Science.gov

Sample records for proteasome inhibitor lactacystin

  1. Prolyl oligopeptidase inhibition attenuates the toxicity of a proteasomal inhibitor, lactacystin, in the alpha-synuclein overexpressing cell culture.

    PubMed

    Myöhänen, Timo T; Norrbacka, Susanna; Savolainen, Mari H

    2017-01-01

    Lewy bodies, the histopathological hallmarks of Parkinson's disease (PD), contain insoluble and aggregated α-synuclein (aSyn) and many other proteins, proposing a role for failure in protein degradation system in the PD pathogenesis. Proteasomal dysfunction has indeed been linked to PD and aSyn oligomers have been shown to inhibit proteasomes and autophagy. Our recent studies have shown that inhibitors of prolyl oligopeptidase (PREP) can prevent the aggregation and enhance the clearance of accumulated aSyn, and therefore, we wanted to study if PREP inhibition can overcome the aSyn aggregation and toxicity induced by lactacystin, a proteasomal inhibitor. The cells overexpressing human A30P or A53T mutated aSyn were incubated with lactacystin and a PREP inhibitor, KYP-2047, for 48h. Theafter, the cells were fractioned, and the effects of lactacystin with/without 1μM KYP-2047 on aSyn aggregation and ubiquitin accumulation, cell viability and on autophagic markers (p62, Beclin1 and LC3BII) were studied. We found that KYP-2047 attenuated lactacystin-induced cell death in mutant aSyn overexpressing cells but not in non-overexpressing control cells. KYP-2047 reduced significantly SDS-insoluble high-molecular-weight aSyn oligomers that were in line with the cell viability results. In addition, significant reduction in protein accumulation marker, p62, was seen in SDS fraction while LC3BII, a marker for autophagosome formation, was increased, indicating to enhanced autophagy. Our results further streghten the possibilities for PREP inhibitors as a potential drug therapy against synucleinopathies and other protein aggregating diseases.

  2. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors

    PubMed Central

    Harrison, Ian F; Crum, William R; Vernon, Anthony C; Dexter, David T

    2015-01-01

    Background and Purpose Histone hypoacetylation is associated with Parkinson's disease (PD), due possibly to an imbalance in the activities of enzymes responsible for histone (de)acetylation; correction of which may be neuroprotective/neurorestorative. This hypothesis was tested using the anti-epileptic drug sodium valproate, a known histone deacetylase inhibitor (HDACI), utilizing a delayed-start study design in the lactacystin rat model of PD. Experimental Approach The irreversible proteasome inhibitor lactacystin was unilaterally injected into the substantia nigra of Sprague–Dawley rats that subsequently received valproate for 28 days starting 7 days after lactacystin lesioning. Longitudinal motor behavioural testing, structural MRI and post-mortem assessment of nigrostriatal integrity were used to track changes in this model of PD and quantify neuroprotection/restoration. Subsequent cellular and molecular analyses were performed to elucidate the mechanisms underlying valproate's effects. Key Results Despite producing a distinct pattern of structural re-modelling in the healthy and lactacystin-lesioned brain, delayed-start valproate administration induced dose-dependent neuroprotection/restoration against lactacystin neurotoxicity, characterized by motor deficit alleviation, attenuation of morphological brain changes and restoration of dopaminergic neurons in the substantia nigra. Molecular analyses revealed that valproate alleviated lactacystin-induced histone hypoacetylation and induced up-regulation of brain neurotrophic/neuroprotective factors. Conclusions and Implications The histone acetylation and up-regulation of neurotrophic/neuroprotective factors associated with valproate treatment culminate in a neuroprotective and neurorestorative phenotype in this animal model of PD. As valproate induced structural re-modelling of the brain, further research is required to determine whether valproate represents a viable candidate for disease treatment; however

  3. Proteasome Inhibitors Prevent Tracheary Element Differentiation in Zinnia Mesophyll Cell Cultures1

    PubMed Central

    Woffenden, Bonnie J.; Freeman, Thomas B.; Beers, Eric P.

    1998-01-01

    To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin β-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at 96 h. Inhibition of the proteasome at 48 h, after cellular commitment to differentiation, did not alter the final percentage of TEs compared with controls. However, proteasome inhibition at 48 h delayed the differentiation process by approximately 24 h, as indicated by examination of both morphological markers and the expression of putative autolytic proteases. These results indicate that proteasome function is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL but not clasto-lactacystin β-lactone resulted in partial uncoupling of autolysis from differentiation. Results from gel analysis of protease activity suggested that the observed incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases. PMID:9765527

  4. The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors

    PubMed Central

    Myung, Jayhyuk; Kim, Kyung Bo

    2008-01-01

    The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases. PMID:11410931

  5. Development and Characterization of Proteasome Inhibitors

    PubMed Central

    Kim, Kyung Bo; Fonseca, Fabiana N.; Crews, Craig M.

    2008-01-01

    Although many proteasome inhibitors have been either synthesized or identified from natural sources, the development of more sophisticated, selective proteasome inhibitors is important for a detailed understanding of proteasome function. We have found that antitumor natural product epoxomicin and eponemycin, both of which are linear peptides containing a α,β-epoxyketone pharmacophore, target proteasome for their antitumor activity. Structural studies of the proteasome–epoxomicin complex revealed that the unique specificity of the natural product toward proteasome is due to the α,β-epoxyketone pharmacophore, which forms an unusual six-membered morpholino ring with the amino terminal catalytic Thr-1 of the 20S proteasome. Thus, we believe that a facile synthetic approach for α,β-epoxyketone linear peptides provides a unique opportunity to develop proteasome inhibitors with novel activities. In this chapter, we discuss the detailed synthetic procedure of the α′,β′-epoxyketone natural product epoxomicin and its derivatives. PMID:16338383

  6. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  7. The capture proteasome assay (CAPA) to evaluate subtype-specific proteasome inhibitors.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-09-01

    We recently developed a new assay to measure proteasome activity in vitro (CAPA for capture proteasome assay) [1], based on proteasome capture on an antibody-coated plate. When used with lysates originating from cells expressing either standard proteasome, immunoproteasome or intermediate proteasomes β5i or β1i-β5i, this assay allows the individual monitoring of the chymotrypsin-like, trypsin-like and caspase-like activities of the corresponding proteasome subtypes. The efficiency and specificity of four proteasome inhibitors were studied using the CAPA assay, demonstrating the potential of this assay for the development of subtype-specific proteasome inhibitors.

  8. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  9. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  10. Prefoldin Plays a Role as a Clearance Factor in Preventing Proteasome Inhibitor-induced Protein Aggregation*

    PubMed Central

    Abe, Akira; Takahashi-Niki, Kazuko; Takekoshi, Yuka; Shimizu, Takashi; Kitaura, Hirotake; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases. PMID:23946485

  11. Effect of proteasome inhibition on toxicity and CYP3A23 induction in cultured rat hepatocytes: Comparison with arsenite

    SciTech Connect

    Noreault-Conti, Trisha L.; Jacobs, Judith M.; Trask, Heidi W.; Wrighton, Steven A.; Sinclair, Jacqueline F.; Nichols, Ralph C. . E-mail: ralph.c.nichols@dartmouth.edu

    2006-12-15

    Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23.

  12. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  13. Chronic L-DOPA treatment attenuates behavioral and biochemical deficits induced by unilateral lactacystin administration into the rat substantia nigra.

    PubMed

    Konieczny, Jolanta; Czarnecka, Anna; Lenda, Tomasz; Kamińska, Kinga; Lorenc-Koci, Elżbieta

    2014-03-15

    The aim of the study was to determine whether the dopamine (DA) precursor l-DOPA attenuates parkinsonian-like symptoms produced by the ubiquitin-proteasome system inhibitor lactacystin. Wistar rats were injected unilaterally with lactacystin (2.5 μg/2 μl) or 6-OHDA (8 μg/2 μl) into the substantia nigra (SN) pars compacta. Four weeks after the lesion, the animals were treated chronically with l-DOPA (25 or 50 mg/kg) for two weeks. During l-DOPA treatment, the lactacystin-treated rats were tested for catalepsy and forelimb asymmetry. Rotational behavior was evaluated after apomorphine (0.25 mg/kg) and l-DOPA in both PD models. After completion of experiments, the animals were killed and the levels of DA and its metabolites in the striatum and SN were assayed. We found that acute l-DOPA administration effectively decreased catalepsy and increased the use of the compromised forelimb in the cylinder test. However, the lactacystin group did not respond to apomorphine or acute l-DOPA administration in the rotational test. Repeated l-DOPA treatment produced contralateral rotations in both PD models, but the number of rotations was much greater in the 6-OHDA-lesioned rats. Both toxins markedly (>90%) reduced the levels of DA and its metabolites in the striatum and SN, while l-DOPA diminished these decreases, especially in the SN. By demonstrating the efficacy of l-DOPA in several behavioral tests, our study confirms the usefulness of the lactacystin lesion as a model of PD. However, marked differences in the rotational response to apomorphine and l-DOPA suggest different mechanisms of neurodegeneration evoked by lactacystin and 6-OHDA.

  14. Development of proteasome inhibitors as research tools and cancer drugs

    PubMed Central

    2012-01-01

    The proteasome is the primary site for protein degradation in mammalian cells, and proteasome inhibitors have been invaluable tools in clarifying its cellular functions. The anticancer agent bortezomib inhibits the major peptidase sites in the proteasome’s 20S core particle. It is a “blockbuster drug” that has led to dramatic improvements in the treatment of multiple myeloma, a cancer of plasma cells. The development of proteasome inhibitors illustrates the unpredictability, frustrations, and potential rewards of drug development but also emphasizes the dependence of medical advances on basic biological research. PMID:23148232

  15. Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCδ proteolytic activation and mitochondrial translocation

    PubMed Central

    Sun, Faneng; Kanthasamy, Arthi; Song, Chunjuan; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Anumantha G

    2008-01-01

    Emerging evidence implicates impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson's disease; however cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCδ plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCδ was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably MG-132 treatment resulted in translocation of proteolytically cleaved PKCδ fragments to mitochondria in a time-dependent fashion, and the PKCδ inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCδ catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCδ (PKCδ-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCδ-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCδ proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCδ-CRM) or suppression of PKCδ expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCδ has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells. PMID

  16. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  17. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  18. Synthetic analogs of green tea polyphenols as proteasome inhibitors.

    PubMed Central

    Smith, David M.; Wang, Zhigang; Kazi, Aslamuzzaman; Li, Lian-Hai; Chan, Tak-Hang; Dou, Q. Ping

    2002-01-01

    BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing

  19. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria.

    PubMed

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-11-05

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones.

  20. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria

    PubMed Central

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-01-01

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROSC73R mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROSP248Q mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROSC73R and UROSP248Q are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (UrosP248Q/P248Q) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones. PMID:24145442

  1. Clioquinol - a novel copper-dependent and independent proteasome inhibitor.

    PubMed

    Schimmer, A D

    2011-03-01

    Clioquinol (5-chloro-7-iodo-quinolin-8-ol) was used in the 1950's-1970's as an oral anti-parasitic agent. More recently, studies have demonstrated that Clioquinol displays preclinical efficacy in the treatment of malignancy. Its anti-cancer activity relates, at least in part, to its ability to inhibit the proteasome through mechanisms dependent and independent of its ability to bind heavy metals such as copper. By acting as a metal ionophore Clioquinol transports metal ions from the extracellular environment into the cell and mobilizes weakly bound intracellular stores. It then directs the metal to the proteasome resulting in disruption of this enzymatic complex. In addition, Clioquinol is capable of directly inhibiting the proteasome at higher concentrations. Thus, Clioquinol represents a novel therapeutic strategy to inhibit the proteasome. Given the prior toxicology and pharmacology studies, Clioquinol could be rapidly repositioned for a new anti-cancer indication. This review highlights the mechanism of action of Clioquinol as a proteasome inhibitor. In addition, it discusses the human pharmacology and toxicology studies and how this information would guide a phase I clinical trial of this agent for patients with malignancy.

  2. Peptide-based proteasome inhibitors in anticancer drug design.

    PubMed

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  3. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    PubMed

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  4. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form

    PubMed Central

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F. S.; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  5. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A

    PubMed Central

    Kale, Andrew J.; McGlinchey, Ryan P.; Lechner, Anna; Moore, Bradley S.

    2011-01-01

    Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β 5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes. PMID:21882868

  6. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro.

  7. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  8. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats.

    PubMed

    Konieczny, J; Lenda, T; Czarnecka, A

    2016-06-02

    Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.

  9. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  10. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate.

    PubMed

    Harrison, Ian F; Anis, Hiba K; Dexter, David T

    2016-02-12

    Parkinson's disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection.

  11. Noncovalent inhibitors of human 20S and 26S proteasome based on trypsin inhibitor SFTI-1.

    PubMed

    Dębowski, Dawid; Cichorek, Mirosława; Lubos, Marta; Wójcik, Sławomir; Łęgowska, Anna; Rolka, Krzysztof

    2016-09-01

    Sunflower trypsin inhibitor (SFTI-1) is recognized as an attractive scaffold to designed potent inhibitors of various proteases. We have recently found that its analogues inhibit noncovalently both human and yeast 20S proteasomes. Here, a set of novel and more potent in vitro inhibitors is presented. The inhibitory potency of the peptides was assessed with human 20S proteasome in the presence or absence of sodium dodecyl sulfate and with human 26 proteasome. Their antiproliferative action against tumor (human melanoma cells A375) and normal cells (46 BR.1N human fibroblasts and HaCaT keratinocytes) was determined. The selected fluoresceine-labeled inhibitors were able to internalize into A375 cells and were sometimes present as foci in the cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 685-696, 2016.

  12. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome.

    PubMed

    Groll, Michael; Berkers, Celia R; Ploegh, Hidde L; Ovaa, Huib

    2006-03-01

    The dipeptide boronic acid bortezomib, also termed VELCADE, is a proteasome inhibitor now in use for the treatment of multiple myeloma, and its use for the treatment of other malignancies is being explored. We determined the crystal structure of the yeast 20S proteasome in complex with bortezomib to establish the specificity and binding mode of bortezomib to the proteasome's different catalytically active sites. This structure should enable the rational design of new boronic acid derivatives with improved affinities and specificities for individual active subunits.

  13. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview.

    PubMed

    Guedes, Romina A; Serra, Patrícia; Salvador, Jorge A R; Guedes, Rita C

    2016-07-16

    Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field.

  14. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.

  15. The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation.

    PubMed

    Bardag-Gorce, Fawzia; Riley, Nora E; Nan, Li; Montgomery, Rosalyn O; Li, Jun; French, Barbara A; Lue, Yan H; French, Samuel W

    2004-02-01

    Mallory body (MB) experimental induction takes 10 weeks of drug ingestion. Therefore, it is difficult to study the dynamics and mechanisms involved in vivo. Consequently, an in vitro study was done using primary tissue culture of hepatocytes from drug-primed mice livers in which MBs had already formed. The hypothesis to be tested was that MBs are cytokeratin aggresomes, which form when hepatocytes have a defective ubiquitin-proteasome pathway by which turnover of cytokeratin proteins is prevented. To test this hypothesis, primary tissue cultures of the hepatocytes from normal and MB-forming livers were incubated with the proteasome inhibitor PS-341 and then the cytokeratin filaments and the filament connecting proteins, that is, beta-actin, and ZO1, were visualized by immunofluorescence microscopy. PS-341 caused detachment of the cytokeratins from the cell surface plasma membrane. The cytokeratin filaments retracted toward the nucleus and cytokeratin aggresomes formed. In human livers, MBs showed colocalization of cytokeratin-8 (CK-8) with ubiquitin but not with beta-actin or ZO1. Mouse hepatoma cell lines were studied using PS-341 to induce cytokeratin aggresome formation. In these cell lines, the cytokeratin filaments first retracted toward the nucleus then formed cytokeratin-ubiquitin aggresomes polarized at one side of the nucleus. At the same time, the cells became dissociated from each other, however. The results simulated MB formation. MBs differ from cytokeratin aggresomes both morphologically and in ultrastructure.

  16. Anchanling reduces pathology in a lactacystin- induced Parkinson's disease model☆

    PubMed Central

    Li, Yinghong; Wu, Zhengzhi; Gao, Xiaowei; Zhu, Qingwei; Jin, Yu; Wu, Anmin; Huang, Andrew C. J.

    2012-01-01

    A rat model of Parkinson's disease was induced by injecting lactacystin stereotaxically into the left mesencephalic ventral tegmental area and substantia nigra pars compacta. After rats were intragastrically perfused with Anchanling, a Chinese medicine, mainly composed of magnolol, for 5 weeks, when compared with Parkinson's disease model rats, tyrosine hydroxylase expression was increased, α-synuclein and ubiquitin expression was decreased, substantia nigra cell apoptosis was reduced, and apomorphine-induced rotational behavior was improved. Results suggested that Anchanling can ameliorate Parkinson's disease pathology possibly by enhancing degradation activity of the ubiquitin-proteasome system. PMID:25767493

  17. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  18. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  19. Synthesis and Evaluation of Derivatives of the Proteasome Deubiquitinase Inhibitor b-AP15

    PubMed Central

    Wang, Xin; D'Arcy, Pádraig; Caulfield, Thomas R.; Paulus, Aneel; Chitta, Kasyapa; Mohanty, Chitralekha; Gullbo, Joachim; Chanan-Khan, Asher; Linder, Stig

    2016-01-01

    The ubiquitin–proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure–activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor. PMID:25854145

  20. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  1. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Lee, Min Sung; Lee, Chung Soo

    2015-10-05

    Dysfunction of the proteasome system has been suggested to be implicated in neuronal degeneration. Modulation of KATP channels appears to affect the viability of neuronal cells exposed to toxic insults. However, the effect of KATP channel blockers on the neuronal cell death mediated by proteasome inhibition has not been studied. The present study investigated the effect of KATP channel blockers on proteasome inhibitor-induced apoptosis in differentiated PC12 cells and SH-SY5Y cells. 5-Hydroxydecanoate (a selective KATP channel blocker) and glibenclamide (a cell surface and mitochondrial KATP channel inhibitor) reduced the proteasome inhibitor-induced apoptosis. Addition of the KATP channel blockers attenuated the proteasome inhibitor-induced changes in the levels of apoptosis-related proteins, the loss of the mitochondrial transmembrane potential, the increase in the formation of reactive oxygen species and the depletion of glutathione in both cell lines. The results show that KATP channel blockers may attenuate proteasome inhibitor-induced apoptosis in PC12 cells by suppressing activation of the mitochondrial pathway and of the caspase-8- and Bid-dependent pathways. The preventive effect appears to be associated with the inhibition of the formation of reactive oxygen species and the depletion of glutathione. KATP channel blockade appears to prevent proteasome inhibition-induced neuronal cell death.

  2. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect.

    PubMed

    Kaplan, Gulce Sari; Torcun, Ceyda Corek; Grune, Tilman; Ozer, Nesrin Kartal; Karademir, Betul

    2017-02-01

    Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.

  3. A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, and inhibitor binding.

    PubMed

    Gersch, Malte; Hackl, Mathias W; Dubiella, Christian; Dobrinevski, Alexander; Groll, Michael; Sieber, Stephan A

    2015-03-19

    The proteasome is responsible for the majority of protein degradation within eukaryotic cells and proteasome inhibitors have gained blockbuster status as anticancer drugs. Here, we introduce an analytical platform comprising reverse phase chromatography, intact protein mass spectrometry, and customized data analysis that allows a streamlined investigation of proteasome integrity and posttranslational modifications. We report the complete mass spectrometric assignment of all subunits of the yeast core particle, as well as of the human constitutive 20S proteasome and the human immunoproteasome, including phosphorylated isoforms of α7. Importantly, we found several batches of commercially available immunoproteasome to also contain constitutive catalytic subunits. Moreover, we applied the method to study the binding mechanisms of proteasome inhibitors, both validating the approach and providing a direct readout of subunit preferences complementary to biochemical methods. Collectively, our platform facilitates an easy, reliable and comprehensive detection of different types of covalent modifications on multisubunit protein complexes with high accuracy.

  4. Natural Compounds with Proteasome Inhibitory Activity for Cancer Prevention and Treatment

    PubMed Central

    Yang, H; Landis-Piwowar, KR.; Chen, D; Milacic, V; Dou, QP

    2012-01-01

    The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiuple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structure and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers. PMID:18537678

  5. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism

    PubMed Central

    Soriano, G P; Besse, L; Li, N; Kraus, M; Besse, A; Meeuwenoord, N; Bader, J; Everts, B; den Dulk, H; Overkleeft, H S; Florea, B I; Driessen, C

    2016-01-01

    Adaptive resistance of myeloma to proteasome inhibition represents a clinical challenge, whose biology is poorly understood. Proteasome mutations were implicated as underlying mechanism, while an alternative hypothesis based on low activation status of the unfolded protein response was recently suggested (IRE1/XBP1-low model). We generated bortezomib- and carfilzomib-adapted, highly resistant multiple myeloma cell clones (AMO-BTZ, AMO-CFZ), which we analyzed in a combined quantitative and functional proteomic approach. We demonstrate that proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition, irrespective of a proteasome mutation, and uniformly show an 'IRE1/XBP1-low' signature. Adaptation of myeloma cells to proteasome inhibitors involved quantitative changes in >600 protein species with similar patterns in AMO-BTZ and AMO-CFZ cells: proteins involved in metabolic regulation, redox homeostasis, and protein folding and destruction were upregulated, while apoptosis and transcription/translation were downregulated. The quantitatively most upregulated protein in AMO-CFZ cells was the multidrug resistance protein (MDR1) protein ABCB1, and carfilzomib resistance could be overcome by MDR1 inhibition. We propose a model where proteasome inhibitor-adapted myeloma cells tolerate subtotal proteasome inhibition owing to metabolic adaptations that favor the generation of reducing equivalents, such as NADPH, which is supported by oxidative glycolysis. Proteasome inhibitor resistance may thus be targeted by manipulating the energy and redox metabolism. PMID:27118406

  6. Novel proteasome inhibitor ixazomib sensitizes neuroblastoma cells to doxorubicin treatment

    PubMed Central

    Li, Haoyu; Chen, Zhenghu; Hu, Ting; Wang, Long; Yu, Yang; Zhao, Yanling; Sun, Wenijing; Guan, Shan; Pang, Jonathan C.; Woodfield, Sarah E.; Liu, Qing; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial malignant solid tumor seen in children and continues to lead to the death of many pediatric cancer patients. The poor outcome in high risk NB is largely attributed to the development of chemoresistant tumor cells. Doxorubicin (dox) has been widely employed as a potent anti-cancer agent in chemotherapeutic regimens; however, it also leads to chemoresistance in many cancer types including NB. Thus, developing novel small molecules that can overcome dox-induced chemoresistance is a promising strategy in cancer therapy. Here we show that the second generation proteasome inhibitor ixazomib (MLN9708) not only inhibits NB cell proliferation and induces apoptosis in vitro but also enhances dox-induced cytotoxicity in NB cells. Ixazomib inhibits dox-induced NF-κB activity and sensitizes NB cells to dox-induced apoptosis. More importantly, ixazomib demonstrated potent anti-tumor efficacy in vivo by enhancing dox-induced apoptosis in an orthotopic xenograft NB mouse model. Collectively, our study illustrates the anti-tumor efficacy of ixazomib in NB both alone and in combination with dox, suggesting that combination therapy including ixazomib with traditional therapeutic agents such as dox is a viable strategy that may achieve better outcomes for NB patients. PMID:27687684

  7. Encapsulation of a proteasome inhibitor with gold-polysaccharide nanocarriers

    NASA Astrophysics Data System (ADS)

    Coelho, Sílvia Castro; Rocha, Sandra; Sampaio, Paula; Pereira, Maria Carmo; Coelho, Manuel A. N.

    2014-04-01

    Organic-inorganic hybrid nanoparticles are potential effective systems for drug delivery in cancer therapy and diagnosis. Chitosan-gum arabic with entrapped gold nanoparticles were developed as a carrier for an anticancer drug bortezomib. The nanosystem was designed to enhance the proteasome inhibitor activity in pancreatic cell lines, S2-013 and hTERT-HPNE. The hydrodynamic diameter of chitosan-gum arabic-gold nanoparticles loaded with bortezomib is around 330 nm. Laser scanning confocal microscopy images show the uptake of the gold nanoparticle/bortezomib encapsulated in chitosan-gum arabic matrix and the fast internalization of these nano combinations into pancreatic cells. Cytotoxic assays assessed that positively charged nanosystems reduce the cell growth and cell proliferation of S2-013s, but the same effect was not observed in cytotoxic response in hTERT-HPNE cells. The outcomes of this study demonstrate the capacity of chitosan-gum arabic nanocarriers to deliver gold nanoparticles/anticancer drug and to increase the permeation and retention effect in S2-013 cells and minimize drug side effects in HPNE cells.

  8. The effects of proteasome inhibitors on bone remodeling in multiple myeloma.

    PubMed

    Zangari, Maurizio; Suva, Larry J

    2016-05-01

    Bone disease is a characteristic feature of multiple myeloma, a malignant plasma cell dyscrasia. In patients with multiple myeloma, the normal process of bone remodeling is dysregulated by aberrant bone marrow plasma cells, resulting in increased bone resorption, prevention of new bone formation, and consequent bone destruction. The ubiquitin-proteasome system, which is hyperactive in patients with multiple myeloma, controls the catabolism of several proteins that regulate bone remodeling. Clinical studies have reported that treatment with the first-in-class proteasome inhibitor bortezomib reduces bone resorption and increases bone formation and bone mineral density in patients with multiple myeloma. Since the introduction of bortezomib in 2003, several next-generation proteasome inhibitors have also been used clinically, including carfilzomib, oprozomib, ixazomib, and delanzomib. This review summarizes the available preclinical and clinical evidence regarding the effect of proteasome inhibitors on bone remodeling in multiple myeloma.

  9. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors.

    PubMed

    Ge, Ying; Li, Aibo; Wu, Jianwei; Feng, Haiwei; Wang, Letian; Liu, Hongwu; Xu, Yungen; Xu, Qingxiang; Zhao, Li; Li, Yuyan

    2017-03-10

    A novel series of non-peptide proteasome inhibitors bearing the 1, 4-naphthoquinone scaffold and boronic acid warhead was developed. In the biological evaluation on the chymotrypsin-like activity of human 20S proteasome, five compounds showed IC50 values in the nanomolar range. Docking experiments into the yeast 20S proteasome rationalized their biological activities and allowed further optimization of this interesting class of inhibitors. Within the cellular proliferation inhibition assay and western blot analysis, compound 3e demonstrated excellent anti-proliferative activity against solid tumor cells and clear accumulation of ubiquitinated cellular proteins. Furthermore, in the microsomal stability assay compound 3e demonstrated much improved metabolic stability compared to bortezomib, emerging as a promising lead compound for further design of non-peptide proteasome inhibitors.

  10. Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

    PubMed Central

    Bentea, Eduard; Van der Perren, Anke; Van Liefferinge, Joeri; El Arfani, Anissa; Albertini, Giulia; Demuyser, Thomas; Merckx, Ellen; Michotte, Yvette; Smolders, Ilse; Baekelandt, Veerle; Massie, Ann

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson's disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson's disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson's disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson's disease in pre-clinical research and validation of therapeutic targets. PMID:25873870

  11. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.

  12. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  13. Function-Oriented Biosynthesis of β-Lactone Proteasome Inhibitors in Salinispora tropica

    PubMed Central

    Nett, Markus; Gulder, Tobias A. M.; Kale, Andrew J.; Hughes, Chambers C.; Moore, Bradley S.

    2009-01-01

    The natural proteasome inhibitor salinosporamide A from the marine bacterium Salinispora tropica is a promising drug candidate for the treatment of multiple myeloma and mantle cell lymphoma. Using a comprehensive approach that combined chemical synthesis with metabolic engineering, we generated a series of salinosporamide analogues with altered proteasome binding affinity. One of the engineered compounds is equipotent to salinosporamide A in inhibition of the chymotrypsin-like activity of the proteasome, yet, exhibits superior activity in the cell-based HCT-116 assay. PMID:19746976

  14. Exploring dual electrophiles in peptide-based proteasome inhibitors: carbonyls and epoxides.

    PubMed

    Xin, Bo-Tao; de Bruin, Gerjan; Verdoes, Martijn; Filippov, Dmitri V; van der Marel, Gijs A; Overkleeft, Herman S

    2014-08-14

    Peptide epoxyketones are potent and selective proteasome inhibitors. Selectivity is governed by the epoxyketone dual electrophilic warhead, which reacts with the N-terminal threonine 1,2-amino alcohol uniquely present in proteasome active sites. We studied a series of C-terminally modified oligopeptides featuring adjacent electrophiles based on the epoxyketone warhead. We found that the carbonyl moiety in the natural warhead is essential, but that the adjacent epoxide can be replaced by a carbonyl, though with considerable loss of activity.

  15. Proteasome inhibitors with pyrazole scaffolds from structure-based virtual screening.

    PubMed

    Miller, Zachary; Kim, Keun-Sik; Lee, Do-Min; Kasam, Vinod; Baek, Si Eun; Lee, Kwang Hyun; Zhang, Yan-Yan; Ao, Lin; Carmony, Kimberly; Lee, Na-Ra; Zhou, Shou; Zhao, Qingquan; Jang, Yujin; Jeong, Hyun-Young; Zhan, Chang-Guo; Lee, Wooin; Kim, Dong-Eun; Kim, Kyung Bo

    2015-02-26

    We performed a virtual screen of ∼340 000 small molecules against the active site of proteasomes followed by in vitro assays and subsequent optimization, yielding a proteasome inhibitor with pyrazole scaffold. The pyrazole-scaffold compound displayed excellent metabolic stability and was highly effective in suppressing solid tumor growth in vivo. Furthermore, the effectiveness of this compound was not negatively impacted by resistance to bortezomib or carfilzomib.

  16. Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer.

    PubMed

    Steg, Adam D; Burke, Mata R; Amm, Hope M; Katre, Ashwini A; Dobbin, Zachary C; Jeong, Dae Hoon; Landen, Charles N

    2014-08-30

    The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.

  17. THE PROTEASOME REGULATES BACTERIAL CpG DNA-INDUCED SIGNALING PATHWAYS IN MURINE MACROPHAGES

    PubMed Central

    Gao, Jian Jun; Shen, Jing; Kolbert, Christopher; Raghavakaimal, Sreekumar; Papasian, Christopher J.; Qureshi, Asaf A.; Vogel, Stefanie N.; Morrison, David C.; Qureshi, Nilofer

    2010-01-01

    Our previous work has provided strong evidence that the proteasome is central to the vast majority of genes induced in mouse macrophages in response to lipopolysaccharide (LPS) stimulation. In the studies presented here, we evaluated the role of the macrophage proteasome in response to a second microbial product CpG DNA (unmethylated bacterial DNA). For these studies, we applied Affymetrix microarray analysis of RNA derived from murine macrophages stimulated with CpG DNA in the presence or absence of proteasome inhibitor, lactacystin. The results of these studies revealed that similar to LPS, a vast majority of those macrophage genes regulated by CpG DNA are also under the control of the proteasome at 4 h. In contrast to LPS stimulation, however, many of these genes were induced much later than 4 h, at 18 h, in response to CpG DNA. Lactacystin treatment of macrophages completely blocked the CpG DNA-induced gene expression of TNF-α and other genes involved in production of inflammatory mediators. These data strongly support the conclusion that, similar to LPS, the macrophage proteasome is a key regulator of CpG DNA-induced signaling pathways. PMID:20160661

  18. Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth

    PubMed Central

    Song, Wenbin; Lu, Xiaoyu; Lan, Xiaoying; Chen, Xin; Yi, Songgang; Xu, Li; Jiang, Lili; Zhao, Canguo; Dong, Xiaoxian; Zhou, Ping; Li, Shujue; Wang, Shunqing; Shi, Xianping; Dou, Ping Q.; Wang, Xuejun; Liu, Jinbao

    2014-01-01

    Proteasomes are attractive emerging targets for anti-cancer therapies. Auranofin (Aur), a gold-containing compound clinically used to treat rheumatic arthritis, was recently approved by US Food and Drug Administration for Phase II clinical trial to treat cancer but its anti-cancer mechanism is poorly understood. Here we report that (i) Aur shows proteasome-inhibitory effect that is comparable to that of bortezomib/Velcade (Vel); (ii) different from bortezomib, Aur inhibits proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14 rather than the 20S proteasome; (iii) inhibition of the proteasome-associated DUBs is required for Aur-induced cytotoxicity; and (iv) Aur selectively inhibits tumor growth in vivo and induces cytotoxicity in cancer cells from acute myeloid leukemia patients. This study provides important novel insight into understanding the proteasome-inhibiting property of metal-containing compounds. Although several DUB inhibitors were reported, this study uncovers the first drug already used in clinic that can inhibit proteasome-associated DUBs with promising anti-tumor effects. PMID:24977961

  19. Novel proteasome inhibitors as potential drugs to combat tuberculosis.

    PubMed

    Cheng, Yong; Pieters, Jean

    2010-08-01

    Mycobacterium tuberculosis is one of the most notorious killers worldwide. These pathogens have evolved to infect human beings in a so-called dormant form that is extremely difficult to treat. New work, however, suggests that mycobacterial proteasomes, multicomponent structures that protect the microbe from damaging effects of nitric oxide generated by the host, can be selectively and specifically blocked by small molecules.

  20. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis

    PubMed Central

    Guan, Shan; Zhao, Yanling; Lu, Jiaxiong; Yu, Yang; Sun, Wenjing; Mao, Xinfang; Chen, Zhenghu; Xu, Xin; Pan, Jessie; Sun, Surong; Yang, Jianhua

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients. PMID:27713150

  1. Novel Agents for the Treatment of Multiple Myeloma: Proteasome Inhibitors and Immunomodulatory Agents

    PubMed Central

    Kurtin, Sandra E.; Bilotti, Elizabeth

    2013-01-01

    The integration of novel agents into the treatment of multiple myeloma (MM) has shifted the focus from an incurable disease to one that is chronic, with a realistic hope of someday achieving a cure. Proteasome inhibitors and immunomodulatory agents are the backbone of novel therapies for MM. These agents are particularly important for patients with relapsed or refractory disease, a fate faced by the majority of myeloma patients over the course of their disease. Review of recent clinical trial data for the proteasome inhibitors and immunomodulatory agents, including clinical efficacy and safety information, will assist the advanced practitioner in oncology with integrating these data into the current treatment guidelines for MM. PMID:25032010

  2. High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.

    PubMed

    Ausseil, Frederic; Samson, Arnaud; Aussagues, Yannick; Vandenberghe, Isabelle; Creancier, Laurent; Pouny, Isabelle; Kruczynski, Anna; Massiot, Georges; Bailly, Christian

    2007-02-01

    To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Z factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products.

  3. Postnatal Proteasome Inhibition Induces Neurodegeneration and Cognitive Deficiencies in Adult Mice: A New Model of Neurodevelopment Syndrome

    PubMed Central

    Romero-Granados, Rocío; Fontán-Lozano, Ángela; Aguilar-Montilla, Francisco Javier; Carrión, Ángel Manuel

    2011-01-01

    Defects in the ubiquitin-proteasome system have been related to aging and the development of neurodegenerative disease, although the effects of deficient proteasome activity during early postnatal development are poorly understood. Accordingly, we have assessed how proteasome dysfunction during early postnatal development, induced by administering proteasome inhibitors daily during the first 10 days of life, affects the behaviour of adult mice. We found that this regime of exposure to the proteasome inhibitors MG132 or lactacystin did not produce significant behavioural or morphological changes in the first 15 days of life. However, towards the end of the treatment with proteasome inhibitors, there was a loss of mitochondrial markers and activity, and an increase in DNA oxidation. On reaching adulthood, the memory of mice that were injected with proteasome inhibitors postnatally was impaired in hippocampal and amygdala-dependent tasks, and they suffered motor dysfunction and imbalance. These behavioural deficiencies were correlated with neuronal loss in the hippocampus, amygdala and brainstem, and with diminished adult neurogenesis. Accordingly, impairing proteasome activity at early postnatal ages appears to cause morphological and behavioural alterations in adult mice that resemble those associated with certain neurodegenerative diseases and/or syndromes of mental retardation. PMID:22174927

  4. Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration.

    PubMed

    Mathur, Brian N; Neely, M Diana; Dyllick-Brenzinger, Melanie; Tandon, Anurag; Deutch, Ariel Y

    2007-09-07

    Proteasomal dysfunction has been suggested to contribute to the degeneration of nigrostriatal dopamine neurons in Parkinson's disease. A recent study reported that systemic treatment of rats with the proteasome inhibitor Z-lle-Glu(OtBu)-Ala-Leu-al (PSI) causes a slowly progressive degeneration of nigrostriatal dopamine neurons, the presence of inclusion bodies in dopamine neurons, and motor impairment. We examined in vitro and in vivo the effects of PSI on nigrostriatal dopamine neurons. Mass spectrometric analysis was employed to verify the authenticity of the PSI compound. PSI was non-specifically toxic to neurons in ventral mesencephalic organotypic slice cultures, indicating that impairment of proteasome function in vitro is toxic. Moreover, systemic administration of PSI transiently decreased brain proteasome activity. Systemic treatment of rats with PSI did not, however, result in any biochemical or anatomical evidence of lesions of nigrostriatal dopamine neurons, nor were any changes in locomotor activity observed. These data suggest that systemic administration of proteasome inhibitors to normal adult rats does not reliably cause an animal model of parkinsonism.

  5. Marizomib, a Proteasome Inhibitor for All Seasons: Preclinical Profile and a Framework for Clinical Trials

    PubMed Central

    Potts, B.C.; Albitar, M.X.; Anderson, K.C.; Baritaki, S.; Berkers, C.; Bonavida, B.; Chandra, J.; Chauhan, D.; Cusack, J.C.; Fenical, W.; Ghobrial, I.M.; Groll, M.; Jensen, P.R.; Lam, K.S.; Lloyd, G.K.; McBride, W.; McConkey, D.J.; Miller, C.P.; Neuteboom, S.T.C.; Oki, Y.; Ovaa, H.; Pajonk, F.; Richardson, P.G.; Roccaro, A.M.; Sloss, C.M.; Spear, M.A.; Valashi, E.; Younes, A.; Palladino, M.A.

    2013-01-01

    The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade®) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, che-motherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom’s macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid®), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside. PMID:21247382

  6. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma

    PubMed Central

    Barrott, Jared J.; Yao, Ren Jie; Poulin, Neal M.; Brodin, Bertha A.; Jones, Kevin B.; Underhill, T. Michael; Nielsen, Torsten O.

    2017-01-01

    Conventional cytotoxic therapies for synovial sarcoma provide limited benefit, and no drugs specifically targeting its driving SS18-SSX fusion oncoprotein are currently available. Patients remain at high risk for early and late metastasis. A high-throughput drug screen consisting of over 900 tool compounds and epigenetic modifiers, representing over 100 drug classes, was undertaken in a panel of synovial sarcoma cell lines to uncover novel sensitizing agents and targetable pathways. Top scoring drug categories were found to be HDAC inhibitors and proteasomal targeting agents. We find that the HDAC inhibitor quisinostat disrupts the SS18-SSX driving protein complex, thereby reestablishing expression of EGR1 and CDKN2A tumor suppressors. In combination with proteasome inhibition, HDAC inhibitors synergize to decrease cell viability and elicit apoptosis. Quisinostat inhibits aggresome formation in response to proteasome inhibition, and combination treatment leads to elevated endoplasmic reticulum stress, activation of pro-apoptotic effector proteins BIM and BIK, phosphorylation of BCL-2, increased levels of reactive oxygen species, and suppression of tumor growth in a murine model of synovial sarcoma. This study identifies and provides mechanistic support for a particular susceptibility of synovial sarcoma to the combination of quisinostat and proteasome inhibition. PMID:28056055

  7. Synthesis and Biological Evaluation of Naphthoquinone Analogs as a Novel Class of Proteasome Inhibitors

    PubMed Central

    Lawrence, Harshani R.; Kazi, Aslamuzzaman; Luo, Yunting; Kendig, Robert; Ge, Yiyu; Jain, Sanjula; Daniel, Kenyon; Santiago, Daniel; Guida, Wayne C.; Sebti, Saïd M.

    2012-01-01

    Screening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity. The pyridyl group in PI-083 can be replaced with other heterocyclic groups without significant loss of activity. Molecular modeling studies were also performed to explore the detailed interactions of PI-083 and its derivatives with the β5 and β6 subunits of the 20S proteasome. The refined model showed an H-bond interaction between the Asp-114 and the sulfonamide moiety of the PI-083 in the β6 subunit. PMID:20621484

  8. Peptidomic analysis of HEK293T cells: Effect of the proteasome inhibitor epoxomicin on intracellular peptides

    PubMed Central

    Fricker, Lloyd D.; Gelman, Julia S.; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.

    2012-01-01

    Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 μM or 2 μM) for 1 hour and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation. PMID:22304392

  9. FV-162 is a novel, orally bioavailable, irreversible proteasome inhibitor with improved pharmacokinetics displaying preclinical efficacy with continuous daily dosing

    PubMed Central

    Wang, Z; Dove, P; Wang, X; Shamas-Din, A; Li, Z; Nachman, A; Oh, Y J; Hurren, R; Ruschak, A; Climie, S; Press, B; Griffin, C; Undzys, E; Aman, A; Al-awar, R; Kay, L E; O'Neill, D; Trudel, S; Slassi, M; Schimmer, A D

    2015-01-01

    Approved proteasome inhibitors have advanced the treatment of multiple myeloma but are associated with serious toxicities, poor pharmacokinetics, and most with the inconvenience of intravenous administration. We therefore sought to identify novel orally bioavailable proteasome inhibitors with a continuous daily dosing schedule and improved therapeutic window using a unique drug discovery platform. We employed a fluorine-based medicinal chemistry technology to synthesize 14 novel analogs of epoxyketone-based proteasome inhibitors and screened them for their stability, ability to inhibit the chymotrypsin-like proteasome, and antimyeloma activity in vitro. The tolerability, pharmacokinetics, pharmacodynamic activity, and antimyeloma efficacy of our lead candidate were examined in NOD/SCID mice. We identified a tripeptide epoxyketone, FV-162, as a metabolically stable, potent proteasome inhibitor cytotoxic to human myeloma cell lines and primary myeloma cells. FV-162 had limited toxicity and was well tolerated on a continuous daily dosing schedule. Compared with the benchmark oral irreversible proteasome inhibitor, ONX-0192, FV-162 had a lower peak plasma concentration and longer half-life, resulting in a larger area under the curve (AUC). Oral FV-162 treatment induced rapid, irreversible inhibition of chymotrypsin-like proteasome activity in murine red blood cells and inhibited tumor growth in a myeloma xenograft model. Our data suggest that oral FV-162 with continuous daily dosing schedule displays a favorable safety, efficacy, and pharmacokinetic profile in vivo, identifying it as a promising lead for clinical evaluation in myeloma therapy. PMID:26158521

  10. Effects of an Anticarcinogenic Bowman-Birk Protease Inhibitor on Purified 20S Proteasome and MCF-7 Breast Cancer Cells

    PubMed Central

    Souza, Larissa da Costa; Camargo, Ricardo; Demasi, Marilene; Santana, Jaime Martins; de Freitas, Sonia Maria

    2014-01-01

    Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis. PMID:24475156

  11. Optimization and Evaluation of 5-Styryl-Oxathiazol-2-one Mycobacterium tuberculosis Proteasome Inhibitors as Potential Antitubercular Agents

    PubMed Central

    Russo, Francesco; Gising, Johan; Åkerbladh, Linda; Roos, Annette K; Naworyta, Agata; Mowbray, Sherry L; Sokolowski, Anders; Henderson, Ian; Alling, Torey; Bailey, Mai A; Files, Megan; Parish, Tanya; Karlén, Anders; Larhed, Mats

    2015-01-01

    This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure–activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome. The 5-styryl-oxathiazol-2-one inhibitors identified showed little activity against replicating Mtb, but were rapidly bactericidal against nonreplicating bacteria. (E)-5-(4-Chlorostyryl)-1,3,4-oxathiazol-2-one) was most effective, reducing the colony-forming units (CFU)/mL below the detection limit in only seven days at all concentrations tested. The results suggest that this new class of Mtb proteasome inhibitors has the potential to be further developed into novel antitubercular agents for synergistic combination therapies with existing drugs. PMID:26246997

  12. Proteasome inhibition in medaka brain induces the features of Parkinson's disease.

    PubMed

    Matsui, Hideaki; Ito, Hidefumi; Taniguchi, Yoshihito; Inoue, Haruhisa; Takeda, Shunichi; Takahashi, Ryosuke

    2010-10-01

    Recent findings suggest that a defect in the ubiquitin-proteasome system plays an important role in the pathogenesis of Parkinson's disease (PD). A previous report (McNaught et al. 2004) demonstrated that rats systemically injected with proteasome inhibitors exhibited PD-like clinical symptoms and pathology. However, because these findings have not been consistently replicated, this model is not commonly used to study PD. We used medaka fish to test the effect of systemic administration of proteasome inhibitors because of the high level of accessibility of the cerebrospinal fluid in fish. We injected lactacystin or epoxomicin into the CSF of medaka. With proteasome inhibition in the medaka brain, selective dopaminergic and noradrenergic cell loss was observed. Furthermore, treated fish exhibited reduced spontaneous movement. Treatment with proteasome inhibitors also induced the formation of inclusion bodies resembling Lewy bodies, which are characteristic of PD. Treatment with 6-OHDA also induced dopaminergic cell loss but did not produce inclusion bodies. These findings in medaka are consistent with previous results reporting that non-selective proteasome inhibition replicates the cardinal features of PD: locomotor dysfunction, selective dopaminergic cell loss, and inclusion body formation.

  13. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium.

    PubMed

    Pereira, Alban R; Kale, Andrew J; Fenley, Andrew T; Byrum, Tara; Debonsi, Hosana M; Gilson, Michael K; Valeriote, Frederick A; Moore, Bradley S; Gerwick, William H

    2012-04-16

    Two new peptidic proteasome inhibitors were isolated as trace components from a Curaçao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived α,β-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the β5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.

  14. Proteasome inhibitors for malignancy-related Lambert-Eaton myasthenic syndrome.

    PubMed

    Wang, Chen; Chen, Shaobo; Feng, Bing; Guan, Yuzhou

    2014-03-01

    Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder characterized by autoantibodies against presynaptic voltage-gated calcium channels that impair neuromuscular transmission. Malignancies, especially small cell lung cancer (SCLC), have been associated with LEMS and account for approximately 60% of cases, making malignancy management a central step in LEMS therapy. In addition, immunosuppressive therapy is also recommended for symptomatic control. Interestingly, both pathological and epidemiological data suggest that the autoimmune response can inhibit progression of tumors in malignancy-associated LEMS. Thus, conventional broad-spectrum immunosuppressants may not be effective agents for treatment of LEMS, especially in those with malignancy-associated LEMS. Recent preclinical and clinical studies have indicated that proteasome inhibitors can eliminate antibody-producing cells efficiently, block dendritic cell maturation, and have anti-tumor activity. We hypothesize that proteasome inhibitors may be promising agents for treatment of malignancy-related LEMS.

  15. Augmentation of fear extinction by D-cycloserine is blocked by proteasome inhibitors.

    PubMed

    Mao, Sheng-Chun; Lin, Hui-Ching; Gean, Po-Wu

    2008-12-01

    D-Cycloserine (DCS) has been shown to facilitate extinction of conditioned fear in rats and to improve fear reduction of social phobia and fear of heights in human studies. Here, we investigate the mechanism of DCS effect by measuring internalized GluR1 and GluR2 using cell-surface biotinylation techniques. DCS selectively increased NMDA receptor-mediated synaptic response without affecting AMPA receptor-mediated synaptic response. Low-frequency stimulation (LFS) when applied in the presence of DCS induced GluR1 and GluR2 internalization in the amygdala slices. Proteasome inhibitors block DCS facilitation of LFS-induced depotentiation and a reduction in surface levels of GluR1 and GluR2. Furthermore, DCS in combination with LFS reduced cellular levels of PSD-95 and synapse-associated protein 97 (SAP97), which were also blocked by proteasome inhibitors. In the in vivo experiments, DCS-induced reduction of fear-potentiated startle and reversal of conditioning-induced increase in surface expression of GluR1 were blocked by proteasome inhibitors. DCS-treated rats fail to exhibit reinstatement after US-alone presentations. These results suggest that DCS facilitates receptor internalization in the presence of extinction training, resulting in augmented reduction of startle potentiation.

  16. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  17. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  18. Exploration of novel piperazine or piperidine constructed non-covalent peptidyl derivatives as proteasome inhibitors.

    PubMed

    Zhuang, Rangxiao; Gao, Lixin; Lv, Xiaoqing; Xi, Jianjun; Sheng, Li; Zhao, Yanmei; He, Ruoyu; Hu, Xiaobei; Shao, Yidan; Pan, Xuwang; Liu, Shourong; Huang, Weiwei; Zhou, Yubo; Li, Jia; Zhang, Jiankang

    2017-01-27

    A series of novel piperazine or piperidine-containing non-covalent peptidyl derivatives possessing a neopentyl-asparagine residue were designed, synthesized and evaluated as proteasome inhibitors. All target compounds were screened for their 20S proteasome chymotrypsin-like inhibitory activities, and 15 ones displayed more potent activities than carfilzomib with IC50 values lower than 10 nM. Subsequently, the most potent 10 analogues were tested for their cytotoxic activities against two multiple myeloma (MM) cell lines RPMI-8226 and MM-1S. Based on these experiments, selected derivatives were further evaluated for their ex vivo and in vivo blood cell proteasome inhibitory activities. The most potential compound 35 (proteasome inhibition IC50: 1.2 ± 0.1 nM) with potent anti-proliferation (IC50: RPMI-8226 8.4 ± 0.8 nM; MM-1S: 6.3 ± 0.8 nM), ex vivo and in vivo activities also had a prolonged half life in plasma, which demonstrated that the enzymatic stabilities of this series of compounds have been improved by constructing a six-membered ring into the peptide skeleton. All the experiments confirmed the correctness of design concept, which made this series of compounds potential leads for exploring new anti-MM drugs.

  19. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16.

    PubMed

    Dudnik, Alexey; Bigler, Laurent; Dudler, Robert

    2014-06-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.

  20. The genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors

    PubMed Central

    Schorn, Michelle; Zettler, Judith; Noel, Joseph P.; Dorrestein, Pieter C.; Moore, Bradley S.; Kaysser, Leonard

    2013-01-01

    The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α′,β′-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anti-cancer drug Kyprolis™, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid non-ribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation. PMID:24168704

  1. Proteasome Inhibitor YSY01A Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant Human Ovarian Cancer Cells

    PubMed Central

    Huang, Wei; Zhou, Quan; Yuan, Xia; Ge, Ze-mei; Ran, Fu-xiang; Yang, Hua-yu; Qiang, Guang-liang; Li, Run-tao; Cui, Jing-rong

    2016-01-01

    Cisplatin is one of the most common drugs used for treatment of solid tumors such as ovarian cancer. Unfortunately, the development of resistance against this cytotoxic agent limits its clinical use. Here we report that YSY01A, a novel proteasome inhibitor, is capable of suppressing survival of cisplatin-resistant ovarian cancer cells by inducing apoptosis. And YSY01A treatment enhances the cytotoxicity of cisplatin in drug-resistant ovarian cancer cells. Specifically, YSY01A abrogates regulatory proteins important for cell proliferation and anti-apoptosis including NF-κB p65 and STAT3, resulting in down-regulation of Bcl-2. A dramatic increase in cisplatin uptake was also observed by inductively coupled plasma-mass spectrometry following exposure to YSY01A. Taken together, YSY01A serves as a potential candidate for further development as anticancer therapeutics targeting the proteasome. PMID:27326257

  2. Discovery of a novel proteasome inhibitor selective for cancer cells over non-transformed cells.

    PubMed

    Kazi, Aslamuzzaman; Lawrence, Harshani; Guida, Wayne C; McLaughlin, Mark L; Springett, Gregory M; Berndt, Norbert; Yip, Richard M L; Sebti, Saïd M

    2009-06-15

    Numerous proteins controlling cell cycle progression, apoptosis and angiogenesis are degraded by the ubiquitin/proteasome system, which has become the subject for intense investigations for cancer therapeutics. Therefore, we used in silico and experimental approaches to screen compounds from the NCI chemical libraries for inhibitors against the chymotrypsin-like (CT-L) activity of the proteasome and discovered PI-083. Molecular docking indicates that PI-083 interacts with the Thr21, Gly47 and Ala49 residues of the beta5 subunit and Asp114 of the beta6 subunit of the proteasome. PI-083 inhibits CT-L activity and cell proliferation and induces apoptosis selectively in cancer cells (ovarian T80-Hras, pancreatic C7-Kras and breast MCF-7) as compared to their normal/immortalized counterparts (T80, C7 and MCF-10A, respectively). In contrast, Bortezomib, the only proteasome inhibitor approved by the Food and Drug Administration (FDA), did not exhibit this selectivity for cancer over non-transformed cells. In addition, in all cancer cells tested, including Multiple Myeloma (MM), breast, pancreatic, ovarian, lung, prostate cancer cell lines as well as fresh MM cells from patients, PI-083 required less time than Bortezomib to induce its antitumor effects. Furthermore, in nude mouse xenografts in vivo, PI-083, but not Bortezomib, suppressed the growth of human breast and lung tumors. Finally, following in vivo treatment of mice, PI-083 inhibited tumor, but not hepatic liver CT-L activity, whereas Bortezomib inhibited both tumor and liver CT-L activities. These results suggest that PI-083 is more selective for cancer cells and may have broader antitumor activity and therefore warrants further advanced preclinical studies.

  3. Two waves of proteasome-dependent protein degradation in the hippocampus are required for recognition memory consolidation.

    PubMed

    Figueiredo, Luciana S; Dornelles, Arethuza S; Petry, Fernanda S; Falavigna, Lucio; Dargél, Vinicius A; Köbe, Luiza M; Aguzzoli, Cristiano; Roesler, Rafael; Schröder, Nadja

    2015-04-01

    Healthy neuronal function and synaptic modification require a concert of synthesis and degradation of proteins. Increasing evidence indicates that protein turnover mediated by proteasome activity is involved in long-term synaptic plasticity and memory. However, its role in different phases of memory remains debated, and previous studies have not examined the possible requirement of protein degradation in recognition memory. Here, we show that the proteasome inhibitor, lactacystin (LAC), infused into the CA1 area of the hippocampus at two specific time points during consolidation, impairs 24-retention of memory for object recognition in rats. Administration of LAC after retrieval did not affect retention. These findings provide the first evidence for a requirement of proteasome activity in recognition memory, indicate that protein degradation in the hippocampus is necessary during selective time windows of memory consolidation, and further our understanding of the role of protein turnover in memory formation.

  4. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib

    PubMed Central

    Berezniuk, Iryna; Dasgupta, Sayani; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.; Fricker, Lloyd D.

    2013-01-01

    Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug. PMID:23308178

  5. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma.

    PubMed

    Bhatt, Shruti; Ashlock, Brittany M; Toomey, Ngoc L; Diaz, Luis A; Mesri, Enrique A; Lossos, Izidore S; Ramos, Juan Carlos

    2013-06-01

    Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.

  6. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    SciTech Connect

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 32 {mu}mol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  7. Structurally novel highly potent proteasome inhibitors created by the structure-based hybridization of nonpeptidic belactosin derivatives and peptide boronates.

    PubMed

    Kawamura, Shuhei; Unno, Yuka; Asai, Akira; Arisawa, Mitsuhiro; Shuto, Satoshi

    2014-03-27

    We previously developed highly potent proteasome inhibitor 1 (IC50 = 5.7 nM) and its nonpeptide derivative 2 (IC50 = 29 nM) by systematic structure-activity relationship studies of the peptidic natural product belactosin A and subsequent rational topology-based scaffold hopping, respectively. Their cell growth inhibitory activities, however, were only moderate (IC50 = 1.8 μM (1) and >10 μM (2)). We therefore planned to replace the unstable β-lactone warhead with a more stable boronic acid warhead. Importantly, belactosin derivatives bind mainly to the proteasome binding site, which is different from that occupied by known peptide boronate proteasome inhibitors such as bortezomib, suggesting that their hybridization might lead to the development of novel potent inhibitors. Here we describe design, synthesis, and biological activities of the newly developed potent hybrid proteasome inhibitors. Interestingly, these hybrids, unlike bortezomib, were highly selective for proteasomes and have long residence times despite having the same boronic acid warhead.

  8. Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome

    PubMed Central

    2016-01-01

    This research explores the first design and synthesis of macrocyclic peptide aldehydes as potent inhibitors of the 20S proteasome. Two novel macrocyclic peptide aldehydes based on the ring-size of the macrocyclic natural product TMC-95 were prepared and evaluated as inhibitors of the 20S proteasome. Both compounds inhibited in the low nanomolar range and proved to be selective for the proteasome over other serine and cysteine proteases, particularly when compared to linear analogues with similar amino acid sequences. In HeLa cells, both macrocycles efficiently inhibited activation of nuclear factor-κB (NF-κB) transcription factor by blocking proteasomal degradation of the inhibitor protein IκBα after cytokine stimulation. Due to their covalent mechanism of binding these compounds represent a 1000-fold increase in inhibitory potency over previously reported noncovalently binding TMC-95 analogues. Molecular modeling of the macrocyclic peptides confirms the preference of the large S3 pocket for large, hydrophobic residues and the ability to exploit this to improve selectivity of proteasome inhibitors. PMID:26985310

  9. Proteasome inhibitors prevent caspase-1-mediated disease in rodents challenged with anthrax lethal toxin.

    PubMed

    Muehlbauer, Stefan M; Lima, Heriberto; Goldman, David L; Jacobson, Lee S; Rivera, Johanna; Goldberg, Michael F; Palladino, Michael A; Casadevall, Arturo; Brojatsch, Jürgen

    2010-08-01

    NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.

  10. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors.

    PubMed

    Owen, Jeremy G; Charlop-Powers, Zachary; Smith, Alexandra G; Ternei, Melinda A; Calle, Paula Y; Reddy, Boojala Vijay B; Montiel, Daniel; Brady, Sean F

    2015-04-07

    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.

  11. Correction of Cystathionine β-synthase Deficiency in Mice by Treatment with Proteasome Inhibitors

    PubMed Central

    Gupta, Sapna; Wang, Liqun; Anderl, Janet; Slifker, Michael J.; Kirk, Christopher; Kruger, Warren D.

    2013-01-01

    Cystathionine beta-synthase (CBS) deficiency is an inborn error of metabolism characterized by extremely elevated levels of plasma total homocysteine. The vast majority of CBS-deficient patients have missense mutations located in the CBS gene that result in the production of either misfolded or unstable protein. Here, we examine the effect of proteasome inhibitors on mutant CBS function using two different mouse models of CBS deficiency. These mice lack mouse CBS and express a missense mutant human CBS enzyme (either p.I278T or p.S466L) that has less than 5% of normal liver CBS activity, resulting in a 10–30 fold elevation in plasma homocysteine levels. We show that treatment of these mice with two different proteasome inhibitors can induce liver Hsp70, Hsp40, and Hsp27, increase levels of active CBS, and lower plasma homocysteine levels to within the normal range. However, response rates varied, with 100% (8/8) of the p.S466L animals showing correction, but only 38% (10/26) of the p.I278T animals. In total, our data shows that treatment with proteostasis modulators can restore significant enzymatic activity to mutant misfolded CBS enzymes and suggests that they may be useful in treating certain types of genetic diseases caused by missense mutations. PMID:23592311

  12. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway.

    PubMed

    Padrão, Juliana da Cruz; Cabral, Gabriel Rabello de Abreu; da Silva, Maria de Fátima Sarro; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2014-10-01

    Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.

  13. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong . E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram; Sui Jianhua; Marasco, Wayne; Callery, Mark P. . E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  14. Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells.

    PubMed

    Federspiel, Joel D; Codreanu, Simona G; Goyal, Sandeep; Albertolle, Matthew E; Lowe, Eric; Teague, Juli; Wong, Hansen; Guengerich, F Peter; Liebler, Daniel C

    2016-10-01

    Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the β5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics.

  15. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib.

    PubMed

    Liu, Feng-Ting; Agrawal, Samir G; Movasaghi, Zanyar; Wyatt, Peter B; Rehman, Ihtesham U; Gribben, John G; Newland, Adrian C; Jia, Li

    2008-11-01

    Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients.

  16. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib

    PubMed Central

    Liu, Feng-Ting; Agrawal, Samir G.; Movasaghi, Zanyar; Wyatt, Peter B.; Rehman, Ihtesham U.; Gribben, John G.; Newland, Adrian C.

    2008-01-01

    Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients. PMID:18633129

  17. Salinosporamide Natural Products: Potent 20S Proteasome Inhibitors as Promising Cancer Chemotherapeutics

    PubMed Central

    Gulder, Tobias A. M.

    2010-01-01

    Proteasome inhibitors are rapidly evolving as potent treatment options in cancer therapy. One of the most promising drug candidates of this type is salinosporamide A from the bacterium Salinispora tropica. This marine natural product possesses a complex, densely functionalized γ-lactam-β-lactone pharmacophore, which is responsible for its irreversible binding to its target, the β subunit of the 20S proteasome. Salinosporamide A entered phase I clinical trials for the treatment of multiple myeloma only three years after its discovery. The strong biological activity and the challenging structure of this compound have fueled intense academic and industrial research in recent years, which has led to the development of more than ten syntheses, the elucidation of its biosynthetic pathway, and the generation of promising structure–activity relationships and oncological data. Salinosporamide A thus serves as an intriguing example of the successful interplay of modern drug discovery and biomedical research, medicinal chemistry and pharmacology, natural product synthesis and analysis, as well as biosynthesis and bioengineering. PMID:20927786

  18. Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia

    PubMed Central

    Ganesan, S; Alex, A A; Chendamarai, E; Balasundaram, N; Palani, H K; David, S; Kulkarni, U; Aiyaz, M; Mugasimangalam, R; Korula, A; Abraham, A; Srivastava, A; Padua, R A; Chomienne, C; George, B; Balasubramanian, P; Mathews, V

    2016-01-01

    Arsenic trioxide (ATO) mediates PML-RARA (promyelocytic leukemia–retinoic acid receptor-α) oncoprotein degradation via the proteasome pathway and this degradation appears to be critical for achieving cure in acute promyeloytic leukemia (APL). We have previously demonstrated significant micro-environment-mediated drug resistance (EMDR) to ATO in APL. Here we demonstrate that this EMDR could be effectively overcome by combining a proteasome inhibitor (bortezomib) with ATO. A synergistic effect on combining these two agents in vitro was noted in both ATO-sensitive and ATO-resistant APL cell lines. The mechanism of this synergy involved downregulation of the nuclear factor-κB pathway, increase in unfolded protein response (UPR) and an increase in reactive oxygen species generation in the malignant cell. We also noted that PML-RARA oncoprotein is effectively cleared with this combination in spite of proteasome inhibition by bortezomib, and that this clearance is mediated through a p62-dependent autophagy pathway. We further demonstrated that proteasome inhibition along with ATO had an additive effect in inducing autophagy. The beneficial effect of this combination was further validated in an animal model and in an on-going clinical trial. This study raises the potential of a non-myelotoxic proteasome inhibitor replacing anthracyclines in the management of high-risk and relapsed APL. PMID:27560113

  19. Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy

    PubMed Central

    Kang, Jeon Woong; Singh, Surya P.; Nguyen, Freddy T.; Lue, Niyom; Sung, Yongjin; So, Peter T. C.; Dasari, Ramachandra R.

    2016-01-01

    Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have applied this system to monitor the effects of Bortezomib, a proteasome inhibitor drug, on multiple myeloma cells. Cluster imaging followed by spectral profiling suggest major differences in the nuclear and cytoplasmic contents of cells due to drug treatment that can be monitored with Raman spectroscopy. Spectra were also acquired from group of cells and feasibility of discrimination among treated and untreated cells using principal component analysis (PCA) was accessed. Findings support the feasibility of Raman technologies as an alternate, novel method for monitoring live cell dynamics with minimal external perturbation. PMID:27983660

  20. Identifying the Minimal Enzymes Required for Biosynthesis of Epoxyketone Proteasome Inhibitors

    PubMed Central

    Liu, Joyce; Zhu, Xuejun

    2015-01-01

    Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anti-cancer drugs. While the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast-growing heterologous host. This set of enzymes includes a non-ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl-CoA dehydrogenase (ACAD) homolog. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and 13C-labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation. PMID:26477320

  1. Morphine Induces Ubiquitin-Proteasome Activity and Glutamate Transporter Degradation*

    PubMed Central

    Yang, Liling; Wang, Shuxing; Sung, Backil; Lim, Grewo; Mao, Jianren

    2008-01-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis, neurotoxicity, and glutamatergic regulation of opioid tolerance. However, how the glutamate transporter turnover is regulated remains poorly understood. Here we show that chronic morphine exposure induced posttranscriptional down-regulation of the glutamate transporter EAAC1 in C6 glioma cells with a concurrent decrease in glutamate uptake and increase in proteasome activity, which were blocked by the selective proteasome inhibitor MG-132 or lactacystin but not the lysosomal inhibitor chloroquin. At the cellular level, chronic morphine induced the PTEN (phosphatase and tensin homolog deleted on chromosome Ten)-mediated up-regulation of the ubiquitin E3 ligase Nedd4 via cAMP/protein kinase A signaling, leading to EAAC1 ubiquitination and proteasomal degradation. Either Nedd4 or PTEN knockdown with small interfering RNA prevented the morphine-induced EAAC1 degradation and decreased glutamate uptake. These data indicate that cAMP/protein kinase A signaling serves as an intracellular regulator upstream to the activation of the PTEN/Nedd4-mediated ubiquitin-proteasome system activity that is critical for glutamate transporter turnover. Under an in vivo condition, chronic morphine exposure also induced posttranscriptional down-regulation of the glutamate transporter EAAC1, which was prevented by MG-132, and transcriptional up-regulation of PTEN and Nedd4 within the spinal cord dorsal horn. Thus, inhibition of the ubiquitin-proteasome-mediated glutamate transporter degradation may be an important mechanism for preventing glutamate overexcitation and may offer a new strategy for treating certain neurological disorders and improving opioid therapy in chronic pain management. PMID:18539596

  2. Synergistic targeting of Sp1, a critical transcription factor for myeloma cell growth and survival, by panobinostat and proteasome inhibitors

    PubMed Central

    Bat-Erdene, Ariunzaya; Miki, Hirokazu; Oda, Asuko; Nakamura, Shingen; Teramachi, Jumpei; Amachi, Ryota; Tenshin, Hirofumi; Hiasa, Masahiro; Iwasa, Masami; Harada, Takeshi; Fujii, Shiro; Sogabe, Kimiko; Kagawa, Kumiko; Yoshida, Sumiko; Endo, Itsuro; Aihara, Kenichi; Abe, Masahiro

    2016-01-01

    Panobinostat, a pan-deacetylase inhibitor, synergistically elicits cytotoxic activity against myeloma (MM) cells in combination with the proteasome inhibitor bortezomib. Because precise mechanisms for panobinostat's anti-MM action still remain elusive, we aimed to clarify the mechanisms of anti-MM effects of panobinostat and its synergism with proteasome inhibitors. Although the transcription factor Sp1 was overexpressed in MM cells, the Sp1 inhibitor terameprocol induced MM cell death in parallel with reduction of IRF4 and cMyc. Panobinostat induced activation of caspase-8, which was inversely correlated with reduction of Sp1 protein levels in MM cells. The panobinostat-mediated effects were further potentiated to effectively induce MM cell death in combination with bortezomib or carfilzomib even at suboptimal concentrations as a single agent. Addition of the caspase-8 inhibitor z-IETD-FMK abolished the Sp1 reduction not only by panobinostat alone but also by its combination with bortezomib, suggesting caspase-8-mediated Sp1 degradation. The synergistic Sp1 reduction markedly suppressed Sp1-driven prosurvival factors, IRF4 and cMyc. Besides, the combinatory treatment reduced HDAC1, another Sp1 target, in MM cells, which may potentiate HDAC inhibition. Collectively, caspase-8-mediated post-translational Sp1 degradation appears to be among major mechanisms for synergistic anti-MM effects of panobinostat and proteasome inhibitors in combination. PMID:27738323

  3. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation.

    PubMed

    Weyburne, Emily S; Wilkins, Owen M; Sha, Zhe; Williams, David A; Pletnev, Alexandre A; de Bruin, Gerjan; Overkleeft, Hermann S; Goldberg, Alfred L; Cole, Michael D; Kisselev, Alexei F

    2017-02-16

    The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo. Inhibiting both β5 and β2 suppresses production of the soluble, active form of the transcription factor Nrf1 and prevents the recovery of proteasome activity through induction of new proteasomes. These findings provide a strong rationale for the development of dual β5 and β2 inhibitors for the treatment of solid tumors.

  4. NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion.

    PubMed

    Rosenberg, Tali; Elkobi, Alina; Dieterich, Daniela C; Rosenblum, Kobi

    2016-04-01

    Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation.

  5. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

    PubMed Central

    WADA, NAOKO; KAWANO, YAWARA; FUJIWARA, SHIHO; KIKUKAWA, YOSHITAKA; OKUNO, YUTAKA; TASAKI, MASAYOSHI; UEDA, MITSUHARU; ANDO, YUKIO; YOSHINAGA, KAZUYA; RI, MASAKI; IIDA, SHINSUKE; NAKASHIMA, TAKAYUKI; SHIOTSU, YUKIMASA; MITSUYA, HIROAKI; HATA, HIROYUKI

    2015-01-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  6. Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: Anticancer efficacy and pharmacokinetic studies in mice

    PubMed Central

    Park, Ji Eun; Chun, Se-Eun; Reichel, Derek; Min, Jee Sun; Lee, Su-Chan; Han, Songhee; Ryoo, Gongmi; Oh, Yunseok; Park, Shin-Hyung; Ryu, Heon-Min; Kim, Kyung Bo; Lee, Ho-Young; Bae, Soo Kyung; Bae, Younsoo

    2017-01-01

    Carfilzomib (CFZ) is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM). Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs) composed of biodegradable block copolymers poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic acid (CFZ-PM) and assessed its in vivo anticancer efficacy and pharmacokinetic profiles. Despite in vitro metabolic protection of CFZ, CFZ-PM did not display in vivo anticancer efficacy in mice bearing human lung cancer xenograft (H460) superior to that of the clinically used cyclodextrin-based CFZ (CFZ-CD) formulation. The plasma pharmacokinetic profiles of CFZ-PM were also comparable to those of CFZ-CD and the residual tumors that persisted in xenograft mice receiving CFZ-PM displayed an incomplete proteasome inhibition. In summary, our results showed that despite its favorable in vitro performances, the current CFZ-PM formulation did not improve in vivo anticancer efficacy and accessibility of active CFZ to solid cancer tissues over CFZ-CD. Careful consideration of the current results and potential confounding factors may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers. PMID:28273121

  7. Homogeneous, bioluminescent proteasome assays.

    PubMed

    O'Brien, Martha A; Moravec, Richard A; Riss, Terry L; Bulleit, Robert F

    2015-01-01

    Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

  8. γ-secretase inhibitor I inhibits neuroblastoma cells, with NOTCH and the proteasome among its targets

    PubMed Central

    Dorneburg, Carmen; Goß, Annika V.; Fischer, Matthias; Roels, Frederik; Barth, Thomas F.E.; Berthold, Frank; Kappler, Roland; Oswald, Franz; Siveke, Jens T.; Molenaar, Jan J.; Debatin, Klaus-Michael; Beltinger, Christian

    2016-01-01

    As high-risk neuroblastoma (NB) has a poor prognosis, new therapeutic modalities are needed. We therefore investigated the susceptibility of NB cells to γ-secretase inhibitor I (GSI-I). NOTCH signaling activity, the cellular effects of GSI-I and its mechanisms of cytotoxicity were evaluated in NB cells in vitro and in vivo. The results show that NOTCH signaling is relevant for human NB cells. Of the GSIs screened in vitro GSI-I was the most effective inhibitor of NB cells. Both MYCN-amplified and non-amplified NB cells were susceptible to GSI-I. Among the targets of GSI-I in NB cells were NOTCH and the proteasome. GSI-I caused G2/M arrest that was enhanced by acute activation of MYCN and led to mitotic dysfunction. GSI-I also induced proapoptotic NOXA. Survival of mice bearing an MYCN non-amplified orthotopic patient-derived NB xenograft was significantly prolonged by systemic GSI-I, associated with mitotic catastrophe and reduced angiogenesis, and without evidence of intestinal toxicity. In conclusion, the activity of GSI-I on multiple targets in NB cells and the lack of gastrointestinal toxicity in mice are advantageous and merit further investigations of GSI-I in NB. PMID:27588497

  9. Possible role of selective, irreversible, proteasome inhibitor (carfilzomib) in the treatment of rat hepatocellular carcinoma.

    PubMed

    Mansour, Mahmoud A; Aljoufi, Mohammed A; Al-Hosaini, Khaled; Al-Rikabi, Ammar C; Nagi, Mahmoud N

    2014-05-25

    We investigated the possible therapeutic effect of irreversible proteasome inhibitor, carfilzomib against hepatocellular carcinoma induced chemically by chronic administration of diethylnitrosoamines (DENA). Hepatocellular carcinoma induced by DENA in male Wistar rats was manifested biochemically by significant elevation of serum α-feto protein (AFP) and carcinoembryonic antigen (CEA). In addition, hepatic cancer was further confirmed by a significant increase in hepatic tissue growth factors; vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (FGF). Moreover a marked increase in matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) content were also observed, along with a profound decrease in hepatic endostatin and metallothionein level. Treatment of rats with the selected doses of carfilzomib produced a significant protection against hepatic cancer. The present results claimed that chosen doses of carfilzomib succeeded in suppressing serum tumor markers level AFP and CEA. Furthermore, the drug reduced the elevated level of hepatic growth factors, MMP-2 and TIMP-1 induced by the carcinogen. The antitumor effect of carfilzomib was also accompanied by augmentation of hepatic content of endostatin and metallothionein. Histopathological examination of liver tissues also correlated with the biochemical observations. It could be concluded that treatment with carfilzomib confers a possible antitumor effect against hepatocellular carcinoma induced by DENA model in rats.

  10. Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD immunomodulatory drug pomalidomide.

    PubMed

    Das, Deepika S; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C

    2015-12-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: (i) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage, (ii) downregulation of cereblon (CRBN), IRF4, MYC and MCL1, and (iii) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM.

  11. Synergistic Anti-Myeloma Activity of the Proteasome Inhibitor Marizomib and the IMiD® Immunomodulatory Drug Pomalidomide

    PubMed Central

    Das, Deepika Sharma; Ray, Arghya; Song, Yan; Richardson, Paul; Trikha, Mohit; Chauhan, Dharminder; Anderson, Kenneth C.

    2015-01-01

    The proteasome inhibitor bortezomib is an effective therapy for the treatment of relapsed and refractory multiple myeloma (RRMM); however, prolonged treatment can be associated with toxicity, peripheral neuropathy and drug resistance. Our earlier studies showed that the novel proteasome inhibitor marizomib is distinct from bortezomib in its chemical structure, mechanisms of action and effects on proteasomal activities, and that it can overcome bortezomib resistance. Pomalidomide, like lenalidomide, has potent immunomodulatory activity and has been approved by the US Food and Drug Administration for the treatment of RRMM. Here, we demonstrate that combining low concentrations of marizomib with pomalidomide induces synergistic anti-MM activity. Marizomib plus pomalidomide-induced apoptosis is associated with: 1) activation of caspase-8, caspase-9, caspase-3 and PARP cleavage; 2) downregulation of cereblon (CRBN), IRF4, MYC and MCL1; and 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. CRBN-siRNA attenuates marizomib plus pomalidomide-induced MM cells death. Furthermore, marizomib plus pomalidomide inhibits the migration of MM cells and tumour-associated angiogenesis, as well as overcomes cytoprotective effects of bone marrow microenvironment. In human MM xenograft model studies, the combination of marizomib and pomalidomide is well tolerated, inhibits tumour growth and prolongs survival. These preclinical studies provide the rationale for on-going clinical trials of combined marizomib and pomalidomide to improve outcome in patients with RRMM. PMID:26456076

  12. Decreased behavioral response to intranigrally administered GABAA agonist muscimol in the lactacystin model of Parkinson's disease may result from partial lesion of nigral non-dopamine neurons: comparison to the classical neurotoxin 6-OHDA.

    PubMed

    Konieczny, Jolanta; Czarnecka, Anna; Kamińska, Kinga; Lenda, Tomasz; Nowak, Przemysław

    2015-04-15

    Lactacystin is a selective UPS inhibitor recently used to destroy dopamine (DA) neurons in animal models of Parkinson's disease (PD). However, both in vitro and in vivo studies show discrepancies in terms of the sensitivity of non-DA neurons to its toxicity. Therefore, our study was aimed to examine the toxic effect of intranigral administration of lactacystin on DA and non-DA neurons in the rat substantia nigra (SN), compared to the classic neurotoxin 6-OHDA. Tissue DA levels in the striatum and SN and GABA levels in the SN were also examined. Moreover, behavioral response of nigral GABAA receptors to locally administered muscimol was evaluated in these two PD models. We found that both lactacystin and 6-OHDA induced a strong decrease in DA level in the lesioned striatum and SN but only lactacystin slightly reduced GABA levels in the SN. A stereological analysis showed that both neurotoxins highly decreased the number of DA neurons in the SN, while only lactacystin moderately reduced the number of non-DA ones. Finally, in the lactacystin group, the number of contralateral rotations after intranigrally administrated muscimol was decreased in contrast to the increased response in the 6-OHDA model. Our study proves that, although lactacystin is not a fully selective to DA neurons, these neurons are much more vulnerable to its toxicity. Partial lesion of nigral non-DA neurons in this model may explain the decreased behavioral response to the GABAA agonist muscimol.

  13. Development of a new class of proteasome inhibitors with an epoxyketone warhead: Rational hybridization of non-peptidic belactosin derivatives and peptide epoxyketones.

    PubMed

    Kawamura, Shuhei; Unno, Yuka; Asai, Akira; Arisawa, Mitsuhiro; Shuto, Satoshi

    2014-06-15

    Proteasome inhibitors are currently a focus of increased attention as anticancer drug candidates. We recently performed systematic structure-activity relationship studies of the peptidic natural product belactosin A and identified non-peptidic derivative 2 as a highly potent proteasome inhibitor. However, the cell growth inhibitory effect of 2 is only moderate, probably due to the biologically unstable β-lactone warhead. Peptide epoxyketones are an important class of proteasome inhibitors exhibit high potency in cellular systems based on the efficient α,β-epoxyketone warhead. Importantly, belactosin derivatives bind primarily to the primed binding site, while peptide epoxyketones bind only to the non-primed binding site of proteasome, suggesting that hybridization of them might lead to the development of a new class of proteasome inhibitors. Thus, we successfully identified a novel chemotype of proteasome inhibitors 3 and 4 by rational structure-based design, which are expected to bind to both the primed and non-primed binding sites of proteasome.

  14. Crystal structure of N-{N-[N-acetyl-(S)-leucyl]-(S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome

    DOE PAGES

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa; ...

    2015-03-01

    The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  15. The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype.

    PubMed

    Siddiqui, Ruqaiyyah; Saleem, Sahreena; Khan, Naveed Ahmed

    2016-09-01

    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.

  16. Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor

    PubMed Central

    Wijnant, Kathleen; Crinelli, Rita; Bianchi, Marzia; Magnani, Mauro; Hysi, Albana; Iezzi, Manuela

    2017-01-01

    The phytoestrogen resveratrol has been reported to possess cancer chemo-preventive activity on the basis of its effects on tumor cell lines and xenograft or carcinogen-inducible in vivo models. Here we investigated the effects of resveratrol on spontaneous mammary carcinogenesis using Δ16HER2 mice as HER2+/ERα+ breast cancer model. Instead of inhibiting tumor growth, resveratrol treatment (0.0001% in drinking water; daily intake of 4μg/mouse) shortened tumor latency and enhanced tumor multiplicity in Δ16HER2 mice. This in vivo tumor-promoting effect of resveratrol was associated with up-regulation of Δ16HER2 and down-regulation of ERα protein levels and was recapitulated in vitro by murine (CAM6) and human (BT474) tumor cell lines. Our results demonstrate that resveratrol, acting as a proteasome inhibitor, leads to Δ16HER2 accumulation which favors the formation of Δ16HER2/HER3 heterodimers. The consequential activation of downstream mTORC1/p70S6K/4EBP1 pathway triggers cancer growth and proliferation. This study provides evidence that resveratrol mechanism of action (and hence its effects) depends on the intrinsic molecular properties of the cancer model under investigation, exerting a tumor-promoting effect in luminal B breast cancer subtype models. PMID:28238967

  17. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation

    PubMed Central

    Lechner, Anna; Eustáquio, Alessandra S.; Gulder, Tobias A. M.; Hafner, Mathias; Moore, Bradley S.

    2011-01-01

    The chlorinated natural product salinosporamide A is a potent 20S proteasome inhibitor currently in clinical trials as an anticancer agent. To deepen our understanding of salinosporamide biosynthesis, we investigated the function of a LuxR-type pathway-specific regulatory gene, salR2, and observed a selective effect on the production of salinosporamide A over its less active aliphatic analogs. SalR2 was shown to specifically activate genes involved in the biosynthesis of the halogenated precursor chloroethylmalonyl-CoA, which is a dedicated precursor of salinosporamide A. Specifically, SalR2 activates transcription of two divergent operons – one of which contains the unique S-adenosyl-L-methionine-dependent chlorinase encoding gene salL. By applying this knowledge towards rational engineering, we were able to selectively double salinosporamide A production. This study exemplifies the specialized regulation of a polyketide precursor pathway and its application to the selective overproduction of a specific natural product congener. PMID:22195555

  18. Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites

    PubMed Central

    Misas-Villamil, Johana C.; Kolodziejek, Izabella; Crabill, Emerson; Kaschani, Farnusch; Niessen, Sherry; Shindo, Takayuki; Kaiser, Markus; Alfano, James R.; van der Hoorn, Renier A. L.

    2013-01-01

    Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA), a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA). Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues. PMID:23555272

  19. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental.

    PubMed

    Guil, Sara; Rodríguez-Castro, Marta; Aguilar, Francisco; Villasevil, Eugenia M; Antón, Luis C; Del Val, Margarita

    2006-12-29

    CD8(+) T lymphocytes recognize infected cells that display virus-derived antigenic peptides complexed with major histocompatibility complex class I molecules. Peptides are mainly byproducts of cellular protein turnover by cytosolic proteasomes. Cytosolic tripeptidyl-peptidase II (TPPII) also participates in protein degradation. Several peptidic epitopes unexpectedly do not require proteasomes, but it is unclear which proteases generate them. We studied antigen processing of influenza virus nucleoprotein epitope NP(147-155), an archetype epitope that is even destroyed by a proteasome-mediated mechanism. TPPII, with the assistance of endoplasmic reticulum trimming metallo-aminopeptidases, probably ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), was crucial for nucleoprotein epitope generation both in the presence of functional proteasomes and when blocked by lactacystin, as shown with specific chemical inhibitors and gene silencing. Different protein contexts and subcellular targeting all allowed epitope processing by TPPII as well as trimming. The results show the plasticity of the cell's assortment of proteases for providing ligands for recognition by antiviral CD8(+) T cells. Our observations identify for the first time a set of proteases competent for antigen processing of an epitope that is susceptible to destruction by proteasomes.

  20. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  1. Proapoptotic fibronectin fragment induces the degradation of ubiquitinated p53 via proteasomes in periodontal ligament cells

    PubMed Central

    Ghosh, Abhijit; Joo, Nam Eok; Chen, Tina Chunyuan; Kapila, Yvonne L.

    2009-01-01

    Background and Objective The extracellular matrix (ECM) plays a key role in signaling necessary for tissue remodeling and cell survival. However, signals from disease-altered ECMs, as that present in inflammatory diseases like periodontitis and arthritis, may lead to apoptosis or programmed cell death of resident cells. Previously, we found that a disease-associated fibronectin fragment triggers apoptosis of primary human periodontal ligament (PDL) cells via a novel apoptotic pathway in which the tumor suppressor, p53, is transcriptionally downregulated. Materials and Methods We used immunofluorescence, transfection assays, western blotting and ELISAs to show that p53 is degraded by a proteasomal pathway in response to a proapoptotic disease-associated fibronectin fragment. Results We now show that under these same apoptotic conditions p53 is further downregulated by post-translational ubiquitination and subsequent targeting to the proteasome for degradation. Pretreatment of cells with the proteasomal inhibitors MG132 and lactacystin rescued the cells from apoptosis. p53 levels in cells transfected with ubiquitin siRNA were resistant to degradation induced by the proapoptotic fibronectin fragment, showing that ubiquitination is important for the proapoptotic fibronectin fragment-induced degradation of p53. Conclusions These data show that a proapoptotic fibronectin matrix induces ubiquitination and degradation of p53 in the proteasome as part of a novel mechanism of apoptosis associated with inflammatory diseases. PMID:20337881

  2. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells

    PubMed Central

    Young, Jordan T. F.

    2009-01-01

    Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge. PMID:19838833

  3. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death

    PubMed Central

    Kashyap, Trinayan; Argueta, Christian; Aboukameel, Amro; Unger, Thaddeus John; Klebanov, Boris; Mohammad, Ramzi M.; Muqbil, Irfana; Azmi, Asfar S.; Drolen, Claire; Senapedis, William; Lee, Margaret; Kauffman, Michael; Shacham, Sharon; Landesman, Yosef

    2016-01-01

    The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis. Recently, we described the selection of SINE compound resistant cells and reported elevated expression of inflammation-related genes in these cells. Here, we demonstrated that NF-κB transcriptional activity is up-regulated in cells that are naturally resistant or have acquired resistance to SINE compounds. Resistance to SINE compounds was created by knockdown of the cellular NF-κB inhibitor, IκB-α. Combination treatment of selinexor with proteasome inhibitors decreased NF-κB activity, sensitized SINE compound resistant cells and showed synergistic cytotoxicity in vitro and in vivo. Furthermore, we showed that selinexor inhibited NF-κB activity by blocking phosphorylation of the IκB-α and the NF-κB p65 subunits, protecting IκB-α from proteasome degradation and trapping IκB-α in the nucleus to suppress NF-κB activity. Therefore, combination treatment of selinexor with a proteasome inhibitor may be beneficial to patients with resistance to either single-agent. PMID:27713151

  4. Design, synthesis and docking studies of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids.

    PubMed

    Shi, Jingmiao; Lei, Meng; Wu, Wenkui; Feng, Huayun; Wang, Jia; Chen, Shanshan; Zhu, Yongqiang; Hu, Shihe; Liu, Zhaogang; Jiang, Cheng

    2016-04-15

    A series of novel dipeptidyl boronic acid proteasome inhibitors constructed from αα- and αβ-amino acids were designed and synthesized. Their structures were elucidated by (1)H NMR, (13)C NMR, LC-MS and HRMS. These compounds were evaluated for their β5 subunit inhibitory activities of human proteasome. The results showed that dipeptidyl boronic acid inhibitors composed of αα-amino acids were as active as bortezomib. Interestingly, the activities of those derived from αβ-amino acids lost completely. Of all the inhibitors, compound 22 (IC50=4.82 nM) was the most potent for the inhibition of proteasome activity. Compound 22 was also the most active against three MM cell lines with IC50 values less than 5 nM in inhibiting cell growth assays. Molecular docking studies displayed that 22 fitted very well in the β5 subunit active pocket of proteasome.

  5. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells

    PubMed Central

    Shi, Yonghua; Yu, Yang; Wang, Zhenyu; Wang, Hao; Bieerkehazhi, Shayahati; Zhao, Yanling; Suzuk, Lale; Zhang, Hong

    2016-01-01

    Proteasome inhibition is an attractive approach for anticancer therapy. Doxorubicin (DOX) is widely used for treatment in a number of cancers including breast cancer; however, the development of DOX resistance largely limits its clinical application. One of the possible mechanisms of DOX-resistance is that DOX might induce the activation of NF-κB. In this case, proteasome inhibitors could inhibit the activation of NF-κB by blocking inhibitory factor κB (IκB) degradation. Carfilzomib, a second-generation proteasome inhibitor, overcomes bortezomib resistance and lessens its side-effects. Currently, the effect of carfilzomib on breast cancer cell proliferation remains unclear. In this study, we exploited the role of carfilzomib in seven breast cancer cell lines, MCF7, T-47D, MDA-MB-361, HCC1954, MDA-MB-468, MDA-MB-231, and BT-549, representing all major molecular subtypes of breast cancer. We found that carfilzomib alone had cytotoxic effects on the breast cancer cells and it increased DOX-induced cytotoxic effects and apoptosis in combination by enhancing DOX-induced JNK phosphorylation and inhibiting DOX-induced IκBα degradation. The results suggest that carfilzomib has potent antitumor effects on breast cancer in vitro and can sensitize breast cancer cells to DOX treatment. DOX in combination with carfilzomib may be an effective and feasible therapeutic option in the clinical trials for treating breast cancer. PMID:27655642

  6. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells.

    PubMed

    Shi, Yonghua; Yu, Yang; Wang, Zhenyu; Wang, Hao; Bieerkehazhi, Shayahati; Zhao, Yanling; Suzuk, Lale; Zhang, Hong

    2016-11-08

    Proteasome inhibition is an attractive approach for anticancer therapy. Doxorubicin (DOX) is widely used for treatment in a number of cancers including breast cancer; however, the development of DOX resistance largely limits its clinical application. One of the possible mechanisms of DOX-resistance is that DOX might induce the activation of NF-κB. In this case, proteasome inhibitors could inhibit the activation of NF-κB by blocking inhibitory factor κB (IκB) degradation. Carfilzomib, a second-generation proteasome inhibitor, overcomes bortezomib resistance and lessens its side-effects. Currently, the effect of carfilzomib on breast cancer cell proliferation remains unclear. In this study, we exploited the role of carfilzomib in seven breast cancer cell lines, MCF7, T-47D, MDA-MB-361, HCC1954, MDA-MB-468, MDA-MB-231, and BT-549, representing all major molecular subtypes of breast cancer. We found that carfilzomib alone had cytotoxic effects on the breast cancer cells and it increased DOX-induced cytotoxic effects and apoptosis in combination by enhancing DOX-induced JNK phosphorylation and inhibiting DOX-induced IκBα degradation. The results suggest that carfilzomib has potent antitumor effects on breast cancer in vitro and can sensitize breast cancer cells to DOX treatment. DOX in combination with carfilzomib may be an effective and feasible therapeutic option in the clinical trials for treating breast cancer.

  7. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo.

    PubMed

    Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zhao, Chong; Liao, Siyan; Yang, Changshan; Liu, Yurong; Zhao, Canguo; Li, Shujue; Lu, Xiaoyu; Liu, Chunjiao; Guan, Lixia; Zhao, Kai; Shi, Xiaoqing; Song, Wenbin; Zhou, Ping; Dong, Xiaoxian; Guo, Haiping; Wen, Guanmei; Zhang, Change; Jiang, Lili; Ma, Ningfang; Li, Bing; Wang, Shunqing; Tan, Huo; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2013-01-31

    Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  8. [Mechanism of HL-60 cells apoptosis induced by proteasome inhibitor MG132].

    PubMed

    Zhou, Yong-Ming; Yu, Mei-Xia; Qiu, Yu-Zhen; Xing, Xiao-Lei; Yao, Chun-Hong; Bai, Ru-Jun

    2013-08-01

    The purpose of this study was to elucidate the apoptosis, apoptotic pathway of HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Apoptosis of HL-60 cells was detected by flow cytometry, the expression of P21, P27 and P53 proteins in HL-60 cells treated with MG132 was assayed by Western blot. The HL-60 cells were treated with 1 µmol/L MG132 for 48 h, and irradiated by 75 Gy of (60)Co γ-ray, but their antigenicity was preserved. The effect of irradiated HL-60 cells treated with MG132 on proliferation of peripheral blood mononuclear cells (PBMNC) was measured by CCK-8 method. The results showed that the apoptotic rate of MG132-treated HL-60 cells increased in dose-and time-dependent manner. No significant changes in MG132-induced apoptosis were observed after inhibiting caspase-8 and caspase-9 pathway. The expression of P21 and P27 protein increased after treatment of HL-60 cells with MG132. CCK-8 test showed that HL-60 cells induced with low-dose of MG132 displayed the enhancing effect on proliferation of PBMNC. It is concluded that high dose of MG132 can induce the apoptosis of HL-60 cells, and has direct killing effect on HL-60 cells, but this inducing apoptotic effect on HL-60 cells can not be realized through caspase-8 and caspase-9 pathway. The P21 and P27 protein may be involved in MG132 induced HL-60 cell apoptosis. Low dose of MG132 promotes the proliferation of PBMNC in healthy individuals and enhance the immunity of organism.

  9. Identification of Long Non-Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors

    PubMed Central

    Malek, Ehsan; Kim, Byung-Gyu; Driscoll, James J.

    2016-01-01

    While the clinical benefit of proteasome inhibitors (PIs) for multiple myeloma (MM) treatment remains unchallenged, dose-limiting toxicities and the inevitable emergence of drug resistance limit their long-term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy-induced, which accounts for the majority of tumor relapses and MM-related deaths. Non-coding RNAs (ncRNAs) are a broad class of RNA molecules, including long non-coding RNAs (lncRNAs), that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome-wide profiling identified lncRNAs that were significantly deregulated in all three PI-resistant cell lines relative to the drug-sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI-resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM. PMID:27782060

  10. [Effect of proteasome inhibitor bortezomib on proliferation, apoptosis and SHIP gene expression in K562 cells].

    PubMed

    Jia, Zhi-Qiang; Wei, Yu-Tao; Li, Ai-Ming; Cheng, Zhi-Yong

    2013-08-01

    This study was aimed to investigate the effects of proteasome inhibitor bortezomib on proliferation, apoptosis and the SHIP expression of K562 cells. K562 cells were treated with bortezomib of different concentrations. Cell proliferation was analyzed by MTT assay, cell apoptosis was detected by flow cytometry and SHIP mRNA expression was assayed by RT-PCR.The results showed that after being treated with 10, 20, 50 and 100 nmol/L bortezomib for 24 h, the inhibitory rates of K562 cells were (5.76 ± 1.47)%, (10.55 ± 1.59)%, (17.14 ± 2.05)% and (27.69 ± 3.57)% respectively, and were higher than that in control (1.30 ± 0.10); when K562 cells were treated with 20 nmol/L bortezomib for 24, 48 and 72 h, the inhibitory rates of cell proliferation were (10.55 ± 1.59)%, (16.33 ± 2.53)% and (19.78 ± 1.56)% respectively, there was statistic difference of cell proliferation rate between 24 h group and 48 h group (P < 0.05). After being treated with 10,20,50,100 nmol/L bortezomib for 24 h, the apoptotic rates of K562 cells were (12.7 ± 0.6)%, (26.9 ± 0.9)%, (32.6 ± 1.2)% and (72.5 ± 1.5)% respectively,and all higher than that in control (1.0 ± 0.5)% (P < 0.05). According to results of RT-PCR detection, the expression level of SHIP mRNA was obviously up-regulated after treatment with bortezomib, and showed statistical difference in comparison with control. It is concluded that bortezomib inhibits proliferation of K562 cells in time and concentration-dependent manner and induces apoptosis through up-regulation of SHIP gene.

  11. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors

    PubMed Central

    Franke, Niels E.; Kaspers, Gertjan L.; Assaraf, Yehuda G.; van Meerloo, Johan; Niewerth, Denise; Kessler, Floortje L.; Poddighe, Pino J.; Kole, Jeroen; Smeets, Serge J.; Ylstra, Bauke; Bi, Chonglei; Chng, Wee Joo; Horton, Terzah M.; Menezes, Rene X.; Musters, Renée J.P.; Zweegman, Sonja; Jansen, Gerrit; Cloos, Jacqueline

    2016-01-01

    PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress. PMID:27542283

  12. Proteasome affects the expression of aryl hydrocarbon receptor-regulated proteins.

    PubMed

    Ishida, Takumi; Kawakami, Masayo; Baba, Hiroko; Yahata, Masahiro; Mutoh, Junpei; Takeda, Shuso; Fujita, Hideaki; Tanaka, Yoshitaka; Ishii, Yuji; Yamada, Hideyuki

    2008-11-01

    The effect of proteasome inhibition with N-acetyl-leucyl-leucyl-norleucinal (ALLN) on the protein expression regulated by aryl hydrocarbon receptor (AhR) was studied in T47D breast tumor cells. The luciferase reporter gene assay using a construct which has the xenobiotic responsive element showed that the inducible expression of the reporter with AhR ligands was significantly reduced by co-treatment with ALLN. The same suppressive effect by ALLN was observed for ethoxyresorufin O-deethylase (EROD) activity induced by an AhR ligand, 3-methylcholanthrene (3MC). Despite the above effects, the induced expression of CYP1A1 and CYP1B1 mRNAs was unaffected by ALLN. While lactacystin, another proteasome inhibitor, exhibited the same effect as ALLN on EROD activity induced by 3MC, leupeptin, which is one of the cysteine protease inhibitors, had no such effect. Based on the evidence obtained, it appears that proteasome inhibition results in a reduction in the expression of AhR-regulated proteins.

  13. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex.

    PubMed

    Loo, Joseph A; Berhane, Beniam; Kaddis, Catherine S; Wooding, Kerry M; Xie, Yongming; Kaufman, Stanley L; Chernushevich, Igor V

    2005-07-01

    Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa alpha7-ring and the intact 690 kDa alpha7beta7beta7alpha7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual alpha-subunits only, and it is generally consistent with the known alpha7beta7beta7alpha7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each beta-subunit. Ion mobility measurements of the alpha7-ring and the alpha7beta7beta7alpha7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.

  14. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  15. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor

    PubMed Central

    Coppens, Jessica; Bentea, Eduard; Bayliss, Jacqueline A.; Demuyser, Thomas; Walrave, Laura; Albertini, Giulia; Van Liefferinge, Joeri; Deneyer, Lauren; Aourz, Najat; Van Eeckhaut, Ann; Portelli, Jeanelle; Andrews, Zane B.; Massie, Ann; De Bundel, Dimitri; Smolders, Ilse

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect. PMID:28273852

  16. Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors.

    PubMed

    Zang, Yan; Kirk, Christopher J; Johnson, Daniel E

    2014-09-01

    Acquired resistance to proteasome inhibitors represents a considerable impediment to their effective clinical application. Carfilzomib and its orally bioavailable structural analog oprozomib are second-generation, highly-selective, proteasome inhibitors. However, the mechanisms of acquired resistance to carfilzomib and oprozomib are incompletely understood, and effective strategies for overcoming this resistance are needed. Here, we developed models of acquired resistance to carfilzomib in two head and neck squamous cell carcinoma cell lines, UMSCC-1 and Cal33, through gradual exposure to increasing drug concentrations. The resistant lines R-UMSCC-1 and R-Cal33 demonstrated 205- and 64-fold resistance, respectively, relative to the parental lines. Similarly, a high level of cross-resistance to oprozomib, as well as paclitaxel, was observed, whereas only moderate resistance to bortezomib (8- to 29-fold), and low level resistance to cisplatin (1.5- to 5-fold) was seen. Synergistic induction of apoptosis signaling and cell death, and inhibition of colony formation followed co-treatment of acquired resistance models with carfilzomib and the histone deacetylase inhibitor (HDACi) vorinostat. Synergism was also seen with other combinations, including oprozomib plus vorinostat, or carfilzomib plus the HDACi entinostat. Synergism was accompanied by upregulation of proapoptotic Bik, and suppression of Bik attenuated the synergy. The acquired resistance models also exhibited elevated levels of MDR-1/P-gp. Inhibition of MDR-1/P-gp with reversin 121 partially overcame carfilzomib resistance in R-UMSCC-1 and R-Cal33 cells. Collectively, these studies indicate that combining carfilzomib or oprozomib with HDAC or MDR-1/P-gp inhibitors may be a useful strategy for overcoming acquired resistance to these proteasome inhibitors.

  17. Therapeutic potential of the proteasome inhibitor Bortezomib on titanium particle-induced inflammation in a murine model.

    PubMed

    Mao, Xin; Pan, Xiaoyun; Cheng, Tao; Zhang, Xianlong

    2012-06-01

    Wear particle-induced aseptic loosening has been recognized as a harmful inflammatory process that jeopardizes the longevity of total joint replacement. The proteasome controls the activation of NF-κB and subsequent inflammatory mediators, such as TNF-α and IL-1β; thus, we investigated whether proteasome inhibition can ameliorate wear particle-induced inflammation in a murine model. A total of 48 BALB/C mice were divided into four groups. Titanium (Ti) particles were injected into the established air pouches of all mice (except negative controls) to provoke inflammation, and then 0.1 or 0.5 mg/kg of Bortezomib (Bzb, a proteasome inhibitor) was administered to ameliorate the inflammation response, while air pouches without Bzb administration were used as loading controls. The air pouches were harvested 2 or 7 days after Bzb injection for molecular and histological analyses. Inflammation responses in the air pouch tissues of Bzb treatment groups are lower than those in the Ti-stimulated group, and this occurs in a dose-dependent manner. Bzb can significantly attenuate the severity of Ti-induced inflammation in air pouches.

  18. Drug Synergism of Proteasome Inhibitors and Mitotane by Complementary Activation of ER Stress in Adrenocortical Carcinoma Cells.

    PubMed

    Kroiss, Matthias; Sbiera, Silviu; Kendl, Sabine; Kurlbaum, Max; Fassnacht, Martin

    2016-12-01

    Mitotane is the only drug approved for treatment of the orphan disease adrenocortical carcinoma (ACC) and was recently shown to be the first clinically used drug acting through endoplasmic reticulum (ER)-stress induced by toxic lipids. Since mitotane has limited clinical activity as monotherapy, we here study the potential of activating ER-stress through alternative pathways. The single reliable NCI-H295 cell culture model for ACC was used to study the impact MG132, bortezomib (BTZ) and carfilzomib (CFZ) on mRNA and protein expression of ER-stress markers, cell viability and steroid hormone secretion. We found all proteasome inhibitors alone to trigger expression of mRNA (spliced X-box protein 1, XBP1) and protein markers indicative of the inositol-requiring enzyme 1 (IRE1) dependent pathway of ER-stress but not phosphorylation of eukaryotic initiation factor 2α (eIF2α), a marker of the PRKR-like endoplasmic reticulum kinase (PERK)-dependent pathway. Whereas mitotane alone activated both pathways, combination of BTZ and CFZ with low-dose mitotane blocked mitotane-induced eIF2α phosphorylation but increased XBP1-mRNA splicing indicating that proteasome inhibitors can commit signalling towards a single ER-stress pathway in ACC cells. By applying the median effect model of drug combinations using cell viability as a read out, we determined significant drug synergism between mitotane and both BTZ and CFZ. In conclusion, combination of mitotane with activators of ER-stress through the unfolded protein response is synergistic in an ACC cell culture model. Since proteasome inhibitors are readily available clinically, they are attractive candidates to study for ACC treatment in clinical trials in combination with mitotane.

  19. Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Ciccarelli, Bryan; Richardson, Paul G; Palladino, Michael A; Anderson, Kenneth C

    2010-01-28

    Our recent study demonstrated that a novel proteasome inhibitor NPI-0052 is distinct from bortezomib (Velcade) and, importantly, triggers apoptosis in multiple myeloma (MM) cells resistant to bortezomib. Here we demonstrate that combining NPI-0052 and lenalidomide (Revlimid) induces synergistic anti-MM activity in vitro using MM-cell lines or patient MM cells. NPI-0052 plus lenalidomide-induced apoptosis is associated with (1) activation of caspase-8, caspase-9, caspase-12, caspase-3, and poly(ADP) ribose polymerase; (2) activation of BH-3 protein BIM; (3) translocation of BIM to endoplasmic reticulum; (4) inhibition of migration of MM cells and angiogenesis; and (5) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities. Importantly, blockade of BIM using siRNA significantly abrogates NPI-0052 plus lenalidomide-induced apoptosis. Furthermore, studies using biochemical inhibitors of caspase-8 versus caspase-9 demonstrate that NPI-0052 plus lenalidomide-triggered apoptosis is primarily dependent on caspase-8 signaling. In animal tumor model studies, low-dose combination of NPI-0052 and lenalidomide is well tolerated, significantly inhibits tumor growth, and prolongs survival. Taken together, our study provides the preclinical rationale for clinical protocols evaluating lenalidomide together with NPI-0052 to improve patient outcome in MM.

  20. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma.

    PubMed

    Chauhan, Dharminder; Singh, Ajita V; Aujay, Monette; Kirk, Christopher J; Bandi, Madhavi; Ciccarelli, Bryan; Raje, Noopur; Richardson, Paul; Anderson, Kenneth C

    2010-12-02

    Bortezomib therapy has proven successful for the treatment of relapsed, relapsed/refractory, and newly diagnosed multiple myeloma (MM). At present, bortezomib is available as an intravenous injection, and its prolonged treatment is associated with toxicity and development of drug resistance. Here we show that the novel proteasome inhibitor ONX 0912, a tripeptide epoxyketone, inhibits growth and induces apoptosis in MM cells resistant to conventional and bortezomib therapies. The anti-MM activity of ONX-0912 is associated with activation of caspase-8, caspase-9, caspase-3, and poly(ADP) ribose polymerase, as well as inhibition of migration of MM cells and angiogenesis. ONX 0912, like bortezomib, predominantly inhibits chymotrypsin-like activity of the proteasome and is distinct from bortezomib in its chemical structure. Importantly, ONX 0912 is orally bioactive. In animal tumor model studies, ONX 0912 significantly reduced tumor progression and prolonged survival. Immununostaining of MM tumors from ONX 0912-treated mice showed growth inhibition, apoptosis, and a decrease in associated angiogenesis. Finally, ONX 0912 enhances anti-MM activity of bortezomib, lenalidomide dexamethasone, or pan-histone deacetylase inhibitor. Taken together, our study provides the rationale for clinical protocols evaluating ONX 0912, either alone or in combination, to improve patient outcome in MM.

  1. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus

    PubMed Central

    2012-01-01

    Background Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. Methods Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. Results LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. Conclusions Our results identify neuroinflammation

  2. Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors.

    PubMed

    Yamashita, A S; Baia, G S; Ho, J S Y; Velarde, E; Wong, J; Gallia, G L; Belzberg, A J; Kimura, E T; Riggins, G J

    2014-05-01

    About one half of malignant peripheral nerve sheath tumors (MPNST) have Neurofibromin 1 (NF1) mutations. NF1 is a tumor suppressor gene essential for negative regulation of RAS signaling. Survival for MPNST patients is poor and we sought to identify an effective combination therapy. Starting with the mTOR inhibitors rapamycin and everolimus, we screened for synergy in 542 FDA approved compounds using MPNST cells with a native NF1 loss in both alleles. We further analyzed the cell cycle and signal transduction. In vivo growth effects of the drug combination with local radiation therapy (RT) were assessed in MPNST xenografts. The synergistic combination of mTOR inhibitors with bortezomib yielded a reduction in MPNST cell proliferation. The combination of mTOR inhibitors and bortezomib also enhanced the anti-proliferative effect of radiation in vitro. In vivo, the combination of mTOR inhibitor (everolimus) and bortezomib with RT decreased tumor growth and proliferation, and augmented apoptosis. The combination of approved mTOR and proteasome inhibitors with radiation showed a significant reduction of tumor growth in an animal model and should be investigated and optimized further for MPNST therapy.

  3. Farnesyl transferase inhibitors, autophagy, and proteasome inhibition: synergy for all the right reasons.

    PubMed

    Lonial, Sagar; Boise, Lawrence H

    2011-04-01

    The increasing appreciation of the importance of autophagy as consequence of cancer therapy or underlying disease biology is illustrated by the large number of papers that are evaluating autophagy as a cancer target. While autophagy is often linked to the generation of metabolic precursors, it is also important in diseases where protein production is a hallmark of the disease itself, such as pancreatic cancer and multiple myeloma. Multiple myeloma is characterized by ongoing autophagy as a consequence of constitutive immunoglobulin production, which creates the need for efficient transfer and disposal of misfolded or unfolded proteins. In order to survive this cellular stress, plasma cells depend on proteasomal degradation of the large volume of misfolded proteins as well as the autophagy pathway. It has previously been suggested that the excess proteins not targeted to the proteasome, or that accumulate when the proteasome is inhibited through the use of chemically active agents such as bortezomib, are linked to impaired cell survival, and that their packaging in the form of an aggresome somehow minimizes their 'proteotoxicity' allowing these toxic proteins to be sequestered away from normal cellular machinery.

  4. The proteasome inhibitor, MG132, attenuates diabetic nephropathy by inhibiting SnoN degradation in vivo and in vitro.

    PubMed

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan; Xu, Yong

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF- β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN.

  5. The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro

    PubMed Central

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF-β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF-β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN. PMID:25003128

  6. Photobleaching reveals complex effects of inhibitors on transcribing RNA polymerase II in living cells

    SciTech Connect

    Fromaget, Maud; Cook, Peter R. . E-mail: peter.cook@path.ox.ac.uk

    2007-08-15

    RNA polymerase II transcribes most eukaryotic genes. Photobleaching studies have revealed that living Chinese hamster ovary cells expressing the catalytic subunit of the polymerase tagged with the green fluorescent protein contain a large rapidly exchanging pool of enzyme, plus a smaller engaged fraction; genetic complementation shows this tagged polymerase to be fully functional. We investigated how transcriptional inhibitors - some of which are used therapeutically - affect the engaged fraction in living cells using fluorescence loss in photobleaching; all were used at concentrations that have reversible effects. Various kinase inhibitors (roscovitine, DRB, KM05283, alsterpaullone, isoquinolinesulfonamide derivatives H-7, H-8, H-89, H-9), proteasomal inhibitors (lactacystin, MG132), and an anti-tumour agent (cisplatin) all reduced the engaged fraction; an intercalator (actinomycin D), two histone deacetylase inhibitors (trichostatin A, sodium butyrate), and irradiation with ultra-violet light all increased it. The polymerase proves to be both a sensitive sensor and effector of the response to these inhibitors.

  7. Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells.

    PubMed

    Dron, Michel; Dandoy-Dron, Françoise; Farooq Salamat, Muhammad Khalid; Laude, Hubert

    2009-08-01

    Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected.

  8. Intracellular colocalization of HAP1/STBs with steroid hormone receptors and its enhancement by a proteasome inhibitor

    SciTech Connect

    Fujinaga, Ryutaro; Takeshita, Yukio; Yoshioka, Kazuhiro; Nakamura, Hiroyuki; Shinoda, Shuhei; Islam, Md. Nabiul; Jahan, Mir Rubayet; Yanai, Akie; Kokubu, Keiji; Shinoda, Koh

    2011-07-15

    The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.

  9. CD4 Glycoprotein Degradation Induced by Human Immunodeficiency Virus Type 1 Vpu Protein Requires the Function of Proteasomes and the Ubiquitin-Conjugating Pathway

    PubMed Central

    Schubert, Ulrich; Antón, Luis C.; Bačík, Igor; Cox, Josephine H.; Bour, Stéphane; Bennink, Jack R.; Orlowski, Marian; Strebel, Klaus; Yewdell, Jonathan W.

    1998-01-01

    The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic

  10. Generating a Generation of Proteasome Inhibitors: From Microbial Fermentation to Total Synthesis of Salinosporamide A (Marizomib) and Other Salinosporamides

    PubMed Central

    Potts, Barbara C.; Lam, Kin S.

    2010-01-01

    The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1) is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them. Here, the full complement of methods is reviewed, reflecting remarkable contributions from scientists of various disciplines over a period of 7 years since the first publication of the structure of 1. PMID:20479958

  11. Successful treatment of refractory systemic lupus erythematosus using proteasome inhibitor bortezomib followed by belimumab: description of two cases.

    PubMed

    Sjöwall, C; Hjorth, M; Eriksson, P

    2017-01-01

    Although the putative therapeutic options for patients with systemic lupus erythematosus (SLE) are steadily increasing, refractory disease is indeed a major challenge to many clinicians and patients. The proteasome inhibitor bortezomib - approved for the treatment of multiple myeloma since the beginning of this century - was recently reported successful in twelve cases of refractory SLE by German colleagues. Herein, we describe two Swedish SLE cases with refractory renal and pulmonary manifestations that were rescued by bortezomib as induction of remission followed by monthly doses of belimumab. The patients were carefully monitored with regard to disease activity and renal function. Anti-dsDNA and anti-C1q antibodies, complement proteins and lymphocyte subsets were analysed in consecutive samples. In December 2016, the patients had been in clinical remission post bortezomib administration for a period of 28 and 22 months, respectively. Potential benefits of using belimumab as maintenance therapy to prevent regeneration of autoreactive B cell clones are discussed.

  12. A Flavin-Dependent Decarboxylase-Dehydrogenase-Monooxygenase Assembles the Warhead of α,β-Epoxyketone Proteasome Inhibitors.

    PubMed

    Zabala, Daniel; Cartwright, Joshua W; Roberts, Douglas M; Law, Brian J C; Song, Lijiang; Samborskyy, Markiyan; Leadlay, Peter F; Micklefield, Jason; Challis, Gregory L

    2016-04-06

    The α,β-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [(13)C-methyl]l-methionine implicated an α-dimethyl-β-keto acid intermediate in the biosynthesis of TMC-86A. Incubation of the chemically synthesized α-dimethyl-β-keto acid with a purified recombinant flavin-dependent enzyme that is conserved in all known pathways for epoxyketone biosynthesis resulted in formation of the corresponding α-methyl-α,β-epoxyketone. This transformation appears to proceed via an unprecedented decarboxylation-dehydrogenation-monooxygenation cascade. The biosynthesis of the TMC-86A warhead is completed by cytochrome P450-mediated hydroxylation of the α-methyl-α,β-epoxyketone.

  13. Evidence for the Critical Roles of NF-κB p65 and Specificity Proteins in the Apoptosis-Inducing Activity of Proteasome Inhibitors in Leukemia Cells

    PubMed Central

    Reuter, Simone; Gupta, Subash C.; Kannappan, Ramaswamy; Aggarwal, Bharat B.

    2012-01-01

    Although proteasome inhibitors, such as Bortezomib, have been approved for the treatment of multiple myeloma and mantle cell lymphoma, the mechanism by which they induce apoptosis is still incompletely understood. In the present study, we demonstrate that genetic deletion of the NF-κB p65 subunit abolished the ability of Bortezomib to induce apoptosis, indicating that p65 is needed for apoptosis. Although Bortezomib inhibited TNF–induced NF-κB activation through suppression of IκBα degradation, it also induced proteolytic degradation of constitutive NF-κB proteins, including p65, IκBα and p105. These effects were also observed with two other proteasome inhibitors, N-acetyl-leucylleucyl-norleucinal (ALLN) and MG132. The p65 is known to be linked with Specific proteins (Sp), and we found that proteasome inhibition also induced degradation of Sp-1, Sp-3, and Sp-4 proteins. Bortezomib induced apoptosis in cells expressing caspase-3 but not in cells that lack caspase-3, indicating the critical role for this enzyme in the apoptotic action of Bortezomib. Furthermore, inhibition of pan-caspases abolished Bortezomib-induced degradation of p65, p105 and Sp proteins, but not that of IκBα. Overall, our results demonstrate for the first time a critical role for the degradation of NF-κB and Sp proteins by caspases in the apoptosis-inducing activity of proteasome inhibitors, such as Bortezomib.

  14. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model.

    PubMed

    Zollner, Thomas M; Podda, Maurizio; Pien, Christine; Elliott, Peter J; Kaufmann, Roland; Boehncke, Wolf-Henning

    2002-03-01

    There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-kappa B for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-kappa B activation by blocking the degradation of its inhibitory protein I kappa B. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell-activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell-mediated disorders such as psoriasis.

  15. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells

    PubMed Central

    Felley-Bosco, Emanuela; Bender, Florent C.; Courjault-Gautier, Françoise; Bron, Claude; Quest, Andrew F. G.

    2000-01-01

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway. PMID:11114180

  16. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells.

    PubMed

    Felley-Bosco, E; Bender, F C; Courjault-Gautier, F; Bron, C; Quest, A F

    2000-12-19

    To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.

  17. The Proteasome Inhibitor Bortezomib Is a Potent Inducer of Zinc Finger AN1-type Domain 2a Gene Expression

    PubMed Central

    Rossi, Antonio; Riccio, Anna; Coccia, Marta; Trotta, Edoardo; La Frazia, Simone; Santoro, M. Gabriella

    2014-01-01

    The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment. PMID:24619424

  18. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    PubMed Central

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  19. Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack

    PubMed Central

    Cacan, Ercan; Spring, Alexander M.; Kumari, Anita; Greer, Susanna F.; Garnett-Benson, Charlie

    2015-01-01

    Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity. PMID:26703577

  20. A UHPLC-UV-QTOF study on the stability of carfilzomib, a novel proteasome inhibitor.

    PubMed

    Sestak, Vit; Roh, Jaroslav; Klepalova, Libuse; Kovarikova, Petra

    2016-05-30

    This study addresses the lack of data on the stability of carfilzomib, a newly approved proteasome-inhibiting anticancer drug. A new stability-indicating UHPLC-UV method for analysis of carfilzomib was developed and validated within the concentrations of 10-250 μg/mL. The aforementioned method was utilized to evaluate the effects of forced degradation and to investigate the degradation kinetics, as well as to examine drug stability in a pharmaceutical formulation. A UHPLC-QTOF method was utilized to identify the principal degradation products. It was found that carfilzomib: (1) is stable at neutral and slightly acidic pH, but prone to degradation at both high and low pH; (2) is acceptably stable in the pharmaceutical formulation; but (3) is prone to oxidation and photodegradation. Carfilzomib degradation followed first-order kinetics. The decomposition products resulted from peptide bond hydrolysis, epoxide hydrolysis, hydrogen chloride addition, base-catalyzed Robinson-Gabriel reaction, tertiary amine oxidation and isomerization. Our results document, for the first time, the inherent stability of carfilzomib and provide information about the identity of its degradation products. These results highlight the stability issues that need to be kept in mind for handling and storage of carfilzomib.

  1. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma

    PubMed Central

    Thangavadivel, Shanmugapriya; Zelle-Rieser, Claudia; Olivier, Angelika; Postert, Benno; Untergasser, Gerold; Kern, Johann; Brunner, Andrea; Gunsilius, Eberhard; Biedermann, Rainer; Hajek, Roman; Pour, Ludek; Willenbacher, Wolfgang; Greil, Richard; Jöhrer, Karin

    2016-01-01

    The bone marrow microenvironment plays a decisive role in multiple myeloma progression and drug resistance. Chemokines are soluble mediators of cell migration, proliferation and survival and essentially modulate tumor progression and drug resistance. Here we investigated bone marrow-derived chemokines of naive and therapy-refractory myeloma patients and discovered that high levels of the chemokine CCL27, known so far for its role in skin inflammatory processes, correlated with worse overall survival of the patients. In addition, chemokine levels were significantly higher in samples from patients who became refractory to bortezomib at first line treatment compared to resistance at later treatment lines. In vitro as well as in an in vivo model we could show that CCL27 triggers bortezomib-resistance of myeloma cells. This effect was strictly dependent on the expression of the respective receptor, CCR10, on stroma cells and involved the modulation of IL-10 expression, activation of myeloma survival pathways, and modulation of proteasomal activity. Drug resistance could be totally reversed by blocking CCR10 by siRNA as well as blocking IL-10 and its receptor. From our data we suggest that blocking the CCR10/CCL27/IL-10 myeloma-stroma crosstalk is a novel therapeutic target that could be especially relevant in early refractory myeloma patients. PMID:27732933

  2. Inhibition of the 20S proteosome by a protein proteinase inhibitor: evidence that a natural serine proteinase inhibitor can inhibit a threonine proteinase.

    PubMed

    Yabe, Kimihiko; Koide, Takehiko

    2009-02-01

    The 20S proteasome (20S) is an intracellular threonine proteinase (Mr 750,000) that plays important roles in many cellular regulations. Several synthetic peptide inhibitors and bacteria-derived inhibitors such as lactacystin and epoxomicin have been identified as potent proteasome inhibitors. However, essentially no protein proteinase inhibitor has been characterized. By examining several small size protein proteinase inhibitors, we found that a well-known serine proteinase inhibitor from bovine pancreas, basic pancreatic trypsin inhibitor (BPTI), inhibits the 20S in vitro and ex vivo. Inhibition of the 20S by BPTI was time- and concentration-dependent, and stoichiometric. To inhibit the 20S activity, BPTI needs to enter into the interior of the 20S molecule. The molar ratio of BPTI to the 20S in the complex was estimated as approximately six BPTI to one 20S, thereby two sets of three peptidase activities (trypsin-like, chymotrypsin-like and caspase-like) of the 20S were all inhibited. These results indicate that an entrance hole to the 20S formed by seven alpha-subunits is sufficiently large for BPTI to enter. This report is essentially the initial description of the inhibition of a threonine proteinase by a protein serine proteinase inhibitor, suggesting a common mechanism of inhibition between serine and threonine proteinases by a natural protein proteinase inhibitor.

  3. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts.

    PubMed

    Han, Jinbin; Liu, Luming; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF-Cu complex. DSF-Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC-Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC-Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC-Cu(I)-treated group. Our data indicates that DDTC-Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer.

  4. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    PubMed

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

  5. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells.

    PubMed

    Khan, Saad; Khamis, Imran; Heikkila, John J

    2015-11-01

    In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with the proteasomal inhibitor, MG132, or the environmental toxicants, sodium arsenite or cadmium chloride, induced the accumulation of the small heat shock protein, HSP30, in total and in both soluble and insoluble protein fractions. Immunocytochemical analysis revealed the presence of relatively large HSP30 structures primarily in the perinuclear region of the cytoplasm. All three of the stressors promoted the formation of aggresome-like inclusion bodies as determined by immunocytochemistry and laser scanning confocal microscopy using a ProteoStat aggresome dye and additional aggresomal markers, namely, anti-γ-tubulin and anti-vimentin antibodies. Further analysis revealed that HSP30 co-localized with these aggresome-like inclusion bodies. In most cells, HSP30 was found to envelope or occur within these structures. Finally, we show that treatment of cells with withaferin A, a steroidal lactone with anti-inflammatory, anti-tumor, and proteasomal inhibitor properties, also induced HSP30 accumulation that co-localized with aggresome-like inclusion bodies. It is possible that proteasomal inhibitor or metal/metalloid-induced formation of aggresome-like inclusion bodies may sequester toxic protein aggregates until they can be degraded. While the role of HSP30 in these aggresome-like structures is not known, it is possible that they may be involved in various aspects of aggresome-like inclusion body formation or transport.

  6. The proteasome is responsible for caspase-3-like activity during xylem development.

    PubMed

    Han, Jia-Jia; Lin, Wei; Oda, Yoshihisa; Cui, Ke-Ming; Fukuda, Hiroo; He, Xin-Qiang

    2012-10-01

    Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.

  7. Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder

    PubMed Central

    2014-01-01

    Background Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood. Methods Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR. Results A significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1

  8. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells.

    PubMed

    Frasco, Manuela F; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria do Carmo; Coelho, Manuel A N

    2015-04-01

    The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs.

  9. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma.

    PubMed

    Turner, Joel G; Kashyap, Trinayan; Dawson, Jana L; Gomez, Juan; Bauer, Alexis A; Grant, Steven; Dai, Yun; Shain, Kenneth H; Meads, Mark; Landesman, Yosef; Sullivan, Daniel M

    2016-11-29

    Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα.

  10. A novel Bruton's tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity.

    PubMed

    Eda, H; Santo, L; Cirstea, D D; Yee, A J; Scullen, T A; Nemani, N; Mishima, Y; Waterman, P R; Arastu-Kapur, S; Evans, E; Singh, J; Kirk, C J; Westlin, W F; Raje, N S

    2014-09-01

    Bruton's tyrosine kinase (Btk) modulates B-cell development and activation and has an important role in antibody production. Interestingly, Btk may also affect human osteoclast (OC) function; however, the mechanism was unknown. Here we studied a potent and specific Btk inhibitor, CC-292, in multiple myeloma (MM). In this report, we demonstrate that, although CC-292 increased OC differentiation, it inhibited OC function via inhibition of c-Src, Pyk2 and cortactin, all involved in OC-sealing zone formation. As CC-292 did not show potent in vitro anti-MM activity, we next evaluated it in combination with the proteasome inhibitor, carfilzomib. We first studied the effect of carfilzomib on OC. Carfilzomib did not have an impact on OC-sealing zone formation but significantly inhibited OC differentiation. CC-292 combined with carfilzomib inhibited both sealing zone formation and OC differentiation, resulting in more profound inhibition of OC function than carfilzomib alone. Moreover, the combination treatment in an in vivo MM mouse model inhibited tumor burden compared with CC-292 alone; it also increased bone volume compared with carfilzomib alone. These results suggest that CC-292 combined with carfilzomib augments the inhibitory effects against OC within the bone microenvironment and has promising therapeutic potential for the treatment of MM and related bone disease.

  11. Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08)

    PubMed Central

    Driessen, Christoph; Kraus, Marianne; Joerger, Markus; Rosing, Hilde; Bader, Jürgen; Hitz, Felicitas; Berset, Catherine; Xyrafas, Alexandros; Hawle, Hanne; Berthod, Gregoire; Overkleeft, Hermann S.; Sessa, Christiana; Huitema, Alwin; Pabst, Thomas; von Moos, Roger; Hess, Dagmar; Mey, Ulrich J.M.

    2016-01-01

    Downregulation of the unfolded protein response mediates proteasome inhibitor resistance in multiple myeloma. The Human Immunodeficieny Virus protease inhibitor nelfinavir activates the unfolded protein response in vitro. We determined dose-limiting toxicity and recommended dose for phase II of nelfinavir in combination with the proteasome inhibitor bortezomib. Twelve patients with advanced hematologic malignancies were treated with nelfinavir (2500–5000 mg/day p.o., days 1–14, 3+3 dose escalation) and bortezomib (1.3 mg/m2, days 1, 4, 8, 11; 21-day cycles). A run in phase with nelfinavir monotherapy allowed pharmakokinetic/pharmakodynamic assessment of nelfinavir in the presence or absence of concomittant bortezomib. End points included dose-limiting toxicity, activation of the unfolded protein response, proteasome activity, toxicity and response to trial treatment. Nelfinavir 2×2500 mg was the recommended phase II dose identified. Nelfinavir alone significantly up-regulated expression of proteins related to the unfolded protein response in peripheral blood mononuclear cells and inhibited proteasome activity. Of 10 evaluable patients in the dose escalation cohort, 3 achieved a partial response, 4 stable disease for 2 cycles or more, while 3 had progressive disease as best response. In an exploratory extension cohort with 6 relapsed, bortezomib-refractory, lenalidomide-resistant myeloma patients treated at the recommended phase II dose, 3 reached a partial response, 2 a minor response, and one progressive disease. The combination of nelfinavir with bortezomib is safe and shows promising activity in advanced, bortezomib-refractory multiple myeloma. Induction of the unfolded protein response by nelfinavir may overcome the biological features of proteasome inhibitor resistance. PMID:26659919

  12. Proteasome dynamics.

    PubMed

    Enenkel, Cordula

    2014-01-01

    Proteasomes are highly conserved multisubunit protease complexes and occur in the cyto- and nucleoplasm of eukaryotic cells. In dividing cells proteasomes exist as holoenzymes and primarily localize in the nucleus. During quiescence they dissociate into proteolytic core and regulatory complexes and are sequestered into motile cytosolic clusters. Proteasome clusters rapidly clear upon the exit from quiescence, where proteasome core and regulatory complexes reassemble and localize to the nucleus again. The mechanisms underlying proteasome transport and assembly are not yet understood. Here, I summarize our present knowledge about nuclear transport and assembly of proteasomes in yeast and project our studies in this eukaryotic model organism to the mammalian cell system. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.

  13. LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118

    PubMed Central

    Doeppner, Thorsten R.; Niu, Feng; Li, Qiaochuan; Yang, Yanping; Kuckelkorn, Ulrike; Hagemann, Nina; Li, Wei; Hermann, Dirk M.; Dai, Yun; Zhou, Wen; Jin, Fengyan

    2015-01-01

    Since disturbance of angiogenesis predisposes to ischemic injuries, attempts to promote angiogenesis have been made to improve clinical outcomes of patients with many ischemic disorders. While hypoxia inducible factors (HIFs) stimulate vascular remodeling and angiogenesis, hyperlipidemia impairs angiogenesis in response to various pro-angiogenic factors. However, it remains uncertain how HIFs regulate angiogenesis under hyperlipidemia. Here, we report that exposure to low-density lipoprotein (LDL) suppressed in vitro angiogenesis of human brain microvascular endothelial cells. Whereas LDL exposure diminished expression of HIF-1α and HIF-2α induced by hypoxia, it inhibited DMOG- and TNFα-induced HIF-1α and HIF-2α expression in normoxia. Notably, in both hypoxia and normoxia, LDL markedly reduced expression of HIF-1β, a constitutively stable HIF subunit, an event associated with NF-κB inactivation. Moreover, knockdown of HIF-1β down-regulated HIF-1α and HIF-2α expression, in association with increased HIF-1α hydroxylation and 20S proteasome activity after LDL exposure. Significantly, the proteasome inhibitor BSc2118 prevented angiogenesis attenuation by LDL through restoring expression of HIFs. Together, these findings argue that HIF-1β might act as a novel cross-link between the HIF and NF-κB pathways in suppression of angiogenesis by LDL, while proteasome inhibitors might promote angiogenesis by reactivating this signaling cascade under hyperlipidemia. PMID:26388611

  14. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts

    SciTech Connect

    Han, Jinbin; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.

  15. Phase I dose escalation trial of the novel proteasome inhibitor carfilzomib in patients with relapsed chronic lymphocytic leukemia and small lymphocytic lymphoma.

    PubMed

    Awan, Farrukh T; Flynn, Joseph M; Jones, Jeffrey A; Andritsos, Leslie A; Maddocks, Kami J; Sass, Ellen J; Lucas, Margaret S; Chase, Weihong; Waymer, Sharon; Ling, Yonghua; Jiang, Yao; Phelps, Mitch A; Byrd, John C; Lucas, David M; Woyach, Jennifer A

    2015-01-01

    The proteasome complex degrades proteins involved in a variety of cellular processes and is a powerful therapeutic target in several malignancies. Carfilzomib is a potent proteasome inhibitor which induces rapid chronic lymphocytic leukemia (CLL) cell apoptosis in vitro. We conducted a phase I dose-escalation trial to determine the safety and tolerability of carfilzomib in relapsed/refractory CLL or small lymphocytic lymphoma (SLL). Nineteen patients were treated with carfilzomib initially at 20 mg/m(2), then escalated in four cohorts (27, 36, 45 and 56 mg/m(2)) on days 1, 2, 8, 9, 15 and 16 of 28-day cycles. Therapy was generally well tolerated, and no dose limiting toxicities were observed. The most common hematologic toxicities were thrombocytopenia and neutropenia. All patients evaluable for response had stable disease, including patients with del17p13 and fludarabine-resistant disease. This trial shows acceptable tolerability and limited preliminary efficacy of carfilzomib in CLL and SLL.

  16. Proteasome inhibitor (MG132) rescues Nav1.5 protein content and the cardiac sodium current in dystrophin-deficient mdx (5cv) mice.

    PubMed

    Rougier, Jean-Sébastien; Gavillet, Bruno; Abriel, Hugues

    2013-01-01

    The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.

  17. Phase 1 study of twice-weekly ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma patients

    PubMed Central

    Baz, Rachid; Wang, Michael; Jakubowiak, Andrzej J.; Laubach, Jacob P.; Harvey, R. Donald; Talpaz, Moshe; Berg, Deborah; Liu, Guohui; Yu, Jiang; Gupta, Neeraj; Di Bacco, Alessandra; Hui, Ai-Min; Lonial, Sagar

    2014-01-01

    Ixazomib is the first investigational oral proteasome inhibitor to be studied clinically. In this phase 1 trial, 60 patients with relapsed/refractory multiple myeloma (median of 4 prior lines of therapy; bortezomib, lenalidomide, thalidomide, and carfilzomib/marizomib in 88%, 88%, 62%, and 5%, respectively) received single-agent ixazomib 0.24 to 2.23 mg/m2 (days 1, 4, 8, 11; 21-day cycles). Two dose-limiting toxicities (grade 3 rash; grade 4 thrombocytopenia) occurred at 2.23 mg/m2. The maximum tolerated dose was 2.0 mg/m2, which 40 patients received in 4 expansion cohorts. Patients received a median of 4 cycles (range, 1-39); 18% received ≥12 cycles. Eighty-eight percent had drug-related adverse events, including nausea (42%), thrombocytopenia (42%), fatigue (40%), and rash (40%); drug-related grade ≥3 events included thrombocytopenia (37%) and neutropenia (17%). Grade 1/2 drug-related peripheral neuropathy occurred in 12% (no grade ≥3). Two patients died on the study (both considered unrelated to treatment). The terminal half-life of ixazomib was 3.3 to 7.4 days; plasma exposure increased proportionally with dose (0.48-2.23 mg/m2). Among 55 response-evaluable patients, 15% achieved partial response or better (76% stable disease or better). These findings have informed the subsequent clinical development of ixazomib in multiple myeloma. This trial was registered at www.clinicaltrials.gov as #NCT00932698. PMID:24920586

  18. Phase I Trial Using the Proteasome Inhibitor Bortezomib and Concurrent Chemoradiotherapy for Head-and-Neck Malignancies

    SciTech Connect

    Kubicek, Gregory J.; Axelrod, Rita S.; Machtay, Mitchell; Ahn, Peter H.; Anne, Pramila R.; Fogh, Shannon; Cognetti, David; Myers, Thomas J.; Curran, Walter J.; Dicker, Adam P.

    2012-07-15

    Purpose: Advanced head-and-neck cancer (HNC) remains a difficult disease to cure. Proteasome inhibitors such as bortezomib have the potential to improve survival over chemoradiotherapy alone. This Phase I dose-escalation study examined the potential of bortezomib in combination with cisplatin chemotherapy and concurrent radiation in the treatment of locally advanced and recurrent HNC. Methods and Materials: Eligible patients received cisplatin once weekly at 30 mg/m{sup 2} per week and bortezomib along with concurrent radiation. Bortezomib was given on Days 1, 4, 8, and 11 every 3 weeks, with an initial starting dose of 0.7 mg/m{sup 2} and escalation levels of 1.0 and 1.3 mg/m{sup 2}. Dose escalation was performed only after assessment to rule out any dose-limiting toxicity. Results: We enrolled 27 patients with HNC, including 17 patients with recurrent disease who had received prior irradiation. Patients received bortezomib dose levels of 0.7 mg/m{sup 2} (7 patients), 1.0 mg/m{sup 2} (10 patients), and 1.3 mg/m{sup 2} (10 patients). No Grade 5 toxicities, 3 Grade 4 toxicities (all hematologic and considered dose-limiting toxicities), and 39 Grade 3 toxicities (in 20 patients) were observed. With a median follow-up of 7.4 months, the overall median survival was 24.7 months (48.4 months for advanced HNC patients and 15.4 months for recurrent HNC patients). Conclusion: Bortezomib in combination with radiation therapy and cisplatin chemotherapy is safe in the treatment of HNC with a bortezomib maximum tolerated dose of 1.0 mg/m{sup 2} in patients previously treated for HNC and 1.3 mg/m{sup 2} in radiation-naive patients.

  19. The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1.

    PubMed

    O'Hara, Adrian; Howarth, Alice; Varro, Andrea; Dimaline, Rod

    2013-01-01

    The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1 (Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.

  20. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma

    PubMed Central

    Turner, Joel G.; Kashyap, Trinayan; Dawson, Jana L.; Gomez, Juan; Bauer, Alexis A.; Grant, Steven; Dai, Yun; Shain, Kenneth H.; Meads, Mark; Landesman, Yosef; Sullivan, Daniel M.

    2016-01-01

    Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα. PMID:27806331

  1. In vitro and in vivo interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib in non-Hodgkin lymphoma cells.

    PubMed

    Dasmahapatra, Girija; Patel, Hiral; Friedberg, Johnathan; Quayle, Steven N; Jones, Simon S; Grant, Steven

    2014-12-01

    Interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib were examined in non-Hodgkin lymphoma (NHL) models, including diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), and double-hit lymphoma cells. Marked in vitro synergism was observed in multiple cell types associated with activation of cellular stress pathways (e.g., JNK1/2, ERK1/2, and p38) accompanied by increases in DNA damage (γH2A.X), G2-M arrest, and the pronounced induction of mitochondrial injury and apoptosis. Combination treatment with carfilzomib and ricolinostat increased reactive oxygen species (ROS), whereas the antioxidant TBAP attenuated DNA damage, JNK activation, and cell death. Similar interactions occurred in bortezomib-resistant and double-hit DLBCL, MCL, and primary DLBCL cells, but not in normal CD34(+) cells. However, ricolinostat did not potentiate inhibition of chymotryptic activity by carfilzomib. shRNA knockdown of JNK1 (but not MEK1/2), or pharmacologic inhibition of p38, significantly reduced carfilzomib-ricolinostat lethality, indicating a functional contribution of these stress pathways to apoptosis. Combined exposure to carfilzomib and ricolinostat also markedly downregulated the cargo-loading protein HR23B. Moreover, HR23B knockdown significantly increased carfilzomib- and ricolinostat-mediated lethality, suggesting a role for this event in cell death. Finally, combined in vivo treatment with carfilzomib and ricolinostat was well tolerated and significantly suppressed tumor growth and increased survival in an MCL xenograft model. Collectively, these findings indicate that carfilzomib and ricolinostat interact synergistically in NHL cells through multiple stress-related mechanisms, and suggest that this strategy warrants further consideration in NHL.

  2. Crystal structure of N-{N-[N-acetyl-(S)-leucyl]-(S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome

    SciTech Connect

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa; Dauter, Zbigniew

    2015-03-01

    The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  3. The capture proteasome assay: A method to measure proteasome activity in vitro.

    PubMed

    Vigneron, Nathalie; Abi Habib, Joanna; Van den Eynde, Benoît J

    2015-08-01

    Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i-β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome-Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome-Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.

  4. PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells.

    PubMed

    Schaefer, Katherine L; Takahashi, Hirokazu; Morales, Victor M; Harris, Gianni; Barton, Susan; Osawa, Emi; Nakajima, Atsushi; Saubermann, Lawrence J

    2007-02-01

    The nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) has been identified as an important therapeutic target in murine models of colorectal cancer (CRC). To examine whether PPARgamma inhibition has therapeutic effects in late-stage CRC, the effects of PPARgamma inhibitors on CRC cell survival were examined in CRC cell lines and a murine CRC model. Low doses (0.1-1 microM) of PPARgamma inhibitors (T0070907, GW9662 and BADGE) did not affect cell survival, while higher doses (10-100 microM) of all 3 PPARgamma inhibitors caused caspase-dependent apoptosis in HT-29, Caco-2 and LoVo CRC cell lines. Apoptosis was preceded by altered cell morphology, and this alteration was not prevented by caspase inhibition. PPARgamma inhibitors also caused dual G and M cell cycle arrest, which was not required for apoptosis or for morphologic alterations. Furthermore, PPARgamma inhibitors triggered loss of the microtubule network. Notably, unlike other standard antimicrotubule agents, PPARgamma inhibitors caused microtubule loss by regulating tubulin post-transcriptionally rather than by altering microtubule polymerization or dynamics. Proteasome inhibition by epoxomicin was unable to prevent tubulin loss. siRNA-mediated reduction of PPARgamma and PPARdelta proteins did not replicate the effects of PPARgamma inhibitors or interfere with the inhibitors' effects on apoptosis, cell cycle or tubulin. PPARgamma inhibitors also reduced CRC cell migration and invasion in assays in vitro and reduced both the number and size of metastases in a HT-29/SCID xenograft metastatic model of CRC. These results suggest that PPARgamma inhibitors are a novel potential antimicrotubule therapy for CRC that acts by directly reducing microtubule precursors.

  5. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells

    PubMed Central

    Wang, Xin; Mazurkiewicz, Magdalena; Hillert, Ellin-Kristina; Olofsson, Maria Hägg; Pierrou, Stefan; Hillertz, Per; Gullbo, Joachim; Selvaraju, Karthik; Paulus, Aneel; Akhtar, Sharoon; Bossler, Felicitas; Khan, Asher Chanan; Linder, Stig; D’Arcy, Padraig

    2016-01-01

    Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity. PMID:27264969

  6. E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models

    PubMed Central

    Prideaux, Matt; Allen, Steve; Buttle, David J.; Pitsillides, Andrew A.; Farquharson, Colin

    2015-01-01

    The transmembrane glycoprotein E11 is considered critical in early osteoblast–osteocyte transitions (osteocytogenesis), however its function and regulatory mechanisms are still unknown. Using the late osteoblast MLO‐A5 cell line we reveal increased E11 protein/mRNA expression (P < 0.001) concomitant with extensive osteocyte dendrite formation and matrix mineralization (P < 0.001). Transfection with E11 significantly increased mRNA levels (P < 0.001), but immunoblotting failed to detect any correlative increases in E11 protein levels, suggestive of post‐translational degradation. We found that exogenous treatment of MLO‐A5 and osteocytic IDG‐SW3 cells with 10 μM ALLN (calpain and proteasome inhibitor) stabilized E11 protein levels and induced a profound increase in osteocytic dendrite formation (P < 0.001). Treatment with other calpain inhibitors failed to promote similar osteocytogenic changes, suggesting that these effects of ALLN rely upon its proteasome inhibitor actions. Accordingly we found that proteasome‐selective inhibitors (MG132/lactacystin/ Bortezomib/Withaferin‐A) produced similar dose‐dependent increases in E11 protein levels in MLO‐A5 and primary osteoblast cells. This proteasomal targeting was confirmed by immunoprecipitation of ubiquitinylated proteins, which included E11, and by increased levels of ubiquitinylated E11 protein upon addition of the proteasome inhibitors MG132/Bortezomib. Activation of RhoA, the small GTPase, was found to be increased concomitant with the peak in E11 levels and its downstream signaling was also observed to promote MLO‐A5 cell dendrite formation. Our data indicate that a mechanism reliant upon blockade of proteasome‐mediated E11 destabilization contributes to osteocytogenesis and that this may involve downstream targeting of RhoA. This work adds to our mechanistic understanding of the factors regulating bone homeostasis, which may lead to future therapeutic approaches. J. Cell

  7. Involvement of protein degradation by the ubiquitin proteasome system in opiate addictive behaviors.

    PubMed

    Massaly, Nicolas; Dahan, Lionel; Baudonnat, Mathieu; Hovnanian, Caroline; Rekik, Khaoula; Solinas, Marcello; David, Vincent; Pech, Stéphane; Zajac, Jean-Marie; Roullet, Pascal; Mouledous, Lionel; Frances, Bernard

    2013-03-01

    Plastic changes in the nucleus accumbens (NAcc), a structure occupying a key position in the neural circuitry related to motivation, are among the critical cellular processes responsible for drug addiction. During the last decade, it has been shown that memory formation and related neuronal plasticity may rely not only on protein synthesis but also on protein degradation by the ubiquitin proteasome system (UPS). In this study, we assess the role of protein degradation in the NAcc in opiate-related behaviors. For this purpose, we coupled behavioral experiments to intra-accumbens injections of lactacystin, an inhibitor of the UPS. We show that protein degradation in the NAcc is mandatory for a full range of animal models of opiate addiction including morphine locomotor sensitization, morphine conditioned place preference, intra-ventral tegmental area morphine self-administration and intra-venous heroin self-administration but not for discrimination learning rewarded by highly palatable food. This study provides the first evidence of a specific role of protein degradation by the UPS in addiction.

  8. Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation.

    PubMed

    Kuang, Xiu-Li; Liu, Yimei; Chang, Yuhua; Zhou, Jing; Zhang, He; Li, Yiping; Qu, Jia; Wu, Shengzhou

    2016-04-01

    Dysfunction of the ubiquitin-proteasome system (UPS) and calcium homeostasis has been implicated in the neurodegeneration of Alzheimer's and Parkinson's diseases. The cytosolic calcium concentration is maintained by store-operated calcium entry (SOCE), which is repressed by Alzheimer's disease-associated mutants, such as mutant presenilins. We hypothesized that inhibition of UPS impacts SOCE. This study showed that pretreatment with sub-lethal levels of proteasome inhibitors, including MG-132 and clasto-lactacystin-β-lactone (LA), reduced SOCE after depletion of endoplasmic reticulum calcium in rat neurons. With the same treatment, MG-132 and LA reduced the protein levels of stromal interaction molecule 1and 2 (STIM1/2), but not the levels of Orai1 and canonical transient receptor potential channel 1 (TRPC1). STIM1 or STIM2 protein was mobilized to lysosome by MG-132/LA treatment as observed under an immunofluorescence confocal laser microscope. In the neurons, MG-132 and LA degraded p62/SQSTM1, promoted autophagy, converted LC3I to LC3II, and promoted co-localization of LC3 and lysosomes. Rapamycin, which enhances autophagy, reduced STIM1/2 protein levels, whereas bafilomycin, which inhibits autophagy, increased their protein levels. The protein levels of STIM1/2 and the amplitude of SOCE were decreased in SH-SY5Y with decreased protein level of proteasome subunit beta type-5 induced by shRNA. We conclude that sub-lethal levels of proteasome inhibition reduce SOCE and promote autophagy-mediated degradation of STIM1/2. UPS inhibition, a common finding in neurodegenerative diseases, interferes with calcium homeostasis via repression of SOCE.

  9. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    PubMed

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity.

  10. The Proteasome Inhibitor Carfilzomib Functions Independently of p53 To Induce Cytotoxicity and an Atypical NF-κB Response in Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gupta, Sneha V.; Hertlein, Erin; Lu, Yanhui; Sass, Ellen J.; Lapalombella, Rosa; Chen, Timothy L.; Davis, Melanie E.; Woyach, Jennifer A.; Lehman, Amy; Jarjoura, David; Byrd, John C.; Lucas, David M.

    2013-01-01

    Purpose The proteasome consists of chymotrypsin-like (CT-L), trypsin-like, and caspase-like subunits that cleave substrates preferentially by amino acid sequence. Proteasomes mediate degradation of regulatory proteins of the p53, Bcl-2 and nuclear factor-κB (NF-κB) families that are aberrantly active in chronic lymphocytic leukemia (CLL). CLL remains an incurable disease, and new treatments are especially needed in the relapsed/refractory setting. We therefore investigated the effects of the proteasome inhibitor carfilzomib (CFZ) in CLL cells. Experimental Design Tumor cells from CLL patients were assayed in vitro using immunoblotting, real-time polymerase chain reaction and electrophoretic mobility shift assays. Additionally, a p53 dominant-negative construct was generated in a human B-cell line. Results Unlike bortezomib, CFZ potently induces apoptosis in CLL patient cells in the presence of human serum. CLL cells have significantly lower basal CT-L activity compared to normal B and T cells, although activity is inhibited similarly in T cells vs. CLL. and the cytotoxicity of CFZ correlates with baseline CT-L activity. Co-culture of CLL cells on stroma protected from CFZ-mediated cytotoxicity; however, PI3K inhibition significantly diminished this stromal protection. CFZ-mediated cytotoxicity in leukemic B-cells is caspase-dependent and occurs irrespective of p53 status. In CLL cells, CFZ promotes atypical activation of NF-κB evidenced by loss of cytoplasmic IkBα, phosphorylation of IκBα and increased p50/p65 DNA binding, without subsequent increases in canonical NF-κB target gene transcription. Conclusions Together, these data provide new mechanistic insights into the activity of CFZ in CLL and support Phase I investigation of CFZ in this disease. PMID:23515408

  11. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB.

    PubMed

    Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta

    2014-10-01

    Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.

  12. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein

    PubMed Central

    ZHOU, WENJING; ZHU, WEIWEI; MA, LIYA; XIAO, FENG; QIAN, WENBIN

    2015-01-01

    Recently, there has been progress in the treatment of chronic myeloid leukemia (CML). However, novel therapeutic strategies are required in order to address the emerging problem of imatinib resistance. Histone deacetylase inhibitors (HDACi) and proteasome inhibitors are promising alternatives, and may be amenable to integration with current therapeutic approaches. However, the mechanisms underlying the interaction between these two agents remain unclear. The present study assessed the cytotoxic effect of the HDACi, suberoylanilide hydroxamic acid (SAHA), in combination with the proteasome inhibitor, MG-132, in imatinib-sensitive K562 and imatinib-resistant K562G cells, and investigated the mechanism underlying this effect. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and protein expression levels were determined by western blotting. Reactive oxygen species (ROS) generation levels were observed under a fluorescence microscope The results indicated that SAHA and MG-132 act in a synergistic manner to induce cell death in K562 and K562G cells. This effect was associated with Bcr-Abl downregulation and the production of ROS. Notably, the ROS scavenger, N-acetyl-L-cysteine, almost fully reversed the cell death and Bcr-Abl downregulation that was induced by the combination of SAHA and MG-132. By contrast, the pan-caspase inhibitor, z-VAD-fmk, only partially reversed the cell death induced by these two drugs in CML cells. These results indicated that increased intracellular ROS levels are important in the induction of cell death and the downregulation of Bcr-Abl. In conclusion, the present results suggested that combined SAHA and MG-132 may be a promising treatment for CML. PMID:26722260

  13. The comparative effects of diethyldithiocarbamate-copper complex with established proteasome inhibitors on expression levels of CYP1A2/3A4 and their master regulators, aryl hydrocarbon and pregnane X receptor in primary cultures of human hepatocytes.

    PubMed

    Vrzal, Radim; Dvorak, Zdenek

    2016-12-01

    In the recent years, a therapeutic potential of disulfiram (Antabuse) complex with copper, as an anticancer drug, was recognized towards several cancer cell lines. The proteasome was suggested as one of the cellular targets for this compound. As the therapeutic use of diethyldithiocarbamate-copper complex (CuET) is expected to increase, it is of great interest to know whether this compound may be the source of drug-drug interactions via the induction of biotransformation enzymes, especially cytochromes P450 (CYPs). To this purpose, we examined the effect of CuET and compared it with typical inducers (rifampicin and dioxin) of CYPs and with well-established proteasome inhibitors (MG132 and bortezomib). Diethyldithiocarbamate-copper complex revealed inconsistent and rather modulatory effect on the expression of CYP1A2 and CYP3A4 in several cultures of human hepatocytes. Moreover, it was able to cause neither ubiquitin accumulation nor significant and dose-dependent inhibition of proteasome activity. It had no effect on essential transcription factors involved in regulation of selected CYPs, aryl hydrocarbon (AhR) nor pregnane X receptor (PXR). However, the AhR protein was increased in majority of examined hepatocyte cultures. The main finding of this study is that: (i) disulfiram-copper complex is not the cause of drug-drug interactions via CYP1A2/3A4 induction; (ii) proteasome inhibitors may have different impact on studied parameters in given in vitro system.

  14. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome.

    PubMed

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-09-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.

  15. Proteasome Inhibitors Enhance Gene Delivery by AAV Virus Vectors Expressing Large Genomes in Hemophilia Mouse and Dog Models: A Strategy for Broad Clinical Application

    PubMed Central

    Monahan, Paul E; Lothrop, Clinton D; Sun, Junjiang; Hirsch, Matthew L; Kafri, Tal; Kantor, Boris; Sarkar, Rita; Tillson, D Michael; Elia, Joseph R; Samulski, R Jude

    2010-01-01

    Delivery of genes that are larger than the wild-type adeno-associated virus (AAV) 4,681 nucleotide genome is inefficient using AAV vectors. We previously demonstrated in vitro that concurrent proteasome inhibitor (PI) treatment improves transduction by AAV vectors encoding oversized transgenes. In this study, an AAV vector with a 5.6 kilobase (kb) factor VIII expression cassette was used to test the effect of an US Food and Drug Administration–approved PI (bortezomib) treatment concurrent with vector delivery in vivo. Intrahepatic vector delivery resulted in factor VIII expression that persisted for >1 year in hemophilia mice. Single-dose bortezomib given with AAV2 or AAV8 factor VIII vector enhanced expression on average ~600 and ~300%, respectively. Moreover, coadministration of AAV8.canineFVIII (1 × 1013 vg/kg) and bortezomib in hemophilia A dogs (n = 4) resulted in normalization of the whole blood clotting time (WBCT) and 90% reduction in hemorrhages for >32 months compared to untreated hemophilia A dogs (n = 3) or dogs administered vector alone (n = 3). Demonstration of long-term phenotypic correction of hemophilia A dogs with combination adjuvant bortezomib and AAV vector expressing the oversized transgene establishes preclinical studies that support testing in humans and provides a working paradigm to facilitate a significant expansion of therapeutic targets for human gene therapy. PMID:20700109

  16. Obatoclax interacts synergistically with the irreversible proteasome inhibitor carfilzomib in GC- and ABC-DLBCL cells in vitro and in vivo.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Son, Minkyeong P; Patel, Hiral; Peterson, Derick; Attkisson, Elisa; Fisher, Richard I; Friedberg, Jonathan W; Dent, Paul; Grant, Steven

    2012-05-01

    Interactions between the irreversible proteasome inhibitor carfilzomib and the pan-BH3 mimetic obatoclax were examined in germinal center (GC)- and activated B-cell-diffuse large B-cell lymphoma (ABC-DLBCL) cells. Cotreatment with minimally toxic concentrations of carfilzomib (i.e., 2-6 nmol/L) and subtoxic concentrations of obatoclax (0.05-2.0 μmol/L) synergistically increased apoptosis in multiple DLBCL cell lines and increased lethality toward primary human DLBCL but not normal CD34(+) cells. Synergistic interactions were associated with sharp increases in caspase-3 activation, PARP cleavage, p-JNK induction, upregulation of Noxa, and AKT dephosphorylation. Combined treatment also diminished carfilzomib-mediated Mcl-1 upregulation whereas immunoprecipitation analysis revealed reduced associations between Bak and Mcl-1/Bcl-xL and Bim and Mcl-1. The carfilzomib/obatoclax regimen triggered translocation, conformational change, and dimerization of Bax and activation of Bak. Genetic interruption of c-jun-NH(2)-kinase (JNK) and Noxa by short hairpin RNA knockdown, ectopic Mcl-1 expression, or enforced activation of AKT significantly attenuated carfilzomib/obatoclax-mediated apoptosis. Notably, coadministration of carfilzomib/obatoclax sharply increased apoptosis in multiple bortezomib-resistant DLBCL models. Finally, in vivo administration of carfilzomib and obatoclax to mice inoculated with SUDHL4 cells substantially suppressed tumor growth, activated JNK, inactivated AKT, and increased survival compared with the effects of single-agent treatment. Together, these findings argue that a strategy combining carfilzomib and obatoclax warrants attention in DLBCL.

  17. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects.

    PubMed

    Hurchla, M A; Garcia-Gomez, A; Hornick, M C; Ocio, E M; Li, A; Blanco, J F; Collins, L; Kirk, C J; Piwnica-Worms, D; Vij, R; Tomasson, M H; Pandiella, A; San Miguel, J F; Garayoa, M; Weilbaecher, K N

    2013-02-01

    Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM.

  18. The Proteasome Inhibitor Bortezomib Affects Chondrosarcoma Cells via the Mitochondria-Caspase Dependent Pathway and Enhances Death Receptor Expression and Autophagy

    PubMed Central

    Lohberger, Birgit; Steinecker-Frohnwieser, Bibiane; Stuendl, Nicole; Kaltenegger, Heike; Leithner, Andreas; Rinner, Beate

    2016-01-01

    High grade chondrosarcoma is characterized by its lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates. Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using the proteasome inhibitor bortezomib have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of bortezomib on chondrosarcoma has not been investigated. In our study, bortezomib decreased cell viability and proliferation in two different chondrosarcoma cell lines in a time- and dose dependent manner. FACS analysis, mRNA- and protein expression studies illustrated that induction of apoptosis developed through the intrinsic mitochondria-caspase dependent pathway. Furthermore, bortezomib treatment significantly increased expression of the death receptors TRAILR-1 and TRAILR-2 in chondrosarcoma cells. An increased expression of the autophagy markers Atg5/12, Beclin, and LC3BI-II supports the interpretation that bortezomib functions as a trigger for autophagy. Our results demonstrated for the first time that bortezomib reduced viability and proliferation of chondrosarcoma cells, induced apoptosis via the mitochondria-caspase dependent pathway and enhanced death receptor expression and autophagy. PMID:27978543

  19. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    PubMed

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  20. Activity-based imaging probes of the proteasome.

    PubMed

    Carmony, Kimberly Cornish; Kim, Kyung Bo

    2013-09-01

    Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.

  1. Proteasomal degradation of beta-carotene metabolite--modified proteins.

    PubMed

    Sommerburg, Olaf; Karius, Nicole; Siems, Werner; Langhans, Claus-Dieter; Leichsenring, Michael; Breusing, Nicolle; Grune, Tilman

    2009-01-01

    Free radical attack on beta-carotene results in the formation of high amounts of carotene breakdown products (CBPs) having biological activities. As several of the CBPs are reactive aldehydes, it has to be considered that these compounds are able to modify proteins. Therefore, the aim of the study was to investigate whether CBP-modification of proteins is leading to damaged proteins recognized and degraded by the proteasomal system. We used the model proteins tau and ferritin to test whether CBPs will modify them and whether such modifications lead to enhanced proteasomal degradation. To modify proteins, we used crude CBPs as a mixture obtained after hypochloric acid derived BC degradation, as well as several single compounds, as apo8'-carotenal, retinal, or beta-ionone. The majority of the CBPs found in our reaction mixture are well known metabolites as described earlier after BC degradation using different oxidants. CBPs are able to modify proteins, and in in vitro studies, we were able to demonstrate that the 20S proteasome is able to recognize and degrade CBP-modified proteins preferentially. In testing the proteolytic response of HT22 cells toward CBPs, we could demonstrate an enhanced protein turnover, which is sensitive to lactacystin. Interestingly, the proteasomal activity is resistant to treatment with CBP. On the other hand, we were able to demonstrate that supraphysiological levels of CBPs might lead to the formation of protein-CBP-adducts that are able to inhibit the proteasome. Therefore, the removal of CBP-modified proteins seems to be catalyzed by the proteasomal system and is effective, if the formation of CBPs is not overwhelming and leading to protein aggregates.

  2. Role of proteasomes in disease

    PubMed Central

    Dahlmann, Burkhardt

    2007-01-01

    A functional ubiquitin proteasome system is essential for all eukaryotic cells and therefore any alteration to its components has potential pathological consequences. Though the exact underlying mechanism is unclear, an age-related decrease in proteasome activity weakens cellular capacity to remove oxidatively modified proteins and favours the development of neurodegenerative and cardiac diseases. Up-regulation of proteasome activity is characteristic of muscle wasting conditions including sepsis, cachexia and uraemia, but may not be rate limiting. Meanwhile, enhanced presence of immunoproteasomes in aging brain and muscle tissue could reflect a persistent inflammatory defence and anti-stress mechanism, whereas in cancer cells, their down-regulation reflects a means by which to escape immune surveillance. Hence, induction of apoptosis by synthetic proteasome inhibitors is a potential treatment strategy for cancer, whereas for other diseases such as neurodegeneration, the use of proteasome-activating or -modulating compounds could be more effective. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047740

  3. Phosphorylation regulates mycobacterial proteasome.

    PubMed

    Anandan, Tripti; Han, Jaeil; Baun, Heather; Nyayapathy, Seeta; Brown, Jacob T; Dial, Rebekah L; Moltalvo, Juan A; Kim, Min-Seon; Yang, Seung Hwan; Ronning, Donald R; Husson, Robert N; Suh, Joowon; Kang, Choong-Min

    2014-09-01

    Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

  4. Exposure-safety-efficacy analysis of single-agent ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma: dose selection for a phase 3 maintenance study.

    PubMed

    Gupta, Neeraj; Labotka, Richard; Liu, Guohui; Hui, Ai-Min; Venkatakrishnan, Karthik

    2016-06-01

    Background Ixazomib is the first oral, small molecule proteasome inhibitor to reach phase 3 trials. The current analysis characterized the exposure-safety and exposure-efficacy relationships of ixazomib in patients with relapsed/refractory multiple myeloma (MM) with a purpose of recommending an approach to ixazomib dosing for maintenance therapy. Methods Logistic regression was used to investigate relationships between ixazomib plasma exposure (area under the curve/day; derived from individual apparent clearance values from a published population pharmacokinetic analysis) and safety/efficacy outcomes (hematologic [grade ≥ 3 vs ≤ 2] or non-hematologic [grade ≥ 2 vs ≤ 1] adverse events [AEs], and clinical benefit [≥stable disease vs progressive disease]) using phase 1 data in relapsed/refractory MM (NCT00963820; N = 44). Results Significant relationships to ixazomib exposure were observed for five AEs (neutropenia, thrombocytopenia, rash, fatigue, and diarrhea) and clinical benefit (p < 0.05). Dose-response relationships indicated a favorable benefit/risk ratio at 3 mg and 4 mg weekly, which are below the maximum tolerated dose of 5.5 mg. At 3 mg, the model predicted that: 37 % of patients will achieve clinical benefit; incidence of grade ≥ 3 neutropenia and thrombocytopenia will be 10 % and 23 %, respectively; and incidence of grade ≥ 2 rash, fatigue, and diarrhea will be 8 %, 19 %, and 19 %, respectively. Conclusions Based on the findings, patients in the phase 3 maintenance trial will initiate ixazomib at a once-weekly dose of 3 mg, increasing to 4 mg if acceptable tolerability after 4 cycles, to provide maximum clinical benefit balanced with adequate tolerability.

  5. Population Pharmacokinetic Analysis of Ixazomib, an Oral Proteasome Inhibitor, Including Data from the Phase III TOURMALINE-MM1 Study to Inform Labelling.

    PubMed

    Gupta, Neeraj; Diderichsen, Paul M; Hanley, Michael J; Berg, Deborah; van de Velde, Helgi; Harvey, R Donald; Venkatakrishnan, Karthik

    2017-03-13

    Ixazomib is an oral proteasome inhibitor, approved in USA, Canada, Australia and Europe in combination with lenalidomide and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy. We report a population pharmacokinetic model-based analysis for ixazomib that was pivotal in describing the clinical pharmacokinetics of ixazomib, to inform product labelling. Plasma concentration-time data were collected from 755 patients who received oral or intravenous ixazomib in once- or twice-weekly schedules in ten trials, including the global phase III TOURMALINE-MM1 study. Data were analysed using nonlinear mixed-effects modelling (NONMEM software version 7.2, ICON Development Solutions, Hanover, MD, USA). Ixazomib plasma concentrations from intravenous and oral studies were described by a three-compartment model with linear distribution and elimination kinetics, including first-order linear absorption with a lag time describing the oral dose data. Body surface area on the volume of the second peripheral compartment was the only covariate included in the final model. None of the additional covariates tested including body surface area (1.2-2.7 m(2)), sex, age (23-91 years), race, mild/moderate renal impairment and mild hepatic impairment were found to impact systemic clearance, suggesting that no dose adjustment is required based on these covariates. The geometric mean terminal disposition phase half-life was 9.5 days, steady-state volume of distribution was 543 L and systemic clearance was 1.86 L/h. The absolute bioavailability of an oral dose was estimated to be 58%.

  6. The Effect of a High‐Fat Meal on the Pharmacokinetics of Ixazomib, an Oral Proteasome Inhibitor, in Patients With Advanced Solid Tumors or Lymphoma

    PubMed Central

    Hanley, Michael J.; Venkatakrishnan, Karthik; Wang, Bingxia; Sharma, Sunil; Bessudo, Alberto; Hui, Ai‐Min; Nemunaitis, John

    2016-01-01

    Abstract Ixazomib is the first oral proteasome inhibitor to be investigated in the clinic. This clinical study assessed whether the pharmacokinetics of ixazomib would be altered if administered after a high‐calorie, high‐fat meal. In a 2‐period, 2‐sequence, crossover study design, adult patients with advanced solid tumors or lymphoma received a 4‐mg oral dose of ixazomib as immediate‐release capsules on day 1 without food (fasted, administered following an overnight fast) or with food (fed, following consumption of a high‐calorie, high‐fat meal), followed by another dose on day 15 in the alternate food intake condition (fasted to fed or fed to fasted). Twenty‐four patients were enrolled; of these, 15 were included in the pharmacokinetic‐evaluable population. Administration of ixazomib after a high‐fat meal reduced both the rate and extent of absorption of ixazomib. Under fed conditions, the median time to peak plasma concentration (Tmax) of ixazomib was delayed by approximately 3 hours compared with administration in the fasted state (1.02 hours vs 4.0 hours), and there was a 28% reduction in total systemic exposure (area under the curve, AUC) and a 69% reduction in peak plasma concentration (Cmax). Together, the results support the administration of ixazomib on an empty stomach, at least 1 hour before or at least 2 hours after food. These recommendations are reflected in the United States Prescribing Information for ixazomib (clinicaltrials.gov identifier NCT01454076). PMID:26872892

  7. A High-Throughput Screening Assay Using a Photoconvertable Protein for Identifying Inhibitors of Transcription, Translation, or Proteasomal Degradation.

    PubMed

    Heidary, David K; Fox, Ashley; Richards, Chris I; Glazer, Edith C

    2017-04-01

    Dysregulated transcription, translation, and protein degradation are common features of cancer cells, regardless of specific genetic profiles. Several clinical anticancer agents take advantage of this characteristic vulnerability and interfere with the processes of transcription and translation or inhibit protein degradation. However, traditional assays that follow the process of protein production and removal require multistep processing and are not easily amenable to high-throughput screening. The use of recombinant fluorescent proteins provides a convenient solution to this problem, and moreover, photoconvertable fluorescent proteins allow for ratiometric detection of both new protein production and removal of existing proteins. Here, the photoconvertable protein Dendra2 is used in the development of in-cell assays of protein production and degradation that are optimized and validated for high-throughput screening. Conversion from the green to red emissive form can be achieved using a high-intensity light-emitting diode array, producing a stable pool of the red fluorescent form of Dendra2. This allows for rates of protein production or removal to be quantified in a plate reader or by fluorescence microscopy, providing a means to measure the potencies of inhibitors that affect these key processes.

  8. Cloning and partial characterization of the proteasome S4 ATPase from Plasmodium falciparum.

    PubMed

    Certad, G; Abrahem, A; Georges, E

    1999-11-01

    Certad, G., Abrahem, A., and Georges, E. 1999. Cloning and Partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Experimental Parasitology 93, 123-131. The ATP-ubiquitin-proteasome pathway mediates the nonlysosomal degradation of cytosolic proteins in eukaryotic cells. The activities of this pathway have been shown to regulate cell growth and differentiation through modulation of regulatory proteins. The proteasome is a large complex consisting of two multisubunit structures, the 20S and 19S(PA700) or P28 complexes, that combine to form the 26S particles. In this study, we describe the cloning of a cDNA encoding the proteasome subunit 4 ATPase homologue from Plasmodium falciparum (PFS4). Analysis of the PFS4 cDNA sequence shows an open reading frame encoding a deduced protein of 455 amino acids. Moreover, comparison of PFS4 cDNA sequence to that of genomic fragments encoding PFS4 showed identical sequences with no detectable introns. Database searches revealed a high sequence identity to those of rice, yeast, mouse, Drosophila, and human S4 ATPases. However, PFS4 contains two unique inserts of nine and seven amino acid residues in the N-terminal domain. Interestingly, only the rice S4 contains the latter (seven amino acids) insert with four identical amino acids. In vitro expression of the full-length cDNA encoding the PFS4, using a transcription-translation-coupled reticulocyte lysate, shows a 50-kDa [(35)S]methionine-labeled protein which was immunoprecipitated with PFS4 anti-peptide antiserum. Southern blot analysis of genomic DNA digests shows a single gene copy of PFS4 in P. falciparum. Of interest was the effect of the proteasome-specific natural product, lactacystin, on the growth of the parasite, with IC(50) values of 0.6-0.92 microM. The latter IC(50) values of lactacystin for different clones of P. falciparum are comparable to those obtained for mammalian cell lines (0.65 microM), suggesting the presence of a conserved

  9. Inhibition of nuclear factor-{kappa}B and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma

    SciTech Connect

    Van Waes, Carter . E-mail: vanwaesc@nidcd.nih.gov; Chang, Angela A.; Lebowitz, Peter F.; Druzgal, Colleen H.; Chen, Zhong; Elsayed, Yusri A.; Sunwoo, John B.; Rudy, Susan; Morris, John C.; Mitchell, James B.; Camphausen, Kevin; Gius, David; Adams, Julian; Sausville, Edward A.; Conley, Barbara A.

    2005-12-01

    Purpose: To examine the effects the proteasome inhibitor bortezomib (VELCADE) on transcription factor nuclear factor-{kappa}B (NF-{kappa}B) and target genes and the feasibility of combination therapy with reirradiation in patients with recurrent head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: The tolerability and response to bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2} given twice weekly concurrent with daily reirradiation to 50-70 Gy was explored. Blood proteasome inhibition and NF-{kappa}B-modulated cytokines and factors were measured. Proteasome inhibition, nuclear localization of NF-{kappa}B phospho-p65, apoptosis, and expression of NF-{kappa}B-modulated mRNAs were compared in serial biopsies from accessible tumors. Results: The maximally tolerated dose was exceeded, and study was limited to 7 and 2 patients, respectively, given bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2}/dose with reirradiation. Grade 3 hypotension and hyponatremia were dose limiting. Mucositis was Grade 3 or less and was delayed. The mean blood proteasome inhibition at 1, 24, and 48 h after 0.6 mg/m{sup 2} was 32%, 16%, and 7% and after 0.9 mg/m{sup 2} was 56%, 26%, and 14%, respectively. Differences in proteasome and NF-{kappa}B activity, apoptosis, and expression of NF-{kappa}B-modulated cell cycle, apoptosis, and angiogenesis factor mRNAs were detected in 2 patients with minor tumor reductions and in serum NF-{kappa}B-modulated cytokines in 1 patient with a major tumor reduction. Conclusions: In combination with reirradiation, the maximally tolerated dose of bortezomib was exceeded at a dose of 0.6 mg/m{sup 2} and the threshold of proteasome inhibition. Although this regimen with reirradiation is not feasible, bortezomib induced detectable differences in NF-{kappa}B localization, apoptosis, and NF-{kappa}B-modulated genes and cytokines in tumor and serum in association with tumor reduction, indicating that other schedules of bortezomib combined with primary

  10. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    PubMed

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition.

  11. Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

    PubMed Central

    de Carvalho, Fabricio; Costa, Erico T.; Camargo, Anamaria A.; Gregorio, Juliana C.; Masotti, Cibele; Andrade, Valeria C.C.; Strauss, Bryan E.; Caballero, Otavia L.; Atanackovic, Djordje; Colleoni, Gisele W.B.

    2011-01-01

    a strategy for future therapies in MM, in particular in combination with proteasome inhibitors. PMID:22110734

  12. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    SciTech Connect

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated

  13. Nanoparticles Exacerbate Both Ubiquitin and Heat Shock Protein Expressions in Spinal Cord Injury: Neuroprotective Effects of the Proteasome Inhibitor Carfilzomib and the Antioxidant Compound H-290/51.

    PubMed

    Sharma, Hari S; Muresanu, Dafin F; Lafuente, Jose V; Sjöquist, Per-Ove; Patnaik, Ranjana; Sharma, Aruna

    2015-10-01

    compounds or proteasome inhibitors are required for neuroprotection in the NP-exposed traumatized group, and (iii) ubiquitin and HSP expressions play a key role in neuronal injury in SCI, not reported earlier.

  14. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma.

    PubMed

    Manasanch, Elisabet E; Korde, Neha; Zingone, Adriana; Tageja, Nishant; Fernandez de Larrea, Carlos; Bhutani, Manisha; Wu, Peter; Roschewski, Mark; Landgren, Ola

    2014-08-01

    Since the early 1990s, the synthesis and subsequent clinical application of small molecule inhibitors of the ubiquitin proteasome pathway (UPP) has revolutionized the treatment and prognosis of multiple myeloma. In this review, we summarize important aspects of the biology of the UPP with a focus on its structure and key upstream/downstream regulatory components. We then review current knowledge of plasma cell sensitivity to proteasome inhibition and highlight new proteasome inhibitors that have recently entered clinical development. Lastly, we address the putative role of circulating proteasomes as a novel biomarker in multiple myeloma and provide guidance for future clinical trials using proteasome inhibitors.

  15. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections.

    PubMed

    Misas-Villamil, Johana C; van der Burgh, Aranka M; Grosse-Holz, Friederike; Bach-Pages, Marcel; Kovács, Judit; Kaschani, Farnusch; Schilasky, Sören; Emon, Asif Emran Khan; Ruben, Mark; Kaiser, Markus; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2017-01-24

    The proteasome is a nuclear - cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveals that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 (PtoDC3000(ΔhQ)) whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species. This article is protected by copyright. All rights reserved.

  16. Combined 3D-QSAR, Molecular Docking and Molecular Dynamics Study on Derivatives of Peptide Epoxyketone and Tyropeptin-Boronic Acid as Inhibitors Against the β5 Subunit of Human 20S Proteasome

    PubMed Central

    Liu, Jianling; Zhang, Hong; Xiao, Zhengtao; Wang, Fangfang; Wang, Xia; Wang, Yonghua

    2011-01-01

    An abnormal ubiquitin-proteasome is found in many human diseases, especially in cancer, and has received extensive attention as a promising therapeutic target in recent years. In this work, several in silico models have been built with two classes of proteasome inhibitors (PIs) by using 3D-QSAR, homology modeling, molecular docking and molecular dynamics (MD) simulations. The study resulted in two types of satisfactory 3D-QSAR models, i.e., the CoMFA model (Q2 = 0.462, R2pred = 0.820) for epoxyketone inhibitors (EPK) and the CoMSIA model (Q2 = 0.622, R2pred = 0.821) for tyropeptin-boronic acid derivatives (TBA). From the contour maps, some key structural factors responsible for the activity of these two series of PIs are revealed. For EPK inhibitors, the N-cap part should have higher electropositivity; a large substituent such as a benzene ring is favored at the C6-position. In terms of TBA inhibitors, hydrophobic substituents with a larger size anisole group are preferential at the C8-position; higher electropositive substituents like a naphthalene group at the C3-position can enhance the activity of the drug by providing hydrogen bond interaction with the protein target. Molecular docking disclosed that residues Thr60, Thr80, Gly106 and Ser189 play a pivotal role in maintaining the drug-target interactions, which are consistent with the contour maps. MD simulations further indicated that the binding modes of each conformation derived from docking is stable and in accord with the corresponding structure extracted from MD simulation overall. These results can offer useful theoretical references for designing more potent PIs. PMID:21673924

  17. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    PubMed

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  18. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  19. The role of the proteasome in AML

    PubMed Central

    Csizmar, C M; Kim, D-H; Sachs, Z

    2016-01-01

    Acute myeloid leukemia (AML) is deadly hematologic malignancy. Despite a well-characterized genetic and molecular landscape, targeted therapies for AML have failed to significantly improve clinical outcomes. Over the past decade, proteasome inhibition has been demonstrated to be an effective therapeutic strategy in several hematologic malignancies. Proteasome inhibitors, such as bortezomib and carfilzomib, have become mainstays of treatment for multiple myeloma and mantle cell lymphoma. In light of this success, there has been a surge of literature exploring both the role of the proteasome and the effects of proteasome inhibition in AML. Pre-clinical studies have demonstrated that proteasome inhibition disrupts proliferative cell signaling pathways, exhibits cytotoxic synergism with other chemotherapeutics and induces autophagy of cancer-related proteins. Meanwhile, clinical trials incorporating bortezomib into combination chemotherapy regimens have reported a range of responses in AML patients, with complete remission rates >80% in some cases. Taken together, this preclinical and clinical evidence suggests that inhibition of the proteasome may be efficacious in this disease. In an effort to focus further investigation into this area, these recent studies and their findings are reviewed here. PMID:27911437

  20. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    PubMed

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities.

  1. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  2. The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation.

    PubMed

    Staszczak, Magdalena

    2008-03-01

    The white rot fungus Trametes versicolor is an efficient lignin degrader with ecological significance and industrial applications. Lignin-modifying enzymes of white rot fungi are mainly produced during secondary metabolism triggered in these microorganisms by nutrient deprivation. Selective ubiquitin/proteasome-mediated proteolysis is known to play a crucial role in the response of cells to various stresses such as nutrient limitation, heat shock, and heavy metal exposure. Previous studies from our laboratory demonstrated that proteasomal degradation of intracellular proteins is involved in the regulation of laccase, a major ligninolytic enzyme of T. versicolor, in response to cadmium. In the present study, it was found that the 6-h nitrogen starvation leads to depletion of intracellular free ubiquitin pool in T. versicolor. The difference in the intracellular level of free monomeric ubiquitin observed between the mycelium extract from the nitrogen-deprived and that from the nitrogen-sufficient culture was accompanied by the different pattern of ubiquitin-dependent degradation. Furthermore, it was found that nitrogen deprivation affected 26S proteasome activities of T. versicolor. Proteasome inhibition by lactacystin beta-lactone, a highly specific agent, increased laccase activity in nitrogen-deprived cultures, but not in nitrogen-sufficient cultures. The present study implicates the ubiquitin/proteasome-mediated proteolytic pathway in the response of T. versicolor to nitrogen deprivation.

  3. The 26S proteasome is a multifaceted target for anti-cancer therapies.

    PubMed

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G; Garabadzhiu, Alexander V; Melino, Gerry; Barlev, Nickolai A

    2015-09-22

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.

  4. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  5. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-04

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  6. Phase 1b trial of proteasome inhibitor carfilzomib with irinotecan in lung cancer and other irinotecan-sensitive malignancies that have progressed on prior therapy (Onyx IST reference number: CAR-IST-553).

    PubMed

    Arnold, Susanne M; Chansky, Kari; Leggas, Markos; Thompson, Michael A; Villano, John L; Hamm, John; Sanborn, Rachel E; Weiss, Glen J; Chatta, Gurkamal; Baggstrom, Maria Q

    2017-02-16

    Introduction Proteasome inhibition is an established therapy for many malignancies. Carfilzomib, a novel proteasome inhibitor, was combined with irinotecan to provide a synergistic approach in relapsed, irinotecan-sensitive cancers. Materials and Methods Patients with relapsed irinotecan-sensitive cancers received carfilzomib (Day 1, 2, 8, 9, 15, and 16) at three dose levels (20/27 mg/m2, 20/36 mg/m2 and 20/45 mg/m2/day) in combination with irinotecan (Days 1, 8 and 15) at 125 mg/m2/day. Key eligibility criteria included measurable disease, a Zubrod PS of 0 or 1, and acceptable organ function. Patients with stable asymptomatic brain metastases were eligible. Dose escalation utilized a standard 3 + 3 design. Results Overall, 16 patients were enrolled to three dose levels, with four patients replaced. Three patients experienced dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) was exceeded in Cohort 3. The RP2 dose was carfilzomib 20/36 mg/m(2) (given on Days 1, 2, 8, 9, 15, and 16) and irinotecan 125 mg/m2 (Days 1, 8 and 15). Common Grade (Gr) 3 and 4 toxicities included fatigue (19%), thrombocytopenia (19%), and diarrhea (13%). Conclusions Irinotecan and carfilzomib were well tolerated, with common toxicities of fatigue, thrombocytopenia and neutropenic fever. Objective clinical response was 19% (one confirmed partial response (PR) in small cell lung cancer (SCLC) and two unconfirmed); stable disease (SD) was 6% for a disease control rate (DCR) of 25%. The recommended phase II dose was carfilzomib 20/36 mg/m(2) and irinotecan125 mg/m2. The phase II evaluation is ongoing in relapsed small cell lung cancer.

  7. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    PubMed

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  8. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  9. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    PubMed Central

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2012-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) flies highly active 26S proteasomes are preponderant. Old (43–47 days) flies of both genders also exhibit a decline (~50%) in ATP levels, which is relevant to 26S proteasomes, as their assembly is ATP-dependent. The steep declines in 26S proteasome and ATP levels were observed at an age (43–47 days) when the flies exhibited a marked drop in locomotor performance, attesting that these are “old age” events. Remarkably, treatment with a proteasome inhibitor increases ubiquitinated protein levels and shortens the life span of old but not young flies. In conclusion, our data reveal a previously unknown mechanism that perturbs proteasome activity in “old-age” female and male Drosophila most likely depriving them of the ability to effectively cope with proteotoxic damages caused by environmental and/or genetic factors. PMID:17413001

  10. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65

    PubMed Central

    2013-01-01

    Background In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. Results The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. Conclusions The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm

  11. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    SciTech Connect

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  12. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  13. Proteasome activation as a novel anti-aging strategy.

    PubMed

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011).

  14. Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis

    PubMed Central

    Hines, John; Groll, Michael; Fahnestock, Margaret; Crews, Craig M.

    2008-01-01

    SUMMARY Neurotrophic small molecules have the potential to aid in the treatment of neuronal injury and neurodegenerative diseases. The natural product fellutamide B, originally isolated from Penicillium fellutanum, potently induces nerve growth factor (NGF) release from fibroblasts and glial-derived cells, although the mechanism for this neurotrophic activity has not been elucidated. Here, we report that fellutamide B potently inhibits proteasome catalytic activity. High resolution structural information obtained from co-crystallization of the 20S proteasome reveals novel aspects regarding β-subunit binding and adduct formation by fellutamide B to inhibit their hydrolytic activity. We demonstrate that fellutamide B and other proteasome inhibitors increased NGF gene transcription via a cis-acting element (or elements) in the promoter. These results demonstrate an unrecognized connection between proteasome inhibition and NGF production, suggesting a possible new strategy in the development of neurotrophic agents. PMID:18482702

  15. CRM1 Inhibition Sensitizes Drug Resistant Human Myeloma Cells to Topoisomerase II and Proteasome Inhibitors both In Vitro and Ex Vivo

    PubMed Central

    Turner, Joel G.; Dawson, Jana; Emmons, Michael F.; Cubitt, Christopher L.; Kauffman, Michael; Shacham, Sharon; Hazlehurst, Lori A.; Sullivan, Daniel M.

    2013-01-01

    Multiple myeloma (MM) remains an incurable disease despite improved treatments, including lenalidomide/pomalidomide and bortezomib/carfilzomib based therapies and high-dose chemotherapy with autologous stem cell rescue. New drug targets are needed to further improve treatment outcomes. Nuclear export of macromolecules is misregulated in many cancers, including in hematological malignancies such as MM. CRM1 (chromosome maintenance protein-1) is a ubiquitous protein that exports large proteins (>40 kDa) from the nucleus to the cytoplasm. We found that small-molecule Selective Inhibitors of Nuclear Export (SINE) prevent CRM1-mediated export of p53 and topoisomerase IIα (topo IIα). SINE's CRM1-inhibiting activity was verified by nuclear-cytoplasmic fractionation and immunocytochemical staining of the CRM1 cargoes p53 and topo IIα in MM cells. We found that SINE molecules reduced cell viability and induced apoptosis when used as both single agents in the sub-micromolar range and when combined with doxorubicin, bortezomib, or carfilzomib but not lenalidomide, melphalan, or dexamethasone. In addition, CRM1 inhibition sensitized MM cell lines and patient myeloma cells to doxorubicin, bortezomib, and carfilzomib but did not affect peripheral blood mononuclear or non-myeloma bone marrow mononuclear cells as shown by cell viability and apoptosis assay. Drug resistance induced by co-culture of myeloma cells with bone marrow stroma cells was circumvented by the addition of SINE molecules. These results support the continued development of SINE for patients with MM. PMID:24155773

  16. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming.

    PubMed

    Riz, Irene; Hawley, Teresa S; Marsal, Jeffrey W; Hawley, Robert G

    2016-10-11

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its positive regulator, the autophagy receptor sequestosome 1 (SQSTM1)/p62. The eukaryotic translation initiation factor gene EIF4E3 was among the Nrf2 target genes upregulated in LP-1/Cfz cells, suggesting existence of a positive feedback loop. In line with this, we found that siRNA knockdown of eIF4E3 decreased Nrf2 protein levels. On the other hand, elevated SQSTM1/p62 levels were due at least in part to activation of the PERK-eIF2α pathway. LP-1/Cfz cells had decreased levels of reactive oxygen species as well as elevated levels of fatty acid oxidation and prosurvival autophagy. Genetic and pharmacologic inhibition of the Nrf2-EIF4E3 axis or the PERK-eIF2α pathway, disruption of redox homeostasis or inhibition of fatty acid oxidation or autophagy conferred sensitivity to carfilzomib. Our findings were supported by clinical data where increased EIF4E3 expression was predictive of Nrf2 target gene upregulation in a subgroup of patients with chemoresistant minimal residual disease and relapsed/refractory MM. Thus, our data offer a preclinical rationale for including inhibitors of the SQSTM1/p62-Nrf2 pathway to the treatment regimens for certain advanced stage MM patients.

  17. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming

    PubMed Central

    Riz, Irene; Hawley, Teresa S.; Marsal, Jeffrey W.; Hawley, Robert G.

    2016-01-01

    Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its positive regulator, the autophagy receptor sequestosome 1 (SQSTM1)/p62. The eukaryotic translation initiation factor gene EIF4E3 was among the Nrf2 target genes upregulated in LP-1/Cfz cells, suggesting existence of a positive feedback loop. In line with this, we found that siRNA knockdown of eIF4E3 decreased Nrf2 protein levels. On the other hand, elevated SQSTM1/p62 levels were due at least in part to activation of the PERK-eIF2α pathway. LP-1/Cfz cells had decreased levels of reactive oxygen species as well as elevated levels of fatty acid oxidation and prosurvival autophagy. Genetic and pharmacologic inhibition of the Nrf2-EIF4E3 axis or the PERK-eIF2α pathway, disruption of redox homeostasis or inhibition of fatty acid oxidation or autophagy conferred sensitivity to carfilzomib. Our findings were supported by clinical data where increased EIF4E3 expression was predictive of Nrf2 target gene upregulation in a subgroup of patients with chemoresistant minimal residual disease and relapsed/refractory MM. Thus, our data offer a preclinical rationale for including inhibitors of the SQSTM1/p62-Nrf2 pathway to the treatment regimens for certain advanced stage MM patients. PMID:27626179

  18. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation.

    PubMed

    Wallace, Andrew D; Cao, Yan; Chandramouleeswaran, Sindhu; Cidlowski, John A

    2010-12-01

    Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.

  19. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma.

    PubMed

    Song, Y; Ray, A; Li, S; Das, D S; Tai, Y T; Carrasco, R D; Chauhan, D; Anderson, K C

    2016-09-01

    Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.

  20. The Proteasome Inhibition Model of Parkinson’s Disease

    PubMed Central

    Bentea, Eduard; Verbruggen, Lise; Massie, Ann

    2016-01-01

    The pathological hallmarks of Parkinson’s disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson’s disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson’s disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson’s disease that might provide novel clues to unravel the complex pathogenesis of this disorder. PMID:27802243

  1. Effects of Hydroxy Groups in the A-Ring on the Anti-proteasome Activity of Flavone.

    PubMed

    Nakamura, Kasumi; Yang, Jia-Hua; Sato, Eiji; Miura, Naoyuki; Wu, Yi-Xin

    2015-01-01

    The ubiquitin-proteasome pathway plays an important role in regulating apoptosis and the cell cycle. Recently, proteasome inhibitors have been shown to have antitumor effects and have been used in anticancer therapy for several cancers such as multiple myeloma. Although some flavones, such as apigenin, chrysin and luteolin, have a specific role in the inhibition of proteasome activity and induced apoptosis in some reports, these findings did not address all flavone types. To further investigate the proteasome-inhibitory mechanism of flavonoids, we examined the inhibitory activity of 5,6,7-trihydroxyflavone, baicalein and 5,6,7,4'-tetrahydroxyflavone, scutellarein on extracted proteasomes from mice and cancer cells. Unlike the other flavones, baicalein and scutellarein did not inhibit proteasome activity or accumulate levels of ubiquitinated proteins. These results indicate that flavones with hydroxy groups at positions 5, 6 and 7 of the A-ring lack the anti-proteasome function.

  2. Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies.

    PubMed

    Upadhya, Sudarshan C; Hegde, Ashok N

    2005-01-01

    In the central nervous system (CNS), abnormal deposition of insoluble protein aggregates or inclusion bodies within nerve cells is commonly observed in association with several neurodegenerative diseases. The ubiquitinated protein aggregates are believed to result from malfunction or overload of the ubiquitin-proteasome pathway or from structural changes in the protein substrates which prevent their recognition and degradation by the ubiquitin-proteasome pathway. Impaired proteolysis might also contribute to the synaptic dysfunction seen early in neurodegenerative diseases because the ubiquitin-proteasome pathway is known to play a role in normal functioning of synapses. Because specificity of the ubiquitin proteasome mediated proteolysis is determined by specific ubiquitin ligases (E3s), identification of specific E3s and their allosteric modulators are likely to provide effective therapeutic targets for the treatment of several CNS disorders. Another unexplored area for the discovery of drug targets is the proteasome. Although many inhibitors of the proteasome are available, no effective drugs exist that can stimulate the proteasome. Since abnormal protein aggregation is a common feature of different neurodegenerative diseases, enhancement of proteasome activity might be an efficient way to remove the aggregates that accumulate in the brain. In this review, we discuss how the components of the ubiquitin-proteasome pathway could be potential targets for therapy of CNS diseases and disorders.

  3. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.

    PubMed

    Lee, Seung-Hoon; Park, Yoon; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2010-12-31

    Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.

  4. Proteasome activity is required for the initiation of precancerous pancreatic lesions

    PubMed Central

    Furuyama, Takaki; Tanaka, Shinji; Shimada, Shu; Akiyama, Yoshimitsu; Matsumura, Satoshi; Mitsunori, Yusuke; Aihara, Arihiro; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Fukamachi, Hiroshi; Arii, Shigeki; Kawaguchi, Yoshiya; Tanabe, Minoru

    2016-01-01

    Proteasome activity is significantly increased in advanced cancers, but its role in cancer initiation is not clear, due to difficulties in monitoring this process in vivo. We established a line of transgenic mice that carried the ZsGreen-degronODC (Gdeg) proteasome reporter to monitor the proteasome activity. In combination with Pdx-1-Cre;LSL-KrasG12D model, proteasome activity was investigated in the initiation of precancerous pancreatic lesions (PanINs). Normal pancreatic acini in Gdeg mice had low proteasome activity. By contrast, proteasome activity was increased in the PanIN lesions that developed in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice. Caerulein administration to Gdeg;Pdx-1-Cre;LSL-KrasG12D mice induced constitutive elevation of proteasome activity in pancreatic tissues and accelerated PanIN formation. The proteasome inhibitor markedly reduced PanIN formation in Gdeg;Pdx-1-Cre;LSL-KrasG12D mice (P = 0.001), whereas it had no effect on PanIN lesions that had already formed. These observations indicated the significance of proteasome activity in the initiation of PanIN but not the maintenance per se. In addition, the expressions of pERK and its downstream factors including cyclin D1, NF-κB, and Cox2 were decreased after proteasome inhibition in PanINs. Our studies showed activation of proteasome is required specifically for the initiation of PanIN. The roles of proteasome in the early stages of pancreatic carcinogenesis warrant further investigation. PMID:27244456

  5. Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation.

    PubMed

    Gastel, J A; Roseboom, P H; Rinaldi, P A; Weller, J L; Klein, D C

    1998-02-27

    The nocturnal increase in circulating melatonin in vertebrates is regulated by 10- to 100-fold increases in pineal serotonin N-acetyltransferase (AA-NAT) activity. Changes in the amount of AA-NAT protein were shown to parallel changes in AA-NAT activity. When neural stimulation was switched off by either light exposure or L-propranolol-induced beta-adrenergic blockade, both AA-NAT activity and protein decreased rapidly. Effects of L-propranolol were blocked in vitro by dibutyryl adenosine 3',5'-monophosphate (cAMP) or inhibitors of proteasomal proteolysis. This result indicates that adrenergic-cAMP regulation of AA-NAT is mediated by rapid reversible control of selective proteasomal proteolysis. Similar proteasome-based mechanisms may function widely as selective molecular switches in vertebrate neural systems.

  6. Proteasomes play an essential role in thymocyte apoptosis.

    PubMed Central

    Grimm, L M; Goldberg, A L; Poirier, G G; Schwartz, L M; Osborne, B A

    1996-01-01

    Cell death in many different organisms requires the activation of proteolytic cascades involving cytosolic proteases. Here we describe a novel requirement in thymocyte cell death for the 20S proteasome, a highly conserved multicatalytic protease found in all eukaryotes. Specific inhibitors of proteasome function blocked cell death induced by ionizing radiation, glucocorticoids or phorbol ester. In addition to inhibiting apoptosis, these signals prevented the cleavage of poly(ADP-ribose) polymerase that accompanies many cell deaths. Since overall rates of protein degradation were not altered significantly during cell death in thymocytes, these results suggest that the proteasome may either degrade regulatory protein(s) that normally inhibit the apoptotic pathway or may proteolytically activate protein(s) than promote cell death. Images PMID:8670888

  7. Progressively impaired proteasomal capacity during terminal plasma cell differentiation

    PubMed Central

    Cenci, Simone; Mezghrani, Alexandre; Cascio, Paolo; Bianchi, Giada; Cerruti, Fulvia; Fra, Anna; Lelouard, Hugues; Masciarelli, Silvia; Mattioli, Laura; Oliva, Laura; Orsi, Andrea; Pasqualetto, Elena; Pierre, Philippe; Ruffato, Elena; Tagliavacca, Luigina; Sitia, Roberto

    2006-01-01

    After few days of intense immunoglobulin (Ig) secretion, most plasma cells undergo apoptosis, thus ending the humoral immune response. We asked whether intrinsic factors link plasma cell lifespan to Ig secretion. Here we show that in the late phases of plasmacytic differentiation, when antibody production becomes maximal, proteasomal activity decreases. The excessive load for the reduced proteolytic capacity correlates with accumulation of polyubiquitinated proteins, stabilization of endogenous proteasomal substrates (including Xbp1s, IκBα, and Bax), onset of apoptosis, and sensitization to proteasome inhibitors (PI). These events can be reproduced by expressing Ig-μ chain in nonlymphoid cells. Our results suggest that a developmental program links plasma cell death to protein production, and help explaining the peculiar sensitivity of normal and malignant plasma cells to PI. PMID:16498407

  8. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection

    PubMed Central

    Costa, Vivian V.; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-01-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  9. Proteasome inhibition alleviates prolonged moderate compression-induced muscle pathology

    PubMed Central

    2011-01-01

    Background The molecular mechanism initiating deep pressure ulcer remains to be elucidated. The present study tested the hypothesis that the ubiquitin proteasome system is involved in the signalling mechanism in pressure-induced deep tissue injury. Methods Adult Sprague Dawley rats were subjected to an experimental compression model to induce deep tissue injury. The tibialis region of the right hind limb was subjected to 100 mmHg of static pressure for six hours on each of two consecutive days. The compression pressure was continuously monitored by a three-axial force transducer within the compression indentor. The left hind limb served as the intra-animal control. Muscle tissues underneath the compressed region were collected and used for analyses. Results Our results demonstrated that the activity of 20S proteasome and the protein abundance of ubiquitin and MAFbx/atrogin-1 were elevated in conjunction with pathohistological changes in the compressed muscle, as compared to control muscle. The administration of the proteasome inhibitor MG132 was found to be effective in ameliorating the development of pathological histology in compressed muscle. Furthermore, 20S proteasome activity and protein content of ubiquitin and MAFbx/atrogin-1 showed no apparent increase in the MG132-treated muscle following compression. Conclusion Our data suggest that the ubiquitin proteasome system may play a role in the pathogenesis of pressure-induced deep tissue injury. PMID:21385343

  10. Phorbol esters induce intracellular accumulation of the anti-apoptotic protein PED/PEA-15 by preventing ubiquitinylation and proteasomal degradation.

    PubMed

    Perfetti, Anna; Oriente, Francesco; Iovino, Salvatore; Alberobello, A Teresa; Barbagallo, Alessia P M; Esposito, Iolanda; Fiory, Francesca; Teperino, Raffaele; Ungaro, Paola; Miele, Claudia; Formisano, Pietro; Beguinot, Francesco

    2007-03-23

    Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.

  11. Proteasomes: Isolation and Activity Assays

    PubMed Central

    Li, Yanjie; Tomko, Robert J.; Hochstrasser, Mark

    2015-01-01

    In eukaryotes, damaged or unneeded proteins are typically degraded by the ubiquitin-proteasome system. In this system, the protein substrate is often first covalently modified with a chain of ubiquitin polypeptides. This chain serves as a signal for delivery to the 26S proteasome, a 2.5 MDa, ATP-dependent multisubunit protease complex. The proteasome consists of a barrel-shaped 20S core particle (CP) that is capped on one or both of its ends by a 19S regulatory particle (RP). The RP is responsible for recognizing the substrate, unfolding it, and translocating it into the CP for destruction. Here we describe simple, one-step purifications scheme for isolating the 26S proteasome and its 19S RP and 20S CP subcomplexes from the yeast Saccharomyces cerevisiae, as well as assays for measuring ubiquitin-dependent and ubiquitin-independent proteolytic activity in vitro. PMID:26061243

  12. Targeting the ubiquitin–proteasome system for cancer therapy

    PubMed Central

    Shen, Min; Schmitt, Sara; Buac, Daniela; Dou, Q Ping

    2013-01-01

    Introduction The ubiquitin–proteasome system (UPS) degrades 80 – 90% of intracellular proteins. Cancer cells take advantage of the UPS for their increased growth and decreased apoptotic cell death. Thus, the components that make up the UPS represent a diverse group of potential anti-cancer targets. The success of the first-in-class proteasome inhibitor bortezomib not only proved that the proteasome is a feasible and valuable anti-cancer target, but also inspired researchers to extensively explore other potential targets of this pathway. Areas covered This review provides a broad overview of the UPS and its role in supporting cancer development and progression, especially in aspects of p53 inactivation, p27 turnover and NF-κB activation. Also, efforts toward the development of small molecule inhibitors (SMIs) targeting different steps in this pathway for cancer treatment are reviewed and discussed. Expert opinion Whereas some of the targets in the UPS, such as the 20S pro-teasome, Nedd8 activating enzyme and HDM2, have been well-established and validated, there remains a large pool of candidates waiting to be investigated. Development of SMIs targeting the UPS has been largely facilitated by state-of-the-art technologies such as high-throughput screening and computer-assisted drug design, both of which require a better understanding of the targets of interest. PMID:23822887

  13. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  14. Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures.

    PubMed

    Ding, Qunxing; Dimayuga, Edgardo; Markesbery, William R; Keller, Jeffrey N

    2004-12-01

    Increased levels of nucleic acid oxidation have been described as part of normal brain aging and have been demonstrated to occur in multiple neurological disorders. The basis for increased nucleic acid oxidation in each of these conditions is presently unknown. Proteasome inhibition occurs in a host of neurodegenerative conditions and likely contributes to increased levels of oxidative damage and neurotoxicity. In the present study we demonstrate for the first time the ability of proteasome inhibition to increase the level of nucleic acid oxidation in primary neuron and astrocyte cultures. Administration of proteasome inhibitors (MG262, MG115) at concentrations that do not induce neuron death in the first 24 h of treatment, dramatically increase the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8OHG) immunoreactivity in both cell types. Neurons underwent larger increases in nucleic acid oxidation compared to astrocyte cultures. While both DNA and RNA oxidation were observed following proteasome inhibition, RNA appeared to undergo a greater degree of oxidation than DNA. Both 18S and 28S ribosomal RNA were dramatically decreased following proteasome inhibition. Interestingly, an accumulation of unprocessed and/or cross-linked RNA species was observed following proteasome inhibition. Taken together, these data indicate the ability of proteasome inhibition to increase the levels of nucleic acid oxidation in both neurons and astrocytes, and suggest that proteasome inhibition may have deleterious effects on transcription and translation in both neurons and glia.

  15. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance.

    PubMed

    Kraus, M; Bader, J; Overkleeft, H; Driessen, C

    2013-03-01

    HIV protease inhibitors (HIV-PI) are oral drugs for HIV treatment. HIV-PI have antitumor activity via induction of ER-stress, inhibition of phospho-AKT (p-AKT) and the proteasome, suggesting antimyeloma activity. We characterize the effects of all approved HIV-PI on myeloma cells. HIV-PI were compared regarding cytotoxicity, proteasome activity, ER-stress induction and AKT phosphorylation using myeloma cells in vitro. Nelfinavir is the HIV-PI with highest cytotoxic activity against primary myeloma cells and with an IC50 near therapeutic drug blood levels (8-14 μM), irrespective of bortezomib sensitivity. Only nelfinavir inhibited intracellular proteasome activity in situ at drug concentrations <40 μM. Ritonavir, saquinavir and lopinavir inhibited p-AKT comparable to nelfinavir, and showed similar synergistic cytotoxicity with bortezomib against bortezomib-sensitive cells. Nelfinavir had superior synergistic activity with bortezomib/carfilzomib in particular against bortezomib/carfilzomib-resistant myeloma cells. It inhibited not only the proteasomal β1/β5 active sites, similar to bortezomib/carfilzomib, but in addition the β2 proteasome activity not targeted by bortezomib/carfilzomib. Additional inhibition of β2 proteasome activity is known to sensitize cells for bortezomib and carfilzomib. Nelfinavir has unique proteasome inhibiting activity in particular on the bortezomib/carfilzomib-insensitive tryptic (β2) proteasome activity in intact myeloma cells, and is active against bortezomib/carfilzomib-resistant myeloma cells in vitro.

  16. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson's disease.

    PubMed

    Wang, Xue-Feng; Li, Sharon; Chou, Arthur P; Bronstein, Jeff M

    2006-07-01

    Epidemiological studies have suggested a correlation of pesticides and Parkinson's disease (PD) while genetic and biochemical studies have implicated the ubiquitin-proteasome system (UPS) in the pathogenesis of PD. In the present studies, we tested the hypothesis that pesticide exposure increases the risk of developing PD by inhibiting the UPS. The effects of pesticides on proteasome activity were examined in SK-N-MC neuroblastoma cells overexpressing a GFP-conjugated proteasome degradation signal, GFP(u). Six out of 25 representative pesticides, including rotenone, ziram, diethyldithiocarbamate, endosulfan, benomyl, and dieldrin, showed inhibitory effects on proteasome activities at low concentrations (10 nM to 10 microM). Unlike proteasome inhibitors, they did not inhibit 20 S proteasome activities in cell lysates. Except for rotenone, the other five pesticides did not induce significantly cellular oxidative stress. The cytotoxic effects of these pesticides were closely correlated with proteasome inhibition. Our results suggest proteasome inhibition as a potential mechanism for the epidemiological association of pesticides and PD.

  17. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  18. Molecular Pathways: Turning Proteasomal Protein Degradation into a Unique Treatment Approach

    PubMed Central

    Stintzing, Sebastian; Lenz, Heinz-Josef

    2015-01-01

    Cancer treatment regimens have evolved from single cytotoxic substances affecting all proliferative tissues towards antibodies and kinase inhibitors targeting tumor specific pathways. Treatment efficacy and cancer survival has overall improved and side effects have become less frequent. The ubiquitin proteasome system (UPS) mediated proteasomal protein degradation is the most critical pathway to regulate the quantity of signal proteins involved in carcinogenesis and tumor progression. These processes are, as well as protein recycling, highly regulated and offer targets for biomarker and drug development. Unspecific proteasome inhibitors such as bortezomib and carfilzomib have shown clinical efficacy and are approved for clinical use. Inhibitors of more substrate specific enzymes of degradation processes are developed and in early clinical trials. The novel compounds focus on the degradation of key regulatory proteins such as p53, p27Kip1 and β-catenin, and inhibitors specific for growth factor receptor kinases turnover are in pre-clinical testing. PMID:24756373

  19. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors1[OPEN

    PubMed Central

    Sheikh, Arsheed; Gimenez-Ibanez, Selena

    2016-01-01

    Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR. In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors. PMID:27613851

  20. Targeting the ubiquitin-proteasome system for cancer therapy

    PubMed Central

    Yang, Yili; Kitagaki, Jirouta; Wang, Honghe; Hou, Dexing; Perantoni, Alan O.

    2009-01-01

    Summary The ubiquitin-proteasome system plays a critical role in controlling the level, activity, and location of various cellular proteins. Significant progress has been made in investigating the molecular mechanisms of ubiquitination, particularly in understanding the structure of the ubiquitination machinery and identifying ubiquitin protein ligases, the primary specificity-determining enzymes. Therefore, it is now possible to target specific molecules involved in the ubiquitination and proteasomal degradation to regulate many cellular processes such as signal transduction, proliferation and apoptosis. In particular, alterations in ubiquitination are observed in most, if not all, cancer cells. This is manifested by destabilization of tumor suppressors, such as p53, and overexpression of oncogenes such as c-Myc and c-Jun. In addition to the development and clinical validation of proteasome inhibitor Bortezomib in myeloma therapy, recent studies have demonstrated that it is possible to develop inhibitors for specific ubiquitination and deubiquitination enzymes. With the help of structural studies, rational design, and chemical synthesis, it is conceivable that we will be able to use “druggable” inhibitors of the ubiquitin system to evaluate their effects in animal tumor models in the not-so-distant future. PMID:19037995

  1. The Regulatory Complex of Drosophila melanogaster 26s Proteasomes

    PubMed Central

    Hölzl, Harald; Kapelari, Barbara; Kellermann, Josef; Seemüller, Erika; Sümegi, Máté; Udvardy, Andor; Medalia, Ohad; Sperling, Joseph; Müller, Shirley A.; Engel, Andreas; Baumeister, Wolfgang

    2000-01-01

    Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity. The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete. PMID:10893261

  2. Proteasomal inhibition causes loss of nigral tyrosine hydroxylase neurons.

    PubMed

    Schapira, Anthony H V; Cleeter, Michael W J; Muddle, John R; Workman, Jane M; Cooper, J Mark; King, Rosalind H M

    2006-08-01

    Dysfunction of the ubiquitin-proteasomal system (UPS) has been implicated in the pathogenesis of Parkinson's disease. The systemic administration of UPS inhibitors has been reported to induce nigrostriatal cell death and model Parkinson's disease pathology in rodents. We administered a synthetic, specific UPS inhibitor (PSI) subcutaneously to rats and quantified substantia nigral tyrosine hydroxylase-positive dopaminergic neurons by stereology. PSI caused a 15% decrease in UPS activity at 2 weeks and a 42% reduction in substantia nigra pars compacta tyrosine hydroxylase-positive neurons at 8 weeks. Systemic inhibition of the UPS warrants further evaluation as a means to model Parkinson's disease.

  3. Purification and characterization of 26S proteasomes from human and mouse spermatozoa.

    PubMed

    Tipler, C P; Hutchon, S P; Hendil, K; Tanaka, K; Fishel, S; Mayer, R J

    1997-12-01

    We purified by fractionation on 10-40% glycerol gradients, 26S proteasomes from normal human spermatozoa. These proteasomes, which participate in the ATP-dependent degradation of ubiquitinated proteins, share a similar sedimentation coefficient to those purified from other human tissues. Fluorogenic peptide assays reveal they have chymotrypsin, trypsin and peptidyl-glutamyl-like peptide hydrolysing activities; the chymotrypsin activity is ablated by the specific 26S proteasome inhibitor MG132. Confirmation that these large proteases are 26S proteasomes is provided by detection of the 20S proteasome subunits HC2, XAPC7, RN3 and Z and regulatory ATPases MSS1, TBP1, SUG1 and SUG2 by Western analyses with monoclonal antisera. These antigens are found only in the gradient fractions enriched in proteolytic activities. We have also shown that, although mature spermatozoa from mice have considerably reduced amounts of a ubiquitin-conjugating enzyme (E2) and ubiquitin-protein conjugates in comparison with less mature germ cells, they retain relatively high values of 26S proteasome activity. This suggests that proteasomes may have further roles to play in normal sperm physiology.

  4. Inhibition on Proteasome β1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells.

    PubMed

    Li, Dong; Lu, Yu; Sun, Peng; Feng, Li-Xing; Liu, Miao; Hu, Li-Hong; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Qu, Xiao-Bo; Guo, De-An; Liu, Xuan

    2015-01-01

    Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit.

  5. Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance

    PubMed Central

    Wu, Yi-Xin; Yang, Jia-Hua; Saitsu, Hirotomo

    2016-01-01

    Bortezomib (BTZ), a proteasome inhibitor, is the first proteasome inhibitor to be used in clinical practice. Here we investigated the mechanisms underlying acquired bortezomib resistance in hepatocellular carcinoma (HCC) cells. Using stepwise selection, we established two acquired bortezomib-resistant HCC cell lines, a bortezomib-resistant HepG2 cell line (HepG2/BTZ) and bortezomib-resistant HuH7 cell line (HuH7/BTZ). The 50% inhibitory concentration values of HepG2/BTZ and HuH7/BTZ were respectively 15- and 39-fold higher than those of parental cell lines. Sequence analysis of the bortezomib-binding pocket in the β5-subunit showed no mutation. However, bortezomib-resistant HCC cells had increased expression of β1 and β5 proteasome subunits. These alterations of proteasome expression were accompanied by a weak degree of proteasome inhibition in bortezomib-resistant cells than that in wild-type cells after bortezomib exposure. Furthermore, bortezomib-resistant HCC cells acquired resistance to apoptosis. Bortezomib up-regulated pro-apoptotic proteins of the Bcl-2 protein family, Bax and Noxa in wild-type HCC cells. However, in bortezomib-resistant HCC cells, resistance to apoptosis was accompanied by loss of the ability to stabilize and accumulate these proteins. Thus, increased expression and increased activity of proteasomes constitute an adaptive and auto regulatory feedback mechanism to allow cells to survive exposure bortezomib. PMID:27769058

  6. Proteasome inhibition compromises direct retention of cytochrome P450 2C2 in the endoplasmic reticulum.

    PubMed

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2008-10-15

    To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention "receptor" since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.

  7. Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets

    PubMed Central

    Broca, Christophe; Varin, Elodie; Armanet, Mathieu; Tourrel-Cuzin, Cécile; Bosco, Domenico; Dalle, Stéphane; Wojtusciszyn, Anne

    2014-01-01

    The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes. PMID:24642635

  8. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  9. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  10. Compensatory role of the Nrf2-ARE pathway against paraquat toxicity: Relevance of 26S proteasome activity.

    PubMed

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsushima, Sayaka; Yamamoto, Takamori; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2015-11-01

    Oxidative stress and the ubiquitin-proteasome system play a key role in the pathogenesis of Parkinson disease. Although the herbicide paraquat is an environmental factor that is involved in the etiology of Parkinson disease, the role of 26S proteasome in paraquat toxicity remains to be determined. Using PC12 cells overexpressing a fluorescent protein fused to the proteasome degradation signal, we report here that paraquat yielded an inhibitory effect on 26S proteasome activity without an obvious decline in 20S proteasome activity. Relative low concentrations of proteasome inhibitors caused the accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is targeted to the ubiquitin-proteasome system, and activated the antioxidant response element (ARE)-dependent transcription. Paraquat also upregulated the protein level of Nrf2 without increased expression of Nrf2 mRNA, and activated the Nrf2-ARE pathway. Consequently, paraquat induced expression of Nrf2-dependent ARE-driven genes, such as γ-glutamylcysteine synthetase, catalase, and hemeoxygenase-1. Knockdown of Nrf2 or inhibition of γ-glutamylcysteine synthetase and catalase exacerbated paraquat-induced toxicity, whereas suppression of hemeoxygenase-1 did not. These data indicate that the compensatory activation of the Nrf2-ARE pathway via inhibition of 26S proteasome serves as part of a cellular defense mechanism to protect against paraquat toxicity.

  11. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    PubMed

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes.

  12. Proteasome stress responses in Schistosoma mansoni.

    PubMed

    de Paula, Renato Graciano; de Magalhães Ornelas, Alice Maria; Morais, Enyara Rezende; de Souza Gomes, Matheus; de Paula Aguiar, Daniela; Magalhães, Lizandra Guidi; Rodrigues, Vanderlei

    2015-05-01

    The proteasome proteolytic system is the major ATP-dependent protease in eukaryotic cells responsible for intracellular protein turnover. Schistosoma mansoni has been reported to contain an ubiquitin-proteasome proteolytic pathway, and many studies have suggested a biological role of proteasomes in the development of this parasite. Additionally, evidence has suggested diversity in proteasome composition under several cellular conditions, and this might contribute to the regulation of its function in this parasite. The proteasomal system has been considered important to support the protein homeostasis during cellular stress. In this study, we described in vitro effects of oxidative stress, heat shock, and chemical stress on S. mansoni adults. Our findings showed that chemical stress induced with curcumin, IBMX, and MG132 modified the gene expression of the proteasomal enzymes SmHul5 and SmUbp6. Likewise, the expression of these genes was upregulated during oxidative stress and heat shock. Analyses of the S. mansoni life cycle showed differential gene expression in sporocysts, schistosomulae, and miracidia. These results suggested that proteasome accessory proteins participate in stress response during the parasite development. The expression level of SmHul5 and SmUbp6 was decreased by 16-fold and 9-fold, respectively, by the chemical stress induced with IBMX, which suggests proteasome disassembly. On the other hand, curcumin, MG132, oxidative stress, and heat shock increased the expression of these genes. Furthermore, the gene expression of maturation proteasome protein (SmPOMP) was increased in stress conditions induced by curcumin, MG132, and H₂O₂, which could be related to the synthesis of new proteasomes. S. mansoni adult worms were found to utilize similar mechanisms to respond to different conditions of stress. Our results demonstrated that oxidative stress, heat shock, and chemical stress modified the expression profile of genes related to the ubiquitin-proteasome

  13. Transgenic pig carrying green fluorescent proteasomes

    PubMed Central

    Miles, Edward L.; O’Gorman, Chad; Zhao, Jianguo; Samuel, Melissa; Walters, Eric; Yi, Young-Joo; Prather, Randall S.; Wells, Kevin D.; Sutovsky, Peter

    2013-01-01

    Among its many functions, the ubiquitin–proteasome system regulates substrate-specific proteolysis during the cell cycle, apoptosis, and fertilization and in pathologies such as Alzheimer’s disease, cancer, and liver cirrhosis. Proteasomes are present in human and boar spermatozoa, but little is known about the interactions of proteasomal subunits with other sperm proteins or structures. We have created a transgenic boar with green fluorescent protein (GFP) tagged 20S proteasomal core subunit α-type 1 (PSMA1-GFP), hypothesizing that the PSMA1-GFP fusion protein will be incorporated into functional sperm proteasomes. Using direct epifluorescence imaging and indirect immunofluorescence detection, we have confirmed the presence of PSMA1-GFP in the sperm acrosome. Western blotting revealed a protein band corresponding to the predicted mass of PSMA1-GFP fusion protein (57 kDa) in transgenic spermatozoa. Transgenic boar fertility was confirmed by in vitro fertilization, resulting in transgenic blastocysts, and by mating, resulting in healthy transgenic offspring. Immunoprecipitation and proteomic analysis revealed that PSMA1-GFP copurifies with several acrosomal membrane-associated proteins (e.g., lactadherin/milk fat globule E8 and spermadhesin alanine-tryptophan-asparagine). The interaction of MFGE8 with PSMA1-GFP was confirmed through cross-immunoprecipitation. The identified proteasome-interacting proteins may regulate sperm proteasomal activity during fertilization or may be the substrates of proteasomal proteolysis during fertilization. Proteomic analysis also confirmed the interaction/coimmunoprecipitation of PSMA1-GFP with 13/14 proteasomal core subunits. These results demonstrate that the PSMA1-GFP was incorporated in the assembled sperm proteasomes. This mammal carrying green fluorescent proteasomes will be useful for studies of fertilization and wherever the ubiquitin–proteasome system plays a role in cellular function or pathology. PMID:23550158

  14. An evolutionarily conserved pathway controls proteasome homeostasis

    PubMed Central

    Rousseau, Adrien; Bertolotti, Anne

    2016-01-01

    The proteasome is essential for the selective degradation of most cellular proteins but how cells maintain adequate amounts of proteasome is unclear. Here we found an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1 whose inhibition induced all known yeast 19S regulatory particle assembly-chaperones (RACs) as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, ensured that the supply of RACs and proteasome subunits increased under challenging conditions to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and Erk5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/Erk5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance to the rising needs. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  15. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.

  16. Proteasome Modulates Mitochondrial Function During Cellular Senescence

    PubMed Central

    Torres, Claudio A.; Perez, Viviana I.

    2009-01-01

    Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidences that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence have significant effects on the intra and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a pro-oxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo. PMID:17976388

  17. Molecular shredders: how proteasomes fulfill their role.

    PubMed

    Groll, Michael; Clausen, Tim

    2003-12-01

    The 20S proteasome is a large, cylinder-shaped protease that is found in all domains of life and plays a crucial role in cellular protein turnover. It has multiple catalytic centers located within the hollow cavity of a molecular cage. This architecture prevents unwanted degradation of endogenous proteins and promotes processive degradation of substrates by restricting the dissociation of partially digested polypeptides. Although this kind of self-compartmentalization is generally conserved, the proteasomes of bacteria, archaea and eukaryotes show many differences in architecture, subunit composition and regulation. The structure of the 20S proteasome and its inherent role in the regulation of proteasome function are gradually being elucidated.

  18. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

    PubMed Central

    Rodriguez, Karl A.; Dodds, Sherry G.; Strong, Randy; Galvan, Veronica; Sharp, Z. D.; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome. PMID:25414638

  19. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice.

    PubMed

    Rodriguez, Karl A; Dodds, Sherry G; Strong, Randy; Galvan, Veronica; Sharp, Z D; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.

  20. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and co-ordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  1. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.

    PubMed

    Sawamura, Naoya; Wakabayashi, Satoru; Matsumoto, Kodai; Yamada, Haruka; Asahi, Toru

    2015-09-04

    Cereblon (CRBN) is encoded by a candidate gene for autosomal recessive nonsyndromic intellectual disability (ID). The nonsense mutation, R419X, causes deletion of 24 amino acids at the C-terminus of CRBN, leading to mild ID. Although abnormal CRBN function may be associated with ID disease onset, its cellular mechanism is still unclear. Here, we examine the role of CRBN in aggresome formation and cytoprotection. In the presence of a proteasome inhibitor, exogenous CRBN formed perinuclear inclusions and co-localized with aggresome markers. Endogenous CRBN also formed perinuclear inclusions under the same condition. Treatment with a microtubule destabilizer or an inhibitor of the E3 ubiquitin ligase activity of CRBN blocked formation of CRBN inclusions. Biochemical analysis showed CRBN containing inclusions were high-molecular weight, ubiquitin-positive. CRBN overexpression in cultured cells suppressed cell death induced by proteasome inhibitor. Furthermore, knockdown of endogenous CRBN in cultured cells increased cell death induced by proteasome inhibitor, compared with control cells. Our results show CRBN is recruited to aggresome and has functional roles in cytoprotection against ubiquitin-proteasome system impaired condition.

  2. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  3. Role of Proteasome-Dependent Protein Degradation in Long-Term Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C.

    2017-01-01

    We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…

  4. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-06-01

    The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.

  5. Flavanonol taxifolin attenuates proteasome inhibition-induced apoptosis in differentiated PC12 cells by suppressing cell death process.

    PubMed

    Nam, Yoon Jeong; Lee, Da Hee; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2015-03-01

    The proteasomal dysfunction and mitochondrial impairment has been implicated in neuronal degeneration. Taxifolin has antioxidant and anti-inflammatory effects. However, the effect of taxifolin on the neuronal cell death induced by proteasome inhibition has not been studied. Therefore, in the respect of cell death process, we assessed the effect of taxifolin on the proteasome inhibition-induced apoptosis in neuronal cell injury using differentiated PC12 cells. The proteasome inhibitors MG132 and MG115 induced a decrease in Bid, Bcl-2, and survivin protein levels, an increase in Bax, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases(-8, -9 and -3), an increase in the tumor suppressor p53 levels and cleavage of PARP-1. The addition of taxifolin attenuated the proteasome inhibitor-induced changes in the apoptosis-related protein levels, formation of reactive oxygen species, depletion and oxidation of GSH, formations of malondialdehyde and carbonyls, and cell death. The results show that taxifolin may attenuate the proteasome inhibitor-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The preventive effect of taxifolin appears to be attributed to its inhibitory effect on the formation of reactive oxygen species, and depletion and oxidation of GSH.

  6. Terminal functionalized thiourea-containing dipeptides as multidrug-resistance reversers that target 20S proteasome and cell proliferation.

    PubMed

    Qin, Jian-Mei; Huang, Ri-Zhen; Yao, Gui-Yang; Liao, Zhi-Xin; Pan, Ying-Ming; Wang, Heng-Shan

    2017-01-27

    A series of inhibitors of 20S proteasome based on terminal functionalized dipeptide derivatives containing the thiourea moiety were synthesized and evaluated for inhibition of 20S proteasome and the effects of multidrug-resistance reversers. These compounds exhibited significant selectivity to the β5-subunit of the human 20S proteasome with IC50 values at submicromolar concentrations. A docking study of the most active compound 6i revealed key interactions between 6i and the active site of the 20S proteasome in which the thiourea moiety and a nitro group were important for improving activity. In particular, compound 6i appeared to be the most potent compound against the NCI-H460 cell line, and displayed similar efficiency in drug-sensitive versus drug-resistant cancer cell lines, at least partly, by inhibition of the activity of 20S proteasome and induce apoptosis. In addition, 6i-induced apoptosis was significantly facilitated in NCI-H460/DOX cells that had been pretreated with inhibitors of P-gp. Mechanistically, compound 6i might trigger apoptotic signalling pathway. Thus, we conclude that dipeptide derivatives containing the thiourea moiety may be the potential inhibitors of proteasome with the ability to reverse multidrug resistance.

  7. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle.

    PubMed

    Sánchez, R; Deppe, M; Schulz, M; Bravo, P; Villegas, J; Morales, P; Risopatrón, J

    2011-04-01

    In this work, we have investigated the role of the bovine sperm proteasome during in vitro fertilisation (IVF) and the acrosome reaction (AR). Motile spermatozoa, obtained by a swim-up method in Sperm-Talp medium, were capacitated for 3.5 h and incubated in the presence or absence of the specific proteasome inhibitor epoxomicin for 30 and 60 min. Then, the spermatozoa were co-incubated with mature bovine cumulus oocytes and after 48 h the cleavage rate of inseminated oocytes was evaluated. In addition, we evaluated the participation of the sperm proteasome during the progesterone-induced AR. Capacitated spermatozoa were incubated for 30 min with or without epoxomicin, then progesterone was added and the ARs were evaluated using the dual fluorescent staining technique 'Hoechst and chlortetracycline'. The results indicate that the proteasome inhibitor decreased the cleavage rate of oocytes inseminated with treated spermatozoa. In addition, acrosomal exocytosis levels were statistically significantly higher in the samples treated with the AR inducer progesterone than in control samples in the absence of the inducer. However, the progesterone-induced AR was significantly reduced by previous treatment of the spermatozoa with epoxomicin (P < 0.001). These observations indicate that the bovine sperm proteasome participates in the IVF and AR processes.

  8. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells.

    PubMed

    Liu, Lily; Jiang, Li; Ding, Xiang-dong; Liu, Jian-feng; Zhang, Qin

    2015-09-11

    Glucose as one of the nutrition factors plays a vital role in the regulation of milk fat synthesis. Ubiquitin-proteasome system (UPS) is a vital proteolytic pathway in all eukaryotic cells through timely marking, recognizing and degrading the poly-ubiquitinated protein substrates. Previous studies indicated that UPS plays a considerable role in controlling the triglyceride (TG) synthesis. Therefore, the aim of this study is to confirm the link between high-glucose and UPS and its regulation mechanism on milk fat synthesis in BMEC (bovine mammary epithelial cells). We incubated BMEC with normal (17.5 mm/L) and high-glucose (25 mm/L) with and without proteasome inhibitor epoxomicin and found that, compared with the control (normal glucose and without proteasome inhibitor), both high-glucose concentration and proteasome inhibitor epoxomicin could increase the accumulation of TG and poly-ubiquitinated proteins, and reduce significantly three proteasome activities (chymotrypsin-like, caspase-like, and trypsin-like). In addition, high-glucose concentration combined with proteasome inhibitor further enhanced the increase of the poly-ubiquitinated protein level and the decrease of proteasome activities. Our results suggest that the regulation of high-glucose on milk fat synthesis is mediated by UPS in BMEC, and high-glucose exposure could lead to a hypersensitization of BMEC to UPS inhibition which in turn results in increased milk fat synthesis.

  9. Dissecting a role of a charge and conformation of Tat2 peptide in allosteric regulation of 20S proteasome.

    PubMed

    Witkowska, Julia; Karpowicz, Przemysław; Gaczynska, Maria; Osmulski, Pawel A; Jankowska, Elżbieta

    2014-08-01

    Proteasome is a 'proteolytic factory' that constitutes an essential part of the ubiquitin-proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti-cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV-1 Tat protein: R(49) KKRRQRR(56) , supplemented with Q(66) DPI(69) fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2-based proteasome regulators.

  10. Similarities between methamphetamine toxicity and proteasome inhibition.

    PubMed

    Fornai, F; Lenzi, P; Gesi, M; Ferrucci, M; Lazzeri, G; Capobianco, L; de Blasi, A; Battaglia, G; Nicoletti, F; Ruggieri, S; Paparelli, A

    2004-10-01

    The monoamine neurotoxin methamphetamine (METH) is commonly used as an experimental model for Parkinson's disease (PD). In fact, METH-induced striatal dopamine (DA) loss is accompanied by damage to striatal nerve endings arising from the substantia nigra. On the other hand, PD is characterized by neuronal inclusions within nigral DA neurons. These inclusions contain alpha-synuclein, ubiquitin, and various components of a metabolic pathway named the ubiquitin-proteasome (UP) system, while mutation of genes coding for various components of the UP system is responsible for inherited forms of PD. In this presentation we demonstrate for the first time the occurrence of neuronal inclusions in vivo in the nigrostriatal system of the mouse following administration of METH. We analyzed, in vivo and in vitro, the shape and the fine structure of these neuronal bodies by using transmission electron microscopy. Immunocytochemical investigation showed that these METH-induced cytosolic inclusions stain for ubiquitin, alpha-synuclein, and UP-related molecules, thus sharing similar components with Lewy bodies occurring in PD, with an emphasis on enzymes belonging to the UP system. In line with this, blockade of this multicatalytic pathway by the selective inhibitor epoxomycin produced cell inclusions with similar features. Moreover, using a multifaceted pharmacological approach, we could demonstrate the need for endogenous DA in order to form neuronal inclusions.

  11. Molecular mechanisms of proteasome plasticity in aging.

    PubMed

    Rodriguez, Karl A; Gaczynska, Maria; Osmulski, Pawel A

    2010-02-01

    The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multi-subunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the proteasome we surveyed content, composition and catalytic properties of the enzyme in cytosolic, microsomal and nuclear fractions obtained from mouse livers subjected to organismal aging. We found that during aging subunit composition and subcellular distribution of proteasomes changed without substantial alterations in the total level of core complexes. We observed that the general decline in proteasomes functions was limited to nuclear and cytosolic compartments. Surprisingly, the observed changes in activity and specificity were linked to the amount of the activator module and distinct composition of the catalytic subunits. In contrast, activity, specificity and composition of the microsomal-associated proteasomes remained mostly unaffected by aging; however their relative contribution to the total activity was substantially elevated. Unexpectedly, the nuclear proteasomes were affected most profoundly by aging possibly triggering significant changes in cellular signaling and transcription. Collectively, the data indicate an age-related refocusing of proteasome from the compartment-specific functions towards general protein maintenance.

  12. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    PubMed Central

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  13. Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation.

    PubMed

    Liu, Ningning; Huang, Hongbiao; Liu, Shouting; Li, Xiaofen; Yang, Changshan; Dou, Q Ping; Liu, Jinbao

    2014-04-01

    Verapamil (Ver), an inhibitor of the multidrug resistance gene product, has been proved to be a promising combination partner with other anti-cancer agents including proteasome inhibitor bortezomib. Gambogic acid (GA) has been approved for Phase II clinical trials in cancer therapy in China. We have most recently reported that GA is a potent proteasome inhibitor, with anticancer efficiency comparable to bortezomib but much less toxicity. In the current study we investigated whether Ver can enhance the cytotoxicity of GA. We report that (i) the combination of Ver and GA results in synergistic cytotoxic effect and cell death induction in HepG2 and K562 cancer cell lines; (ii) a combinational treatment with Ver and GA induces caspase activation, endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production; (iii) caspase inhibitor z-VAD blocks GA+Ver-induced apoptosis but not proteasome inhibition; (iv) cysteine-containing compound N-acetylcysteine (NAC) prevents GA+Ver-induced poly(ADP-ribose) polymerase cleavage and proteasome inhibition. These results demonstrate that Ver accelerates GA-induced cytotoxicity via enhancing proteasome inhibition and ROS production. These findings indicate that the natural product GA is a valuable candidate that can be used in combination with Ver, thus representing a compelling anticancer strategy.

  14. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds

    PubMed Central

    Liu, Ningning; Huang, Hongbiao; Ping Dou, Q.; Liu, Jinbao

    2015-01-01

    Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases PMID:26097878

  15. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  16. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition.

    PubMed

    Rodriguez, Karl A; Osmulski, Pawel A; Pierce, Anson; Weintraub, Susan T; Gaczynska, Maria; Buffenstein, Rochelle

    2014-11-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.

  17. Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases.

    PubMed

    Zhao, Chong; Chen, Xin; Yang, Changshan; Zang, Dan; Lan, Xiaoying; Liao, Siyan; Zhang, Peiquan; Wu, Jinjie; Li, Xiaofen; Liu, Ningning; Liao, Yuning; Huang, Hongbiao; Shi, Xianping; Jiang, Lili; Liu, Xiuhua; Dou, Q Ping; Wang, Xuejun; Liu, Jinbao

    2017-01-10

    The ubiquitin-proteasome system (UPS) plays a central role in various cellular processes through selectively degrading proteins involved in critical cellular functions. Targeting UPS has been validated as a novel strategy for treating human cancer, as inhibitors of the 20S proteasome catalytic activity are currently in clinical use for treatment of multiple myeloma and other cancers, and the deubiquitinase activity associated with the proteasome is also a valid target for anticancer agents. Recent studies suggested that zinc pyrithione, an FDA-approved antidandruff agent, may have antitumor activity, but the detailed molecular mechanisms remain unclear. Here we report that zinc pyrithione (ZnPT) targets the proteasome-associated DUBs (USP14 and UCHL5) and inhibits their activities, resulting in a rapid accumulation of protein-ubiquitin conjugates, but without inhibiting the proteolytic activities of 20S proteasomes. Furthermore, ZnPT exhibits cytotoxic effects against various cancer cell lines in vitro, selectively kills bone marrow cells from leukemia patients ex vivo, and efficiently inhibits the growth of lung adenocarcinoma cancer cell xenografts in nude mice. This study has identified zinc pyrithione, an FDA-approved pharmacological agent with potential antitumor properties as a proteasomal DUB inhibitor.

  18. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  19. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    PubMed

    Vannini, Candida; Bracale, Marcella; Crinelli, Rita; Marconi, Valerio; Campomenosi, Paola; Marsoni, Milena; Scoccianti, Valeria

    2014-01-01

    Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  20. Characterization of the 26S proteasome network in Plasmodium falciparum.

    PubMed

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R; Becker, Katja

    2015-12-07

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system.

  1. Crystal structure of the human 20S proteasome in complex with carfilzomib.

    PubMed

    Harshbarger, Wayne; Miller, Chase; Diedrich, Chandler; Sacchettini, James

    2015-02-03

    Proteasome inhibition is highly effective as a treatment for multiple myeloma, and recently carfilzomib was granted US FDA approval for the treatment of relapsed and refractory multiple myeloma. Here, we report the X-ray crystal structure of the human constitutive 20S proteasome with and without carfilzomib bound at 2.9 and 2.6 Å, respectively. Our data indicate that the S3 and S4 binding pockets play a pivotal role in carfilzomib's selectivity for chymotrypsin-like sites. Structural comparison with the mouse immunoproteasome crystal structure reveals amino acid substitutions that explain carfilzomib's slight preference for chymotrypsin-like subunits of constitutive proteasomes. In addition, comparison of the human proteasome:carfilzomib complex with the mouse proteasome:PR-957 complex reveals new details that explain why PR-957 is selective for immunoproteasomes. Together, the data presented here support the design of inhibitors for either constitutive or immunoproteasomes, with implications for the treatment of cancers as well as autoimmune and neurodegenerative diseases.

  2. Marizomib irreversibly inhibits proteasome to overcome compensatory hyperactivation in multiple myeloma and solid tumour patients.

    PubMed

    Levin, Nancy; Spencer, Andrew; Harrison, Simon J; Chauhan, Dharminder; Burrows, Francis J; Anderson, Kenneth C; Reich, Steven D; Richardson, Paul G; Trikha, Mohit

    2016-09-01

    Proteasome inhibitors (PIs) are highly active in multiple myeloma (MM) but resistance is commonly observed. All clinical stage PIs effectively inhibit chymotrypsin-like (CT-L) activity; one possible mechanism of resistance is compensatory hyperactivation of caspase-like (C-L) and trypsin-like (T-L) subunits, in response to CT-L blockade. Marizomib (MRZ), an irreversible PI that potently inhibits all three 20S proteasome subunits with a specificity distinct from other PIs, is currently in development for treatment of MM and malignant glioma. The pan-proteasome pharmacodynamic activity in packed whole blood and peripheral blood mononuclear cells was measured in two studies in patients with advanced solid tumours and haematological malignancies. Functional inhibition of all proteasome subunits was achieved with once- or twice-weekly MRZ dosing; 100% inhibition of CT-L was frequently achieved within one cycle at therapeutic doses. Concomitantly, C-L and T-L activities were either unaffected or increased, suggesting compensatory hyperactivation of these subunits. Importantly, this response was overcome by continued administration of MRZ, with robust inhibition of T-L and C-L (up to 80% and 50%, respectively) by the end of Cycle 2 and maintained thereafter. This enhanced proteasome inhibition was independent of tumour type and may underlie the clinical activity of MRZ in patients resistant to other PIs.

  3. Cytoplasmic Lipid Droplets Are Sites of Convergence of Proteasomal and Autophagic Degradation of Apolipoprotein B

    PubMed Central

    Cheng, Jinglei; Fujita, Akikazu; Tokumoto, Toshinobu

    2006-01-01

    Lipid esters stored in cytoplasmic lipid droplets (CLDs) of hepatocytes are used to synthesize very low-density lipoproteins (VLDLs), into which apolipoprotein B (ApoB) is integrated cotranslationally. In the present study, by using Huh7 cells, derived from human hepatoma and competent for VLDL secretion, we found that ApoB is highly concentrated around CLDs to make “ApoB-crescents.” ApoB-crescents were seen in <10% of Huh7 cells under normal conditions, but the ratio increased to nearly 50% after 12 h of proteasomal inhibition by N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal. Electron microscopy showed ApoB to be localized to a cluster of electron-lucent particles 50–100 nm in diameter adhering to CLDs. ApoB, proteasome subunits, and ubiquitinated proteins were detected in the CLD fraction, and this ApoB was ubiquitinated. Interestingly, proteasome inhibition also caused increases in autophagic vacuoles and ApoB in lysosomes. ApoB-crescents began to decrease after 12–24 h of proteasomal inhibition, but the decrease was blocked by an autophagy inhibitor, 3-methyladenine. Inhibition of autophagy alone caused an increase in ApoB-crescents. These observations indicate that both proteasomal and autophagy/lysosomal degradation of ApoB occur around CLDs and that the CLD surface functions as a unique platform for convergence of the two pathways. PMID:16597703

  4. New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis.

    PubMed

    Liu, Cui-Hua; Goldberg, Alfred L; Qiu, Xiao-Bo

    2007-01-01

    The ubiquitin-proteasome pathway (UPP) is the major system responsible for degradation of intracellular proteins in eukaryotes. By controlling the levels of key proteins, it regulates almost all of the cellular activities, including cell cycle progression, DNA replication and repair, transcription, protein quality control, immune response, and apoptosis. UPP is composed of the ubiquitination system that marks proteins for degradation and the proteasome which degrades the ubiquitinated proteins. The 26S proteasome is a 2400 kDa complex consisting of more than 40 subunits. Following ubiquitination catalyzed by the ubiquitin activating enzyme (El), a ubiquitin-carrier protein (E2), and one of the cell's many ubiquitin-protein ligases (E3s), the protein substrates are targeted to the proteasome for degradation into small peptides. E3s regulate the degradation of protein substrates indirectly by determining both the specificity and timing of substrate ubiquitination, whereas the deubiquitinating enzymes can inhibit this process by releasing ubiquitin from substrates. In this review, we attempt to highlight the recent progress in research on UPP and its role in the regulation of apoptosis by focusing on several of its important components, including the ubiqutin ligase Nrdp 1, which regulates ErbB/EGFR family of receptor tyrosine kinases, the ubiquitin-carrier protein BRUCE/Apollon (an Inhibitor of Apoptosis Protein), and the novel proteasome subunit hRpnl3 (a binding site for the deubiquitinating enzyme, UCH37).

  5. Sperm proteasome degrades egg envelope glycoprotein ZP1 during fertilization of Japanese quail (Coturnix japonica).

    PubMed

    Sasanami, Tomohiro; Sugiura, Kenichi; Tokumoto, Toshinobu; Yoshizaki, Norio; Dohra, Hideo; Nishio, Shunsuke; Mizushima, Shusei; Hiyama, Gen; Matsuda, Tsukasa

    2012-10-01

    At the time of fertilization, the extracellular matrix surrounding avian oocytes, termed the perivitelline membrane (pvm), is hydrolyzed by a sperm-borne protease, although the actual protease that is responsible for the digestion of the pvm remains to be identified. Here, we show evidence that the ubiquitin-proteasome system is functional in the fertilization of Japanese quail. The activities for the induction of the acrosome reaction and binding to ZP3 as revealed by ligand blotting of purified serum ZP1 are similar to those of pvm ZP1. Western blot analysis of purified ZP1 and ZP3 by the use of the anti-ubiquitin antibody showed that only pvm ZP1 was reactive to the antibody. In vitro penetration assay of the sperm on the pvm indicated that fragments of ZP1 and intact ZP3 were released from the pvm. Western blot analysis using the anti-20S proteasome antibody and ultrastructural analysis showed that immunoreactive proteasome was localized in the acrosomal region of the sperm. Inclusion of specific proteasome inhibitor MG132 in the incubation mixture, or depletion of extracellular ATP by the addition of apyrase, efficiently suppressed the sperm perforation of the pvm. These results demonstrate for the first time that the sperm proteasome is important for fertilization in birds and that the extracellular ubiquitination of ZP1 might occur during its transport via blood circulation.

  6. Cereblon inhibits proteasome activity by binding to the 20S core proteasome subunit beta type 4.

    PubMed

    Lee, Kwang Min; Lee, Jongwon; Park, Chul-Seung

    2012-10-26

    In humans, mutations in the gene encoding cereblon (CRBN) are associated with mental retardation. Although CRBN has been investigated in several cellular contexts, its function remains unclear. Here, we demonstrate that CRBN plays a role in regulating the ubiquitin-proteasome system (UPS). Heterologous expression of CRBN inhibited proteasome activity in a human neuroblastoma cell line. Furthermore, proteasome subunit beta type 4 (PSMB4), the β7 subunit of the 20S core complex, was identified as a direct binding partner of CRBN. These findings suggest that CRBN may modulate proteasome activity by directly interacting with the β7 subunit.

  7. Proteasomal dysfunction in sporadic Parkinson's disease.

    PubMed

    McNaught, Kevin St P; Jackson, Tehone; JnoBaptiste, Ruth; Kapustin, Alexander; Olanow, C Warren

    2006-05-23

    The cause and mechanism of neuronal death in sporadic Parkinson's disease (PD) continue to elude investigators. Recently, alterations in proteasomal function have been detected in the brain of patients with the illness. The biochemical basis of the defect and its relevance to the disease process are now being studied. The available results suggest that proteasomal dysfunction could underlie protein accumulation, Lewy body formation, and neuron death in PD. The cause of proteasomal dysfunction is unknown at present, but this could relate to gene mutations, oxidative damage, ATP depletion, or the actions of environmental toxins. It remains to be established if proteasomal dysfunction plays a primary or a secondary role in the initiation or progression of the neurodegenerative process in PD.

  8. Proteasome inhibition induces both antioxidant and hb f responses in sickle cell disease via the nrf2 pathway.

    PubMed

    Pullarkat, Vinod; Meng, Zhuo; Tahara, Stanley M; Johnson, Cage S; Kalra, Vijay K

    2014-01-01

    Oxidant stress is implicated in the manifestations of sickle cell disease including hemolysis and vascular occlusion. Strategies to induce antioxidant response as well as Hb F (α2γ2) have the potential to ameliorate the severity of sickle cell disease. Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2) is a transcription factor that regulates antioxidant enzymes as well as γ-globin transcription. The Nrf2 in the cytoplasm is bound to its adapter protein Keap-1 that targets Nrf2 for proteasomal degradation, thereby preventing its nuclear translocation. We examined whether inhibiting the 26S proteasome using the clinically applicable proteasome inhibitors bortezomib and MLN 9708 would promote nuclear translocation of Nrf2, and thereby induce an antioxidant response and as well as Hb F in sickle cell disease. Proteasome inhibitors induced reactive oxygen species (ROS) and thereby increased Nrf2-dependent antioxidant enzyme transcripts, elevated cellular glutathione (GSH) levels and γ-globin transcripts as well as Hb F levels in the K562 cell line and also in erythroid burst forming units (BFU-E) generated from peripheral blood mononuclear cells of sickle cell disease patients. These responses were abolished by siRNA-mediated knockdown of Nrf2. Proteasome inhibitors, especially newer oral agents such as MLN9708 have the potential to be readily translated to clinical trials in sickle cell disease with the dual end points of antioxidant response and Hb F induction.

  9. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    PubMed Central

    2013-01-01

    Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification

  10. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization.

    PubMed

    Zimmerman, Shawn W; Manandhar, Gaurishankar; Yi, Young-Joo; Gupta, Satish K; Sutovsky, Miriam; Odhiambo, John F; Powell, Michael D; Miller, David J; Sutovsky, Peter

    2011-02-23

    Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced

  11. Sperm-surface ATP in boar spermatozoa is required for fertilization: relevance to sperm proteasomal function.

    PubMed

    Yi, Young-Joo; Park, Chang-Sik; Kim, Eui-Sook; Song, Eun-Sook; Jeong, Ji-Hyeon; Sutovsky, Peter

    2009-01-01

    Extracellular ATP has been implicated in a number of cellular events, including mammalian sperm function. The complement of ATP-dependent sperm proteins includes six subunits of the 26S proteasome, a multi-subunit protease specific to ubiquitinated substrate-proteins. Proteolysis of ubiquitinated proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis (AE) and sperm-zona pellucida (ZP) penetration. The 26S proteasome is uniquely present on the sperm acrosomal surface during mammalian, ascidian, and invertebrate fertilization. The proteasome is a multi-subunit protease complex of approximately 2 MDa composed of the 19S regulatory complex and a 20S proteolytic core. Integrity of the 19S complex is maintained by six 19S ATPase subunits (PSMC1 through PSMC6). Consequently, we hypothesized that fertilization will be blocked by the depletion of sperm-surface associated ATP (ssATP). Depletion of ssATP by the Solanum tuberosum apyrase, a 49 kDa, non-cell permeant enzyme, significantly reduced the ATP content measured by an adapted luminescence-ATP assay from which all permeabilizing agents were excluded. Addition of active apyrase to porcine in vitro fertilization (IVF) medium caused a concentration dependent reduction in the overall fertilization rate. No such outcomes were observed in control groups using heat-inactivated apyrase. Apyrase treatment altered the band pattern of 19S ATPase subunits PSMC1 (Rpt2) and PSMC4 (Rpt3) in Western blotting, suggesting that it had an effect on the integrity of the sperm proteasomal 19S complex. Apyrase only altered the proteasomal core activities slightly, since these activities are not directly dependent on external ATP. In contrast, sperm treatment with MG132, a specific inhibitor of the proteasomal core chymotrypsin-like activity, inhibited the target proteolytic activity, but also induced a compensatory elevation in proteasomal peptidyl

  12. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core

    NASA Astrophysics Data System (ADS)

    da Fonseca, Paula C. A.; Morris, Edward P.

    2015-07-01

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein-ligand interactions.

  13. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome

    PubMed Central

    He, Yujiao; Huang, Junmei; Wang, Ping; Shen, Xiaofei; Li, Sheng; Yang, Lijuan; Liu, Wanli; Suksamrarn, Apichart; Zhang, Guolin; Wang, Fei

    2016-01-01

    The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β. PMID:26683360

  14. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases

    PubMed Central

    Im, Eunju; Chung, Kwang Chul

    2016-01-01

    Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473] PMID:27312603

  15. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases.

    PubMed

    Im, Eunju; Chung, Kwang Chul

    2016-09-01

    Neurodegenerative diseases (NDs) often involve the formation of abnormal and toxic protein aggregates, which are thought to be the primary factor in ND occurrence and progression. Aged neurons exhibit marked increases in aggregated protein levels, which can lead to increased cell death in specific brain regions. As no specific drugs/therapies for treating the symptoms or/and progression of NDs are available, obtaining a complete understanding of the mechanism underlying the formation of protein aggregates is needed for designing a novel and efficient removal strategy. Intracellular proteolysis generally involves either the lysosomal or ubiquitin-proteasome system. In this review, we focus on the structure and assembly of the proteasome, proteasome-mediated protein degradation, and the multiple dynamic regulatory mechanisms governing proteasome activity. We also discuss the plausibility of the correlation between changes in proteasome activity and the occurrence of NDs. [BMB Reports 2016; 49(9): 459-473].

  16. Enzymatic activities of circulating plasma proteasomes in newly diagnosed multiple myeloma patients treated with carfilzomib, lenalidomide and dexamethasone.

    PubMed

    Manasanch, Elisabet E; de Larrea, Carlos Fernández; Zingone, Adriana; Steinberg, Seth M; Kwok, Mary; Tageja, Nishant; Bhutani, Manisha; Kazandjian, Dickran; Roschewski, Mark; Wu, Peter; Carter, George; Zuchlinski, Diamond; Mulquin, Marcia; Lamping, Liz; Costello, Rene; Burton, Deborah; Gil, Lindsay A; Figg, William D; Maric, Irina; Calvo, Katherine R; Yuan, Constance; Stetler-Stevenson, Maryalice; Korde, Neha; Landgren, Ola

    2017-03-01

    The proteasome inhibitor carfilzomib is highly effective in the treatment of multiple myeloma. It irreversibly binds the chymotrypsin-like active site in the β5 subunit of the 20S proteasome. Despite impressive response rates when carfilzomib is used in combination with immunomodulatory agents in newly diagnosed multiple myeloma patients; no biomarker exists to accurately predict response and clinical outcomes. We prospectively assessed the activity in peripheral blood of the chymotrypsin-like (CHYM), caspase-like (CASP) and trypsin-like (TRYP) proteolytic sites in 45 newly diagnosed multiple myeloma patients treated with eight cycles of carfilzomib, lenalidomide and dexamethasone (CRd) (NCT01402284). Samples were collected per protocol and proteasome activity measured through a fluorogenic assay. Median CHYM levels after one dose of carfilzomib decreased by >70%. CHYM and CASP activity decreased throughout treatment reaching a minimum after eight cycles of treatment. Higher levels of proteasome activity associated with higher disease burden (r > 0.30; p < 0.05) and higher disease stage (0.10 < p <0.20). No association was found with the probability of achieving a complete response, minimal residual disease negativity or time to best response. Further studies evaluating proteasome activity in malignant plasma cells may help elucidate how proteasome activity can be used as a biomarker in multiple myeloma.

  17. Ubiquitin-proteasome system and hereditary cardiomyopathies.

    PubMed

    Schlossarek, Saskia; Frey, Norbert; Carrier, Lucie

    2014-06-01

    Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the maintenance of protein homeostasis, including molecular chaperones and co-chaperones, the autophagy-lysosomal pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunctional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS impairment, including activation of the unfolded protein response, and underline some therapeutic options available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".

  18. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer.

    PubMed

    Walerych, Dawid; Lisek, Kamil; Sommaggio, Roberta; Piazza, Silvano; Ciani, Yari; Dalla, Emiliano; Rajkowska, Katarzyna; Gaweda-Walerych, Katarzyna; Ingallina, Eleonora; Tonelli, Claudia; Morelli, Marco J; Amato, Angela; Eterno, Vincenzo; Zambelli, Alberto; Rosato, Antonio; Amati, Bruno; Wiśniewski, Jacek R; Del Sal, Giannino

    2016-08-01

    In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53-proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP-microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.

  19. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation.

    PubMed

    Eide, Erik J; Woolf, Margaret F; Kang, Heeseog; Woolf, Peter; Hurst, William; Camacho, Fernando; Vielhaber, Erica L; Giovanni, Andrew; Virshup, David M

    2005-04-01

    The mammalian circadian regulatory proteins PER1 and PER2 undergo a daily cycle of accumulation followed by phosphorylation and degradation. Although phosphorylation-regulated proteolysis of these inhibitors is postulated to be essential for the function of the clock, inhibition of this process has not yet been shown to alter mammalian circadian rhythm. We have developed a cell-based model of PER2 degradation. Murine PER2 (mPER2) hyperphosphorylation induced by the cell-permeable protein phosphatase inhibitor calyculin A is rapidly followed by ubiquitination and degradation by the 26S proteasome. Proteasome-mediated degradation is critically important in the circadian clock, as proteasome inhibitors cause a significant lengthening of the circadian period in Rat-1 cells. CKIepsilon (casein kinase Iepsilon) has been postulated to prime PER2 for degradation. Supporting this idea, CKIepsilon inhibition also causes a significant lengthening of circadian period in synchronized Rat-1 cells. CKIepsilon inhibition also slows the degradation of PER2 in cells. CKIepsilon-mediated phosphorylation of PER2 recruits the ubiquitin ligase adapter protein beta-TrCP to a specific site, and dominant negative beta-TrCP blocks phosphorylation-dependent degradation of mPER2. These results provide a biochemical mechanism and functional relevance for the observed phosphorylation-degradation cycle of mammalian PER2. Cell culture-based biochemical assays combined with measurement of cell-based rhythm complement genetic studies to elucidate basic mechanisms controlling the mammalian clock.

  20. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Basavaraj; Tena, Fatima; Jain, Rakesh Kumar; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2012-01-01

    The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV) accumulation in its natural host papaya (Carica papaya). We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome), but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome), associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54), which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  1. Measuring activity in the ubiquitin-proteasome system: from large scale discoveries to single cells analysis.

    PubMed

    Melvin, Adam T; Woss, Gregery S; Park, Jessica H; Waters, Marcey L; Allbritton, Nancy L

    2013-09-01

    The ubiquitin-proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS has provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington's disease. These reporters, usually consisting of a recognition sequence fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes. This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, a recent study is presented highlighting the development of a novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples.

  2. Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes.

    PubMed

    Al-Khalili, Lubna; de Castro Barbosa, Thais; Ostling, Jörgen; Massart, Julie; Cuesta, Pablo Garrido; Osler, Megan E; Katayama, Mutsumi; Nyström, Ann-Christin; Oscarsson, Jan; Zierath, Juleen R

    2014-11-01

    Two-dimensional difference gel electrophoresis (2-D DIGE)-based proteome analysis has revealed intrinsic insulin resistance in myotubes derived from type 2 diabetic patients. Using 2-D DIGE-based proteome analysis, we identified a subset of insulin-resistant proteins involved in protein turnover in skeletal muscle of type 2 diabetic patients, suggesting aberrant regulation of the protein homeostasis maintenance system underlying metabolic disease. We then validated the role of the ubiquitin-proteasome system (UPS) in myotubes to investigate whether impaired proteasome function may lead to metabolic arrest or insulin resistance. Myotubes derived from muscle biopsies obtained from people with normal glucose tolerance (NGT) or type 2 diabetes were exposed to the proteasome inhibitor bortezomib (BZ; Velcade) without or with insulin. BZ exposure increased protein carbonylation and lactate production yet impaired protein synthesis and UPS function in myotubes from type 2 diabetic patients, marking the existence of an insulin-resistant signature that was retained in cultured myotubes. In conclusion, BZ treatment further exacerbates insulin resistance and unmasks intrinsic features of metabolic disease in myotubes derived from type 2 diabetic patients. Our results highlight the existence of a confounding inherent abnormality in cellular protein dynamics in metabolic disease, which is uncovered through concurrent inhibition of the proteasome system.

  3. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program.

    PubMed

    Matsushita, Akane; Inoue, Haruhiko; Goto, Shingo; Nakayama, Akira; Sugano, Shoji; Hayashi, Nagao; Takatsuji, Hiroshi

    2013-01-01

    The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis.

  4. Novel strategies to target the ubiquitin proteasome system in multiple myeloma

    PubMed Central

    Lub, Susanne; Maes, Ken; Menu, Eline; De Bruyne, Elke; Vanderkerken, Karin; Van Valckenborgh, Els

    2016-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM. PMID:26695547

  5. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    PubMed Central

    Khare, Shilpi; Nagle, Advait S.; Biggart, Agnes; Lai, Yin H.; Liang, Fang; Davis, Lauren C.; Barnes, S. Whitney; Mathison, Casey J. N.; Myburgh, Elmarie; Gao, Mu-Yun; Gillespie, J. Robert; Liu, Xianzhong; Tan, Jocelyn L.; Stinson, Monique; Rivera, Ianne C.; Ballard, Jaime; Yeh, Vince; Groessl, Todd; Federe, Glenn; Koh, Hazel X. Y.; Venable, John D.; Bursulaya, Badry; Shapiro, Michael; Mishra, Pranab K.; Spraggon, Glen; Brock, Ansgar; Mottram, Jeremy C.; Buckner, Frederick S.; Rao, Srinivasa P. S.; Wen, Ben G.; Walker, John R.; Tuntland, Tove; Molteni, Valentina; Glynne, Richard J.; Supek, Frantisek

    2016-01-01

    Chagas disease, leishmaniasis, and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually1. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drug(s) modulating the activity of a conserved parasite target2. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases. PMID:27501246

  6. Proteasome inhibition by new dual warhead containing peptido vinyl sulfonyl fluorides.

    PubMed

    Brouwer, Arwin J; Herrero Álvarez, Natalia; Ciaffoni, Adriano; van de Langemheen, Helmus; Liskamp, Rob M J

    2016-08-15

    The success of inhibition of the proteasome by formation of covalent bonds is a major victory over the long held-view that this would lead to binding the wrong targets and undoubtedly lead to toxicity. Great challenges are now found in uncovering ensembles of new moieties capable of forming long lasting ties. We have introduced peptido sulfonyl fluorides for this purpose. Tuning the reactivity of this electrophilic trap may be crucial for modulating the biological action. Here we describe incorporation of a vinyl moiety into a peptido sulfonyl fluoride backbone, which should lead to a combined attack of the proteasome active site threonine on the double bond and the sulfonyl fluoride. Although this led to strong proteasome inhibitors, in vitro studies did not unambiguously demonstrate the formation of the proposed seven-membered ring structure. Possibly, formation of a seven-membered covalent adduct with the proteosomal active site threonine can only be achieved within the context of the enzyme. Nevertheless, this dual warhead concept may provide exclusive possibilities for duration and selectivity of proteasome inhibition.

  7. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  8. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin.

    PubMed

    De Schepper, Stefanie; Bruwiere, Hélène; Verhulst, Tinne; Steller, Ulf; Andries, Luc; Wouters, Walter; Janicot, Michel; Arts, Janine; Van Heusden, Jim

    2003-02-01

    The naturally occurring cyclic tetrapeptide chlamydocin is a very potent inhibitor of cell proliferation. Here we show that chlamydocin is a highly potent histone deacetylase (HDAC) inhibitor, inhibiting HDAC activity in vitro with an IC(50) of 1.3 nM. Like other HDAC inhibitors, chlamydocin induces the accumulation of hyperacetylated histones H3 and H4 in A2780 ovarian cancer cells, increases the expression of p21(cip1/waf1), and causes an accumulation of cells in G(2)/M phase of the cell cycle. In addition, chlamydocin induces apoptosis by activating caspase-3, which in turn leads to the cleavage of p21(cip1/waf1) into a 15-kDa breakdown product and drives cells from growth arrest into apoptosis. Concomitant with the activation of caspase-3 and cleavage of p21(cip1/waf1), chlamydocin decreases the protein level of survivin, a member of the inhibitor of apoptosis protein family that is selectively expressed in tumors. Although our data indicate a potential link between degradation of survivin and activation of the apoptotic pathway induced by HDAC inhibitors, stable overexpression of survivin does not suppress the activation of caspase-3 or cleavage of p21(cip1/waf1) induced by chlamydocin treatment. The decrease of survivin protein level is mediated by degradation via proteasomes since it can be inhibited by specific proteasome inhibitors. Taken together, our results show that induction of apoptosis by chlamydocin involves caspase-dependent cleavage of p21(cip1/waf1), which is strikingly associated with proteasome-mediated degradation of survivin.

  9. D1 dopamine receptor stimulation impairs striatal proteasome activity in Parkinsonism through 26S proteasome disassembly.

    PubMed

    Barroso-Chinea, Pedro; Thiolat, Marie-Laure; Bido, Simone; Martinez, Audrey; Doudnikoff, Evelyne; Baufreton, Jérôme; Bourdenx, Mathieu; Bloch, Bertrand; Bezard, Erwan; Martin-Negrier, Marie-Laure

    2015-06-01

    Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization.

  10. Functional asymmetries of proteasome translocase pore.

    PubMed

    Erales, Jenny; Hoyt, Martin A; Troll, Fabian; Coffino, Philip

    2012-05-25

    Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.

  11. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  12. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-03

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.

  13. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways.

    PubMed

    Wang, Shixuan; Livingston, Man J; Su, Yunchao; Dong, Zheng

    2015-04-03

    Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.

  14. Ubiquitin/proteasome-mediated proteolysis is involved in the response to flooding stress in soybean roots, independent of oxygen limitation.

    PubMed

    Yanagawa, Yuki; Komatsu, Setsuko

    2012-04-01

    Ubiquitin/proteasome-mediated proteolysis plays an important role in the response to several environmental stresses. Here, we described the relationship of the proteolysis in the flooding stress in soybean (Glycine max L. cultivar Enrei). Immunoblot analyses were performed using antibodies against two subunits of 26S proteasome, Rpt5 and Rpn10, 20S proteasome and two subunits of COP9 signalosome (CSN), CSN4 and CSN5, to compare between flooded and untreated roots. We also examined their protein amounts in the condition of low oxygen. Moreover, crude extracts from flooded or untreated roots incubated with or without a proteasome inhibitor MG132 were analyzed by proteomics technique. We revealed that the amount of ubiquitinated proteins in soybean roots decreased after flooding treatment and increased to levels similar to controls after de-submergence. Both CSN4 and CSN5 accumulated following flooding treatment, although no significant difference was observed in proteasome. Low oxygen had no effect on the amount of ubiquitinated proteins or CSN4. By 2D-PAGE, the amount of 6 proteins changed significantly following MG132 treatment in flooding stressed plants. We conclude that the accumulation of CSN proteins might enhance the degradation of ubiquitinated proteins independent of hypoxia caused by flooding, thereby lowering their abundance during flooding stress.

  15. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome.

    PubMed

    Sihn, Choong-Ryoul; Cho, Si Young; Lee, Jeong Ho; Lee, Tae Ryong; Kim, Sang Hoon

    2007-04-27

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein.

  16. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  17. Immunoaffinity purification of the functional 20S proteasome from human cells via transient overexpression of specific proteasome subunits.

    PubMed

    Livinskaya, Veronika A; Barlev, Nickolai A; Nikiforov, Andrey A

    2014-05-01

    The proteasome is a multi-subunit proteolytic complex that plays a central role in protein degradation in all eukaryotic cells. It regulates many vital cellular processes therefore its dysfunction can lead to various pathologies including cancer and neurodegeneration. Isolation of enzymatically active proteasomes is a key step to the successful study of the proteasome regulation and functions. Here we describe a simple and efficient protocol for immunoaffinity purification of the functional 20S proteasomes from human HEK 293T cells after transient overexpression of specific proteasome subunits tagged with 3xFLAG. To construct 3xFLAG-fusion proteins, DNA sequences encoding the 20S proteasome subunits PSMB5, PSMA5, and PSMA3 were cloned into mammalian expression vector pIRES-hrGFP-1a. The corresponding recombinant proteins PSMB5-3xFLAG, PSMA5-3xFLAG, or PSMA3-3xFLAG were transiently overexpressed in human HEK 293T cells and were shown to be partially incorporated into the intact proteasome complexes. 20S proteasomes were immunoprecipitated from HEK 293T cell extracts under mild conditions using antibodies against FLAG peptide. Isolation of highly purified 20S proteasomes were confirmed by SDS-PAGE and Western blotting using antibodies against different proteasome subunits. Affinity purified 20S proteasomes were shown to possess chymotrypsin- and trypsin-like peptidase activities confirming their functionality. This simple single-step affinity method of the 20S proteasome purification can be instrumental to subsequent functional studies of proteasomes in human cells.

  18. Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression, and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention.

    PubMed

    Chang, Tsui-Ling; Wang, Chi-Hsien

    2013-04-01

    To look for oral proteasome inhibitors, daily injested food is the best source for cancer chemoprevention. A combination of active components from vegetables, coffee, tea, and fruit could be more efficient to inhibit 26S proteasome activities for preventing cancer diseases. Tannic acid and quercetin have been shown to strongly inhibit 26S proteasome activity, but the molecular target involved remains unknown. Overlay assay, peptide assay, Western blot, and 2-D gels were used to assess the combination of quercetin and tannic acid as a potential inhibitor. Here, we demonstrated that the combination of quercetin and tannic acid (1) synergistically suppresses chymotrypsin-, caspase-, and trypsin-like proteolytic activities, (2) are tightly binding substrates, (3) do not perturb the proteasome structure, (4) inhibit the 26S proteasome affected by ubiquitin, ATP, or β-casein, and (5) inhibit β-casein degradation by the 26S proteasome in vitro. Finally, the inhibition of the proteasome by a combination of quercetin plus tannic acid in Hep-2 cells resulted in the induction of S5a at low dose, accumulation of ubiquitin, and the cleavage of pro-caspase-3, followed by the induction of apoptotic cell death. Evaluating the combination of quercetin and tannic acid as an oral drug to prevent cancer may provide a pharmacological rationale to pursue preclinical trials of this combination.

  19. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  20. Proteasomes and protein conjugation across domains of life.

    PubMed

    Maupin-Furlow, Julie

    2011-12-19

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.

  1. Isolation and purification of proteasomes from primary cells.

    PubMed

    Steers, Nicholas J; Peachman, Kristina K; Alving, Carl R; Rao, Mangala

    2014-11-03

    Proteasomes play an important role in cell homeostasis and in orchestrating the immune response by systematically degrading foreign proteins and misfolded or damaged host cell proteins. We describe a protocol to purify functionally active proteasomes from human CD4(+) T cells and dendritic cells derived from peripheral blood mononuclear cells. The purification is a three-step process involving ion-exchange chromatography, ammonium sulfate precipitation, and sucrose density gradient ultracentrifugation. This method can be easily adapted to purify proteasomes from cell lines or from organs. Methods to characterize and visualize the purified proteasomes are also described.

  2. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  3. Pioglitazone, a PPAR-gamma ligand, exerts cytostatic/cytotoxic effects against cancer cells, that do not result from inhibition of proteasome.

    PubMed

    Mrówka, Piotr; Głodkowska, Eliza; Młynarczuk-Biały, Izabela; Biały, Lukasz; Kuckelkorn, Ulrike; Nowis, Dominika; Makowski, Marcin; Legat, Magdalena; Gołab, Jakub

    2008-01-01

    Thiazolidinediones are oral antidiabetic agents that activate peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and exert potent antioxidant and anti-inflammatory properties. It has also been shown that PPAR-gamma agonists induce G0/G1 arrest and apoptosis of malignant cells. Some of these effects have been suggested to result from inhibition of proteasome activity in target cells. The aim of our studies was to critically evaluate the cytostatic/cytotoxic effects of one of thiazolidinediones (pioglitazone) and its influence on proteasome activity. Pioglitazone exerted dose-dependent cytostatic/cytotoxic effects in MIA PaCa-2 cells. Incubation of tumor cells with pioglitazone resulted in increased levels of p53 and p27 and decreased levels of cyclin D1. Accumulation of polyubiquitinated proteins within cells incubated with pioglitazone suggested dysfunction of proteasome activity. However, we did not observe any influence of pioglitazone on the activity of isolated proteasome and on the proteolytic activity in lysates of pioglitazone-treated MIA PaCa-2 cells. Further, treatment with pioglitazone did not cause an accumulation of fluorescent proteasome substrates in transfected HeLa cells expressing unstable GFP variants. Our results indicate that pioglitazone does not act as a direct or indirect proteasome inhibitor.

  4. 15-Deoxy-Δ12,14-Prostaglandin J2 Modifies Components of the Proteasome and Inhibits Inflammatory Responses in Human Endothelial Cells

    PubMed Central

    Marcone, Simone; Evans, Paul; Fitzgerald, Desmond J.

    2016-01-01

    15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an electrophilic lipid mediator derived from PGD2 with potent anti-inflammatory effects. These are likely to be due to the covalent modification of cellular proteins, via a reactive α,β-unsaturated carbonyl group in its cyclopentenone ring. This study was carried out to identify novel cellular target(s) for covalent modification by 15d-PGJ2 and to investigate the anti-inflammatory effects of the prostaglandin on endothelial cells (EC). The data presented here show that 15d-PGJ2 modifies and inhibits components of the proteasome and consequently inhibits the activation of the NF-κB pathway in response to TNF-α. This, in turn, inhibits the adhesion and migration of monocytes toward activated EC, by reducing the expression of adhesion molecules and chemokines in the EC. The effects are consistent with the covalent modification of 13 proteins in the 19S particle of the proteasome identified by mass spectrometry and the suppression of proteasome function, and were similar to the effects seen with a known proteasome inhibitor (MG132). The ubiquitin–proteasome system has been implicated in the regulation of several inflammatory processes and the observation that 15d-PGJ2 profoundly affects the proteasome functions in human EC suggests that 15d-PGJ2 may regulate the progression of inflammatory disorders such as atherosclerosis. PMID:27833612

  5. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    PubMed Central

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation. PMID:24563857

  6. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Zhang, Wei-Guo; Liu, Xue-Qin; Zhu, Qian; Cheng, Xiao-Long; Yang, Gui-Jiao; Li, Ang; Xiao, Zhi-Cheng

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. Black-Right-Pointing-Pointer Reduced 20S proteasomal activity and expression potentially contribute to cell aging. Black-Right-Pointing-Pointer MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. Black-Right-Pointing-Pointer 18{alpha}-GA stimulates proteasomal activity and restores replicative senescence. Black-Right-Pointing-Pointer 18{alpha}-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18{alpha}-glycyrrhetinic acid (18{alpha}-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  7. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    PubMed

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  8. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  9. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome

    PubMed Central

    Sun, Lianhui; Fan, Guangjian; Shan, Peipei; Qiu, Xiaoying; Dong, Shuxian; Liao, Lujian; Yu, Chunlei; Wang, Tingting; Gu, Xiaoyang; Li, Qian; Song, Xiaoyu; Cao, Liu; Li, Xiaotao; Cui, Yongping; Zhang, Shengping; Wang, Chuangui

    2016-01-01

    Maintenance of energy homeostasis is essential for cell survival. Here, we report that the ATP- and ubiquitin-independent REGγ-proteasome system plays a role in maintaining energy homeostasis and cell survival during energy starvation via repressing rDNA transcription, a major intracellular energy-consuming process. Mechanistically, REGγ-proteasome limits cellular rDNA transcription and energy consumption by targeting the rDNA transcription activator SirT7 for ubiquitin-independent degradation under normal conditions. Moreover, energy starvation induces an AMPK-directed SirT7 phosphorylation and subsequent REGγ-dependent SirT7 subcellular redistribution and degradation, thereby further reducing rDNA transcription to save energy to overcome cell death. Energy starvation is a promising strategy for cancer therapy. Our report also shows that REGγ knockdown markedly improves the anti-tumour activity of energy metabolism inhibitors in mice. Our results underscore a control mechanism for an ubiquitin-independent process in maintaining energy homeostasis and cell viability under starvation conditions, suggesting that REGγ-proteasome inhibition has a potential to provide tumour-starving benefits. PMID:27511885

  10. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome.

    PubMed

    Sun, Lianhui; Fan, Guangjian; Shan, Peipei; Qiu, Xiaoying; Dong, Shuxian; Liao, Lujian; Yu, Chunlei; Wang, Tingting; Gu, Xiaoyang; Li, Qian; Song, Xiaoyu; Cao, Liu; Li, Xiaotao; Cui, Yongping; Zhang, Shengping; Wang, Chuangui

    2016-08-11

    Maintenance of energy homeostasis is essential for cell survival. Here, we report that the ATP- and ubiquitin-independent REGγ-proteasome system plays a role in maintaining energy homeostasis and cell survival during energy starvation via repressing rDNA transcription, a major intracellular energy-consuming process. Mechanistically, REGγ-proteasome limits cellular rDNA transcription and energy consumption by targeting the rDNA transcription activator SirT7 for ubiquitin-independent degradation under normal conditions. Moreover, energy starvation induces an AMPK-directed SirT7 phosphorylation and subsequent REGγ-dependent SirT7 subcellular redistribution and degradation, thereby further reducing rDNA transcription to save energy to overcome cell death. Energy starvation is a promising strategy for cancer therapy. Our report also shows that REGγ knockdown markedly improves the anti-tumour activity of energy metabolism inhibitors in mice. Our results underscore a control mechanism for an ubiquitin-independent process in maintaining energy homeostasis and cell viability under starvation conditions, suggesting that REGγ-proteasome inhibition has a potential to provide tumour-starving benefits.

  11. Fundamental reaction pathway and free energy profile for proteasome inhibition by syringolin A (SylA)

    PubMed Central

    Wei, Donghui; Tang, Mingsheng; Zhan, Chang-Guo

    2015-01-01

    In this study, molecular dynamics (MD) simulations and first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations have been performed to uncover the fundamental reaction pathway of proteasome with a representative inhibitor syringolin A (SylA). The calculated results reveal that the reaction process consists of three steps. The first step is a proton transfer process, activating Thr1-Oγ directly by Thr1-Nz to form a zwitterionic intermediate. The next step is nucleophilic attack on the olefin carbon of SylA by the negatively charged Thr1-Oγ atom. The last step is a proton transfer from Thr1-Nz to another olefin carbon of SylA to complete the inhibition reaction process. The calculated free energy profile demonstrates that the second step should be the rate-determining step and has the highest free energy barrier of 24.6 kcal/mol, which is reasonably close to the activation free energy (∼22.4 – 23.0 kcal/mol) derived from available experimental kinetic data. In addition, our computational results indicate that no water molecule can assist the rate-determining step, since the second step is not involved a proton transfer process. The obtained mechanistic insights should be valuable for understanding the inhibition process of proteasome by SylA and structurally related inhibitors at molecular level, and thus provide a solid mechanistic base and valuable clues for future rational design of novel, more potent inhibitors of proteasome. PMID:26018983

  12. Interplay between Structure and Charge as a Key to Allosteric Modulation of Human 20S Proteasome by the Basic Fragment of HIV-1 Tat Protein

    PubMed Central

    Karpowicz, Przemysław; Osmulski, Paweł A.; Witkowska, Julia; Sikorska, Emilia; Giżyńska, Małgorzata; Belczyk-Ciesielska, Agnieszka; Gaczynska, Maria E.; Jankowska, Elżbieta

    2015-01-01

    The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme’s inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4–5 and 8–9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8–9 position was necessary to significantly improve the inhibitory potency. PMID:26575189

  13. Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells.

    PubMed

    Walcott, Shantel E; Heikkila, John J

    2010-06-01

    In eukaryotes, the ubiquitin-proteasome system (UPS) is responsible for the degradation of most proteins. Proteasome inhibition, which has been associated with various diseases, can cause alterations in various intracellular processes including the expression of heat shock protein (hsp) genes. In this study, we show that celastrol, a quinone methide triterpene and anti-inflammatory agent, inhibited proteasome activity and enhanced HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Treatment of cells with celastrol induced the accumulation of ubiquitinated protein and inhibited chymotrypsin-like activity. This was accompanied by a dose- and time-dependent accumulation of HSP30 and HSP70. Celastrol-induced HSP accumulation was mediated by HSF1-DNA binding activity since this response was inhibited by the HSF1 activation inhibitor, KNK437. Simultaneous exposure of cells with celastrol plus either mild heat shock or the proteasome inhibitor, MG132, produced an enhanced accumulation of HSP30 that was greater than the sum of the individual stressors alone. Immunocytochemical analysis revealed that celastrol-induced HSP30 accumulation occurred in the cytoplasm in a granular pattern supplemented with larger circular HSP30 staining structures. HSP30 was also noted in the nucleus with less staining in the nucleolus. In some cells, celastrol induced the collapse of the actin cytoskeleton and conversion to a rounder morphology. In conclusion, this study has shown that celastrol inhibited proteasome activity and induced HSF1-mediated expression of hsp genes in amphibian cells.

  14. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia

    PubMed Central

    Scott, Madeline R; Rubio, Maria D; Haroutunian, Vahram; Meador-Woodruff, James H

    2016-01-01

    The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness. PMID:26202105

  15. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    PubMed

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex.

  16. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin–proteasome pathway

    PubMed Central

    Ando, Hideya; Wen, Zhi-Ming; Kim, Hee-Yong; Valencia, Julio C.; Costin, Gertrude-E.; Watabe, Hidenori; Yasumoto, Ken-ichi; Niki, Yoko; Kondoh, Hirofumi; Ichihashi, Masamitsu; Hearing, Vincent J.

    2005-01-01

    Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin–proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation. PMID:16232122

  17. Proteasome activator 200: the heat is on...

    PubMed

    Savulescu, Anca F; Glickman, Michael H

    2011-05-01

    Proteasomes play a key regulatory role in all eukaryotic cells by removing proteins in a timely manner. There are two predominant forms: The 20S core particle (CP) can hydrolyze peptides and certain unstructured proteins, and the 26S holoenzyme is able to proteolyse most proteins conjugated to ubiquitin. The 26S complex consists of a CP barrel with a 19S regulatory particle (RP; a.k.a PA700) attached to its outer surface. Several studies purified another proteasome activator with a MW of 200 kDa (PA200) that attaches to the same outer ring of the CP. A role for PA200 has been demonstrated in spermatogenesis, in response to DNA repair and in maintenance of mitochondrial inheritance. Enhanced levels of PA200-CP complexes are observed under conditions in which either activated or disrupted CP prevail, suggesting it participates in regulating overall proteolytic activity. PA200, or its yeast ortholog Blm10, may also incorporate into 26S proteasomes yielding PA200-CP-RP hybrids. A three-dimensional molecular structure determined by x-ray crystallography of Blm10-CP provides a model for activation. The carboxy terminus of Blm10 inserts into a dedicated pocket in the outer ring of the CP surface, whereas multiple HEAT-like repeats fold into an asymmetric solenoid wrapping around the central pore to stabilize a partially open conformation. The resulting hollow domelike structure caps the entire CP surface. This asymmetric structure may provide insight as to how the 19S RP, with two HEAT repeatlike subunits (Rpn1, Rpn2) alongside six ATPases (Rpt1-6), attaches to the same surface of the CP ring, and likewise, induces pore opening.

  18. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  19. Ubiquitin proteasome system research in gastrointestinal cancer.

    PubMed

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.

  20. Proteasome Inhibition and Combination Therapy for Non-Hodgkin's Lymphoma: From Bench to Bedside

    PubMed Central

    Feldman, Tatyana; Goy, André

    2012-01-01

    Although patients with B-cell non-Hodgkin's lymphoma (NHL) usually respond to initial conventional chemotherapy, they often relapse and mortality has continued to increase over the last three decades in spite of salvage therapy or high dose therapy and stem cell transplantation. Outcomes vary by subtype, but there continues to be a need for novel options that can help overcome chemotherapy resistance, offer new options as consolidation or maintenance therapy postinduction, and offer potentially less toxic combinations, especially in the elderly population. The bulk of these emerging novel agents for cancer treatment target important biological cellular processes. Bortezomib is the first in the class of proteasome inhibitors (PIs), which target the critical process of intracellular protein degradation or recycling and editing through the proteasome. Bortezomib is approved for the treatment of relapsed or refractory mantle cell lymphoma. The mechanisms of proteasome inhibition are very complex by nature (because they affect many pathways) and not fully understood. However, mechanisms of action shared by bortezomib and investigational PIs such as carfilzomib, marizomib, ONX-0912, and MLN9708 are distinct from those of other NHL treatments, making them attractive options for combination therapy. Preclinical evidence suggests that the PIs have additive and/or synergistic activity with a large number of agents both in vitro and in vivo, from cytotoxics to new biologicals, supporting a growing number of combination studies currently underway in NHL patients, as reviewed in this article. The results of these studies will help our understanding about how to best integrate proteasome inhibition in the management of NHL and continue to improve patient outcomes. PMID:22566373

  1. Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization

    PubMed Central

    Song, Won-Hee; Yi, Young-Joo; Sutovsky, Miriam; Meyers, Stuart; Sutovsky, Peter

    2016-01-01

    Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondrial sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules. PMID:27551072

  2. Proteasomal regulation of the mutagenic translesion DNA polymerase, Saccharomyces cerevisiae Rev1.

    PubMed

    Wiltrout, Mary Ellen; Walker, Graham C

    2011-02-07

    Translesion DNA synthesis (TLS) functions as a tolerance mechanism for DNA damage at a potentially mutagenic cost. Three TLS polymerases (Pols) function to bypass DNA damage in Saccharomyces cerevisiae: Rev1, Pol ζ, a heterodimer of the Rev3 and Rev7 proteins, and Pol η (Rad30). Our lab has shown that S. cerevisiae Rev1 protein levels are under striking cell cycle regulation, being ∼50-fold higher during G2/M than during G1 and much of S phase (Waters and Walker, 2006). REV1 transcript levels only vary ∼3-fold in a similar cell cycle pattern, suggesting a posttranscriptional mechanism controls protein levels. Here, we show that the S. cerevisiae Rev1 protein is unstable during both the G1 and the G2/M phases of the cell cycle, however, the protein's half-life is shorter in G1 arrested cells than in G2/M arrested cells, indicating that the rate of proteolysis strongly contributes to Rev1's cell cycle regulation. In the presence of the proteasome inhibitor, MG132, the steady-state levels and half-life of Rev1 increase during G1 and G2/M. Through the use of a viable proteasome mutant, we confirm that the levels of Rev1 protein are dependent on proteasome-mediated degradation. The accumulation of higher migrating forms of Rev1 under certain conditions shows that the degradation of Rev1 is possibly directed through the addition of a polyubiquitination signal or another modification. These results support a model that proteasomal degradation acts as a regulatory system of mutagenic TLS mediated by Rev1.

  3. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly*

    PubMed Central

    Li, Xia; Li, Yanjie; Arendt, Cassandra S.; Hochstrasser, Mark

    2016-01-01

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining. PMID:26627836

  4. Distinct Elements in the Proteasomal β5 Subunit Propeptide Required for Autocatalytic Processing and Proteasome Assembly.

    PubMed

    Li, Xia; Li, Yanjie; Arendt, Cassandra S; Hochstrasser, Mark

    2016-01-22

    Eukaryotic 20S proteasome assembly remains poorly understood. The subunits stack into four heteroheptameric rings; three inner-ring subunits (β1, β2, and β5) bear the protease catalytic residues and are synthesized with N-terminal propeptides. These propeptides are removed autocatalytically late in assembly. In Saccharomyces cerevisiae, β5 (Doa3/Pre2) has a 75-residue propeptide, β5pro, that is essential for proteasome assembly and can work in trans. We show that deletion of the poorly conserved N-terminal half of the β5 propeptide nonetheless causes substantial defects in proteasome maturation. Sequences closer to the cleavage site have critical but redundant roles in both assembly and self-cleavage. A conserved histidine two residues upstream of the autocleavage site strongly promotes processing. Surprisingly, although β5pro is functionally linked to the Ump1 assembly factor, trans-expressed β5pro associates only weakly with Ump1-containing precursors. Several genes were identified as dosage suppressors of trans-expressed β5pro mutants; the strongest encoded the β7 proteasome subunit. Previous data suggested that β7 and β5pro have overlapping roles in bringing together two half-proteasomes, but the timing of β7 addition relative to half-mer joining was unclear. Here we report conditions where dimerization lags behind β7 incorporation into the half-mer. Our results suggest that β7 insertion precedes half-mer dimerization, and the β7 tail and β5 propeptide have unequal roles in half-mer joining.

  5. Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits.

    PubMed

    Fernández Murray, P; Biscoglio, M J; Passeron, S

    2000-03-15

    The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.

  6. Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function.

    PubMed

    Stadtmueller, Beth M; Kish-Trier, Erik; Ferrell, Katherine; Petersen, Charisse N; Robinson, Howard; Myszka, David G; Eckert, Debra M; Formosa, Tim; Hill, Christopher P

    2012-10-26

    The 20S proteasome is an essential, 28-subunit protease that sequesters proteolytic sites within a central chamber, thereby repressing substrate degradation until proteasome activators open the entrance/exit gate. Two established activators, Blm10 and PAN/19S, induce gate opening by binding to the pockets between proteasome α-subunits using C-terminal HbYX (hydrophobic-tyrosine-any residue) motifs. Equivalent HbYX motifs have been identified in Pba1 and Pba2, which function in proteasome assembly. Here, we demonstrate that Pba1-Pba2 proteins form a stable heterodimer that utilizes its HbYX motifs to bind mature 20S proteasomes in vitro and that the Pba1-Pba2 HbYX motifs are important for a physiological function of proteasomes, the maintenance of mitochondrial function. Other factors that contribute to proteasome assembly or function also act in the maintenance of mitochondrial function and display complex genetic interactions with one another, possibly revealing an unexpected pathway of mitochondrial regulation involving the Pba1-Pba2 proteasome interaction. Our determination of a proteasome Pba1-Pba2 crystal structure reveals a Pba1 HbYX interaction that is superimposable with those of known activators, a Pba2 HbYX interaction that is different from those reported previously, and a gate structure that is disrupted but not sufficiently open to allow entry of even small peptides. These findings extend understanding of proteasome interactions with HbYX motifs and suggest multiple roles for Pba1-Pba2 interactions throughout proteasome assembly and function.

  7. How the ubiquitin proteasome system regulates the regulators of transcription.

    PubMed

    Ee, Gary; Lehming, Norbert

    2012-01-01

    The ubiquitin proteasome system plays an important role in transcription. Monoubiquitination of activators is believed to aid their function, while the 26S proteasomal degradation of repressors is believed to restrict their function. What remains controversial is the question of whether the degradation of activators aids or restricts their function.

  8. The transcriptional repressor protein PRH interacts with the proteasome.

    PubMed Central

    Bess, Kirstin L; Swingler, Tracey E; Rivett, A Jennifer; Gaston, Kevin; Jayaraman, Padma-Sheela

    2003-01-01

    PRH (proline-rich homeodomain protein)/Hex is important in the control of cell proliferation and differentiation. We have shown previously that PRH contains two domains that can bring about transcriptional repression independently; the PRH homeodomain represses transcription by binding to TATA box sequences, whereas the proline-rich N-terminal domain can repress transcription by interacting with members of the Groucho/TLE (transducin-like enhancer of split) family of co-repressor proteins. The proteasome is a multi-subunit protein complex involved in the processing and degradation of proteins. Some proteasome subunits have been suggested to play a role in the regulation of transcription. In the present study, we show that PRH interacts with the HC8 subunit of the proteasome in the context of both 20 and 26 S proteasomes. Moreover, we show that PRH is associated with the proteasome in haematopoietic cells and that the proline-rich PRH N-terminal domain is responsible for this interaction. Whereas PRH can be cleaved by the proteasome, it does not appear to be degraded rapidly in vitro or in vivo, and the proteolytic activity of the proteasome is not required for transcriptional repression by PRH. However, proteasomal digestion of PRH can liberate truncated PRH proteins that retain the ability to bind to DNA. We discuss these findings in terms of the biological role of PRH in gene regulation and the control of cell proliferation. PMID:12826010

  9. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  10. The mechanism for molecular assembly of the proteasome.

    PubMed

    Sahara, Kazutaka; Kogleck, Larissa; Yashiroda, Hideki; Murata, Shigeo

    2014-01-01

    In eukaryotic cells, the ubiquitin proteasome system plays important roles in diverse cellular processes. The 26S proteasome is a large enzyme complex that degrades ubiquitinated proteins. It consists of 33 different subunits that form two subcomplexes, the 20S core particle and the 19S regulatory particle. Recently, several chaperones dedicated to the accurate assembly of this protease complex have been identified, but the complete mechanism of the 26S proteasome assembly is still unclear. In this review, we summarize what is known about the assembly of proteasome to date and present our group's recent findings on the role of the GET pathway in the assembly of the 26S proteasome, in addition to its role in mediating the insertion of tail-anchored (TA) proteins into the ER membrane.

  11. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  12. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  13. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  14. Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner1[W][OA

    PubMed Central

    Han, Ye; Cao, Hong; Jiang, Jiafu; Xu, Yunyuan; Du, Jizhou; Wang, Xin; Yuan, Ming; Wang, Zhiyong; Xu, Zhihong; Chong, Kang

    2008-01-01

    Root growth is mainly determined by cell division and subsequent elongation in the root apical area. Components regulating cell division in root meristematic cells are largely unknown. Previous studies have identified rice (Oryza sativa) ROOT ARCHITECTURE ASSOCIATED1 (OsRAA1) as a regulator in root development. Yet, the function of OsRAA1 at the cellular and molecular levels is unclear. Here, we show that OsRAA1-overexpressed transgenic rice showed reduced primary root growth, increased numbers of cells in metaphase, and reduced numbers of cells in anaphase, which suggests that OsRAA1 is responsible for limiting root growth by inhibiting the onset of anaphase. The expression of OsRAA1 in fission yeast also induced metaphase arrest, which is consistent with the fact that OsRAA1 functions through a conserved mechanism of cell cycle regulation. Moreover, a colocalization assay has shown that OsRAA1 is expressed predominantly at spindles during cell division. Yeast two-hybrid and pull-down assays, as well as a bimolecular fluorescence complementation assay, all have revealed that OsRAA1 interacts with a rice homolog of REGULATORY PARTICLE TRIPLE-A ATPASE4, a component that is involved in the ubiquitin pathway. Treating transgenic rice with specific inhibitors of the 26S proteasome blocked the degradation of OsRAA1 and increased the number of cells in metaphase. Mutation of a putative ubiquitination-targeting D-box (RGSLDLISL) in OsRAA1 interrupted the destruction of OsRAA1 in transgenic yeast. These results suggest that ubiquitination and proteasomic proteolysis are involved in OsRAA1 degradation, which is essential for the onset of anaphase, and that OsRAA1 may modulate root development mediated by the ubiquitin-proteasome pathway as a novel regulatory factor of the cell cycle. PMID:18701670

  15. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism

    PubMed Central

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-01-01

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition. PMID:25941117

  16. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4) which has implications for the treatment of proteasome inhibitor–resistant multiple myeloma

    PubMed Central

    Dunlap, Katherine M; Bartee, Mee Y; Bartee, Eric

    2015-01-01

    The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor–relapsed or –refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF)4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1. PMID:27512665

  17. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism.

    PubMed

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-05-05

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.

  18. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  19. The proteasome and epigenetics: zooming in on histone modifications.

    PubMed

    Bach, Svitlana V; Hegde, Ashok N

    2016-08-01

    The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.

  20. Mammalian proteasome subtypes: Their diversity in structure and function.

    PubMed

    Dahlmann, Burkhardt

    2016-02-01

    The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.

  1. Emerging Mechanistic Insights into AAA Complexes Regulating Proteasomal Degradation

    PubMed Central

    Förster, Friedrich; Schuller, Jan M.; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  2. Increased proteasome activity determines human embryonic stem cell identity

    PubMed Central

    Vilchez, David; Boyer, Leah; Morantte, Ianessa; Lutz, Margaret; Merkwirth, Carsten; Joyce, Derek; Spencer, Brian; Page, Lesley; Masliah, Eliezer; Berggren, W. Travis; Gage, Fred H.; Dillin, Andrew

    2016-01-01

    Embryonic stem cells are able to replicate continuously in the absence of senescence and, therefore, are immortal in culture1,2. While genome stability is central for survival of stem cells; proteome stability may play an equally important role in stem cell identity and function. Additionally, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. We hypothesized that stem cells have an increased proteostasis ability compared to their differentiated counterparts and asked whether proteasome activity differed among human embryonic stem cells (hESCs). Notably, hESC populations exhibit a high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11/RPN-63–5 and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. Proteasome inhibition affects pluripotency of hESCs inducing differentiation towards specific cell lineages. FOXO4, an insulin/IGF-1 responsive transcription factor associated with long lifespan in invertebrates6,7, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Our results establish a novel regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates with hESC function and identity. PMID:22972301

  3. ATPase and ubiquitin-binding proteins of the yeast proteasome.

    PubMed

    Rubin, D M; van Nocker, S; Glickman, M; Coux, O; Wefes, I; Sadis, S; Fu, H; Goldberg, A; Vierstra, R; Finley, D

    1997-03-01

    The 26S proteasome is a 2-Megadalton proteolytic complex with over 30 distinct subunits. The 19S particle, a subcomplex of the 26S proteasome, is thought to confer ATP-dependence and ubiquitin-dependence on the proteolytic core particle of the proteasome. Given the complexity of the 19S particle, genetic approaches are likely to play an important role in its analysis. We have initiated biochemical and genetic studies of the 19S particle in Saccharomyces cerevisiae. Here we describe the localization to the proteasome of several ATPases that were previously proposed to be involved in transcription. Independent studies indicate that the mammalian 26S proteasome contains closely related ATPases. We have also found that the multiubiquitin chain binding protein Mcb1, a homolog of the mammalian S5a protein, is a subunit of the yeast proteasome. However, contrary to expectation, MCB1 is not an essential gene in yeast. The mcb1 mutant grows at a nearly wild-type rate, and the breakdown of most ubiquitin-protein conjugates is unaffected in this strain. One substrate, Ub-Proline-beta gal, was found to require MCB1 for its breakdown, but it remains unclear whether Mcb1 serves as a ubiquitin receptor in this process. Our data suggest that the recognition of ubiquitin conjugates by the proteasome is a complex process which must involve proteins other than Mcb1.

  4. Attenuation of glucocorticoid signaling through targeted degradation of p300 via the 26S proteasome pathway.

    PubMed

    Li, Qiao; Su, Anna; Chen, Jihong; Lefebvre, Yvonne A; Haché, Robert J G

    2002-12-01

    The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact transiently with the glucocorticoid receptor and that the acetyltransferase activity of p300 makes an important contribution to glucocorticoid receptor-mediated transcription. Treatment of cells with the deacetylase inhibitor, sodium butyrate, inhibited steroid-induced transcription and altered the transient association of glucocorticoid receptor with p300 and steroid receptor coactivator 1. Additionally, sustained sodium butyrate treatment induced the degradation of p300 through the 26S proteasome pathway. Treatment with the proteasome inhibitor MG132 restored both the level of p300 protein and the transcriptional response to steroid over 20 h of treatment. These results reveal new levels for the regulatory control of gene expression by acetylation and suggest feedback control on p300 activity.

  5. Ikaros is degraded by proteasome-dependent mechanism in the early phase of apoptosis induction

    SciTech Connect

    He, Li-Cai; Xu, Han-Zhang; Gu, Zhi-Min; Liu, Chuan-Xu; Chen, Guo-Qiang; Wang, Yue-Fei; Wen, Dong-Hua; Wu, Ying-Li

    2011-03-18

    Research highlights: {yields} Chemotherapeutic drugs or UV treatment reduces Ikaros prior to caspase-3 activation. {yields} Etoposide treatment does not alter the mRNA but shortens the half-life of Ikaros. {yields} MG132 or epoxomicin but not calpeptin inhibits etoposide-induced Ikaros degradation. {yields} Overexpression of Ikaros accelerates etoposide-induced apoptosis in NB4 cells. -- Abstract: Ikaros is an important transcription factor involved in the development and differentiation of hematopoietic cells. In this work, we found that chemotherapeutic drugs or ultraviolet radiation (UV) treatment could reduce the expression of full-length Ikaros (IK1) protein in less than 3 h in leukemic NB4, Kasumi-1 and Jurkat cells, prior to the activation of caspase-3. Etoposide treatment could not alter the mRNA level of IK1 but it could shorten the half-life of IK1. Co-treatment with the proteasome inhibitor MG132 or epoxomicin but not calpain inhibitor calpeptin inhibited etoposide-induced Ikaros downregulation. Overexpression of IK1 could accelerate etoposide-induced apoptosis in NB4 cells, as evidenced by the increase of Annexin V positive cells and the more early activation of caspase 3. To our knowledge, this is the first report to show that upon chemotherapy drugs or UV treatment, IK1 could be degraded via the proteasome system in the early phase of apoptosis induction. These data might shed new insight on the role of IK1 in apoptosis and the post-translational regulation of IK1.

  6. Geldanamycin-induced degradation of Chk1 is mediated by proteasome

    SciTech Connect

    Nomura, M.; E-mail: nomura413jp@yahoo.co.jp; Nomura, N.; Yamashita, J.

    2005-09-30

    Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3 h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24 h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells.

  7. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR.

  8. JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress

    PubMed Central

    Kostecka, A; Sznarkowska, A; Meller, K; Acedo, P; Shi, Y; Mohammad Sakil, H A; Kawiak, A; Lion, M; Królicka, A; Wilhelm, M; Inga, A; Zawacka-Pankau, J

    2014-01-01

    Hyperproliferating cancer cells produce energy mainly from aerobic glycolysis, which results in elevated ROS levels. Thus aggressive tumors often possess enhanced anti-oxidant capacity that impedes many current anti-cancer therapies. Additionally, in ROS-compromised cancer cells ubiquitin proteasome system (UPS) is often deregulated for timely removal of oxidized proteins, thus enabling cell survival. Taken that UPS maintains the turnover of factors controlling cell cycle and apoptosis – such as p53 or p73, it represents a promising target for pharmaceutical intervention. Enhancing oxidative insult in already ROS-compromised cancer cells appears as an attractive anti-tumor scenario. TAp73 is a bona fide tumor suppressor that drives the chemosensitivity of some cancers to cisplatin or γ-radiation. It is an important drug target in tumors where p53 is lost or mutated. Here we discovered a novel synergistic mechanism leading to potent p73 activation and cancer cell death by oxidative stress and inhibition of 20S proteasomes. Using a small-molecule inhibitor of 20S proteasome and ROS-inducer – withaferin A (WA), we found that WA-induced ROS activates JNK kinase and stabilizes phase II anti-oxidant response effector NF-E2-related transcription factor (NRF2). This results in activation of Nrf2 target – NQO1 (NADPH quinone oxidoreductase), and TAp73 protein stabilization. The observed effect was ablated by the ROS scavenger – NAC. Concurrently, stress-activated JNK phosphorylates TAp73 at multiple serine and threonine residues, which is crucial to ablate TAp73/MDM2 complex and to promote TAp73 transcriptional function and induction of robust apoptosis. Taken together our data demonstrate that ROS insult in combination with the inhibition of 20S proteasome and TAp73 activation endows synthetic lethality in cancer cells. Thus, our results may enable the establishment of a novel pharmacological strategy to exploit the enhanced sensitivity of tumors to elevated ROS

  9. The ubiquitin proteasome system in neuropathology.

    PubMed

    Lehman, Norman L

    2009-09-01

    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy

  10. Emerging therapies targeting the ubiquitin proteasome system in cancer

    PubMed Central

    Weathington, Nathaniel M.; Mallampalli, Rama K.

    2014-01-01

    The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics. PMID:24382383

  11. Emerging therapies targeting the ubiquitin proteasome system in cancer.

    PubMed

    Weathington, Nathaniel M; Mallampalli, Rama K

    2014-01-01

    The ubiquitin proteasome system (UPS) is an essential metabolic constituent of cellular physiology that tightly regulates cellular protein concentrations with specificity and precision to optimize cellular function. Inhibition of the proteasome has proven very effective in the treatment of multiple myeloma, and this approach is being tested for utility in other malignancies. New pharmaceuticals targeting the proteasome itself or specific proximal pathways of the UPS are in development as antiproliferatives or immunomodulatory agents. In this article, we discuss the biology of UPS-targeting drugs, their use as therapy for neoplasia, and the state of clinical and preclinical development for emerging therapeutics.

  12. Regulation of the Arabidopsis GSK3-like Kinase BRASSINOSTEROID-INSENSITIVE 2 through Proteasome-Mediated Protein Degradation

    PubMed Central

    Peng, Peng; Yan, Zhenyan; Zhu, Yongyou; Li, Jianming

    2008-01-01

    Glycogen synthase kinase 3 (GSK3) is a unique serine/threonine kinase that is implicated in a variety of cellular processes and is regulated by phosphorylation or protein–protein interaction in animal cells. BIN2 is an Arabidopsis GSK3-like kinase that negatively regulates brassinosteroid (BR) signaling. Genetic studies suggested that BIN2 is inhibited in response to BR perception at the cell surface to relieve its inhibitory effects on downstream targets; however, little is known about biochemical mechanisms of its inhibition. Here, we show that BIN2 is regulated by proteasome-mediated protein degradation. Exogenous application of a BR biosynthesis inhibitor and an active BR increased and decreased the amount of BIN2 proteins, respectively. Interestingly, the gain-of-function bin2-1 mutation significantly stabilizes BIN2, making it unresponsive to BR-induced BIN2 depletion. Exogenous application of different plant growth hormones revealed that BIN2 depletion is specifically induced by BR through a functional BR receptor, while treatment of a proteasome inhibitor, MG132, not only prevented the BR-induced BIN2 depletion but also nullified the inhibitory effect of BR on the BIN2 kinase activity. Taken together, our results strongly suggest that proteasome-mediated protein degradation constitutes an important regulatory mechanism for restricting the BIN2 activity. PMID:18726001

  13. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse.

    PubMed

    Tokui, Keisuke; Adachi, Hiroaki; Waza, Masahiro; Katsuno, Masahisa; Minamiyama, Makoto; Doi, Hideki; Tanaka, Keiji; Hamazaki, Jun; Murata, Shigeo; Tanaka, Fumiaki; Sobue, Gen

    2009-03-01

    The ubiquitin-proteasome system (UPS) is the principal protein degradation system that tags and targets short-lived proteins, as well as damaged or misfolded proteins, for destruction. In spinal and bulbar muscular atrophy (SBMA), the androgen receptor (AR), an Hsp90 client protein, is such a misfolded protein that tends to aggregate in neurons. Hsp90 inhibitors promote the degradation of Hsp90 client proteins via the UPS. In a transgenic mouse model of SBMA, we examined whether a functioning UPS is preserved, if it was capable of degrading polyglutamine-expanded mutant AR, and what might be the therapeutic effects of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), an oral Hsp90 inhibitor. Ubiquitin-proteasomal function was well preserved in SBMA mice and was even increased during advanced stages when the mice developed severe phenotypes. Administration of 17-DMAG markedly ameliorated motor impairments in SBMA mice without detectable toxicity and reduced amounts of monomeric and nuclear-accumulated mutant AR. Mutant AR was preferentially degraded in the presence of 17-DMAG in both SBMA cell and mouse models when compared with wild-type AR. 17-DMAG also significantly induced Hsp70 and Hsp40. Thus, 17-DMAG would exert a therapeutic effect on SBMA via preserved proteasome function.

  14. The Ubiquitin Proteasome System Plays a Role in Venezuelan Equine Encephalitis Virus Infection

    PubMed Central

    Amaya, Moushimi; Keck, Forrest; Lindquist, Michael; Voss, Kelsey; Scavone, Lauren; Kehn-Hall, Kylene; Roberts, Brian; Bailey, Charles; Schmaljohn, Connie; Narayanan, Aarthi

    2015-01-01

    Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections. PMID:25927990

  15. The ubiquitin proteasome system plays a role in venezuelan equine encephalitis virus infection.

    PubMed

    Amaya, Moushimi; Keck, Forrest; Lindquist, Michael; Voss, Kelsey; Scavone, Lauren; Kehn-Hall, Kylene; Roberts, Brian; Bailey, Charles; Schmaljohn, Connie; Narayanan, Aarthi

    2015-01-01

    Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.

  16. Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic β-cells

    SciTech Connect

    Lee, Sanghwan; Hur, Eu-gene; Ryoo, In-geun; Jung, Kyeong-Ah; Kwak, Jiyeon; Kwak, Mi-Kyoung

    2012-11-01

    The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2‐related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma β-cell line, βTC-6. shRNA-mediated silencing of Nrf2 expression in βTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ER stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in βTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated‐like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic β-cells by enhancing proteasome-mediated ERAD. -- Highlights: ► Nrf2 silencing in pancreatic β-cells enhanced tunicamycin-mediated ER stress. ► Expression of the proteasome was inducible by Nrf2 signaling. ► Nrf2 activator D3T protected β-cells from tunicamycin-mediated ER stress. ► Protective effect of D3T was associated with Nrf2-dependent proteasome

  17. Eukaryotic Cells Producing Ribosomes Deficient in Rpl1 Are Hypersensitive to Defects in the Ubiquitin-Proteasome System

    PubMed Central

    McIntosh, Kerri B.; Bhattacharya, Arpita; Willis, Ian M.; Warner, Jonathan R.

    2011-01-01

    It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132. PMID:21858174

  18. Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin-proteasome system.

    PubMed

    McIntosh, Kerri B; Bhattacharya, Arpita; Willis, Ian M; Warner, Jonathan R

    2011-01-01

    It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.

  19. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji Saeki, Yasushi

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  20. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome*

    PubMed Central

    Yu, Houqing; Singh Gautam, Amit K.; Wilmington, Shameika R.; Wylie, Dennis; Martinez-Fonts, Kirby; Kago, Grace; Warburton, Marie; Chavali, Sreenivas; Inobe, Tomonao; Finkelstein, Ilya J.; Babu, M. Madan

    2016-01-01

    The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness. PMID:27226608

  1. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation*

    PubMed Central

    Goitea, Victor E.; Hallak, Marta E.

    2015-01-01

    Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm. PMID:25969538

  2. Proteasomes regulate hepatitis B virus replication by degradation of viral core-related proteins in a two-step manner.

    PubMed

    Zheng, Zi-Hua; Yang, Hui-Ying; Gu, Lin; Peng, Xiao-Mou

    2016-10-01

    The cellular proteasomes presumably inhibit the replication of hepatitis B virus (HBV) due to degradation of the viral core protein (HBcAg). Common proteasome inhibitors, however, either enhance or inhibit HBV replication. In this study, the exact degradation process of HBcAg and its influences on HBV replication were further studied using bioinformatic analysis, protease digestion assays of recombinant HBcAg, and proteasome inhibitor treatments of HBV-producing cell line HepG2.2.15. Besides HBcAg and hepatitis B e antigen precursor, common hepatitis B core-related antigens (HBcrAgs), the small and the large degradation intermediates of these HBcrAgs (HBcrDIs), were regularly found in cytosol of HepG2.2.15 cells. Further, the results of investigation reveal that the degradation process of cytosolic HBcrAgs in proteasomes consists of two steps: the limited proteolysis into HBcrDIs by the trypsin-like (TL) activity and the complete degradation of HBcrDIs by the chymotrypsin-like (chTL) activity. Concordantly, HBcrAgs and the large HBcrDI or HBcrDIs (including the small HBcrDI) were accumulated when the TL or chTL activity was inhibited, which generally correlated with enhancement and inhibition of HBV replication, respectively. The small HBcrDI inhibited HBV replication by assembling into the nucleocapsids and preventing the victim particles from being mature enough for envelopment. The two-step degradation manner may highlight some new anti-HBV strategies.

  3. Reconfiguration of the proteasome during chaperone-mediated assembly.

    PubMed

    Park, Soyeon; Li, Xueming; Kim, Ho Min; Singh, Chingakham Ranjit; Tian, Geng; Hoyt, Martin A; Lovell, Scott; Battaile, Kevin P; Zolkiewski, Michal; Coffino, Philip; Roelofs, Jeroen; Cheng, Yifan; Finley, Daniel

    2013-05-23

    The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme.

  4. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  5. Profound Activity of the Anti-cancer Drug Bortezomib against Echinococcus multilocularis Metacestodes Identifies the Proteasome as a Novel Drug Target for Cestodes

    PubMed Central

    Stadelmann, Britta; Aeschbacher, Denise; Huber, Cristina; Spiliotis, Markus; Müller, Joachim; Hemphill, Andrew

    2014-01-01

    A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors. PMID:25474446

  6. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Anand, Pinki; Kuang, Anxiu; Akhtar, Feroz; Scofield, Virginia L.

    2016-01-01

    Ubiquitin proteasome system (UPS) dysfunction has been implicated in the development of many neuronal disorders, including Parkinson's disease (PD). Previous studies focused on individual neuroprotective agents and their respective abilities to prevent neurotoxicity following a variety of toxic insults. However, the effects of the antioxidant N-acetylcysteine (NAC) on proteasome impairment-induced apoptosis have not been well characterized in human neuronal cells. The aim of this study was to determine whether cotreatment of NAC and insulin-like growth factor-1 (IGF-1) efficiently protected against proteasome inhibitor-induced cytotoxicity in SH-SY5Y cells. Our results demonstrate that the proteasome inhibitor, MG132, initiates poly(ADP-ribose) polymerase (PARP) cleavage, caspase 3 activation, and nuclear condensation and fragmentation. In addition, MG132 treatment leads to endoplasmic reticulum (ER) stress and autophagy-mediated cell death. All of these events can be attenuated without obvious reduction of MG132 induced protein ubiquitination by first treating the cells with NAC and IGF-1 separately or simultaneously prior to exposure to MG132. Moreover, our data demonstrated that the combination of the two proved to be significantly more effective for neuronal protection. Therefore, we conclude that the simultaneous use of growth/neurotrophic factors and a free radical scavenger may increase overall protection against UPS dysfunction-mediated cytotoxicity and neurodegeneration. PMID:27774335

  7. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    SciTech Connect

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo

    2014-08-08

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  8. Proteasomal Processing of Albumin by Renal Dendritic Cells Generates Antigenic Peptides

    PubMed Central

    Macconi, Daniela; Chiabrando, Chiara; Schiarea, Silvia; Aiello, Sistiana; Cassis, Linda; Gagliardini, Elena; Noris, Marina; Buelli, Simona; Zoja, Carla; Corna, Daniela; Mele, Caterina; Fanelli, Roberto; Remuzzi, Giuseppe; Benigni, Ariela

    2009-01-01

    The role of dendritic cells (DC) that accumulate in the renal parenchyma of non–immune-mediated proteinuric nephropathies is not well understood. Under certain circumstances, DC capture immunologically ignored antigens, including self-antigens, and present them within MHC class I, initiating an autoimmune response. We studied whether DC could generate antigenic peptides from the self-protein albumin. Exposure of rat proximal tubular cells to autologous albumin resulted in its proteolytic cleavage to form an N-terminal 24–amino acid peptide (ALB1-24). This peptide was further processed by the DC proteasome into antigenic peptides that had binding motifs for MHC class I and were capable of activating syngeneic CD8+ T cells. In vivo, the rat five-sixths nephrectomy model allowed the localization and activation of renal DC. Accumulation of DC in the renal parenchyma peaked 1 wk after surgery and decreased at 4 wk, concomitant with their appearance in the renal draining lymph nodes. DC from renal lymph nodes, loaded with ALB1-24, activated syngeneic CD8+ T cells in primary culture. The response of CD8+ T cells of five-sixths nephrectomized rats was amplified with secondary stimulation. In contrast, DC from renal lymph nodes of five-sixths nephrectomized rats treated with the proteasomal inhibitor bortezomib lost their capacity to stimulate CD8+ T cells in primary and secondary cultures. These data suggest that albumin can be a source of potentially antigenic peptides upon renal injury and that renal DC play a role in processing self-proteins through a proteasome-dependent pathway. PMID:19092126

  9. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition.

    PubMed

    Haratake, Kousuke; Sato, Akitsugu; Tsuruta, Fuminori; Chiba, Tomoki

    2016-06-01

    Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.

  10. Structural Basis for the Assembly and Gate Closure Mechanisms of the Mycobacterium tuberculosis 20S Proteasome

    SciTech Connect

    Lin, D.; Li, H; Wang, T; Pan, H; Lin, G; Li, H

    2010-01-01

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  11. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome

    SciTech Connect

    Li, D.; Li, H.; Li, H.; Wang, T.; Pan, H.; Lin, G.

    2010-06-16

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  12. Fos family protein degradation by the proteasome.

    PubMed

    Gomard, Tiphanie; Jariel-Encontre, Isabelle; Basbous, Jihane; Bossis, Guillaume; Moquet-Torcy, Gabriel; Mocquet-Torcy, Gabriel; Piechaczyk, Marc

    2008-10-01

    c-Fos proto-oncoprotein defines a family of closely related transcription factors (Fos proteins) also comprising Fra-1, Fra-2, FosB and DeltaFosB, the latter two proteins being generated by alternative splicing. Through the regulation of many genes, most of them still unidentified, they regulate major functions from the cell level up to the whole organism. Thus they are involved in the control of proliferation, differentiation and apoptosis, as well as in the control of responses to stresses, and they play important roles in organogenesis, immune responses and control of cognitive functions, among others. Fos proteins are intrinsically unstable. We have studied how two of them, c-Fos and Fra-1, are degraded. Departing from the classical scenario where unstable key cell regulators are hydrolysed by the proteasome after polyubiquitination, we showed that the bulk of c-Fos and Fra-1 can be broken down independently of any prior ubiquitination. Certain conserved structural domains suggest that similar mechanisms may also apply to Fra-2 and FosB. Computer search indicates that certain motifs shared by the Fos proteins and putatively responsible for instability are found in no other protein, suggesting the existence of degradation mechanisms specific for this protein family. Under particular signalling conditions, others have shown that a part of cytoplasmic c-Fos requires ubiquitination for fast turnover. This poses the question of the multiplicity of degradation pathways that apply to proteins depending on their intracellular localization.

  13. A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition.

    PubMed

    Xu, Guoqiang; Jiang, Xiaogang; Jaffrey, Samie R

    2013-10-11

    A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation.

  14. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin–proteasome pathway

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Dong, Xing-yu; Liu, Ru-en; Xu, Ru-xiang

    2015-01-01

    We investigated the underlying mechanism for the potent proapoptotic effect of paeoniflorin (PF) on human glioma cells in vitro, focusing on signal transducer and activator of transcription 3 (STAT3) signaling. Significant time- and dose-dependent apoptosis and inhibition of proliferation were observed in PF-treated U87 and U251 glioma cells. Expression of STAT3, its active form phosphorylated STAT3 (p-STAT3), and several downstream molecules, including HIAP, Bcl-2, cyclin D1, and Survivin, were significantly downregulated upon PF treatment. Overexpression of STAT3 induced resistance to PF, suggesting that STAT3 was a critical target of PF. Interestingly, rapid downregulation of STAT3 was consistent with its accelerated degradation, but not with its dephosphorylation or transcriptional modulation. Using specific inhibitors, we demonstrated that the prodegradation effect of PF on STAT3 was mainly through the ubiquitin–proteasome pathway rather than via lysosomal degradation. These findings indicated that PF-induced growth suppression and apoptosis in human glioma cells through the proteasome-dependent degradation of STAT3. PMID:26508835

  15. Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension.

    PubMed

    Kasahara, Kousuke; Kawakami, Yoshitaka; Kiyono, Tohru; Yonemura, Shigenobu; Kawamura, Yoshifumi; Era, Saho; Matsuzaki, Fumio; Goshima, Naoki; Inagaki, Masaki

    2014-10-01

    Primary cilia are microtubule-based sensory organelles that organize numerous key signals during developments and tissue homeostasis. Ciliary microtubule doublet, named axoneme, is grown directly from the distal end of mother centrioles through a multistep process upon cell cycle exit; however, the instructive signals that initiate these events are poorly understood. Here we show that ubiquitin-proteasome machinery removes trichoplein, a negative regulator of ciliogenesis, from mother centrioles and thereby causes Aurora-A inactivation, leading to ciliogenesis. Ciliogenesis is blocked if centriolar trichoplein is stabilized by treatment with proteasome inhibitors or by expression of non-ubiquitylatable trichoplein mutant (K50/57R). Started from two-stepped global E3 screening, we have identified KCTD17 as a substrate-adaptor for Cul3-RING E3 ligases (CRL3s) that polyubiquitylates trichoplein. Depletion of KCTD17 specifically arrests ciliogenesis at the initial step of axoneme extension through aberrant trichoplein-Aurora-A activity. Thus, CRL3-KCTD17 targets trichoplein to proteolysis to initiate the axoneme extension during ciliogenesis.

  16. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment.

  17. The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence

    PubMed Central

    Börnke, Frederik

    2013-01-01

    The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) requires type III effector proteins (T3Es) for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA) and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed. PMID:23785289

  18. Tumor Necrosis Factor-α Sensitizes Breast Cancer Cells to Natural Products with Proteasome-Inhibitory Activity Leading to Apoptosis

    PubMed Central

    Lu, Li; Shi, Wenli; Deshmukh, Rahul R.; Long, Jie; Cheng, Xiaoli; Ji, Weidong; Zeng, Guohua; Chen, Xianliang; Zhang, Yajie; Dou, Q. Ping

    2014-01-01

    The inflammatory microenvironment plays an important role in the process of tumor development. Tumor necrosis factor-α (TNF-α), a key pro-inflammatory cytokine, has a significant role in this process. Natural medicinal products such as Withaferin A (WA) and Celastrol (Cel) have shown anti-cancer and anti-inflammatory properties that can be attributed to multiple mechanisms including, but not limited to, apoptosis induction due to the inhibition of proteasomal activities. This study aimed to investigate the effects of TNF-α in combination with WA or Cel in vitro in MDA-MB-231 breast cancer cells. TNF-α, when combined with WA or Cel, activated caspase-3 and -9 and downregulated XIAP in a dose-dependent manner, leading to induction of apoptosis in MDA-MB-231 breast cancer cells. The combination also caused accumulation of the proteasomal target protein IκBα, resulting in inhibition of the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results suggest that TNF-α could sensitize breast cancer cells MDA-MB-231 to WA and Cel, at least in part, through inhibiting the activation of NF-κB signaling, leading to XIAP inhibition with subsequent upregulation of caspase-3 and -9 activities. Thus, the anti-cancer activities of TNF-α are enhanced when combined with the natural proteasome inhibitors, WA or Cel. PMID:25419573

  19. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma.

    PubMed

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-08-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.

  20. N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function.

    PubMed

    Yashiroda, Hideki; Toda, Yousuke; Otsu, Saori; Takagi, Kenji; Mizushima, Tsunehiro; Murata, Shigeo

    2015-01-01

    The proteasome core particle (CP) is a conserved protease complex that is formed by the stacking of two outer α-rings and two inner β-rings. The α-ring is a heteroheptameric ring of subunits α1 to α7 and acts as a gate that restricts entry of substrate proteins into the catalytic cavity formed by the two abutting β-rings. The 31-kDa proteasome inhibitor (PI31) was originally identified as a protein that binds to the CP and inhibits CP activity in vitro, but accumulating evidence indicates that PI31 is required for physiological proteasome activity. To clarify the in vivo role of PI31, we examined the Saccharomyces cerevisiae PI31 ortholog Fub1. Fub1 was essential in a situation where the CP assembly chaperone Pba4 was deleted. The lethality of Δfub1 Δpba4 was suppressed by deletion of the N terminus of α7 (α7ΔN), which led to the partial activation of the CP. However, deletion of the N terminus of α3, which activates the CP more efficiently than α7ΔN by gate opening, did not suppress Δfub1 Δpba4 lethality. These results suggest that the α7 N terminus has a role in CP activation different from that of the α3 N terminus and that the role of Fub1 antagonizes a specific function of the α7 N terminus.

  1. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease

    PubMed Central

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  2. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    PubMed

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-05

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting.

  3. Proteomic remodeling of proteasome in right heart failure.

    PubMed

    Fessart, Delphine; Martin-Negrier, Marie-Laure; Claverol, Stéphane; Thiolat, Marie-Laure; Crevel, Huguette; Toussaint, Christian; Bonneu, Marc; Muller, Bernard; Savineau, Jean-Pierre; Delom, Frederic

    2014-01-01

    The development of right heart failure (RHF) is characterized by alterations of right ventricle (RV) structure and function, but the mechanisms of RHF remain still unknown. Thus, understanding the RHF is essential for improved therapies. Therefore, identification by quantitative proteomics of targets specific to RHF may have therapeutic benefits to identify novel potential therapeutic targets. The objective of this study was to analyze the molecular mechanisms changing RV function in the diseased RHF and thus, to identify novel potential therapeutic targets. For this, we have performed differential proteomic analysis of whole RV proteins using two experimental rat models of RHF. Differential protein expression was observed for hundred twenty six RV proteins including proteins involved in structural constituent of cytoskeleton, motor activity, structural molecule activity, cytoskeleton protein binding and microtubule binding. Interestingly, further analysis of down-regulated proteins, reveals that both protein and gene expressions of proteasome subunits were drastically decreased in RHF, which was accompanied by an increase of ubiquitinated proteins. Interestingly, the proteasomal activities chymotrypsin and caspase-like were decreased whereas trypsin-like activity was maintained. In conclusion, this study revealed the involvement of ubiquitin-proteasome system (UPS) in RHF. Three deregulated mechanisms were discovered: (1) decreased gene and protein expressions of proteasome subunits, (2) decreased specific activity of proteasome; and (3) a specific accumulation of ubiquitinated proteins. This modulation of UPS of RV may provide a novel therapeutic avenue for restoration of cardiac function in the diseased RHF.

  4. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome

    PubMed Central

    Ferrington, Deborah A.; Baumann, Cory W.; Thompson, LaDora V.

    2016-01-01

    The standard 26S proteasome is responsible for the majority of myofibrillar protein degradation leading to muscle atrophy. The immunoproteasome is an inducible form of the proteasome. While its function has been linked to conditions of atrophy, its contribution to muscle proteolysis remains unclear. Therefore, the purpose of this study was to determine if the immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1) mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while control mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and trypsin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome (LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius muscle. Denervation induced significant atrophy and was accompanied by increased activities and protein content of the catalytic subunits in both WT and L7M1 mice. Although denervation resulted in a similar degree of muscle atrophy between strains, the mice lacking two immunoproteasome subunits showed a differential response in the extent and duration of proteasome features, including activities and content of the β1, β5 and LMP2 catalytic subunits. The results indicate that immunoproteasome deficiency alters the proteasome’s composition and activities. However, the immunoproteasome does not appear to be essential for muscle atrophy induced by denervation. PMID:27875560

  5. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  6. Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons.

    PubMed

    Karmous, Inès; Chaoui, Abdelilah; Jaouani, Khadija; Sheehan, David; El Ferjani, Ezzedine; Scoccianti, Valeria; Crinelli, Rita

    2014-03-01

    The role of the ubiquitin (Ub)-proteasome pathway and some endo- and aminopeptidases (EPs and APs, respectively) was studied in cotyledons of germinating bean seeds (Phaseolus vulgaris L.). The Ub system appeared to be important both in the early (3 days) and late (9 days) phases of germination. In the presence of copper, an increase in protein carbonylation and a decrease in reduced -SH pool occurred, indicating protein damage. This was associated with an enhancement in accumulation of malondialdehyde, a major product of lipid peroxidation, and an increase in content of hydrogen peroxide (H2O2), showing oxidative stress generation. Moreover, copper induced inactivation of the Ub-proteasome (EC 3.4.25) pathway and inhibition of leucine and proline aminopeptidase activities (EC 3.4.11.1 and EC 3.4.11.5, respectively), thus limiting their role in modulating essential metabolic processes, such as the removal of regulatory and oxidatively-damaged proteins. By contrast, total trypsin and chymotrypsin-like activities (EC 3.4.21.4 and EC 3.4.21.1, respectively) increased after copper exposure, in parallel with a decrease in their inhibitor capacities (i.e. trypsin inhibitor and chymotrypsin inhibitor activity), suggesting that these endoproteases are part of the protective mechanisms against copper stress.

  7. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities

    PubMed Central

    Huang, Wen; Eum, Sung Yong; András, Ibolya E; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)α or PPARγ attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARγ agonists and silencing of PPARα or PPARγ, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.—Huang, W., Eum, S. Y., András, I. E., Hennig, B., Toborek, M. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. PMID:19141539

  8. Ubiquitin C-terminal hydrolase-L1 protects cystic fibrosis transmembrane conductance regulator from early stages of proteasomal degradation.

    PubMed

    Henderson, Mark J; Vij, Neeraj; Zeitlin, Pamela L

    2010-04-09

    DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) degradation involves ubiquitin modification and efficient proteasomal targeting of the nascent misfolded protein. We show that a deubiquitinating enzyme, ubiquitin C-terminal hydrolase-L1 (UCH-L1), is highly expressed in cystic fibrosis (CF) airway epithelial cells in vitro and in vivo. We hypothesized that the elevation in UCH-L1 in CF cells represents a cellular adaptation to counterbalance excessive proteasomal degradation. The bronchial epithelial cell lines IB3-1 (CF, high UCH-L1 expression) and S9 (non-CF, low UCH-L1 expression) were transiently transfected with wild type (WT) or DeltaF508 CFTR, WT UCH-L1 or small interfering RNA-UCH-L1, and a variety of ubiquitin mutants. We observed a positive correlation between UCH-L1 expression and steady state levels of WT- or DeltaF508-CFTR, and this stabilizing effect was confined to the early stages of CFTR synthesis. Immunolocalization of UCH-L1 by confocal microscopy revealed a partial co-localization with a ribosomal subunit and the endoplasmic reticulum. The UCH-L1-associated increase in CFTR levels was correlated with an increase in ubiquitinated CFTR (CFTR-Ub). Co-transfection with mutant ubiquitins and treatment with proteasome inhibitors suggested that UCH-L1 was reducing the proteasomal targeting of CFTR during synthesis by shortening conjugated polyubiquitin chains. Although not sufficient by itself to rescue mutant CFTR therapeutically, the elevation of UCH-L1 and its effect on CFTR processing provides insight into its potential roles in CF and other diseases.

  9. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib.

    PubMed

    Areeb, Zammam; Stylli, Stanley S; Ware, Thomas M B; Harris, Nicole C; Shukla, Lipi; Shayan, Ramin; Paradiso, Lucia; Li, Bo; Morokoff, Andrew P; Kaye, Andrew H; Luwor, Rodney B

    2016-05-01

    Glioblastoma multiforme is the most aggressive and lethal tumor of the central nervous system with limited treatment strategies on offer, and as such the identification of effective novel therapeutic agents is paramount. To examine the efficacy of proteasome inhibitors, we tested bortezomib, carfilzomib, nafamostat mesylate, gabexate mesylate and acetylsalicylic acid on glioblastoma cell viability, migration and invasion. Both bortezomib and carfilzomib produced significant reduction of cell viability, while nafamostat mesylate, gabexate mesylate and acetylsalicylic acid did not. Subsequent testing showed that carfilzomib significantly reduced cell viability at nM concentrations. Carfilzomib also reduced cell migration, secretion and activation of MMP2 and also cell invasion of all four glioblastoma cells tested. In summary, carfilzomib represents a novel, yet FDA-approved agent for the treatment of glioblastoma multiforme.

  10. RSK1 protects P-glycoprotein/ABCB1 against ubiquitin–proteasomal degradation by downregulating the ubiquitin-conjugating enzyme E2 R1

    PubMed Central

    Katayama, Kazuhiro; Fujiwara, Chiaki; Noguchi, Kohji; Sugimoto, Yoshikazu

    2016-01-01

    P-glycoprotein (P-gp) is a critical determinant of multidrug resistance in cancer. We previously reported that MAPK inhibition downregulates P-gp expression and that P-gp undergoes ubiquitin–proteasomal degradation regulated by UBE2R1 and SCFFbx15. Here, we investigated the crosstalk between MAPK inhibition and the ubiquitin–proteasomal degradation of P-gp. Proteasome inhibitors or knockdown of FBXO15 and/or UBE2R1 cancelled MEK inhibitor-induced P-gp downregulation. RSK1 phosphorylated Thr162 on UBE2R1 but did not phosphorylate FBXO15. MEK and RSK inhibitors increased UBE2R1-WT but not UBE2R1-T162D and -T162A expression. UBE2R1-T162D showed higher self-ubiquitination and destabilisation than UBE2R1-WT and -T162A. Unlike UBE2R1-WT and -T162A, UBE2R1-T162D did not induce P-gp ubiquitination. UBE2R1-WT or -T162A downregulated P-gp expression and upregulated rhodamine 123 level and sensitivity to vincristine and doxorubicin. However, UBE2R1-T162D did not confer any change in P-gp expression, rhodamine 123 accumulation and sensitivity to the drugs. These results suggest that RSK1 protects P-gp against ubiquitination by reducing UBE2R1 stability. PMID:27786305

  11. Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington's disease YAC128 mice.

    PubMed

    Jeon, J; Kim, W; Jang, J; Isacson, O; Seo, H

    2016-06-02

    Huntington's disease (HD) is neurologically characterized by involuntary movements, associated with degeneration of the medium-sized spiny neurons (MSNs) and ubiquitin-positive neuronal intranuclear inclusions (NIIs). It has been reported that the proteolytic activities of the ubiquitin-proteasome system (UPS) are generally inhibited in HD patient's brain. We previously discovered that a proteasome activator (PA), PA28γ enhances proteasome activities and cell survival in in vitro HD model. In this study, we aimed to find whether PA28γ gene transfer improves the proteasome activities and pathological symptoms in in vivo HD model. We stereotaxically injected lenti-PA28γ virus into the striatum of mutant (MT) YAC128 HD mice and littermate (LM) controls at 14-18months of age, and validated their behavioral and biochemical changes at 12weeks after the injection. YAC128 mice showed a significant increase in their peptidyl-glutamyl preferring hydrolytic (PGPH) proteasome activity and the mRNA or protein levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF after lenti-PA28γ injection. The number of ubiquitin-positive inclusion bodies was reduced in the striatum of YAC128 mice after lenti-PA28γ injection. YAC128 mice showed significant improvement of latency to fall on the rota-rod test after lenti-PA28γ injection. These data demonstrate that the gene therapy with PA, PA28γ can improve UPS function as well as behavioral abnormalities in HD model mice.

  12. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    PubMed Central

    Li, Sheng; Yang, Li-juan; Wang, Ping; He, Yu-jiao; Huang, Jun-mei; Liu, Han-wei; Shen, Xiao-fei; Wang, Fei

    2016-01-01

    Background Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome

  13. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots

    PubMed Central

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N.; Misas-Villamil, Johana C.; Xin, Bo T.; Kaiser, Markus; Overkleeft, Herman S.; Tari, Irma; van der Hoorn, Renier A. L.

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress. PMID:28217134

  14. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots.

    PubMed

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N; Misas-Villamil, Johana C; Xin, Bo T; Kaiser, Markus; Overkleeft, Herman S; Tari, Irma; van der Hoorn, Renier A L

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.

  15. Poxvirus Exploitation of the Ubiquitin-Proteasome System

    PubMed Central

    Barry, Michele; van Buuren, Nicholas; Burles, Kristin; Mottet, Kelly; Wang, Qian; Teale, Alastair

    2010-01-01

    Ubiquitination plays a critical role in many cellular processes. A growing number of viruses have evolved strategies to exploit the ubiquitin-proteasome system, including members of the Poxviridae family. Members of the poxvirus family have recently been shown to encode BTB/kelch and ankyrin/F-box proteins that interact with cullin-3 and cullin-1 based ubiquitin ligases, respectively. Multiple members of the poxvirus family also encode ubiquitin ligases with intrinsic activity. This review describes the numerous mechanisms that poxviruses employ to manipulate the ubiquitin-proteasome system. PMID:21994622

  16. Cefepime, a fourth-generation cephalosporin, in complex with manganese, inhibits proteasome activity and induces the apoptosis of human breast cancer cells.

    PubMed

    Zhang, Zhen; Bi, Caifeng; Fan, Yuhua; Wang, Huannan; Bao, Yan

    2015-10-01

    Cefepime (FEP), which is a member of the fourth-generation cephalosporin class, has been extensively studied as a biochemical and antimicrobial reagent in recent years. Manganese (Mn) is important in the biochemical and physiological processes of many living organisms, and it is also high expressed in some tumor tissues. In the present study, we aimed to investigate the proteasome-inhibitory and anti-proliferative properties of 8 metal complexes (FEP‑Cu, FEP-Zn, FEP-Co, FEP-Ni, FEP-Cd, FEP-Cr, FEP-Fe, FEP-Mn) in MDA-MB‑231 human breast cancer cells. The FEP-Mn complex was found to be more potent in its ability to inhibit cell proliferation and proteasome activity than the other compounds tested. Moreover, the FEP-Mn complex inhibited proteasomal chymotrypsin-like (CT-like) activity and induced the apoptosis of breast cancer cells in a dose-and time-dependent manner. Furthermore, the MCF-10A cells were much less sensitive to the FEP complexes compared with the MDA-MB-231 breast cancer cells. These results demonstrated that the FEP-Mn(II) complex has the potential to act as a proteasome inhibitor and apoptosis inducer and therefore has possible future applications in cancer chemotherapy.

  17. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway.

    PubMed Central

    Bailey, J L; Wang, X; England, B K; Price, S R; Ding, X; Mitch, W E

    1996-01-01

    Chronic renal failure (CRF) is associated with negative nitrogen balance and loss of lean body mass. To identify specific proteolytic pathways activated by CRF, protein degradation was measured in incubated epitrochlearis muscles from CRF and sham-operated, pair-fed rats. CRF stimulated muscle proteolysis, and inhibition of lysosomal and calcium-activated proteases did not eliminate this increase. When ATP production was blocked, proteolysis in CRF muscles fell to the same level as that in control muscles. Increased proteolysis was also prevented by feeding CRF rats sodium bicarbonate, suggesting that activation depends on acidification. Evidence that the ATP-dependent ubiquitin-proteasome pathway is stimulated by the acidemia of CRF includes the following findings: (a) An inhibitor of the proteasome eliminated the increase in muscle proteolysis; and (b) there was an increase in mRNAs encoding ubiquitin (324%) and proteasome subunits C3 (137%) and C9 (251%) in muscle. This response involved gene activation since transcription of mRNAs for ubiquitin and the C3 subunit were selectively increased in muscle of CRF rats. We conclude that CRF stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasome-dependent pathway. The mechanism depends on acidification and increased expression of genes encoding components of the system. These responses could contribute to the loss of muscle mass associated with CRF. PMID:8617877

  18. A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14

    PubMed Central

    Lee, Byung-Hoon; Finley, Daniel; King, Randall W.

    2013-01-01

    Deubiquitinating enzymes (DUBs) reverse the process of ubiquitination, and number nearly 100 in humans. In principle, DUBs represent promising drug targets, as several of the enzymes have been implicated in human diseases. The isopeptidase activity of DUBs can be selectively inhibited by targeting the catalytic site with drug-like compounds. Notably, the mammalian 26S proteasome is associated with three major DUBs: RPN11, UCH37 and USP14. Because the ubiquitin ‘chain-trimming’ activity of USP14 can inhibit proteasome function, inhibitors of USP14 can stimulate proteasomal degradation. We recently established a high-throughput screening (HTS) method to discover small-molecule inhibitors specific for USP14. The protocols in this article cover the necessary procedures for preparing assay reagents, performing HTS for USP14 inhibitors, and carrying out post-HTS analysis. PMID:23788557

  19. A non-muscle myosin II motor links NR1 to retrograde trafficking and proteasomal degradation in PC12 cells.

    PubMed

    Vazhappilly, Rema; Wee, Karen Siaw-Ling; Sucher, Nikolaus J; Low, Chian-Ming

    2010-03-01

    Rat pheochromocytoma (PC12) cells have been shown to lack functional NMDA receptors; yet,