63-linked ubiquitin chains from multiple NF-κB signaling components, including TRAF2, TRAF6, and NEMO. How CYLD itself is regulated, however, remains yet to be characterized. In this study, we present the first evidence that UV irradiation is able to induce CYLD translocation from the cytoplasm to microtubules and that the cytoskeleton-associated CYLD is subject to posttranslational modification and degradation in a proteasome-independent manner. By immunostaining, we found that CYLD displayed microtubule-like filament localization under ultraviolet (UV) irradiation. Further studies revealed that the cytoskeleton-associated CYLD underwent posttranslational modification, which in turn contributed to CYLD degradation in an unknown manner, distinct from proteasome-mediated degradation under normal conditions. Collectively, our data suggest that UV-induced CYLD degradation might serve as an underlying mechanism for UV-induced NF-κB pathway activation.

  19. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation.

    PubMed

    Choi, Won Hoon; de Poot, Stefanie A H; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-03-09

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼ 200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells.

  20. Crystal structure of archaeal homolog of proteasome-assembly chaperone PbaA.

    PubMed

    Sikdar, Arunima; Satoh, Tadashi; Kawasaki, Masato; Kato, Koichi

    2014-10-24

    Formation of the eukaryotic proteasome is not a spontaneous process but a highly ordered process assisted by several assembly chaperones. In contrast, archaeal proteasome subunits can spontaneously assemble into an active form. Recent bioinformatic analysis identified the proteasome-assembly chaperone-like proteins, PbaA and PbaB, in archaea. Our previous study showed that the PbaB homotetramer functions as a proteasome activator through its tentacle-like C-terminal segments. However, a functional role of the other homolog PbaA has remained elusive. Here we determined the 2.25-Å resolution structure of PbaA, illustrating its disparate tertiary and quaternary structures compared with PbaB. PbaA forms a homopentamer in which the C-terminal segments, with a putative proteasome-activating motif, are packed against the core. These findings offer deeper insights into the molecular evolution relationships between the proteasome-assembly chaperones and the proteasome activators.

  1. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    NASA Technical Reports Server (NTRS)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  2. Mutations in the COPII vesicle component gene SEC24B are associated with human neural tube defects.

    PubMed

    Yang, Xue-Yan; Zhou, Xiang-Yu; Wang, Qing Qing; Li, Hong; Chen, Ying; Lei, Yun-Ping; Ma, Xiao-Hang; Kong, Pan; Shi, Yan; Jin, Li; Zhang, Ting; Wang, Hong-Yan

    2013-08-01

    Neural tube defects (NTDs) are severe birth malformations that affect one in 1,000 live births. Recently, mutations in the planar cell polarity (PCP) pathway genes had been implicated in the pathogenesis of NTDs in both the mouse model and in human cohorts. Mouse models indicate that the homozygous disruption of Sec24b, which mediates the ER-to-Golgi transportation of the core PCP gene Vangl2 as a component of the COPII vesicle, will result in craniorachischisis. In this study, we found four rare missense heterozygous SEC24B mutations (p.Phe227Ser, p.Phe682Leu, p.Arg1248Gln, and p.Ala1251Gly) in NTDs cases that were absent in all controls. Among them, p.Phe227Ser and p.Phe682Leu affected its protein stability and physical interaction with VANGL2. Three variants (p.Phe227Ser, p.Arg1248Gln, and p.Ala1251Gly) were demonstrated to affect VANGL2 subcellular localization in cultured cells. Further functional analysis in the zebrafish including overexpression and dosage-dependent rescue study suggested that these four mutations all displayed loss-of-function effects compared with wild-type SEC24B. Our study demonstrated that functional mutations in SEC24B might contribute to the etiology of a subset of human NTDs and further expanded our knowledge of the role of PCP pathway-related genes in the pathogenesis of human NTDs.

  3. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    PubMed

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition.

  4. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function.

    PubMed

    Li, Xiaohua; Thompson, David; Kumar, Brajesh; DeMartino, George N

    2014-06-20

    We investigated molecular features and cellular roles of PI31 (PSMF1) on regulation of proteasome function. PI31 has a C-terminal HbYX (where Hb is a hydrophobic amino acid, Y is tyrosine, and X is any amino acid) motif characteristic of several proteasome activators. Peptides corresponding to the PI31 C terminus also bind to and activate the 20 S proteasome in an HbYX-dependent manner, but intact PI31protein inhibits in vitro 20 S activity. Binding to and inhibition of the proteasome by PI31 are conferred by the HbYX-containing proline-rich C-terminal domain but do not require HbYX residues. Thus, multiple regions of PI31 bind independently to the proteasome and collectively determine effects on activity. PI31 blocks the ATP-dependent in vitro assembly of 26 S proteasome from 20 S proteasome and PA700 subcomplexes but has no effect on in vitro activity of the intact 26 S proteasome. To determine the physiologic significance of these in vitro effects, we assessed multiple aspects of cellular proteasome content and function after altering PI31 levels. We detected no change in overall cellular proteasome content or function when PI31 levels were either increased by moderate ectopic overexpression or decreased by RNA interference (RNAi). We also failed to identify a role of PI31 ADP-ribosylation as a mechanism for regulation of overall 26 S proteasome content and function, as recently proposed. Thus, despite its in vitro effects on various proteasome activities and its structural relationship to established proteasome regulators, cellular roles and mechanisms of PI31 in regulation of proteasome function remain unclear and require future definition.

  5. Dickkopf related genes are components of the positional value gradient in Hydra.

    PubMed

    Augustin, René; Franke, André; Khalturin, Konstantin; Kiko, Rainer; Siebert, Stefan; Hemmrich, Georg; Bosch, Thomas C G

    2006-08-01

    Hydra is a classical model organism to understand fundamental developmental biological processes such as regeneration and axis formation. Here, we show that two genes which share some similarity with members of the Dickkopf family of proteins, HyDkk1/2/4-A and HyDkk1/2/4-C, are co-expressed in gland cells and regulated by the positional value gradient. While HyDkk1/2/4-A is expressed throughout the gastric region, HyDkk1/2/4-C has a graded expression pattern with a high level of transcripts just below the tentacle zone and absence of expression in the budding zone. Blocking the activity of GSK-3beta caused a drastic downregulation of HyDkk1/2/4-C expression in the gastric tissue. Experimental reduction of the number of HyDkk1/2/4-C-expressing cells resulted in expansion of the HyWnt expression domain in the hypostome. Thus, similar to Dickkopf proteins in vertebrates, one of the functions of HyDkk1/2/4-C in hydra may be to antagonize Wnt signalling.

  6. Allergic rhinitis and genetic components: focus on Toll-like receptors (TLRs) gene polymorphism

    PubMed Central

    Gao, Zhiwei; Rennie, Donna C; Senthilselvan, Ambikaipakan

    2010-01-01

    Allergic rhinitis represents a global health issue affecting 10% to 25% of the population worldwide. Over the years, studies have found that allergic diseases, including allergic rhinitis, are associated with immunological responses to antigens driven by a Th2-mediated immune response. Because Toll-like receptors (TLRs) are involved in both innate and adaptive immune responses to a broad variety of antigens, the association between polymorphisms of TLRs and allergic diseases has been the focus in many animal and human studies. Although the etiology of allergic rhinitis is still unknown, extensive research over the years has confirmed that the underlying causes of allergic diseases are due to many genetic and environmental factors, along with the interactions among them, which include gene–environment, gene–gene, and environment–environment interactions. Currently, there is great inconsistency among studies mainly due to differences in genetic background and unique gene–environment interactions. This paper reviews studies focusing on the association between TLR polymorphisms and allergic diseases, including allergic rhinitis, which would help researchers better understand the role of TLR polymorphisms in the development of allergic rhinitis, and ultimately lead to more efficient therapeutic interventions being developed. PMID:23776356

  7. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro

    PubMed Central

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M. Maral; Lee, Gwang

    2016-01-01

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α–synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles. PMID:27378605

  8. Regulation of Endoribonuclease Activity of Alpha-Type Proteasome Subunits in Proerythroleukemia K562 Upon Hemin-Induced Differentiation.

    PubMed

    Mittenberg, Alexey G; Moiseeva, Tatyana N; Kuzyk, Valeria O; Barlev, Nickolai A

    2016-02-01

    The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits.

  9. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro.

    PubMed

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M Maral; Lee, Gwang

    2016-07-05

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α-synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles.

  10. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model.

    PubMed

    Zollner, Thomas M; Podda, Maurizio; Pien, Christine; Elliott, Peter J; Kaufmann, Roland; Boehncke, Wolf-Henning

    2002-03-01

    There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-kappa B for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-kappa B activation by blocking the degradation of its inhibitory protein I kappa B. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell-activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell-mediated disorders such as psoriasis.

  11. Autophagy maintains ubiquitination-proteasomal degradation of Sirt3 to limit oxidative stress in K562 leukemia cells

    PubMed Central

    Xu, Li; Cao, Yan; Xu, Fei; Yan, Lili; Nie, Meilan; Yuan, Na; Zhang, Suping; Zhao, Ruijin; Wang, Hongbin; Wu, Mengyin; Zhang, Xiaoying; Wang, Jianrong

    2016-01-01

    Sirtuin protein family member 3 (Sirt3) has been suggested as a positive regulator in alleviating oxidative stress by acting on the mitochondrial antioxidant machinery in solid tumors; however, its role and regulation in hematological malignancies has been poorly understood. Here, we show that contrary to what has been reported in solid tumors, in K562 leukemia cells elevated Sirt3 was associated with mitochondrial stress, and depletion of Sirt3 decreased reactive oxygen species (ROS) generation and lipid oxidation, but increased the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), suggesting an opposite role of Sirt3 in regulating oxidative stress in the leukemia cells. Notably, loss of autophagy by deletion of autophagy essential gene or by pharmacological inhibition on autophagic degradation caused a significant accumulation of Sirt3. However, induced activation of autophagy did not cause autophagic degradation of Sirt3. Furthermore, inhibiting proteasome activity accumulated Sirt3 in autophagy-intact but not autophagy-defective cells, and disrupting functional autophagy either genetically or pharmacologically caused significantly less ubiquitination of Sirt3. Therefore, our data suggest that basal but not enhanced autophagy activity maintains ubiquitination-proteasomal degradation of Sirt3 to limit lipid oxidative stress, representing an adaptive mechanism by which autophagy, in collaboration with the ubiquitination-proteasomal system, controls oxidative stress by controlling the levels of certain proteins in K562 leukemia cells. PMID:27232755

  12. The F-box protein FBXO25 promotes the proteasome-dependent degradation of ELK-1 protein.

    PubMed

    Teixeira, Felipe R; Manfiolli, Adriana O; Soares, Cláudia S; Baqui, Munira M A; Koide, Tie; Gomes, Marcelo D

    2013-09-27

    FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens.

  13. Skeletal muscle myotubes of the severely obese exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux

    PubMed Central

    Bollinger, Lance M.; Powell, Jonathan J. S.; Houmard, Joseph A.; Witczak, Carol A.; Brault, Jeffrey J.

    2015-01-01

    Objective Whole-body protein metabolism is dysregulated with obesity. Our goal was to determine if activity and expression of major protein degradation pathways are compromised specifically in human skeletal muscle with obesity. Methods We utilized primary Human Skeletal Muscle cell (HSkM) cultures since cellular mechanisms can be studied absent of hormones and contractile activity that could independently influence metabolism. HSkM from 10 lean (BMI ≤ 26.0 kg/m2) and 8 severely obese (BMI ≥ 39.0) women were examined basally and when stimulated to atrophy (serum and amino acid starvation). Results HSkM from obese donors had a lower proportion of type I myosin heavy chain and slower flux through the autophagic/lysosomal pathway. During starvation, flux through the ubiquitin-proteasome system diverged according to obesity status, with a decrease in the lean and an increase in HSkM from obese subjects. HSkMC from the obese also displayed elevated proteasome activity despite no difference in proteasome content. Atrophy-related gene expression and myotube area were similar in myotubes derived from lean and obese individuals under basal and starved conditions. Conclusions Our data indicate that muscle cells of the lean and severely obese have innate differences in management of protein degradation, which may explain their metabolic differences. PMID:26010327

  14. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy.

    PubMed

    Schmidts, Miriam; Vodopiutz, Julia; Christou-Savina, Sonia; Cortés, Claudio R; McInerney-Leo, Aideen M; Emes, Richard D; Arts, Heleen H; Tüysüz, Beyhan; D'Silva, Jason; Leo, Paul J; Giles, Tom C; Oud, Machteld M; Harris, Jessica A; Koopmans, Marije; Marshall, Mhairi; Elçioglu, Nursel; Kuechler, Alma; Bockenhauer, Detlef; Moore, Anthony T; Wilson, Louise C; Janecke, Andreas R; Hurles, Matthew E; Emmet, Warren; Gardiner, Brooke; Streubel, Berthold; Dopita, Belinda; Zankl, Andreas; Kayserili, Hülya; Scambler, Peter J; Brown, Matthew A; Beales, Philip L; Wicking, Carol; Duncan, Emma L; Mitchison, Hannah M

    2013-11-07

    Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.

  15. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.

    PubMed Central

    Garcia, G E; Stadtman, T C

    1991-01-01

    The gene encoding the selenoprotein A component of glycine reductase was isolated from Clostridium purinolyticum. The nucleotide sequence of this gene (grdA) was determined. The opal termination codon (TGA) was found in-frame at the position corresponding to the location of the selenocysteine residue in the gene product. A comparison of the nucleotide sequences and secondary mRNA structures corresponding to the selenoprotein A gene and the fdhF gene of Escherichia coli formate dehydrogenase shows that there is a similar potential for regulation of the specific insertion of selenocysteine at the UGA codon. PMID:1825826

  16. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.

    PubMed

    Garcia, G E; Stadtman, T C

    1991-03-01

    The gene encoding the selenoprotein A component of glycine reductase was isolated from Clostridium purinolyticum. The nucleotide sequence of this gene (grdA) was determined. The opal termination codon (TGA) was found in-frame at the position corresponding to the location of the selenocysteine residue in the gene product. A comparison of the nucleotide sequences and secondary mRNA structures corresponding to the selenoprotein A gene and the fdhF gene of Escherichia coli formate dehydrogenase shows that there is a similar potential for regulation of the specific insertion of selenocysteine at the UGA codon.

  17. MM-1 facilitates degradation of c-Myc by recruiting proteasome and a novel ubiquitin E3 ligase.

    PubMed

    Kimura, Yumiko; Nagao, Arisa; Fujioka, Yuko; Satou, Akiko; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2007-10-01

    We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc by recruiting the HDAC1 complex via TIF1beta/KAP1, a transcriptional corepressor. We have also reported that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. In this study, we found that MM-1 was bound to a component of proteasome and stimulated degradation of c-Myc in human cells. Knockdown of endogenous MM-1 in human HeLa cells by introduction of siRNA against MM-1 stabilized the endogenous c-Myc. To identify proteins that participate in c-Myc degradation by MM-1, in vivo and in vitro binding assays were carried out. The results showed that MM-1 directly bound to Rpt3, a subunit of 26S proteasome, and that c-Myc directly bound to Skp2, which recruited ElonginC, ElonginB and Cullin2, thereby forming a novel ubiquitin E3 ligase. Knockdown of endogenous Cullin2 stabilized the endogenous c-Myc. Thus, MM-1 is a factor that connects c-Myc to the ubiquitin E3 ligase and the proteasome.

  18. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer’s Disease and Spinal Cord Injury

    PubMed Central

    Gong, Bing; Radulovic, Miroslav; Figueiredo-Pereira, Maria E.; Cardozo, Christopher

    2016-01-01

    The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions. PMID:26858599

  19. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus

    PubMed Central

    2012-01-01

    Background Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. Methods Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. Results LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. Conclusions Our results identify neuroinflammation

  20. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    PubMed Central

    Li, Sheng; Yang, Li-juan; Wang, Ping; He, Yu-jiao; Huang, Jun-mei; Liu, Han-wei; Shen, Xiao-fei; Wang, Fei

    2016-01-01

    Background Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome

  1. A bacterial metabolite induces glutathione-tractable proteostatic damage, proteasomal disturbances, and PINK1-dependent autophagy in C. elegans.

    PubMed

    Martinez, B A; Kim, H; Ray, A; Caldwell, G A; Caldwell, K A

    2015-10-15

    Gene-by-environment interactions are thought to underlie the majority of idiopathic cases of neurodegenerative disease. Recently, we reported that an environmental metabolite extracted from Streptomyces venezuelae increases ROS and damages mitochondria, leading to eventual neurodegeneration of C. elegans dopaminergic neurons. Here we link those data to idiopathic disease models that predict loss of protein handling as a component of disorder progression. We demonstrate that the bacterial metabolite leads to proteostatic disruption in multiple protein-misfolding models and has the potential to synergistically enhance the toxicity of aggregate-prone proteins. Genetically, this metabolite is epistatically regulated by loss-of-function to pink-1, the C. elegans PARK6 homolog responsible for mitochondrial maintenance and autophagy in other animal systems. In addition, the metabolite works through a genetic pathway analogous to loss-of-function in the ubiquitin proteasome system (UPS), which we find is also epistatically regulated by loss of PINK-1 homeostasis. To determine remitting counter agents, we investigated several established antioxidants and found that glutathione (GSH) can significantly protect against metabolite-induced proteostasis disruption. In addition, GSH protects against the toxicity of MG132 and can compensate for the combined loss of both pink-1 and the E3 ligase pdr-1, a Parkin homolog. In assessing the impact of this metabolite on mitochondrial maintenance, we observe that it causes fragmentation of mitochondria that is attenuated by GSH and an initial surge in PINK-1-dependent autophagy. These studies mechanistically advance our understanding of a putative environmental contributor to neurodegeneration and factors influencing in vivo neurotoxicity.

  2. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon).

    PubMed Central

    Furukawa, K; Hirose, J; Suyama, A; Zaiki, T; Hayashida, S

    1993-01-01

    bph operons coding for biphenyl-polychlorinated biphenyl degradation in Pseudomonas pseudoalcaligenes KF707 and Pseudomonas putida KF715 and tod operons coding for toluene-benzene metabolism in P. putida F1 are very similar in gene organization as well as size and homology of the corresponding enzymes (G. J. Zylstra and D. T. Gibson, J. Biol. Chem. 264:14940-14946, 1989; K. Taira, J. Hirose, S. Hayashida, and K. Furukawa, J. Biol. Chem. 267:4844-4853, 1992), despite their discrete substrate ranges for metabolism. The gene components responsible for substrate specificity between the bph and tod operons were investigated. The large subunit of the terminal dioxygenase (encoded by bphA1 and todC1) and the ring meta-cleavage compound hydrolase (bphD and todF) were critical for their discrete metabolic specificities, as shown by the following results. (i) Introduction of todC1C2 (coding for the large and small subunits of the terminal dioxygenase in toluene metabolism) or even only todC1 into biphenyl-utilizing P. pseudoalcaligenes KF707 and P. putida KF715 allowed them to grow on toluene-benzene by coupling with the lower benzoate meta-cleavage pathway. Introduction of the bphD gene (coding for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase) into toluene-utilizing P. putida F1 permitted growth on biphenyl. (ii) With various bph and tod mutant strains, it was shown that enzyme components of ferredoxin (encoded by bphA3 and todB), ferredoxin reductase (bphA4 and todA), and dihydrodiol dehydrogenase (bphB and todD) were complementary with one another. (iii) Escherichia coli cells carrying a hybrid gene cluster of todClbphA2A3A4BC (constructed by replacing bphA1 with todC1) converted toluene to a ring meta-cleavage 2-hydroxy-6-oxo-hepta-2,4-dienoic acid, indicating that TodC1 formed a functional multicomponent dioxygenase associated with BphA2 (a small subunit of the terminal dioxygenase in biphenyl metabolism), BphA3, and BphA4. PMID:8349562

  3. Expression of functional alternative telomerase RNA component gene in mouse brain and in motor neurons cells protects from oxidative stress

    PubMed Central

    Eitan, Erez; Tamar, Admoni; Yossi, Grin; Peleg, Refael; Braiman, Alex; Priel, Esther

    2016-01-01

    Telomerase, a ribonucleoprotein, is highly expressed and active in many tumor cells and types, therefore it is considered to be a target for anti-cancer agents. On the other hand, recent studies demonstrated that activation of telomerase is a potential therapeutic target for age related diseases. Telomerase mainly consists of a catalytic protein subunit with a reverse transcription activity (TERT) and an RNA component (TERC), a long non-coding RNA, which serves as a template for the re-elongation of telomeres by TERT. We previously showed that TERT is highly expressed in distinct neuronal cells of the mouse brain and its expression declined with age. To understand the role of telomerase in non-mitotic, fully differentiated cells such neurons we here examined the expression of the other component, TERC, in mouse brain. Surprisingly, by first using bioinformatics analysis, we identified an alternative TERC gene (alTERC) in the mouse genome. Using further experimental approaches we described the presence of a functional alTERC in the mouse brain and spleen, in cultures of motor neurons- like cells and neuroblastoma tumor cells. The alTERC is similar (87%) to mouse TERC (mTERC) with a deletion of 18 bp in the TERC conserved region 4 (CR4). This alTERC gene is expressed and its product interacts with the endogenous mTERT protein and with an exogenous human TERT protein (hTERT) to form an active enzyme. Overexpression of the alTERC and the mTERC genes, in mouse motor neurons like cells, increased the activity of TERT without affecting its protein level. Under oxidative stress conditions, alTERC significantly increased the survival of motor neurons cells without altering the level of TERT protein or its activity. The results suggest that the expression of the alTERC gene in the mouse brain provides an additional way for regulating telomerase activity under normal and stress conditions and confers protection to neuronal cells from oxidative stress. PMID:27823970

  4. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites.

    PubMed

    Muñoz, Christian; San Francisco, Juan; Gutiérrez, Bessy; González, Jorge

    2015-01-01

    In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  5. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis.

    PubMed

    Jastrab, Jordan B; Wang, Tong; Murphy, J Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P; Li, Huilin; Darwin, K Heran

    2015-04-07

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens.

  6. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    PubMed Central

    Muñoz, Christian; San Francisco, Juan; Gutiérrez, Bessy; González, Jorge

    2015-01-01

    In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target. PMID:26090380

  7. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  8. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  9. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; ...

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  10. Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells

    SciTech Connect

    Biernat, W.; Aguzzi, A.; Sure, U.

    1995-09-01

    Gliosarcomas are morphologically heterogeneous tumors of the central nervous system composed of gliomatous and sarcomatous components. The histogenesis of the latter is still a matter of debate. As mutations of the p53 tumor suppressor gene represent an early event in the development of gliomas, we attempted to determine whether both components of gliosarcomas share identical alterations of the p53 gene. Using single-strand conformation analysis (SSCA) and direct DNA sequencing of the p53 gene, we analyzed dissected gliomatous and sarcomatous parts of 12 formalin-fixed, paraffin-embedded gliosarcomas. The two tumors that contained a p53 alteration were found to carry the identical mutation (exon 5; codon 151, CCC {r_arrow} TCC; codon 173, GTG {r_arrow} GTA) in the gliomatous and the sarcomatous components. These findings suggest a common origin of the two cellular components from neoplastic glial cells. 37 refs., 3 figs., 1 tab.

  11. Pathway Pattern-based prediction of active drug components and gene targets from H1N1 influenza's treatment with maxingshigan-yinqiaosan formula.

    PubMed

    Dai, Wen; Chen, Jianxin; Lu, Peng; Gao, Yibo; Chen, Lin; Liu, Xi; Song, Jianglong; Xu, Haiyu; Chen, Di; Yang, Yiping; Yang, Hongjun; Huang, Luqi

    2013-03-01

    Traditional Chinese Medicine (TCM) remedies are composed of different chemical compounds. To understand the underlying pharmacological basis, we need to explore the active components, which function systematically against multiple gene targets to exert efficacy. Predicting active component-gene target interactions could help us decipher the mechanism of action of TCM. Here, we introduce a Pathway Pattern-based method to prioritize the 153 candidate compounds and 7895 associated genes using the extracted Pathway Pattern, which is made up of groups of pathways. The gene prioritization result is compared to previous literature findings to demonstrate the top ranked genes' roles in the pathogenesis of H1N1 influenza. Further, molecular docking is utilized to validate compounds' effects through docking compounds into drug targets of oseltamivir. After setting thresholds, 16 active components, 29 gene targets and 162 active component-gene target interactions are finally identified to elucidate the pharmacology of maxingshigan-yinqiaosan formula. This novel strategy is expected to serve as a springboard for the efforts to standardize and modernize TCM.

  12. Conformational switching of the 26S proteasome enables substrate degradation.

    PubMed

    Matyskiela, Mary E; Lander, Gabriel C; Martin, Andreas

    2013-07-01

    The 26S proteasome is the major eukaryotic ATP-dependent protease, responsible for regulating the proteome through degradation of ubiquitin-tagged substrates. Its regulatory particle, containing the heterohexameric AAA+ ATPase motor and the essential deubiquitinase Rpn11, recognizes substrates, removes their ubiquitin chains and translocates them into the associated peptidase after unfolding, but detailed mechanisms remain unknown. Here we present the 26S proteasome structure from Saccharomyces cerevisiae during substrate degradation, showing that the regulatory particle switches from a preengaged to a translocation-competent conformation. This conformation is characterized by a rearranged ATPase ring with uniform subunit interfaces, a widened central channel coaxially aligned with the peptidase and a spiral orientation of pore loops that suggests a rapid progression of ATP-hydrolysis events around the ring. Notably, Rpn11 moves from an occluded position to directly above the central pore, thus facilitating substrate deubiquitination concomitant with translocation.

  13. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  14. Toward an Integrated Structural Model of the 26S Proteasome*

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2010-01-01

    The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation. PMID:20467039

  15. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl.

    PubMed Central

    Li, Jinting; Wang, Can; Han, Xueping; Qi, Wanzhen; Chen, Yanqiong; Wang, Taixia; Zheng, Yi; Zhao, Xiting

    2016-01-01

    Achyranthes bidentata is a popular perennial medicine herb used for 1000s of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 1146.8 base pairs. A total of 31,634 (31.33%) unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette transporters, some of which might be involved in the translocation of secondary metabolites. PMID:28018396

  16. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

    PubMed Central

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-01-01

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748

  17. Mutations in the helper component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility.

    PubMed

    Huet, H; Gal-On, A; Meir, E; Lecoq, H; Raccah, B

    1994-06-01

    The nucleotide sequence of the helper component protease (HC-Pro) genes of three zucchini yellow mosaic virus (ZYMV) strains has been compared with that of a helper-deficient strain of ZYMV-HC. The comparisons revealed three unique deduced amino acid differences. Two of these mutations were located in regions which are conserved in other potyviruses. The role of these mutations in aphid transmissibility was examined by exchanging DNA fragments of part of the deficient HC-Pro gene with the respective section within the gene of the infectious full-length clone of the aphid-transmissible ZYMV. The first exchange included two of the three mutations, the first coding for a change from Asp to Gly (in a non-conserved region) and the second coding for a change from Arg to Ile [within the Phe-Arg-Asp-Lys (FRNK) conserved box]. This exchange resulted in a reduced transmission (20.6% for the mutated virus compared with 57.4% in the normal ZYMV when acquired from plants and 37.2% compared with 83.1%, respectively, when acquired from membranes). The second exchange incorporated a single mutation [conferring a change from Thr to Ala within the Pro-Thr-Lys (PTK) conserved box]. This single mutation resulted in almost total loss of HC activity in aphid transmission both from plants and from membranes. The Lys residue in the conserved Lys-Ile-Thr-Cys (KITC) box, which is related to loss of HC activity in potato virus Y, tobacco vein mottling virus and in the Michigan strain of ZYMV, is unchanged in the helper-deficient ZYMV. It is therefore proposed that more than one site in HC-Pro may be functionally related to aphid transmissibility. The possible reasons for the role of these mutations in helper activity in aphid transmission of ZYMV are discussed.

  18. Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells

    PubMed Central

    Ryoo, In-geun; Choi, Bo-hyun; Kwak, Mi-Kyoung

    2015-01-01

    Cancer stem cells (CSCs) express high levels of drug efflux transporters and antioxidant genes, and are therefore believed to be responsible for cancer recurrence following chemo/radiotherapy intervention. In this study, we investigated the role of NF-E2-related factor 2 (NRF2), a master regulator of antioxidant gene expression, in the growth and stress resistance of CSC-enriched mammosphere. The MCF7 mammospheres expressed significantly higher levels of the NRF2 protein and target gene expression compared to the monolayer. As underlying mechanisms, we observed that proteolytic activity and expression of the proteasome catalytic subunits were decreased in the mammospheres. Additionally, mammospheres retained a high level of p62 and the silencing of p62 was observed to attenuate NRF2 activation. NRF2 increase was confirmed in sphere-cultures of the colon and ovarian cancer cells. The functional implication of NRF2 was demonstrated in NRF2-knockdown mammospheres. NRF2-silenced mammospheres demonstrated increased cell death and retarded sphere growth as a result of target gene repression. Moreover, unlike the control mammospheres, NRF2-knockdown mammospheres did not develop anticancer drug resistance. Collectively, these results indicated that altered proteasome function and p62 expression caused NRF2 activation in CSC-enriched mammospheres. In addition, NRF2 appeared to play a role in CSC survival and anticancer drug resistance. PMID:25717032

  19. Proteasome regulates turnover of toxic human amylin in pancreatic cells

    PubMed Central

    Singh, Sanghamitra; Trikha, Saurabh; Sarkar, Anjali; Jeremic, Aleksandar M.

    2016-01-01

    Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin’s clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome’s proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin’s turnover and detoxification in pancreatic cells. PMID:27340132

  20. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease.

    PubMed

    Ihara, Yasuo; Morishima-Kawashima, Maho; Nixon, Ralph

    2012-08-01

    As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.

  1. Targeting the ubiquitin-proteasome system for cancer therapy

    PubMed Central

    Yang, Yili; Kitagaki, Jirouta; Wang, Honghe; Hou, Dexing; Perantoni, Alan O.

    2009-01-01

    Summary The ubiquitin-proteasome system plays a critical role in controlling the level, activity, and location of various cellular proteins. Significant progress has been made in investigating the molecular mechanisms of ubiquitination, particularly in understanding the structure of the ubiquitination machinery and identifying ubiquitin protein ligases, the primary specificity-determining enzymes. Therefore, it is now possible to target specific molecules involved in the ubiquitination and proteasomal degradation to regulate many cellular processes such as signal transduction, proliferation and apoptosis. In particular, alterations in ubiquitination are observed in most, if not all, cancer cells. This is manifested by destabilization of tumor suppressors, such as p53, and overexpression of oncogenes such as c-Myc and c-Jun. In addition to the development and clinical validation of proteasome inhibitor Bortezomib in myeloma therapy, recent studies have demonstrated that it is possible to develop inhibitors for specific ubiquitination and deubiquitination enzymes. With the help of structural studies, rational design, and chemical synthesis, it is conceivable that we will be able to use “druggable” inhibitors of the ubiquitin system to evaluate their effects in animal tumor models in the not-so-distant future. PMID:19037995

  2. The role of allostery in the ubiquitin-proteasome system

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2012-01-01

    The Ubiquitin-Proteasome System is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins, such as ubiquitin, SUMO and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2, and E3 ubiquitin ligases. The proteasomes recognize the ubiquitin-like protein tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the Ubiquitin-Proteasome System action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

  3. Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy

    PubMed Central

    Kang, Jeon Woong; Singh, Surya P.; Nguyen, Freddy T.; Lue, Niyom; Sung, Yongjin; So, Peter T. C.; Dasari, Ramachandra R.

    2016-01-01

    Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have applied this system to monitor the effects of Bortezomib, a proteasome inhibitor drug, on multiple myeloma cells. Cluster imaging followed by spectral profiling suggest major differences in the nuclear and cytoplasmic contents of cells due to drug treatment that can be monitored with Raman spectroscopy. Spectra were also acquired from group of cells and feasibility of discrimination among treated and untreated cells using principal component analysis (PCA) was accessed. Findings support the feasibility of Raman technologies as an alternate, novel method for monitoring live cell dynamics with minimal external perturbation. PMID:27983660

  4. Structure of an endogenous yeast 26S proteasome reveals two major conformational states.

    PubMed

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J; Shi, Yigong; Wang, Feng

    2016-03-08

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.

  5. Synthetic Uncleavable Ubiquitinated Proteins Dissect Proteasome Deubiquitination and Degradation, and Highlight Distinctive Fate of Tetraubiquitin.

    PubMed

    Singh, Sumeet K; Sahu, Indrajit; Mali, Sachitanand M; Hemantha, Hosahalli P; Kleifeld, Oded; Glickman, Michael H; Brik, Ashraf

    2016-12-14

    Various hypotheses have been proposed regarding how chain length, linkage type, position on substrate, and susceptibility to deubiquitinases (DUBs) affect processing of different substrates by proteasome. Here we report a new strategy for the chemical synthesis of ubiquitinated proteins to generate a set of well-defined conjugates bearing an oxime bond between the chain and the substrate. We confirmed that this isopeptide replacement is resistant to DUBs and to shaving by proteasome. Analyzing products generated by proteasomes ranked how chain length governed degradation outcome. Our results support that (1) the cleavage of the proximal isopeptide bond is not a prerequisite for proteasomal degradation, (2) by overcoming trimming at the proteasome, tetraUb is a fundamentally different signal than shorter chains, and (3) the tetra-ubiquitin chain can be degraded with the substrate. Together these results highlight the usefulness of chemistry to dissect the contribution of proteasome-associated DUBs and the complexity of the degradation process.

  6. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview.

    PubMed

    Guedes, Romina A; Serra, Patrícia; Salvador, Jorge A R; Guedes, Rita C

    2016-07-16

    Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field.

  7. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  8. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide

    PubMed Central

    Samanovic, Marie I.; Tu, Shengjiang; Novák, Ondřej; Iyer, Lakshminarayan M.; McAllister, Fiona E.; Aravind, L.; Gygi, Steven P.; Hubbard, Stevan R.; Strnad, Miroslav; Darwin, K. Heran

    2015-01-01

    Summary One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO-resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homologue of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report for the first time that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO. PMID:25728768

  9. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes.

    PubMed

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael P H; Mishto, Michele

    2015-09-22

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage.

  10. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    SciTech Connect

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  11. Structure of an endogenous yeast 26S proteasome reveals two major conformational states

    PubMed Central

    Luan, Bai; Huang, Xiuliang; Wu, Jianping; Mei, Ziqing; Wang, Yiwei; Xue, Xiaobin; Yan, Chuangye; Wang, Jiawei; Finley, Daniel J.; Shi, Yigong; Wang, Feng

    2016-01-01

    The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. PMID:26929360

  12. Proteasome activity is required for the initiation of precancerous pancreatic lesions

    PubMed Central

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degronODC (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-KrasG12D model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-KrasG12D mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  13. Changes in expression of proteasome in rats at different stages of atherosclerosis

    PubMed Central

    Oenzil, Fadil; Yanwirasti; Yerizel, Eti

    2016-01-01

    It has been suggested that proteasome system has a role in initiation, progression, and complication stages of atherosclerosis. Although there is still controversy, there has been no research that compares the expression of proteasome in tissue and serum at each of these stages. This study aimed to investigated the expression of proteasome at different stages of atherosclerosis using rat model. We measured the expression of aortic proteasome by immunohistochemical analyses and were then analyzed using ImageJ software for percentage of area and integrated density. We used Photoshop version 3.0 to analyze aortic proteasome expression as a comparison. We measured serum proteasome expression by enzyme linked immunosorbents assays. Kruskal-Wallis test was used to compare mean value of percentage of area and serum proteasome. Analysis of variance test was used to compare mean value of integrated density. Correlation test between vascular proteasome expression and serum proteasome expression was made using Spearman test. A P-value of 0.05 was considered statistically significant. Compared with normal, percentage of area was higher in initiation, progression, and complication. Compared with normal, integrated density was higher in initiation and further higher in progression and complication. Data from Image J is similar with data from Photoshop. Serum proteasome expression was higher in initiation compared with normal, and further higher in progression and complication. It was concluded that there were different vascular proteasome expression and serum proteasome expression at the stages of atherosclerosis. These results may be used in research into new marker and therapeutic target in atherosclerosis. PMID:27382511

  14. Changes in expression of proteasome in rats at different stages of atherosclerosis.

    PubMed

    Ismawati; Oenzil, Fadil; Yanwirasti; Yerizel, Eti

    2016-06-01

    It has been suggested that proteasome system has a role in initiation, progression, and complication stages of atherosclerosis. Although there is still controversy, there has been no research that compares the expression of proteasome in tissue and serum at each of these stages. This study aimed to investigated the expression of proteasome at different stages of atherosclerosis using rat model. We measured the expression of aortic proteasome by immunohistochemical analyses and were then analyzed using ImageJ software for percentage of area and integrated density. We used Photoshop version 3.0 to analyze aortic proteasome expression as a comparison. We measured serum proteasome expression by enzyme linked immunosorbents assays. Kruskal-Wallis test was used to compare mean value of percentage of area and serum proteasome. Analysis of variance test was used to compare mean value of integrated density. Correlation test between vascular proteasome expression and serum proteasome expression was made using Spearman test. A P-value of 0.05 was considered statistically significant. Compared with normal, percentage of area was higher in initiation, progression, and complication. Compared with normal, integrated density was higher in initiation and further higher in progression and complication. Data from Image J is similar with data from Photoshop. Serum proteasome expression was higher in initiation compared with normal, and further higher in progression and complication. It was concluded that there were different vascular proteasome expression and serum proteasome expression at the stages of atherosclerosis. These results may be used in research into new marker and therapeutic target in atherosclerosis.

  15. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial.

    PubMed

    Muul, Linda Mesler; Tuschong, Laura M; Soenen, Sherry Lau; Jagadeesh, G Jayashree; Ramsey, W Jay; Long, Zhifeng; Carter, Charles S; Garabedian, Elizabeth K; Alleyne, Melinna; Brown, Margaret; Bernstein, Wendy; Schurman, Shepherd H; Fleisher, Thomas A; Leitman, Susan F; Dunbar, Cynthia E; Blaese, R Michael; Candotti, Fabio

    2003-04-01

    The first human gene therapy experiment begun in September 1990 used a retroviral vector containing the human adenosine deaminase (ADA) cDNA to transduce mature peripheral blood lymphocytes from patients with ADA deficiency, an inherited disorder of immunity. Two patients who had been treated with intramuscular injections of pegylated bovine ADA (PEG-ADA) for 2 to 4 years were enrolled in this trial and each received a total of approximately 10(11) cells in 11 or 12 infusions over a period of about 2 years. No adverse events were observed. During and after treatment, the patients continued to receive PEG-ADA, although at a reduced dose. Ten years after the last cell infusion, approximately 20% of the first patient's lymphocytes still carry and express the retroviral gene, indicating that the effects of gene transfer can be remarkably long lasting. On the contrary, the persistence of gene-marked cells is very low (< 0.1%), and no expression of the transgene is detectable in lymphocytes from the second patient who developed persisting antibodies to components of the gene transfer system. Data collected from these original patients have provided novel information about the longevity of T lymphocytes in humans and persistence of gene expression in vivo from vectors driven by the Moloney murine leukemia virus long-terminal repeat (LTR) promoter. This long-term follow-up has also provided unique evidence supporting the safety of retroviral-mediated gene transfer and illustrates clear examples of both the potential and the pitfalls of gene therapy in humans.

  16. [Immune proteasomes in the development of rat immune system].

    PubMed

    Karpova, Ia D; Lyupina, Iu V; Astakhova, T M; Stepanova, A A; Erokhov, P A; Abramova, E B; Sharova, N P

    2013-01-01

    The dynamics of the expression of LMP7 and LMP2 proteasome subunits in embryonic and early postnatal development of rat spleen and liver is investigated in comparison with the dynamics of chymotrypsin-like and caspase-like proteasome activities and expression of MHC (major histocompatibility complex) class I molecules. The immune subunits LMP7 and LMP2 distribution in spleen and liver cells in the development process is also studied. A mutual for both organs tendency to the increase of the expression of both LMP7 subunit and LMP2 one on P21 (the 21st postnatal day) as compared to the embryonic period is discovered. However, the total proteasome level is shown to be constant. At definite development stages, the dynamics of immune subunits expression in the spleen and liver was different. In the spleen gradual enhancement of both immune subunits level being detected on P1, P18 and P21, in the liver gradual enhancement periods on E16 (the 16th embryonic day) and E18 changed to the stage of the shrink of immune subunits level on P5. This level did not reliably change till P18 and was augmented on P21. The alterations revealed were accompanied by chymotrypsin-like activity raise and caspase-like activity drop in spleen by P21 as compared with the embryonic period, which proves the enlargement of proteasome ability to form antigenic epitopes for MHC class I molecules. In the liver, both activities increased by P21 in comparison with the embryonic period. Such dynamics of caspase-like activity can be explained not only by the change of proteolytic constitutive and immune subunits, but also by additional regulatory mechanisms. Besides, it is discovered that the increment of immune subunits expression in the early spleen development is connected with the process of successive forming the white pulp by B- and T-lymphocytes enriched by immune subunits. In the liver, the growth of immune subunits level by P21 was accompanied by their expression expansion in hepatocytes, while

  17. Natural Compounds with Proteasome Inhibitory Activity for Cancer Prevention and Treatment

    PubMed Central

    Yang, H; Landis-Piwowar, KR.; Chen, D; Milacic, V; Dou, QP

    2012-01-01

    The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiuple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structure and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers. PMID:18537678

  18. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    PubMed

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-05

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.

  19. The Cdc48-Vms1 complex maintains 26S proteasome architecture.

    PubMed

    Tran, Joseph R; Brodsky, Jeffrey L

    2014-03-15

    The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48-Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells.

  20. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells.

    PubMed

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-03-29

    Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses.

  1. The Cdc48–Vms1 complex maintains 26S proteasome architecture

    PubMed Central

    Tran, Joseph R.; Brodsky, Jeffrey L.

    2014-01-01

    The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48–Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells. PMID:24351022

  2. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system.

    PubMed

    Kastle, Marc; Grune, Tilman

    2011-12-01

    Living in an oxygen containing environment is automatically connected to oxidative stress. Beside lipids and nucleic acids, especially proteins are very susceptible for oxidative modifications. These oxidative modifications comprise alterations of single amino acids, like the formation of protein carbonyls and methionine sulfoxide, or the aggregation of whole proteins. Due to the ongoing accumulation of protein aggregates during the aging process, the cellular protein quality control system becomes more and more overwhelmed. One essential element of the protein quality control machinery is the ubiquitin proteasomal system which plays therefore a crucial part in the aging process, too. Ubiquitination of proteins is a three step mechanism to tag proteins with a polyubiquitin chain for the proteasome. The proteasome is a regulated, barrel-shaped multi-enzyme complex which is responsible for the degradation of proteins. Although there is no drastic loss of all proteasomal subunits during the aging process, there is a functional decline of the proteasome activity in aging organisms. Impairment of the ubiquitin proteasome system leads to increasing protein aggregation and cellular death. A lot of age related diseases are closely connected to an inhibition of the proteasome and the formation of large protein aggregates. Especially skin aging, atherosclerosis, age-dependent macula degeneration, cataract formation and several neurodegenerative diseases are directly connected to the decline of proteasome function. This review outlines the connections between aging, oxidative stress and protein oxidation, as well as the influence on the ubiquitin proteasomal system and several associated diseases.

  3. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.

  4. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.

    PubMed

    Lee, Seung-Hoon; Park, Yoon; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2010-12-31

    Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.

  5. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGES

    Bai, Lin; Hu, Kuan; Wang, Tong; ...

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, themore » truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  6. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome

    PubMed Central

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  7. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component.

    PubMed

    Stoop, Esther J M; Schipper, Tim; Rosendahl Huber, Sietske K; Nezhinsky, Alexander E; Verbeek, Fons J; Gurcha, Sudagar S; Besra, Gurdyal S; Vandenbroucke-Grauls, Christina M J E; Bitter, Wilbert; van der Sar, Astrid M

    2011-07-01

    The hallmark of tuberculosis (TB) is the formation of granulomas, which are clusters of infected macrophages surrounded by additional macrophages, neutrophils and lymphocytes. Although it has long been thought that granulomas are beneficial for the host, there is evidence that mycobacteria also promote the formation of these structures. In this study, we aimed to identify new mycobacterial factors involved in the initial stages of granuloma formation. We exploited the zebrafish embryo Mycobacterium marinum infection model to study initiation of granuloma formation and developed an in vivo screen to select for random M. marinum mutants that were unable to induce granuloma formation efficiently. Upon screening 200 mutants, three mutants repeatedly initiated reduced granuloma formation. One of the mutants was found to be defective in the espL gene, which is located in the ESX-1 cluster. The ESX-1 cluster is disrupted in the Mycobacterium bovis BCG vaccine strain and encodes a specialized secretion system known to be important for granuloma formation and virulence. Although espL has not been implicated in protein secretion before, we observed a strong effect on the secretion of the ESX-1 substrates ESAT-6 and EspE. We conclude that our zebrafish embryo M. marinum screen is a useful tool to identify mycobacterial genes involved in the initial stages of granuloma formation and that we have identified a new component of the ESX-1 secretion system. We are confident that our approach will contribute to the knowledge of mycobacterial virulence and could be helpful for the development of new TB vaccines.

  8. GSA-PCA: gene set generation by principal component analysis of the Laplacian matrix of a metabolic network

    PubMed Central

    2012-01-01

    Background Gene Set Analysis (GSA) has proven to be a useful approach to microarray analysis. However, most of the method development for GSA has focused on the statistical tests to be used rather than on the generation of sets that will be tested. Existing methods of set generation are often overly simplistic. The creation of sets from individual pathways (in isolation) is a poor reflection of the complexity of the underlying metabolic network. We have developed a novel approach to set generation via the use of Principal Component Analysis of the Laplacian matrix of a metabolic network. We have analysed a relatively simple data set to show the difference in results between our method and the current state-of-the-art pathway-based sets. Results The sets generated with this method are semi-exhaustive and capture much of the topological complexity of the metabolic network. The semi-exhaustive nature of this method has also allowed us to design a hypergeometric enrichment test to determine which genes are likely responsible for set significance. We show that our method finds significant aspects of biology that would be missed (i.e. false negatives) and addresses the false positive rates found with the use of simple pathway-based sets. Conclusions The set generation step for GSA is often neglected but is a crucial part of the analysis as it defines the full context for the analysis. As such, set generation methods should be robust and yield as complete a representation of the extant biological knowledge as possible. The method reported here achieves this goal and is demonstrably superior to previous set analysis methods. PMID:22876834

  9. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection.

    PubMed

    Dieudé, Mélanie; Bell, Christina; Turgeon, Julie; Beillevaire, Deborah; Pomerleau, Luc; Yang, Bing; Hamelin, Katia; Qi, Shijie; Pallet, Nicolas; Béland, Chanel; Dhahri, Wahiba; Cailhier, Jean-François; Rousseau, Matthieu; Duchez, Anne-Claire; Lévesque, Tania; Lau, Arthur; Rondeau, Christiane; Gingras, Diane; Muruve, Danie; Rivard, Alain; Cardinal, Héloise; Perreault, Claude; Desjardins, Michel; Boilard, Éric; Thibault, Pierre; Hébert, Marie-Josée

    2015-12-16

    Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation.

  10. Apoptosis inducer NGFI-B is degraded by the proteasome and stabilized by treatment with EGF

    SciTech Connect

    Strom, Bjorn O.; Paulsen, Ragnhild E.

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer NGFI-B is a molecular target for some anti-cancer drugs. Black-Right-Pointing-Pointer NGFI-B turnover may be important for their anti-cancer action. Black-Right-Pointing-Pointer NGFI-B is degraded by the proteasome. Black-Right-Pointing-Pointer NGFI-B is stabilized by treatment with EGF. Black-Right-Pointing-Pointer Mimicking the EGF-induced phosphorylation also stabilizes the protein. -- Abstract: NGFI-B is a nuclear receptor and immediate early gene that is upregulated in many different tumour cell lines. As it is involved in cell death and survival, it has been suggested as a target for anti-cancer drugs. The protein level of NGFI-B is important for its functions and may be regulated through induction or stabilization. NGFI-B protein stability was studied using the protein synthesis inhibitor cycloheximide in CV1 cells transiently transfected with NGFI-B. Inhibiting the proteasome with MG132 stabilized NGFI-B, indicating that the proteasome is responsible for break-down of NGFI-B, as it is for many nuclear receptors. In order to determine regions responsible for the break-down of NGFI-B two N-terminal regions with high PEST-scores were deleted. Deletion of amino acids 122-195 containing a PEST-sequence which includes an ERK2 phosphorylation target, gave a more stable protein. In addition, treatment of the cells with the ERK2 activator EGF increased the stability of wild type NGFI-B. We then tested whether a mutation at threonine 142 influenced the stability of NGFI-B. We found that the phosphorylation-mimicking mutant NGFI-B T142E had an increased stability, while the non-phosphorylable mutant (T142A) showed similar stability to the wild type. Thus, EGF-stimulation of cells may be a mechanism for priming the cells for effects of NGFI-B by increasing its stability.

  11. Polypharmacology of small molecules targeting the ubiquitin–proteasome and ubiquitin-like systems

    PubMed Central

    Amelio, Ivano; Landré, Vivien; Knight, Richard A.; Lisitsa, Andrey; Melino, Gerry; Antonov, Alexey V.

    2015-01-01

    Targeting the ubiquitin–proteasome system (UPS) and ubiquitin-like signalling systems (UBL) has been considered a promising therapeutic strategy to treat cancer, neurodegenerative and immunological disorders. There have been multiple efforts recently to identify novel compounds that efficiently modulate the activities of different disease-specific components of the UPS-UBL. However, it is evident that polypharmacology (the ability to affect multiple independent protein targets) is a basic property of small molecules and even highly potent molecules would have a number of “off target” effects. Here we have explored publicly available high-throughput screening data covering a wide spectrum of currently accepted drug targets in order to understand polypharmacology of small molecules targeting different components of the UPS-UBL. We have demonstrated that molecules targeting a given UPS-UBL protein also have high odds to target a given off target spectrum. Moreover, the off target spectrum differs significantly between different components of UPS-UBL. This information can be utilized further in drug discovery efforts, to improve drug efficiency and to reduce the risk of potential side effects of the prospective drugs designed to target specific UPS-UBL components. PMID:25991664

  12. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration

    PubMed Central

    Wan, Jijun; Yourshaw, Michael; Mamsa, Hafsa; Rudnik-Schöneborn, Sabine; Menezes, Manoj P.; Hong, Ji Eun; Leong, Derek W.; Senderek, Jan; Salman, Michael S.; Chitayat, David; Seeman, Pavel; von Moers, Arpad; Graul-Neumann, Luitgard; Kornberg, Andrew J.; Castro-Gago, Manuel; Sobrido, María-Jesús; Sanefuji, Masafumi; Shieh, Perry B.; Salamon, Noriko; Kim, Ronald C.; Vinters, Harry V.; Chen, Zugen; Zerres, Klaus; Ryan, Monique M.; Nelson, Stanley F.; Jen, Joanna C.

    2012-01-01

    RNA exosomes are multi-subunit complexes conserved throughout evolution1 and emerging as the major cellular machinery for processing, surveillance, and turnover of a diverse spectrum of coding and non-coding RNA substrates essential for viability2. By exome sequencing, we discovered recessive mutations in exosome component 3 (EXOSC3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly, and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 [PCH1; OMIM 607596]3–6. We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment with small brain and poor motility, reminiscent of human clinical features and largely rescued by coinjected wildtype but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome gene responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration. PMID:22544365

  13. Genome-Wide Expression Profiling of Soybean Two-Component System Genes in Soybean Root and Shoot Tissues under Dehydration Stress

    PubMed Central

    Le, Dung Tien; Nishiyama, Rie; Watanabe, Yasuko; Mochida, Keiichi; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2011-01-01

    Two-component systems (TCSs) play vital functions in the adaptation of plants to environmental stresses. To identify soybean TCS genes involved in the regulation of drought stress response, we performed tissue-specific expression profiling of all 83 putative TCS genes in plants subjected to dehydration. Under well-watered conditions, the majority of soybean TCS genes were expressed higher in the root tissues. Additionally, a high variability in transcript abundance was observed for the TCS genes in both roots and shoots. Under dehydration, TCS genes were more responsive in shoots than in roots. Further analysis indicated that 50% more TCS genes were repressed by dehydration than induced. Specifically, 18 genes were induced by 2-fold or more, whereas 33 genes were down-regulated at least 2-fold by dehydration. TCS genes putatively involved in cytokinin and ethylene signallings strongly responded to dehydration, suggesting that crosstalk exists between different hormonal and stress pathways. Our study provides the first glance into the complex regulatory roles of soybean TCSs underlying their functions in response to dehydration. Additionally, these systematic expression analyses identified excellent dehydration-responsive candidate genes to further clarify soybean TCS functions in drought response and to enable the development of improved drought tolerance in transgenic soybeans. PMID:21208938

  14. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    PubMed

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue.

  15. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells.

    PubMed Central

    Brooks, P; Fuertes, G; Murray, R Z; Bose, S; Knecht, E; Rechsteiner, M C; Hendil, K B; Tanaka, K; Dyson, J; Rivett, J

    2000-01-01

    Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable gamma-interferon-inducible catalytic beta-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit specific antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core alpha-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some significant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immunofluorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following gamma-interferon treatment of cultured cells but gamma-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes. PMID:10657252

  16. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes

    PubMed Central

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Gao, Yuan; Yu, Li-Rong; Alla, Ramani; Shmookler Reis, Robert

    2015-01-01

    Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2–6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1–42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72–86% (P < 10−6). In worms expressing Aβ1–42, knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10−6). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly

  17. In vivo and in vitro phosphorylation of the alpha 7/PRS1 subunit of Saccharomyces cerevisiae 20 S proteasome: in vitro phosphorylation by protein kinase CK2 is absolutely dependent on polylysine.

    PubMed

    Pardo, P S; Murray, P F; Walz, K; Franco, L; Passeron, S

    1998-01-15

    In this paper, we show that the Saccharomyces cerevisiae 20 S proteasome subunit 1 (PRS1), recently renamed as alpha 7, is the main in vivo phosphorylated and in vitro CK2-phosphorylatable proteasome component. In vitro phosphorylation occurs only in the presence of polylysine, a characteristic that distinguishes the yeast proteasome from mammalian ones which are phosphorylated by CK2 in the absence of polylysine. A peptide reproducing the long acidic C-terminal tail of alpha 7/PRS1, where consensus CK2 phosphorylation sites are located, was also phosphorylated by the CK2 holoenzyme in a polylysine-dependent manner, suggesting that this region contains structural features responsible for this particular behavior.

  18. Effects of Radiation on Proteasome Function in Prostate Cancer Cells

    DTIC Science & Technology

    2012-02-01

    vol/vol] Nonidet P - 40 and 20% glycerol) were added to the cells, and the mixtures were vortexed for 1 minute. Beads and cell debris were removed by...20 40 60 80 G1 S G2/M % o f t ot al p op ul at io n PC3 0 2 4 6 8 10 0.01 0.1 1 Non-stopped 0h 6h Dose (Gy) Su rv iv in g fr ac tio n Fig. 1...between 0 and 40 %, suggesting that proteasomes are far more dynamic than we initially thought. A major discovery in year 2 and 3 was the

  19. Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons.

    PubMed

    Schapira, Anthony H V; Cleeter, Michael W J; Muddle, John R; Workman, Jane M; Cooper, J Mark; King, Rosalind H M

    2006-08-01

    Dysfunction of the ubiquitin-proteasomal system (UPS) has been implicated in the pathogenesis of Parkinson's disease. The systemic administration of UPS inhibitors has been reported to induce nigrostriatal cell death and model Parkinson's disease pathology in rodents. We administered a synthetic, specific UPS inhibitor (PSI) subcutaneously to rats and quantified substantia nigral tyrosine hydroxylase-positive dopaminergic neurons by stereology. PSI caused a 15% decrease in UPS activity at 2 weeks and a 42% reduction in substantia nigra pars compacta tyrosine hydroxylase-positive neurons at 8 weeks. Systemic inhibition of the UPS warrants further evaluation as a means to model Parkinson's disease.

  20. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases

    PubMed Central

    Zheng, Qiuyang; Huang, Timothy; Zhang, Lishan; Zhou, Ying; Luo, Hong; Xu, Huaxi; Wang, Xin

    2016-01-01

    The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways, where abnormal UPS function has been observed in cancer and neurological diseases. Many neurodegenerative diseases share a common pathological feature, namely intracellular ubiquitin-positive inclusions formed by aggregate-prone neurotoxic proteins. This suggests that dysfunction of the UPS in neurodegenerative diseases contributes to the accumulation of neurotoxic proteins and to instigate neurodegeneration. Here, we review recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. PMID:28018215

  1. Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome.

    PubMed

    Pack, Chan-Gi; Yukii, Haruka; Toh-e, Akio; Kudo, Tai; Tsuchiya, Hikaru; Kaiho, Ai; Sakata, Eri; Murata, Shigeo; Yokosawa, Hideyoshi; Sako, Yasushi; Baumeister, Wolfgang; Tanaka, Keiji; Saeki, Yasushi

    2014-03-06

    The 26S proteasome is a 2.5-MDa multisubunit protease complex that degrades polyubiquitylated proteins. Although its functions and structure have been extensively characterized, little is known about its dynamics in living cells. Here, we investigate the absolute concentration, spatio-temporal dynamics and complex formation of the proteasome in living cells using fluorescence correlation spectroscopy. We find that the 26S proteasome complex is highly mobile, and that almost all proteasome subunits throughout the cell are stably incorporated into 26S proteasomes. The interaction between 19S and 20S particles is stable even in an importin-α mutant, suggesting that the 26S proteasome is assembled in the cytoplasm. Furthermore, a genetically stabilized 26S proteasome mutant is able to enter the nucleus. These results suggest that the 26S proteasome completes its assembly process in the cytoplasm and translocates into the nucleus through the nuclear pore complex as a holoenzyme.

  2. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Liu, Zhenning; Zhang, Mei; Kong, Lijun; Lv, Yanxia; Zou, Minghua; Lu, Gang; Cao, Jiashu; Yu, Xiaolin

    2014-08-01

    In plants, a two component system (TCS) composed of sensor histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs) has been employed in cytokinin signal transduction. A TCS exhibits important functions in diverse biological processes, including plant growth, development, and response to environmental stimuli. Conducting an exhaustive search of the Chinese cabbage genome, a total of 20 HK(L) (11 HKs and 9 HKLs), 8 HP (7 authentic and 1 pseudo), and 57 RR (21 Type-A, 17 Type-B, 4 Type-C, and 15 pseudo) proteins were identified. The structures, conserved domains, and phylogenetic relationships of these protein-coding genes were analysed in detail. The duplications, evolutionary patterns, and divergence of the TCS genes were investigated. The transcription levels of TCS genes in various tissues, organs, and developmental stages were further analysed to obtain information of the functions of these genes. Cytokinin-related binding elements were found in the putative promoter regions of Type-A BrRR genes. Furthermore, gene expression patterns to adverse environmental stresses (drought and high salinity) and exogenous phytohormones (tZ and ABA) were investigated. Numerous stress-responsive candidate genes were obtained. Our systematic analyses provided insights into the characterization of the TCS genes in Chinese cabbage and basis for further functional studies of such genes.

  3. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation

    PubMed Central

    Lechner, Anna; Eustáquio, Alessandra S.; Gulder, Tobias A. M.; Hafner, Mathias; Moore, Bradley S.

    2011-01-01

    The chlorinated natural product salinosporamide A is a potent 20S proteasome inhibitor currently in clinical trials as an anticancer agent. To deepen our understanding of salinosporamide biosynthesis, we investigated the function of a LuxR-type pathway-specific regulatory gene, salR2, and observed a selective effect on the production of salinosporamide A over its less active aliphatic analogs. SalR2 was shown to specifically activate genes involved in the biosynthesis of the halogenated precursor chloroethylmalonyl-CoA, which is a dedicated precursor of salinosporamide A. Specifically, SalR2 activates transcription of two divergent operons – one of which contains the unique S-adenosyl-L-methionine-dependent chlorinase encoding gene salL. By applying this knowledge towards rational engineering, we were able to selectively double salinosporamide A production. This study exemplifies the specialized regulation of a polyketide precursor pathway and its application to the selective overproduction of a specific natural product congener. PMID:22195555

  4. Dissecting the regulon of the two-component system CvsSR: Identifying new virulence genes in Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recognition of environmental changes and regulation of genes that allow for adaption to those changes is essential for survival of bacteria. Two-component systems (TCSs) allow bacteria to sense and adapt to their environment. We previously identified the TCS CvsSR in the bacterial plant pathogen Pse...

  5. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    PubMed

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer.

  6. Molecular characterization and intracellular distribution of the alpha 5 subunit of Trypanosoma cruzi 20S proteasome.

    PubMed

    Gutiérrez, Bessy; Osorio, Luis; Motta, María Cristina M; Huima-Byron, Telervo; Erdjument-Bromage, Heydeie; Muñoz, Chri