Science.gov

Sample records for proteasome inhibitor lactacystin

  1. Prolyl oligopeptidase inhibition attenuates the toxicity of a proteasomal inhibitor, lactacystin, in the alpha-synuclein overexpressing cell culture.

    PubMed

    Myöhänen, Timo T; Norrbacka, Susanna; Savolainen, Mari H

    2017-01-01

    Lewy bodies, the histopathological hallmarks of Parkinson's disease (PD), contain insoluble and aggregated α-synuclein (aSyn) and many other proteins, proposing a role for failure in protein degradation system in the PD pathogenesis. Proteasomal dysfunction has indeed been linked to PD and aSyn oligomers have been shown to inhibit proteasomes and autophagy. Our recent studies have shown that inhibitors of prolyl oligopeptidase (PREP) can prevent the aggregation and enhance the clearance of accumulated aSyn, and therefore, we wanted to study if PREP inhibition can overcome the aSyn aggregation and toxicity induced by lactacystin, a proteasomal inhibitor. The cells overexpressing human A30P or A53T mutated aSyn were incubated with lactacystin and a PREP inhibitor, KYP-2047, for 48h. Theafter, the cells were fractioned, and the effects of lactacystin with/without 1μM KYP-2047 on aSyn aggregation and ubiquitin accumulation, cell viability and on autophagic markers (p62, Beclin1 and LC3BII) were studied. We found that KYP-2047 attenuated lactacystin-induced cell death in mutant aSyn overexpressing cells but not in non-overexpressing control cells. KYP-2047 reduced significantly SDS-insoluble high-molecular-weight aSyn oligomers that were in line with the cell viability results. In addition, significant reduction in protein accumulation marker, p62, was seen in SDS fraction while LC3BII, a marker for autophagosome formation, was increased, indicating to enhanced autophagy. Our results further streghten the possibilities for PREP inhibitors as a potential drug therapy against synucleinopathies and other protein aggregating diseases.

  2. Proteasome Inhibitors Block Development of Plasmodium spp.

    PubMed Central

    Gantt, Soren M.; Myung, Joon Mo; Briones, Marcelo R. S.; Li, Wei Dong; Corey, E. J.; Omura, Satoshi; Nussenzweig, Victor; Sinnis, Photini

    1998-01-01

    Proteasomes degrade most of the proteins inside eukaryotic cells, including transcription factors and regulators of cell cycle progression. Here we show that nanomolar concentrations of lactacystin, a specific irreversible inhibitor of the 20S proteasome, inhibit development of the exoerythrocytic and erythrocytic stages of the malaria parasite. Although lactacystin-treated Plasmodium berghei sporozoites are still invasive, their development into exoerythrocytic forms (EEF) is inhibited in vitro and in vivo. Erythrocytic schizogony of P. falciparum in vitro is also profoundly inhibited when drug treatment of the synchronized parasites is prior, but not subsequent, to the initiation of DNA synthesis, suggesting that the inhibitory effect of lactacystin is cell cycle specific. Lactacystin reduces P. berghei parasitemia in rats, but the therapeutic index is very low. Along with other studies showing that lactacystin inhibits stage-specific transformation in Trypanosoma and Entamoeba spp., these findings highlight the potential of proteasome inhibitors as drugs for the treatment of diseases caused by protozoan parasites. PMID:9756786

  3. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  4. Effect of proteasome inhibitors on the growth, encystation, and excystation of Entamoeba histolytica and Entamoeba invadens.

    PubMed

    Makioka, Asao; Kumagai, Masahiro; Ohtomo, Hiroshi; Kobayashi, Seiki; Takeuchi, Tsutomu

    2002-05-01

    The effect of three proteasome inhibitors, lactacystin, clasto-lactacystin beta-lactone, and MG-132, on the growth, encystation, and excystation of Entamoeba histolytica and Entamoeba invadens was examined. All of these drugs blocked E. histolytica growth in a concentration-dependent manner; lactacystin was most potent for the inhibition and MG-132 showed the inhibitory effect only at higher concentrations. E. invadens was more resistant to these drugs than E. histolytica. Encystation of E. invadens was also inhibited and was more sensitive to the drugs than was growth. Beta-lactone was the most potent encystation inhibitor. The inhibitory effect of lactacystin and the beta-lactone on encystation was slightly and little abrogated by the removal of the drug, respectively. Multinucleation occurred in E. histolytica trophozoites treated with these drugs, being most marked with lactacystin. In contrast, no multinucleation was observed in E. invadens treated with the drugs. Electron microscopy revealed that the treatment of E. histolytica trophozoites with lactacystin led to an increase in the number of cells with many glycogen granules in the cytoplasm. Lactacystin, beta-lactone and MG-132 had no or little effect on the excystation and metacystic development of E. invadens. These results suggest that proteasome function plays an important role for Entamoeba growth and encystation, but has no obvious effect on excystation or metacystic development.

  5. Suppression of cytochrome P450 3A protein levels by proteasome inhibitors.

    SciTech Connect

    Zangar, Richard C. ); Kocarek, Thomas A.; Shen, Shang; Bollinger, Nikki ); Dahn, Michael S.; Lee, Donna W.

    2003-06-01

    We have previously reported that CYP3A cross-links with polyubiquitinated proteins in microsomes from nicardipine-treated rats in a process that is distinct from classical polyubiquitination. To further examine the role of the proteasome in CYP3A degradation, we investigated the effects of proteasome inhibitors lactacystin, MG132, proteasome inhibitor 1, and hemin in primary cultures of rat and human hepatocytes. With the exception of hemin, these agents increased the total pool of ubiquitinated proteins in microsomes isolated from rat hepatocytes, indicating that lactacystin, MG132, and proteasome inhibitor 1 effectively inhibited the proteasome in these cells. All four agents caused a reduction in the amount of the major approximately 55-kDa CYP3A band, opposite to what would be expected if the ubiquitin-proteasome pathway degraded CYP3A. Only hemin treatment caused an increase in high molecular mass (HMM) CYP3A bands. Because hemin treatment did not alter levels of ubiquitin in CYP3 A immunoprecipitates, the HMM CYP3A bands formed in response to hemin treatment clearly were not due to proteasome inhibition. Rather, because hemin treatment also caused an increase in HMM CYP3A in the detergent-insoluble fraction of the 10,000g pellet, the HMM CYP3A seems to represent a large protein complex that is unlikely to primarily represent ubiquitination.

  6. Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondria-mediated cell death

    PubMed Central

    Perez-Alvarez, Sergio; Solesio, Maria E; Manzanares, Jorge; Jordán, Joaquín; Galindo, María F

    2009-01-01

    Background and purpose: The proteasome inhibitor model of Parkinson's disease (PD) appears to reproduce many of the important behavioural, imaging, pathological and biochemical features of the human disease. However, the mechanisms involved in the lactacystin-induced, mitochondria-mediated apoptotic pathway remain poorly defined. Experimental approach: We have used lactacystin as a specific inhibitor of the 20S proteasome in the dopaminergic neuroblastoma cell line SH-SY5Y. We over-expressed a green fluorescent protein (GFP)–Bax fusion protein in these cells to study localization of Bax. Free radical scavengers were used to assess the role of reactive oxygen species (ROS) in these pathways. Key results: Lactacystin triggered a concentration-dependent increase in cell death mediated by the mitochondrial apoptotic pathway, and induced a change in mitochondrial membrane permeability accompanied by cytochrome c release. The participation of Bax protein was more critical than the formation of the permeability transition pore in mitochondria. GFP–Bax over-expression demonstrated Bax redistribution from the cytosol to mitochondria after the addition of lactacystin. ROS, but not p38 mitogen-activated protein kinase, participated in lactacystin-induced mitochondrial Bax translocation. Lactacystin disrupted the intracellular redox state by increasing ROS production and depleting endogenous antioxidant systems such as glutathione (GSH). Pharmacological depletion of GSH, using l-buthionine sulphoxide, potentiated lactacystin-induced cell death. Lactacystin sensitized neuroblastoma cells to oxidative damage, induced by subtoxic concentrations of 6-hydroxydopamine. Conclusions and implications: The lactacystin-induced, mitochondrial-mediated apoptotic pathway involved interactions between ROS, GSH and Bax. Lactacystin could constitute a potential factor in the development of sporadic PD. PMID:19785649

  7. Proteasome inhibitor patents (2010 - present).

    PubMed

    Metcalf, Rainer; Scott, Latanya M; Daniel, Kenyon G; Dou, Q Ping

    2014-04-01

    Over the past 3 years, numerous patents and patent applications have been submitted and published involving compounds designed to inhibit the proteasome. Proteasome inhibition has been of great interest in cancer research since disruption of proteolysis leads to a significant buildup of cytotoxic proteins and activation of apoptotic pathways, particularly in rapidly proliferating cells. The current standards in proteasome inhibition are the only FDA-approved inhibitors, bortezomib and carfilzomib. Although these drugs are quite effective in treating multiple myeloma and other blood tumors, there are shortcomings, including toxicities and resistance. Most of the current patents attempt to improve on existing compounds, by increasing bioavailability and selectivity, while attempting to reduce toxicity. A general categorization of similar compounds was employed to evaluate and compare drug design strategies. This review focuses on novel compounds and subsequent analogs developed for proteasome inhibition, used in preventing and treating human cancers. A comprehensive description and categorization of patents related to each type of compound and its derivatives, as well as their uses and efficacies as anticancer agents is included. A review of combination therapy patents has also been included. Although there are many diverse chemical scaffolds being published, there are few patented proteasome inhibitors whose method of inhibition is genuinely novel. Most patents utilize a destructive chemical warhead to attack the catalytic threonine residue of the proteasome active sites. Few patents try to depart from this, emphasizing the need for developing new mechanisms of action and specific targeting.

  8. Proteasome Inhibitors Prevent Tracheary Element Differentiation in Zinnia Mesophyll Cell Cultures1

    PubMed Central

    Woffenden, Bonnie J.; Freeman, Thomas B.; Beers, Eric P.

    1998-01-01

    To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin β-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at 96 h. Inhibition of the proteasome at 48 h, after cellular commitment to differentiation, did not alter the final percentage of TEs compared with controls. However, proteasome inhibition at 48 h delayed the differentiation process by approximately 24 h, as indicated by examination of both morphological markers and the expression of putative autolytic proteases. These results indicate that proteasome function is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL but not clasto-lactacystin β-lactone resulted in partial uncoupling of autolysis from differentiation. Results from gel analysis of protease activity suggested that the observed incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases. PMID:9765527

  9. Anti-angiogenic and anti-tumor properties of proteasome inhibitors.

    PubMed

    Daniel, Kenyon G; Kuhn, Deborah J; Kazi, Aslamuzzaman; Dou, Q Ping

    2005-11-01

    Tumor growth and metastasis depend on the formation of blood vessels, angiogenesis, to supply the developing mass with nutrients, oxygen, and waste removal. The proteasome, a massive multisubunit catabolic body, exerts a regulatory influence on angiogenesis. Inhibition of the proteasome activity has been found to inhibit angiogenesis and induce apoptosis in human cancer cells with limited toxicity to normal cells. Therefore, the dual action of angiogenesis inhibition and cell death induction makes proteasome inhibition an attractive modality for chemotherapy. A variety of proteasome inhibitors have been studied including: antibiotics such as lactacystin, the green tea polyphenols, and the boronic acid Velcade (MLN-341). Most recently, certain classes of copper compounds have been found to act as potent proteasome inhibitors. The potential of particular organic compounds, such as 8-hydroxyquinoline, to spontaneously bind with tumor cellular copper and form proteasome inhibitors provides a new modality of anti-proteasome and anti-angiogenesis chemotherapy. This review examines angiogenesis, the proteasome, representative proteasome inhibitors, and the emerging role of copper. The formation of new blood vessels, or angiogenesis, is an important and necessary function in both embryonic development and wound repair. Therefore, the ability to regenerate or form new vessels for blood flow is essential. The control of angiogenic pathways is tightly regulated in normal differentiated adult cells, which generally do not stimulate blood vessel growth unless injury occurs. However, cancerous tissues stimulate angiogenesis that in turn leads to increased tumor formation and possible metastases. Many of the factors involved in angiogenesis are regulated by the proteasome, which recently has become a focus in anti-cancer therapies due to its involvement in cell cycle and apoptosis control. Here we discuss angiogenesis and its relation to the proteasome. Additionally, current

  10. The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors

    PubMed Central

    Myung, Jayhyuk; Kim, Kyung Bo

    2008-01-01

    The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases. PMID:11410931

  11. Development and Characterization of Proteasome Inhibitors

    PubMed Central

    Kim, Kyung Bo; Fonseca, Fabiana N.; Crews, Craig M.

    2008-01-01

    Although many proteasome inhibitors have been either synthesized or identified from natural sources, the development of more sophisticated, selective proteasome inhibitors is important for a detailed understanding of proteasome function. We have found that antitumor natural product epoxomicin and eponemycin, both of which are linear peptides containing a α,β-epoxyketone pharmacophore, target proteasome for their antitumor activity. Structural studies of the proteasome–epoxomicin complex revealed that the unique specificity of the natural product toward proteasome is due to the α,β-epoxyketone pharmacophore, which forms an unusual six-membered morpholino ring with the amino terminal catalytic Thr-1 of the 20S proteasome. Thus, we believe that a facile synthetic approach for α,β-epoxyketone linear peptides provides a unique opportunity to develop proteasome inhibitors with novel activities. In this chapter, we discuss the detailed synthetic procedure of the α′,β′-epoxyketone natural product epoxomicin and its derivatives. PMID:16338383

  12. New cyclic peptide proteasome inhibitors.

    PubMed

    Baldisserotto, Anna; Marastoni, Mauro; Gavioli, Riccardo; Tomatis, Roberto

    2009-04-01

    Here we report the study of a new series of vinyl ester cyclopeptide analogues synthesized on the basis of our previous development of a class of cyclopeptides derived from our linear prototype inhibitors. In these compounds, the exocyclic pharmacophoric unit Leu-VE was linked to the gamma-carboxyl group of the glutamic acid residue at the C-terminal. The best analogues of the series have been shown to inhibit the caspase-like activity of the proteasome at nanomolar concentrations and have also demonstrated good resistance to proteolysis and a capacity to permeate the cell membrane.

  13. A proteasome inhibitor confers cardioprotection.

    PubMed

    Lüss, Hartmut; Schmitz, Wilhelm; Neumann, Joachim

    2002-04-01

    In several cell types, proteasome inhibitors like carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132) induce the 72 kDa heat shock protein (Hsp72) and exert cell protective effects. However, data in cardiomyocytes are currently lacking. We investigated the effects of MG132 in cultured neonatal rat cardiomyocytes. MG132 time- and concentration-dependently induced Hsp72 and Hsp32 at mRNA and protein levels. Although Hsp60 mRNA was induced, Hsp60 protein levels were not altered. MG132 activated p38 MAP kinase already after 0.5 h. Hsp mRNA induction started after 2 h of MG132 treatment. Subsequently, Hsp72 and Hsp32 protein levels were increased after 4 h. SB202190, an inhibitor of p38 MAP kinase, concentration-dependently attenuated MG132-induced Hsp72-and Hsp32-elevations (by 59% and 41%, respectively, at 1 microM SB202190). In contrast, herbimycin A, a known inductor of Hsp72 in cardiomyocytes, enhanced the MG132-induced Hsp72 and Hsp32 expression even further: additionally applied 2 microM herbimycin A induced Hsp72 and Hsp32 about 2-fold higher than 1 microM MG132 alone. MG132 (1 microM) decreased the hyperthermia- or hydrogen peroxide-induced release of lactate dehydrogenase by 45% and by 35%, respectively (P<0.05, n=5). MG132 (1 microM) prolonged the spontaneous beating time of cardiomyocytes at 46 degrees C from 5+/-2 min (control hyperthermia) to 28+/-5 min (P<0.05, n=4). Thus, inhibition of the proteasome function by MG132 protects cardiomyocytes against hyperthermic or oxidative injury. This protective effect and Hsp induction were abolished by 1 microM SB202190. Proteasome inhibition results in p38 MAP kinase-dependent induction of Hsp72 and Hsp32 and might be a novel cardioprotective modality.

  14. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    SciTech Connect

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors

  15. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  16. The capture proteasome assay (CAPA) to evaluate subtype-specific proteasome inhibitors.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-09-01

    We recently developed a new assay to measure proteasome activity in vitro (CAPA for capture proteasome assay) [1], based on proteasome capture on an antibody-coated plate. When used with lysates originating from cells expressing either standard proteasome, immunoproteasome or intermediate proteasomes β5i or β1i-β5i, this assay allows the individual monitoring of the chymotrypsin-like, trypsin-like and caspase-like activities of the corresponding proteasome subtypes. The efficiency and specificity of four proteasome inhibitors were studied using the CAPA assay, demonstrating the potential of this assay for the development of subtype-specific proteasome inhibitors.

  17. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  18. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  19. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells.

    PubMed

    Llobet, David; Eritja, Nuria; Encinas, Mario; Sorolla, Anabel; Yeramian, Andree; Schoenenberger, Joan Antoni; Llombart-Cussac, Antonio; Marti, Rosa M; Matias-Guiu, Xavier; Dolcet, Xavier

    2008-02-01

    We have recently demonstrated that proteasome inhibitors can be effective in inducing apoptotic cell death in endometrial carcinoma cell lines and primary culture explants. Increasing evidence suggests that reactive oxygen species are responsible for proteasome inhibitor-induced cell killing. Antioxidants can thus block apoptosis (cell death) triggered by proteasome inhibition. Here, we have evaluated the effects of different antioxidants (edaravone and tiron) on endometrial carcinoma cells treated with aldehyde proteasome inhibitors (MG-132 or ALLN), the boronic acid-based proteasome inhibitor (bortezomib) and the epoxyketone, epoxomicin. We show that tiron specifically inhibited the cytotoxic effects of bortezomib, whereas edaravone inhibited cell death caused by aldehyde-based proteasome inhibitors. We have, however, found that edaravone completely inhibited accumulation of ubiquitin and proteasome activity decrease caused by MG-132 or ALLN, but not by bortezomib. Conversely, tiron inhibited the ubiquitin accumulation and proteasome activity decrease caused by bortezomib. These results suggest that edaravone and tiron rescue cells of proteasome inhibitors from cell death, by inhibiting blockade of proteasome caused by MG-132 and ALLN or bortezomib, respectively. We also tested other antioxidants, and we found that vitamin C inhibited bortezomib-induced cell death. Similar to tiron, vitamin C inhibited cell death by blocking the ability of bortezomib to inhibit the proteasome. Until now, all the antioxidants that blocked proteasome inhibitor-induced cell death also blocked the proteasome inhibitor mechanism of action.

  20. Prefoldin Plays a Role as a Clearance Factor in Preventing Proteasome Inhibitor-induced Protein Aggregation*

    PubMed Central

    Abe, Akira; Takahashi-Niki, Kazuko; Takekoshi, Yuka; Shimizu, Takashi; Kitaura, Hirotake; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases. PMID:23946485

  1. Effect of proteasome inhibition on toxicity and CYP3A23 induction in cultured rat hepatocytes: Comparison with arsenite

    SciTech Connect

    Noreault-Conti, Trisha L.; Jacobs, Judith M.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Jacqueline F.; Nichols, Ralph C. . E-mail: ralph.c.nichols@dartmouth.edu

    2006-12-15

    Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23.

  2. Chronic L-DOPA treatment attenuates behavioral and biochemical deficits induced by unilateral lactacystin administration into the rat substantia nigra.

    PubMed

    Konieczny, Jolanta; Czarnecka, Anna; Lenda, Tomasz; Kamińska, Kinga; Lorenc-Koci, Elżbieta

    2014-03-15

    The aim of the study was to determine whether the dopamine (DA) precursor l-DOPA attenuates parkinsonian-like symptoms produced by the ubiquitin-proteasome system inhibitor lactacystin. Wistar rats were injected unilaterally with lactacystin (2.5 μg/2 μl) or 6-OHDA (8 μg/2 μl) into the substantia nigra (SN) pars compacta. Four weeks after the lesion, the animals were treated chronically with l-DOPA (25 or 50 mg/kg) for two weeks. During l-DOPA treatment, the lactacystin-treated rats were tested for catalepsy and forelimb asymmetry. Rotational behavior was evaluated after apomorphine (0.25 mg/kg) and l-DOPA in both PD models. After completion of experiments, the animals were killed and the levels of DA and its metabolites in the striatum and SN were assayed. We found that acute l-DOPA administration effectively decreased catalepsy and increased the use of the compromised forelimb in the cylinder test. However, the lactacystin group did not respond to apomorphine or acute l-DOPA administration in the rotational test. Repeated l-DOPA treatment produced contralateral rotations in both PD models, but the number of rotations was much greater in the 6-OHDA-lesioned rats. Both toxins markedly (>90%) reduced the levels of DA and its metabolites in the striatum and SN, while l-DOPA diminished these decreases, especially in the SN. By demonstrating the efficacy of l-DOPA in several behavioral tests, our study confirms the usefulness of the lactacystin lesion as a model of PD. However, marked differences in the rotational response to apomorphine and l-DOPA suggest different mechanisms of neurodegeneration evoked by lactacystin and 6-OHDA.

  3. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  4. Proteasome inhibitors: a new perspective for treating autoimmune diseases.

    PubMed

    Fierabracci, Alessandra

    2012-12-01

    Since the discovery of proteasome in the late 1980s, the ubiquitin-proteasome system has been found to exert an important physiological function in all the cells of living organisms - that of ensuring homeostasis. All cell cycle, apoptosis, differentiation, transcription, protein quality control and antigen processing activities require the efficiency of this system. As a matter of fact, several pathological conditions are characterized by deregulation of the ubiquitinproteasome system. These include cancer, neurodegenerative diseases, viral infections and autoimmune diseases. This has stimulated interest in developing proteasome inhibitors for their treatment, but clinical application has been limited due to the toxicity of these compounds. Following experiences with the first proteasome inhibitor, bortezomib, in the treatment of hematologic malignancies, several molecules with proteasome inhibitor properties were discovered and they were also exploited for the treatment of experimental models of human autoimmunity. Autoimmune disorders are a heterogeneous group of conditions, both organ- and non-organ-specific, whose incidence is increasing worldwide. This has stimulated interest in discovering novel predictive strategies and therapeutics. Here we provide a review of the use of proteasome inhibitors in treating autoimmune conditions and, in particular, systemic autoimmune diseases, inflammatory bowel disease, multiple sclerosis and organ-specific autoimmune diseases. We also present perspectives derived from more recently discovered compounds with proteasome inhibitor activity and discuss their potential in the management of these disorders.

  5. Development of proteasome inhibitors as research tools and cancer drugs

    PubMed Central

    2012-01-01

    The proteasome is the primary site for protein degradation in mammalian cells, and proteasome inhibitors have been invaluable tools in clarifying its cellular functions. The anticancer agent bortezomib inhibits the major peptidase sites in the proteasome’s 20S core particle. It is a “blockbuster drug” that has led to dramatic improvements in the treatment of multiple myeloma, a cancer of plasma cells. The development of proteasome inhibitors illustrates the unpredictability, frustrations, and potential rewards of drug development but also emphasizes the dependence of medical advances on basic biological research. PMID:23148232

  6. Recent Patents on Proteasome Inhibitors of Natural Origin.

    PubMed

    da Silva, Daniela Correia; Andrade, Paula B; Ribeiro, Vera; Valentao, Patricia; Pereira, David M

    2017-01-01

    The proteasome is the major proteolytic site on the eukaryotic cell, degrading most of its short-lived or misfolded polypeptides. The ubiquitin-proteasome pathway has been found to play a fundamental role in the development of several pathologies, from cancer to neurodegenerative diseases, or even retroviral infections. Nature remains a powerful source for the discovery of bioactive compounds. Recently, a number of molecules of natural origin, as well as natural product derivatives, have been described as proteasome inhibitors. Most of these molecules directly block one or more catalytic sites of the 20S proteasome, but some of them act upstream of proteolytic degradation, for instance, inhibiting the ubiquitin tagging process. The present review focuses on recent patents on proteasome inhibitors of natural origin, their derivatives and synthetic routes to obtain such molecules, as well as their application as a tool in chemotherapy. With several of these modulators of the ubiquitin-proteasome system under clinical trials, we hope that the next few years lead to the development of new pharmaceutical drugs and characterization of new proteasome inhibitors of natural origin or inspiration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCδ proteolytic activation and mitochondrial translocation

    PubMed Central

    Sun, Faneng; Kanthasamy, Arthi; Song, Chunjuan; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Anumantha G

    2008-01-01

    Emerging evidence implicates impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson's disease; however cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells. PMID

  8. Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells.

    PubMed

    Nehybová, Tereza; Šmarda, Jan; Daniel, Lukáš; Stiborek, Marek; Kanický, Viktor; Spasojevič, Ivan; Preisler, Jan; Damborský, Jiří; Beneš, Petr

    2017-03-29

    Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.

  9. From bortezomib to other inhibitors of the proteasome and beyond.

    PubMed

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  10. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  11. Three-dimensional structure-activity relationship study of belactosin A and its stereo- and regioisomers: development of potent proteasome inhibitors by a stereochemical diversity-oriented strategy.

    PubMed

    Yoshida, Keisuke; Yamaguchi, Kazuya; Mizuno, Akira; Unno, Yuka; Asai, Akira; Sone, Takayuki; Yokosawa, Hideyoshi; Matsuda, Akira; Arisawa, Mitsuhiro; Shuto, Satoshi

    2009-05-07

    The development of potent proteasome inhibitors based on the stereochemical diversity-oriented strategy using a conformationally rigid cyclopropane structure was investigated. Thus, a series of stereo- and regioisomeric analogs of belactosin A (2), a cyclopropane amino acid (methanoamino acid)-containing tripeptidic proteasome inhibitor, were designed, in which the central cyclopropane amino acid part was replaced with the corresponding stereo- or regioisomer. Using a series of stereoisomeric cyclopropane amino acid equivalents with the cis/trans, D/L, and syn/anti stereochemical diversity, which were previously developed by us, as key units, the target compounds were successfully synthesized. Biological evaluation showed that, as expected, compound activity changed depending on the stereochemistry of the central cyclopropane amino acid part: the trans/L-syn-isomer 7 and the cis/L-anti-isomer 9 were more than twice as potent as natural belactosin A (trans/L-anti-isomer). Furthermore, the tripeptidic compound 13, the synthetic precursor for the unnatural cis/L-anti-isomer 9, was identified as a highly potent proteasome inhibitor. This compound, which is 20 times as potent as belactosin A and is even more potent than the well-known inhibitor lactacystin (4), may be an effective lead for developing clinically useful anticancer drugs. These results show that the stereochemical diversity-oriented approach can be a powerful strategy for the development of highly active compounds in medicinal chemical studies.

  12. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  13. Synthetic analogs of green tea polyphenols as proteasome inhibitors.

    PubMed Central

    Smith, David M.; Wang, Zhigang; Kazi, Aslamuzzaman; Li, Lian-Hai; Chan, Tak-Hang; Dou, Q. Ping

    2002-01-01

    BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing

  14. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria.

    PubMed

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-11-05

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.

  15. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria

    PubMed Central

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-01-01

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROSC73R mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROSP248Q mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROSC73R and UROSP248Q are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (UrosP248Q/P248Q) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones. PMID:24145442

  16. Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens.

    PubMed

    Gonzalez, J; Bai, G; Frevert, U; Corey, E J; Eichinger, D

    1999-09-01

    Proteases play an important role in the pathogenic mechanisms and differentiation events of protozoan parasites; the proteasome/ubiquitin system is essential for maintaining the differentiation state of many cell types. A single input of the specific inhibitor of proteasomes, lactacystin, prevented encystation of the protozoan parasite Entameoba invadens, whereas a cysteine protease inhibitor, E64, only delayed encystation. The ameba target of lactacystin was purified and it displayed the features typical of eukaryotic 20S proteasome complexes. In addition, transcripts encoding ubiquitin were detectable in trophozoites stage cells, disappeared immediately following transfer of amoebae to encystation induction medium, and reappeared at the same time during encystation as other encystation-specific transcripts. These results demonstrate that proteasome function is required during the conversion of the disease-causing trophozoite into the infectious cyst stage of Entamoeba parasites, and that ubiquitin transcript levels undergo an unusual decrease during the early stages of this differentiation process.

  17. Vinyl ester-based cyclic peptide proteasome inhibitors.

    PubMed

    Baldisserotto, Anna; Marastoni, Mauro; Fiorini, Stella; Pretto, Loretta; Ferretti, Valeria; Gavioli, Riccardo; Tomatis, Roberto

    2008-03-15

    The 20S proteasome is a multicatalytic protease complex responsible for the degradation of many proteins in mammalian cells. Specific inhibition of proteasome enzymatic subunits represents a topic of great interest for the development of new drug therapies. Following our previous development of a new class of peptide-based inhibitors bearing a C-terminal vinyl ester residue as a pharmacophoric unit that are able to interact with the catalytic threonine, we report here the synthesis and biological properties of a new series of vinyl ester cyclopeptide analogues. Some of these derivatives were shown to inhibit the chymotrypsin-like activity of the proteasome at nanomolar concentration and their potency was found to depend on the size of the tetrapeptidic cyclic portion.

  18. Clioquinol - a novel copper-dependent and independent proteasome inhibitor.

    PubMed

    Schimmer, A D

    2011-03-01

    Clioquinol (5-chloro-7-iodo-quinolin-8-ol) was used in the 1950's-1970's as an oral anti-parasitic agent. More recently, studies have demonstrated that Clioquinol displays preclinical efficacy in the treatment of malignancy. Its anti-cancer activity relates, at least in part, to its ability to inhibit the proteasome through mechanisms dependent and independent of its ability to bind heavy metals such as copper. By acting as a metal ionophore Clioquinol transports metal ions from the extracellular environment into the cell and mobilizes weakly bound intracellular stores. It then directs the metal to the proteasome resulting in disruption of this enzymatic complex. In addition, Clioquinol is capable of directly inhibiting the proteasome at higher concentrations. Thus, Clioquinol represents a novel therapeutic strategy to inhibit the proteasome. Given the prior toxicology and pharmacology studies, Clioquinol could be rapidly repositioned for a new anti-cancer indication. This review highlights the mechanism of action of Clioquinol as a proteasome inhibitor. In addition, it discusses the human pharmacology and toxicology studies and how this information would guide a phase I clinical trial of this agent for patients with malignancy.

  19. Peptide-based proteasome inhibitors in anticancer drug design.

    PubMed

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  20. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    PubMed

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  1. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form

    PubMed Central

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F. S.; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  2. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A

    PubMed Central

    Kale, Andrew J.; McGlinchey, Ryan P.; Lechner, Anna; Moore, Bradley S.

    2011-01-01

    Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β 5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes. PMID:21882868

  3. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate.

    PubMed

    Harrison, Ian F; Anis, Hiba K; Dexter, David T

    2016-02-12

    Parkinson's disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection.

  4. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats.

    PubMed

    Konieczny, J; Lenda, T; Czarnecka, A

    2016-06-02

    Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.

  5. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  6. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro.

  7. Second generation proteasome inhibitors: carfilzomib and immunoproteasome-specific inhibitors (IPSIs).

    PubMed

    Kuhn, D J; Orlowski, R Z; Bjorklund, C C

    2011-03-01

    The ubiquitin-proteasome pathway (UPP) is an attractive chemotherapeutic target due to its intrinsically stringent regulation of cell cycle, pro-survival, and anti-apoptotic regulators that disproportionately favor survival and proliferation in malignant cells. A reversible first-in-class proteasome inhibitor, bortezomib, is Food and Drug Administration approved for multiple myeloma and relapsed/refractory mantle cell lymphoma and has proven to be extremely effective, both as a single agent and in combination. An irreversible second generation proteasome inhibitor, carfilzomib, has shown preclinical effectiveness against hematological and solid malignancies both in vitro and in vivo. Carfilzomib, a peptidyl-epoxyketone functions similarly to bortezomib through primary inhibition of chymotrypsin-like (ChT-L) activity at the b5 subunits of the core 20S proteasome. Carfilzomib is also currently achieving successful response rates within the clinical setting. In addition to conventional proteasome inhibitors, a novel approach may be to specifically target the hematological-specific immunoproteasome, thereby increasing overall effectiveness and reducing negative off-target effects. The immunoproteasome-specific inhibitor, IPSI-001, was shown to have inhibitory preference over the constitutive proteasome, and display enhanced efficiency of apoptotic induction of tumor cells from a hematologic origin. Herein, we discuss the preclinical and clinical development of carfilzomib and explore the potential of immunoproteasome-specific inhibitors, like IPSI-001, as a rational approach to exclusively target hematological malignancies.

  8. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  9. Noncovalent inhibitors of human 20S and 26S proteasome based on trypsin inhibitor SFTI-1.

    PubMed

    Dębowski, Dawid; Cichorek, Mirosława; Lubos, Marta; Wójcik, Sławomir; Łęgowska, Anna; Rolka, Krzysztof

    2016-09-01

    Sunflower trypsin inhibitor (SFTI-1) is recognized as an attractive scaffold to designed potent inhibitors of various proteases. We have recently found that its analogues inhibit noncovalently both human and yeast 20S proteasomes. Here, a set of novel and more potent in vitro inhibitors is presented. The inhibitory potency of the peptides was assessed with human 20S proteasome in the presence or absence of sodium dodecyl sulfate and with human 26 proteasome. Their antiproliferative action against tumor (human melanoma cells A375) and normal cells (46 BR.1N human fibroblasts and HaCaT keratinocytes) was determined. The selected fluoresceine-labeled inhibitors were able to internalize into A375 cells and were sometimes present as foci in the cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 685-696, 2016. © 2016 Wiley Periodicals, Inc.

  10. Clinical Use of Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Merin, Noah M.; Kelly, Kevin R.

    2014-01-01

    Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of neoplastic plasma cells. The use of proteasome inhibitors in the treatment of MM has led to significant improvements in outcomes. This article reviews data on the use of the two approved proteasome inhibitors (bortezomib and carlfilzomib), as well as newer agents under development. Emphasis is placed on the clinical use of proteasome inhibitors, including management of side effects and combination with other agents. PMID:25545164

  11. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome.

    PubMed

    Groll, Michael; Berkers, Celia R; Ploegh, Hidde L; Ovaa, Huib

    2006-03-01

    The dipeptide boronic acid bortezomib, also termed VELCADE, is a proteasome inhibitor now in use for the treatment of multiple myeloma, and its use for the treatment of other malignancies is being explored. We determined the crystal structure of the yeast 20S proteasome in complex with bortezomib to establish the specificity and binding mode of bortezomib to the proteasome's different catalytically active sites. This structure should enable the rational design of new boronic acid derivatives with improved affinities and specificities for individual active subunits.

  12. Anchanling reduces pathology in a lactacystin- induced Parkinson's disease model☆

    PubMed Central

    Li, Yinghong; Wu, Zhengzhi; Gao, Xiaowei; Zhu, Qingwei; Jin, Yu; Wu, Anmin; Huang, Andrew C. J.

    2012-01-01

    A rat model of Parkinson's disease was induced by injecting lactacystin stereotaxically into the left mesencephalic ventral tegmental area and substantia nigra pars compacta. After rats were intragastrically perfused with Anchanling, a Chinese medicine, mainly composed of magnolol, for 5 weeks, when compared with Parkinson's disease model rats, tyrosine hydroxylase expression was increased, α-synuclein and ubiquitin expression was decreased, substantia nigra cell apoptosis was reduced, and apomorphine-induced rotational behavior was improved. Results suggested that Anchanling can ameliorate Parkinson's disease pathology possibly by enhancing degradation activity of the ubiquitin-proteasome system. PMID:25767493

  13. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview.

    PubMed

    Guedes, Romina A; Serra, Patrícia; Salvador, Jorge A R; Guedes, Rita C

    2016-07-16

    Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field.

  14. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Proteasome inhibitors in multiple myeloma: 10 years later

    PubMed Central

    Richardson, Paul G.; Cavo, Michele; Orlowski, Robert Z.; San Miguel, Jesús F.; Palumbo, Antonio; Harousseau, Jean-Luc

    2012-01-01

    Proteasome inhibition has emerged as an important therapeutic strategy in multiple myeloma (MM). Since the publication of the first phase 1 trials of bortezomib 10 years ago, this first-in-class proteasome inhibitor (PI) has contributed substantially to the observed improvement in survival in MM patients over the past decade. Although first approved as a single agent in the relapsed setting, bortezomib is now predominantly used in combination regimens. Furthermore, the standard twice-weekly schedule may be replaced by weekly infusion, especially when bortezomib is used as part of combination regimens in frontline therapy. Indeed, bortezomib is an established component of induction therapy for patients eligible or ineligible for autologous stem cell transplantation. Bortezomib has also been incorporated into conditioning regimens before autologous stem cell transplantation, as well as into post-ASCT consolidation therapy, and in the maintenance setting. In addition, a new route of bortezomib administration, subcutaneous infusion, has recently been approved. Recently, several new agents have been introduced into the clinic, including carfilzomib, marizomib, and MLN9708, and trials investigating these “second-generation” PIs in patients with relapsed/refractory MMs have demonstrated positive results. This review provides an overview of the role of PIs in the treatment of MM, focusing on developments over the past decade. PMID:22645181

  16. The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation.

    PubMed

    Bardag-Gorce, Fawzia; Riley, Nora E; Nan, Li; Montgomery, Rosalyn O; Li, Jun; French, Barbara A; Lue, Yan H; French, Samuel W

    2004-02-01

    Mallory body (MB) experimental induction takes 10 weeks of drug ingestion. Therefore, it is difficult to study the dynamics and mechanisms involved in vivo. Consequently, an in vitro study was done using primary tissue culture of hepatocytes from drug-primed mice livers in which MBs had already formed. The hypothesis to be tested was that MBs are cytokeratin aggresomes, which form when hepatocytes have a defective ubiquitin-proteasome pathway by which turnover of cytokeratin proteins is prevented. To test this hypothesis, primary tissue cultures of the hepatocytes from normal and MB-forming livers were incubated with the proteasome inhibitor PS-341 and then the cytokeratin filaments and the filament connecting proteins, that is, beta-actin, and ZO1, were visualized by immunofluorescence microscopy. PS-341 caused detachment of the cytokeratins from the cell surface plasma membrane. The cytokeratin filaments retracted toward the nucleus and cytokeratin aggresomes formed. In human livers, MBs showed colocalization of cytokeratin-8 (CK-8) with ubiquitin but not with beta-actin or ZO1. Mouse hepatoma cell lines were studied using PS-341 to induce cytokeratin aggresome formation. In these cell lines, the cytokeratin filaments first retracted toward the nucleus then formed cytokeratin-ubiquitin aggresomes polarized at one side of the nucleus. At the same time, the cells became dissociated from each other, however. The results simulated MB formation. MBs differ from cytokeratin aggresomes both morphologically and in ultrastructure.

  17. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  18. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  19. Degradation of pro-insulin-receptor proteins by proteasomes.

    PubMed

    Cruz, Miguel; Velasco, Eduardo; Kumate, Jesús

    2004-01-01

    Type-2 diabetes is characterized by hyperinsulinemia, peripheral insulin resistance, and diminished tyrosine phosphorylation activity. It has been recently shown that proteasomes are implicated in the degradation of the insulin receptor substrate-1 (IRS-1) but not in that of the insulin receptor (IR). However, it is unknown whether proteasomes are involved in pro-IR degradation. We used CHO-IR and the 3T3-L1 cells treated with insulin at different concentrations and compared the proteasome activity of IRS-1, IR, and pro-IR degradation either in presence or in absence of lactacystin. A total of 100 nM of insulin allowed degradation of IRS-1 after 6 h of incubation. At 1,000 nM of insulin, pro-IR degradation began at 1 h of incubation, similar to IRS-1 degradation. Surprisingly, at a higher concentration (10 microM) of insulin, a drastic decrease of proteins was observed from the first minute of incubation. This activity was blocked by lactacystin, a specific proteasome inhibitor. According to these results, we propose that pro-IR is degraded by proteasomes.

  20. Application of proteasomal inhibitors to mouse sympathetic neurons activates the intrinsic apoptotic pathway.

    PubMed

    Lang-Rollin, Isabelle; Vekrellis, Konstantinos; Wang, Qiaohong; Rideout, Hardy J; Stefanis, Leonidas

    2004-09-01

    Proteasomal dysfunction may play a role in a number of neurodegenerative conditions, and in particular Parkinson's disease (PD) and related Lewy body (LB) diseases. Application of proteasomal inhibitors to neuronal cell culture systems is associated with survival-promoting effects or with cell death depending on the model system. We have applied pharmacological proteasomal inhibitors to cultured neonatal mouse sympathetic neurons in order to investigate whether these catecholaminergic neurons, which are affected in PD, are sensitive to proteasomal inhibition and, if so, which cell death pathway is activated. We report here that proteasomal inhibition leads to apoptotic death of mouse sympathetic neurons. This death is accompanied by caspase 3 activation and cytochrome c release from the mitochondria and is abrogated by caspase inhibition. Bax deletion prevented both cytochrome c release and caspase 3 activation, and also provided complete protection against proteasomal inhibition-induced death. Bcl-2 overexpression achieved a similar survival-promoting effect. There was no change in Bax levels following proteasomal inhibition, suggesting that Bax itself is not regulated by the proteasome in this cell culture system, and that a primary increase in Bax is unlikely to account for death. In contrast, levels of the BH3-only protein, Bim, increased with proteasomal inhibition. We conclude that proteasomal inhibition of mouse sympathetic neurons activates the intrinsic apoptotic pathway involving bcl-2 family members and the mitochondria.

  1. The potential of ixazomib, a second-generation proteasome inhibitor, in the treatment of multiple myeloma

    PubMed Central

    Brayer, Jason; Baz, Rachid

    2017-01-01

    The therapeutic armamentarium for multiple myeloma has recently benefited from the addition of several new agents (including second-generation proteasome inhibitors, monoclonal antibodies and histone deacetylase inhibitors). This review will focus on ixazomib, an orally bioavailable second-generation proteasome inhibitor. Specifically, we will review the preclinical data, clinical trial experience, potential indications as well as unanswered questions pertaining to this new agent in multiple myeloma. PMID:28694935

  2. Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor b-AP15

    PubMed Central

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R.; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2016-01-01

    The ubiquitin–proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure–activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  3. Suppression of BRCA1 sensitizes cells to proteasome inhibitors

    PubMed Central

    Gu, Y; Bouwman, P; Greco, D; Saarela, J; Yadav, B; Jonkers, J; Kuznetsov, S G

    2014-01-01

    BRCA1 is a multifunctional protein best known for its role in DNA repair and association with breast and ovarian cancers. To uncover novel biologically significant molecular functions of BRCA1, we tested a panel of 198 approved and experimental drugs to inhibit growth of MDA-MB-231 breast cancer cells depleted for BRCA1 by siRNA. 26S proteasome inhibitors bortezomib and carfilzomib emerged as a new class of selective BRCA1-targeting agents. The effect was confirmed in HeLa and U2OS cancer cell lines using two independent siRNAs, and in mouse embryonic stem (ES) cells with inducible deletion of Brca1. Bortezomib treatment did not cause any increase in nuclear foci containing phosphorylated histone H2AX, and knockdown of BRCA2 did not entail sensitivity to bortezomib, suggesting that the DNA repair function of BRCA1 may not be directly involved. We found that a toxic effect of bortezomib on BRCA1-depleted cells is mostly due to deregulated cell cycle checkpoints mediated by RB1-E2F pathway and 53BP1. Similar to BRCA1, depletion of RB1 also conferred sensitivity to bortezomib, whereas suppression of E2F1 or 53BP1 together with BRCA1 reduced induction of apoptosis after bortezomib treatment. A gene expression microarray study identified additional genes activated by bortezomib treatment only in the context of inactivation of BRCA1 including a critical involvement of the ERN1-mediated unfolded protein response. Our data indicate that BRCA1 has a novel molecular function affecting cell cycle checkpoints in a manner dependent on the 26S proteasome activity. PMID:25522274

  4. High-Resolution Snapshots of Proteasome Inhibitors in Action Revise Inhibition Paradigms and Inspire Next-Generation Inhibitor Design.

    PubMed

    Carmony, Kimberly; Lee, Wooin; Kim, Kyung Bo

    2016-11-17

    New high-resolution crystal structures reported by Schrader and colleagues refine our understanding of how peptide epoxyketone anticancer drugs inactivate their target: the human proteasome. These findings provide important clues for the design of next-generation proteasome inhibitor drugs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics

    PubMed Central

    Chhabra, Saurabh

    2017-01-01

    The unfolded protein response is responsible for the detection of misfolded proteins and the coordination of their disposal and is necessary to maintain the cellular homoeostasis. Multiple myeloma cells secrete large amounts of immunoglobulins, proteins that need to be correctly folded by the chaperone system. If this process fails, the misfolded proteins have to be eliminated by the two main garbage-disposal systems of the cell: proteasome and aggresome. The blockade of either of these systems will result in accumulation of immunoglobulins and other toxic proteins in the cytoplasm and cell death. The simultaneous inhibition of the proteasome, by proteasome inhibitors (PIs) and the aggresome, by histone deacetylase inhibitors (HDACi) results in a synergistic increase in cytotoxicity in myeloma cell lines. This review provides an overview of mechanisms of action of second-generation PIs and HDACi in multiple myeloma (MM), the clinical results currently observed with these agents and assesses the potential therapeutic impact of the different agents in the two classes. The second-generation PIs offer benefits in terms of increased efficacy, reduced neurotoxicity as off-target effect and may overcome resistance to bortezomib because of their different chemical structure, mechanism of action and biological properties. HDACi with anti-myeloma activity in clinical development discussed in this review include vorinostat, panobinostat and selective HDAC6 inhibitor, ricolinostat. PMID:28398261

  6. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  7. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect.

    PubMed

    Kaplan, Gulce Sari; Torcun, Ceyda Corek; Grune, Tilman; Ozer, Nesrin Kartal; Karademir, Betul

    2017-02-01

    Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.

  8. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Lee, Min Sung; Lee, Chung Soo

    2015-10-05

    Dysfunction of the proteasome system has been suggested to be implicated in neuronal degeneration. Modulation of KATP channels appears to affect the viability of neuronal cells exposed to toxic insults. However, the effect of KATP channel blockers on the neuronal cell death mediated by proteasome inhibition has not been studied. The present study investigated the effect of KATP channel blockers on proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells. 5-Hydroxydecanoate (a selective KATP channel blocker) and glibenclamide (a cell surface and mitochondrial KATP channel inhibitor) reduced the proteasome inhibitor-induced apoptosis. Addition of the KATP channel blockers attenuated the proteasome inhibitor-induced changes in the levels of apoptosis-related proteins, the loss of the mitochondrial transmembrane potential, the increase in the formation of reactive oxygen species and the depletion of glutathione in both cell lines. The results show that KATP channel blockers may attenuate proteasome inhibitor-induced apoptosis in PC12 cells by suppressing activation of the mitochondrial pathway and of the caspase-8- and Bid-dependent pathways. The preventive effect appears to be associated with the inhibition of the formation of reactive oxygen species and the depletion of glutathione. KATP channel blockade appears to prevent proteasome inhibition-induced neuronal cell death.

  9. Effect of proteasome inhibitors on proliferation and apoptosis of human cutaneous melanoma-derived cell lines.

    PubMed

    Sorolla, A; Yeramian, A; Dolcet, X; Pérez de Santos, A M; Llobet, D; Schoenenberger, J A; Casanova, J M; Soria, X; Egido, R; Llombart, A; Vilella, R; Matias-Guiu, X; Marti, R M

    2008-03-01

    Cutaneous malignant melanoma is an aggressive type of skin cancer which causes disproportionate mortality in young and middle-aged adults. Once disseminated, melanoma can be considered an incurable disease, highly resistant to standard antineoplastic treatment, such as chemotherapy or radiation therapy. The proteasome represents a novel target for cancer therapy that can potentially be used in melanoma. To assess the effect of four structurally different proteasome inhibitors on human cutaneous melanoma-derived cell lines. Sixteen human cutaneous melanoma-derived cell lines which are original were obtained from patients who were treated by two of the authors. Cells were cultured, exposed to proteasome inhibitors (bortezomib, ALLN, MG-132 and epoxomicin) and then assayed for cell cycle and cell death analyses. Proteasome inhibitors inhibited the in vitro growth of melanoma cells, and this effect was due to a reduction in cell proliferation rate and an induction of both caspase-dependent and caspase-independent cell death. Moreover, release of apoptosis-inducing factor was observed in the presence of the broad-specificity caspase inhibitor BAF (Boc-D-fmk). In addition, the four different proteasome inhibitors induced caspase 2 processing. This study provides information regarding the in vitro effects of proteasome inhibitors on melanoma cell lines, and the molecular mechanisms involved. It also gives support to the future use of such inhibitors in the treatment of patients with melanoma, either administered alone or in combination with other drugs.

  10. A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, and inhibitor binding.

    PubMed

    Gersch, Malte; Hackl, Mathias W; Dubiella, Christian; Dobrinevski, Alexander; Groll, Michael; Sieber, Stephan A

    2015-03-19

    The proteasome is responsible for the majority of protein degradation within eukaryotic cells and proteasome inhibitors have gained blockbuster status as anticancer drugs. Here, we introduce an analytical platform comprising reverse phase chromatography, intact protein mass spectrometry, and customized data analysis that allows a streamlined investigation of proteasome integrity and posttranslational modifications. We report the complete mass spectrometric assignment of all subunits of the yeast core particle, as well as of the human constitutive 20S proteasome and the human immunoproteasome, including phosphorylated isoforms of α7. Importantly, we found several batches of commercially available immunoproteasome to also contain constitutive catalytic subunits. Moreover, we applied the method to study the binding mechanisms of proteasome inhibitors, both validating the approach and providing a direct readout of subunit preferences complementary to biochemical methods. Collectively, our platform facilitates an easy, reliable and comprehensive detection of different types of covalent modifications on multisubunit protein complexes with high accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Natural Compounds with Proteasome Inhibitory Activity for Cancer Prevention and Treatment

    PubMed Central

    Yang, H; Landis-Piwowar, KR.; Chen, D; Milacic, V; Dou, QP

    2012-01-01

    The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiuple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structure and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers. PMID:18537678

  12. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism

    PubMed Central

    Soriano, G P; Besse, L; Li, N; Kraus, M; Besse, A; Meeuwenoord, N; Bader, J; Everts, B; den Dulk, H; Overkleeft, H S; Florea, B I; Driessen, C

    2016-01-01

    Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism. PMID:27118406

  13. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism.

    PubMed

    Soriano, G P; Besse, L; Li, N; Kraus, M; Besse, A; Meeuwenoord, N; Bader, J; Everts, B; den Dulk, H; Overkleeft, H S; Florea, B I; Driessen, C

    2016-11-01

    Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism.

  14. Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment

    PubMed Central

    Li, Haoyu; Chen, Zhenghu; Hu, Ting; Wang, Long; Yu, Yang; Zhao, Yanling; Sun, Wenijing; Guan, Shan; Pang, Jonathan C.; Woodfield, Sarah E.; Liu, Qing; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial malignant solid tumor seen in children and continues to lead to the death of many pediatric cancer patients. The poor outcome in high risk NB is largely attributed to the development of chemoresistant tumor cells. Doxorubicin (dox) has been widely employed as a potent anti-cancer agent in chemotherapeutic regimens; however, it also leads to chemoresistance in many cancer types including NB. Thus, developing novel small molecules that can overcome dox-induced chemoresistance is a promising strategy in cancer therapy. Here we show that the second generation proteasome inhibitor ixazomib (MLN9708) not only inhibits NB cell proliferation and induces apoptosis in vitro but also enhances dox-induced cytotoxicity in NB cells. Ixazomib inhibits dox-induced NF-κB activity and sensitizes NB cells to dox-induced apoptosis. More importantly, ixazomib demonstrated potent anti-tumor efficacy in vivo by enhancing dox-induced apoptosis in an orthotopic xenograft NB mouse model. Collectively, our study illustrates the anti-tumor efficacy of ixazomib in NB both alone and in combination with dox, suggesting that combination therapy including ixazomib with traditional therapeutic agents such as dox is a viable strategy that may achieve better outcomes for NB patients. PMID:27687684

  15. Encapsulation of a proteasome inhibitor with gold-polysaccharide nanocarriers

    NASA Astrophysics Data System (ADS)

    Coelho, Sílvia Castro; Rocha, Sandra; Sampaio, Paula; Pereira, Maria Carmo; Coelho, Manuel A. N.

    2014-04-01

    Organic-inorganic hybrid nanoparticles are potential effective systems for drug delivery in cancer therapy and diagnosis. Chitosan-gum arabic with entrapped gold nanoparticles were developed as a carrier for an anticancer drug bortezomib. The nanosystem was designed to enhance the proteasome inhibitor activity in pancreatic cell lines, S2-013 and hTERT-HPNE. The hydrodynamic diameter of chitosan-gum arabic-gold nanoparticles loaded with bortezomib is around 330 nm. Laser scanning confocal microscopy images show the uptake of the gold nanoparticle/bortezomib encapsulated in chitosan-gum arabic matrix and the fast internalization of these nano combinations into pancreatic cells. Cytotoxic assays assessed that positively charged nanosystems reduce the cell growth and cell proliferation of S2-013s, but the same effect was not observed in cytotoxic response in hTERT-HPNE cells. The outcomes of this study demonstrate the capacity of chitosan-gum arabic nanocarriers to deliver gold nanoparticles/anticancer drug and to increase the permeation and retention effect in S2-013 cells and minimize drug side effects in HPNE cells.

  16. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors.

    PubMed

    Ge, Ying; Li, Aibo; Wu, Jianwei; Feng, Haiwei; Wang, Letian; Liu, Hongwu; Xu, Yungen; Xu, Qingxiang; Zhao, Li; Li, Yuyan

    2017-03-10

    A novel series of non-peptide proteasome inhibitors bearing the 1, 4-naphthoquinone scaffold and boronic acid warhead was developed. In the biological evaluation on the chymotrypsin-like activity of human 20S proteasome, five compounds showed IC50 values in the nanomolar range. Docking experiments into the yeast 20S proteasome rationalized their biological activities and allowed further optimization of this interesting class of inhibitors. Within the cellular proliferation inhibition assay and western blot analysis, compound 3e demonstrated excellent anti-proliferative activity against solid tumor cells and clear accumulation of ubiquitinated cellular proteins. Furthermore, in the microsomal stability assay compound 3e demonstrated much improved metabolic stability compared to bortezomib, emerging as a promising lead compound for further design of non-peptide proteasome inhibitors.

  17. The effects of proteasome inhibitors on bone remodeling in multiple myeloma.

    PubMed

    Zangari, Maurizio; Suva, Larry J

    2016-05-01

    Bone disease is a characteristic feature of multiple myeloma, a malignant plasma cell dyscrasia. In patients with multiple myeloma, the normal process of bone remodeling is dysregulated by aberrant bone marrow plasma cells, resulting in increased bone resorption, prevention of new bone formation, and consequent bone destruction. The ubiquitin-proteasome system, which is hyperactive in patients with multiple myeloma, controls the catabolism of several proteins that regulate bone remodeling. Clinical studies have reported that treatment with the first-in-class proteasome inhibitor bortezomib reduces bone resorption and increases bone formation and bone mineral density in patients with multiple myeloma. Since the introduction of bortezomib in 2003, several next-generation proteasome inhibitors have also been used clinically, including carfilzomib, oprozomib, ixazomib, and delanzomib. This review summarizes the available preclinical and clinical evidence regarding the effect of proteasome inhibitors on bone remodeling in multiple myeloma. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

    PubMed Central

    Bentea, Eduard; Van der Perren, Anke; Van Liefferinge, Joeri; El Arfani, Anissa; Albertini, Giulia; Demuyser, Thomas; Merckx, Ellen; Michotte, Yvette; Smolders, Ilse; Baekelandt, Veerle; Massie, Ann

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson's disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson's disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson's disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson's disease in pre-clinical research and validation of therapeutic targets. PMID:25873870

  19. Prospective iterative trial of proteasome inhibitor-based desensitization.

    PubMed

    Woodle, E S; Shields, A R; Ejaz, N S; Sadaka, B; Girnita, A; Walsh, R C; Alloway, R R; Brailey, P; Cardi, M A; Abu Jawdeh, B G; Roy-Chaudhury, P; Govil, A; Mogilishetty, G

    2015-01-01

    A prospective iterative trial of proteasome inhibitor (PI)-based therapy for reducing HLA antibody (Ab) levels was conducted in five phases differing in bortezomib dosing density and plasmapheresis timing. Phases included 1 or 2 bortezomib cycles (1.3 mg/m(2) × 6-8 doses), one rituximab dose and plasmapheresis. HLA Abs were measured by solid phase and flow cytometry (FCM) assays. Immunodominant Ab (iAb) was defined as highest HLA Ab level. Forty-four patients received 52 desensitization courses (7 patients enrolled in multiple phases): Phase 1 (n = 20), Phase 2 (n = 12), Phase 3 (n = 10), Phase 4 (n = 5), Phase 5 (n = 5). iAb reductions were observed in 38 of 44 (86%) patients and persisted up to 10 months. In Phase 1, a 51.5% iAb reduction was observed at 28 days with bortezomib alone. iAb reductions increased with higher bortezomib dosing densities and included class I, II, and public antigens (HLA DRβ3, HLA DRβ4 and HLA DRβ5). FCM median channel shifts decreased in 11/11 (100%) patients by a mean of 103 ± 54 mean channel shifts (log scale). Nineteen out of 44 patients (43.2%) were transplanted with low acute rejection rates (18.8%) and de novo DSA formation (12.5%). In conclusion, PI-based desensitization consistently and durably reduces HLA Ab levels providing an alternative to intravenous immune globulin-based desensitization. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  1. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  2. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression

    SciTech Connect

    Li Xi; Huang Haiyan |; Chen Jiegen; Jiang Lin; Liu Honglei |; Liu Deguo; Song Tanjing; He Qun; Ma Chungu; Ma Duan |; Song Houyan; Tang Qiqun ||. E-mail: qqtang@shmu.edu.cn

    2006-11-10

    Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP){alpha} and peroxisome proliferator-activated receptor (PPAR) {gamma}, C/EBP{alpha}, and PPAR{gamma} turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBP{beta}, a transcriptional activator of the C/EBP{alpha} and PPAR{gamma} genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBP{alpha} and PPAR{gamma} genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBP{beta} occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G{sub 1}-S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBP{beta}, and subsequently inhibited MCE as well as adipocyte differentiation.

  3. [Design, synthesis and biological assay of novel tripeptidic tetrazoles as inhibitors of 20S proteasome].

    PubMed

    Ma, Yu-Heng; Xu, Bo; Cui, Jing-Rong; Yang, Zhen-Jun; Zhang, Liang-Ren; Zhang, Li-He

    2012-04-01

    Ubiquitin-proteasome pathway (UPP) is one of the ways utilized for selective degradation of many proteins in cells, and the 20S proteasome takes the functional machinery where hydrolysis of targeted proteins takes place. Based on existing peptide inhibitors, a series of novel tripeptidic tetrazoles have been designed, synthesized, and the structures have been confirmed with 1H NMR, MS and elemental analysis. Among them, three compounds (6b, 6d and 6h) showed inhibitory activities of ChT-L of 20S proteasome.

  4. Function-Oriented Biosynthesis of β-Lactone Proteasome Inhibitors in Salinispora tropica

    PubMed Central

    Nett, Markus; Gulder, Tobias A. M.; Kale, Andrew J.; Hughes, Chambers C.; Moore, Bradley S.

    2009-01-01

    The natural proteasome inhibitor salinosporamide A from the marine bacterium Salinispora tropica is a promising drug candidate for the treatment of multiple myeloma and mantle cell lymphoma. Using a comprehensive approach that combined chemical synthesis with metabolic engineering, we generated a series of salinosporamide analogues with altered proteasome binding affinity. One of the engineered compounds is equipotent to salinosporamide A in inhibition of the chymotrypsin-like activity of the proteasome, yet, exhibits superior activity in the cell-based HCT-116 assay. PMID:19746976

  5. Exploring dual electrophiles in peptide-based proteasome inhibitors: carbonyls and epoxides.

    PubMed

    Xin, Bo-Tao; de Bruin, Gerjan; Verdoes, Martijn; Filippov, Dmitri V; van der Marel, Gijs A; Overkleeft, Herman S

    2014-08-14

    Peptide epoxyketones are potent and selective proteasome inhibitors. Selectivity is governed by the epoxyketone dual electrophilic warhead, which reacts with the N-terminal threonine 1,2-amino alcohol uniquely present in proteasome active sites. We studied a series of C-terminally modified oligopeptides featuring adjacent electrophiles based on the epoxyketone warhead. We found that the carbonyl moiety in the natural warhead is essential, but that the adjacent epoxide can be replaced by a carbonyl, though with considerable loss of activity.

  6. Peptidyl vinyl ester derivatives: new class of selective inhibitors of proteasome trypsin-like activity.

    PubMed

    Marastoni, Mauro; Baldisserotto, Anna; Cellini, Silvia; Gavioli, Riccardo; Tomatis, Roberto

    2005-07-28

    The proteasome is a multicatalytic proteinase complex which plays a central role in intracellular protein degradation. We report here the synthesis and biological activities of a new class of specific proteasome inhibitors selective for trypsin-like activity. These tripeptide-based compounds bearing a C-terminal vinyl ester are nontoxic, and do not affect cell proliferation, but are able to modulate the generation and presentation of immunogenic peptides presented by MHC class I molecules.

  7. Proteasome inhibitors with pyrazole scaffolds from structure-based virtual screening.

    PubMed

    Miller, Zachary; Kim, Keun-Sik; Lee, Do-Min; Kasam, Vinod; Baek, Si Eun; Lee, Kwang Hyun; Zhang, Yan-Yan; Ao, Lin; Carmony, Kimberly; Lee, Na-Ra; Zhou, Shou; Zhao, Qingquan; Jang, Yujin; Jeong, Hyun-Young; Zhan, Chang-Guo; Lee, Wooin; Kim, Dong-Eun; Kim, Kyung Bo

    2015-02-26

    We performed a virtual screen of ∼340 000 small molecules against the active site of proteasomes followed by in vitro assays and subsequent optimization, yielding a proteasome inhibitor with pyrazole scaffold. The pyrazole-scaffold compound displayed excellent metabolic stability and was highly effective in suppressing solid tumor growth in vivo. Furthermore, the effectiveness of this compound was not negatively impacted by resistance to bortezomib or carfilzomib.

  8. Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer.

    PubMed

    Steg, Adam D; Burke, Mata R; Amm, Hope M; Katre, Ashwini A; Dobbin, Zachary C; Jeong, Dae Hoon; Landen, Charles N

    2014-08-30

    The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.

  9. THE PROTEASOME REGULATES BACTERIAL CpG DNA-INDUCED SIGNALING PATHWAYS IN MURINE MACROPHAGES

    PubMed Central

    Gao, Jian Jun; Shen, Jing; Kolbert, Christopher; Raghavakaimal, Sreekumar; Papasian, Christopher J.; Qureshi, Asaf A.; Vogel, Stefanie N.; Morrison, David C.; Qureshi, Nilofer

    2010-01-01

    Our previous work has provided strong evidence that the proteasome is central to the vast majority of genes induced in mouse macrophages in response to lipopolysaccharide (LPS) stimulation. In the studies presented here, we evaluated the role of the macrophage proteasome in response to a second microbial product CpG DNA (unmethylated bacterial DNA). For these studies, we applied Affymetrix microarray analysis of RNA derived from murine macrophages stimulated with CpG DNA in the presence or absence of proteasome inhibitor, lactacystin. The results of these studies revealed that similar to LPS, a vast majority of those macrophage genes regulated by CpG DNA are also under the control of the proteasome at 4 h. In contrast to LPS stimulation, however, many of these genes were induced much later than 4 h, at 18 h, in response to CpG DNA. Lactacystin treatment of macrophages completely blocked the CpG DNA-induced gene expression of TNF-α and other genes involved in production of inflammatory mediators. These data strongly support the conclusion that, similar to LPS, the macrophage proteasome is a key regulator of CpG DNA-induced signaling pathways. PMID:20160661

  10. Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth

    PubMed Central

    Song, Wenbin; Lu, Xiaoyu; Lan, Xiaoying; Chen, Xin; Yi, Songgang; Xu, Li; Jiang, Lili; Zhao, Canguo; Dong, Xiaoxian; Zhou, Ping; Li, Shujue; Wang, Shunqing; Shi, Xianping; Dou, Ping Q.; Wang, Xuejun; Liu, Jinbao

    2014-01-01

    Proteasomes are attractive emerging targets for anti-cancer therapies. Auranofin (Aur), a gold-containing compound clinically used to treat rheumatic arthritis, was recently approved by US Food and Drug Administration for Phase II clinical trial to treat cancer but its anti-cancer mechanism is poorly understood. Here we report that (i) Aur shows proteasome-inhibitory effect that is comparable to that of bortezomib/Velcade (Vel); (ii) different from bortezomib, Aur inhibits proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14 rather than the 20S proteasome; (iii) inhibition of the proteasome-associated DUBs is required for Aur-induced cytotoxicity; and (iv) Aur selectively inhibits tumor growth in vivo and induces cytotoxicity in cancer cells from acute myeloid leukemia patients. This study provides important novel insight into understanding the proteasome-inhibiting property of metal-containing compounds. Although several DUB inhibitors were reported, this study uncovers the first drug already used in clinic that can inhibit proteasome-associated DUBs with promising anti-tumor effects. PMID:24977961

  11. Novel proteasome inhibitors as potential drugs to combat tuberculosis.

    PubMed

    Cheng, Yong; Pieters, Jean

    2010-08-01

    Mycobacterium tuberculosis is one of the most notorious killers worldwide. These pathogens have evolved to infect human beings in a so-called dormant form that is extremely difficult to treat. New work, however, suggests that mycobacterial proteasomes, multicomponent structures that protect the microbe from damaging effects of nitric oxide generated by the host, can be selectively and specifically blocked by small molecules.

  12. Green Tea Polyphenols as Proteasome Inhibitors: Implication in Chemoprevention

    PubMed Central

    Yang, H.; Landis-Piwowar, K.; Chan, T.H.; Dou, Q.P.

    2012-01-01

    Next to water, tea is the most popular beverage in the world. The most abundant and active compound in green tea is (−)-epigallocatechin-3-gallate (EGCG), which is extensively studied for its cancer-preventive and anti-cancer activities as well as its cellular targets. One potential molecular target of EGCG is the proteasome. While molecular docking and structure-activity relationship (SAR) analysis suggests that the ester carbon of EGCG is important for mediating its proteasome-inhibitory activity, EGCG is very unstable under physiological conditions. Therefore, a series of analogs were synthesized aiming to improve stability and bioavailability of EGCG. Among them, peracetate-protected or the prodrug of EGCG was found to have increased bioavailability, stability, and proteasome-inhibitory activities against various human cancer cells and tumors compared to EGCG, suggesting its potential use for cancer prevention and treatment. Epidemiological studies have indicated that green tea consumption is associated with the reduced risk of cancers, especially associated with the reduced risk of late stage of cancers. This risk reduction may be attributed not only to proteasome inhibition, but also to numerous other intracellular molecules targeted by EGCG that are involved in cell cycle regulation, apoptosis, angiogenesis, and metastasis. PMID:21247384

  13. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis

    PubMed Central

    Guan, Shan; Zhao, Yanling; Lu, Jiaxiong; Yu, Yang; Sun, Wenjing; Mao, Xinfang; Chen, Zhenghu; Xu, Xin; Pan, Jessie; Sun, Surong; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients. PMID:27713150

  14. Novel Agents for the Treatment of Multiple Myeloma: Proteasome Inhibitors and Immunomodulatory Agents

    PubMed Central

    Kurtin, Sandra E.; Bilotti, Elizabeth

    2013-01-01

    The integration of novel agents into the treatment of multiple myeloma (MM) has shifted the focus from an incurable disease to one that is chronic, with a realistic hope of someday achieving a cure. Proteasome inhibitors and immunomodulatory agents are the backbone of novel therapies for MM. These agents are particularly important for patients with relapsed or refractory disease, a fate faced by the majority of myeloma patients over the course of their disease. Review of recent clinical trial data for the proteasome inhibitors and immunomodulatory agents, including clinical efficacy and safety information, will assist the advanced practitioner in oncology with integrating these data into the current treatment guidelines for MM. PMID:25032010

  15. High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.

    PubMed

    Ausseil, Frederic; Samson, Arnaud; Aussagues, Yannick; Vandenberghe, Isabelle; Creancier, Laurent; Pouny, Isabelle; Kruczynski, Anna; Massiot, Georges; Bailly, Christian

    2007-02-01

    To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Z factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products.

  16. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei; Volta, Viviana; Cho, Chi Hin; Wu, Ya Chun; Li, Hai Tao; Yu, Le; Li, Zhi Jie; Sung, Joseph Jao Yiu

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  17. Postnatal Proteasome Inhibition Induces Neurodegeneration and Cognitive Deficiencies in Adult Mice: A New Model of Neurodevelopment Syndrome

    PubMed Central

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation. PMID:22174927

  18. A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome.

    PubMed

    Gunderwala, Amber; Porter, John

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes a large global burden of disease, with a high mortality rate in healthy and immuno-compromised patients. A number of molecular targets have been identified for treatment of this disease, including the Mtb proteasome. The Mtb proteasome enhances Mtb survival during nitrosative and oxidative stress in the latent, non-replicative phase. Therefore, Mtb proteasome inhibition could help to combat Mtb infections that do not respond to current therapies. To develop and validate a novel biochemical assay to assess Mtb proteasome activity in the presence of organic and aqueous plant test extracts. Fluorescence (photoluminescence) and luminescence (chemiluminescence) assays were investigated as potential methods to determine the robustness and repeatability for use in screening natural product extracts for Mtb proteasome inhibitors. The fluorescence assay, used widely for Mtb proteasome activity assays, was subject to interference due to the natural fluorescence of compounds in many of the extracts; there is little interference with the luminescence approach. As proof of principle, we used the luminescence assay to screen a small set of plant test extracts. Luminescence is the more suitable assay for assay of plant natural product extracts. The sensitivities of the luminescence and fluorescence assays are comparable. A Z'-factor of 0.58 for the luminescence assay makes it suitable for medium-to-high throughput screening efforts. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration.

    PubMed

    Mathur, Brian N; Neely, M Diana; Dyllick-Brenzinger, Melanie; Tandon, Anurag; Deutch, Ariel Y

    2007-09-07

    Proteasomal dysfunction has been suggested to contribute to the degeneration of nigrostriatal dopamine neurons in Parkinson's disease. A recent study reported that systemic treatment of rats with the proteasome inhibitor Z-lle-Glu(OtBu)-Ala-Leu-al (PSI) causes a slowly progressive degeneration of nigrostriatal dopamine neurons, the presence of inclusion bodies in dopamine neurons, and motor impairment. We examined in vitro and in vivo the effects of PSI on nigrostriatal dopamine neurons. Mass spectrometric analysis was employed to verify the authenticity of the PSI compound. PSI was non-specifically toxic to neurons in ventral mesencephalic organotypic slice cultures, indicating that impairment of proteasome function in vitro is toxic. Moreover, systemic administration of PSI transiently decreased brain proteasome activity. Systemic treatment of rats with PSI did not, however, result in any biochemical or anatomical evidence of lesions of nigrostriatal dopamine neurons, nor were any changes in locomotor activity observed. These data suggest that systemic administration of proteasome inhibitors to normal adult rats does not reliably cause an animal model of parkinsonism.

  20. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors.

    PubMed

    Paniagua Soriano, Guillem; De Bruin, Gerjan; Overkleeft, Herman S; Florea, Bogdan I

    2014-12-10

    Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and

  1. Marizomib, a Proteasome Inhibitor for All Seasons: Preclinical Profile and a Framework for Clinical Trials

    PubMed Central

    Potts, B.C.; Albitar, M.X.; Anderson, K.C.; Baritaki, S.; Berkers, C.; Bonavida, B.; Chandra, J.; Chauhan, D.; Cusack, J.C.; Fenical, W.; Ghobrial, I.M.; Groll, M.; Jensen, P.R.; Lam, K.S.; Lloyd, G.K.; McBride, W.; McConkey, D.J.; Miller, C.P.; Neuteboom, S.T.C.; Oki, Y.; Ovaa, H.; Pajonk, F.; Richardson, P.G.; Roccaro, A.M.; Sloss, C.M.; Spear, M.A.; Valashi, E.; Younes, A.; Palladino, M.A.

    2013-01-01

    The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade®) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, che-motherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom’s macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid®), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside. PMID:21247382

  2. C-terminal constrained phenylalanine as a pharmacophoric unit in peptide-based proteasome inhibitors.

    PubMed

    Baldisserotto, Anna; Marastoni, Mauro; Lazzari, Ilaria; Trapella, Claudio; Gavioli, Riccardo; Tomatis, Roberto

    2008-07-01

    Here we report the synthesis and biological properties of peptide-based molecules bearing constrained analogues of phenylalanine at the C-terminal. Compounds were tested as proteasome subunits' inhibitors. Dehydro-peptides showed good inhibition, in particular against trypsin-like (T-L) proteasome activity while some C-terminal Tic-derivatives inhibit only caspase-like activity in enzymatic beta1 subunits with a certain degree of efficacy. The best analogues of the series demonstrated good resistance to proteolysis and a capacity to permeate the cell membrane.

  3. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma

    PubMed Central

    Barrott, Jared J.; Yao, Ren Jie; Poulin, Neal M.; Brodin, Bertha A.; Jones, Kevin B.; Underhill, T. Michael; Nielsen, Torsten O.

    2017-01-01

    Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting its driving SS18-SSX fusion oncoprotein are currently available. Patients remain at high risk for early and late metastasis. A high-throughput drug screen consisting of over 900 tool compounds and epigenetic modifiers, representing over 100 drug classes, was undertaken in a panel of synovial sarcoma cell lines to uncover novel sensitizing agents and targetable pathways. Top scoring drug categories were found to be HDAC inhibitors and proteasomal targeting agents. We find that the HDAC inhibitor quisinostat disrupts the SS18-SSX driving protein complex, thereby reestablishing expression of EGR1 and CDKN2A tumor suppressors. In combination with proteasome inhibition, HDAC inhibitors synergize to decrease cell viability and elicit apoptosis. Quisinostat inhibits aggresome formation in response to proteasome inhibition, and combination treatment leads to elevated endoplasmic reticulum stress, activation of pro-apoptotic effector proteins BIM and BIK, phosphorylation of BCL-2, increased levels of reactive oxygen species, and suppression of tumor growth in a murine model of synovial sarcoma. This study identifies and provides mechanistic support for a particular susceptibility of synovial sarcoma to the combination of quisinostat and proteasome inhibition. PMID:28056055

  4. Synthesis and Biological Evaluation of Naphthoquinone Analogs as a Novel Class of Proteasome Inhibitors

    PubMed Central

    Lawrence, Harshani R.; Kazi, Aslamuzzaman; Luo, Yunting; Kendig, Robert; Ge, Yiyu; Jain, Sanjula; Daniel, Kenyon; Santiago, Daniel; Guida, Wayne C.; Sebti, Saïd M.

    2012-01-01

    Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the β5 and β6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the β6 subunit. PMID:20621484

  5. Peptidomic analysis of HEK293T cells: Effect of the proteasome inhibitor epoxomicin on intracellular peptides

    PubMed Central

    Fricker, Lloyd D.; Gelman, Julia S.; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.

    2012-01-01

    Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 μM or 2 μM) for 1 hour and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation. PMID:22304392

  6. FV-162 is a novel, orally bioavailable, irreversible proteasome inhibitor with improved pharmacokinetics displaying preclinical efficacy with continuous daily dosing

    PubMed Central

    Wang, Z; Dove, P; Wang, X; Shamas-Din, A; Li, Z; Nachman, A; Oh, Y J; Hurren, R; Ruschak, A; Climie, S; Press, B; Griffin, C; Undzys, E; Aman, A; Al-awar, R; Kay, L E; O'Neill, D; Trudel, S; Slassi, M; Schimmer, A D

    2015-01-01

    Approved proteasome inhibitors have advanced the treatment of multiple myeloma but are associated with serious toxicities, poor pharmacokinetics, and most with the inconvenience of intravenous administration. We therefore sought to identify novel orally bioavailable proteasome inhibitors with a continuous daily dosing schedule and improved therapeutic window using a unique drug discovery platform. We employed a fluorine-based medicinal chemistry technology to synthesize 14 novel analogs of epoxyketone-based proteasome inhibitors and screened them for their stability, ability to inhibit the chymotrypsin-like proteasome, and antimyeloma activity in vitro. The tolerability, pharmacokinetics, pharmacodynamic activity, and antimyeloma efficacy of our lead candidate were examined in NOD/SCID mice. We identified a tripeptide epoxyketone, FV-162, as a metabolically stable, potent proteasome inhibitor cytotoxic to human myeloma cell lines and primary myeloma cells. FV-162 had limited toxicity and was well tolerated on a continuous daily dosing schedule. Compared with the benchmark oral irreversible proteasome inhibitor, ONX-0192, FV-162 had a lower peak plasma concentration and longer half-life, resulting in a larger area under the curve (AUC). Oral FV-162 treatment induced rapid, irreversible inhibition of chymotrypsin-like proteasome activity in murine red blood cells and inhibited tumor growth in a myeloma xenograft model. Our data suggest that oral FV-162 with continuous daily dosing schedule displays a favorable safety, efficacy, and pharmacokinetic profile in vivo, identifying it as a promising lead for clinical evaluation in myeloma therapy. PMID:26158521

  7. Effects of an Anticarcinogenic Bowman-Birk Protease Inhibitor on Purified 20S Proteasome and MCF-7 Breast Cancer Cells

    PubMed Central

    Souza, Larissa da Costa; Camargo, Ricardo; Demasi, Marilene; Santana, Jaime Martins; de Freitas, Sonia Maria

    2014-01-01

    Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis. PMID:24475156

  8. Orthopoxviruses Require a Functional Ubiquitin-Proteasome System for Productive Replication▿

    PubMed Central

    Teale, Alastair; Campbell, Stephanie; Van Buuren, Nick; Magee, Wendy C.; Watmough, Kelly; Couturier, Brianne; Shipclark, Robyn; Barry, Michele

    2009-01-01

    Cellular homeostasis depends on an intricate balance of protein expression and degradation. The ubiquitin-proteasome pathway plays a crucial role in specifically targeting proteins tagged with ubiquitin for destruction. This degradation can be effectively blocked by both chemically synthesized and natural proteasome inhibitors. Poxviruses encode a number of proteins that exploit the ubiquitin-proteasome system, including virally encoded ubiquitin molecules and ubiquitin ligases, as well as BTB/kelch proteins and F-box proteins, which interact with cellular ubiquitin ligases. Here we show that poxvirus infection was dramatically affected by a range of proteasome inhibitors, including MG132, MG115, lactacystin, and bortezomib (Velcade). Confocal microscopy demonstrated that infected cells treated with MG132 or bortezomib lacked viral replication factories within the cytoplasm. This was accompanied by the absence of late gene expression and DNA replication; however, early gene expression occurred unabated. Proteasomal inhibition with MG132 or bortezomib also had dramatic effects on viral titers, severely blocking viral replication and propagation. The effects of MG132 on poxvirus infection were reversible upon washout, resulting in the production of late genes and viral replication factories. Significantly, the addition of an ubiquitin-activating enzyme (E1) inhibitor had a similar affect on late and early protein expression. Together, our data suggests that a functional ubiquitin-proteasome system is required during poxvirus infection. PMID:19109393

  9. Proteasome inhibition in medaka brain induces the features of Parkinson's disease.

    PubMed

    Matsui, Hideaki; Ito, Hidefumi; Taniguchi, Yoshihito; Inoue, Haruhisa; Takeda, Shunichi; Takahashi, Ryosuke

    2010-10-01

    Recent findings suggest that a defect in the ubiquitin-proteasome system plays an important role in the pathogenesis of Parkinson's disease (PD). A previous report (McNaught et al. 2004) demonstrated that rats systemically injected with proteasome inhibitors exhibited PD-like clinical symptoms and pathology. However, because these findings have not been consistently replicated, this model is not commonly used to study PD. We used medaka fish to test the effect of systemic administration of proteasome inhibitors because of the high level of accessibility of the cerebrospinal fluid in fish. We injected lactacystin or epoxomicin into the CSF of medaka. With proteasome inhibition in the medaka brain, selective dopaminergic and noradrenergic cell loss was observed. Furthermore, treated fish exhibited reduced spontaneous movement. Treatment with proteasome inhibitors also induced the formation of inclusion bodies resembling Lewy bodies, which are characteristic of PD. Treatment with 6-OHDA also induced dopaminergic cell loss but did not produce inclusion bodies. These findings in medaka are consistent with previous results reporting that non-selective proteasome inhibition replicates the cardinal features of PD: locomotor dysfunction, selective dopaminergic cell loss, and inclusion body formation.

  10. Optimization and Evaluation of 5-Styryl-Oxathiazol-2-one Mycobacterium tuberculosis Proteasome Inhibitors as Potential Antitubercular Agents

    PubMed Central

    Russo, Francesco; Gising, Johan; Åkerbladh, Linda; Roos, Annette K; Naworyta, Agata; Mowbray, Sherry L; Sokolowski, Anders; Henderson, Ian; Alling, Torey; Bailey, Mai A; Files, Megan; Parish, Tanya; Karlén, Anders; Larhed, Mats

    2015-01-01

    This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure–activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs. PMID:26246997

  11. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome.

    PubMed

    Demo, Susan D; Kirk, Christopher J; Aujay, Monette A; Buchholz, Tonia J; Dajee, Maya; Ho, Mark N; Jiang, Jing; Laidig, Guy J; Lewis, Evan R; Parlati, Francesco; Shenk, Kevin D; Smyth, Mark S; Sun, Congcong M; Vallone, Marcy K; Woo, Tina M; Molineaux, Christopher J; Bennett, Mark K

    2007-07-01

    Clinical studies with bortezomib have validated the proteasome as a therapeutic target for the treatment of multiple myeloma and non-Hodgkin's lymphoma. However, significant toxicities have restricted the intensity of bortezomib dosing. Here we describe the antitumor activity of PR-171, a novel epoxyketone-based irreversible proteasome inhibitor that is currently in clinical development. In comparison to bortezomib, PR-171 exhibits equal potency but greater selectivity for the chymotrypsin-like activity of the proteasome. In cell culture, PR-171 is more cytotoxic than bortezomib following brief treatments that mimic the in vivo pharmacokinetics of both molecules. Hematologic tumor cells exhibit the greatest sensitivity to brief exposure, whereas solid tumor cells and nontransformed cell types are less sensitive to such treatments. Cellular consequences of PR-171 treatment include the accumulation of proteasome substrates and induction of cell cycle arrest and/or apoptosis. Administration of PR-171 to animals results in the dose-dependent inhibition of the chymotrypsin-like proteasome activity in all tissues examined with the exception of the brain. PR-171 is well tolerated when administered for either 2 or 5 consecutive days at doses resulting in >80% proteasome inhibition in blood and most tissues. In human tumor xenograft models, PR-171 mediates an antitumor response that is both dose and schedule dependent. The antitumor efficacy of PR-171 delivered on 2 consecutive days is stronger than that of bortezomib administered on its clinical dosing schedule. These studies show the tolerability, efficacy, and dosing flexibility of PR-171 and provide validation for the clinical testing of PR-171 in the treatment of hematologic malignancies using dose-intensive schedules.

  12. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity

    PubMed Central

    Li, Hao; Ponder, Elizabeth L.; Verdoes, Martijn; Asbjornsdottir, Kristijana H.; Deu, Edgar; Edgington, Laura E.; Lee, Jeong Tae; Kirk, Christopher J.; Demo, Susan D.; Williamson, Kim C.; Bogyo, Matthew

    2012-01-01

    Summary The Plasmodium proteasome has been suggested to be a potential anti-malarial drug target, however toxicity of inhibitors has prevented validation of this enzyme in vivo. We report here a screen of a library of 670 analogs of the recently FDA approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in P. berghei infected mice without host toxicity, thus validating the proteasome as a viable anti-malarial drug target. PMID:23142757

  13. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium.

    PubMed

    Pereira, Alban R; Kale, Andrew J; Fenley, Andrew T; Byrum, Tara; Debonsi, Hosana M; Gilson, Michael K; Valeriote, Frederick A; Moore, Bradley S; Gerwick, William H

    2012-04-16

    Two new peptidic proteasome inhibitors were isolated as trace components from a Curaçao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived α,β-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the β5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.

  14. Proteasome inhibitors for malignancy-related Lambert-Eaton myasthenic syndrome.

    PubMed

    Wang, Chen; Chen, Shaobo; Feng, Bing; Guan, Yuzhou

    2014-03-01

    Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder characterized by autoantibodies against presynaptic voltage-gated calcium channels that impair neuromuscular transmission. Malignancies, especially small cell lung cancer (SCLC), have been associated with LEMS and account for approximately 60% of cases, making malignancy management a central step in LEMS therapy. In addition, immunosuppressive therapy is also recommended for symptomatic control. Interestingly, both pathological and epidemiological data suggest that the autoimmune response can inhibit progression of tumors in malignancy-associated LEMS. Thus, conventional broad-spectrum immunosuppressants may not be effective agents for treatment of LEMS, especially in those with malignancy-associated LEMS. Recent preclinical and clinical studies have indicated that proteasome inhibitors can eliminate antibody-producing cells efficiently, block dendritic cell maturation, and have anti-tumor activity. We hypothesize that proteasome inhibitors may be promising agents for treatment of malignancy-related LEMS.

  15. Glutamine vinyl ester proteasome inhibitors selective for trypsin-like (beta2) subunit.

    PubMed

    Baldisserotto, Anna; Marastoni, Mauro; Trapella, Claudio; Gavioli, Riccardo; Ferretti, Valeria; Pretto, Loretta; Tomatis, Roberto

    2007-05-01

    Here we report the study of a new series of peptide-based proteasome inhibitors with a vinyl ester moiety at C-terminal. The presence of Tic, a rigid analogue of phenylalanine, in the central portion of some derivatives is not favourable for the activity. The best analogue of the series shows a potent and selective inhibition for the beta2 subunit and good enzymatic stability.

  16. P3 and P4 position analysis of vinyl ester pseudopeptide proteasome inhibitors.

    PubMed

    Marastoni, Mauro; Baldisserotto, Anna; Trapella, Claudio; Gavioli, Riccardo; Tomatis, Roberto

    2006-06-15

    Two small libraries of tripeptidic-based vinyl ester derivative proteasome inhibitors were synthesized and tested, starting with the Hmb-Val-Gln-Leu-VE prototype. The P3 and P4 positions were investigated with a complete set of amino acid residues, some of which showed remarkable selective inhibition of the trypsin-like (beta2) subunit. In both positions, aromatic and hydrophobic residues were preferred.

  17. Alpha,beta-unsaturated N-acylpyrrole peptidyl derivatives: new proteasome inhibitors.

    PubMed

    Baldisserotto, Anna; Ferretti, Valeria; Destro, Federica; Franceschini, Christian; Marastoni, Mauro; Gavioli, Riccardo; Tomatis, Roberto

    2010-09-09

    Because of the encouraging results obtained using vinyl ester derivatives, we synthesized and tested a novel series of peptide-based proteasome inhibitors bearing a new pharmacophore unit at the C-terminal. N-Acylpyrrole moiety is a potential substrate for Michael addition by catalytic threonine. Several analogues have demonstrated a selective inhibition of the multicatalytic complex beta1 subunits, the capacity to permeate cellular membrane, and good pharmacokinetics properties.

  18. Investigating proteasome inhibitors as potential adjunct therapies for experimental cerebral malaria.

    PubMed

    Howland, S W; Ng, G X P; Chia, S K; Rénia, L

    2015-11-01

    Aside from antimalarials, there is currently no treatment for cerebral malaria, a fulminant neurological complication of P. falciparum infection that is a leading cause of death in African children. In the mouse model of cerebral malaria, cross-presentation of parasite antigens by brain endothelial cells is thought to be a crucial late step in pathogenesis. We have investigated three proteasome inhibitors as potential adjunct therapies: bortezomib, carfilzomib and ONX-0914. Only carfilzomib, an irreversible inhibitor of both constitutive proteasomes and immunoproteasomes, was able to inhibit cross-presentation of malaria antigen by murine brain endothelial cells in vitro. To mimic the clinical setting, carfilzomib was co-administered with artesunate only when infected mice exhibited neurological defects. However, there was no improvement in survival compared to artesunate monotherapy. The treatment failure was explained by the inability of daily or twice daily bolus doses of carfilzomib to inhibit cross-presentation by brain endothelial cells in vivo. We also report here that bortezomib, which has been associated with neurological adverse events, accelerated death in ECM-infected mice. Future investigations of proteasome inhibitors for modulating cross-presentation during malaria infection should focus on sustained and targeted delivery to brain endothelial cells. © 2015 John Wiley & Sons Ltd.

  19. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  20. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  1. Discovery of new [Formula: see text] proteasome inhibitors using a knowledge-based computational screening approach.

    PubMed

    Mehra, Rukmankesh; Chib, Reena; Munagala, Gurunadham; Yempalla, Kushalava Reddy; Khan, Inshad Ali; Singh, Parvinder Pal; Khan, Farrah Gul; Nargotra, Amit

    2015-11-01

    Mycobacterium tuberculosis bacteria cause deadly infections in patients [Corrected]. The rise of multidrug resistance associated with tuberculosis further makes the situation worse in treating the disease. M. tuberculosis proteasome is necessary for the pathogenesis of the bacterium validated as an anti-tubercular target, thus making it an attractive enzyme for designing Mtb inhibitors. In this study, a computational screening approach was applied to identify new proteasome inhibitor candidates from a library of 50,000 compounds. This chemical library was procured from the ChemBridge (20,000 compounds) and the ChemDiv (30,000 compounds) databases. After a detailed analysis of the computational screening results, 50 in silico hits were retrieved and tested in vitro finding 15 compounds with [Formula: see text] values ranging from 35.32 to 64.15 [Formula: see text]M on lysate. A structural analysis of these hits revealed that 14 of these compounds probably have non-covalent mode of binding to the target and have not reported for anti-tubercular or anti-proteasome activity. The binding interactions of all the 14 protein-inhibitor complexes were analyzed using molecular docking studies. Further, molecular dynamics simulations of the protein in complex with the two most promising hits were carried out so as to identify the key interactions and validate the structural stability.

  2. Augmentation of fear extinction by D-cycloserine is blocked by proteasome inhibitors.

    PubMed

    Mao, Sheng-Chun; Lin, Hui-Ching; Gean, Po-Wu

    2008-12-01

    D-Cycloserine (DCS) has been shown to facilitate extinction of conditioned fear in rats and to improve fear reduction of social phobia and fear of heights in human studies. Here, we investigate the mechanism of DCS effect by measuring internalized GluR1 and GluR2 using cell-surface biotinylation techniques. DCS selectively increased NMDA receptor-mediated synaptic response without affecting AMPA receptor-mediated synaptic response. Low-frequency stimulation (LFS) when applied in the presence of DCS induced GluR1 and GluR2 internalization in the amygdala slices. Proteasome inhibitors block DCS facilitation of LFS-induced depotentiation and a reduction in surface levels of GluR1 and GluR2. Furthermore, DCS in combination with LFS reduced cellular levels of PSD-95 and synapse-associated protein 97 (SAP97), which were also blocked by proteasome inhibitors. In the in vivo experiments, DCS-induced reduction of fear-potentiated startle and reversal of conditioning-induced increase in surface expression of GluR1 were blocked by proteasome inhibitors. DCS-treated rats fail to exhibit reinstatement after US-alone presentations. These results suggest that DCS facilitates receptor internalization in the presence of extinction training, resulting in augmented reduction of startle potentiation.

  3. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16.

    PubMed

    Dudnik, Alexey; Bigler, Laurent; Dudler, Robert

    2014-06-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.

  4. Production of Proteasome Inhibitor Syringolin A by the Endophyte Rhizobium sp. Strain AP16

    PubMed Central

    Bigler, Laurent; Dudler, Robert

    2014-01-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts. PMID:24727275

  5. Exploration of novel piperazine or piperidine constructed non-covalent peptidyl derivatives as proteasome inhibitors.

    PubMed

    Zhuang, Rangxiao; Gao, Lixin; Lv, Xiaoqing; Xi, Jianjun; Sheng, Li; Zhao, Yanmei; He, Ruoyu; Hu, Xiaobei; Shao, Yidan; Pan, Xuwang; Liu, Shourong; Huang, Weiwei; Zhou, Yubo; Li, Jia; Zhang, Jiankang

    2017-01-27

    A series of novel piperazine or piperidine-containing non-covalent peptidyl derivatives possessing a neopentyl-asparagine residue were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were screened for their 20S proteasome chymotrypsin-like inhibitory activities, and 15 ones displayed more potent activities than carfilzomib with IC50 values lower than 10 nM. Subsequently, the most potent 10 analogues were tested for their cytotoxic activities against two multiple myeloma (MM) cell lines RPMI-8226 and MM-1S. Based on these experiments, selected derivatives were further evaluated for their ex vivo and in vivo blood cell proteasome inhibitory activities. The most potential compound 35 (proteasome inhibition IC50: 1.2 ± 0.1 nM) with potent anti-proliferation (IC50: RPMI-8226 8.4 ± 0.8 nM; MM-1S: 6.3 ± 0.8 nM), ex vivo and in vivo activities also had a prolonged half life in plasma, which demonstrated that the enzymatic stabilities of this series of compounds have been improved by constructing a six-membered ring into the peptide skeleton. All the experiments confirmed the correctness of design concept, which made this series of compounds potential leads for exploring new anti-MM drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.

    PubMed

    Chandra, Abhishek; Wang, Luqiang; Young, Tiffany; Zhong, Leilei; Tseng, Wei-Ju; Levine, Michael A; Cengel, Keith; Liu, X Sherry; Zhang, Yejia; Pignolo, Robert J; Qin, Ling

    2017-08-31

    Bone atrophy and its related fragility fractures are frequent, late side effects of radiotherapy in cancer survivors and have a detrimental impact on their quality of life. In another study, we showed that parathyroid hormone 1-34 and anti-sclerostin antibody attenuates radiation-induced bone damage by accelerating DNA repair in osteoblasts. DNA damage responses are partially regulated by the ubiquitin proteasome pathway. In the current study, we examined whether proteasome inhibitors have similar bone-protective effects against radiation damage. MG132 treatment greatly reduced radiation-induced apoptosis in cultured osteoblastic cells. This survival effect was owing to accelerated DNA repair as revealed by γH2AX foci and comet assays and to the up-regulation of Ku70 and DNA-dependent protein kinase, catalytic subunit, essential DNA repair proteins in the nonhomologous end-joining pathway. Administration of bortezomib (Bzb) reversed the loss of trabecular bone structure and strength in mice at 4 wk after focal radiation. Histomorphometry revealed that Bzb significantly increased the number of osteoblasts and activity in the irradiated area and suppressed the number and activity of osteoclasts, regardless of irradiation. Two weeks of Bzb treatment accelerated DNA repair in bone-lining osteoblasts and thus promoted their survival. Meanwhile, it also inhibited bone marrow adiposity. Taken together, we demonstrate a novel role of proteasome inhibitors in treating radiation-induced osteoporosis.-Chandra, A., Wang, L., Young, T., Zhong, L., Tseng, W.-J., Levine, M. A., Cengel, K., Liu, X. S., Zhang, Y., Pignolo, R. J., Qin, L. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis. © FASEB.

  7. Proteasome inhibitors induce peroxisome proliferator-activated receptor transactivation through RXR accumulation and a protein kinase C-dependent pathway

    SciTech Connect

    Tsao, W.-C.; Wu, H.-M.; Chi, K.-H.; Chang, Y.-H.; Lin, W.-W. . E-mail: wwl@ha.mc.ntu.edu.tw

    2005-03-10

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of nuclear hormone receptors, forms a heterodimeric DNA binding complex with retinoid X receptor (RXR) and serves as a transcriptional regulator of gene expression. In this study, using luciferase assay of a reporter gene containing PPAR response element (PPRE), we found PPRE transactivity was additively induced by PPAR{gamma} activator (15dPGJ{sub 2}) and RXR activator (9-cis retinoic acid, 9-cis RA). Proteasome inhibitors MG132 and MG262 also stimulate PPRE transactivity in a concentration-dependent manner, and this effect is synergistic to 15dPGJ{sub 2} and 9-cis RA. PKC activation by 12-myristate 13-acetate (PMA) and ingenol 3,20-dibenzoate (IDB) also led to an increased PPRE activation, and this action was additive to PPAR{gamma} activators and 9-cis RA, but not to proteasome inhibitors. Results indicate that the PPAR{gamma} enhancing effect of proteasome inhibitors was attributed to redox-sensitive PKC activation. Western blot analysis showed that the protein level of RXR{alpha}, but not PPAR{gamma}, RXR{beta}, or PKC isoforms, was accumulated in the presence of proteasome inhibitors. Taken together, we conclude that proteasome inhibitors can upregulate PPRE activity through RXR{alpha} accumulation and a PKC-dependent pathway. The former is due to inhibition of RXR{alpha} degradation through ubiquitin-dependent proteasome system, while the latter is mediated by reactive oxygen species (ROS) production.

  8. The genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors

    PubMed Central

    Schorn, Michelle; Zettler, Judith; Noel, Joseph P.; Dorrestein, Pieter C.; Moore, Bradley S.; Kaysser, Leonard

    2013-01-01

    The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α′,β′-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anti-cancer drug Kyprolis™, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid non-ribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation. PMID:24168704

  9. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

    PubMed Central

    2013-01-01

    Background It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity. Methods Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells. Results Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2

  10. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  11. N-terminal-prolonged vinyl ester-based peptides as selective proteasome beta1 subunit inhibitors.

    PubMed

    Baldisserotto, Anna; Destro, Federica; Vertuani, Gianni; Marastoni, Mauro; Gavioli, Riccardo; Tomatis, Roberto

    2009-08-01

    The synthesis and biological properties of vinyl ester peptide-based molecules bearing linear N-terminal amino acids are reported. Compounds were tested in vitro for their capacity to inhibit the chymotryptic-, tryptic-like, and post-acidic activities of the proteasome. Some analogues showed selective inhibition of post-acidic (PGPH) activity, which is attributed to the beta1 subunit. Interestingly, active compounds demonstrated higher inhibitory activity toward 'standard' proteasomes than toward immunoproteasomes. The inhibitory potency was found to be related to the amino acidic sequence and to the length of the N-terminal residues. The new inhibitors demonstrated resistance to plasmatic proteases and a good capacity to permeate the cell membrane.

  12. Discovery of a novel proteasome inhibitor selective for cancer cells over non-transformed cells.

    PubMed

    Kazi, Aslamuzzaman; Lawrence, Harshani; Guida, Wayne C; McLaughlin, Mark L; Springett, Gregory M; Berndt, Norbert; Yip, Richard M L; Sebti, Saïd M

    2009-06-15

    Numerous proteins controlling cell cycle progression, apoptosis and angiogenesis are degraded by the ubiquitin/proteasome system, which has become the subject for intense investigations for cancer therapeutics. Therefore, we used in silico and experimental approaches to screen compounds from the NCI chemical libraries for inhibitors against the chymotrypsin-like (CT-L) activity of the proteasome and discovered PI-083. Molecular docking indicates that PI-083 interacts with the Thr21, Gly47 and Ala49 residues of the beta5 subunit and Asp114 of the beta6 subunit of the proteasome. PI-083 inhibits CT-L activity and cell proliferation and induces apoptosis selectively in cancer cells (ovarian T80-Hras, pancreatic C7-Kras and breast MCF-7) as compared to their normal/immortalized counterparts (T80, C7 and MCF-10A, respectively). In contrast, Bortezomib, the only proteasome inhibitor approved by the Food and Drug Administration (FDA), did not exhibit this selectivity for cancer over non-transformed cells. In addition, in all cancer cells tested, including Multiple Myeloma (MM), breast, pancreatic, ovarian, lung, prostate cancer cell lines as well as fresh MM cells from patients, PI-083 required less time than Bortezomib to induce its antitumor effects. Furthermore, in nude mouse xenografts in vivo, PI-083, but not Bortezomib, suppressed the growth of human breast and lung tumors. Finally, following in vivo treatment of mice, PI-083 inhibited tumor, but not hepatic liver CT-L activity, whereas Bortezomib inhibited both tumor and liver CT-L activities. These results suggest that PI-083 is more selective for cancer cells and may have broader antitumor activity and therefore warrants further advanced preclinical studies.

  13. Two waves of proteasome-dependent protein degradation in the hippocampus are required for recognition memory consolidation.

    PubMed

    Figueiredo, Luciana S; Dornelles, Arethuza S; Petry, Fernanda S; Falavigna, Lucio; Dargél, Vinicius A; Köbe, Luiza M; Aguzzoli, Cristiano; Roesler, Rafael; Schröder, Nadja

    2015-04-01

    Healthy neuronal function and synaptic modification require a concert of synthesis and degradation of proteins. Increasing evidence indicates that protein turnover mediated by proteasome activity is involved in long-term synaptic plasticity and memory. However, its role in different phases of memory remains debated, and previous studies have not examined the possible requirement of protein degradation in recognition memory. Here, we show that the proteasome inhibitor, lactacystin (LAC), infused into the CA1 area of the hippocampus at two specific time points during consolidation, impairs 24-retention of memory for object recognition in rats. Administration of LAC after retrieval did not affect retention. These findings provide the first evidence for a requirement of proteasome activity in recognition memory, indicate that protein degradation in the hippocampus is necessary during selective time windows of memory consolidation, and further our understanding of the role of protein turnover in memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib

    PubMed Central

    Berezniuk, Iryna; Dasgupta, Sayani; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.; Fricker, Lloyd D.

    2013-01-01

    Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug. PMID:23308178

  15. Discovery of PI-1840, a Novel Noncovalent and Rapidly Reversible Proteasome Inhibitor with Anti-tumor Activity*

    PubMed Central

    Kazi, Aslamuzzaman; Ozcan, Sevil; Tecleab, Awet; Sun, Ying; Lawrence, Harshani R.; Sebti, Saïd M.

    2014-01-01

    The proteasome inhibitor bortezomib is effective in hematologic malignancies such as multiple myeloma but has little activity against solid tumors, acts covalently, and is associated with undesired side effects. Therefore, noncovalent inhibitors that are less toxic and more effective against solid tumors are desirable. Structure activity relationship studies led to the discovery of PI-1840, a potent and selective inhibitor for chymotrypsin-like (CT-L) (IC50 value = 27 ± 0.14 nm) over trypsin-like and peptidylglutamyl peptide hydrolyzing (IC50 values >100 μm) activities of the proteasome. Furthermore, PI-1840 is over 100-fold more selective for the constitutive proteasome over the immunoproteasome. Mass spectrometry and dialysis studies demonstrate that PI-1840 is a noncovalent and rapidly reversible CT-L inhibitor. In intact cancer cells, PI-1840 inhibits CT-L activity, induces the accumulation of proteasome substrates p27, Bax, and IκB-α, inhibits survival pathways and viability, and induces apoptosis. Furthermore, PI-1840 sensitizes human cancer cells to the mdm2/p53 disruptor, nutlin, and to the pan-Bcl-2 antagonist BH3-M6. Finally, in vivo, PI-1840 but not bortezomib suppresses the growth in nude mice of human breast tumor xenografts. These results warrant further evaluation of a noncovalent and rapidly reversible proteasome inhibitor as potential anticancer agents against solid tumors. PMID:24570003

  16. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase

    PubMed Central

    He, Yantao; Guo, Xing; Yu, Zhi-Hong; Wu, Li; Gunawan, Andrea M.; Zhang, Yan; Dixon, Jack E.; Zhang, Zhong-Yin

    2015-01-01

    The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) has been implicated as a negative regulator of the proteasome, a key mediator in the ubiquitin-dependent protein degradation. Small molecule inhibitors that block UBLCP1 activity would be valuable as research tools and potential therapeutics for human diseases caused by the cellular accumulation of misfold/damaged proteins. We report a salicylic acid fragment-based library approach aimed at targeting both the phosphatase active site and its adjacent binding pocket for enhanced affinity and selectivity. Screening of the focused libraries led to the identification of the first potent and selective UBLCP1 inhibitor 13. Compound 13 exhibits an IC50 of 1.0 μM for UBLCP1 and greater than 5-fold selectivity against a large panel of protein phosphatases from several distinct families. Importantly, the inhibitor possesses efficacious cellular activity and is capable of inhibiting UBLCP1 function in cells, which in turn up-regulates nuclear proteasome activity. These studies set the groundwork for further developing compound 13 into chemical probes or potential therapeutic agents targeting the UBLCP1 phosphatase. PMID:25907364

  17. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma.

    PubMed

    Bhatt, Shruti; Ashlock, Brittany M; Toomey, Ngoc L; Diaz, Luis A; Mesri, Enrique A; Lossos, Izidore S; Ramos, Juan Carlos

    2013-06-01

    Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.

  18. Proteasome Inhibitors Enhance Bacteriophage Lambda (λ) Mediated Gene Transfer in Mammalian Cells

    PubMed Central

    Volcy, Ketna; Dewhurst, Stephen

    2009-01-01

    Bacteriophage lambda vectors can transfer their genomes into mammalian cells, resulting in expression of phage-encoded genes. However, this process is inefficient. Experiments were therefore conducted to delineate the rate limiting step(s) involved, using a phage vector that contains a mammalian luciferase reporter gene cassette. The efficiency of phage-mediated gene transfer in mammalian cells was quantitated, in the presence or absence of pharmacologic inhibitors of cell uptake and degradation pathways. Inhibitors of lysosomal proteases and proteasome inhibitors strongly enhanced phage-mediated luciferase expression, suggesting that these pathways contribute to the destruction of intracellular phage particles. In contrast, inhibition of endosome acidification had no effect on phage-mediated gene transfer, presumably because phage lambda is tolerant to extended exposure to low pH. These findings provide insights into the pathways by which phage vectors enter and transduce mammalian cells, and suggest that it may be possible to pharmacologically enhance the efficiency of phage-mediated gene transfer in mammalian cells. Finally, the data also suggest that the proteasome complex may serve as an innate defense mechanism that restricts the infection of mammalian cells by diverse viral agents. PMID:19064273

  19. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni.

    PubMed

    Morais, Enyara R; Oliveira, Katia C; Paula, Renato G de; Ornelas, Alice M M; Moreira, Érika B C; Badoco, Fernanda Rafacho; Magalhães, Lizandra G; Verjovski-Almeida, Sergio; Rodrigues, Vanderlei

    2017-01-01

    Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites' tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis

  20. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    SciTech Connect

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 32 {mu}mol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  1. Mechanism of Action of Proteasome Inhibitors and Deacetylase Inhibitors and the Biological Basis of Synergy in Multiple Myeloma

    PubMed Central

    Hideshima, Teru; Richardson, Paul G.; Anderson, Kenneth C.

    2017-01-01

    Novel agents, including the proteasome inhibitor bortezomib, have significantly improved the response and survival of patients with multiple myeloma (MM) over the last decade. Despite these advances, many patients relapse or do not benefit from the currently available therapies; thus, MM remains an incurable disease. Deacetylase inhibitors (DACi), including panobinostat and vorinostat, have recently emerged as novel agents being evaluated in the treatment of MM. Deacetylases are a group of enzymes with effects on various intracellular proteins including histones, transcription factors, and molecular chaperones. Although DACi inhibit cell growth and induce apoptosis in MM cells as a single agent, synergistic activity has been observed when they were used in combination with bortezomib. The mechanistic basis of synergy is multifactorial and includes disruption of protein degradation and inhibition of the interaction of MM cells with the tumor microenvironment. This review summarizes recent advancements in the understanding of the mechanism of action of proteasome inhibitors and DACi in MM and examines the biological basis of their synergistic effects. Data from the studies summarized here have been used as the rationale for the implementation of phase II and III clinical trials of DACi, alone and combined with bortezomib, in relapsed and refractory MM. PMID:22072815

  2. Syringolin B-inspired proteasome inhibitor analogue TIR-203 exhibits enhanced biological activity in multiple myeloma and neuroblastoma.

    PubMed

    Opoku-Ansah, John; Ibarra-Rivera, Tannya R; Pirrung, Michael C; Bachmann, André S

    2012-01-01

    The bacterium Pseudomonas syringae pv. syringae (Pss) is a pathogen of many plant species and causes, for example, brown spot disease in bean plants (Phaseolus vulgaris). Pss excretes the syringolins, natural product molecules that act as a virulence factors and inhibit the proteasome of the host plants. Proteasome inhibitors belong to an important class of anticancer agents and bortezomib (Velcade(®)) has been Food and Drug Administration-approved for the treatment of multiple myeloma (MM) and mantle cell lymphoma. Syringolins represent a new class of proteasome inhibitors and the present work was undertaken to design a potent syringolin-inspired analogue (TIR-203) for anticancer drug development. TIR-203 was tested against human MM and neuroblastoma (NB) cells. Cancer cells were treated with TIR-203 at various concentrations (0-10 µM) and the cell viability was measured using the MTS assay. To determine the effects on proteasomal activities, the cell culture-based proteasome inhibition assay was used. Syringolin A (SylA) and bortezomib were included as controls. TIR-203 inhibited the cell proliferation of MM and NB cells in a dose-dependent manner at significantly lower concentrations than SylA. In MM cells, TIR-203 effectively inhibited the chymotrypsin-like (CT-L), caspase-like (C-L), and trypsin-like (T-L) activities of the proteasome. In NB cells, TIR-203 inhibited the CT-L and C-L activities, but not the T-L activity. The newly designed proteasome inhibitor TIR-203 is more potent than the natural product SylA and strongly inhibits the cell viability and proteasomal activity of MM and NB cells.

  3. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome.

    PubMed

    Wilson, David L; Meininger, Isabel; Strater, Zack; Steiner, Stephanie; Tomlin, Frederick; Wu, Julia; Jamali, Haya; Krappmann, Daniel; Götz, Marion G

    2016-03-10

    This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors.

  4. Structurally novel highly potent proteasome inhibitors created by the structure-based hybridization of nonpeptidic belactosin derivatives and peptide boronates.

    PubMed

    Kawamura, Shuhei; Unno, Yuka; Asai, Akira; Arisawa, Mitsuhiro; Shuto, Satoshi

    2014-03-27

    We previously developed highly potent proteasome inhibitor 1 (IC50 = 5.7 nM) and its nonpeptide derivative 2 (IC50 = 29 nM) by systematic structure-activity relationship studies of the peptidic natural product belactosin A and subsequent rational topology-based scaffold hopping, respectively. Their cell growth inhibitory activities, however, were only moderate (IC50 = 1.8 μM (1) and >10 μM (2)). We therefore planned to replace the unstable β-lactone warhead with a more stable boronic acid warhead. Importantly, belactosin derivatives bind mainly to the proteasome binding site, which is different from that occupied by known peptide boronate proteasome inhibitors such as bortezomib, suggesting that their hybridization might lead to the development of novel potent inhibitors. Here we describe design, synthesis, and biological activities of the newly developed potent hybrid proteasome inhibitors. Interestingly, these hybrids, unlike bortezomib, were highly selective for proteasomes and have long residence times despite having the same boronic acid warhead.

  5. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome

    PubMed Central

    2016-01-01

    This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors. PMID:26985310

  6. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib.

    PubMed

    Piva, Roberto; Ruggeri, Bruce; Williams, Michael; Costa, Giulia; Tamagno, Ilaria; Ferrero, Dario; Giai, Valentina; Coscia, Marta; Peola, Silvia; Massaia, Massimo; Pezzoni, Gabriella; Allievi, Cecilia; Pescalli, Nicoletta; Cassin, Mara; di Giovine, Stefano; Nicoli, Paola; de Feudis, Paola; Strepponi, Ivan; Roato, Ilaria; Ferracini, Riccardo; Bussolati, Benedetta; Camussi, Giovanni; Jones-Bolin, Susan; Hunter, Kathryn; Zhao, Hugh; Neri, Antonino; Palumbo, Antonio; Berkers, Celia; Ovaa, Huib; Bernareggi, Alberto; Inghirami, Giorgio

    2008-03-01

    Modulating protein ubiquitination via proteasome inhibition represents a promising target for cancer therapy, because of the higher sensitivity of cancer cells to the cytotoxic effects of proteasome inhibition. Here we show that CEP-18770 is a novel orally-active inhibitor of the chymotrypsin-like activity of the proteasome that down-modulates the nuclear factor-kappaB (NF-kappaB) activity and the expression of several NF-kappaB downstream effectors. CEP-18770 induces apoptotic cell death in multiple myeloma (MM) cell lines and in primary purified CD138-positive explant cultures from untreated and bortezomib-treated MM patients. In vitro, CEP-18770 has a strong antiangiogenic activity and potently represses RANKL-induced osteoclastogenesis. Importantly, CEP-18770 exhibits a favorable cytotoxicity profile toward normal human epithelial cells, bone marrow progenitors, and bone marrow-derived stromal cells. Intravenous and oral administration of CEP-18770 resulted in a more sustained pharmacodynamic inhibition of proteasome activity in tumors relative to normal tissues, complete tumor regression of MM xenografts and improved overall median survival in a systemic model of human MM. Collectively, these findings provide evidence for the utility of CEP-18770 as a novel orally active proteasome inhibitor with a favorable tumor selectivity profile for the treatment of MM and other malignancies responsive to proteasome inhibition.

  7. Correction of Cystathionine β-synthase Deficiency in Mice by Treatment with Proteasome Inhibitors

    PubMed Central

    Gupta, Sapna; Wang, Liqun; Anderl, Janet; Slifker, Michael J.; Kirk, Christopher; Kruger, Warren D.

    2013-01-01

    Cystathionine beta-synthase (CBS) deficiency is an inborn error of metabolism characterized by extremely elevated levels of plasma total homocysteine. The vast majority of CBS-deficient patients have missense mutations located in the CBS gene that result in the production of either misfolded or unstable protein. Here, we examine the effect of proteasome inhibitors on mutant CBS function using two different mouse models of CBS deficiency. These mice lack mouse CBS and express a missense mutant human CBS enzyme (either p.I278T or p.S466L) that has less than 5% of normal liver CBS activity, resulting in a 10–30 fold elevation in plasma homocysteine levels. We show that treatment of these mice with two different proteasome inhibitors can induce liver Hsp70, Hsp40, and Hsp27, increase levels of active CBS, and lower plasma homocysteine levels to within the normal range. However, response rates varied, with 100% (8/8) of the p.S466L animals showing correction, but only 38% (10/26) of the p.I278T animals. In total, our data shows that treatment with proteostasis modulators can restore significant enzymatic activity to mutant misfolded CBS enzymes and suggests that they may be useful in treating certain types of genetic diseases caused by missense mutations. PMID:23592311

  8. Oxadiazole-isopropylamides as Potent and Non-covalent Proteasome Inhibitors

    PubMed Central

    Ozcan, Sevil; Kazi, Aslamuzzaman; Marsilio, Frank; Fang, Bin; Guida, Wayne C.; Koomen, John; Lawrence, Harshani R.; Sebti, Saïd M.

    2013-01-01

    Screening of the 50,000 ChemBridge compound library led to the identification of the oxadiazole-isopropylamide 1 (PI-1833) which inhibited CT-L activity (IC50 0.60 μM) with little effects on the other 2 major proteasome proteolytic activities, T-L and PGPH-L. LC/MS-MS and dialysis show that 1 is a non-covalent and rapidly reversible CT-L inhibitor. Focused library synthesis provided 11ad (PI-1840) with CT-L activity (IC50 27 nM). Detailed SAR studies indicate that the amide moiety and the 2 phenyl rings are sensitive toward modifications. Hydrophobic residues, such as propyl or butyl, in the para-position (not ortho or meta) of the A-ring and a meta-pyridyl group as B-ring significantly improve activity. Compound 11ad (IC50 0.37 μM) is more potent than 1 (IC50 3.5 μM) at inhibiting CT-L activity in intact MDA-MB-468 human breast cancer cells and inhibiting their survival. The activity of 11ad warrants further pre-clinical investigation of this class as non-covalent proteasome inhibitors. PMID:23547706

  9. Proteasome inhibitors prevent caspase-1-mediated disease in rodents challenged with anthrax lethal toxin.

    PubMed

    Muehlbauer, Stefan M; Lima, Heriberto; Goldman, David L; Jacobson, Lee S; Rivera, Johanna; Goldberg, Michael F; Palladino, Michael A; Casadevall, Arturo; Brojatsch, Jürgen

    2010-08-01

    NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.

  10. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors.

    PubMed

    Owen, Jeremy G; Charlop-Powers, Zachary; Smith, Alexandra G; Ternei, Melinda A; Calle, Paula Y; Reddy, Boojala Vijay B; Montiel, Daniel; Brady, Sean F

    2015-04-07

    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.

  11. Proteasome Inhibitors Prevent Caspase-1-Mediated Disease in Rodents Challenged with Anthrax Lethal Toxin

    PubMed Central

    Muehlbauer, Stefan M.; Lima, Heriberto; Goldman, David L.; Jacobson, Lee S.; Rivera, Johanna; Goldberg, Michael F.; Palladino, Michael A.; Casadevall, Arturo; Brojatsch, Jürgen

    2010-01-01

    NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases. PMID:20595632

  12. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway.

    PubMed

    Padrão, Juliana da Cruz; Cabral, Gabriel Rabello de Abreu; da Silva, Maria de Fátima Sarro; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2014-10-01

    Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.

  13. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    PubMed Central

    Li, Lihua; Yang, Huanjie; Chen, Di; Cui, Cindy; Dou, Q. Ping

    2013-01-01

    The ubiquitinproteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF–Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 32 μmol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF–Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF–Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF–Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd. PMID:18304598

  14. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong . E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram; Sui Jianhua; Marasco, Wayne; Callery, Mark P. . E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  15. Proteasomal Inhibition Restores Biological Function of Mis-sense Mutated Dysferlin in Patient-derived Muscle Cells*

    PubMed Central

    Azakir, Bilal A.; Di Fulvio, Sabrina; Kinter, Jochen; Sinnreich, Michael

    2012-01-01

    Dysferlin is a transmembrane protein implicated in surface membrane repair of muscle cells. Mutations in dysferlin cause the progressive muscular dystrophies Miyoshi myopathy, limb girdle muscular dystrophy 2B, and distal anterior compartment myopathy. Dysferlinopathies are inherited in an autosomal recessive manner, and many patients with this disease harbor mis-sense mutations in at least one of their two pathogenic DYSF alleles. These patients have significantly reduced or absent dysferlin levels in skeletal muscle, suggesting that dysferlin encoded by mis-sense alleles is rapidly degraded by the cellular quality control system. We reasoned that mis-sense mutated dysferlin, if salvaged from degradation, might be biologically functional. We used a dysferlin-deficient human myoblast culture harboring the common R555W mis-sense allele and a DYSF-null allele, as well as control human myoblast cultures harboring either two wild-type or two null alleles. We measured dysferlin protein and mRNA levels, resealing kinetics of laser-induced plasmalemmal wounds, myotube formation, and cellular viability after treatment of the human myoblast cultures with the proteasome inhibitors lactacystin or bortezomib (Velcade). We show that endogenous R555W mis-sense mutated dysferlin is degraded by the proteasomal system. Inhibition of the proteasome by lactacystin or Velcade increases the levels of R555W mis-sense mutated dysferlin. This salvaged protein is functional as it restores plasma membrane resealing in patient-derived myoblasts and reverses their deficit in myotube formation. Bortezomib and lactacystin did not cause cellular toxicity at the regimen used. Our results raise the possibility that inhibition of the degradation pathway of mis-sense mutated dysferlin could be used as a therapeutic strategy for patients harboring certain dysferlin mis-sense mutations. PMID:22318734

  16. Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells.

    PubMed

    Azakir, Bilal A; Di Fulvio, Sabrina; Kinter, Jochen; Sinnreich, Michael

    2012-03-23

    Dysferlin is a transmembrane protein implicated in surface membrane repair of muscle cells. Mutations in dysferlin cause the progressive muscular dystrophies Miyoshi myopathy, limb girdle muscular dystrophy 2B, and distal anterior compartment myopathy. Dysferlinopathies are inherited in an autosomal recessive manner, and many patients with this disease harbor mis-sense mutations in at least one of their two pathogenic DYSF alleles. These patients have significantly reduced or absent dysferlin levels in skeletal muscle, suggesting that dysferlin encoded by mis-sense alleles is rapidly degraded by the cellular quality control system. We reasoned that mis-sense mutated dysferlin, if salvaged from degradation, might be biologically functional. We used a dysferlin-deficient human myoblast culture harboring the common R555W mis-sense allele and a DYSF-null allele, as well as control human myoblast cultures harboring either two wild-type or two null alleles. We measured dysferlin protein and mRNA levels, resealing kinetics of laser-induced plasmalemmal wounds, myotube formation, and cellular viability after treatment of the human myoblast cultures with the proteasome inhibitors lactacystin or bortezomib (Velcade). We show that endogenous R555W mis-sense mutated dysferlin is degraded by the proteasomal system. Inhibition of the proteasome by lactacystin or Velcade increases the levels of R555W mis-sense mutated dysferlin. This salvaged protein is functional as it restores plasma membrane resealing in patient-derived myoblasts and reverses their deficit in myotube formation. Bortezomib and lactacystin did not cause cellular toxicity at the regimen used. Our results raise the possibility that inhibition of the degradation pathway of mis-sense mutated dysferlin could be used as a therapeutic strategy for patients harboring certain dysferlin mis-sense mutations.

  17. Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells.

    PubMed

    Federspiel, Joel D; Codreanu, Simona G; Goyal, Sandeep; Albertolle, Matthew E; Lowe, Eric; Teague, Juli; Wong, Hansen; Guengerich, F Peter; Liebler, Daniel C

    2016-10-01

    Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the β5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics.

  18. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib.

    PubMed

    Liu, Feng-Ting; Agrawal, Samir G; Movasaghi, Zanyar; Wyatt, Peter B; Rehman, Ihtesham U; Gribben, John G; Newland, Adrian C; Jia, Li

    2008-11-01

    Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients.

  19. Salinosporamide Natural Products: Potent 20S Proteasome Inhibitors as Promising Cancer Chemotherapeutics

    PubMed Central

    Gulder, Tobias A. M.

    2010-01-01

    Proteasome inhibitors are rapidly evolving as potent treatment options in cancer therapy. One of the most promising drug candidates of this type is salinosporamide A from the bacterium Salinispora tropica. This marine natural product possesses a complex, densely functionalized γ-lactam-β-lactone pharmacophore, which is responsible for its irreversible binding to its target, the β subunit of the 20S proteasome. Salinosporamide A entered phase I clinical trials for the treatment of multiple myeloma only three years after its discovery. The strong biological activity and the challenging structure of this compound have fueled intense academic and industrial research in recent years, which has led to the development of more than ten syntheses, the elucidation of its biosynthetic pathway, and the generation of promising structure–activity relationships and oncological data. Salinosporamide A thus serves as an intriguing example of the successful interplay of modern drug discovery and biomedical research, medicinal chemistry and pharmacology, natural product synthesis and analysis, as well as biosynthesis and bioengineering. PMID:20927786

  20. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib

    PubMed Central

    Liu, Feng-Ting; Agrawal, Samir G.; Movasaghi, Zanyar; Wyatt, Peter B.; Rehman, Ihtesham U.; Gribben, John G.; Newland, Adrian C.

    2008-01-01

    Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients. PMID:18633129

  1. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone

    PubMed Central

    Khedgikar, V; Kushwaha, P; Gautam, J; Verma, A; Changkija, B; Kumar, A; Sharma, S; Nagar, G K; Singh, D; Trivedi, P K; Sangwan, N S; Mishra, P R; Trivedi, R

    2013-01-01

    Withania somnifera or Ashwagandha is a medicinal herb of Ayurveda. Though the extract and purified molecules, withanolides, from this plant have been shown to have different pharmacological activities, their effect on bone formation has not been studied. Here, we show that one of the withanolide, withaferin A (WFA) acts as a proteasomal inhibitor (PI) and binds to specific catalytic β subunit of the 20S proteasome. It exerts positive effect on osteoblast by increasing osteoblast proliferation and differentiation. WFA increased expression of osteoblast-specific transcription factor and mineralizing genes, promoted osteoblast survival and suppressed inflammatory cytokines. In osteoclast, WFA treatment decreased osteoclast number directly by decreasing expression of tartarate-resistant acid phosphatase and receptor activator of nuclear factor kappa-B (RANK) and indirectly by decreasing osteoprotegrin/RANK ligand ratio. Our data show that in vitro treatment of WFA to calvarial osteoblast cells decreased expression of E3 ubiquitin ligase, Smad ubiquitin regulatory factor 2 (Smurf2), preventing degradation of Runt-related transcription factor 2 (RunX2) and relevant Smad proteins, which are phosphorylated by bone morphogenetic protein 2. Increased Smurf2 expression due to exogenous treatment of tumor necrosis factor α (TNFα) to primary osteoblast cells was decreased by WFA treatment. This was corroborated by using small interfering RNA against Smurf2. Further, WFA also blocked nuclear factor kappa-B (NF-kB) signaling as assessed by tumor necrosis factor stimulated nuclear translocation of p65-subunit of NF-kB. Overall data show that in vitro proteasome inhibition by WFA simultaneously promoted osteoblastogenesis by stabilizing RunX2 and suppressed osteoclast differentiation, by inhibiting osteoclastogenesis. Oral administration of WFA to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased expression of osteogenic genes. WFA

  2. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone.

    PubMed

    Khedgikar, V; Kushwaha, P; Gautam, J; Verma, A; Changkija, B; Kumar, A; Sharma, S; Nagar, G K; Singh, D; Trivedi, P K; Sangwan, N S; Mishra, P R; Trivedi, R

    2013-08-22

    Withania somnifera or Ashwagandha is a medicinal herb of Ayurveda. Though the extract and purified molecules, withanolides, from this plant have been shown to have different pharmacological activities, their effect on bone formation has not been studied. Here, we show that one of the withanolide, withaferin A (WFA) acts as a proteasomal inhibitor (PI) and binds to specific catalytic β subunit of the 20S proteasome. It exerts positive effect on osteoblast by increasing osteoblast proliferation and differentiation. WFA increased expression of osteoblast-specific transcription factor and mineralizing genes, promoted osteoblast survival and suppressed inflammatory cytokines. In osteoclast, WFA treatment decreased osteoclast number directly by decreasing expression of tartarate-resistant acid phosphatase and receptor activator of nuclear factor kappa-B (RANK) and indirectly by decreasing osteoprotegrin/RANK ligand ratio. Our data show that in vitro treatment of WFA to calvarial osteoblast cells decreased expression of E3 ubiquitin ligase, Smad ubiquitin regulatory factor 2 (Smurf2), preventing degradation of Runt-related transcription factor 2 (RunX2) and relevant Smad proteins, which are phosphorylated by bone morphogenetic protein 2. Increased Smurf2 expression due to exogenous treatment of tumor necrosis factor α (TNFα) to primary osteoblast cells was decreased by WFA treatment. This was corroborated by using small interfering RNA against Smurf2. Further, WFA also blocked nuclear factor kappa-B (NF-kB) signaling as assessed by tumor necrosis factor stimulated nuclear translocation of p65-subunit of NF-kB. Overall data show that in vitro proteasome inhibition by WFA simultaneously promoted osteoblastogenesis by stabilizing RunX2 and suppressed osteoclast differentiation, by inhibiting osteoclastogenesis. Oral administration of WFA to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased expression of osteogenic genes. WFA

  3. Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia

    PubMed Central

    Ganesan, S; Alex, A A; Chendamarai, E; Balasundaram, N; Palani, H K; David, S; Kulkarni, U; Aiyaz, M; Mugasimangalam, R; Korula, A; Abraham, A; Srivastava, A; Padua, R A; Chomienne, C; George, B; Balasubramanian, P; Mathews, V

    2016-01-01

    Arsenic trioxide (ATO) mediates PML-RARA (promyelocytic leukemia–retinoic acid receptor-α) oncoprotein degradation via the proteasome pathway and this degradation appears to be critical for achieving cure in acute promyeloytic leukemia (APL). We have previously demonstrated significant micro-environment-mediated drug resistance (EMDR) to ATO in APL. Here we demonstrate that this EMDR could be effectively overcome by combining a proteasome inhibitor (bortezomib) with ATO. A synergistic effect on combining these two agents in vitro was noted in both ATO-sensitive and ATO-resistant APL cell lines. The mechanism of this synergy involved downregulation of the nuclear factor-κB pathway, increase in unfolded protein response (UPR) and an increase in reactive oxygen species generation in the malignant cell. We also noted that PML-RARA oncoprotein is effectively cleared with this combination in spite of proteasome inhibition by bortezomib, and that this clearance is mediated through a p62-dependent autophagy pathway. We further demonstrated that proteasome inhibition along with ATO had an additive effect in inducing autophagy. The beneficial effect of this combination was further validated in an animal model and in an on-going clinical trial. This study raises the potential of a non-myelotoxic proteasome inhibitor replacing anthracyclines in the management of high-risk and relapsed APL. PMID:27560113

  4. Identifying the Minimal Enzymes Required for Biosynthesis of Epoxyketone Proteasome Inhibitors

    PubMed Central

    Liu, Joyce; Zhu, Xuejun

    2015-01-01

    Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anti-cancer drugs. While the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast-growing heterologous host. This set of enzymes includes a non-ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl-CoA dehydrogenase (ACAD) homolog. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and 13C-labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation. PMID:26477320

  5. Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy

    PubMed Central

    Kang, Jeon Woong; Singh, Surya P.; Nguyen, Freddy T.; Lue, Niyom; Sung, Yongjin; So, Peter T. C.; Dasari, Ramachandra R.

    2016-01-01

    Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have applied this system to monitor the effects of Bortezomib, a proteasome inhibitor drug, on multiple myeloma cells. Cluster imaging followed by spectral profiling suggest major differences in the nuclear and cytoplasmic contents of cells due to drug treatment that can be monitored with Raman spectroscopy. Spectra were also acquired from group of cells and feasibility of discrimination among treated and untreated cells using principal component analysis (PCA) was accessed. Findings support the feasibility of Raman technologies as an alternate, novel method for monitoring live cell dynamics with minimal external perturbation. PMID:27983660

  6. Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation*

    PubMed Central

    Yang, Liling; Wang, Shuxing; Sung, Backil; Lim, Grewo; Mao, Jianren

    2008-01-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis, neurotoxicity, and glutamatergic regulation of opioid tolerance. However, how the glutamate transporter turnover is regulated remains poorly understood. Here we show that chronic morphine exposure induced posttranscriptional down-regulation of the glutamate transporter EAAC1 in C6 glioma cells with a concurrent decrease in glutamate uptake and increase in proteasome activity, which were blocked by the selective proteasome inhibitor MG-132 or lactacystin but not the lysosomal inhibitor chloroquin. At the cellular level, chronic morphine induced the PTEN (phosphatase and tensin homolog deleted on chromosome Ten)-mediated up-regulation of the ubiquitin E3 ligase Nedd4 via cAMP/protein kinase A signaling, leading to EAAC1 ubiquitination and proteasomal degradation. Either Nedd4 or PTEN knockdown with small interfering RNA prevented the morphine-induced EAAC1 degradation and decreased glutamate uptake. These data indicate that cAMP/protein kinase A signaling serves as an intracellular regulator upstream to the activation of the PTEN/Nedd4-mediated ubiquitin-proteasome system activity that is critical for glutamate transporter turnover. Under an in vivo condition, chronic morphine exposure also induced posttranscriptional down-regulation of the glutamate transporter EAAC1, which was prevented by MG-132, and transcriptional up-regulation of PTEN and Nedd4 within the spinal cord dorsal horn. Thus, inhibition of the ubiquitin-proteasome-mediated glutamate transporter degradation may be an important mechanism for preventing glutamate overexcitation and may offer a new strategy for treating certain neurological disorders and improving opioid therapy in chronic pain management. PMID:18539596

  7. Synergistic targeting of Sp1, a critical transcription factor for myeloma cell growth and survival, by panobinostat and proteasome inhibitors

    PubMed Central

    Bat-Erdene, Ariunzaya; Miki, Hirokazu; Oda, Asuko; Nakamura, Shingen; Teramachi, Jumpei; Amachi, Ryota; Tenshin, Hirofumi; Hiasa, Masahiro; Iwasa, Masami; Harada, Takeshi; Fujii, Shiro; Sogabe, Kimiko; Kagawa, Kumiko; Yoshida, Sumiko; Endo, Itsuro; Aihara, Kenichi; Abe, Masahiro

    2016-01-01

    Panobinostat, a pan-deacetylase inhibitor, synergistically elicits cytotoxic activity against myeloma (MM) cells in combination with the proteasome inhibitor bortezomib. Because precise mechanisms for panobinostat's anti-MM action still remain elusive, we aimed to clarify the mechanisms of anti-MM effects of panobinostat and its synergism with proteasome inhibitors. Although the transcription factor Sp1 was overexpressed in MM cells, the Sp1 inhibitor terameprocol induced MM cell death in parallel with reduction of IRF4 and cMyc. Panobinostat induced activation of caspase-8, which was inversely correlated with reduction of Sp1 protein levels in MM cells. The panobinostat-mediated effects were further potentiated to effectively induce MM cell death in combination with bortezomib or carfilzomib even at suboptimal concentrations as a single agent. Addition of the caspase-8 inhibitor z-IETD-FMK abolished the Sp1 reduction not only by panobinostat alone but also by its combination with bortezomib, suggesting caspase-8-mediated Sp1 degradation. The synergistic Sp1 reduction markedly suppressed Sp1-driven prosurvival factors, IRF4 and cMyc. Besides, the combinatory treatment reduced HDAC1, another Sp1 target, in MM cells, which may potentiate HDAC inhibition. Collectively, caspase-8-mediated post-translational Sp1 degradation appears to be among major mechanisms for synergistic anti-MM effects of panobinostat and proteasome inhibitors in combination. PMID:27738323

  8. Decreased behavioral response to intranigrally administered GABAA agonist muscimol in the lactacystin model of Parkinson's disease may result from partial lesion of nigral non-dopamine neurons: comparison to the classical neurotoxin 6-OHDA.

    PubMed

    Konieczny, Jolanta; Czarnecka, Anna; Kamińska, Kinga; Lenda, Tomasz; Nowak, Przemysław

    2015-04-15

    Lactacystin is a selective UPS inhibitor recently used to destroy dopamine (DA) neurons in animal models of Parkinson's disease (PD). However, both in vitro and in vivo studies show discrepancies in terms of the sensitivity of non-DA neurons to its toxicity. Therefore, our study was aimed to examine the toxic effect of intranigral administration of lactacystin on DA and non-DA neurons in the rat substantia nigra (SN), compared to the classic neurotoxin 6-OHDA. Tissue DA levels in the striatum and SN and GABA levels in the SN were also examined. Moreover, behavioral response of nigral GABAA receptors to locally administered muscimol was evaluated in these two PD models. We found that both lactacystin and 6-OHDA induced a strong decrease in DA level in the lesioned striatum and SN but only lactacystin slightly reduced GABA levels in the SN. A stereological analysis showed that both neurotoxins highly decreased the number of DA neurons in the SN, while only lactacystin moderately reduced the number of non-DA ones. Finally, in the lactacystin group, the number of contralateral rotations after intranigrally administrated muscimol was decreased in contrast to the increased response in the 6-OHDA model. Our study proves that, although lactacystin is not a fully selective to DA neurons, these neurons are much more vulnerable to its toxicity. Partial lesion of nigral non-DA neurons in this model may explain the decreased behavioral response to the GABAA agonist muscimol.

  9. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma

    PubMed Central

    Kuhn, Deborah J.; Chen, Qing; Voorhees, Peter M.; Strader, John S.; Shenk, Kevin D.; Sun, Congcong M.; Demo, Susan D.; Bennett, Mark K.; van Leeuwen, Fijs W. B.; Chanan-Khan, Asher A.

    2007-01-01

    The proteasome has emerged as an important target for cancer therapy with the approval of bortezomib, a first-in-class, reversible proteasome inhibitor, for relapsed/refractory multiple myeloma (MM). However, many patients have disease that does not respond to bortezomib, whereas others develop resistance, suggesting the need for other inhibitors with enhanced activity. We therefore evaluated a novel, irreversible, epoxomicin-related proteasome inhibitor, carfilzomib. In models of MM, this agent potently bound and specifically inhibited the chymotrypsin-like proteasome and immunoproteasome activities, resulting in accumulation of ubiquitinated substrates. Carfilzomib induced a dose- and time-dependent inhibition of proliferation, ultimately leading to apoptosis. Programmed cell death was associated with activation of c-Jun-N-terminal kinase, mitochondrial membrane depolarization, release of cytochrome c, and activation of both intrinsic and extrinsic caspase pathways. This agent also inhibited proliferation and activated apoptosis in patient-derived MM cells and neoplastic cells from patients with other hematologic malignancies. Importantly, carfilzomib showed increased efficacy compared with bortezomib and was active against bortezomib-resistant MM cell lines and samples from patients with clinical bortezomib resistance. Carfilzomib also overcame resistance to other conventional agents and acted synergistically with dexamethasone to enhance cell death. Taken together, these data provide a rationale for the clinical evaluation of carfilzomib in MM. PMID:17591945

  10. The ubiquitin-interacting motifs of S5a as a unique upstream inhibitor of the 26S proteasome

    SciTech Connect

    Elangovan, Muthukumar; Shin, Dong Yeon; Yoo, Yung Joon

    2009-10-30

    It has been demonstrated that ubiquitin-conjugated proteins were accumulated by ectopically-expressed S5a as well as the ubiquitin-interacting motifs of S5a (S5a-UIMs). In this study, we further found that free S5a-UIMs stabilized only a subset of proteasomal substrates including p53, c-Fos, c-Jun, and p27 but not {beta}-catenin, p15, and ornithine decarboxylase. Both S5a-UIMs and epoxomicin inhibited the proliferation of A549 lung cancer cells but arrest at the different stages of cell cycle. Together, our results suggest a potential role of S5a-UIMs as an upstream proteasomal inhibitor by blocking the subset of substrates from delivery to the 26S proteasome.

  11. NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion.

    PubMed

    Rosenberg, Tali; Elkobi, Alina; Dieterich, Daniela C; Rosenblum, Kobi

    2016-04-01

    Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation.

  12. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation.

    PubMed

    Weyburne, Emily S; Wilkins, Owen M; Sha, Zhe; Williams, David A; Pletnev, Alexandre A; de Bruin, Gerjan; Overkleeft, Hermann S; Goldberg, Alfred L; Cole, Michael D; Kisselev, Alexei F

    2017-02-16

    The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo. Inhibiting both β5 and β2 suppresses production of the soluble, active form of the transcription factor Nrf1 and prevents the recovery of proteasome activity through induction of new proteasomes. These findings provide a strong rationale for the development of dual β5 and β2 inhibitors for the treatment of solid tumors.

  13. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells

    PubMed Central

    Jiang, H; Sun, J; Xu, Q; Liu, Y; Wei, J; Young, C Y F; Yuan, H; Lou, H

    2013-01-01

    We previously reported that marchantin M (Mar) is an active agent to induce apoptosis in human prostate cancer (PCa), but the molecular mechanisms of action remain largely unknown. Here, we demonstrate that Mar potently inhibited chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of 20S proteasome both in in vitro and intracellular systems and significantly induced the accumulation of polyubiquitinated proteins in PCa cells. The computational modeling analysis suggested that Mar non-covalently bound to active sites of proteasome β5 and β1 subunits, resulting in a non-competitive inhibition. Proteasome inhibition by Mar subsequently resulted in endoplasmic reticulum (ER) stress, as evidenced by elevated glucose-regulated protein 78 and CHOP, increased phospho-eukaryotic translation initiation factor 2α (eIF2α), splicing of X-box-binding protein-1 and dilation of the ER. However, Mar-mediated cell death was not completely impaired by a pan inhibitor of caspases. Further studies revealed that the Mar-induced cell death was greatly associated with the activation of autophagy, as indicated by the significant induction of microtubule-associated protein-1 light chain-3 beta (LC3B) expression and conversion. Electron microscopic and green fluorescent protein-tagged LC3B analyses further demonstrated the ability of autophagy induction by Mar. Time kinetic studies revealed that Mar induced a rapid and highly sustained processing of LC3B in treated cells and simultaneously decreased the expression of p62/SQSTM1. Pharmacological blockade or knockdown of LC3B and Atg5 attenuated Mar-mediated cell death. The autophagic response triggered by Mar required the activation of RNA-dependent protein kinase-like ER kinase/eIF2α and suppression of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin axis via preventing activation and expression of Akt. Our results identified a novel mechanism for the cytotoxic effect of Mar, which strengthens it as

  14. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

    PubMed Central

    WADA, NAOKO; KAWANO, YAWARA; FUJIWARA, SHIHO; KIKUKAWA, YOSHITAKA; OKUNO, YUTAKA; TASAKI, MASAYOSHI; UEDA, MITSUHARU; ANDO, YUKIO; YOSHINAGA, KAZUYA; RI, MASAKI; IIDA, SHINSUKE; NAKASHIMA, TAKAYUKI; SHIOTSU, YUKIMASA; MITSUYA, HIROAKI; HATA, HIROYUKI

    2015-01-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  15. Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: Anticancer efficacy and pharmacokinetic studies in mice

    PubMed Central

    Park, Ji Eun; Chun, Se-Eun; Reichel, Derek; Min, Jee Sun; Lee, Su-Chan; Han, Songhee; Ryoo, Gongmi; Oh, Yunseok; Park, Shin-Hyung; Ryu, Heon-Min; Kim, Kyung Bo; Lee, Ho-Young; Bae, Soo Kyung; Bae, Younsoo

    2017-01-01

    Carfilzomib (CFZ) is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM). Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs) composed of biodegradable block copolymers poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic acid (CFZ-PM) and assessed its in vivo anticancer efficacy and pharmacokinetic profiles. Despite in vitro metabolic protection of CFZ, CFZ-PM did not display in vivo anticancer efficacy in mice bearing human lung cancer xenograft (H460) superior to that of the clinically used cyclodextrin-based CFZ (CFZ-CD) formulation. The plasma pharmacokinetic profiles of CFZ-PM were also comparable to those of CFZ-CD and the residual tumors that persisted in xenograft mice receiving CFZ-PM displayed an incomplete proteasome inhibition. In summary, our results showed that despite its favorable in vitro performances, the current CFZ-PM formulation did not improve in vivo anticancer efficacy and accessibility of active CFZ to solid cancer tissues over CFZ-CD. Careful consideration of the current results and potential confounding factors may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers. PMID:28273121

  16. Possible role of selective, irreversible, proteasome inhibitor (carfilzomib) in the treatment of rat hepatocellular carcinoma.

    PubMed

    Mansour, Mahmoud A; Aljoufi, Mohammed A; Al-Hosaini, Khaled; Al-Rikabi, Ammar C; Nagi, Mahmoud N

    2014-05-25

    We investigated the possible therapeutic effect of irreversible proteasome inhibitor, carfilzomib against hepatocellular carcinoma induced chemically by chronic administration of diethylnitrosoamines (DENA). Hepatocellular carcinoma induced by DENA in male Wistar rats was manifested biochemically by significant elevation of serum α-feto protein (AFP) and carcinoembryonic antigen (CEA). In addition, hepatic cancer was further confirmed by a significant increase in hepatic tissue growth factors; vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (FGF). Moreover a marked increase in matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) content were also observed, along with a profound decrease in hepatic endostatin and metallothionein level. Treatment of rats with the selected doses of carfilzomib produced a significant protection against hepatic cancer. The present results claimed that chosen doses of carfilzomib succeeded in suppressing serum tumor markers level AFP and CEA. Furthermore, the drug reduced the elevated level of hepatic growth factors, MMP-2 and TIMP-1 induced by the carcinogen. The antitumor effect of carfilzomib was also accompanied by augmentation of hepatic content of endostatin and metallothionein. Histopathological examination of liver tissues also correlated with the biochemical observations. It could be concluded that treatment with carfilzomib confers a possible antitumor effect against hepatocellular carcinoma induced by DENA model in rats.

  17. γ-secretase inhibitor I inhibits neuroblastoma cells, with NOTCH and the proteasome among its targets

    PubMed Central

    Dorneburg, Carmen; Goß, Annika V.; Fischer, Matthias; Roels, Frederik; Barth, Thomas F.E.; Berthold, Frank; Kappler, Roland; Oswald, Franz; Siveke, Jens T.; Molenaar, Jan J.; Debatin, Klaus-Michael; Beltinger, Christian

    2016-01-01

    As high-risk neuroblastoma (NB) has a poor prognosis, new therapeutic modalities are needed. We therefore investigated the susceptibility of NB cells to γ-secretase inhibitor I (GSI-I). NOTCH signaling activity, the cellular effects of GSI-I and its mechanisms of cytotoxicity were evaluated in NB cells in vitro and in vivo. The results show that NOTCH signaling is relevant for human NB cells. Of the GSIs screened in vitro GSI-I was the most effective inhibitor of NB cells. Both MYCN-amplified and non-amplified NB cells were susceptible to GSI-I. Among the targets of GSI-I in NB cells were NOTCH and the proteasome. GSI-I caused G2/M arrest that was enhanced by acute activation of MYCN and led to mitotic dysfunction. GSI-I also induced proapoptotic NOXA. Survival of mice bearing an MYCN non-amplified orthotopic patient-derived NB xenograft was significantly prolonged by systemic GSI-I, associated with mitotic catastrophe and reduced angiogenesis, and without evidence of intestinal toxicity. In conclusion, the activity of GSI-I on multiple targets in NB cells and the lack of gastrointestinal toxicity in mice are advantageous and merit further investigations of GSI-I in NB. PMID:27588497

  18. Homogeneous, bioluminescent proteasome assays.

    PubMed

    O'Brien, Martha A; Moravec, Richard A; Riss, Terry L; Bulleit, Robert F

    2015-01-01

    Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

  19. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide.

    PubMed

    Das, Deepika S; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C

    2015-12-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.

  20. Synergistic Anti-Myeloma Activity of the Proteasome Inhibitor Marizomib and the IMiD® Immunomodulatory Drug Pomalidomide

    PubMed Central

    Das, Deepika Sharma; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C.

    2015-01-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: 1) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, MYC and MCL1; and 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. PMID:26456076

  1. Development of a new class of proteasome inhibitors with an epoxyketone warhead: Rational hybridization of non-peptidic belactosin derivatives and peptide epoxyketones.

    PubMed

    Kawamura, Shuhei; Unno, Yuka; Asai, Akira; Arisawa, Mitsuhiro; Shuto, Satoshi

    2014-06-15

    Proteasome inhibitors are currently a focus of increased attention as anticancer drug candidates. We recently performed systematic structure-activity relationship studies of the peptidic natural product belactosin A and identified non-peptidic derivative 2 as a highly potent proteasome inhibitor. However, the cell growth inhibitory effect of 2 is only moderate, probably due to the biologically unstable β-lactone warhead. Peptide epoxyketones are an important class of proteasome inhibitors exhibit high potency in cellular systems based on the efficient α,β-epoxyketone warhead. Importantly, belactosin derivatives bind primarily to the primed binding site, while peptide epoxyketones bind only to the non-primed binding site of proteasome, suggesting that hybridization of them might lead to the development of a new class of proteasome inhibitors. Thus, we successfully identified a novel chemotype of proteasome inhibitors 3 and 4 by rational structure-based design, which are expected to bind to both the primed and non-primed binding sites of proteasome.

  2. Enhanced killing of androgen-independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors.

    PubMed

    Diallo, J-S; Betton, B; Parent, N; Péant, B; Lessard, L; Le Page, C; Bertrand, R; Mes-Masson, A-M; Saad, F

    2008-11-18

    Effective treatments for androgen-independent prostate cancer (AIPCa) are lacking. To address this, emerging therapeutics such as proteasome inhibitors are currently undergoing clinical trials. Inositol hexakisphosphate (IP6) is an orally non-toxic phytochemical that exhibits antitumour activity against several types of cancer including PCa. We have previously shown that treatment of PC3 cells with IP6 induces the transcription of a subset of nuclear factor-kappaB (NF-kappaB)-responsive and pro-apoptotic BCL-2 family genes. In this study, we report that although NF-kappaB subunits p50/p65 translocate to the nucleus of PC3 cells in response to IP6, inhibition of NF-kappaB-mediated transcription using non-degradable inhibitor of kappaB (IkappaB)-alpha does not modulate IP6 sensitivity. Treatment with IP6 also leads to increased protein levels of PUMA, BIK/NBK and NOXA between 4 and 8 h of treatment and decreased levels of MCL-1 and BCL-2 after 24 h. Although blocking transcription using actinomycin D does not modulate PC3 cell sensitivity to IP6, inhibition of protein translation using cycloheximide has a significant protective effect. In contrast, blocking proteasome-mediated protein degradation using MG-132 significantly enhances the ability of IP6 to reduce cellular metabolic activity in both PC3 and DU145 AIPCa cell lines. This effect of combined treatment on mitochondrial depolarisation is particularly striking and is also reproduced by another proteasome inhibitor (ALLN). The enhanced effect of combined MG132/IP6 treatment is almost completely inhibited by cycloheximide and correlates with changes in BCL-2 family protein levels. Altogether these results suggest a role for BCL-2 family proteins in mediating the combined effect of IP6 and proteasome inhibitors and warrant further pre-clinical studies for the treatment of AIPCa.

  3. Enhanced killing of androgen-independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors

    PubMed Central

    Diallo, J-S; Betton, B; Parent, N; Péant, B; Lessard, L; Le Page, C; Bertrand, R; Mes-Masson, A-M; Saad, F

    2008-01-01

    Effective treatments for androgen-independent prostate cancer (AIPCa) are lacking. To address this, emerging therapeutics such as proteasome inhibitors are currently undergoing clinical trials. Inositol hexakisphosphate (IP6) is an orally non-toxic phytochemical that exhibits antitumour activity against several types of cancer including PCa. We have previously shown that treatment of PC3 cells with IP6 induces the transcription of a subset of nuclear factor-κB (NF-κB)-responsive and pro-apoptotic BCL-2 family genes. In this study, we report that although NF-κB subunits p50/p65 translocate to the nucleus of PC3 cells in response to IP6, inhibition of NF-κB-mediated transcription using non-degradable inhibitor of κB (IκB)-α does not modulate IP6 sensitivity. Treatment with IP6 also leads to increased protein levels of PUMA, BIK/NBK and NOXA between 4 and 8 h of treatment and decreased levels of MCL-1 and BCL-2 after 24 h. Although blocking transcription using actinomycin D does not modulate PC3 cell sensitivity to IP6, inhibition of protein translation using cycloheximide has a significant protective effect. In contrast, blocking proteasome-mediated protein degradation using MG-132 significantly enhances the ability of IP6 to reduce cellular metabolic activity in both PC3 and DU145 AIPCa cell lines. This effect of combined treatment on mitochondrial depolarisation is particularly striking and is also reproduced by another proteasome inhibitor (ALLN). The enhanced effect of combined MG132/IP6 treatment is almost completely inhibited by cycloheximide and correlates with changes in BCL-2 family protein levels. Altogether these results suggest a role for BCL-2 family proteins in mediating the combined effect of IP6 and proteasome inhibitors and warrant further pre-clinical studies for the treatment of AIPCa. PMID:18941459

  4. Crystal structure of N-{N-[N-acetyl-(S)-leucyl]-(S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome

    DOE PAGES

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa; ...

    2015-03-01

    The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  5. Detection of Genes Modifying Sensitivity to Proteasome Inhibitors Using a shRNA Library in Breast Cancer

    DTIC Science & Technology

    2009-03-01

    TITLE: Detection of genes modifying sensitivity to proteasome inhibitors using a shRNA Library in Breast Cancer PRINCIPAL INVESTIGATOR: Gregory J...shRNA Library in Breast Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory J. Hannon, Ph.D. 5d. PROJECT NUMBER...clinical trials for breast and lung cancers . We are identifying genes that mediate resistance against Velcade that could serve as potential drug

  6. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor.

    PubMed

    Coppens, Jessica; Bentea, Eduard; Bayliss, Jacqueline A; Demuyser, Thomas; Walrave, Laura; Albertini, Giulia; Van Liefferinge, Joeri; Deneyer, Lauren; Aourz, Najat; Van Eeckhaut, Ann; Portelli, Jeanelle; Andrews, Zane B; Massie, Ann; De Bundel, Dimitri; Smolders, Ilse

    2017-03-04

    Parkinson's disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.

  7. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor

    PubMed Central

    Coppens, Jessica; Bentea, Eduard; Bayliss, Jacqueline A.; Demuyser, Thomas; Walrave, Laura; Albertini, Giulia; Van Liefferinge, Joeri; Deneyer, Lauren; Aourz, Najat; Van Eeckhaut, Ann; Portelli, Jeanelle; Andrews, Zane B.; Massie, Ann; De Bundel, Dimitri; Smolders, Ilse

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect. PMID:28273852

  8. The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype.

    PubMed

    Siddiqui, Ruqaiyyah; Saleem, Sahreena; Khan, Naveed Ahmed

    2016-09-01

    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.

  9. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation

    PubMed Central

    Lechner, Anna; Eustáquio, Alessandra S.; Gulder, Tobias A. M.; Hafner, Mathias; Moore, Bradley S.

    2011-01-01

    The chlorinated natural product salinosporamide A is a potent 20S proteasome inhibitor currently in clinical trials as an anticancer agent. To deepen our understanding of salinosporamide biosynthesis, we investigated the function of a LuxR-type pathway-specific regulatory gene, salR2, and observed a selective effect on the production of salinosporamide A over its less active aliphatic analogs. SalR2 was shown to specifically activate genes involved in the biosynthesis of the halogenated precursor chloroethylmalonyl-CoA, which is a dedicated precursor of salinosporamide A. Specifically, SalR2 activates transcription of two divergent operons – one of which contains the unique S-adenosyl-L-methionine-dependent chlorinase encoding gene salL. By applying this knowledge towards rational engineering, we were able to selectively double salinosporamide A production. This study exemplifies the specialized regulation of a polyketide precursor pathway and its application to the selective overproduction of a specific natural product congener. PMID:22195555

  10. Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites

    PubMed Central

    Misas-Villamil, Johana C.; Kolodziejek, Izabella; Crabill, Emerson; Kaschani, Farnusch; Niessen, Sherry; Shindo, Takayuki; Kaiser, Markus; Alfano, James R.; van der Hoorn, Renier A. L.

    2013-01-01

    Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA), a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA). Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues. PMID:23555272

  11. Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor

    PubMed Central

    Wijnant, Kathleen; Crinelli, Rita; Bianchi, Marzia; Magnani, Mauro; Hysi, Albana; Iezzi, Manuela

    2017-01-01

    The phytoestrogen resveratrol has been reported to possess cancer chemo-preventive activity on the basis of its effects on tumor cell lines and xenograft or carcinogen-inducible in vivo models. Here we investigated the effects of resveratrol on spontaneous mammary carcinogenesis using Δ16HER2 mice as HER2+/ERα+ breast cancer model. Instead of inhibiting tumor growth, resveratrol treatment (0.0001% in drinking water; daily intake of 4μg/mouse) shortened tumor latency and enhanced tumor multiplicity in Δ16HER2 mice. This in vivo tumor-promoting effect of resveratrol was associated with up-regulation of Δ16HER2 and down-regulation of ERα protein levels and was recapitulated in vitro by murine (CAM6) and human (BT474) tumor cell lines. Our results demonstrate that resveratrol, acting as a proteasome inhibitor, leads to Δ16HER2 accumulation which favors the formation of Δ16HER2/HER3 heterodimers. The consequential activation of downstream mTORC1/p70S6K/4EBP1 pathway triggers cancer growth and proliferation. This study provides evidence that resveratrol mechanism of action (and hence its effects) depends on the intrinsic molecular properties of the cancer model under investigation, exerting a tumor-promoting effect in luminal B breast cancer subtype models. PMID:28238967

  12. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental.

    PubMed

    Guil, Sara; Rodríguez-Castro, Marta; Aguilar, Francisco; Villasevil, Eugenia M; Antón, Luis C; Del Val, Margarita

    2006-12-29

    CD8(+) T lymphocytes recognize infected cells that display virus-derived antigenic peptides complexed with major histocompatibility complex class I molecules. Peptides are mainly byproducts of cellular protein turnover by cytosolic proteasomes. Cytosolic tripeptidyl-peptidase II (TPPII) also participates in protein degradation. Several peptidic epitopes unexpectedly do not require proteasomes, but it is unclear which proteases generate them. We studied antigen processing of influenza virus nucleoprotein epitope NP(147-155), an archetype epitope that is even destroyed by a proteasome-mediated mechanism. TPPII, with the assistance of endoplasmic reticulum trimming metallo-aminopeptidases, probably ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), was crucial for nucleoprotein epitope generation both in the presence of functional proteasomes and when blocked by lactacystin, as shown with specific chemical inhibitors and gene silencing. Different protein contexts and subcellular targeting all allowed epitope processing by TPPII as well as trimming. The results show the plasticity of the cell's assortment of proteases for providing ligands for recognition by antiviral CD8(+) T cells. Our observations identify for the first time a set of proteases competent for antigen processing of an epitope that is susceptible to destruction by proteasomes.

  13. Autophagy Regulates Proteasome Inhibitor-Induced Pigmentation in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells.

    PubMed

    Juuti-Uusitalo, Kati; Koskela, Ali; Kivinen, Niko; Viiri, Johanna; Hyttinen, Juha M T; Reinisalo, Mika; Koistinen, Arto; Uusitalo, Hannu; Sinha, Debasish; Skottman, Heli; Kaarniranta, Kai

    2017-05-19

    The impairment of autophagic and proteasomal cleansing together with changes in pigmentation has been documented in retinal pigment epithelial (RPE) cell degeneration. However, the function and co-operation of these mechanisms in melanosome-containing RPE cells is still unclear. We show that inhibition of proteasomal degradation with MG-132 or autophagy with bafilomycin A1 increased the accumulation of premelanosomes and autophagic structures in human embryonic stem cell (hESC)-derived RPE cells. Consequently, upregulation of the autophagy marker p62 (also known as sequestosome-1, SQSTM1) was confirmed in Western blot and perinuclear staining. Interestingly, cells treated with the adenosine monophosphatedependent protein kinase activator, AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), decreased the proteasome inhibitor-induced accumulation of premelanosomes, increased the amount of autophagosomes and eradicated the protein expression of p62 and LC3 (microtubule-associated protein 1A/1B-light chain 3). These results revealed that autophagic machinery is functional in hESC-RPE cells and may regulate cellular pigmentation with proteasomes.

  14. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  15. Proapoptotic fibronectin fragment induces the degradation of ubiquitinated p53 via proteasomes in periodontal ligament cells

    PubMed Central

    Ghosh, Abhijit; Joo, Nam Eok; Chen, Tina Chunyuan; Kapila, Yvonne L.

    2009-01-01

    Background and Objective The extracellular matrix (ECM) plays a key role in signaling necessary for tissue remodeling and cell survival. However, signals from disease-altered ECMs, as that present in inflammatory diseases like periodontitis and arthritis, may lead to apoptosis or programmed cell death of resident cells. Previously, we found that a disease-associated fibronectin fragment triggers apoptosis of primary human periodontal ligament (PDL) cells via a novel apoptotic pathway in which the tumor suppressor, p53, is transcriptionally downregulated. Materials and Methods We used immunofluorescence, transfection assays, western blotting and ELISAs to show that p53 is degraded by a proteasomal pathway in response to a proapoptotic disease-associated fibronectin fragment. Results We now show that under these same apoptotic conditions p53 is further downregulated by post-translational ubiquitination and subsequent targeting to the proteasome for degradation. Pretreatment of cells with the proteasomal inhibitors MG132 and lactacystin rescued the cells from apoptosis. p53 levels in cells transfected with ubiquitin siRNA were resistant to degradation induced by the proapoptotic fibronectin fragment, showing that ubiquitination is important for the proapoptotic fibronectin fragment-induced degradation of p53. Conclusions These data show that a proapoptotic fibronectin matrix induces ubiquitination and degradation of p53 in the proteasome as part of a novel mechanism of apoptosis associated with inflammatory diseases. PMID:20337881

  16. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells

    PubMed Central

    Young, Jordan T. F.

    2009-01-01

    Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge. PMID:19838833

  17. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death

    PubMed Central

    Kashyap, Trinayan; Argueta, Christian; Aboukameel, Amro; Unger, Thaddeus John; Klebanov, Boris; Mohammad, Ramzi M.; Muqbil, Irfana; Azmi, Asfar S.; Drolen, Claire; Senapedis, William; Lee, Margaret; Kauffman, Michael; Shacham, Sharon; Landesman, Yosef

    2016-01-01

    The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent. PMID:27713151

  18. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death.

    PubMed

    Kashyap, Trinayan; Argueta, Christian; Aboukameel, Amro; Unger, Thaddeus John; Klebanov, Boris; Mohammad, Ramzi M; Muqbil, Irfana; Azmi, Asfar S; Drolen, Claire; Senapedis, William; Lee, Margaret; Kauffman, Michael; Shacham, Sharon; Landesman, Yosef

    2016-11-29

    The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent.

  19. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells.

    PubMed

    Shi, Yonghua; Yu, Yang; Wang, Zhenyu; Wang, Hao; Bieerkehazhi, Shayahati; Zhao, Yanling; Suzuk, Lale; Zhang, Hong

    2016-11-08

    Proteasome inhibition is an attractive approach for anticancer therapy. Doxorubicin (DOX) is widely used for treatment in a number of cancers including breast cancer; however, the development of DOX resistance largely limits its clinical application. One of the possible mechanisms of DOX-resistance is that DOX might induce the activation of NF-κB. In this case, proteasome inhibitors could inhibit the activation of NF-κB by blocking inhibitory factor κB (IκB) degradation. Carfilzomib, a second-generation proteasome inhibitor, overcomes bortezomib resistance and lessens its side-effects. Currently, the effect of carfilzomib on breast cancer cell proliferation remains unclear. In this study, we exploited the role of carfilzomib in seven breast cancer cell lines, MCF7, T-47D, MDA-MB-361, HCC1954, MDA-MB-468, MDA-MB-231, and BT-549, representing all major molecular subtypes of breast cancer. We found that carfilzomib alone had cytotoxic effects on the breast cancer cells and it increased DOX-induced cytotoxic effects and apoptosis in combination by enhancing DOX-induced JNK phosphorylation and inhibiting DOX-induced IκBα degradation. The results suggest that carfilzomib has potent antitumor effects on breast cancer in vitro and can sensitize breast cancer cells to DOX treatment. DOX in combination with carfilzomib may be an effective and feasible therapeutic option in the clinical trials for treating breast cancer.

  20. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells

    PubMed Central

    Shi, Yonghua; Yu, Yang; Wang, Zhenyu; Wang, Hao; Bieerkehazhi, Shayahati; Zhao, Yanling; Suzuk, Lale; Zhang, Hong

    2016-01-01

    Proteasome inhibition is an attractive approach for anticancer therapy. Doxorubicin (DOX) is widely used for treatment in a number of cancers including breast cancer; however, the development of DOX resistance largely limits its clinical application. One of the possible mechanisms of DOX-resistance is that DOX might induce the activation of NF-κB. In this case, proteasome inhibitors could inhibit the activation of NF-κB by blocking inhibitory factor κB (IκB) degradation. Carfilzomib, a second-generation proteasome inhibitor, overcomes bortezomib resistance and lessens its side-effects. Currently, the effect of carfilzomib on breast cancer cell proliferation remains unclear. In this study, we exploited the role of carfilzomib in seven breast cancer cell lines, MCF7, T-47D, MDA-MB-361, HCC1954, MDA-MB-468, MDA-MB-231, and BT-549, representing all major molecular subtypes of breast cancer. We found that carfilzomib alone had cytotoxic effects on the breast cancer cells and it increased DOX-induced cytotoxic effects and apoptosis in combination by enhancing DOX-induced JNK phosphorylation and inhibiting DOX-induced IκBα degradation. The results suggest that carfilzomib has potent antitumor effects on breast cancer in vitro and can sensitize breast cancer cells to DOX treatment. DOX in combination with carfilzomib may be an effective and feasible therapeutic option in the clinical trials for treating breast cancer. PMID:27655642

  1. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo.

    PubMed

    Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zhao, Chong; Liao, Siyan; Yang, Changshan; Liu, Yurong; Zhao, Canguo; Li, Shujue; Lu, Xiaoyu; Liu, Chunjiao; Guan, Lixia; Zhao, Kai; Shi, Xiaoqing; Song, Wenbin; Zhou, Ping; Dong, Xiaoxian; Guo, Haiping; Wen, Guanmei; Zhang, Change; Jiang, Lili; Ma, Ningfang; Li, Bing; Wang, Shunqing; Tan, Huo; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2013-01-31

    Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  2. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex.

    PubMed

    Loo, Joseph A; Berhane, Beniam; Kaddis, Catherine S; Wooding, Kerry M; Xie, Yongming; Kaufman, Stanley L; Chernushevich, Igor V

    2005-07-01

    Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.

  3. Proteasome affects the expression of aryl hydrocarbon receptor-regulated proteins.

    PubMed

    Ishida, Takumi; Kawakami, Masayo; Baba, Hiroko; Yahata, Masahiro; Mutoh, Junpei; Takeda, Shuso; Fujita, Hideaki; Tanaka, Yoshitaka; Ishii, Yuji; Yamada, Hideyuki

    2008-11-01

    The effect of proteasome inhibition with N-acetyl-leucyl-leucyl-norleucinal (ALLN) on the protein expression regulated by aryl hydrocarbon receptor (AhR) was studied in T47D breast tumor cells. The luciferase reporter gene assay using a construct which has the xenobiotic responsive element showed that the inducible expression of the reporter with AhR ligands was significantly reduced by co-treatment with ALLN. The same suppressive effect by ALLN was observed for ethoxyresorufin O-deethylase (EROD) activity induced by an AhR ligand, 3-methylcholanthrene (3MC). Despite the above effects, the induced expression of CYP1A1 and CYP1B1 mRNAs was unaffected by ALLN. While lactacystin, another proteasome inhibitor, exhibited the same effect as ALLN on EROD activity induced by 3MC, leupeptin, which is one of the cysteine protease inhibitors, had no such effect. Based on the evidence obtained, it appears that proteasome inhibition results in a reduction in the expression of AhR-regulated proteins.

  4. [Effect of proteasome inhibitor bortezomib on proliferation, apoptosis and SHIP gene expression in K562 cells].

    PubMed

    Jia, Zhi-Qiang; Wei, Yu-Tao; Li, Ai-Ming; Cheng, Zhi-Yong

    2013-08-01

    This study was aimed to investigate the effects of proteasome inhibitor bortezomib on proliferation, apoptosis and the SHIP expression of K562 cells. K562 cells were treated with bortezomib of different concentrations. Cell proliferation was analyzed by MTT assay, cell apoptosis was detected by flow cytometry and SHIP mRNA expression was assayed by RT-PCR.The results showed that after being treated with 10, 20, 50 and 100 nmol/L bortezomib for 24 h, the inhibitory rates of K562 cells were (5.76 ± 1.47)%, (10.55 ± 1.59)%, (17.14 ± 2.05)% and (27.69 ± 3.57)% respectively, and were higher than that in control (1.30 ± 0.10); when K562 cells were treated with 20 nmol/L bortezomib for 24, 48 and 72 h, the inhibitory rates of cell proliferation were (10.55 ± 1.59)%, (16.33 ± 2.53)% and (19.78 ± 1.56)% respectively, there was statistic difference of cell proliferation rate between 24 h group and 48 h group (P < 0.05). After being treated with 10,20,50,100 nmol/L bortezomib for 24 h, the apoptotic rates of K562 cells were (12.7 ± 0.6)%, (26.9 ± 0.9)%, (32.6 ± 1.2)% and (72.5 ± 1.5)% respectively,and all higher than that in control (1.0 ± 0.5)% (P < 0.05). According to results of RT-PCR detection, the expression level of SHIP mRNA was obviously up-regulated after treatment with bortezomib, and showed statistical difference in comparison with control. It is concluded that bortezomib inhibits proliferation of K562 cells in time and concentration-dependent manner and induces apoptosis through up-regulation of SHIP gene.

  5. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program.

    PubMed

    Houghton, Peter J; Morton, Christopher L; Kolb, E Anders; Lock, Richard; Carol, Hernan; Reynolds, C Patrick; Keshelava, Nino; Maris, John M; Keir, Stephen T; Wu, Jianrong; Smith, Malcolm A

    2008-01-01

    Bortezomib is a proteasome inhibitor that has been approved by FDA for the treatment of multiple myeloma and that has completed phase 1 testing in children. The purpose of the current study was to evaluate the antitumor activity of bortezomib against the in vitro and in vivo childhood cancer preclinical models of the Pediatric Preclinical Testing Program (PPTP). Bortezomib was tested against the PPTP in vitro panel at concentrations ranging from 0.1 nM to 1.0 microM and was tested in vivo at a dose of 1 mg/kg for a planned duration of 6 weeks. Bortezomib was uniformly active against the PPTP's in vitro panel, with a median IC(50) of 23 nM and with a steep dose-response curve. The four acute lymphoblastic leukemia (ALL) cell lines had significantly lower IC(50) values compared to the remaining lines of the in vitro panel. Limited in vivo activity was observed for bortezomib against the solid tumor xenografts tested, with one line meeting criteria for intermediate activity for the time to event measure and with the remaining lines showing low activity for this measure. Bortezomib demonstrated in vivo activity against the ALL panel, inducing two complete and two partial responses among seven evaluable lines. Administered at its MTD in mice, bortezomib demonstrated activity against selected lines of the PPTP's ALL in vivo panel. Further studies are indicated to determine the activity of bortezomib when combined with standard agents to treat childhood ALL. (c) 2007 Wiley-Liss, Inc.

  6. Identification of Long Non-Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors

    PubMed Central

    Malek, Ehsan; Kim, Byung-Gyu; Driscoll, James J.

    2016-01-01

    While the clinical benefit of proteasome inhibitors (PIs) for multiple myeloma (MM) treatment remains unchallenged, dose-limiting toxicities and the inevitable emergence of drug resistance limit their long-term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy-induced, which accounts for the majority of tumor relapses and MM-related deaths. Non-coding RNAs (ncRNAs) are a broad class of RNA molecules, including long non-coding RNAs (lncRNAs), that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome-wide profiling identified lncRNAs that were significantly deregulated in all three PI-resistant cell lines relative to the drug-sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI-resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM. PMID:27782060

  7. [Mechanism of HL-60 cells apoptosis induced by proteasome inhibitor MG132].

    PubMed

    Zhou, Yong-Ming; Yu, Mei-Xia; Qiu, Yu-Zhen; Xing, Xiao-Lei; Yao, Chun-Hong; Bai, Ru-Jun

    2013-08-01

    The purpose of this study was to elucidate the apoptosis, apoptotic pathway of HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Apoptosis of HL-60 cells was detected by flow cytometry, the expression of P21, P27 and P53 proteins in HL-60 cells treated with MG132 was assayed by Western blot. The HL-60 cells were treated with 1 µmol/L MG132 for 48 h, and irradiated by 75 Gy of (60)Co γ-ray, but their antigenicity was preserved. The effect of irradiated HL-60 cells treated with MG132 on proliferation of peripheral blood mononuclear cells (PBMNC) was measured by CCK-8 method. The results showed that the apoptotic rate of MG132-treated HL-60 cells increased in dose-and time-dependent manner. No significant changes in MG132-induced apoptosis were observed after inhibiting caspase-8 and caspase-9 pathway. The expression of P21 and P27 protein increased after treatment of HL-60 cells with MG132. CCK-8 test showed that HL-60 cells induced with low-dose of MG132 displayed the enhancing effect on proliferation of PBMNC. It is concluded that high dose of MG132 can induce the apoptosis of HL-60 cells, and has direct killing effect on HL-60 cells, but this inducing apoptotic effect on HL-60 cells can not be realized through caspase-8 and caspase-9 pathway. The P21 and P27 protein may be involved in MG132 induced HL-60 cell apoptosis. Low dose of MG132 promotes the proliferation of PBMNC in healthy individuals and enhance the immunity of organism.

  8. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors

    PubMed Central

    Franke, Niels E.; Kaspers, Gertjan L.; Assaraf, Yehuda G.; van Meerloo, Johan; Niewerth, Denise; Kessler, Floortje L.; Poddighe, Pino J.; Kole, Jeroen; Smeets, Serge J.; Ylstra, Bauke; Bi, Chonglei; Chng, Wee Joo; Horton, Terzah M.; Menezes, Rene X.; Musters, Renée J.P.; Zweegman, Sonja; Jansen, Gerrit; Cloos, Jacqueline

    2016-01-01

    PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress. PMID:27542283

  9. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  10. The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia.

    PubMed

    Chepelev, Nikolai L; Bennitz, Joshua D; Huang, Ting; McBride, Skye; Willmore, William G

    2011-01-01

    Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully. We found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O(2)) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine. Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status. © 2011 Chepelev et al.

  11. Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors.

    PubMed

    Zang, Yan; Kirk, Christopher J; Johnson, Daniel E

    2014-09-01

    Acquired resistance to proteasome inhibitors represents a considerable impediment to their effective clinical application. Carfilzomib and its orally bioavailable structural analog oprozomib are second-generation, highly-selective, proteasome inhibitors. However, the mechanisms of acquired resistance to carfilzomib and oprozomib are incompletely understood, and effective strategies for overcoming this resistance are needed. Here, we developed models of acquired resistance to carfilzomib in two head and neck squamous cell carcinoma cell lines, UMSCC-1 and Cal33, through gradual exposure to increasing drug concentrations. The resistant lines R-UMSCC-1 and R-Cal33 demonstrated 205- and 64-fold resistance, respectively, relative to the parental lines. Similarly, a high level of cross-resistance to oprozomib, as well as paclitaxel, was observed, whereas only moderate resistance to bortezomib (8- to 29-fold), and low level resistance to cisplatin (1.5- to 5-fold) was seen. Synergistic induction of apoptosis signaling and cell death, and inhibition of colony formation followed co-treatment of acquired resistance models with carfilzomib and the histone deacetylase inhibitor (HDACi) vorinostat. Synergism was also seen with other combinations, including oprozomib plus vorinostat, or carfilzomib plus the HDACi entinostat. Synergism was accompanied by upregulation of proapoptotic Bik, and suppression of Bik attenuated the synergy. The acquired resistance models also exhibited elevated levels of MDR-1/P-gp. Inhibition of MDR-1/P-gp with reversin 121 partially overcame carfilzomib resistance in R-UMSCC-1 and R-Cal33 cells. Collectively, these studies indicate that combining carfilzomib or oprozomib with HDAC or MDR-1/P-gp inhibitors may be a useful strategy for overcoming acquired resistance to these proteasome inhibitors.

  12. Therapeutic potential of the proteasome inhibitor Bortezomib on titanium particle-induced inflammation in a murine model.

    PubMed

    Mao, Xin; Pan, Xiaoyun; Cheng, Tao; Zhang, Xianlong

    2012-06-01

    Wear particle-induced aseptic loosening has been recognized as a harmful inflammatory process that jeopardizes the longevity of total joint replacement. The proteasome controls the activation of NF-κB and subsequent inflammatory mediators, such as TNF-α and IL-1β; thus, we investigated whether proteasome inhibition can ameliorate wear particle-induced inflammation in a murine model. A total of 48 BALB/C mice were divided into four groups. Titanium (Ti) particles were injected into the established air pouches of all mice (except negative controls) to provoke inflammation, and then 0.1 or 0.5 mg/kg of Bortezomib (Bzb, a proteasome inhibitor) was administered to ameliorate the inflammation response, while air pouches without Bzb administration were used as loading controls. The air pouches were harvested 2 or 7 days after Bzb injection for molecular and histological analyses. Inflammation responses in the air pouch tissues of Bzb treatment groups are lower than those in the Ti-stimulated group, and this occurs in a dose-dependent manner. Bzb can significantly attenuate the severity of Ti-induced inflammation in air pouches.

  13. Drug Synergism of Proteasome Inhibitors and Mitotane by Complementary Activation of ER Stress in Adrenocortical Carcinoma Cells.

    PubMed

    Kroiss, Matthias; Sbiera, Silviu; Kendl, Sabine; Kurlbaum, Max; Fassnacht, Martin

    2016-12-01

    Mitotane is the only drug approved for treatment of the orphan disease adrenocortical carcinoma (ACC) and was recently shown to be the first clinically used drug acting through endoplasmic reticulum (ER)-stress induced by toxic lipids. Since mitotane has limited clinical activity as monotherapy, we here study the potential of activating ER-stress through alternative pathways. The single reliable NCI-H295 cell culture model for ACC was used to study the impact MG132, bortezomib (BTZ) and carfilzomib (CFZ) on mRNA and protein expression of ER-stress markers, cell viability and steroid hormone secretion. We found all proteasome inhibitors alone to trigger expression of mRNA (spliced X-box protein 1, XBP1) and protein markers indicative of the inositol-requiring enzyme 1 (IRE1) dependent pathway of ER-stress but not phosphorylation of eukaryotic initiation factor 2α (eIF2α), a marker of the PRKR-like endoplasmic reticulum kinase (PERK)-dependent pathway. Whereas mitotane alone activated both pathways, combination of BTZ and CFZ with low-dose mitotane blocked mitotane-induced eIF2α phosphorylation but increased XBP1-mRNA splicing indicating that proteasome inhibitors can commit signalling towards a single ER-stress pathway in ACC cells. By applying the median effect model of drug combinations using cell viability as a read out, we determined significant drug synergism between mitotane and both BTZ and CFZ. In conclusion, combination of mitotane with activators of ER-stress through the unfolded protein response is synergistic in an ACC cell culture model. Since proteasome inhibitors are readily available clinically, they are attractive candidates to study for ACC treatment in clinical trials in combination with mitotane.

  14. Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia.

    PubMed

    Hervé, Mylène; Ibrahim, El Chérif

    2017-07-01

    FD is a rare neurodegenerative disorder caused by a mutation of the IKBKAP gene, which induces low expression levels of the Elongator subunit IKAP/hELP1 protein. A rational strategy for FD treatment could be to identify drugs increasing IKAP/hELP1 expression levels by blocking protein degradation pathways such as the 26S proteasome. Proteasome inhibitors are promising molecules emerging in cancer treatment and could thus constitute an enticing pharmaceutical strategy for FD treatment. Therefore, we tested three proteasome inhibitors on FD human olfactory ecto-mesenchymal stem cells (hOE-MSCs): two approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA), bortezomib and carfilzomib, as well as epoxomicin. Although all 3 inhibitors demonstrated activity in correcting IKBKAP mRNA aberrant splicing, carfilzomib was superior in enhancing IKAP/hELP1 quantity. Moreover, we observed a synergistic effect of suboptimal doses of carfilzomib on kinetin in improving IKBKAP isoforms ratio and IKAP/hELP1 expression levels allowing to counterbalance carfilzomib toxicity. Finally, we identified several dysregulated miRNAs after carfilzomib treatment that target proteasome-associated mRNAs and determined that IKAP/hELP1 deficiency in FD pathology is correlated to an overactivity of the 26S proteasome. Altogether, these results reinforce the rationale for using chemical compounds inhibiting the 26S proteasome as an innovative option for FD and a promising therapeutic pathway for many other neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance.

    PubMed

    Muz, Barbara; Kusdono, Hubert D; Azab, Feda; de la Puente, Pilar; Federico, Cinzia; Fiala, Mark; Vij, Ravi; Salama, Noha N; Azab, Abdel Kareem

    2017-12-01

    Multiple myeloma (MM) presents a poor prognosis and high lethality of patients due to development of drug resistance. P-glycoprotein (P-gp), a drug-efflux transporter, is upregulated in MM patients post-chemotherapy and is involved in the development of drug resistance since many anti-myeloma drugs (including proteasome inhibitors) are P-gp substrates. Hypoxia develops in the bone marrow niche during MM progression and has long been linked to chemoresistance. Additionally, hypoxia-inducible transcription factor (HIF-1α) was demonstrated to directly regulate P-gp expression. We found that in MM patients P-gp expression positively correlated with the hypoxic marker, HIF-1α. Hypoxia increased P-gp protein expression and its efflux capabilities in MM cells in vitro using flow cytometry. We reported herein that hypoxia-mediated resistance to carfilzomib and bortezomib in MM cells is due to P-gp activity and was reversed by tariquidar, a P-gp inhibitor. These results suggest combining proteasome inhibitors with P-gp inhibition for future clinical studies.

  16. The novel proteasome inhibitor BSc2118 protects against cerebral ischaemia through HIF1A accumulation and enhanced angioneurogenesis.

    PubMed

    Doeppner, Thorsten R; Mlynarczuk-Bialy, Izabela; Kuckelkorn, Ulrike; Kaltwasser, Britta; Herz, Josephine; Hasan, Mohammad R; Hermann, Dirk M; Bähr, Mathias

    2012-11-01

    Only a minority of stroke patients receive thrombolytic therapy. Therefore, new therapeutic strategies focusing on neuroprotection are under review, among which, inhibition of the proteasome is attractive, as it affects multiple cellular pathways. As proteasome inhibitors like bortezomib have severe side effects, we applied the novel proteasome inhibitor BSc2118, which is putatively better tolerated, and analysed its therapeutic potential in a mouse model of cerebral ischaemia. Stroke was induced in male C57BL/6 mice using the intraluminal middle cerebral artery occlusion model. BSc2118 was intrastriatally injected 12 h post-stroke in mice that had received normal saline or recombinant tissue-plasminogen activator injections during early reperfusion. Brain injury, behavioural tests, western blotting, MMP9 zymography and analysis of angioneurogenesis were performed for up to 3 months post-stroke. Single injections of BSc2118 induced long-term neuroprotection, reduced functional impairment, stabilized blood-brain barrier through decreased MMP9 activity and enhanced angioneurogenesis when given no later than 12 h post-stroke. On the contrary, recombinant tissue-plasminogen activator enhanced brain injury, which was reversed by BSc2118. Protein expression of the transcription factor HIF1A was significantly increased in saline-treated and recombinant tissue-plasminogen activator-treated mice after BSc2118 application. In contrast, knock-down of HIF1A using small interfering RNA constructs or application of the HIF1A inhibitor YC1 (now known as RNA-binding motif, single-stranded-interacting protein 1 (RBMS1)) reversed BSc2118-induced neuroprotection. Noteworthy, loss of neuroprotection after combined treatment with BSc2118 and YC1 in recombinant tissue-plasminogen activator-treated animals was in the same order as in saline-treated mice, i.e. reduction of recombinant tissue-plasminogen activator toxicity through BSc2118 did not solely depend on HIF1A. Thus, the

  17. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    PubMed Central

    2012-01-01

    Background Altered immune function during ageing results in increased production of nitric oxide (NO) and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P < 0.02) in the activities of chymotrypsin-like, trypsin-like, and post-acidic (post-glutamase) proteasome sites in RAW 264.7 cells at a dose of only 20 μM. These compounds also inhibited the production of NO by RAW-264.7 cells stimulated with LPS alone (>40%; P < 0.05), or LPS + interferon-γ (IFN-γ; >60%; P < 0.02). Furthermore, resveratrol, pterostilbene, morin hydrate, and quercetin suppressed secretion of TNF-α (>40%; P < 0.05) in LPS-stimulated RAW 264.7 cells, and suppressed NF-κB activation (22% to 45%; P < 0.05) in LPS-stimulated HEK293T cells. These compounds also significantly suppressed LPS-induced expression of TNF-α, IL-1β, IL-6, and iNOS genes in RAW 264.7 cells, and also in thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production

  18. Proteasome Inhibitors: A Worthy Partner to Boost Cancer Immunotherapy? | Center for Cancer Research

    Cancer.gov

    For a number of years, research-ers have been frustrated by their inability to harness patients' immune systems to stem tumor growth. However, recent preclinical data involving the use of immunotherapy in combination with proteasome inhibition suggest this novel approach may be worthy of attention.

  19. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase.

    PubMed

    Yue, Xin; Zuo, Yinglin; Ke, Hongpeng; Luo, Jiaming; Lou, Lanlan; Qin, Wenjing; Wang, Youqiao; Liu, Ziyi; Chen, Daoyuan; Sun, Haixia; Zheng, Weichao; Zhu, Cuige; Wang, Ruimin; Wen, Gesi; Du, Jun; Zhou, Binhua; Bu, Xianzhang

    2017-08-01

    The proteasomal 19S regulatory particle (RP) associated deubiquitinases (DUBs) have attracted much attention owing to their potential as a therapeutic target for cancer therapy. Identification of new entities against 19S RP associated DUBs and illustration of the underlying mechanisms is crucial for discovery of novel proteasome blockers. In this study, a series of 4-arylidene curcumin analogues were identified as potent proteasome inhibitor by preferentially blocking deubiquitinase function of proteasomal 19S RP with moderate 20S CP inhibition. The most active compound 33 exhibited a major inhibitory effect on 19S RP-associated ubiquitin-specific proteases 14, along with a minor effect on ubiquitin C-terminal hydrolase 5, which resulted in dysfunction of proteasome, and subsequently accumulated ubiquitinated proteins (such as IκB) in several cancer cells. Remarkably, though both 19S RP and 20S CP inhibition induced significantly endoplasmic reticulum stress and triggered caspase-12/9 pathway activation to promote cancer cell apoptosis, the 19S RP inhibition by 33 avoided slow onset time, Bcl-2 overexpression, and PERK-phosphorylation, which contribute to the deficiencies of clinical drug Bortezomib. These systematic studies provided insights in the development of novel proteasome inhibitors for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Aujay, Monette; Kirk, Christopher J; Bandi, Madhavi; Ciccarelli, Bryan; Raje, Noopur; Richardson, Paul; Anderson, Kenneth C

    2010-12-02

    Bortezomib therapy has proven successful for the treatment of relapsed, relapsed/refractory, and newly diagnosed multiple myeloma (MM). At present, bortezomib is available as an intravenous injection, and its prolonged treatment is associated with toxicity and development of drug resistance. Here we show that the novel proteasome inhibitor ONX 0912, a tripeptide epoxyketone, inhibits growth and induces apoptosis in MM cells resistant to conventional and bortezomib therapies. The anti-MM activity of ONX-0912 is associated with activation of caspase-8, caspase-9, caspase-3, and poly(ADP) ribose polymerase, as well as inhibition of migration of MM cells and angiogenesis. ONX 0912, like bortezomib, predominantly inhibits chymotrypsin-like activity of the proteasome and is distinct from bortezomib in its chemical structure. Importantly, ONX 0912 is orally bioactive. In animal tumor model studies, ONX 0912 significantly reduced tumor progression and prolonged survival. Immununostaining of MM tumors from ONX 0912-treated mice showed growth inhibition, apoptosis, and a decrease in associated angiogenesis. Finally, ONX 0912 enhances anti-MM activity of bortezomib, lenalidomide dexamethasone, or pan-histone deacetylase inhibitor. Taken together, our study provides the rationale for clinical protocols evaluating ONX 0912, either alone or in combination, to improve patient outcome in MM.

  1. Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Ciccarelli, Bryan; Richardson, Paul G; Palladino, Michael A; Anderson, Kenneth C

    2010-01-28

    Our recent study demonstrated that a novel proteasome inhibitor NPI-0052 is distinct from bortezomib (Velcade) and, importantly, triggers apoptosis in multiple myeloma (MM) cells resistant to bortezomib. Here we demonstrate that combining NPI-0052 and lenalidomide (Revlimid) induces synergistic anti-MM activity in vitro using MM-cell lines or patient MM cells. NPI-0052 plus lenalidomide-induced apoptosis is associated with (1) activation of caspase-8, caspase-9, caspase-12, caspase-3, and poly(ADP) ribose polymerase; (2) activation of BH-3 protein BIM; (3) translocation of BIM to endoplasmic reticulum; (4) inhibition of migration of MM cells and angiogenesis; and (5) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. Importantly, blockade of BIM using siRNA significantly abrogates NPI-0052 plus lenalidomide-induced apoptosis. Furthermore, studies using biochemical inhibitors of caspase-8 versus caspase-9 demonstrate that NPI-0052 plus lenalidomide-triggered apoptosis is primarily dependent on caspase-8 signaling. In animal tumor model studies, low-dose combination of NPI-0052 and lenalidomide is well tolerated, significantly inhibits tumor growth, and prolongs survival. Taken together, our study provides the preclinical rationale for clinical protocols evaluating lenalidomide together with NPI-0052 to improve patient outcome in MM.

  2. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus

    PubMed Central

    2012-01-01

    Background Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. Methods Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. Results LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. Conclusions Our results identify neuroinflammation

  3. Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors.

    PubMed

    Yamashita, A S; Baia, G S; Ho, J S Y; Velarde, E; Wong, J; Gallia, G L; Belzberg, A J; Kimura, E T; Riggins, G J

    2014-05-01

    About one half of malignant peripheral nerve sheath tumors (MPNST) have Neurofibromin 1 (NF1) mutations. NF1 is a tumor suppressor gene essential for negative regulation of RAS signaling. Survival for MPNST patients is poor and we sought to identify an effective combination therapy. Starting with the mTOR inhibitors rapamycin and everolimus, we screened for synergy in 542 FDA approved compounds using MPNST cells with a native NF1 loss in both alleles. We further analyzed the cell cycle and signal transduction. In vivo growth effects of the drug combination with local radiation therapy (RT) were assessed in MPNST xenografts. The synergistic combination of mTOR inhibitors with bortezomib yielded a reduction in MPNST cell proliferation. The combination of mTOR inhibitors and bortezomib also enhanced the anti-proliferative effect of radiation in vitro. In vivo, the combination of mTOR inhibitor (everolimus) and bortezomib with RT decreased tumor growth and proliferation, and augmented apoptosis. The combination of approved mTOR and proteasome inhibitors with radiation showed a significant reduction of tumor growth in an animal model and should be investigated and optimized further for MPNST therapy.

  4. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S [beta]5-subunit

    SciTech Connect

    Blackburn, Christopher; Gigstad, Kenneth M.; Hales, Paul; Garcia, Khristofer; Jones, Matthew; Bruzzese, Frank J.; Barrett, Cynthia; Liu, Jane X.; Soucy, Teresa A.; Sappal, Darshan S.; Bump, Nancy; Olhava, Edward J.; Fleming, Paul; Dick, Lawrence R.; Tsu, Christopher; Sintchak, Michael D.; Blank, Jonathan L.

    2012-04-30

    The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome used on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin-proteasome system in cells. We show that these compounds are entirely selective for the {beta}5 (chymotrypsin-like) site over the {beta}1 (caspase-like) and {beta}2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC{sub 50} values for the human 20S {beta}5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin-luciferase reporter, activation of NF{Kappa}B (nuclear factor {Kappa}B) in response to TNF-{alpha} (tumor necrosis factor-{alpha}) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the {beta}5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the {beta}5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.

  5. Farnesyl transferase inhibitors, autophagy, and proteasome inhibition: synergy for all the right reasons.

    PubMed

    Lonial, Sagar; Boise, Lawrence H

    2011-04-01

    The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their 'proteotoxicity' allowing these toxic proteins to be sequestered away from normal cellular machinery.

  6. [Proteasome degradation of protein C and plasmin inhibitor mutants: molecular mechanism of congenital protein deficiency].

    PubMed

    Nishio, Miwako; Koyama, Takatoshi; Hirosawa, Shinsaku

    2009-08-01

    In many inherited disorders, protein deficiency is one of the major aetiologies, but the molecular and cellular mechanisms remain unclear. We investigated the intracellular degradation of mutant proteins, using naturally occurring PC and PI mutants that lead to congenital deficiencies. We have shown that proteasomes are very important for the degradation of PC and PI mutants, irrespective of the presence or absence of N-glycosylation moieties. Furthermore, mannose trimming after glucose removal is very important for initiation of the degradation. Inhibition of glucose trimming of the mutant proteins accelerated degradation by the proteasomes, and initiation of the degradation occurs after mannose trimming of the middle chain of N-linked glycosylation by mannosidase I. The binding of molecular chaperons influenced by the presence of N-glycosylation moieties may affect the efficient degradation of the mutant proteins. Cotransfection of endoplasmic reticulum (ER) degradation enhancing alpha-mannosidase like protein (EDEM) accelerated the degradation of N-glycosylated PC. The mutant PC or PI molecules were ubiquitin-independently degraded by proteasomes. Autophagy does not appear to contribute to the degradation of PC and PI mutants. These findings might help to elucidate the molecular mechanisms and potential treatments of congenital deficiencies of proteins in a system of coagulation and fibrinolysis.

  7. The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro

    PubMed Central

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF-β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF-β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN. PMID:25003128

  8. The proteasome inhibitor, MG132, attenuates diabetic nephropathy by inhibiting SnoN degradation in vivo and in vitro.

    PubMed

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan; Xu, Yong

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF- β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN.

  9. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes*

    PubMed Central

    Welk, Vanessa; Coux, Olivier; Kleene, Vera; Abeza, Claire; Trümbach, Dietrich; Eickelberg, Oliver; Meiners, Silke

    2016-01-01

    The proteasome is an intracellular protease complex consisting of the 20S catalytic core and its associated regulators, including the 19S complex, PA28αβ, PA28γ, PA200, and PI31. Inhibition of the proteasome induces autoregulatory de novo formation of 20S and 26S proteasome complexes. Formation of alternative proteasome complexes, however, has not been investigated so far. We here show that catalytic proteasome inhibition results in fast recruitment of PA28γ and PA200 to 20S and 26S proteasomes within 2–6 h. Rapid formation of alternative proteasome complexes did not involve transcriptional activation of PA28γ and PA200 but rather recruitment of preexisting activators to 20S and 26S proteasome complexes. Recruitment of proteasomal activators depended on the extent of active site inhibition of the proteasome with inhibition of β5 active sites being sufficient for inducing recruitment. Moreover, specific inhibition of 26S proteasome activity via siRNA-mediated knockdown of the 19S subunit RPN6 induced recruitment of only PA200 to 20S proteasomes, whereas PA28γ was not mobilized. Here, formation of alternative PA200 complexes involved transcriptional activation of the activator. Alternative proteasome complexes persisted when cells had regained proteasome activity after pulse exposure to proteasome inhibitors. Knockdown of PA28γ sensitized cells to proteasome inhibitor-mediated growth arrest. Thus, formation of alternative proteasome complexes appears to be a formerly unrecognized but integral part of the cellular response to impaired proteasome function and altered proteostasis. PMID:27129254

  10. Photobleaching reveals complex effects of inhibitors on transcribing RNA polymerase II in living cells

    SciTech Connect

    Fromaget, Maud; Cook, Peter R. . E-mail: peter.cook@path.ox.ac.uk

    2007-08-15

    RNA polymerase II transcribes most eukaryotic genes. Photobleaching studies have revealed that living Chinese hamster ovary cells expressing the catalytic subunit of the polymerase tagged with the green fluorescent protein contain a large rapidly exchanging pool of enzyme, plus a smaller engaged fraction; genetic complementation shows this tagged polymerase to be fully functional. We investigated how transcriptional inhibitors - some of which are used therapeutically - affect the engaged fraction in living cells using fluorescence loss in photobleaching; all were used at concentrations that have reversible effects. Various kinase inhibitors (roscovitine, DRB, KM05283, alsterpaullone, isoquinolinesulfonamide derivatives H-7, H-8, H-89, H-9), proteasomal inhibitors (lactacystin, MG132), and an anti-tumour agent (cisplatin) all reduced the engaged fraction; an intercalator (actinomycin D), two histone deacetylase inhibitors (trichostatin A, sodium butyrate), and irradiation with ultra-violet light all increased it. The polymerase proves to be both a sensitive sensor and effector of the response to these inhibitors.

  11. Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells.

    PubMed

    Dron, Michel; Dandoy-Dron, Françoise; Farooq Salamat, Muhammad Khalid; Laude, Hubert

    2009-08-01

    Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected.

  12. The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway*

    PubMed Central

    Yang, Yanmei; Blair, Harry C.; Shapiro, Irving M.; Wang, Bin

    2015-01-01

    Parathyroid hormone (PTH) induces osteoclast formation and activity by increasing the ratio of RANKL/OPG in osteoblasts. The proteasome inhibitor carfilzomib (CFZ) has been used as an effective therapy for multiple myeloma via the inhibition of pathologic bone destruction. However, the effect of combination of PTH and CFZ on osteoclastogenesis is unknown. We now report that CFZ inhibits PTH-induced RANKL expression and secretion without affecting PTH inhibition of OPG expression, and it does so by blocking HDAC4 proteasomal degradation in osteoblasts. Furthermore, we used different types of culture systems, including co-culture, indirect co-culture, and transactivation, to assess the effect of CFZ on PTH action to induce osteoclastogenesis. Our results demonstrated that CFZ blocks PTH-induced osteoclast formation and bone resorption by its additional effect to inhibit RANKL-mediated IκB degradation and NF-κB activation in osteoclasts. This study showed for the first time that CFZ targets both osteoblasts and osteoclasts to suppress PTH-induced osteoclast differentiation and bone resorption. These findings warrant further investigation of this novel combination in animal models of osteoporosis and in patients. PMID:25979341

  13. Proteasome Inhibitor Bortezomib Suppresses Nuclear Factor-Kappa B Activation and Ameliorates Eye Inflammation in Experimental Autoimmune Uveitis

    PubMed Central

    Hsu, Sheng-Min; Yang, Chang-Hao; Shen, Fang-Hsiu; Chen, Shun-Hua; Lin, Chia-Jhen; Shieh, Chi-Chang

    2015-01-01

    Bortezomib is a proteasome inhibitor used for hematologic cancer treatment. Since it can suppress NF-κB activation, which is critical for the inflammatory process, bortezomib has been found to possess anti-inflammatory activity. In this study, we evaluated the effect of bortezomib on experimental autoimmune uveitis (EAU) in mice and investigated the potential mechanisms related to NF-κB inactivation. High-dose bortezomib (0.75 mg/kg), low-dose bortezomib (0.15 mg/kg), or phosphate buffered saline was given after EAU induction. We found that the EAU is ameliorated by high-dose bortezomib treatment when compared with low-dose bortezomib or PBS treatment. The DNA-binding activity of NF-κB was suppressed and expression of several key inflammatory mediators including TNF-α, IL-1α, IL-1β, IL-12, IL-17, and MCP-1 was lowered in the high-dose bortezomib-treated group. These results suggest that proteasome inhibition is a promising treatment strategy for autoimmune uveitis. PMID:25653480

  14. Intracellular colocalization of HAP1/STBs with steroid hormone receptors and its enhancement by a proteasome inhibitor

    SciTech Connect

    Fujinaga, Ryutaro; Takeshita, Yukio; Yoshioka, Kazuhiro; Nakamura, Hiroyuki; Shinoda, Shuhei; Islam, Md. Nabiul; Jahan, Mir Rubayet; Yanai, Akie; Kokubu, Keiji; Shinoda, Koh

    2011-07-15

    The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.

  15. CD4 Glycoprotein Degradation Induced by Human Immunodeficiency Virus Type 1 Vpu Protein Requires the Function of Proteasomes and the Ubiquitin-Conjugating Pathway

    PubMed Central

    Schubert, Ulrich; Antón, Luis C.; Bačík, Igor; Cox, Josephine H.; Bour, Stéphane; Bennink, Jack R.; Orlowski, Marian; Strebel, Klaus; Yewdell, Jonathan W.

    1998-01-01

    The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic

  16. Generating a Generation of Proteasome Inhibitors: From Microbial Fermentation to Total Synthesis of Salinosporamide A (Marizomib) and Other Salinosporamides

    PubMed Central

    Potts, Barbara C.; Lam, Kin S.

    2010-01-01

    The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1) is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them. Here, the full complement of methods is reviewed, reflecting remarkable contributions from scientists of various disciplines over a period of 7 years since the first publication of the structure of 1. PMID:20479958

  17. A Flavin-Dependent Decarboxylase-Dehydrogenase-Monooxygenase Assembles the Warhead of α,β-Epoxyketone Proteasome Inhibitors.

    PubMed

    Zabala, Daniel; Cartwright, Joshua W; Roberts, Douglas M; Law, Brian J C; Song, Lijiang; Samborskyy, Markiyan; Leadlay, Peter F; Micklefield, Jason; Challis, Gregory L

    2016-04-06

    The α,β-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [(13)C-methyl]l-methionine implicated an α-dimethyl-β-keto acid intermediate in the biosynthesis of TMC-86A. Incubation of the chemically synthesized α-dimethyl-β-keto acid with a purified recombinant flavin-dependent enzyme that is conserved in all known pathways for epoxyketone biosynthesis resulted in formation of the corresponding α-methyl-α,β-epoxyketone. This transformation appears to proceed via an unprecedented decarboxylation-dehydrogenation-monooxygenation cascade. The biosynthesis of the TMC-86A warhead is completed by cytochrome P450-mediated hydroxylation of the α-methyl-α,β-epoxyketone.

  18. Successful treatment of refractory systemic lupus erythematosus using proteasome inhibitor bortezomib followed by belimumab: description of two cases.

    PubMed

    Sjöwall, C; Hjorth, M; Eriksson, P

    2017-01-01

    Although the putative therapeutic options for patients with systemic lupus erythematosus (SLE) are steadily increasing, refractory disease is indeed a major challenge to many clinicians and patients. The proteasome inhibitor bortezomib - approved for the treatment of multiple myeloma since the beginning of this century - was recently reported successful in twelve cases of refractory SLE by German colleagues. Herein, we describe two Swedish SLE cases with refractory renal and pulmonary manifestations that were rescued by bortezomib as induction of remission followed by monthly doses of belimumab. The patients were carefully monitored with regard to disease activity and renal function. Anti-dsDNA and anti-C1q antibodies, complement proteins and lymphocyte subsets were analysed in consecutive samples. In December 2016, the patients had been in clinical remission post bortezomib administration for a period of 28 and 22 months, respectively. Potential benefits of using belimumab as maintenance therapy to prevent regeneration of autoreactive B cell clones are discussed.

  19. Bortezomib-induced paralytic ileus is a potential gastrointestinal side effect of this first-in-class anticancer proteasome inhibitor.

    PubMed

    Perfetti, Vittorio; Palladini, Giovanni; Brunetti, Laura; Sgarella, Adele; Brugnatelli, Silvia; Gobbi, Paolo G; Corazza, Gino Roberto

    2007-07-01

    Bortezomib is the first anticancer proteasome inhibitor introduced into clinical practice. It has been recently approved for the treatment of multiple myeloma, an incurable plasma cell tumour that accounts for 10-15% of all haematologic malignancies and for approximately 20% of deaths. Gastrointestinal toxicity associated with the use of this drug is common but generally mild to moderate. Paralytic ileus in patients undergoing bortezomib treatment has been reported, although a definite attribution to bortezomib administration has not been established. We report a myeloma patient who developed severe paralytic ileus during bortezomib therapy, which presented in the context of progressive constipation without other known causes and which regressed promptly with medical management after drug cessation, suggesting a direct causal relationship. Awareness of the various potential gastrointestinal toxic effects of bortezomib is of relevance given the growing number of patients undergoing treatment with this important and effective new cancer drug.

  20. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors

    PubMed Central

    Kuhn, Deborah J.; Hunsucker, Sally A.; Chen, Qing; Voorhees, Peter M.; Orlowski, Marian

    2009-01-01

    Proteasome inhibition is a validated strategy for therapy of multiple myeloma, but this disease remains challenging as relapses are common, and often associated with increasing chemoresistance. Moreover, nonspecific proteasome inhibitors such as bortezomib can induce peripheral neuropathy and other toxicities that may compromise the ability to deliver therapy at full doses, thereby decreasing efficacy. One novel approach may be to target the immunoproteasome, a proteasomal variant found predominantly in cells of hematopoietic origin that differs from the constitutive proteasome found in most other cell types. Using purified preparations of constitutive and immunoproteasomes, we screened a rationally designed series of peptidyl-aldehydes and identified several with relative specificity for the immunoproteasome. The most potent immunoproteasome-specific inhibitor, IPSI-001, preferentially targeted the β1i subunit of the immunoproteasome in vitro and in cellulo in a dose-dependent manner. This agent induced accumulation of ubiquitin-protein conjugates, proapoptotic proteins, and activated caspase-mediated apoptosis. IPSI-001 potently inhibited proliferation in myeloma patient samples and other hematologic malignancies. Importantly, IPSI-001 was able to overcome conventional and novel drug resistance, including resistance to bortezomib. These findings provide a rationale for the translation of IPSIs to the clinic, where they may provide antimyeloma activity with greater specificity and less toxicity than current inhibitors. PMID:19050304

  1. Design, synthesis and docking studies of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids.

    PubMed

    Shi, Jingmiao; Lei, Meng; Wu, Wenkui; Feng, Huayun; Wang, Jia; Chen, Shanshan; Zhu, Yongqiang; Hu, Shihe; Liu, Zhaogang; Jiang, Cheng

    2016-04-15

    A series of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids were designed and synthesized. Their structures were elucidated by (1)H NMR, (13)C NMR, LC-MS and HRMS. These compounds were evaluated for their β5 subunit inhibitory activities of human proteasome. The results showed that dipeptidyl boronic acid inhibitors composed of αα-amino acids were as active as bortezomib. Interestingly, the activities of those derived from αβ-amino acids lost completely. Of all the inhibitors, compound 22 (IC50=4.82 nM) was the most potent for the inhibition of proteasome activity. Compound 22 was also the most active against three MM cell lines with IC50 values less than 5 nM in inhibiting cell growth assays. Molecular docking studies displayed that 22 fitted very well in the β5 subunit active pocket of proteasome. Copyright © 2016. Published by Elsevier Ltd.

  2. Evidence for the Critical Roles of NF-κB p65 and Specificity Proteins in the Apoptosis-Inducing Activity of Proteasome Inhibitors in Leukemia Cells

    PubMed Central

    Reuter, Simone; Gupta, Subash C.; Kannappan, Ramaswamy; Aggarwal, Bharat B.

    2012-01-01

    Although proteasome inhibitors, such as Bortezomib, have been approved for the treatment of multiple myeloma and mantle cell lymphoma, the mechanism by which they induce apoptosis is still incompletely understood. In the present study, we demonstrate that genetic deletion of the NF-κB p65 subunit abolished the ability of Bortezomib to induce apoptosis, indicating that p65 is needed for apoptosis. Although Bortezomib inhibited TNF–induced NF-κB activation through suppression of IκBα degradation, it also induced proteolytic degradation of constitutive NF-κB proteins, including p65, IκBα and p105. These effects were also observed with two other proteasome inhibitors, N-acetyl-leucylleucyl-norleucinal (ALLN) and MG132. The p65 is known to be linked with Specific proteins (Sp), and we found that proteasome inhibition also induced degradation of Sp-1, Sp-3, and Sp-4 proteins. Bortezomib induced apoptosis in cells expressing caspase-3 but not in cells that lack caspase-3, indicating the critical role for this enzyme in the apoptotic action of Bortezomib. Furthermore, inhibition of pan-caspases abolished Bortezomib-induced degradation of p65, p105 and Sp proteins, but not that of IκBα. Overall, our results demonstrate for the first time a critical role for the degradation of NF-κB and Sp proteins by caspases in the apoptosis-inducing activity of proteasome inhibitors, such as Bortezomib.

  3. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    PubMed Central

    Felley-Bosco, Emanuela; Bender, Florent C.; Courjault-Gautier, Françoise; Bron, Claude; Quest, Andrew F. G.

    2000-01-01

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway. PMID:11114180

  4. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells.

    PubMed

    Felley-Bosco, E; Bender, F C; Courjault-Gautier, F; Bron, C; Quest, A F

    2000-12-19

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.

  5. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model.

    PubMed

    Zollner, Thomas M; Podda, Maurizio; Pien, Christine; Elliott, Peter J; Kaufmann, Roland; Boehncke, Wolf-Henning

    2002-03-01

    There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-kappa B for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-kappa B activation by blocking the degradation of its inhibitory protein I kappa B. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell-activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell-mediated disorders such as psoriasis.

  6. The Proteasome Inhibitor Bortezomib Is a Potent Inducer of Zinc Finger AN1-type Domain 2a Gene Expression

    PubMed Central

    Rossi, Antonio; Riccio, Anna; Coccia, Marta; Trotta, Edoardo; La Frazia, Simone; Santoro, M. Gabriella

    2014-01-01

    The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment. PMID:24619424

  7. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    PubMed Central

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  8. Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack.

    PubMed

    Cacan, Ercan; Spring, Alexander M; Kumari, Anita; Greer, Susanna F; Garnett-Benson, Charlie

    2015-12-21

    Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8⁺ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity.

  9. Leishmania donovani: proteasome-mediated down-regulation of methionine adenosyltransferase.

    PubMed

    Pérez-Pertejo, Yolanda; Alvarez-Velilla, Raquel; Estrada, Carlos García; Balaña-Fouce, Rafael; Reguera, Rosa M

    2011-08-01

    Methionine adenosyltransferase (MAT) is an important enzyme for metabolic processes, to the extent that its product, S-adenosylmethionine (AdoMet), plays a key role in trans-methylation, trans-sulphuration and polyamine synthesis. Previous studies have shown that a MAT-overexpressing strain of Leishmania donovani controls AdoMet production, keeping the intracellular AdoMet concentration at levels that are compatible with cell survival. This unexpected result, together with the fact that MAT activity and abundance changed with time in culture, suggests that different regulatory mechanisms acting beyond the post-transcriptional level are controlling this protein. In order to gain an insight into these mechanisms, several experiments were carried out to explain the MAT abundance during promastigote cell growth. Determination of MAT turnover in cycloheximide (CHX)-treated cultures resulted in a surprising 5-fold increase in MAT turnover compared to CHX-untreated cultures. This increase agrees with a stabilization of the MAT protein, whose integrity was maintained during culture. The presence of proteasome inhibitors, namely MG-132, MG-115, epoxomycin and lactacystin in the culture medium prevented MAT degradation in both MAT-overexpressing and 'mock-transfected' leishmanial strains. The role of the ubiquitin (Ub) pathway in MAT down-regulation was supported using immunoprecipitation experiments. Immunoprecipitated MAT cross-reacted with anti-Ub antibodies, which provides evidence of a proteasome-mediated down-regulation of the leishmanial MAT abundance.

  10. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus.

    PubMed

    Wang, Shaobo; Liu, Haibin; Zu, Xiangyang; Liu, Yang; Chen, Liman; Zhu, Xueqin; Zhang, Leike; Zhou, Zheng; Xiao, Gengfu; Wang, Wei

    2016-11-01

    The host-virus interaction during the cellular entry of Japanese encephalitis virus (JEV) is poorly characterized. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates diverse cellular processes, including endocytosis and signal transduction, which may be involved in the entry of virus. Here, we showed that the proteasome inhibitors, MG132 and lactacystin, impaired the productive entry of JEV by effectively interfering with viral intracellular trafficking at the stage between crossing cell membrane and the initial translation of the viral genome after uncoating. Using confocal microscopy, it was demonstrated that a proportion of the internalized virions were misdirected to lysosomes following treatment with MG132, resulting in non-productive entry. In addition, using specific siRNAs targeting ubiquitin, we verified that protein ubiquitination was involved in the entry of JEV. Overall, our study demonstrated the UPS is essential for the productive entry of JEV and might represent a potential antiviral target for JEV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A UHPLC-UV-QTOF study on the stability of carfilzomib, a novel proteasome inhibitor.

    PubMed

    Sestak, Vit; Roh, Jaroslav; Klepalova, Libuse; Kovarikova, Petra

    2016-05-30

    This study addresses the lack of data on the stability of carfilzomib, a newly approved proteasome-inhibiting anticancer drug. A new stability-indicating UHPLC-UV method for analysis of carfilzomib was developed and validated within the concentrations of 10-250 μg/mL. The aforementioned method was utilized to evaluate the effects of forced degradation and to investigate the degradation kinetics, as well as to examine drug stability in a pharmaceutical formulation. A UHPLC-QTOF method was utilized to identify the principal degradation products. It was found that carfilzomib: (1) is stable at neutral and slightly acidic pH, but prone to degradation at both high and low pH; (2) is acceptably stable in the pharmaceutical formulation; but (3) is prone to oxidation and photodegradation. Carfilzomib degradation followed first-order kinetics. The decomposition products resulted from peptide bond hydrolysis, epoxide hydrolysis, hydrogen chloride addition, base-catalyzed Robinson-Gabriel reaction, tertiary amine oxidation and isomerization. Our results document, for the first time, the inherent stability of carfilzomib and provide information about the identity of its degradation products. These results highlight the stability issues that need to be kept in mind for handling and storage of carfilzomib.

  12. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma

    PubMed Central

    Thangavadivel, Shanmugapriya; Zelle-Rieser, Claudia; Olivier, Angelika; Postert, Benno; Untergasser, Gerold; Kern, Johann; Brunner, Andrea; Gunsilius, Eberhard; Biedermann, Rainer; Hajek, Roman; Pour, Ludek; Willenbacher, Wolfgang; Greil, Richard; Jöhrer, Karin

    2016-01-01

    The bone marrow microenvironment plays a decisive role in multiple myeloma progression and drug resistance. Chemokines are soluble mediators of cell migration, proliferation and survival and essentially modulate tumor progression and drug resistance. Here we investigated bone marrow-derived chemokines of naive and therapy-refractory myeloma patients and discovered that high levels of the chemokine CCL27, known so far for its role in skin inflammatory processes, correlated with worse overall survival of the patients. In addition, chemokine levels were significantly higher in samples from patients who became refractory to bortezomib at first line treatment compared to resistance at later treatment lines. In vitro as well as in an in vivo model we could show that CCL27 triggers bortezomib-resistance of myeloma cells. This effect was strictly dependent on the expression of the respective receptor, CCR10, on stroma cells and involved the modulation of IL-10 expression, activation of myeloma survival pathways, and modulation of proteasomal activity. Drug resistance could be totally reversed by blocking CCR10 by siRNA as well as blocking IL-10 and its receptor. From our data we suggest that blocking the CCR10/CCL27/IL-10 myeloma-stroma crosstalk is a novel therapeutic target that could be especially relevant in early refractory myeloma patients. PMID:27732933

  13. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase.

    PubMed

    Yabe, Kimihiko; Koide, Takehiko

    2009-02-01

    The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.

  14. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts.

    PubMed

    Han, Jinbin; Liu, Luming; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF-Cu complex. DSF-Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC-Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC-Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC-Cu(I)-treated group. Our data indicates that DDTC-Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. © 2013. Published by Elsevier Inc. All rights reserved.

  15. Wnt pathway activation and ABCB1 expression account for attenuation of Proteasome inhibitor-mediated apoptosis in multidrug-resistant cancer cells

    PubMed Central

    Chong, Kowit Yu; Hsu, Chih-Jung; Hung, Tsai-Hsien; Hu, Han-Shu; Huang, Tsung-Teng; Wang, Tzu-Hao; Wang, Chihuei; Chen, Chuan-Mu; Choo, Kong Bung; Tseng, Ching-Ping

    2015-01-01

    Multiple drug resistance (MDR) is a major obstacle to attenuating the effectiveness of chemotherapy to many human malignancies. Proteasome inhibition induces apoptosis in a variety of cancer cells and is recognized as a novel anticancer therapy approach. Despite its success, some multiple myeloma patients are resistant or become refractory to ongoing treatment by bortezomib suggesting that chemoresistant cancer cells may have developed a novel mechanism directed against the proteasome inhibitor. The present study aimed to investigate potential mechanism(s) of attenuation in a MDR cell line, MES-SA/Dx5. We found that compared to the parental human uterus sarcoma cell line MES-SA cells, MES-SA/Dx5 cells highly expressed the ABCB1 was more resistant to MG132 and bortezomib, escaping the proteasome inhibitor-induced apoptosis pathway. The resistance was reversed by co-treatment of MG132 and the ABCB1 inhibitor verapamil. The data indicated that ABCB1 might play a role in the efflux of MG132 from the MES-SA/Dx5 cells to reduce MG132-induced apoptosis. Furthermore, the canonical Wnt pathway was found activated only in the MES-SA/Dx5 cells through active β-catenin and related transactivation activities. Western blot analysis demonstrated that Wnt-targeting genes, including c-Myc and cyclin D1, were upregulated and were relevant in inhibiting the expression of p21 in MES-SA/Dx5 cells. On the other hand, MES-SA cells expressed high levels of p21 and downregulated cyclin D1 and caused cell cycle arrest. Together, our study demonstrated the existence and participation of ABCB1 and the Wnt pathway in an MDR cell line that attenuated proteasome inhibitor-induced apoptosis. PMID:25590413

  16. The proteasome is responsible for caspase-3-like activity during xylem development.

    PubMed

    Han, Jia-Jia; Lin, Wei; Oda, Yoshihisa; Cui, Ke-Ming; Fukuda, Hiroo; He, Xin-Qiang

    2012-10-01

    Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.

  17. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells.

    PubMed

    Khan, Saad; Khamis, Imran; Heikkila, John J

    2015-11-01

    In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with the proteasomal inhibitor, MG132, or the environmental toxicants, sodium arsenite or cadmium chloride, induced the accumulation of the small heat shock protein, HSP30, in total and in both soluble and insoluble protein fractions. Immunocytochemical analysis revealed the presence of relatively large HSP30 structures primarily in the perinuclear region of the cytoplasm. All three of the stressors promoted the formation of aggresome-like inclusion bodies as determined by immunocytochemistry and laser scanning confocal microscopy using a ProteoStat aggresome dye and additional aggresomal markers, namely, anti-γ-tubulin and anti-vimentin antibodies. Further analysis revealed that HSP30 co-localized with these aggresome-like inclusion bodies. In most cells, HSP30 was found to envelope or occur within these structures. Finally, we show that treatment of cells with withaferin A, a steroidal lactone with anti-inflammatory, anti-tumor, and proteasomal inhibitor properties, also induced HSP30 accumulation that co-localized with aggresome-like inclusion bodies. It is possible that proteasomal inhibitor or metal/metalloid-induced formation of aggresome-like inclusion bodies may sequester toxic protein aggregates until they can be degraded. While the role of HSP30 in these aggresome-like structures is not known, it is possible that they may be involved in various aspects of aggresome-like inclusion body formation or transport. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Proteasome inhibitor MG132 potentiates TRAIL-induced apoptosis in gallbladder carcinoma GBC-SD cells via DR5-dependent pathway.

    PubMed

    Zhu, Weiping; Zhan, Dihua; Wang, Lu; Ma, Dening; Cheng, Mingrong; Wang, Huipeng; Zhao, Jiaying; Cai, Yuankun; Cheng, Zhijian

    2016-08-01

    TRAIL is a tumor-selective apoptosis-inducing cytokine playing a vital role in the surveillance and elimination of some tumor cells. However, some tumors are resistant to TRAIL treatment. Proteasome inhibitor MG132 exhibits anti-proliferative and pro-apoptotic properties in many tumors. In this study, we demonstrated that proteasome inhibitor MG132 in vitro and in vivo potentiates TRAIL-induced apoptosis in gallbladder carcinoma GBC-SD cells. MG132 was able to inhibit the proliferation of GBC-SD cells and induce apoptosis in a dose-dependent manner. The induction of apoptosis by proteasome inhibitor MG132 was mainly through the extrinsic apoptotic pathways of caspase activation such as caspase-8, caspase-3 and PARP cleavage. In addition, this process was also dependent on the upregulation of death receptor 5 (DR5), which promoted TRAIL-induced apoptosis in GBC-SD cells. Taken together, these findings indicate that MG132 possesses anti-gallbladder cancer potential that correlate with regulation of DR5-dependent pathway, and suggest that MG132 may be a promising agent for sensitizing GBC-SD cells to TRAIL-induced apoptosis.

  19. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    PubMed

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

  20. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder

    PubMed Central

    2014-01-01

    Background Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood. Methods Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR. Results A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1

  1. A novel Bruton's tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity.

    PubMed

    Eda, H; Santo, L; Cirstea, D D; Yee, A J; Scullen, T A; Nemani, N; Mishima, Y; Waterman, P R; Arastu-Kapur, S; Evans, E; Singh, J; Kirk, C J; Westlin, W F; Raje, N S

    2014-09-01

    Bruton's tyrosine kinase (Btk) modulates B-cell development and activation and has an important role in antibody production. Interestingly, Btk may also affect human osteoclast (OC) function; however, the mechanism was unknown. Here we studied a potent and specific Btk inhibitor, CC-292, in multiple myeloma (MM). In this report, we demonstrate that, although CC-292 increased OC differentiation, it inhibited OC function via inhibition of c-Src, Pyk2 and cortactin, all involved in OC-sealing zone formation. As CC-292 did not show potent in vitro anti-MM activity, we next evaluated it in combination with the proteasome inhibitor, carfilzomib. We first studied the effect of carfilzomib on OC. Carfilzomib did not have an impact on OC-sealing zone formation but significantly inhibited OC differentiation. CC-292 combined with carfilzomib inhibited both sealing zone formation and OC differentiation, resulting in more profound inhibition of OC function than carfilzomib alone. Moreover, the combination treatment in an in vivo MM mouse model inhibited tumor burden compared with CC-292 alone; it also increased bone volume compared with carfilzomib alone. These results suggest that CC-292 combined with carfilzomib augments the inhibitory effects against OC within the bone microenvironment and has promising therapeutic potential for the treatment of MM and related bone disease.

  2. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma.

    PubMed

    Turner, Joel G; Kashyap, Trinayan; Dawson, Jana L; Gomez, Juan; Bauer, Alexis A; Grant, Steven; Dai, Yun; Shain, Kenneth H; Meads, Mark; Landesman, Yosef; Sullivan, Daniel M

    2016-11-29

    Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα.

  3. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells.

    PubMed

    Frasco, Manuela F; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria do Carmo; Coelho, Manuel A N

    2015-04-01

    The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs.

  4. Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors.

    PubMed

    Deuquet, Julie; Lausch, Ekkehart; Guex, Nicolas; Abrami, Laurence; Salvi, Suzanne; Lakkaraju, Asvin; Ramirez, Maria Celeste M; Martignetti, John A; Rokicki, Dariusz; Bonafe, Luisa; Superti-Furga, Andrea; van der Goot, Françoise G

    2011-04-01

    Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype–phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS. Copyright © 2011 EMBO Molecular Medicine.

  5. Hyaline Fibromatosis Syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors

    PubMed Central

    Deuquet, Julie; Lausch, Ekkehart; Guex, Nicolas; Abrami, Laurence; Salvi, Suzanne; Lakkaraju, Asvin; Ramirez, Maria Celeste M; Martignetti, John A; Rokicki, Dariusz; Bonafe, Luisa; Superti-Furga, Andrea; van der Goot, Françoise G

    2011-01-01

    Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype–phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS. PMID:21328543

  6. Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08).

    PubMed

    Driessen, Christoph; Kraus, Marianne; Joerger, Markus; Rosing, Hilde; Bader, Jürgen; Hitz, Felicitas; Berset, Catherine; Xyrafas, Alexandros; Hawle, Hanne; Berthod, Gregoire; Overkleeft, Hermann S; Sessa, Christiana; Huitema, Alwin; Pabst, Thomas; von Moos, Roger; Hess, Dagmar; Mey, Ulrich J M

    2016-03-01

    Downregulation of the unfolded protein response mediates proteasome inhibitor resistance in multiple myeloma. The Human Immunodeficieny Virus protease inhibitor nelfinavir activates the unfolded protein response in vitro. We determined dose-limiting toxicity and recommended dose for phase II of nelfinavir in combination with the proteasome inhibitor bortezomib. Twelve patients with advanced hematologic malignancies were treated with nelfinavir (2500-5000 mg/day p.o., days 1-14, 3+3 dose escalation) and bortezomib (1.3 mg/m(2), days 1, 4, 8, 11; 21-day cycles). A run in phase with nelfinavir monotherapy allowed pharmakokinetic/pharmakodynamic assessment of nelfinavir in the presence or absence of concomittant bortezomib. End points included dose-limiting toxicity, activation of the unfolded protein response, proteasome activity, toxicity and response to trial treatment. Nelfinavir 2×2500 mg was the recommended phase II dose identified. Nelfinavir alone significantly up-regulated expression of proteins related to the unfolded protein response in peripheral blood mononuclear cells and inhibited proteasome activity. Of 10 evaluable patients in the dose escalation cohort, 3 achieved a partial response, 4 stable disease for 2 cycles or more, while 3 had progressive disease as best response. In an exploratory extension cohort with 6 relapsed, bortezomib-refractory, lenalidomide-resistant myeloma patients treated at the recommended phase II dose, 3 reached a partial response, 2 a minor response, and one progressive disease. The combination of nelfinavir with bortezomib is safe and shows promising activity in advanced, bortezomib-refractory multiple myeloma. Induction of the unfolded protein response by nelfinavir may overcome the biological features of proteasome inhibitor resistance. (clinicaltrials.gov identifier: 01164709). Copyright© Ferrata Storti Foundation.

  7. Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08)

    PubMed Central

    Driessen, Christoph; Kraus, Marianne; Joerger, Markus; Rosing, Hilde; Bader, Jürgen; Hitz, Felicitas; Berset, Catherine; Xyrafas, Alexandros; Hawle, Hanne; Berthod, Gregoire; Overkleeft, Hermann S.; Sessa, Christiana; Huitema, Alwin; Pabst, Thomas; von Moos, Roger; Hess, Dagmar; Mey, Ulrich J.M.

    2016-01-01

    Downregulation of the unfolded protein response mediates proteasome inhibitor resistance in multiple myeloma. The Human Immunodeficieny Virus protease inhibitor nelfinavir activates the unfolded protein response in vitro. We determined dose-limiting toxicity and recommended dose for phase II of nelfinavir in combination with the proteasome inhibitor bortezomib. Twelve patients with advanced hematologic malignancies were treated with nelfinavir (2500–5000 mg/day p.o., days 1–14, 3+3 dose escalation) and bortezomib (1.3 mg/m2, days 1, 4, 8, 11; 21-day cycles). A run in phase with nelfinavir monotherapy allowed pharmakokinetic/pharmakodynamic assessment of nelfinavir in the presence or absence of concomittant bortezomib. End points included dose-limiting toxicity, activation of the unfolded protein response, proteasome activity, toxicity and response to trial treatment. Nelfinavir 2×2500 mg was the recommended phase II dose identified. Nelfinavir alone significantly up-regulated expression of proteins related to the unfolded protein response in peripheral blood mononuclear cells and inhibited proteasome activity. Of 10 evaluable patients in the dose escalation cohort, 3 achieved a partial response, 4 stable disease for 2 cycles or more, while 3 had progressive disease as best response. In an exploratory extension cohort with 6 relapsed, bortezomib-refractory, lenalidomide-resistant myeloma patients treated at the recommended phase II dose, 3 reached a partial response, 2 a minor response, and one progressive disease. The combination of nelfinavir with bortezomib is safe and shows promising activity in advanced, bortezomib-refractory multiple myeloma. Induction of the unfolded protein response by nelfinavir may overcome the biological features of proteasome inhibitor resistance. PMID:26659919

  8. A double-edged sword role for ubiquitin-proteasome system in brain stem cardiovascular regulation during experimental brain death.

    PubMed

    Wu, Carol H Y; Chan, Julie Y H; Chan, Samuel H H; Chang, Alice Y W

    2011-01-01

    Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental

  9. A Double-Edged Sword Role for Ubiquitin-Proteasome System in Brain Stem Cardiovascular Regulation During Experimental Brain Death

    PubMed Central

    Wu, Carol H. Y.; Chan, Julie Y. H.; Chan, Samuel H. H.; Chang, Alice Y. W.

    2011-01-01

    Background Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. Methodology/Principal Findings In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. Conclusions/Significance We conclude that UPS participates in the defunct and

  10. Proteasome dynamics.

    PubMed

    Enenkel, Cordula

    2014-01-01

    Proteasomes are highly conserved multisubunit protease complexes and occur in the cyto- and nucleoplasm of eukaryotic cells. In dividing cells proteasomes exist as holoenzymes and primarily localize in the nucleus. During quiescence they dissociate into proteolytic core and regulatory complexes and are sequestered into motile cytosolic clusters. Proteasome clusters rapidly clear upon the exit from quiescence, where proteasome core and regulatory complexes reassemble and localize to the nucleus again. The mechanisms underlying proteasome transport and assembly are not yet understood. Here, I summarize our present knowledge about nuclear transport and assembly of proteasomes in yeast and project our studies in this eukaryotic model organism to the mammalian cell system. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.

  11. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118

    PubMed Central

    Doeppner, Thorsten R.; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M.; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-01-01

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia. PMID:26388611

  12. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118.

    PubMed

    Yao, Gang; Zhang, Qi; Doeppner, Thorsten R; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-10-06

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia.

  13. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts

    SciTech Connect

    Han, Jinbin; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.

  14. Induction of heat shock protein 70 (Hsp70) by proteasome inhibitor MG 132 protects articular chondrocytes from cellular death in vitro and in vivo.

    PubMed

    Grossin, Laurent; Etienne, Stéphanie; Gaborit, Nadège; Pinzano, Astrid; Cournil-Henrionnet, Christel; Gerard, Catherine; Payan, Elisabeth; Netter, Patrick; Terlain, Bernard; Gillet, Pierre

    2004-01-01

    The aim of this work was to determine whether Hsp70 overexpression via proteasome inhibitor MG132 was able to protect chondrocytes towards mono-iodoacetate (MIA) cytotoxicity both in vitro and in vivo. In vitro, overexpression of Hsp70 via MG132 was significantly able to protect chondrocytes from MIA toxicity (MTT/LDH analyses). Hsp70 essentially mediated this chondroprotective effect as demonstrated by antisense strategy. In vivo, chondrocytic overexpression of Hsp70, after a preventive intra-articular injection of MG132 in rat knee, was sufficient to decrease the severity of OA-induced MIA lesions, as demonstrated histologically and biochemically. In conclusion, intracellular overexpression of Hsp70, through proteasome inhibition, could be an interesting tool in protecting chondrocytes from cellular injuries, either necrotic or apoptotic in nature, and thus might be a novel chondroprotective modality in rat experimental OA.

  15. Phase I dose escalation trial of the novel proteasome inhibitor carfilzomib in patients with relapsed chronic lymphocytic leukemia and small lymphocytic lymphoma.

    PubMed

    Awan, Farrukh T; Flynn, Joseph M; Jones, Jeffrey A; Andritsos, Leslie A; Maddocks, Kami J; Sass, Ellen J; Lucas, Margaret S; Chase, Weihong; Waymer, Sharon; Ling, Yonghua; Jiang, Yao; Phelps, Mitch A; Byrd, John C; Lucas, David M; Woyach, Jennifer A

    2015-01-01

    The proteasome complex degrades proteins involved in a variety of cellular processes and is a powerful therapeutic target in several malignancies. Carfilzomib is a potent proteasome inhibitor which induces rapid chronic lymphocytic leukemia (CLL) cell apoptosis in vitro. We conducted a phase I dose-escalation trial to determine the safety and tolerability of carfilzomib in relapsed/refractory CLL or small lymphocytic lymphoma (SLL). Nineteen patients were treated with carfilzomib initially at 20 mg/m(2), then escalated in four cohorts (27, 36, 45 and 56 mg/m(2)) on days 1, 2, 8, 9, 15 and 16 of 28-day cycles. Therapy was generally well tolerated, and no dose limiting toxicities were observed. The most common hematologic toxicities were thrombocytopenia and neutropenia. All patients evaluable for response had stable disease, including patients with del17p13 and fludarabine-resistant disease. This trial shows acceptable tolerability and limited preliminary efficacy of carfilzomib in CLL and SLL.

  16. Proteasome inhibitor (MG132) rescues Nav1.5 protein content and the cardiac sodium current in dystrophin-deficient mdx (5cv) mice.

    PubMed

    Rougier, Jean-Sébastien; Gavillet, Bruno; Abriel, Hugues

    2013-01-01

    The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.

  17. The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1.

    PubMed

    O'Hara, Adrian; Howarth, Alice; Varro, Andrea; Dimaline, Rod

    2013-01-01

    The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1 (Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.

  18. Phase 1 study of twice-weekly ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma patients

    PubMed Central

    Baz, Rachid; Wang, Michael; Jakubowiak, Andrzej J.; Laubach, Jacob P.; Harvey, R. Donald; Talpaz, Moshe; Berg, Deborah; Liu, Guohui; Yu, Jiang; Gupta, Neeraj; Di Bacco, Alessandra; Hui, Ai-Min; Lonial, Sagar

    2014-01-01

    Ixazomib is the first investigational oral proteasome inhibitor to be studied clinically. In this phase 1 trial, 60 patients with relapsed/refractory multiple myeloma (median of 4 prior lines of therapy; bortezomib, lenalidomide, thalidomide, and carfilzomib/marizomib in 88%, 88%, 62%, and 5%, respectively) received single-agent ixazomib 0.24 to 2.23 mg/m2 (days 1, 4, 8, 11; 21-day cycles). Two dose-limiting toxicities (grade 3 rash; grade 4 thrombocytopenia) occurred at 2.23 mg/m2. The maximum tolerated dose was 2.0 mg/m2, which 40 patients received in 4 expansion cohorts. Patients received a median of 4 cycles (range, 1-39); 18% received ≥12 cycles. Eighty-eight percent had drug-related adverse events, including nausea (42%), thrombocytopenia (42%), fatigue (40%), and rash (40%); drug-related grade ≥3 events included thrombocytopenia (37%) and neutropenia (17%). Grade 1/2 drug-related peripheral neuropathy occurred in 12% (no grade ≥3). Two patients died on the study (both considered unrelated to treatment). The terminal half-life of ixazomib was 3.3 to 7.4 days; plasma exposure increased proportionally with dose (0.48-2.23 mg/m2). Among 55 response-evaluable patients, 15% achieved partial response or better (76% stable disease or better). These findings have informed the subsequent clinical development of ixazomib in multiple myeloma. This trial was registered at www.clinicaltrials.gov as #NCT00932698. PMID:24920586

  19. Phase I Trial Using the Proteasome Inhibitor Bortezomib and Concurrent Chemoradiotherapy for Head-and-Neck Malignancies

    SciTech Connect

    Kubicek, Gregory J.; Axelrod, Rita S.; Machtay, Mitchell; Ahn, Peter H.; Anne, Pramila R.; Fogh, Shannon; Cognetti, David; Myers, Thomas J.; Curran, Walter J.; Dicker, Adam P.

    2012-07-15

    Purpose: Advanced head-and-neck cancer (HNC) remains a difficult disease to cure. Proteasome inhibitors such as bortezomib have the potential to improve survival over chemoradiotherapy alone. This Phase I dose-escalation study examined the potential of bortezomib in combination with cisplatin chemotherapy and concurrent radiation in the treatment of locally advanced and recurrent HNC. Methods and Materials: Eligible patients received cisplatin once weekly at 30 mg/m{sup 2} per week and bortezomib along with concurrent radiation. Bortezomib was given on Days 1, 4, 8, and 11 every 3 weeks, with an initial starting dose of 0.7 mg/m{sup 2} and escalation levels of 1.0 and 1.3 mg/m{sup 2}. Dose escalation was performed only after assessment to rule out any dose-limiting toxicity. Results: We enrolled 27 patients with HNC, including 17 patients with recurrent disease who had received prior irradiation. Patients received bortezomib dose levels of 0.7 mg/m{sup 2} (7 patients), 1.0 mg/m{sup 2} (10 patients), and 1.3 mg/m{sup 2} (10 patients). No Grade 5 toxicities, 3 Grade 4 toxicities (all hematologic and considered dose-limiting toxicities), and 39 Grade 3 toxicities (in 20 patients) were observed. With a median follow-up of 7.4 months, the overall median survival was 24.7 months (48.4 months for advanced HNC patients and 15.4 months for recurrent HNC patients). Conclusion: Bortezomib in combination with radiation therapy and cisplatin chemotherapy is safe in the treatment of HNC with a bortezomib maximum tolerated dose of 1.0 mg/m{sup 2} in patients previously treated for HNC and 1.3 mg/m{sup 2} in radiation-naive patients.

  20. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts.

    PubMed

    An, B; Goldfarb, R H; Siman, R; Dou, Q P

    1998-12-01

    It has been suggested that overexpression of the Bcl-2 oncoprotein in human cancer cells contributes to their resistance to apoptosis induced by chemotherapy. We report here that a novel dipeptidyl proteasome inhibitor, CEP1612, at low concentrations rapidly induces apoptosis in human Jurkat T cells overexpressing Bcl-2 and also in all human prostate, breast, tongue and brain tumor cell lines we have tested to date, without exception. In contrast, etoposide, a standard anticancer drug, fails to kill these cells when employed under the same conditions. The apoptosis-inducing abilities of CEP1612 and its analogous compounds match precisely their order for inhibition of the proteasome chymotrypsin-like activity. CEP1612-induced apoptosis is p53-independent, inhibitable by a tetrapeptide caspase inhibitor, and associated with accumulation of the cyclin-dependent kinase inhibitors p21 and p27. Furthermore, CEP1612 selectively accumulates p27 and induces apoptosis in simian virus 40-transformed, but not the parental normal, human fibroblasts. Proteasome inhibitors such as those investigated herein might therefore have potential use as novel anticancer drugs.

  1. Functional 20S proteasomes in mature human red blood cells.

    PubMed

    Neelam, Sudha; Kakhniashvili, David G; Wilkens, Stephan; Levene, Stephen D; Goodman, Steven R

    2011-05-01

    The purpose of the present study was to investigate whether functional 20S and/or 26S proteasomes are present within mature human red blood cells (RBCs; depleted of reticulocytes and leukocytes). Double-immunofluorescence confocal microscopy showed the presence of immunoreactive 20S and 19S proteasomal subunit proteins and their partial co-localization within mature RBCs. Proteasomes isolated from mature RBCs displayed 20S activity in vitro; atomic-force and transmission electron microscopy of isolated proteasomes revealed abundant 20S core particles and very few 26S particles. A two-dimensional differential in-gel electrophoresis (2D-DIGE) approach was used to determine if proteasome-dependent protein degradation occurs within mature RBCs. Twenty-eight proteins were identified with altered protein content in response to lactacystin. Seven cytosolic proteins showed an increase and 16 showed a decrease; five membrane proteins showed a decrease. We conclude that the proteins showing increased abundance are either primary or secondary targets of the 20S proteasome and that putatively degraded proteins are secondary targets. Therefore, functional 20S proteasomes exist within mature RBCs. Our study did not detect 26S proteasome activity using the 2D-DIGE approach.

  2. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma

    PubMed Central

    Turner, Joel G.; Kashyap, Trinayan; Dawson, Jana L.; Gomez, Juan; Bauer, Alexis A.; Grant, Steven; Dai, Yun; Shain, Kenneth H.; Meads, Mark; Landesman, Yosef; Sullivan, Daniel M.

    2016-01-01

    Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα. PMID:27806331

  3. In vitro and in vivo interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib in non-Hodgkin lymphoma cells.

    PubMed

    Dasmahapatra, Girija; Patel, Hiral; Friedberg, Johnathan; Quayle, Steven N; Jones, Simon S; Grant, Steven

    2014-12-01

    Interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib were examined in non-Hodgkin lymphoma (NHL) models, including diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), and double-hit lymphoma cells. Marked in vitro synergism was observed in multiple cell types associated with activation of cellular stress pathways (e.g., JNK1/2, ERK1/2, and p38) accompanied by increases in DNA damage (γH2A.X), G2-M arrest, and the pronounced induction of mitochondrial injury and apoptosis. Combination treatment with carfilzomib and ricolinostat increased reactive oxygen species (ROS), whereas the antioxidant TBAP attenuated DNA damage, JNK activation, and cell death. Similar interactions occurred in bortezomib-resistant and double-hit DLBCL, MCL, and primary DLBCL cells, but not in normal CD34(+) cells. However, ricolinostat did not potentiate inhibition of chymotryptic activity by carfilzomib. shRNA knockdown of JNK1 (but not MEK1/2), or pharmacologic inhibition of p38, significantly reduced carfilzomib-ricolinostat lethality, indicating a functional contribution of these stress pathways to apoptosis. Combined exposure to carfilzomib and ricolinostat also markedly downregulated the cargo-loading protein HR23B. Moreover, HR23B knockdown significantly increased carfilzomib- and ricolinostat-mediated lethality, suggesting a role for this event in cell death. Finally, combined in vivo treatment with carfilzomib and ricolinostat was well tolerated and significantly suppressed tumor growth and increased survival in an MCL xenograft model. Collectively, these findings indicate that carfilzomib and ricolinostat interact synergistically in NHL cells through multiple stress-related mechanisms, and suggest that this strategy warrants further consideration in NHL.

  4. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease.

    PubMed

    Martín-Aparicio, E; Yamamoto, A; Hernández, F; Hen, R; Avila, J; Lucas, J J

    2001-11-15

    Neuronal intranuclear inclusions are a histopathological hallmark of Huntington's disease. Nevertheless, the precise mechanism by which they are formed and their relevance to neuronal cell death and/or dysfunction remains unclear. We recently generated a conditional mouse model of Huntington's disease (HD94) in which silencing expression of mutated huntingtin led to the disappearance of intranuclear aggregates and amelioration of the behavioral phenotype. Here, we analyze primary striatal neuronal cultures from HD94 mice to explore the dynamics of aggregate formation and reversal, the possible mechanisms involved, and the correlation between aggregates and neuronal death. In parallel, we examine symptomatic adult HD94 mice in similar studies and explored the relationship between aggregate clearance and behavioral reversal. We report that, in culture, aggregate formation and reversal were rapid processes, such that 2 d of transgene expression led to aggregate formation, and 5 d of transgene suppression led to aggregate disappearance. In mice, full reversal of aggregates and intranuclear mutant huntingtin was more rapid than reported previously and preceded the motor recovery by several weeks. Furthermore, the proteasome inhibitor lactacystin inhibited the aggregate clearance observed in culture, thus indicating that aggregate formation is a balance between the rate of huntingtin synthesis and its degradation by the proteasome. Finally, neither expression of the mutant huntingtin nor aggregates compromised the viability of HD94 cultures. This correlated with the lack of cell death in symptomatic HD94 mice, thus demonstrating that neuronal dysfunction, and not cell loss, triggered by mutant huntingtin underlies symptomatology.

  5. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

    PubMed Central

    Accardi, Fabrizio; Toscani, Denise; Dalla Palma, Benedetta; Aversa, Franco; Giuliani, Nicola

    2015-01-01

    Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease. PMID:26579531

  6. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children's Oncology Group study (ADVL0015).

    PubMed

    Blaney, Susan M; Bernstein, Mark; Neville, Kathleen; Ginsberg, Jill; Kitchen, Brenda; Horton, Terzah; Berg, Stacey L; Krailo, Mark; Adamson, Peter C

    2004-12-01

    To determine the maximum-tolerated dose, dose-limiting toxicity (DLT), and pharmacodynamics of the proteasome inhibitor bortezomib (formerly PS-341) in children with recurrent or refractory solid tumors. An intravenous bolus of bortezomib was administered twice weekly for 2 consecutive weeks at either 1.2 or 1.6 mg/m2/dose followed by a 1-week rest. The pharmacodynamics of bortezomib were evaluated by measurement of whole blood 20S proteasome activity. Fifteen patients, 11 assessable, were enrolled between November 2001 and February 2003. Dose-limiting thrombocytopenia, which prevented administration of a complete course (four doses in 2 weeks) of therapy, occurred in two of five assessable children enrolled at the 1.6 mg/m2 dose level. There were no other DLTs. Inhibition of 20S proteasome activity seemed to be dose dependent. The average inhibition 1 hour after drug administration on day 1 was 67.2% +/- 7.6% at the 1.2 mg/m2/dose and 76.5% +/- 3.3% at the 1.6 mg/m2/dose. There were no objective antitumor responses. Bortezomib is well tolerated in children with recurrent or refractory solid tumors. The recommended phase II dose of bortezomib for children with solid tumors is 1.2 mg/m2/dose, administered as an intravenous bolus twice weekly for 2 weeks followed by a 1-week break.

  7. Crystal structure of N-{N-[N-acetyl-(S)-leucyl]-(S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome

    SciTech Connect

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa; Dauter, Zbigniew

    2015-03-01

    The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  8. A mechanistic and kinetic study of the beta-lactone hydrolysis of Salinosporamide A (NPI-0052), a novel proteasome inhibitor.

    PubMed

    Denora, Nunzio; Potts, Barbara C M; Stella, Valentino J

    2007-08-01

    The aim of the present study was to investigate the mechanism of aqueous degradation of Salinosporamide A (NPI-0052; 1), a potent proteasome inhibitor that is currently in Phase I clinical trials for the treatment of cancer and is characterized by a unique beta-lactone-gamma-lactam bicyclic ring structure. The degradation of 1 was monitored by HPLC and by both low- and high-resolution mass spectral analyses. Apparent first-order rate constants for the degradation at 25 degrees C were determined in aqueous buffer solutions (ionic strength 0.15 M adjusted with NaCl) at various pH values in the range of 1 to 9. Degradation kinetics in water and in deuterium oxide were compared as a mechanistic probe. The studies were performed at pH (pD) 4.5 at 25 degrees C. To further confirm the reaction mechanism, the degradation was also performed in (18)O-enriched water and the degradation products subjected to HPLC separation prior to mass spectral analysis. Solubility and stability in (SBE)(7m)-beta-cyclodextrin (Captisol) solutions were also determined. The hydrolytic degradation of 1, followed by both HPLC and LC/MS, showed that the drug in aqueous solutions gives a species with a molecular ion consistent with the beta-lactone hydrolysis product (NPI-2054; 2). This initial degradant further rearranges to a cyclic ether (NPI-2055; 3) via an intramolecular nucleophilic displacement reaction. The kinetic results showed that the degradation of 1 was moderately buffer catalyzed (general base) and the rate constants were pH independent in the range of 1-5 and base dependent above pH 6.5. No acid catalysis was observed. The kinetic deuterium solvent isotope effect (KSIE) was 3.1 (kH/kD) and a linear proton inventory plot showed that the rate-determining step involved only a single proton transfer. This suggested that a neighboring hydroxyl group (as opposed to a second water molecule) facilitated water attack at pD 4.5. Mass spectral analysis from the (18)O-labeling studies proved

  9. The Clinically Approved Proteasome Inhibitor PS-341 Efficiently Blocks Influenza A Virus and Vesicular Stomatitis Virus Propagation by Establishing an Antiviral State▿ †

    PubMed Central

    Dudek, Sabine Eva; Luig, Christina; Pauli, Eva-Katharina; Schubert, Ulrich; Ludwig, Stephan

    2010-01-01

    Recently it has been shown that the proinflammatory NF-κB pathway promotes efficient influenza virus propagation. Based on these findings, it was suggested that NF-κB blockade may be a promising approach for antiviral intervention. The classical virus-induced activation of the NF-κB pathway requires proteasomal degradation of the inhibitor of NF-κB, IκB. Therefore, we hypothesized that inhibition of proteasomal IκB degradation should impair influenza A virus (IAV) replication. We chose the specific proteasome inhibitor PS-341, which is a clinically approved anticancer drug also known as Bortezomib or Velcade. As expected, PS-341 treatment of infected A549 cells in a concentration range that was not toxic resulted in a significant reduction of progeny virus titers. However, we could not observe the proposed suppression of NF-κB-signaling in vitro. Rather, PS-341 treatment resulted in an induction of IκB degradation and activation of NF-κB as well as the JNK/AP-1 pathway. This coincides with enhanced expression of antiviral genes, such as interleukin-6 and, most importantly, MxA, which is a strong interferon (IFN)-induced suppressor of influenza virus replication. This suggests that PS-341 may act as an antiviral agent via induction of the type I IFN response. Accordingly, PS-341 did not affect virus titers in Vero cells, which lack type I IFN genes, but strongly inhibited replication of vesicular stomatitis virus (VSV), a highly IFN-sensitive pathogen. Thus, we conclude that PS-341 blocks IAV and VSV replication by inducing an antiviral state mediated by the NF-κB-dependent expression of antivirus-acting gene products. PMID:20592098

  10. The capture proteasome assay: A method to measure proteasome activity in vitro.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-08-01

    Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i-β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome-Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome-Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.

  11. Study of the green tea polyphenols catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) as proteasome inhibitors.

    PubMed

    Wan, Sheng Biao; Chen, Di; Dou, Q Ping; Chan, Tak Hang

    2004-07-01

    The green tea polyphenol catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) were synthesized enantioselectively via a Sharpless hydroxylation reaction followed by a diastereoselective cyclization. Their potencies to inhibit the proteasome activity were measured. The unnatural enantiomers were found to be equally potent to the natural compounds.

  12. PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells.

    PubMed

    Schaefer, Katherine L; Takahashi, Hirokazu; Morales, Victor M; Harris, Gianni; Barton, Susan; Osawa, Emi; Nakajima, Atsushi; Saubermann, Lawrence J

    2007-02-01

    The nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) has been identified as an important therapeutic target in murine models of colorectal cancer (CRC). To examine whether PPARgamma inhibition has therapeutic effects in late-stage CRC, the effects of PPARgamma inhibitors on CRC cell survival were examined in CRC cell lines and a murine CRC model. Low doses (0.1-1 microM) of PPARgamma inhibitors (T0070907, GW9662 and BADGE) did not affect cell survival, while higher doses (10-100 microM) of all 3 PPARgamma inhibitors caused caspase-dependent apoptosis in HT-29, Caco-2 and LoVo CRC cell lines. Apoptosis was preceded by altered cell morphology, and this alteration was not prevented by caspase inhibition. PPARgamma inhibitors also caused dual G and M cell cycle arrest, which was not required for apoptosis or for morphologic alterations. Furthermore, PPARgamma inhibitors triggered loss of the microtubule network. Notably, unlike other standard antimicrotubule agents, PPARgamma inhibitors caused microtubule loss by regulating tubulin post-transcriptionally rather than by altering microtubule polymerization or dynamics. Proteasome inhibition by epoxomicin was unable to prevent tubulin loss. siRNA-mediated reduction of PPARgamma and PPARdelta proteins did not replicate the effects of PPARgamma inhibitors or interfere with the inhibitors' effects on apoptosis, cell cycle or tubulin. PPARgamma inhibitors also reduced CRC cell migration and invasion in assays in vitro and reduced both the number and size of metastases in a HT-29/SCID xenograft metastatic model of CRC. These results suggest that PPARgamma inhibitors are a novel potential antimicrotubule therapy for CRC that acts by directly reducing microtubule precursors.

  13. Selective relocalization and proteasomal downregulation of PKCalpha induced by platelet-activating factor in retinal pigment epithelium.

    PubMed

    Faghiri, Zahra; Bazan, Nicolas G

    2006-01-01

    Protein kinases C (PKCs) are key cell-signaling mediators in retinal physiology and pathophysiology. The cellular localization of PKC isoforms is important in defining their activity and specificity; the present study investigated the modulatory potential of the proinflammatory mediator platelet-activating factor (PAF) on the subcellular distribution of PKCalpha, beta, and delta isotypes. This study used real-time visualization of green fluorescent protein fused to PKCalpha, beta, or delta in the human retinal pigment epithelial (RPE) cell line ARPE-19. In PAF-stimulated ARPE-19 cells, PKCalpha translocated to the plasma membrane and then colocalized with Golgi markers p230 and GM130; PKCbeta translocated to the plasma membrane but not to the Golgi; and PKCdelta translocated to the Golgi. Pretreatment with PKC inhibitor calphostin C abolished the PAF-induced translocation of PKCalpha to the plasma membrane or to the Golgi, but the Golgi inhibitor Brefeldin A only prevented the accumulation of PKCalpha in Golgi, without affecting its membrane relocalization. PAF promoted depletion of PKCalpha and delta isoforms but not that of PKCbeta. Proteasome inhibitors lactacystin and MG-132 prevented the PAF-induced depletion of PKCalpha, but the inhibitor of lysosomal proteolysis E-64d was ineffective in rescuing PKCalpha. These results suggest that the PAF-induced downregulation of PKCalpha occurs principally through the proteasomal pathway. This remarkable PAF-mediated diversity in PKC translocation and downregulation highlights the significance of isotype-specific PKC activation in signaling pathways in ARPE-19 cells. These signaling events may be critical during RPE responses to oxidative stress, inflammation, and retinal degenerations, when PAF production is enhanced.

  14. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells

    PubMed Central

    Wang, Xin; Mazurkiewicz, Magdalena; Hillert, Ellin-Kristina; Olofsson, Maria Hägg; Pierrou, Stefan; Hillertz, Per; Gullbo, Joachim; Selvaraju, Karthik; Paulus, Aneel; Akhtar, Sharoon; Bossler, Felicitas; Khan, Asher Chanan; Linder, Stig; D’Arcy, Padraig

    2016-01-01

    Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity. PMID:27264969

  15. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models

    PubMed Central

    Prideaux, Matt; Allen, Steve; Buttle, David J.; Pitsillides, Andrew A.; Farquharson, Colin

    2015-01-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast–osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO‐A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post‐translational degradation. We found that exogenous treatment of MLO‐A5 and osteocytic IDG‐SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome‐selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin‐A) produced similar dose‐dependent increases in E11 protein levels in MLO‐A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO‐A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome‐mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. J. Cell

  16. Involvement of protein degradation by the ubiquitin proteasome system in opiate addictive behaviors.

    PubMed

    Massaly, Nicolas; Dahan, Lionel; Baudonnat, Mathieu; Hovnanian, Caroline; Rekik, Khaoula; Solinas, Marcello; David, Vincent; Pech, Stéphane; Zajac, Jean-Marie; Roullet, Pascal; Mouledous, Lionel; Frances, Bernard

    2013-03-01

    Plastic changes in the nucleus accumbens (NAcc), a structure occupying a key position in the neural circuitry related to motivation, are among the critical cellular processes responsible for drug addiction. During the last decade, it has been shown that memory formation and related neuronal plasticity may rely not only on protein synthesis but also on protein degradation by the ubiquitin proteasome system (UPS). In this study, we assess the role of protein degradation in the NAcc in opiate-related behaviors. For this purpose, we coupled behavioral experiments to intra-accumbens injections of lactacystin, an inhibitor of the UPS. We show that protein degradation in the NAcc is mandatory for a full range of animal models of opiate addiction including morphine locomotor sensitization, morphine conditioned place preference, intra-ventral tegmental area morphine self-administration and intra-venous heroin self-administration but not for discrimination learning rewarded by highly palatable food. This study provides the first evidence of a specific role of protein degradation by the UPS in addiction.

  17. CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice.

    PubMed

    Sun, J; Nam, S; Lee, C S; Li, B; Coppola, D; Hamilton, A D; Dou, Q P; Sebti, S M

    2001-02-15

    The ubiquitin proteasome system is responsible for the proteolysis of important cell cycle and apoptosis-regulatory proteins. In this paper we report that the dipeptidyl proteasome inhibitor, phthalimide-(CH2)8CH-(cyclopentyl) CO-Arg(NO2)-Leu-H (CEP1612), induces apoptosis and inhibits tumor growth of the human lung cancer cell line A-549 in an in vivo model. In cultured A-549 cells, CEP1612 treatment results in accumulation of two proteasome natural substrates, the cyclin-dependent kinase inhibitors p21WAF1 and p27KIP1, indicating its ability to inhibit proteasome activity in intact cells. Furthermore, CEP1612 induces apoptosis as evident by caspase-3 activation and poly(ADP-ribose) polymerase cleavage. Treatment of A-549 tumor-bearing nude mice with CEP1612 (10 mg/kg/day, i.p. for 31 days) resulted in massive induction of apoptosis and significant (68%; P < 0.05) tumor growth inhibition, as shown by terminal deoxynucleotidyltransferase-mediated UTP end labeling. Furthermore, immunostaining of tumor specimens demonstrated in vivo accumulation of p21WAF1 and p27KIP1 after CEP1612 treatment. The results suggest that CEP1612 is a promising candidate for further development as an anticancer drug and demonstrate the feasibility of using proteasome inhibitors as novel antitumor agents.

  18. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    PubMed

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity.

  19. Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation.

    PubMed

    Kuang, Xiu-Li; Liu, Yimei; Chang, Yuhua; Zhou, Jing; Zhang, He; Li, Yiping; Qu, Jia; Wu, Shengzhou

    2016-04-01

    Dysfunction of the ubiquitin-proteasome system (UPS) and calcium homeostasis has been implicated in the neurodegeneration of Alzheimer's and Parkinson's diseases. The cytosolic calcium concentration is maintained by store-operated calcium entry (SOCE), which is repressed by Alzheimer's disease-associated mutants, such as mutant presenilins. We hypothesized that inhibition of UPS impacts SOCE. This study showed that pretreatment with sub-lethal levels of proteasome inhibitors, including MG-132 and clasto-lactacystin-β-lactone (LA), reduced SOCE after depletion of endoplasmic reticulum calcium in rat neurons. With the same treatment, MG-132 and LA reduced the protein levels of stromal interaction molecule 1and 2 (STIM1/2), but not the levels of Orai1 and canonical transient receptor potential channel 1 (TRPC1). STIM1 or STIM2 protein was mobilized to lysosome by MG-132/LA treatment as observed under an immunofluorescence confocal laser microscope. In the neurons, MG-132 and LA degraded p62/SQSTM1, promoted autophagy, converted LC3I to LC3II, and promoted co-localization of LC3 and lysosomes. Rapamycin, which enhances autophagy, reduced STIM1/2 protein levels, whereas bafilomycin, which inhibits autophagy, increased their protein levels. The protein levels of STIM1/2 and the amplitude of SOCE were decreased in SH-SY5Y with decreased protein level of proteasome subunit beta type-5 induced by shRNA. We conclude that sub-lethal levels of proteasome inhibition reduce SOCE and promote autophagy-mediated degradation of STIM1/2. UPS inhibition, a common finding in neurodegenerative diseases, interferes with calcium homeostasis via repression of SOCE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Proteasome Inhibitor Carfilzomib Functions Independently of p53 To Induce Cytotoxicity and an Atypical NF-κB Response in Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gupta, Sneha V.; Hertlein, Erin; Lu, Yanhui; Sass, Ellen J.; Lapalombella, Rosa; Chen, Timothy L.; Davis, Melanie E.; Woyach, Jennifer A.; Lehman, Amy; Jarjoura, David; Byrd, John C.; Lucas, David M.

    2013-01-01

    Purpose The proteasome consists of chymotrypsin-like (CT-L), trypsin-like, and caspase-like subunits that cleave substrates preferentially by amino acid sequence. Proteasomes mediate degradation of regulatory proteins of the p53, Bcl-2 and nuclear factor-κB (NF-κB) families that are aberrantly active in chronic lymphocytic leukemia (CLL). CLL remains an incurable disease, and new treatments are especially needed in the relapsed/refractory setting. We therefore investigated the effects of the proteasome inhibitor carfilzomib (CFZ) in CLL cells. Experimental Design Tumor cells from CLL patients were assayed in vitro using immunoblotting, real-time polymerase chain reaction and electrophoretic mobility shift assays. Additionally, a p53 dominant-negative construct was generated in a human B-cell line. Results Unlike bortezomib, CFZ potently induces apoptosis in CLL patient cells in the presence of human serum. CLL cells have significantly lower basal CT-L activity compared to normal B and T cells, although activity is inhibited similarly in T cells vs. CLL. and the cytotoxicity of CFZ correlates with baseline CT-L activity. Co-culture of CLL cells on stroma protected from CFZ-mediated cytotoxicity; however, PI3K inhibition significantly diminished this stromal protection. CFZ-mediated cytotoxicity in leukemic B-cells is caspase-dependent and occurs irrespective of p53 status. In CLL cells, CFZ promotes atypical activation of NF-κB evidenced by loss of cytoplasmic IkBα, phosphorylation of IκBα and increased p50/p65 DNA binding, without subsequent increases in canonical NF-κB target gene transcription. Conclusions Together, these data provide new mechanistic insights into the activity of CFZ in CLL and support Phase I investigation of CFZ in this disease. PMID:23515408

  1. Characterizing the Dynamics of Proteasome Complexes by Proteomics Approaches

    PubMed Central

    Kaake, Robyn M.; Kao, Athit; Yu, Clinton

    2014-01-01

    Abstract Significance: The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. Recent Advances: New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. Critical Issues: The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. Future Directions: We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment. Antioxid. Redox Signal. 21, 2444–2456. PMID:24423446

  2. The novel proteasome inhibitor carfilzomib (CFZ) induces cell cycle arrest, apoptosis and potentiates the anti-tumour activity of chemotherapy in rituximab-resistant lymphoma

    PubMed Central

    Gu, Juan J.; Hernandez-Ilizaliturri, Francisco J.; Kaufman, Gregory P.; Czuczman, Natalie M.; Mavis, Cory; Skitzki, Joseph J.; Czuczman, Myron S.

    2013-01-01

    Targeting the proteasome system with bortezomib (BTZ) results in anti-tumour activity and potentiates the effects of chemotherapy/biological agents in multiple myeloma and B-cell lymphoma. Carfilzomib (CFZ) is a more selective proteasome inhibitor that is structurally distinct from BTZ. In an attempt to characterize its biological activity, we evaluated CFZ in several lymphoma pre-clinical models. Rituximab-sensitive cell lines (RSCL), rituximab-resistant cell lines (RRCL), and primary tumour cells derived from B-cell lymphoma patients were exposed to CFZ or BTZ. Cell viability and changes in cell cycle were determined. Western blots were performed to detect PARP-cleavage and/or changes in Bcl-2 (BCL2) family members. CFZ was 10 times more active than BTZ and exhibited dose- and time-dependent cytotoxicity. CFZ exposure induced apoptosis by upregulation of Bak (BAK1) and subsequent PARP cleavage in RSCL and RRCL; it was also partially caspase-dependent. CFZ induced G2/M phase cell cycle arrest in RSCL. CFZ demonstrated the ability to overcome resistance to chemotherapy in RRCL and potentiated the anti-tumour activity of chemotherapy agents. Our data suggest that CFZ is able to overcome resistance to chemotherapeutic agents, upregulate pro-apoptotic proteins to promote apoptosis, and induce G2/M cell cycle arrest in lymphoma cells. Our pre-clinical data supports future clinical evaluation of CFZ in B-cell lymphoma. PMID:23826755

  3. Polymer micelle formulations of proteasome inhibitor carfilzomib for improved metabolic stability and anticancer efficacy in human multiple myeloma and lung cancer cell lines.

    PubMed

    Ao, Lin; Reichel, Derek; Hu, Di; Jeong, Hyunyoung; Kim, Kyung Bo; Bae, Younsoo; Lee, Wooin

    2015-11-01

    Carfilzomib (CFZ) is a second-generation proteasome inhibitor drug approved for the treatment of multiple myeloma. Contrary to its excellent antimyeloma activity, CFZ has shown only limited efficacy in patients with solid malignancies. This lack of efficacy has been attributed in part to rapid degradation of CFZ in the body, possibly hindering the ability of CFZ to access the proteasome target in solid tumors. We hypothesized that polymer micelles, a currently Food and Drug Administration-approved nanoparticle drug delivery formulation, may protect CFZ from metabolic degradation and thus expand the clinical utility of the drug as an anticancer agent. To test our hypothesis, we prepared CFZ-entrapped polymer micelle particles with various compositions and drug release profiles and examined the extent of the CFZ metabolism in vitro using mouse liver homogenates. We also assessed the cytotoxic activities of the CFZ-entrapped micelle formulations in human cancer cell lines derived from B lymphocytes (RPMI-8226) and the lung (H460). Our data indicated that polymer micelle-based formulations can improve metabolic stability and cytotoxic effects of CFZ compared with free CFZ in human cancer cell lines tested. Taken together, these results suggest that polymer micelles may have potential as a delivery system for CFZ with an extended therapeutic utility for nonhematologic malignancies in the future. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. C-terminal maturation fragments of presenilin 1 and 2 control secretion of APP alpha and A beta by human cells and are degraded by proteasome.

    PubMed

    da Costa, C A; Ancolio, K; Checler, F

    1999-03-01

    Most early-onset forms of Alzheimer's disease are due to missense mutations located on two homologous proteins named presenilin 1 and 2 (PS1 and PS2). Several lines of evidence indicate that PS1 and PS2 undergo various post-transcriptional events including endoproteolytic cleavages, giving rise to 28-30 kD N-terminal (NTF) and 18-20 kD C-terminal (CTF) fragments that accumulate in vivo. Whether the biological activity of presenilins is borne by the processed fragments or their holoprotein precursor remains in question. We have examined the putative control of beta APP maturation by CTF-PS1/PS2 and the catabolic process of the latter proteins by the multicatalytic complex, proteasome. We transiently and stably transfected HEK293 cells with CTF-PS1 or CTF-PS2 cDNA. We examined these transfectants for their production of A beta 40, A beta 42, and APP alpha by immunoprecipitation using specific polyclonals. The effect of a series of proteases inhibitors on the immunoreactivity of CTF-PS1/PS2 was examined by Western blot. Finally, the influence of proteasome inhibitors on the generation of beta APP fragments by CTF-expressing cells was assessed by combined immunoprecipitation and densitometric analyses. We showed that transient and stable transfection of CTF-PS1 and CTF-PS2 cDNAs in human cells leads to increased secretion of APP alpha and A beta, the maturation products of beta APP. Furthermore, we demonstrated that two proteasome inhibitors, lactacystin and Z-IE(Ot-Bu)A-Leucinal, prevent the degradation of both CTFs. Accordingly, we established that proteasome inhibitors drastically potentiate the phenotypic increased production of APP alpha and A beta elicited by CTF-PS1/PS2. Our data establish that the C-terminal products of PS1 and PS2 maturation exhibit biological activity and in particular control beta APP maturation upstream to alpha-and beta/gamma-secretase cleavages. This function is directly controlled by the proteasome that modulates the intracellular

  5. Dendritic Glycopolymer as Drug Delivery System for Proteasome Inhibitor Bortezomib in a Calcium Phosphate Bone Cement: First Steps Toward a Local Therapy of Osteolytic Bone Lesions.

    PubMed

    Striegler, Christin; Schumacher, Matthias; Effenberg, Christiane; Müller, Martin; Seckinger, Anja; Schnettler, Reinhard; Voit, Brigitte; Hose, Dirk; Gelinsky, Michael; Appelhans, Dietmar

    2015-09-01

    Establishment of drug delivery system (DDS) in bone substitute materials for local treatment of bone defects still requires ambitious solutions for a retarded drug release. We present two novel DDS, a weakly cationic dendritic glycopolymer and a cationic polyelectrolyte complex, composed of dendritic glycopolymer and cellulose sulfate, for the proteasome inhibitor bortezomib. Both DDS are able to induce short-term retarded release of bortezomib from calcium phosphate bone cement in comparison to a burst-release of the drug from bone cement alone. Different release parameters have been evaluated to get a first insight into the release mechanism from bone cements. In addition, biocompatibility of the calcium phosphate cement, modified with the new DDS was investigated using human mesenchymal stromal cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines.

    PubMed

    Strauss, Sandra J; Higginbottom, Karen; Jüliger, Simone; Maharaj, Lenushka; Allen, Paul; Schenkein, David; Lister, T Andrew; Joel, Simon P

    2007-03-15

    Bortezomib is a proteasome inhibitor with proven efficacy in multiple myeloma and non-Hodgkin's lymphoma. This study reports the effects of bortezomib in B-cell lymphoma cell lines with differing sensitivity to bortezomib to investigate factors that influence sensitivity. Bortezomib induced a time- and concentration-dependent reduction in cell viability in five lymphoma cell lines, with EC(50) values ranging from 6 nmol/L (DHL-7 cells) to 25 nmol/L (DHL-4 cells) after 72 h. Bortezomib cytotoxicity was independent of p53 function, as all cell lines exhibited mutations by sequence analysis. The difference in sensitivity was not explained by proteasome or nuclear factor-kappaB (NF-kappaB) inhibition as these were similar in the most and least sensitive cells. NF-kappaB inhibition was less marked than that of a specific NF-kappaB inhibitor, Bay 11-7082. Cell cycle analysis showed a marked G(2)-arrested population in the least sensitive DHL-4 line only, an effect that was not present with Bay 11-7082 treatment. Conversely, in DHL-7 cells, bortezomib treatment resulted in cells moving into an aberrant mitosis, indicative of mitotic catastrophe that may contribute to increased sensitivity to bortezomib. These studies show that although bortezomib treatment had similar effects on apoptotic and NF-kappaB signaling pathways in these cell lines, different cell cycle effects were observed and induction of a further mechanism of cell death, mitotic catastrophe, was observed in the more sensitive cell line, which may provide some pointers to the difference in sensitivity between cell lines. An improved understanding of how DHL-7 cells abrogate the G(2)-M cell cycle checkpoint may help identify targets to increase the efficacy of bortezomib.

  7. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB.

    PubMed

    Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta

    2014-10-01

    Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.

  8. Identification of the anticancer effects of a novel proteasome inhibitor, ixazomib, on colorectal cancer using a combined method of microarray and bioinformatics analysis

    PubMed Central

    Fan, Qiaowei; Liu, Bingrong

    2017-01-01

    Purpose The study aimed to explore the anticancer effects of a novel proteasome inhibitor, ixazomib, on colorectal cancer (CRC) using a combined method of microarray and bioinformatics analysis. Materials and methods Cell proliferation was tested by Cell Counting Kit-8 (CCK-8) assay for SW620 cells treated with different concentrations of ixazomib and different treatment times. The microarray analysis was conducted for six samples, including three samples of SW620 cells untreated with ixazomib and three samples of SW620 cells treated with ixazomib. The differentially expressed genes (DEGs) between untreated and treated samples were identified by the Linear Models for Microarray data (LIMMA) package in R language. The Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the DEGs using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and KEGG Orthology-Based Annotation System (KOBAS) online tool. The protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and module analysis was performed for the PPI network. Results Ixazomib could inhibit the proliferation of SW620 cells in a dose-dependent and time-dependent manner. A total of 743 DEGs, including 203 upregulated DEGs such as HSPA6 and 540 downregulated DEGs such as APCDD1, were identified. Eighty-three GO terms were enriched for DEGs, which were mainly related to protein folding, apoptotic process, transcription factor activity, and proteasome. Thirty-seven KEGG pathways were perturbed, including pathway of apoptosis and cell cycle. Forty-six hub genes, such as TP53, JUN, and ITGA2, were screened out, and three modules with important functions were mined from the PPI network. Conclusion The novel proteasome inhibitor ixazomib significantly inhibited the proliferation of human CRC SW620 cells. It exerted anticancer effects

  9. Voltage sensor mutations differentially target misfolded K+ channel subunits to proteasomal and non-proteasomal disposal pathways

    PubMed Central

    Myers, Michael P.; Khanna, Rajesh; Lee, Eun Jeon; Papazian, Diane M.

    2011-01-01

    In Shaker K+ channels, formation of an electrostatic interaction between two charged residues, D316 and K374 in transmembrane segments S3 and S4, respectively, is a key step in voltage sensor biogenesis. Mutations D316K and K374E disrupt formation of the voltage sensor and lead to endoplasmic reticulum retention. We have now investigated the fates of these misfolded proteins. Both are significantly less stable than the wild-type protein. D316K is degraded by cytoplasmic proteasomes, whereas K374E is degraded by a lactacystin-insensitive, non-proteasomal pathway. Our results suggest that the D316K and K374E proteins are misfolded in recognizably different ways, an observation with implications for voltage sensor biogenesis. PMID:15196930

  10. Proteasome Activation by Small Molecules.

    PubMed

    Leestemaker, Yves; de Jong, Annemieke; Witting, Katharina F; Penning, Renske; Schuurman, Karianne; Rodenko, Boris; Zaal, Esther A; van de Kooij, Bert; Laufer, Stefan; Heck, Albert J R; Borst, Jannie; Scheper, Wiep; Berkers, Celia R; Ovaa, Huib

    2017-06-22

    Drugs that increase 26S proteasome activity have potential therapeutic applications in the treatment of neurodegenerative diseases. A chemical genetics screen of over 2,750 compounds using a proteasome activity probe as a readout in a high-throughput live-cell fluorescence-activated cell sorting-based assay revealed more than ten compounds that increase proteasome activity, with the p38 MAPK inhibitor PD169316 being one of the most potent ones. Genetic and chemical inhibition of either p38 MAPK, its upstream regulators, ASK1 and MKK6, and downstream target, MK2, enhance proteasome activity. Chemical activation of the 26S proteasome increases PROTAC-mediated and ubiquitin-dependent protein degradation and decreases the levels of both overexpressed and endogenous α-synuclein, without affecting the overall protein turnover. In addition, survival of cells overexpressing toxic α-synuclein assemblies is increased in the presence of p38 MAPK inhibitors. These findings highlight the potential of activation of 26S proteasome activity and that this can be achieved through multiple mechanisms by distinct molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein

    PubMed Central

    ZHOU, WENJING; ZHU, WEIWEI; MA, LIYA; XIAO, FENG; QIAN, WENBIN

    2015-01-01

    Recently, there has been progress in the treatment of chronic myeloid leukemia (CML). However, novel therapeutic strategies are required in order to address the emerging problem of imatinib resistance. Histone deacetylase inhibitors (HDACi) and proteasome inhibitors are promising alternatives, and may be amenable to integration with current therapeutic approaches. However, the mechanisms underlying the interaction between these two agents remain unclear. The present study assessed the cytotoxic effect of the HDACi, suberoylanilide hydroxamic acid (SAHA), in combination with the proteasome inhibitor, MG-132, in imatinib-sensitive K562 and imatinib-resistant K562G cells, and investigated the mechanism underlying this effect. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and protein expression levels were determined by western blotting. Reactive oxygen species (ROS) generation levels were observed under a fluorescence microscope The results indicated that SAHA and MG-132 act in a synergistic manner to induce cell death in K562 and K562G cells. This effect was associated with Bcr-Abl downregulation and the production of ROS. Notably, the ROS scavenger, N-acetyl-L-cysteine, almost fully reversed the cell death and Bcr-Abl downregulation that was induced by the combination of SAHA and MG-132. By contrast, the pan-caspase inhibitor, z-VAD-fmk, only partially reversed the cell death induced by these two drugs in CML cells. These results indicated that increased intracellular ROS levels are important in the induction of cell death and the downregulation of Bcr-Abl. In conclusion, the present results suggested that combined SAHA and MG-132 may be a promising treatment for CML. PMID:26722260

  12. The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim.

    PubMed

    Nikrad, Malti; Johnson, Thomas; Puthalalath, Hamsa; Coultas, Leigh; Adams, Jerry; Kraft, Andrew S

    2005-03-01

    Previously, we showed that the proteasome inhibitor bortezomib/Velcade (formerly PS-341) synergizes with the protein tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL), a ligand for certain death receptors, to induce apoptosis in cell lines derived from prostate and colon cancers. Because apoptosis is often triggered by BH3-only proteins of the Bcl-2 family, we have explored the hypothesis that bortezomib contributes to the apoptosis by up-regulating their levels. Indeed, bortezomib induced increases of Bik and/or Bim in multiple cell lines but not notably of two other BH3-only proteins (Puma and Bid) nor other family members (Bax, Bak, Bcl-2, and Bcl-xL). The increase in Bik levels seems to reflect inhibition by bortezomib of its proteasome-mediated degradation. Importantly, both Bik and Bim seem central to the proapoptotic function of bortezomib, because mouse embryo fibroblasts in which the genes for both Bik and Bim had been disrupted were refractory to its cytotoxic action. Similarly, the synergy between bortezomib and TRAIL in killing human prostate cancer cells was impaired in cells in which both Bik and Bim were down-regulated by RNA interference. Further evidence that bortezomib acts through the mitochondrial pathway regulated by the Bcl-2 family is that deficiency for APAF-1, which acts downstream of Bcl-2, also blocked its apoptotic effect. These results implicate BH3-only proteins, in particular both Bik and Bim, as important mediators of the antitumor action of bortezomib and establish their role in its enhancement of TRAIL-induced apoptosis.

  13. p53 mutations promote proteasomal activity.

    PubMed

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  14. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome.

    PubMed

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-09-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.

  15. Role of the Proteasome in Excitotoxicity-Induced Cleavage of Glutamic Acid Decarboxylase in Cultured Hippocampal Neurons

    PubMed Central

    Armelão, Mário; Herrmann, Dennis; Pimentel, Diogo O.; Leal, Graciano; Caldeira, Margarida V.; Bahr, Ben A.; Bengtson, Mário; Almeida, Ramiro D.; Duarte, Carlos B.

    2010-01-01

    Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms—GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs) was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during excitotoxicity

  16. A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer.

    PubMed

    Wu, Yuan-Hua; Hong, Chi-Wei; Wang, Yi-Ching; Huang, Wei-Jan; Yeh, Ya-Ling; Wang, Bour-Jr; Wang, Ying-Jan; Chiu, Hui-Wen

    2017-08-01

    Triple-negative breast cancer (TNBC) treatment offers only limited benefits, and it is very relevant given the significant number of deaths that it causes. DNA repair pathways can enable tumor cells to survive DNA damage that is induced by chemotherapeutic or radiation treatments. Histone deacetylase inhibitors (HDACi) inhibited DNA repair proteins. However, the detailed mechanisms for this inhibition remain unclear. In the present study, we investigated whether a newly developed HDACi, TMU-35435, could enhance etoposide cytotoxicity by inhibiting DNA repair proteins in triple-negative breast cancer. We found synergistic cytotoxicity following treatment of 4T1 cells with etoposide and TMU-35435. Furthermore, TMU-35435 enhances etoposide-induced DNA damage by inhibiting the DNA repair pathway (non-homologous end joining, NHEJ). TMU-35435 suppresses the NHEJ pathway through the ubiquitination of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). In addition, TMU-35435 ubiquitinated DNA-PKcs by inducing the interaction between RNF144A (an E3 ligase) and DNA-PKcs. The combined treatment induced apoptosis and autophagic cell death in 4T1 cells. In an orthotopic breast cancer model, combined treatment with TMU-35435 and etoposide showed anti-tumor growth through the increase of DNA damage and cell death. Taken together, our data suggest that TMU-35435 enhances etoposide cytotoxicity by regulating ubiquitin-proteasome system and inhibiting the DNA repair pathway in TNBC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Proteasome Inhibitor Bortezomib Affects Chondrosarcoma Cells via the Mitochondria-Caspase Dependent Pathway and Enhances Death Receptor Expression and Autophagy

    PubMed Central

    Lohberger, Birgit; Steinecker-Frohnwieser, Bibiane; Stuendl, Nicole; Kaltenegger, Heike; Leithner, Andreas; Rinner, Beate

    2016-01-01

    High grade chondrosarcoma is characterized by its lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates. Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using the proteasome inhibitor bortezomib have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of bortezomib on chondrosarcoma has not been investigated. In our study, bortezomib decreased cell viability and proliferation in two different chondrosarcoma cell lines in a time- and dose dependent manner. FACS analysis, mRNA- and protein expression studies illustrated that induction of apoptosis developed through the intrinsic mitochondria-caspase dependent pathway. Furthermore, bortezomib treatment significantly increased expression of the death receptors TRAILR-1 and TRAILR-2 in chondrosarcoma cells. An increased expression of the autophagy markers Atg5/12, Beclin, and LC3BI-II supports the interpretation that bortezomib functions as a trigger for autophagy. Our results demonstrated for the first time that bortezomib reduced viability and proliferation of chondrosarcoma cells, induced apoptosis via the mitochondria-caspase dependent pathway and enhanced death receptor expression and autophagy. PMID:27978543

  18. Obatoclax interacts synergistically with the irreversible proteasome inhibitor carfilzomib in GC- and ABC-DLBCL cells in vitro and in vivo.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Son, Minkyeong P; Patel, Hiral; Peterson, Derick; Attkisson, Elisa; Fisher, Richard I; Friedberg, Jonathan W; Dent, Paul; Grant, Steven

    2012-05-01

    Interactions between the irreversible proteasome inhibitor carfilzomib and the pan-BH3 mimetic obatoclax were examined in germinal center (GC)- and activated B-cell-diffuse large B-cell lymphoma (ABC-DLBCL) cells. Cotreatment with minimally toxic concentrations of carfilzomib (i.e., 2-6 nmol/L) and subtoxic concentrations of obatoclax (0.05-2.0 μmol/L) synergistically increased apoptosis in multiple DLBCL cell lines and increased lethality toward primary human DLBCL but not normal CD34(+) cells. Synergistic interactions were associated with sharp increases in caspase-3 activation, PARP cleavage, p-JNK induction, upregulation of Noxa, and AKT dephosphorylation. Combined treatment also diminished carfilzomib-mediated Mcl-1 upregulation whereas immunoprecipitation analysis revealed reduced associations between Bak and Mcl-1/Bcl-xL and Bim and Mcl-1. The carfilzomib/obatoclax regimen triggered translocation, conformational change, and dimerization of Bax and activation of Bak. Genetic interruption of c-jun-NH(2)-kinase (JNK) and Noxa by short hairpin RNA knockdown, ectopic Mcl-1 expression, or enforced activation of AKT significantly attenuated carfilzomib/obatoclax-mediated apoptosis. Notably, coadministration of carfilzomib/obatoclax sharply increased apoptosis in multiple bortezomib-resistant DLBCL models. Finally, in vivo administration of carfilzomib and obatoclax to mice inoculated with SUDHL4 cells substantially suppressed tumor growth, activated JNK, inactivated AKT, and increased survival compared with the effects of single-agent treatment. Together, these findings argue that a strategy combining carfilzomib and obatoclax warrants attention in DLBCL.

  19. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects.

    PubMed

    Hurchla, M A; Garcia-Gomez, A; Hornick, M C; Ocio, E M; Li, A; Blanco, J F; Collins, L; Kirk, C J; Piwnica-Worms, D; Vij, R; Tomasson, M H; Pandiella, A; San Miguel, J F; Garayoa, M; Weilbaecher, K N

    2013-02-01

    Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM.

  20. Proteasome Inhibitors Enhance Gene Delivery by AAV Virus Vectors Expressing Large Genomes in Hemophilia Mouse and Dog Models: A Strategy for Broad Clinical Application

    PubMed Central

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-01-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration–approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 1013 vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy. PMID:20700109

  1. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects

    PubMed Central

    Hurchla, MA; Garcia-Gomez, A; Hornick, MC; Ocio, EM; Li, A; Blanco, JF; Collins, L; Kirk, CJ; Piwnica-Worms, D; Vij, R; Tomasson, MH; Pandiella, A; Miguel, JF San; Garayoa, M; Weilbaecher, KN

    2013-01-01

    Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM. PMID:22763387

  2. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    PubMed

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  3. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism

    PubMed Central

    Chattopadhyay, Nibedita; Berger, Allison J.; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben

    2015-01-01

    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition. PMID:26709701

  4. [Effect of proteasomal proteolysis on NO-synthase activity in isolated platelets].

    PubMed

    Dosenko, V E; Zagoriĭ, V Iu; Moĭbenko, A A

    2005-01-01

    In experiments with isolated platelets it was shown, that application of proteasomal fraction II (PF II) from rabbit's reticulocytes changes the activity of endothelial nitric oxide synthase (eNOS). During incubation of sonicated platelets with PF II eNOS activity increased by 24.6% (p = 0.02). Methylated ubiquitin and clasto-lactacystin beta-lacton significantly eliminated this effect. So, it is not eNOS that is subsequent to proteasomal degradation, but a certain negative regulator of its activity. eNOS activity in platelets, treated with H2O2 (1 mM), after incubation with PF II increased to a higer extent, and was 3.4 +/- 0.36 UF/min x 10(6) cells (for 51.3% more, than in control), but H2O2 did not affect the activity of enzyme in platelets under analogous condition without addition of PF II. It was established, that eNOS activity decreases after 60 min of incubation with 10 mM of clasto-lactacystin beta-lacton by 11.6%, and with 20 mM--by 28.6% (p < 0.05). Data obtained witnesses about participation of ubiquitin-dependent proteasomal proteolysis in regulation of eNOS activity and possibility of the effect upon intensity of NO production due to acceleration of degradation of intracellular regulators of this enzyme's activity.

  5. Activity-based imaging probes of the proteasome.

    PubMed

    Carmony, Kimberly Cornish; Kim, Kyung Bo

    2013-09-01

    Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.

  6. Proteasomal degradation of beta-carotene metabolite--modified proteins.

    PubMed

    Sommerburg, Olaf; Karius, Nicole; Siems, Werner; Langhans, Claus-Dieter; Leichsenring, Michael; Breusing, Nicolle; Grune, Tilman

    2009-01-01

    Free radical attack on beta-carotene results in the formation of high amounts of carotene breakdown products (CBPs) having biological activities. As several of the CBPs are reactive aldehydes, it has to be considered that these compounds are able to modify proteins. Therefore, the aim of the study was to investigate whether CBP-modification of proteins is leading to damaged proteins recognized and degraded by the proteasomal system. We used the model proteins tau and ferritin to test whether CBPs will modify them and whether such modifications lead to enhanced proteasomal degradation. To modify proteins, we used crude CBPs as a mixture obtained after hypochloric acid derived BC degradation, as well as several single compounds, as apo8'-carotenal, retinal, or beta-ionone. The majority of the CBPs found in our reaction mixture are well known metabolites as described earlier after BC degradation using different oxidants. CBPs are able to modify proteins, and in in vitro studies, we were able to demonstrate that the 20S proteasome is able to recognize and degrade CBP-modified proteins preferentially. In testing the proteolytic response of HT22 cells toward CBPs, we could demonstrate an enhanced protein turnover, which is sensitive to lactacystin. Interestingly, the proteasomal activity is resistant to treatment with CBP. On the other hand, we were able to demonstrate that supraphysiological levels of CBPs might lead to the formation of protein-CBP-adducts that are able to inhibit the proteasome. Therefore, the removal of CBP-modified proteins seems to be catalyzed by the proteasomal system and is effective, if the formation of CBPs is not overwhelming and leading to protein aggregates.

  7. Role of proteasomes in disease

    PubMed Central

    Dahlmann, Burkhardt

    2007-01-01

    A functional ubiquitin proteasome system is essential for all eukaryotic cells and therefore any alteration to its components has potential pathological consequences. Though the exact underlying mechanism is unclear, an age-related decrease in proteasome activity weakens cellular capacity to remove oxidatively modified proteins and favours the development of neurodegenerative and cardiac diseases. Up-regulation of proteasome activity is characteristic of muscle wasting conditions including sepsis, cachexia and uraemia, but may not be rate limiting. Meanwhile, enhanced presence of immunoproteasomes in aging brain and muscle tissue could reflect a persistent inflammatory defence and anti-stress mechanism, whereas in cancer cells, their down-regulation reflects a means by which to escape immune surveillance. Hence, induction of apoptosis by synthetic proteasome inhibitors is a potential treatment strategy for cancer, whereas for other diseases such as neurodegeneration, the use of proteasome-activating or -modulating compounds could be more effective. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047740

  8. Nutritional Supplement-5 with a Combination of Proteasome Inhibitors (Resveratrol, Quercetin, δ-Tocotrienol) Modulate Age-Associated Biomarkers and Cardiovascular Lipid Parameters in Human Subjects.

    PubMed

    Qureshi, Asaf A; Khan, Dilshad A; Mahjabeen, Wajiha; Papasian, Christopher J; Qureshi, Nilofer

    2013-03-02

    Age-associated altered redox imbalances and dysregulated immune function, contribute to the development of a variety of age associated diseases. Inflammatory markers and lipid profiles are useful prognostic indicators of a variety of age-associated and cardiovascular diseases. We have previously studied the impact of several proteasome inhibitors on several markers of inflammation and lipid profiles in vitro, in vivo, in cell lines, animal models, and in human subjects. The current study represents an extension of this work. Our main hypothesis is that a combination of various naturally-occurring proteasome inhibitors, which inhibits nitric oxide (NO), and C-reactive protein (CRP) mediated inflammation, will have better efficacy in the prevention and treatment of age-associated disorders including cardiovascular disease. Two double blind, randomized, placebo-controlled cross-over trials were conducted to determine the impact of a mixture of NS-5 (resveratrol, pterostilbene, quercetin, δ-tocotrienol, nicotinic acid) on serum NO, CRP, γ-glutamyl-transferase (γ-GT) activity, total antioxidant status (TAS), total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides levels. Healthy seniors (Group-1; n = 32) free-living (A, B; 16/group), and hypercholesterolemic (Group-2; n = 64) subjects on AHA-Step-1-diet were divided into two groups (C, D; 32/group). Baseline levels were established for parameters as mentioned above. Groups A, C were administered 4-capsules/d of NS-5 and groups B, D, placebo (starch) for 6-weeks. Groups were crossed-over, followed by a 2-week wash-out period. Groups A, C were given 4-capsules/d of placebo and groups B, D, 4-capsules/d of NS-5 for 6-weeks. Groups C, D were continued on AHA-Step-1-diet. All the subjects completed each phase in both studies without any complaints. There were significant ( P < 0.01 - 0.05) decreases in the serum levels of NO (30%, 26%), CRP (29%, 21%), γ-GT activity (14%, 17%), and blood pressure (systolic

  9. Phosphorylation regulates mycobacterial proteasome.

    PubMed

    Anandan, Tripti; Han, Jaeil; Baun, Heather; Nyayapathy, Seeta; Brown, Jacob T; Dial, Rebekah L; Moltalvo, Juan A; Kim, Min-Seon; Yang, Seung Hwan; Ronning, Donald R; Husson, Robert N; Suh, Joowon; Kang, Choong-Min

    2014-09-01

    Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

  10. Population Pharmacokinetic Analysis of Ixazomib, an Oral Proteasome Inhibitor, Including Data from the Phase III TOURMALINE-MM1 Study to Inform Labelling.

    PubMed

    Gupta, Neeraj; Diderichsen, Paul M; Hanley, Michael J; Berg, Deborah; van de Velde, Helgi; Harvey, R Donald; Venkatakrishnan, Karthik

    2017-03-13

    Ixazomib is an oral proteasome inhibitor, approved in USA, Canada, Australia and Europe in combination with lenalidomide and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy. We report a population pharmacokinetic model-based analysis for ixazomib that was pivotal in describing the clinical pharmacokinetics of ixazomib, to inform product labelling. Plasma concentration-time data were collected from 755 patients who received oral or intravenous ixazomib in once- or twice-weekly schedules in ten trials, including the global phase III TOURMALINE-MM1 study. Data were analysed using nonlinear mixed-effects modelling (NONMEM software version 7.2, ICON Development Solutions, Hanover, MD, USA). Ixazomib plasma concentrations from intravenous and oral studies were described by a three-compartment model with linear distribution and elimination kinetics, including first-order linear absorption with a lag time describing the oral dose data. Body surface area on the volume of the second peripheral compartment was the only covariate included in the final model. None of the additional covariates tested including body surface area (1.2-2.7 m(2)), sex, age (23-91 years), race, mild/moderate renal impairment and mild hepatic impairment were found to impact systemic clearance, suggesting that no dose adjustment is required based on these covariates. The geometric mean terminal disposition phase half-life was 9.5 days, steady-state volume of distribution was 543 L and systemic clearance was 1.86 L/h. The absolute bioavailability of an oral dose was estimated to be 58%.

  11. The Effect of a High‐Fat Meal on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor, in Patients With Advanced Solid Tumors or Lymphoma

    PubMed Central

    Hanley, Michael J.; Venkatakrishnan, Karthik; Wang, Bingxia; Sharma, Sunil; Bessudo, Alberto; Hui, Ai‐Min; Nemunaitis, John

    2016-01-01

    Abstract Ixazomib is the first oral proteasome inhibitor to be investigated in the clinic. This clinical study assessed whether the pharmacokinetics of ixazomib would be altered if administered after a high‐calorie, high‐fat meal. In a 2‐period, 2‐sequence, crossover study design, adult patients with advanced solid tumors or lymphoma received a 4‐mg oral dose of ixazomib as immediate‐release capsules on day 1 without food (fasted, administered following an overnight fast) or with food (fed, following consumption of a high‐calorie, high‐fat meal), followed by another dose on day 15 in the alternate food intake condition (fasted to fed or fed to fasted). Twenty‐four patients were enrolled; of these, 15 were included in the pharmacokinetic‐evaluable population. Administration of ixazomib after a high‐fat meal reduced both the rate and extent of absorption of ixazomib. Under fed conditions, the median time to peak plasma concentration (Tmax) of ixazomib was delayed by approximately 3 hours compared with administration in the fasted state (1.02 hours vs 4.0 hours), and there was a 28% reduction in total systemic exposure (area under the curve, AUC) and a 69% reduction in peak plasma concentration (Cmax). Together, the results support the administration of ixazomib on an empty stomach, at least 1 hour before or at least 2 hours after food. These recommendations are reflected in the United States Prescribing Information for ixazomib (clinicaltrials.gov identifier NCT01454076). PMID:26872892

  12. Dose and Schedule Selection of the Oral Proteasome Inhibitor Ixazomib in Relapsed/Refractory Multiple Myeloma: Clinical and Model-Based Analyses.

    PubMed

    Gupta, Neeraj; Yang, Huyuan; Hanley, Michael J; Zhang, Steven; Liu, Rachael; Kumar, Shaji; Richardson, Paul G; Skacel, Tomas; Venkatakrishnan, Karthik

    2017-08-12

    The oral proteasome inhibitor ixazomib has been approved by regulatory authorities around the world, including in the United States and the European Union, for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy, based on the pivotal phase III TOURMALINE-MM1 study. The objective of this study was to quantitatively characterize the benefit-risk profile of ixazomib in relapsed/refractory MM in support of the approved dose and schedule. We report early-phase study data and exposure-response analyses of TOURMALINE-MM1 data that support the selection of the recommended ixazomib dose and schedule. Single-agent ixazomib studies showed a favorable efficacy/safety profile with weekly versus twice-weekly dosing; a phase I/II study of ixazomib in combination with lenalidomide and dexamethasone (IRd) identified a weekly ixazomib dose that offered an acceptable efficacy/safety profile. In IRd exposure-response analyses from TOURMALINE-MM1, ixazomib systemic exposure was not a significant predictor of progression-free survival or probability of response. Significant associations were observed between ixazomib exposure and the probability of grade ≥3 anemia and thrombocytopenia, and grade ≥2 diarrhea, fatigue, nausea, peripheral neuropathy, and rash. Additionally, higher ixazomib exposure was associated with lower lenalidomide relative dose intensity. These analyses support a favorable benefit-risk profile for weekly ixazomib 4.0 mg on days 1, 8, and 15 of 28-day cycles, which was selected for the phase III TOURMALINE registration program. ClinicalTrials.gov NCT00932698, NCT00963820, NCT01217957, NCT01564537.

  13. Infection risk with immunomodulatory and proteasome inhibitor-based therapies across treatment phases for multiple myeloma: A systematic review and meta-analysis.

    PubMed

    Teh, Benjamin W; Harrison, Simon J; Worth, Leon J; Thursky, Karin A; Slavin, Monica A

    2016-11-01

    The objective of this review was to determine the impact of immunomodulatory drugs (IMiDs) and proteasome inhibitor (PI)-based therapy on infection risk in patients with myeloma across three treatment periods: induction, maintenance therapy and relapse/refractory disease (RRMM). A systematic review and meta-analysis of randomised controlled trials (RCT) of IMiD and PI-based therapy versus conventional therapy from 1990 to 2015 using MEDLINE, EMBASE and CENTRAL was conducted. Study methods, characteristics, interventions, outcomes and rate of infection were extracted using a standardised tool. Thirty RCTs of 13,105 patients fulfilled inclusion criteria. The rate of severe infection with the use of IMiD-based therapy was 13.4%, 22.4%, 10.5% and 16.6% for induction therapy for non-transplant- and transplant-eligible patients, maintenance therapy and therapy for RRMM, respectively. Rate of severe infection with PI-based induction in transplant-eligible patients was 19.7%. Compared to conventional therapy, use of IMiD-based induction therapy was associated with reduced risk for transplant patients (RR 0.76, p < 0.01). There was no significant difference with PI-based therapy. For maintenance therapy and RRMM, use of IMiD-based therapy was significantly associated with 74% and 51% increased risk of severe infection, respectively. Compared to thalidomide, bortezomib-based induction therapy and lenalidomide maintenance therapy were associated with increased risk of severe infection (RR 2.03, p < 0.01; RR 1.95, p = 0.03). The differential impact of myeloma therapies on risk for infection and the effect of treatment phases upon risk have now been established. Thalidomide is associated with the lowest risk of severe infection when used for induction and maintenance therapy. Fight Cancer Foundation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. HIV protease inhibitors and onset of cardiovascular diseases: a central role for oxidative stress and dysregulation of the ubiquitin-proteasome system.

    PubMed

    Reyskens, Kathleen M S E; Essop, M Faadiel

    2014-02-01

    The successful roll-out of highly active antiretroviral therapy (HAART) has extended life expectancy and enhanced the overall well-being of HIV-positive individuals. There are, however, increased concerns regarding HAART-mediated metabolic derangements and its potential risk for cardiovascular diseases (CVD) in the long-term. Here certain classes of antiretroviral drugs such as the HIV protease inhibitors (PIs) are strongly implicated in this process. This article largely focuses on the direct PI-linked development of cardio-metabolic complications, and reviews the inter-linked roles of oxidative stress and the ubiquitin-proteasome system (UPS) as key mediators driving this process. It is proposed that PIs trigger reactive oxygen species (ROS) production that leads to serious downstream consequences such as cell death, impaired mitochondrial function, and UPS dysregulation. Moreover, we advocate that HIV PIs may also directly lower myocardial UPS function. The attenuation of cardiac UPS can initiate transcriptional changes that contribute to perturbed lipid metabolism, thereby fueling a pro-atherogenic milieu. It may also directly alter ionic channels and interfere with electrical signaling in the myocardium. Therefore HIV PI-induced ROS together with a dysfunctional UPS elicit detrimental effects on the cardiovascular system that will eventually result in the onset of heart diseases. Thus while HIV PIs substantially improve life expectancy and quality of life in HIV-positive patients, its longer-term side-effects on the cardiovascular system should lead to a) greater clinical awareness regarding its benefit-harm paradigm, and b) the development and evaluation of novel co-treatment strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Exposure-safety-efficacy analysis of single-agent ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma: dose selection for a phase 3 maintenance study.

    PubMed

    Gupta, Neeraj; Labotka, Richard; Liu, Guohui; Hui, Ai-Min; Venkatakrishnan, Karthik

    2016-06-01

    Background Ixazomib is the first oral, small molecule proteasome inhibitor to reach phase 3 trials. The current analysis characterized the exposure-safety and exposure-efficacy relationships of ixazomib in patients with relapsed/refractory multiple myeloma (MM) with a purpose of recommending an approach to ixazomib dosing for maintenance therapy. Methods Logistic regression was used to investigate relationships between ixazomib plasma exposure (area under the curve/day; derived from individual apparent clearance values from a published population pharmacokinetic analysis) and safety/efficacy outcomes (hematologic [grade ≥ 3 vs ≤ 2] or non-hematologic [grade ≥ 2 vs ≤ 1] adverse events [AEs], and clinical benefit [≥stable disease vs progressive disease]) using phase 1 data in relapsed/refractory MM (NCT00963820; N = 44). Results Significant relationships to ixazomib exposure were observed for five AEs (neutropenia, thrombocytopenia, rash, fatigue, and diarrhea) and clinical benefit (p < 0.05). Dose-response relationships indicated a favorable benefit/risk ratio at 3 mg and 4 mg weekly, which are below the maximum tolerated dose of 5.5 mg. At 3 mg, the model predicted that: 37 % of patients will achieve clinical benefit; incidence of grade ≥ 3 neutropenia and thrombocytopenia will be 10 % and 23 %, respectively; and incidence of grade ≥ 2 rash, fatigue, and diarrhea will be 8 %, 19 %, and 19 %, respectively. Conclusions Based on the findings, patients in the phase 3 maintenance trial will initiate ixazomib at a once-weekly dose of 3 mg, increasing to 4 mg if acceptable tolerability after 4 cycles, to provide maximum clinical benefit balanced with adequate tolerability.

  16. Clinical Outcomes Related to the Use of Bendamustine Therapy for Multiple Myeloma Patients Relapsed/Refractory to Immunomodulatory Drugs and Proteasome Inhibitors

    PubMed Central

    Yalnız, Fevzi Fırat; Akkoç, Nihan; Salihoğlu, Ayşe; Ar, M. Cem; Öngören, Şeniz; Eşkazan, A. Emre; Soysal, Teoman; Aydın, Yıldız

    2017-01-01

    Objective: Multiple myeloma patients who are relapsed or refractory to both proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs) have been reported to have poor outcomes. Bendamustine has been reported to have an antitumor effect in newly diagnosed as well as relapsed/refractory multiple myeloma (RRMM). The aim of this retrospective study was to evaluate the efficacy of bendamustine therapy in heavily pretreated MM patients who were refractory to PIs and IMiDs. Materials and Methods: Nineteen RRMM patients treated either with bendamustine and steroids (n=13) or a combination of bendamustine with novel drugs (n=6) were included. The median number of previous treatment lines was 5 (minimum-maximum: 3-8) and median time from diagnosis was 6 years (minimum-maximum: 1-16). All of the patients were resistant to at least one of the IMiDs and one of the PIs. Bendamustine was given at doses ranging from 90 mg/m2 to 120 mg/m2 on days 1 and 2 of 28-day cycles. Results: A median of 2 (minimum-maximum: 1-8) treatment cycles was administered per patient. The toxicity of bendamustine was mild and mostly of hematological origin. No complete remission was achieved. There was partial remission and stable disease in 21% and 11% of the patients, respectively. Sixty-eight percent of patients had progressive disease. The median progression-free survival and overall survival was 2 and 4 months, respectively. Conclusion: Bendamustine therapy was well tolerated but showed limited anti-myeloma activity in heavily pretreated patients who were refractory to IMiDs and PIs. PMID:28270368

  17. The comparative effects of diethyldithiocarbamate-copper complex with established proteasome inhibitors on expression levels of CYP1A2/3A4 and their master regulators, aryl hydrocarbon and pregnane X receptor in primary cultures of human hepatocytes.

    PubMed

    Vrzal, Radim; Dvorak, Zdenek

    2016-12-01

    In the recent years, a therapeutic potential of disulfiram (Antabuse) complex with copper, as an anticancer drug, was recognized towards several cancer cell lines. The proteasome was suggested as one of the cellular targets for this compound. As the therapeutic use of diethyldithiocarbamate-copper complex (CuET) is expected to increase, it is of great interest to know whether this compound may be the source of drug-drug interactions via the induction of biotransformation enzymes, especially cytochromes P450 (CYPs). To this purpose, we examined the effect of CuET and compared it with typical inducers (rifampicin and dioxin) of CYPs and with well-established proteasome inhibitors (MG132 and bortezomib). Diethyldithiocarbamate-copper complex revealed inconsistent and rather modulatory effect on the expression of CYP1A2 and CYP3A4 in several cultures of human hepatocytes. Moreover, it was able to cause neither ubiquitin accumulation nor significant and dose-dependent inhibition of proteasome activity. It had no effect on essential transcription factors involved in regulation of selected CYPs, aryl hydrocarbon (AhR) nor pregnane X receptor (PXR). However, the AhR protein was increased in majority of examined hepatocyte cultures. The main finding of this study is that: (i) disulfiram-copper complex is not the cause of drug-drug interactions via CYP1A2/3A4 induction; (ii) proteasome inhibitors may have different impact on studied parameters in given in vitro system. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  18. A High-Throughput Screening Assay Using a Photoconvertable Protein for Identifying Inhibitors of Transcription, Translation, or Proteasomal Degradation.

    PubMed

    Heidary, David K; Fox, Ashley; Richards, Chris I; Glazer, Edith C

    2017-04-01

    Dysregulated transcription, translation, and protein degradation are common features of cancer cells, regardless of specific genetic profiles. Several clinical anticancer agents take advantage of this characteristic vulnerability and interfere with the processes of transcription and translation or inhibit protein degradation. However, traditional assays that follow the process of protein production and removal require multistep processing and are not easily amenable to high-throughput screening. The use of recombinant fluorescent proteins provides a convenient solution to this problem, and moreover, photoconvertable fluorescent proteins allow for ratiometric detection of both new protein production and removal of existing proteins. Here, the photoconvertable protein Dendra2 is used in the development of in-cell assays of protein production and degradation that are optimized and validated for high-throughput screening. Conversion from the green to red emissive form can be achieved using a high-intensity light-emitting diode array, producing a stable pool of the red fluorescent form of Dendra2. This allows for rates of protein production or removal to be quantified in a plate reader or by fluorescence microscopy, providing a means to measure the potencies of inhibitors that affect these key processes.

  19. Cloning and partial characterization of the proteasome S4 ATPase from Plasmodium falciparum.

    PubMed

    Certad, G; Abrahem, A; Georges, E

    1999-11-01

    Certad, G., Abrahem, A., and Georges, E. 1999. Cloning and Partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Experimental Parasitology 93, 123-131. The ATP-ubiquitin-proteasome pathway mediates the nonlysosomal degradation of cytosolic proteins in eukaryotic cells. The activities of this pathway have been shown to regulate cell growth and differentiation through modulation of regulatory proteins. The proteasome is a large complex consisting of two multisubunit structures, the 20S and 19S(PA700) or P28 complexes, that combine to form the 26S particles. In this study, we describe the cloning of a cDNA encoding the proteasome subunit 4 ATPase homologue from Plasmodium falciparum (PFS4). Analysis of the PFS4 cDNA sequence shows an open reading frame encoding a deduced protein of 455 amino acids. Moreover, comparison of PFS4 cDNA sequence to that of genomic fragments encoding PFS4 showed identical sequences with no detectable introns. Database searches revealed a high sequence identity to those of rice, yeast, mouse, Drosophila, and human S4 ATPases. However, PFS4 contains two unique inserts of nine and seven amino acid residues in the N-terminal domain. Interestingly, only the rice S4 contains the latter (seven amino acids) insert with four identical amino acids. In vitro expression of the full-length cDNA encoding the PFS4, using a transcription-translation-coupled reticulocyte lysate, shows a 50-kDa [(35)S]methionine-labeled protein which was immunoprecipitated with PFS4 anti-peptide antiserum. Southern blot analysis of genomic DNA digests shows a single gene copy of PFS4 in P. falciparum. Of interest was the effect of the proteasome-specific natural product, lactacystin, on the growth of the parasite, with IC(50) values of 0.6-0.92 microM. The latter IC(50) values of lactacystin for different clones of P. falciparum are comparable to those obtained for mammalian cell lines (0.65 microM), suggesting the presence of a conserved

  20. Proteasome function is required for platelet production

    PubMed Central

    Shi, Dallas S.; Smith, Matthew C.P.; Campbell, Robert A.; Zimmerman, Patrick W.; Franks, Zechariah B.; Kraemer, Bjorn F.; Machlus, Kellie R.; Ling, Jing; Kamba, Patrick; Schwertz, Hansjörg; Rowley, Jesse W.; Miles, Rodney R.; Liu, Zhi-Jian; Sola-Visner, Martha; Italiano, Joseph E.; Christensen, Hilary; Kahr, Walter H.A.; Li, Dean Y.; Weyrich, Andrew S.

    2014-01-01

    The proteasome inhibiter bortezomib has been successfully used to treat patients with relapsed multiple myeloma; however, many of these patients become thrombocytopenic, and it is not clear how the proteasome influences platelet production. Here we determined that pharmacologic inhibition of proteasome activity blocks proplatelet formation in human and mouse megakaryocytes. We also found that megakaryocytes isolated from mice deficient for PSMC1, an essential subunit of the 26S proteasome, fail to produce proplatelets. Consistent with decreased proplatelet formation, mice lacking PSMC1 in platelets (Psmc1fl/fl Pf4-Cre mice) exhibited severe thrombocytopenia and died shortly after birth. The failure to produce proplatelets in proteasome-inhibited megakaryocytes was due to upregulation and hyperactivation of the small GTPase, RhoA, rather than NF-κB, as has been previously suggested. Inhibition of RhoA or its downstream target, Rho-associated protein kinase (ROCK), restored megakaryocyte proplatelet formation in the setting of proteasome inhibition in vitro. Similarly, fasudil, a ROCK inhibitor used clinically to treat cerebral vasospasm, restored platelet counts in adult mice that were made thrombocytopenic by tamoxifen-induced suppression of proteasome activity in megakaryocytes and platelets (Psmc1fl/fl Pdgf-Cre-ER mice). These results indicate that proteasome function is critical for thrombopoiesis, and suggest inhibition of RhoA signaling as a potential strategy to treat thrombocytopenia in bortezomib-treated multiple myeloma patients. PMID:25061876

  1. Oxidative challenge enhances REGγ-proteasome-dependent protein degradation.

    PubMed

    Zhang, Yuanyuan; Liu, Shuang; Zuo, Qiuhong; Wu, Lin; Ji, Lei; Zhai, Wanli; Xiao, Jianru; Chen, Jiwu; Li, Xiaotao

    2015-05-01

    Elimination of oxidized proteins is important to cells as accumulation of damaged proteins causes cellular dysfunction, disease, and aging. Abundant evidence shows that the 20S proteasome is largely responsible for degradation of oxidative proteins in both ubiquitin-dependent and ubiquitin-independent pathways. However, the role of the REGγ-proteasome in degrading oxidative proteins remains unclear. Here, we focus on two of the well-known REGγ-proteasome substrates, p21(Waf1/Cip1) and hepatitis C virus (HCV) core protein, to analyze the impact of oxidative stress on REGγ-proteasome functions. We demonstrate that REGγ-proteasome is essential for oxidative stress-induced rapid degradation of p21 and HCV proteins. Silencing REGγ abrogated this response in multiple cell lines. Furthermore, pretreatment with proteasome inhibitor MG132 completely blunted oxidant-induced p21 degradation, indicating a proteasome-dependent action. Cellular oxidation promoted REGγ-proteasome-dependent trypsin-like activity by enhancing the interaction between REGγ and 20S proteasome. Antioxidant could counteract oxidation-induced protein degradation, indicating that REGγ-proteasome activity may be regulated by redox state. This study provides further insights into the actions of a unique proteasome pathway in response to an oxidative stress environment, implying a novel molecular basis for REGγ-proteasome functions in antioxidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Inhibition of nuclear factor-{kappa}B and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma

    SciTech Connect

    Van Waes, Carter . E-mail: vanwaesc@nidcd.nih.gov; Chang, Angela A.; Lebowitz, Peter F.; Druzgal, Colleen H.; Chen, Zhong; Elsayed, Yusri A.; Sunwoo, John B.; Rudy, Susan; Morris, John C.; Mitchell, James B.; Camphausen, Kevin; Gius, David; Adams, Julian; Sausville, Edward A.; Conley, Barbara A.

    2005-12-01

    Purpose: To examine the effects the proteasome inhibitor bortezomib (VELCADE) on transcription factor nuclear factor-{kappa}B (NF-{kappa}B) and target genes and the feasibility of combination therapy with reirradiation in patients with recurrent head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: The tolerability and response to bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2} given twice weekly concurrent with daily reirradiation to 50-70 Gy was explored. Blood proteasome inhibition and NF-{kappa}B-modulated cytokines and factors were measured. Proteasome inhibition, nuclear localization of NF-{kappa}B phospho-p65, apoptosis, and expression of NF-{kappa}B-modulated mRNAs were compared in serial biopsies from accessible tumors. Results: The maximally tolerated dose was exceeded, and study was limited to 7 and 2 patients, respectively, given bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2}/dose with reirradiation. Grade 3 hypotension and hyponatremia were dose limiting. Mucositis was Grade 3 or less and was delayed. The mean blood proteasome inhibition at 1, 24, and 48 h after 0.6 mg/m{sup 2} was 32%, 16%, and 7% and after 0.9 mg/m{sup 2} was 56%, 26%, and 14%, respectively. Differences in proteasome and NF-{kappa}B activity, apoptosis, and expression of NF-{kappa}B-modulated cell cycle, apoptosis, and angiogenesis factor mRNAs were detected in 2 patients with minor tumor reductions and in serum NF-{kappa}B-modulated cytokines in 1 patient with a major tumor reduction. Conclusions: In combination with reirradiation, the maximally tolerated dose of bortezomib was exceeded at a dose of 0.6 mg/m{sup 2} and the threshold of proteasome inhibition. Although this regimen with reirradiation is not feasible, bortezomib induced detectable differences in NF-{kappa}B localization, apoptosis, and NF-{kappa}B-modulated genes and cytokines in tumor and serum in association with tumor reduction, indicating that other schedules of bortezomib combined with primary

  3. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    PubMed

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Nanoparticles Exacerbate Both Ubiquitin and Heat Shock Protein Expressions in Spinal Cord Injury: Neuroprotective Effects of the Proteasome Inhibitor Carfilzomib and the Antioxidant Compound H-290/51.

    PubMed

    Sharma, Hari S; Muresanu, Dafin F; Lafuente, Jose V; Sjöquist, Per-Ove; Patnaik, Ranjana; Sharma, Aruna

    2015-10-01

    compounds or proteasome inhibitors are required for neuroprotection in the NP-exposed traumatized group, and (iii) ubiquitin and HSP expressions play a key role in neuronal injury in SCI, not reported earlier.

  5. Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

    PubMed Central

    de Carvalho, Fabricio; Costa, Erico T.; Camargo, Anamaria A.; Gregorio, Juliana C.; Masotti, Cibele; Andrade, Valeria C.C.; Strauss, Bryan E.; Caballero, Otavia L.; Atanackovic, Djordje; Colleoni, Gisele W.B.

    2011-01-01

    a strategy for future therapies in MM, in particular in combination with proteasome inhibitors. PMID:22110734

  6. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    SciTech Connect

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated

  7. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma.

    PubMed

    Manasanch, Elisabet E; Korde, Neha; Zingone, Adriana; Tageja, Nishant; Fernandez de Larrea, Carlos; Bhutani, Manisha; Wu, Peter; Roschewski, Mark; Landgren, Ola

    2014-08-01

    Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.

  8. The 26S Proteasome Complex: An Attractive Target for Cancer Therapy

    PubMed Central

    Frankland-Searby, Sarah; Bhaumik, Sukesh R.

    2011-01-01

    The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers. PMID:22037302

  9. Combined 3D-QSAR, Molecular Docking and Molecular Dynamics Study on Derivatives of Peptide Epoxyketone and Tyropeptin-Boronic Acid as Inhibitors Against the β5 Subunit of Human 20S Proteasome

    PubMed Central

    Liu, Jianling; Zhang, Hong; Xiao, Zhengtao; Wang, Fangfang; Wang, Xia; Wang, Yonghua

    2011-01-01

    An abnormal ubiquitin-proteasome is found in many human diseases, especially in cancer, and has received extensive attention as a promising therapeutic target in recent years. In this work, several in silico models have been built with two classes of proteasome inhibitors (PIs) by using 3D-QSAR, homology modeling, molecular docking and molecular dynamics (MD) simulations. The study resulted in two types of satisfactory 3D-QSAR models, i.e., the CoMFA model (Q2 = 0.462, R2pred = 0.820) for epoxyketone inhibitors (EPK) and the CoMSIA model (Q2 = 0.622, R2pred = 0.821) for tyropeptin-boronic acid derivatives (TBA). From the contour maps, some key structural factors responsible for the activity of these two series of PIs are revealed. For EPK inhibitors, the N-cap part should have higher electropositivity; a large substituent such as a benzene ring is favored at the C6-position. In terms of TBA inhibitors, hydrophobic substituents with a larger size anisole group are preferential at the C8-position; higher electropositive substituents like a naphthalene group at the C3-position can enhance the activity of the drug by providing hydrogen bond interaction with the protein target. Molecular docking disclosed that residues Thr60, Thr80, Gly106 and Ser189 play a pivotal role in maintaining the drug-target interactions, which are consistent with the contour maps. MD simulations further indicated that the binding modes of each conformation derived from docking is stable and in accord with the corresponding structure extracted from MD simulation overall. These results can offer useful theoretical references for designing more potent PIs. PMID:21673924

  10. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    PubMed

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  11. New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells

    PubMed Central

    Padhye, Subhash; Yang, Huanjie; Jamadar, Abeda; Cui, Qiuzhi Cindy; Chavan, Deepak; Dominiak, Kristin; McKinney, Jaclyn; Banerjee, Sanjeev; Dou, Q. Ping; Sarkar, Fazlul H.

    2013-01-01

    Purpose Emerging evidence clearly suggests the potential chemopreventive and anti-tumor activity of a well known “natural agent” curcumin. However, studies have shown that curcumin is not readily bioavailable, and thus the tissue bioavailability of curcumin is also poor except for gastrointestinal track. Because of the potential biological activity of curcumin, many studies have attempted for making a better analog of cucumin that is equally effective or better with increased bioavailability, which was the purpose of our current study. Methods We have designed and synthesized new difluoro Knoevenagel condensates of curcumin and Schiff bases along with their copper (II) complexes and evaluated their biological activities with respect to the inhibitory effects on purified rabbit 26S proteasome, and growth inhibition and induction of apoptosis in colon and pancreatic cancer cell lines. Results All copper complexes possess distorted square planar geometries with 1:1 metal to ligand stoichiometry with reversible copper redox couple. The difluoro compound CDF exhibited inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome, and caused both growth inhibition of cancer cell lines and induced apoptotic cell death in our preliminary assessment. Conclusion Our results suggest that our newly synthesized classes of curcumin analogs could be useful as chemopreventive and/or therapeutic agents against cancers. PMID:19421843

  12. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  13. Cell-line-specific high background in the Proteasome-Glo assay of proteasome trypsin-like activity.

    PubMed

    Wilkins, Owen M; Downey, Sondra L; Weyburne, Emily S; Williams, David A; Mirabella, Anne C; Overkleeft, Herman S; Kisselev, Alexei F

    2014-04-15

    Proteasome-Glo is a homogeneous cell-based assay of proteasomal chymotrypsin-like, trypsin-like, and caspase-like activities using luminogenic substrates, commercially available from Promega. Here we report that the background activity from cleavage of the substrate of the trypsin-like sites by nonproteasomal proteases in multiple breast and lung cancer cell lines exceeds the activity of the proteasome. We also observed substantial background chymotrypsin-like activity in some cell lines. Thus, Proteasome-Glo assay must be used with caution, and it is necessary to include a specific proteasome inhibitor to determine the background for each proteasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The role of the proteasome in AML

    PubMed Central

    Csizmar, C M; Kim, D-H; Sachs, Z

    2016-01-01

    Acute myeloid leukemia (AML) is deadly hematologic malignancy. Despite a well-characterized genetic and molecular landscape, targeted therapies for AML have failed to significantly improve clinical outcomes. Over the past decade, proteasome inhibition has been demonstrated to be an effective therapeutic strategy in several hematologic malignancies. Proteasome inhibitors, such as bortezomib and carfilzomib, have become mainstays of treatment for multiple myeloma and mantle cell lymphoma. In light of this success, there has been a surge of literature exploring both the role of the proteasome and the effects of proteasome inhibition in AML. Pre-clinical studies have demonstrated that proteasome inhibition disrupts proliferative cell signaling pathways, exhibits cytotoxic synergism with other chemotherapeutics and induces autophagy of cancer-related proteins. Meanwhile, clinical trials incorporating bortezomib into combination chemotherapy regimens have reported a range of responses in AML patients, with complete remission rates >80% in some cases. Taken together, this preclinical and clinical evidence suggests that inhibition of the proteasome may be efficacious in this disease. In an effort to focus further investigation into this area, these recent studies and their findings are reviewed here. PMID:27911437

  15. Genetics of Proteasome Diseases

    PubMed Central

    Gomes, Aldrin V.

    2013-01-01

    The proteasome is a large, multiple subunit complex that is capable of degrading most intracellular proteins. Polymorphisms in proteasome subunits are associated with cardiovascular diseases, diabetes, neurological diseases, and cancer. One polymorphism in the proteasome gene PSMA6 (−8C/G) is associated with three different diseases: type 2 diabetes, myocardial infarction, and coronary artery disease. One type of proteasome, the immunoproteasome, which contains inducible catalytic subunits, is adapted to generate peptides for antigen presentation. It has recently been shown that mutations and polymorphisms in the immunoproteasome catalytic subunit PSMB8 are associated with several inflammatory and autoinflammatory diseases including Nakajo-Nishimura syndrome, CANDLE syndrome, and intestinal M. tuberculosis infection. This comprehensive review describes the disease-related polymorphisms in proteasome genes associated with human diseases and the physiological modulation of proteasome function by these polymorphisms. Given the large number of subunits and the central importance of the proteasome in human physiology as well as the fast pace of detection of proteasome polymorphisms associated with human diseases, it is likely that other polymorphisms in proteasome genes associated with diseases will be detected in the near future. While disease-associated polymorphisms are now readily discovered, the challenge will be to use this genetic information for clinical benefit. PMID:24490108

  16. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome

    PubMed Central

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-01-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans. DOI: http://dx.doi.org/10.7554/eLife.08467.001 PMID:26327695

  17. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    PubMed

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities.

  18. The influence of proteasome inhibitor MG132, external radiation, and unlabeled antibody on the tumor uptake and biodistribution of (188)re-labeled anti-E6 C1P5 antibody in cervical cancer in mice.

    PubMed

    Phaeton, Rébécca; Wang, Xing Guo; Einstein, Mark H; Goldberg, Gary L; Casadevall, Arturo; Dadachova, Ekaterina

    2010-02-15

    Human papillomavirus (HPV) infection is considered a necessary step for the development of cervical cancer, and >95% of all cervical cancers have detectable HPV sequences. The authors of this report recently demonstrated the efficacy of radioimmunotherapy (RIT) targeting viral oncoprotein E6 in the treatment of experimental cervical cancer. They hypothesized that the pretreatment of tumor cells with various agents that cause cell death and/or elevation of E6 levels would increase the accumulation of radiolabeled antibodies to E6 in cervical tumors. HPV type 16 (HPV-16)-positive CasKi cells were treated in vitro with up to 6 grays of external radiation, or with the proteasome inhibitor MG-132, or with unlabeled anti-E6 antibody C1P5; and cell death was assessed. The biodistribution of (188)Re-labeled C1P5 antibody was determined in both control and radiation MG-132-treated CasKi tumor-bearing nude mice. (188)Re-C1P5 antibody demonstrated tumor specificity, very low uptake, and fast clearance from the major organs. The amount of tumor uptake was enhanced by MG-132 but was unaffected by pretreatment with radiation. In addition, in vitro studies demonstrated an unanticipated effect of unlabeled antibody on the amount of cell death, a finding that was suggested by the authors' previous in vivo studies in a CasKi tumor model. The current results indicated that pretreatment of cervical tumors with the proteasome inhibitor MG-132 and with unlabeled antibody to E6 can serve as a means to generate nonviable cancer cells and to elevate the levels of target oncoproteins in the cells for increasing the accumulation of targeted radiolabeled antibodies in tumors. These results favor the further development of RIT for cervical cancers targeting viral antigens. (c) 2010 American Cancer Society.

  19. The influence of proteasome inhibitor MG132, external radiation and unlabeled antibody on the tumor uptake and biodistribution of 188Re-labeled anti-E6 C1P5 antibody in cervical cancer in mice

    PubMed Central

    Phaeton, Rébécca; Wang, Xing Guo; Einstein, Mark H.; Goldberg, Gary L.; Casadevall, Arturo; Dadachova, Ekaterina

    2009-01-01

    Background Human Papillomavirus (HPV) infection is considered a necessary step for the development of cervical cancer and >95% of all cervical cancers have detectable HPV sequences. We have recently demonstrated the efficacy of radioimmunotherapy (RIT) which targeted viral oncoprotein E6 in treatment of experimental cervical cancer We hypothesized that pre-treatment of tumor cells with various agents which cause cell death and/or elevation of E6 levels would increase the accumulation of radiolabeled antibodies to E6 in cervical tumors. Methods HPV-16 positive CasKi cells were treated in vitro with up to 6 Gy of external radiation, or proteasome inhibitor MG-132 or unlabeled anti-E6 antibody C1P5 and cell death was assessed. Biodistribution of 188Rhenium (188Re)-labeled C1P5 antibody was performed in both control and radiation MG-132 treated CasKi tumor-bearing nude mice. Results . 188Re-C1P5 antibody demonstrated tumor specificity and very low uptake and fast clearance from the major organs. The amount of tumor uptake was enhanced by MG-132 but was unaffected by pre-treatment with radiation. In addition, in vitro studies demonstrated an unanticipated effect of unlabeled antibody on the amount of cell death, a finding that was suggested by our previous in vivo studies in CasKi tumor model. Conclusion We demonstrated that pre-treatment of cervical tumors with proteasome inhibitor MG-132 and with unlabeled antibody to E6 can serve as a means to generate non-viable cancer cells and to elevate the levels of target oncoproteins in the cells for increasing the accumulation of targeted radiolabeled antibodies in tumors. These results favor further development of RIT of cervical cancers targeting viral antigens. PMID:20127955

  20. Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes.

    PubMed

    Beyette, J; Mason, G G; Murray, R Z; Cohen, G M; Rivett, A J

    1998-06-01

    The induction of apoptosis in thymocytes by the glucocorticoid dexamethasone was used as a model system to investigate whether there are changes in 20 S and 26 S proteasome activities during apoptosis. We observed that thymocytes contain high concentrations of proteasomes and that following treatment with dexamethasone, cell extracts showed a decrease in proteasome chymotrypsin-like activity which correlated with the degree of apoptosis observed. The decrease in chymotrypsin-like activity of 20 S and 26S proteasomes was still apparent after these complexes had been partially purified from apoptotic thymocyte extracts and was therefore not due to competition resulting from a general increase in protein turnover. The trypsin-like and peptidylglutamylpeptide hydrolase activities of proteasome complexes were also observed to decrease during apoptosis, but these decreases were reversed by the inhibition of apoptosis by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone. However, the chymotrypsin-like activity of proteasomes decreased further in the presence of the apoptosis inhibitor. Val-Ala-Asp-fluoromethylketone was found to inhibit the chymotrypsin- and trypsin-like activity of 26 S proteasomes in vitro. The decrease in proteasome activities in apoptosis did not appear to be due to a decrease in the concentration of total cellular proteasomes. Thus, the early decreases in 20 S and 26 S proteasome activities during apoptosis appear to be due to a down-regulation of their proteolytic activities and not to a decrease in their protein concentration. These data suggest that proteasomes may be responsible, in thymocytes, for the turnover of a protein that functions as a positive regulator of apoptosis.

  1. The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation.

    PubMed

    Staszczak, Magdalena

    2008-03-01

    The white rot fungus Trametes versicolor is an efficient lignin degrader with ecological significance and industrial applications. Lignin-modifying enzymes of white rot fungi are mainly produced during secondary metabolism triggered in these microorganisms by nutrient deprivation. Selective ubiquitin/proteasome-mediated proteolysis is known to play a crucial role in the response of cells to various stresses such as nutrient limitation, heat shock, and heavy metal exposure. Previous studies from our laboratory demonstrated that proteasomal degradation of intracellular proteins is involved in the regulation of laccase, a major ligninolytic enzyme of T. versicolor, in response to cadmium. In the present study, it was found that the 6-h nitrogen starvation leads to depletion of intracellular free ubiquitin pool in T. versicolor. The difference in the intracellular level of free monomeric ubiquitin observed between the mycelium extract from the nitrogen-deprived and that from the nitrogen-sufficient culture was accompanied by the different pattern of ubiquitin-dependent degradation. Furthermore, it was found that nitrogen deprivation affected 26S proteasome activities of T. versicolor. Proteasome inhibition by lactacystin beta-lactone, a highly specific agent, increased laccase activity in nitrogen-deprived cultures, but not in nitrogen-sufficient cultures. The present study implicates the ubiquitin/proteasome-mediated proteolytic pathway in the response of T. versicolor to nitrogen deprivation.

  2. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  3. The 26S proteasome is a multifaceted target for anti-cancer therapies.

    PubMed

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G; Garabadzhiu, Alexander V; Melino, Gerry; Barlev, Nickolai A

    2015-09-22

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.

  4. The 26S proteasome is a multifaceted target for anti-cancer therapies

    PubMed Central

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G.; Garabadzhiu, Alexander V.; Melino, Gerry; Barlev, Nickolai A.

    2015-01-01

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications. PMID:26295307

  5. Intermediate filament transcription in astrocytes is repressed by proteasome inhibition

    PubMed Central

    Middeldorp, Jinte; Kamphuis, Willem; Sluijs, Jacqueline A.; Achoui, Dalila; Leenaars, Cathalijn H. C.; Feenstra, Matthijs G. P.; van Tijn, Paula; Fischer, David F.; Berkers, Celia; Ovaa, Huib; Quinlan, Roy A.; Hol, Elly M.

    2009-01-01

    Increased expression of the astrocytic intermediate filament protein glial fibrillary acidic protein (GFAP) is a characteristic of astrogliosis. This process occurs in the brain during aging and neurodegeneration and coincides with impairment of the ubiquitin proteasome system. Inhibition of the proteasome impairs protein degradation; therefore, we hypothesized that the increase in GFAP may be the result of impaired proteasomal activity in astrocytes. We investigated the effect of proteasome inhibitors on GFAP expression and other intermediate filament proteins in human astrocytoma cells and in a rat brain model for astrogliosis. Extensive quantitative RT-PCR, immunocytochemistry, and Western blot analysis resulted unexpectedly in a strong decrease of GFAP mRNA to <4% of control levels [Control (DMSO) 100±19.2%; proteasome inhibitor (epoxomicin) 3.5±1.3%, n=8; P≤0.001] and a loss of GFAP protein in astrocytes in vitro. We show that the proteasome alters GFAP promoter activity, possibly mediated by transcription factors as demonstrated by a GFAP promoter-luciferase assay and RT2 Profiler PCR array for human transcription factors. Most important, we demonstrate that proteasome inhibitors also reduce GFAP and vimentin expression in a rat model for induced astrogliosis in vivo. Therefore, proteasome inhibitors could serve as a potential therapy to modulate astrogliosis associated with CNS injuries and disease.—Middeldorp, J., Kamphuis, W., Sluijs, J. A., Achoui, D., Leenaars, C. H. C., Feenstra, M. G. P., van Tijn, P., Fischer, D. F., Berkers, C., Ovaa, H., Quinlan, R. A., Hol, E. M. Intermediate filament transcription in astrocytes is repressed by proteasome inhibition. PMID:19332645

  6. The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors

    PubMed Central

    Johnson, Daniel E.

    2014-01-01

    The destruction of proteins via the ubiquitin-proteasome system is a multi-step, complex process involving polyubiquitination of substrate proteins, followed by proteolytic degradation by the macromolecular 26S proteasome complex. Inhibitors of the proteasome promote the accumulation of proteins that are deleterious to cell survival, and represent promising anti-cancer agents. In multiple myeloma and mantle cell lymphoma, treatment with the first generation proteasome inhibitor bortezomib, or the second generation inhibitor carfilzomib, has demonstrated significant therapeutic benefit in humans. This has prompted US FDA approval of these agents and development of additional second generation compounds with improved properties. There is considerable interest in extending the benefits of proteasome inhibitors to the treatment of solid tumor malignancies. Herein we review progress that has been made in the preclinical development and clinical evaluation of different proteasome inhibitors in solid tumors. In addition, we describe several novel approaches that are currently being pursued for the treatment of solid tumors, including drug combinatorial strategies incorporating proteasome inhibitors, and the targeting of components of the ubiquitin-proteasome system that are distinct from the 26S proteasome complex. PMID:24659480

  7. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  8. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-04

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  9. Phase 1b trial of proteasome inhibitor carfilzomib with irinotecan in lung cancer and other irinotecan-sensitive malignancies that have progressed on prior therapy (Onyx IST reference number: CAR-IST-553).

    PubMed

    Arnold, Susanne M; Chansky, Kari; Leggas, Markos; Thompson, Michael A; Villano, John L; Hamm, John; Sanborn, Rachel E; Weiss, Glen J; Chatta, Gurkamal; Baggstrom, Maria Q

    2017-02-16

    Introduction Proteasome inhibition is an established therapy for many malignancies. Carfilzomib, a novel proteasome inhibitor, was combined with irinotecan to provide a synergistic approach in relapsed, irinotecan-sensitive cancers. Materials and Methods Patients with relapsed irinotecan-sensitive cancers received carfilzomib (Day 1, 2, 8, 9, 15, and 16) at three dose levels (20/27 mg/m2, 20/36 mg/m2 and 20/45 mg/m2/day) in combination with irinotecan (Days 1, 8 and 15) at 125 mg/m2/day. Key eligibility criteria included measurable disease, a Zubrod PS of 0 or 1, and acceptable organ function. Patients with stable asymptomatic brain metastases were eligible. Dose escalation utilized a standard 3 + 3 design. Results Overall, 16 patients were enrolled to three dose levels, with four patients replaced. Three patients experienced dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) was exceeded in Cohort 3. The RP2 dose was carfilzomib 20/36 mg/m(2) (given on Days 1, 2, 8, 9, 15, and 16) and irinotecan 125 mg/m2 (Days 1, 8 and 15). Common Grade (Gr) 3 and 4 toxicities included fatigue (19%), thrombocytopenia (19%), and diarrhea (13%). Conclusions Irinotecan and carfilzomib were well tolerated, with common toxicities of fatigue, thrombocytopenia and neutropenic fever. Objective clinical response was 19% (one confirmed partial response (PR) in small cell lung cancer (SCLC) and two unconfirmed); stable disease (SD) was 6% for a disease control rate (DCR) of 25%. The recommended phase II dose was carfilzomib 20/36 mg/m(2) and irinotecan125 mg/m2. The phase II evaluation is ongoing in relapsed small cell lung cancer.

  10. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    PubMed

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  11. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  12. Proteasome proteolysis supports stimulated platelet function and thrombosis.

    PubMed

    Gupta, Nilaksh; Li, Wei; Willard, Belinda; Silverstein, Roy L; McIntyre, Thomas M

    2014-01-01

    Proteasome inhibitors used in the treatment of hematologic cancers also reduce thrombosis. Whether the proteasome participates in platelet activation or function is unclear because little is known of the proteasome in these terminally differentiated cells. Platelets displayed all 3 primary proteasome protease activities, which MG132 and bortezomib (Velcade) inhibited. Proteasome substrates are marked by ubiquitin, and platelets contained a functional ubiquitination system that modified the proteome by monoubiquitination and polyubiquitination. Systemic MG132 strongly suppressed the formation of occlusive, platelet-rich thrombi in FeCl3-damaged carotid arteries. Transfusion of platelets treated ex vivo with MG132 and washed before transfusion into thrombocytopenic mice also reduced carotid artery thrombosis. Proteasome inhibition reduced platelet aggregation by low thrombin concentrations and ristocetin-stimulated agglutination through the glycoprotein Ib-IX-V complex. This receptor was not appropriately internalized after proteasome inhibition in stimulated platelets, and spreading and clot retraction after MG132 exposure also were decreased. The effects of proteasome inhibitors were not confined to a single receptor as MG132 suppressed thrombin-stimulated, ADP-stimulated, and lipopolysaccharide-stimulated microparticle shedding. Proteasome inhibition increased ubiquitin decoration of cytoplasmic proteins, including the cytoskeletal proteins Filamin A and Talin-1. Mass spectrometry revealed a single MG132-sensitive tryptic cleavage after R1745 in an extended Filamin A loop, which would separate its actin-binding domain from its carboxy terminal glycoprotein Ibα-binding domain. Platelets contain a ubiquitin/proteasome system that marks cytoskeletal proteins for proteolytic modification to promote productive platelet-platelet and platelet-wall interactions.

  13. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    PubMed Central

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2012-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) flies highly active 26S proteasomes are preponderant. Old (43–47 days) flies of both genders also exhibit a decline (~50%) in ATP levels, which is relevant to 26S proteasomes, as their assembly is ATP-dependent. The steep declines in 26S proteasome and ATP levels were observed at an age (43–47 days) when the flies exhibited a marked drop in locomotor performance, attesting that these are “old age” events. Remarkably, treatment with a proteasome inhibitor increases ubiquitinated protein levels and shortens the life span of old but not young flies. In conclusion, our data reveal a previously unknown mechanism that perturbs proteasome activity in “old-age” female and male Drosophila most likely depriving them of the ability to effectively cope with proteotoxic damages caused by environmental and/or genetic factors. PMID:17413001

  14. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65

    PubMed Central

    2013-01-01

    Background In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. Results The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. Conclusions The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm

  15. Disulfiram, as a candidate NF-κB and proteasome inhibitor, prevents endometriotic implant growing in a rat model of endometriosis.

    PubMed

    Celik, O; Ersahin, A; Acet, M; Celik, N; Baykus, Y; Deniz, R; Ozerol, E; Ozerol, I

    2016-10-01

    Disulfiram (DSF) exerts its therapeutic effects through oxidative, proteasome, and nuclear factor kappa beta (NF-κB) pathways. The study was planned to test the impact of DSF on growing of endometriotic implants in rats with experimentally induced endometriosis. Thirty rats were labeled as the control (n = 8), sham (n = 6), GnRH-agonist (n = 8) and the DSF (n = 8) groups. The rats in the group 3 exposed to single dose leuprolide acetate. The rats in group 4 were treated with DSF for 21 days. The serum activity of oxidant and antioxidant markers, total oxidant status (TOS), total antioxidant status (TAS), interleukin-1β, and tumor necrosis factor-α (TNF-α) were determined. Implants were processed for NF-κB, PCNA, and CD34 immunostaining. The serum concentration of malondialdehyde in the DSF group was significantly higher than those in other groups. The concentration of TAS, TNF-α, and interleukin-1β in the DSF group considerably decreased compared to control group. Following treatment with DSF while the percentage of Grade 1 and 2 implants increased the percentage of Grade 3 and 4 implants decreased. The implants disappeared totally in two cases in the DSF group and one case in the GnRH-agonist group. The mean H-Scores of implant NF-κB and PCNA in DSF treated animals were found to significantly lower than those of the control group. By decreasing NF-κB expression, angiogenesis, and cell proliferation DSF prevents the growth of endometriotic implants.

  16. Harnessing Proteasome Dynamics and Allostery in Drug Design

    PubMed Central

    Osmulski, Pawel A.

    2014-01-01

    Abstract Significance: The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. Recent Advances: Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. Critical Issues: Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. Future Directions: New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases. Antioxid. Redox Signal. 21, 2286–2301. PMID:24410482

  17. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    SciTech Connect

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  18. The ubiquitin proteasome system and myocardial ischemia

    PubMed Central

    Calise, Justine

    2013-01-01

    The ubiquitin proteasome system (UPS) has been the subject of intensive research over the past 20 years to define its role in normal physiology and in pathophysiology. Many of these studies have focused in on the cardiovascular system and have determined that the UPS becomes dysfunctional in several pathologies such as familial and idiopathic cardiomyopathies, atherosclerosis, and myocardial ischemia. This review presents a synopsis of the literature as it relates to the role of the UPS in myocardial ischemia. Studies have shown that the UPS is dysfunctional during myocardial ischemia, and recent studies have shed some light on possible mechanisms. Other studies have defined a role for the UPS in ischemic preconditioning which is best associated with myocardial ischemia and is thus presented here. Very recent studies have started to define roles for specific proteasome subunits and components of the ubiquitination machinery in various aspects of myocardial ischemia. Lastly, despite the evidence linking myocardial ischemia and proteasome dysfunction, there are continuing suggestions that proteasome inhibitors may be useful to mitigate ischemic injury. This review presents the rationale behind this and discusses both supportive and nonsupportive studies and presents possible future directions that may help in clarifying this controversy. PMID:23220331

  19. Long-term incubation with proteasome inhibitors (PIs) induces IκBα degradation via the lysosomal pathway in an IκB kinase (IKK)-dependent and IKK-independent manner.

    PubMed

    Lee, Kyoung-Hee; Jeong, Jiyeong; Yoo, Chul-Gyu

    2013-11-08

    Proteasome inhibitors (PIs) have been reported to induce apoptosis in many types of tumor. Their apoptotic activities have been suggested to be associated with the up-regulation of molecules implicated in pro-apoptotic cascades such as p53, p21(Waf1), and p27(Kip1). Moreover, the blocking of NF-κB nuclear translocation via the stabilization of IκB is an important mechanism of PI-induced apoptosis. However, we found that long-term incubation with PIs (PS-341 or MG132) increased NF-κB-regulated gene expression such as COX-2, cIAP2, XIAP, and IL-8 in a dose- and time-dependent manner, which was mediated by phosphorylation of IκBα and its subsequent degradation via the alternative route, lysosome. Overexpression of the IκBα superrepressor (IκBα-SR) blocked PI-induced NF-κB activation. Treatment with lysosomal inhibitors (ammonium chloride or chloroquine) or inhibitors of cathepsins (Z-FF-FMK or Z-FA-FMK) or knock-down of LC3B expression by siRNAs suppressed PI-induced IκBα degradation. Furthermore, we found that both IKK-dependent and IKK-independent pathways were required for PI-induced IκBα degradation. Pretreatment with IKKβ specific inhibitor, SC-514, partially suppressed IκBα degradation and IL-8 production by PIs. Blockade of IKK activity using insolubilization by heat shock (HS) and knock-down by siRNAs for IKKβ only delayed IκBα degradation up to 8 h after treatment with PIs. In addition, PIs induced Akt-dependent inactivation of GSK-3β. Inactive GSK-3β accelerated PI-induced IκBα degradation. Overexpression of active GSK-3β (S9A) or knock-down of GSK-3β delayed PI-induced IκBα degradation. Collectively, our data demonstrate that long-term incubation with PIs activates NF-κB, which is mediated by IκBα degradation via the lysosome in an IKK-dependent and IKK-independent manner.

  20. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  1. Proteasome activation as a novel anti-aging strategy.

    PubMed

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011).

  2. Stress regulation of the PAN-proteasome system in the extreme halophilic archaeon Halobacterium.

    PubMed

    Chamieh, H; Marty, V; Guetta, D; Perollier, A; Franzetti, B

    2012-03-01

    In Archaea, the importance of the proteasome system for basic biological processes is only poorly understood. Proteasomes were partially purified from Halobacterium by native gradient density ultracentrifugation. The peptidase activity profiles showed that the 20S proteasome accumulation is altered depending on the physiological state of the cells. The amount of active 20S particles increases in Halobacterium cells as a response to thermal and low salt stresses. In the same conditions, Northern experiments showed a positive transcriptional regulation of the alpha and beta proteasome subunits as well as of the two proteasome regulatory ATPases, PANA and PANB. Co-immunoprecipitation experiments demonstrated the existence of a physical interaction between the two Proteasome Activating Nucleotidase (PAN) proteins in cell extracts. Thus, a direct regulation occurs on the PAN-proteasome components to adjust the protein degradation activity to growth and environmental constraints. These results also indicate that, in extreme halophiles, proteasome mediated proteolysis is an important aspect of low salt stress response. The tri-peptide vinyl sulfone inhibitor NLVS was used in cell cultures to study the in vivo function of proteasome in Halobacterium. The chemical inhibition of proteasomes was measured in the cellular extracts. It has no effect on cell growth and mortality under normal growth conditions as well as under heat shock conditions. These results suggest that the PAN activators or other proteases compensate for loss of proteasome activity in stress conditions.

  3. Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis

    PubMed Central

    Hines, John; Groll, Michael; Fahnestock, Margaret; Crews, Craig M.

    2008-01-01

    SUMMARY Neurotrophic small molecules have the potential to aid in the treatment of neuronal injury and neurodegenerative diseases. The natural product fellutamide B, originally isolated from Penicillium fellutanum, potently induces nerve growth factor (NGF) release from fibroblasts and glial-derived cells, although the mechanism for this neurotrophic activity has not been elucidated. Here, we report that fellutamide B potently inhibits proteasome catalytic activity. High resolution structural information obtained from co-crystallization of the 20S proteasome reveals novel aspects regarding β-subunit binding and adduct formation by fellutamide B to inhibit their hydrolytic activity. We demonstrate that fellutamide B and other proteasome inhibitors increased NGF gene transcription via a cis-acting element (or elements) in the promoter. These results demonstrate an unrecognized connection between proteasome inhibition and NGF production, suggesting a possible new strategy in the development of neurotrophic agents. PMID:18482702

  4. Ubiquitin recognition by the proteasome.

    PubMed

    Saeki, Yasushi

    2017-02-01

    The 26S proteasome is a 2.5-MDa complex responsible for the selective, ATP-dependent degradation of ubiquitylated proteins in eukaryotic cells. Substrates in hundreds cellular pathways are timely ubiquitylated and converged to the proteasome by direct recognition or by multiple shuttle factors. Engagement of substrate protein triggers conformational changes of the proteasome, which drive substrate unfolding, deubiquitylation and translocation of substrates to proteolytic sites. Recent studies have challenged the previous paradigm that Lys48-linked tetraubiquitin is a minimal degradation signal: in addition, monoubiquitylation or multiple short ubiquitylations can serve as the targeting signal for proteasomal degradation. In this review, I highlight recent advances in our understanding of the proteasome structure, the ubiquitin topology in proteasome targeting, and the cellular factors that regulate proteasomal degradation. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. CRM1 Inhibition Sensitizes Drug Resistant Human Myeloma Cells to Topoisomerase II and Proteasome Inhibitors both In Vitro and Ex Vivo

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Emmons, Michael F.; Cubitt, Christopher L.; Kauffman, Michael; Shacham, Sharon; Hazlehurst, Lori A.; Sullivan, Daniel M.

    2013-01-01

    Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM. CRM1 (chromosome maintenance protein-1) is a ubiquitous protein that exports large proteins (>40 kDa) from the nucleus to the cytoplasm. We found that small-molecule Selective Inhibitors of Nuclear Export (SINE) prevent CRM1-mediated export of p53 and topoisomerase IIα (topo IIα). SINE's CRM1-inhibiting activity was verified by nuclear-cytoplasmic fractionation and immunocytochemical staining of the CRM1 cargoes p53 and topo IIα in MM cells. We found that SINE molecules reduced cell viability and induced apoptosis when used as both single agents in the sub-micromolar range and when combined with doxorubicin, bortezomib, or carfilzomib but not lenalidomide, melphalan, or dexamethasone. In addition, CRM1 inhibition sensitized MM cell lines and patient myeloma cells to doxorubicin, bortezomib, and carfilzomib but did not affect peripheral blood mononuclear or non-myeloma bone marrow mononuclear cells as shown by cell viability and apoptosis assay. Drug resistance induced by co-culture of myeloma cells with bone marrow stroma cells was circumvented by the addition of SINE molecules. These results support the continued development of SINE for patients with MM. PMID:24155773

  6. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming.

    PubMed

    Riz, Irene; Hawley, Teresa S; Marsal, Jeffrey W; Hawley, Robert G

    2016-10-11

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its positive regulator, the autophagy receptor sequestosome 1 (SQSTM1)/p62. The eukaryotic translation initiation factor gene EIF4E3 was among the Nrf2 target genes upregulated in LP-1/Cfz cells, suggesting existence of a positive feedback loop. In line with this, we found that siRNA knockdown of eIF4E3 decreased Nrf2 protein levels. On the other hand, elevated SQSTM1/p62 levels were due at least in part to activation of the PERK-eIF2α pathway. LP-1/Cfz cells had decreased levels of reactive oxygen species as well as elevated levels of fatty acid oxidation and prosurvival autophagy. Genetic and pharmacologic inhibition of the Nrf2-EIF4E3 axis or the PERK-eIF2α pathway, disruption of redox homeostasis or inhibition of fatty acid oxidation or autophagy conferred sensitivity to carfilzomib. Our findings were supported by clinical data where increased EIF4E3 expression was predictive of Nrf2 target gene upregulation in a subgroup of patients with chemoresistant minimal residual disease and relapsed/refractory MM. Thus, our data offer a preclinical rationale for including inhibitors of the SQSTM1/p62-Nrf2 pathway to the treatment regimens for certain advanced stage MM patients.

  7. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming

    PubMed Central

    Riz, Irene; Hawley, Teresa S.; Marsal, Jeffrey W.; Hawley, Robert G.

    2016-01-01

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its positive regulator, the autophagy receptor sequestosome 1 (SQSTM1)/p62. The eukaryotic translation initiation factor gene EIF4E3 was among the Nrf2 target genes upregulated in LP-1/Cfz cells, suggesting existence of a positive feedback loop. In line with this, we found that siRNA knockdown of eIF4E3 decreased Nrf2 protein levels. On the other hand, elevated SQSTM1/p62 levels were due at least in part to activation of the PERK-eIF2α pathway. LP-1/Cfz cells had decreased levels of reactive oxygen species as well as elevated levels of fatty acid oxidation and prosurvival autophagy. Genetic and pharmacologic inhibition of the Nrf2-EIF4E3 axis or the PERK-eIF2α pathway, disruption of redox homeostasis or inhibition of fatty acid oxidation or autophagy conferred sensitivity to carfilzomib. Our findings were supported by clinical data where increased EIF4E3 expression was predictive of Nrf2 target gene upregulation in a subgroup of patients with chemoresistant minimal residual disease and relapsed/refractory MM. Thus, our data offer a preclinical rationale for including inhibitors of the SQSTM1/p62-Nrf2 pathway to the treatment regimens for certain advanced stage MM patients. PMID:27626179

  8. Recruitment and dynamics of proteasome association with rhTRIM5α cytoplasmic complexes during HIV-1 infection.

    PubMed

    Danielson, Cindy M; Cianci, Gianguido C; Hope, Thomas J

    2012-09-01

    A variety of proteins have been identified that restrict infection by different viruses. One such restriction factor is the rhesus macaque variant of TRIM5α (rhTRIM5α), which potently blocks infection by HIV-1. The block to infection mediated by rhTRIM5α occurs early after entry into the host cell, generally prior to reverse transcription. However, proteasome inhibitors reveal an intermediate step of restriction in which virus can complete reverse transcription, but still fails to infect the cell. While proteasome inhibitors have been a useful tool in understanding how restriction takes place, the role of the proteasome itself during restriction has not yet been examined. Here, we characterize the interaction of rhTRIM5α and incoming virions with the proteasome. We show that proteasomes localize to rhTRIM5α cytoplasmic bodies, and this localization is more evident when the activity of the proteasome is inhibited pharmacologically. We also show that restricted virus associates with complexes of proteasomes and rhTRIM5α, suggesting that rhTRIM5α utilizes the proteasome during restriction. Finally, live cell imaging experiments reveal that virus associates with proteasomes, and proteasome inhibition affects the duration of association. Taken together, these studies implicate the proteasome as playing a functional role during rhTRIM5α restriction of incoming virions. © 2012 John Wiley & Sons A/S.

  9. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation.

    PubMed

    Wallace, Andrew D; Cao, Yan; Chandramouleeswaran, Sindhu; Cidlowski, John A

    2010-12-01

    Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.

  10. The role of sperm proteasomes during sperm aster formation and early zygote development: implications for fertilization failure in humans.

    PubMed

    Rawe, Vanesa Y; Díaz, Emilce S; Abdelmassih, Roger; Wójcik, Cezary; Morales, Patricio; Sutovsky, Peter; Chemes, Héctor E

    2008-03-01

    BACKGROUND Sperm aster organization during bovine and human fertilization requires a paternally-derived centriole that must first disengage from the sperm tail connecting-piece. We investigated the participation of the 26S proteasome in this process. METHODS Proteasome localization and enzymatic activity were studied in normal and pathological human spermatozoa by immunocytochemistry and enzyme-substrate assays. The role of proteasomes during bovine zygote development was investigated using a pharmacological proteasome-inhibitor, MG132, and with anti-proteasome antibodies delivered by Streptolysin O-permeabilization or with the Chariot reagent. Human zygotes discarded after ICSI failures (n = 28) were also examined. RESULTS Proteasomes were localized in the sperm acrosome and connecting-piece, as well as in the pronuclei of bovine and human zygotes. Proteasomal enzymatic activities were decreased in defective human spermatozoa. Disrupted sperm aster formation and pronuclear development were found after pharmacological and immunological block of proteasomes in human/bovine spermatozoa and oocytes, as well as in 28 discarded human post-ICSI fertilization failures. CONCLUSIONS Specific proteasome inhibition disrupts sperm aster formation and pronuclear development/apposition in bovine and human zygotes. Human spermatozoa with defective centriolar/pericentriolar structures have decreased proteasomal enzymatic activity. Release of a functional sperm centriole that acts as a zygote microtubule-organizing center probably relies on selective proteasomal proteolysis. These findings suggest an important role of sperm proteasomes in zygotic development.

  11. The role of proteasome inhibition in the treatment of malignant and non-malignant hematologic disorders.

    PubMed

    Citrin, Rebecca; Foster, Jessica B; Teachey, David T

    2016-09-01

    Proteasome inhibitors have garnered interest as novel chemotherapeutic agents based on their ability to inhibit the growth of cancer cells by altering the balance of intracellular proteins. Initial clinical trials of this drug class focused on bortezomib, a reversible inhibitor of the 20S proteasome, with promising results for the treatment of adult hematologic malignancies, including multiple myeloma and non-Hodgkin lymphoma. This article will review the use of bortezomib and other proteasome inhibitors in both adult and pediatric populations, with a focus on their use in pediatrics. Expert commentary: Bortezomib moved into the pediatric oncology arena with encouraging results in multiple early phase trials for relapsed acute lymphoblastic leukemia and acute myeloid leukemia. Bortezomib is also being studied in the treatment of non-malignant disorders, including antibody-mediated allograft rejection, graft-versus-host disease, and autoimmune cytopenias. The numerous applications of bortezomib have inspired the development of second-generation proteasome inhibitors.

  12. The Proteasome Inhibition Model of Parkinson’s Disease

    PubMed Central

    Bentea, Eduard; Verbruggen, Lise; Massie, Ann

    2016-01-01

    The pathological hallmarks of Parkinson’s disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson’s disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson’s disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson’s disease that might provide novel clues to unravel the complex pathogenesis of this disorder. PMID:27802243

  13. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma.

    PubMed

    Song, Y; Ray, A; Li, S; Das, D S; Tai, Y T; Carrasco, R D; Chauhan, D; Anderson, K C

    2016-09-01

    Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.

  14. Effects of Hydroxy Groups in the A-Ring on the Anti-proteasome Activity of Flavone.

    PubMed

    Nakamura, Kasumi; Yang, Jia-Hua; Sato, Eiji; Miura, Naoyuki; Wu, Yi-Xin

    2015-01-01

    The ubiquitin-proteasome pathway plays an important role in regulating apoptosis and the cell cycle. Recently, proteasome inhibitors have been shown to have antitumor effects and have been used in anticancer therapy for several cancers such as multiple myeloma. Although some flavones, such as apigenin, chrysin and luteolin, have a specific role in the inhibition of proteasome activity and induced apoptosis in some reports, these findings did not address all flavone types. To further investigate the proteasome-inhibitory mechanism of flavonoids, we examined the inhibitory activity of 5,6,7-trihydroxyflavone, baicalein and 5,6,7,4'-tetrahydroxyflavone, scutellarein on extracted proteasomes from mice and cancer cells. Unlike the other flavones, baicalein and scutellarein did not inhibit proteasome activity or accumulate levels of ubiquitinated proteins. These results indicate that flavones with hydroxy groups at positions 5, 6 and 7 of the A-ring lack the anti-proteasome function.

  15. Proteasome activity and its relationship with protein phosphorylation during capacitation and acrosome reaction in human spermatozoa.

    PubMed

    Morales, Patricio; Díaz, Emilce S; Kong, Milene

    2007-01-01

    We have shown that the proteasome is present in mammalian sperm and plays a role during fertilisation. In this work we studied the relationship between protein phosphorylation and proteasomal activity in human sperm. Aliquots of motile sperm were incubated for 0, 5 and 18 h at 37 degrees C, 5% CO2, with different concentration of the kinase inhibitors genistein, H89 or tamoxifen. Control aliquots were treated with the inhibitor solvent. The chymotrypsin-like activity of the proteasome was assayed using a fluorogenic substrate. Aliquots of spermatozoa capacitated during 18 h were incubated for 30 min with kinase inhibitors and then with 7 microM progesterone (P). The percentage of viable acrosome-reacted sperm was evaluated using FITC-labeled Pisum sativum agglutinin. The results indicate that spermatozoa treated with different concentrations of genistein and tamoxifen did not modify the chymotrypsin-like activity of the proteasome during capacitation. On the other hand, proteasome activity was significantly decreased by incubation with H89. Sperm treatment with genistein, H89 and tamoxifen significantly inhibited the P-induced acrosome reaction. Western blot analysis indicated that the proteasome inhibitor, epoxomicin, reduced serine protein phosphorylation. These results suggest that the enzymatic activity of the proteasome is modulated by protein kinase A, and that both enzymes are involved in the P-induced acrosome reaction.

  16. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family.

    PubMed

    Kawazoe, Y; Nakai, A; Tanabe, M; Nagata, K

    1998-07-15

    Heat-shock proteins and molecular chaperones are involved in various cellular metabolic processes including protein synthesis and degradation. These expressions are elevated at the level of transcription by the accumulation of abnormal proteins when these metabolic processes are disturbed. Recent works suggest the induction of heat-shock proteins by the inhibiton of proteasome. To elucidate the mechanism of this induction, we examined the activation of heat-shock transcription factors by proteasome inhibitors in avian cells. Activation of the two heat-shock-inducible factors, HSF1 and HSF3, was produced by the treatment of cells with proteasome inhibitors. This activation was not produced by treatment with various other protease inhibitors. The HSF activation by proteasome inhibitors was completely blocked in the presence of the protein synthesis inhibitor cycloheximide. Unexpectedly, the development-related factor HSF2 was also activated by proteasome inhibitors, with an increase in its protein level. These results suggest that the ubiqutin-proteasome pathway may regulate all of the three HSFs by controlling the level of some regulatory factor for HSF or HSF itself, as well as controlling abnormal proteins.

  17. Effects of Radiation on Proteasome Function in Prostate Cancer Cells

    DTIC Science & Technology

    2010-02-01

    Mimosine is a L- amino acid found in large quantities in the foliage and the seeds of Laucena glauca and Mimosa pudica . It is a reversible inhibitor of DNA...PC-3 cells). Using the expression vector given to us by Dr. Lan Huang from UC Irvine, we were able to tag one of the 19S proteasome subunit (Rpn11...and use it as a bait for the pulling down the intact 26S proteasome complex. After having reported on all the proteins associated to the

  18. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function.

    PubMed

    Ramachandran, Kapil V; Margolis, Seth S

    2017-04-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It is unclear how proteasomes are able to acutely regulate such processes, as this action is inconsistent with their canonical role in proteostasis. Here we describe a mammalian nervous-system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is closely associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of the membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked the production of extracellular peptides and attenuated neuronal-activity-induced calcium signaling. Moreover, we observed that membrane-proteasome-derived peptides were sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes function primarily to maintain proteostasis, and highlight a form of neuronal communication that takes place through a membrane proteasome complex.

  19. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.

    PubMed

    Lee, Seung-Hoon; Park, Yoon; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2010-12-31

    Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.

  20. Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies.

    PubMed

    Upadhya, Sudarshan C; Hegde, Ashok N

    2005-01-01

    In the central nervous system (CNS), abnormal deposition of insoluble protein aggregates or inclusion bodies within nerve cells is commonly observed in association with several neurodegenerative diseases. The ubiquitinated protein aggregates are believed to result from malfunction or overload of the ubiquitin-proteasome pathway or from structural changes in the protein substrates which prevent their recognition and degradation by the ubiquitin-proteasome pathway. Impaired proteolysis might also contribute to the synaptic dysfunction seen early in neurodegenerative diseases because the ubiquitin-proteasome pathway is known to play a role in normal functioning of synapses. Because specificity of the ubiquitin proteasome mediated proteolysis is determined by specific ubiquitin ligases (E3s), identification of specific E3s and their allosteric modulators are likely to provide effective therapeutic targets for the treatment of several CNS disorders. Another unexplored area for the discovery of drug targets is the proteasome. Although many inhibitors of the proteasome are available, no effective drugs exist that can stimulate the proteasome. Since abnormal protein aggregation is a common feature of different neurodegenerative diseases, enhancement of proteasome activity might be an efficient way to remove the aggregates that accumulate in the brain. In this review, we discuss how the components of the ubiquitin-proteasome pathway could be potential targets for therapy of CNS diseases and disorders.

  1. Proteasome activity is required for the initiation of precancerous pancreatic lesions

    PubMed Central

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degronODC (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-KrasG12D model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-KrasG12D mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  2. Proteasomes play an essential role in thymocyte apoptosis.

    PubMed Central

    Grimm, L M; Goldberg, A L; Poirier, G G; Schwartz, L M; Osborne, B A

    1996-01-01

    Cell death in many different organisms requires the activation of proteolytic cascades involving cytosolic proteases. Here we describe a novel requirement in thymocyte cell death for the 20S proteasome, a highly conserved multicatalytic protease found in all eukaryotes. Specific inhibitors of proteasome function blocked cell death induced by ionizing radiation, glucocorticoids or phorbol ester. In addition to inhibiting apoptosis, these signals prevented the cleavage of poly(ADP-ribose) polymerase that accompanies many cell deaths. Since overall rates of protein degradation were not altered significantly during cell death in thymocytes, these results suggest that the proteasome may either degrade regulatory protein(s) that normally inhibit the apoptotic pathway or may proteolytically activate protein(s) than promote cell death. Images PMID:8670888

  3. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation.

    PubMed

    Gastel, J A; Roseboom, P H; Rinaldi, P A; Weller, J L; Klein, D C

    1998-02-27

    The nocturnal increase in circulating melatonin in vertebrates is regulated by 10- to 100-fold increases in pineal serotonin N-acetyltransferase (AA-NAT) activity. Changes in the amount of AA-NAT protein were shown to parallel changes in AA-NAT activity. When neural stimulation was switched off by either light exposure or L-propranolol-induced beta-adrenergic blockade, both AA-NAT activity and protein decreased rapidly. Effects of L-propranolol were blocked in vitro by dibutyryl adenosine 3',5'-monophosphate (cAMP) or inhibitors of proteasomal proteolysis. This result indicates that adrenergic-cAMP regulation of AA-NAT is mediated by rapid reversible control of selective proteasomal proteolysis. Similar proteasome-based mechanisms may function widely as selective molecular switches in vertebrate neural systems.

  4. Progressively impaired proteasomal capacity during terminal plasma cell differentiation

    PubMed Central

    Cenci, Simone; Mezghrani, Alexandre; Cascio, Paolo; Bianchi, Giada; Cerruti, Fulvia; Fra, Anna; Lelouard, Hugues; Masciarelli, Silvia; Mattioli, Laura; Oliva, Laura; Orsi, Andrea; Pasqualetto, Elena; Pierre, Philippe; Ruffato, Elena; Tagliavacca, Luigina; Sitia, Roberto

    2006-01-01

    After few days of intense immunoglobulin (Ig) secretion, most plasma cells undergo apoptosis, thus ending the humoral immune response. We asked whether intrinsic factors link plasma cell lifespan to Ig secretion. Here we show that in the late phases of plasmacytic differentiation, when antibody production becomes maximal, proteasomal activity decreases. The excessive load for the reduced proteolytic capacity correlates with accumulation of polyubiquitinated proteins, stabilization of endogenous proteasomal substrates (including Xbp1s, IκBα, and Bax), onset of apoptosis, and sensitization to proteasome inhibitors (PI). These events can be reproduced by expressing Ig-μ chain in nonlymphoid cells. Our results suggest that a developmental program links plasma cell death to protein production, and help explaining the peculiar sensitivity of normal and malignant plasma cells to PI. PMID:16498407

  5. Targeting the Ubiquitin-Proteasome System in Heart Disease: The Basis for New Therapeutic Strategies

    PubMed Central

    Taegtmeyer, Heinrich

    2014-01-01

    Abstract Significance: Novel therapeutic strategies to treat heart failure are greatly needed. The ubiquitin-proteasome system (UPS) affects the structure and function of cardiac cells through targeted degradation of signaling and structural proteins. This review discusses both beneficial and detrimental consequences of modulating the UPS in the heart. Recent Advances: Proteasome inhibitors were first used to test the role of the UPS in cardiac disease phenotypes, indicating therapeutic potential. In early cardiac remodeling and pathological hypertrophy with increased proteasome activities, proteasome inhibition prevented or restricted disease progression and contractile dysfunction. Conversely, enhancing proteasome activities by genetic manipulation, pharmacological intervention, or ischemic preconditioning also improved the outcome of cardiomyopathies and infarcted hearts with impaired cardiac and UPS function, which is, at least in part, caused by oxidative damage. Critical Issues: An understanding of the UPS status and the underlying mechanisms for its potential deregulation in cardiac disease is critical for targeted interventions. Several studies indicate that type and stage of cardiac disease influence the dynamics of UPS regulation in a nonlinear and multifactorial manner. Proteasome inhibitors targeting all proteasome complexes are associated with cardiotoxicity in humans. Furthermore, the type and dosage of proteasome inhibitor impact the pathogenesis in nonuniform ways. Future Directions: Systematic analysis and targeting of individual UPS components with established and innovative tools will unravel and discriminate regulatory mechanisms that contribute to and protect against the progression of cardiac disease. Integrating this knowledge in drug design may reduce adverse effects on the heart as observed in patients treated with proteasome inhibitors against noncardiac diseases, especially cancer. Antioxid. Redox Signal. 21, 2322–2343. PMID:25133688

  6. Proteasomal and Autophagic Degradation Systems.

    PubMed

    Dikic, Ivan

    2017-06-20

    Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.

  7. Phorbol esters induce intracellular accumulation of the anti-apoptotic protein PED/PEA-15 by preventing ubiquitinylation and proteasomal degradation.

    PubMed

    Perfetti, Anna; Oriente, Francesco; Iovino, Salvatore; Alberobello, A Teresa; Barbagallo, Alessia P M; Esposito, Iolanda; Fiory, Francesca; Teperino, Raffaele; Ungaro, Paola; Miele, Claudia; Formisano, Pietro; Beguinot, Francesco

    2007-03-23

    Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.

  8. Proteasome inhibition alleviates prolonged moderate compression-induced muscle pathology

    PubMed Central

    2011-01-01

    Background The molecular mechanism initiating deep pressure ulcer remains to be elucidated. The present study tested the hypothesis that the ubiquitin proteasome system is involved in the signalling mechanism in pressure-induced deep tissue injury. Methods Adult Sprague Dawley rats were subjected to an experimental compression model to induce deep tissue injury. The tibialis region of the right hind limb was subjected to 100 mmHg of static pressure for six hours on each of two consecutive days. The compression pressure was continuously monitored by a three-axial force transducer within the compression indentor. The left hind limb served as the intra-animal control. Muscle tissues underneath the compressed region were collected and used for analyses. Results Our results demonstrated that the activity of 20S proteasome and the protein abundance of ubiquitin and MAFbx/atrogin-1 were elevated in conjunction with pathohistological changes in the compressed muscle, as compared to control muscle. The administration of the proteasome inhibitor MG132 was found to be effective in ameliorating the development of pathological histology in compressed muscle. Furthermore, 20S proteasome activity and protein content of ubiquitin and MAFbx/atrogin-1 showed no apparent increase in the MG132-treated muscle following compression. Conclusion Our data suggest that the ubiquitin proteasome system may play a role in the pathogenesis of pressure-induced deep tissue injury. PMID:21385343

  9. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection

    PubMed Central

    Costa, Vivian V.; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-01-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  10. Comparative study of the biochemical properties of proteasomes in domestic animals.

    PubMed

    Raule, Mary; Cerruti, Fulvia; Cascio, Paolo

    2015-07-15

    Information on the biochemical properties of proteasomes is lacking or, at best, only fragmentary for most species of veterinary interest. Moreover, direct comparison of the limited data available on the enzymatic features of proteasomes in domestic animals is rendered difficult due to the heterogeneity of the experimental settings used. This represents a clear drawback in veterinary research, given the crucial involvement of proteasomes in control of several physiological and pathological processes. We performed the first comparative analysis of key biochemical properties of proteasomes obtained from 8 different domestic mammals. Specifically, we investigated the three main peptidase activities of constitutive and immunoproteasomes in parallel and systematically checked the sensitivity of the chymotryptic site to three of the most potent and selective inhibitors available. Overall, there was substantial similarity in the enzymatic features of proteasomes among the species examined, although some interesting species-specific features were observed.

  11. Inhibition of Proteasome Activity Impairs Centrosome-dependent Microtubule Nucleation and Organization

    PubMed Central

    Didier, Christine; Merdes, Andreas; Gairin, Jean-Edouard

    2008-01-01

    Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function. PMID:18094058

  12. Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization.

    PubMed

    Didier, Christine; Merdes, Andreas; Gairin, Jean-Edouard; Jabrane-Ferrat, Nabila

    2008-03-01

    Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function.

  13. The use of mass spectrometry to identify antigens from proteasome processing.

    PubMed

    Burlet-Schiltz, Odile; Claverol, Stéphane; Gairin, Jean Edouard; Monsarrat, Bernard

    2005-01-01

    Mass spectrometry (MS) is a powerful tool for the characterization of antigenic peptides that play a major role in the immune system. Most of the major histocompatibility complex (MHC) class I peptides are generated during the degradation of intracellular proteins by the proteasome, a catalytic complex present in all eukaryotic cells. This chapter focuses on the contribution of MS to the understanding of the mechanisms of antigen processing by the proteasome. This knowledge may be valuable for the design of specific inhibitors of proteasome, which has recently been recognized as a therapeutic target in cancer therapies and for the development of efficient peptidic vaccines in immunotherapies. Examples from the literature have been chosen to illustrate how MS data can contribute first to the understanding of the mechanisms of proteasomal processing and, second, to the understanding of the crucial role of proteasome in cytotoxic T lymphocytes (CTL) activation. The general strategy based on MS analyses used in these studies is also described.

  14. Proteasomes: Isolation and Activity Assays

    PubMed Central

    Li, Yanjie; Tomko, Robert J.; Hochstrasser, Mark

    2015-01-01

    In eukaryotes, damaged or unneeded proteins are typically degraded by the ubiquitin-proteasome system. In this system, the protein substrate is often first covalently modified with a chain of ubiquitin polypeptides. This chain serves as a signal for delivery to the 26S proteasome, a 2.5 MDa, ATP-dependent multisubunit protease complex. The proteasome consists of a barrel-shaped 20S core particle (CP) that is capped on one or both of its ends by a 19S regulatory particle (RP). The RP is responsible for recognizing the substrate, unfolding it, and translocating it into the CP for destruction. Here we describe simple, one-step purifications scheme for isolating the 26S proteasome and its 19S RP and 20S CP subcomplexes from the yeast Saccharomyces cerevisiae, as well as assays for measuring ubiquitin-dependent and ubiquitin-independent proteolytic activity in vitro. PMID:26061243

  15. Targeting the ubiquitin–proteasome system for cancer therapy

    PubMed Central

    Shen, Min; Schmitt, Sara; Buac, Daniela; Dou, Q Ping

    2013-01-01

    Introduction The ubiquitin–proteasome system (UPS) degrades 80 – 90% of intracellular proteins. Cancer cells take advantage of the UPS for their increased growth and decreased apoptotic cell death. Thus, the components that make up the UPS represent a diverse group of potential anti-cancer targets. The success of the first-in-class proteasome inhibitor bortezomib not only proved that the proteasome is a feasible and valuable anti-cancer target, but also inspired researchers to extensively explore other potential targets of this pathway. Areas covered This review provides a broad overview of the UPS and its role in supporting cancer development and progression, especially in aspects of p53 inactivation, p27 turnover and NF-κB activation. Also, efforts toward the development of small molecule inhibitors (SMIs) targeting different steps in this pathway for cancer treatment are reviewed and discussed. Expert opinion Whereas some of the targets in the UPS, such as the 20S pro-teasome, Nedd8 activating enzyme and HDM2, have been well-established and validated, there remains a large pool of candidates waiting to be investigated. Development of SMIs targeting the UPS has been largely facilitated by state-of-the-art technologies such as high-throughput screening and computer-assisted drug design, both of which require a better understanding of the targets of interest. PMID:23822887

  16. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  17. Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures.

    PubMed

    Ding, Qunxing; Dimayuga, Edgardo; Markesbery, William R; Keller, Jeffrey N

    2004-12-01

    Increased levels of nucleic acid oxidation have been described as part of normal brain aging and have been demonstrated to occur in multiple neurological disorders. The basis for increased nucleic acid oxidation in each of these conditions is presently unknown. Proteasome inhibition occurs in a host of neurodegenerative conditions and likely contributes to increased levels of oxidative damage and neurotoxicity. In the present study we demonstrate for the first time the ability of proteasome inhibition to increase the level of nucleic acid oxidation in primary neuron and astrocyte cultures. Administration of proteasome inhibitors (MG262, MG115) at concentrations that do not induce neuron death in the first 24 h of treatment, dramatically increase the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8OHG) immunoreactivity in both cell types. Neurons underwent larger increases in nucleic acid oxidation compared to astrocyte cultures. While both DNA and RNA oxidation were observed following proteasome inhibition, RNA appeared to undergo a greater degree of oxidation than DNA. Both 18S and 28S ribosomal RNA were dramatically decreased following proteasome inhibition. Interestingly, an accumulation of unprocessed and/or cross-linked RNA species was observed following proteasome inhibition. Taken together, these data indicate the ability of proteasome inhibition to increase the levels of nucleic acid oxidation in both neurons and astrocytes, and suggest that proteasome inhibition may have deleterious effects on transcription and translation in both neurons and glia.

  18. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson's disease.

    PubMed

    Wang, Xue-Feng; Li, Sharon; Chou, Arthur P; Bronstein, Jeff M

    2006-07-01

    Epidemiological studies have suggested a correlation of pesticides and Parkinson's disease (PD) while genetic and biochemical studies have implicated the ubiquitin-proteasome system (UPS) in the pathogenesis of PD. In the present studies, we tested the hypothesis that pesticide exposure increases the risk of developing PD by inhibiting the UPS. The effects of pesticides on proteasome activity were examined in SK-N-MC neuroblastoma cells overexpressing a GFP-conjugated proteasome degradation signal, GFP(u). Six out of 25 representative pesticides, including rotenone, ziram, diethyldithiocarbamate, endosulfan, benomyl, and dieldrin, showed inhibitory effects on proteasome activities at low concentrations (10 nM to 10 microM). Unlike proteasome inhibitors, they did not inhibit 20 S proteasome activities in cell lysates. Except for rotenone, the other five pesticides did not induce significantly cellular oxidative stress. The cytotoxic effects of these pesticides were closely correlated with proteasome inhibition. Our results suggest proteasome inhibition as a potential mechanism for the epidemiological association of pesticides and PD.

  19. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance.

    PubMed

    Kraus, M; Bader, J; Overkleeft, H; Driessen, C

    2013-03-01

    HIV protease inhibitors (HIV-PI) are oral drugs for HIV treatment. HIV-PI have antitumor activity via induction of ER-stress, inhibition of phospho-AKT (p-AKT) and the proteasome, suggesting antimyeloma activity. We characterize the effects of all approved HIV-PI on myeloma cells. HIV-PI were compared regarding cytotoxicity, proteasome activity, ER-stress induction and AKT phosphorylation using myeloma cells in vitro. Nelfinavir is the HIV-PI with highest cytotoxic activity against primary myeloma cells and with an IC50 near therapeutic drug blood levels (8-14 μM), irrespective of bortezomib sensitivity. Only nelfinavir inhibited intracellular proteasome activity in situ at drug concentrations <40 μM. Ritonavir, saquinavir and lopinavir inhibited p-AKT comparable to nelfinavir, and showed similar synergistic cytotoxicity with bortezomib against bortezomib-sensitive cells. Nelfinavir had superior synergistic activity with bortezomib/carfilzomib in particular against bortezomib/carfilzomib-resistant myeloma cells. It inhibited not only the proteasomal β1/β5 active sites, similar to bortezomib/carfilzomib, but in addition the β2 proteasome activity not targeted by bortezomib/carfilzomib. Additional inhibition of β2 proteasome activity is known to sensitize cells for bortezomib and carfilzomib. Nelfinavir has unique proteasome inhibiting activity in particular on the bortezomib/carfilzomib-insensitive tryptic (β2) proteasome activity in intact myeloma cells, and is active against bortezomib/carfilzomib-resistant myeloma cells in vitro.

  20. The proteasome pathway destabilizes Yersinia outer protein E and represses its antihost cell activities.

    PubMed

    Ruckdeschel, Klaus; Pfaffinger, Gudrun; Trülzsch, Konrad; Zenner, Gerhardt; Richter, Kathleen; Heesemann, Jürgen; Aepfelbacher, Martin

    2006-05-15

    Pathogenic Yersinia spp. neutralize host defense mechanisms by engaging a type III protein secretion system that translocates several Yersinia outer proteins (Yops) into the host cell. Although the modulation of the cellular responses by individual Yops has been intensively studied, little is known about the fate of the translocated Yops inside the cell. In this study, we investigated involvement of the proteasome, the major nonlysosomal proteolytic system in eukaryotic cells, in Yop destabilization and repression. Our data show that inhibition of the proteasome in Yersinia enterocolitica-infected cells selectively stabilized the level of YopE, but not of YopH or YopP. In addition, YopE was found to be modified by ubiquitination. This suggests that the cytotoxin YopE is physiologically subjected to degradation via the ubiquitin-proteasome pathway inside the host cell. Importantly, the increased levels of YopE upon proteasome inhibition were associated with decreased activity of its cellular target Rac. Thus, the GTPase-down-regulating function of YopE is enhanced when the proteasome is inhibited. The stabilization of YopE by proteasome inhibitor treatment furthermore led to aggravation of the cytotoxic YopE effects on the actin cytoskeleton and on host cell morphology. Together, these data show that the host cell proteasome functions to destabilize and inactivate the Yersinia effector protein YopE. This implies the proteasome as integral part of the cellular host immune response against the immunomodulatory activities of a translocated bacterial virulence protein.

  1. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  2. Knocking out ubiquitin proteasome system function in vivo and in vitro with genetically encodable tandem ubiquitin.

    PubMed

    Saeki, Y; Isono, E; Shimada, M; Kawahara, H; Yokosawa, H; Toh-E, A

    2005-01-01

    At present, the 26S proteasome-specific inhibitor is not available. We constructed polyubiquitin derivatives that contained a tandem repeat of ubiquitins and were insensitive to ubiquitin hydrolases. When these artificial polyubiquitins (tUbs, tandem ubiquitins) were overproduced in the wild-type yeast strain, growth was strongly inhibited, probably because of inhibition of the 26S proteasome. We also found that several substrates of the ubiquitin-proteasome pathway were stabilized by expressing tUbs in vivo. tUbs containing four units or more of the ubiquitin monomer were found to form a complex with the 26S proteasome. We showed that tUb bound to the 26S proteasome inhibited the in vitro degradation of polyubiquitinylated Sic1 by the 26S proteasome. When tUB6 (six-mer) messenger RNA was injected into Xenopus embryos, cell division was inhibited, suggesting that tUb can be used as a versatile inhibitor of the 26S proteasome.

  3. Molecular Pathways: Turning Proteasomal Protein Degradation into a Unique Treatment Approach

    PubMed Central

    Stintzing, Sebastian; Lenz, Heinz-Josef

    2015-01-01

    Cancer treatment regimens have evolved from single cytotoxic substances affecting all proliferative tissues towards antibodies and kinase inhibitors targeting tumor specific pathways. Treatment efficacy and cancer survival has overall improved and side effects have become less frequent. The ubiquitin proteasome system (UPS) mediated proteasomal protein degradation is the most critical pathway to regulate the quantity of signal proteins involved in carcinogenesis and tumor progression. These processes are, as well as protein recycling, highly regulated and offer targets for biomarker and drug development. Unspecific proteasome inhibitors such as bortezomib and carfilzomib have shown clinical efficacy and are approved for clinical use. Inhibitors of more substrate specific enzymes of degradation processes are developed and in early clinical trials. The novel compounds focus on the degradation of key regulatory proteins such as p53, p27Kip1 and β-catenin, and inhibitors specific for growth factor receptor kinases turnover are in pre-clinical testing. PMID:24756373

  4. Reversible phosphorylation of the 26S proteasome.

    PubMed

    Guo, Xing; Huang, Xiuliang; Chen, Mark J

    2017-04-01

    The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.

  5. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors1[OPEN

    PubMed Central

    Sheikh, Arsheed; Gimenez-Ibanez, Selena

    2016-01-01

    Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR. In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors. PMID:27613851

  6. The cryo-EM structure of the Plasmodium falciparum 20S proteasome and its use in the fight against malaria.

    PubMed

    Li, Hao; Bogyo, Matthew; da Fonseca, Paula C A

    2016-12-01

    Plasmodium falciparum is the parasite responsible for the most severe form of malaria. Its increasing resistance to existing antimalarials represents a major threat to human health and urges the development of new therapeutic strategies to fight malaria. The proteasome is a protease complex essential in all eukaryotes. Accordingly, inhibition of the Plasmodium 20S proteasome is highly toxic for the parasite at all of its infective and developmental stages. Proteasome inhibitors have antimalarial potential both as curative and transmission blocking agents, but in order to have therapeutic application, they must specifically target the Plasmodium proteasome and not its human counterpart. X-ray crystallography has been widely used to determine structures of yeast and mammalian 20S proteasomes with ligands. However, crystallisation of the Plasmodium proteasome is challenging, as only small quantities of the complex can be directly purified from the parasite. Furthermore, most X-ray structures of proteasome-inhibitor complexes require soaking of crystals with high concentrations of ligand, thus preventing analysis of inhibitor subunit specificity. Instead we chose to determine the Plasmodium falciparum 20S proteasome structure, in the presence of a new rationally designed parasite-specific inhibitor, by high-resolution electron cryo-microscopy and single particle analysis. The resulting map, at a resolution of about 3.6 Å, allows a direct molecular analysis of inhibitor/enzyme interactions. Here we present an overview of this structure, and how it provides valuable information that can be used to assist in the design of improved proteasome inhibitors with the potential to be developed as next-generation antimalarial drugs. © 2016 Federation of European Biochemical Societies.

  7. Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer.

    PubMed

    de Wilt, Leonie H A M; Jansen, Gerrit; Assaraf, Yehuda G; van Meerloo, Johan; Cloos, Jacqueline; Schimmer, Aaron D; Chan, Elena T; Kirk, Christopher J; Peters, Godefridus J; Kruyt, Frank A E

    2012-01-15

    The proteasome inhibitor bortezomib, registered for Multiple Myeloma treatment, is currently explored for activity in solid tumors including non-small cell lung cancer (NSCLC). Here we studied the proteasome-based mechanisms underlying intrinsic and acquired bortezomib resistance in NSCLC cells. Various NSCLC cell lines displayed differential intrinsic sensitivities to bortezomib. High basal chymotrypsin- and caspase-like proteasome activities correlated with bortezomib resistance in these cells. Next, via stepwise selection, acquired bortezomib resistant cells were obtained with 8-70-fold increased resistance. Cross-resistance was found to proteasome inhibitors specifically targeting β-subunits, but not to the novel α-subunit-specific proteasome inhibitor (5AHQ). Consistently, bortezomib-resistant cells required higher bortezomib concentrations to induce G2/M arrest and apoptosis. Interestingly, bortezomib concentration-dependent caspase cleavage, Mcl-1 and NOXA accumulation remained intact in resistant H460 and SW1573 cells, while A549 resistant cells displayed diffe