Protection of surface states in topological nanoparticles
NASA Astrophysics Data System (ADS)
Siroki, Gleb; Haynes, Peter D.; Lee, Derek K. K.; Giannini, Vincenzo
2017-07-01
Topological insulators host protected electronic states at their surface. These states show little sensitivity to disorder. For miniaturization one wants to exploit their robustness at the smallest sizes possible. This is also beneficial for optical applications and catalysis, which favor large surface-to-volume ratios. However, it is not known whether discrete states in particles share the protection of their continuous counterparts in large crystals. Here we study the protection of the states hosted by topological insulator nanoparticles. Using both analytical and tight-binding simulations, we show that the states benefit from the same level of protection as those on a planar surface. The results hold for many shapes and sustain surface roughness which may be useful in photonics, spectroscopy, and chemistry. They complement past studies of large crystals—at the other end of possible length scales. The protection of the nanoparticles suggests that samples of all intermediate sizes also possess protected states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam
Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi 2Se 3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that theremore » is a change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less
Disorder-driven topological phase transition in B i 2 S e 3 films
Brahlek, Matthew; Koirala, Nikesh; Salehi, Maryam; ...
2016-10-03
Topological insulators (TI) are a phase of matter that host unusual metallic states on their surfaces. Unlike the states that exist on the surface of conventional materials, these so-called topological surfaces states (TSS) are protected against disorder-related localization effects by time reversal symmetry through strong spin-orbit coupling. By combining transport measurements, angle-resolved photo-emission spectroscopy and scanning tunneling microscopy, we show that there exists a critical level of disorder beyond which the TI Bi 2Se 3 loses its ability to protect the metallic TSS and transitions to a fully insulating state. The absence of the metallic surface channels dictates that theremore » is a change in material’s topological character, implying that disorder can lead to a topological phase transition even without breaking the time reversal symmetry. This observation challenges the conventional notion of topologically-protected surface states, and will provoke new studies as to the fundamental nature of topological phase of matter in the presence of disorder.« less
Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H
2016-06-14
Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.
Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H.
2016-01-01
Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3. Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6. The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6. PMID:27233936
Higher-order topological insulators and superconductors protected by inversion symmetry
NASA Astrophysics Data System (ADS)
Khalaf, Eslam
2018-05-01
We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.
NASA Astrophysics Data System (ADS)
Banerjee, Abhishek; Rai, Abhishek; Majhi, Kunjalata; Barman, Sudipta Roy; Ganesan, R.; Kumar, P. S. Anil
2017-05-01
Surface states consisting of helical Dirac fermions have been extensively studied in three-dimensional topological insulators. Yet, experiments to date have only investigated fully formed topological surface states (TSS) and it is not known whether preformed or partially formed surface states can exist or what properties they could potentially host. Here, by decorating thin films of Bi2Se3 with nanosized islands of the same material, we show for the first time that not only can surface states exist in various intermediate stages of formation but they exhibit unique properties not accessible in fully formed TSS. These include tunability of the Dirac cone mass, vertical migration of the surface state wave-function and the appearance of mid-gap Rashba-like states as exemplified by our theoretical model for decorated TIs. Our experiments show that an interplay of Rashba and Dirac fermions on the surface leads to an intriguing multi-channel weak anti-localization effect concomitant with an unprecedented tuning of the topological protection to transport. Our work offers a new route to engineer topological surface states involving Dirac-Rashba coupling by nano-scale decoration of TI thin films, at the same time shedding light on the real-space mechanism of surface state formation in general.
Topological semimetals with Riemann surface states
NASA Astrophysics Data System (ADS)
Fang, Chen; Lu, Ling; Liu, Junwei; Fu, Liang
Topological semimetals have robust bulk band crossings between the conduction and the valence bands. Among them, Weyl semimetals are so far the only class having topologically protected signatures on the surface known as the ``Fermi arcs''. Here we theoretically find new classes of topological semimetals protected by nonsymmorphic glide reflection symmetries. On a symmetric surface, there are multiple Fermi arcs protected by nontrivial Z2 spectral flows between two high-symmetry lines (or two segments of one line) in the surface Brillouin zone. We observe that so far topological semimetals with protected Fermi arcs have surface dispersions that can be mapped to noncompact Riemann surfaces representing simple holomorphic functions. We propose perovskite superlattice [(SrIrO3)2m, (CaIrO3)2n] as a nonsymmorphic Dirac semimetal. C.F. and L.F. were supported by the S3TEC Solid State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0001299/DE.
Electron–hole asymmetry of the topological surface states in strained HgTe
Jost, Andreas; Bendias, Michel; Böttcher, Jan; Hankiewicz, Ewelina; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Maan, Jan C.; Zeitler, Uli; Hussey, Nigel; Wiedmann, Steffen
2017-01-01
Topological insulators are a new class of materials with an insulating bulk and topologically protected metallic surface states. Although it is widely assumed that these surface states display a Dirac-type dispersion that is symmetric above and below the Dirac point, this exact equivalence across the Fermi level has yet to be established experimentally. Here, we present a detailed transport study of the 3D topological insulator-strained HgTe that strongly challenges this prevailing viewpoint. First, we establish the existence of exclusively surface-dominated transport via the observation of an ambipolar surface quantum Hall effect and quantum oscillations in the Seebeck and Nernst effect. Second, we show that, whereas the thermopower is diffusion driven for surface electrons, both diffusion and phonon drag contributions are essential for the hole surface carriers. This distinct behavior in the thermoelectric response is explained by a strong deviation from the linear dispersion relation for the surface states, with a much flatter dispersion for holes compared with electrons. These findings show that the metallic surface states in topological insulators can exhibit both strong electron–hole asymmetry and a strong deviation from a linear dispersion but remain topologically protected. PMID:28280101
Single-electron induced surface plasmons on a topological nanoparticle
Siroki, G.; Lee, D.K.K.; Haynes, P. D.; Giannini, V.
2016-01-01
It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators—materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information. PMID:27491515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Junzhang; Yi, Changjiang; Lv, Baiqing
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state,more » in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.« less
Ma, Junzhang; Yi, Changjiang; Lv, Baiqing; ...
2017-05-05
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state,more » in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.« less
ERIC Educational Resources Information Center
Mitrani, Judith L.
Many people come to analysis appearing quite ordinary on the surface. However, once below that surface, there often appear extraordinary protections created to keep at bay any awareness of deeply traumatic happenings occurring at some point in life. This book investigates the development and function of these protections, allowing the reader to…
Revegetation of surface-mined lands in Pennsylvania
G. Nevin Strock
1980-01-01
The reforestation of surface mines in Pennsylvania became prevalent in the middle 1940's with enactment of state legislation to regulate surface mining of bituminous coal. Though this early legislation did not provide for intensive environment protection standards in comparison to state legislation which followed in the early 1960's and early 1970's and...
Probing topological protection using a designer surface plasmon structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Gao, Zhen; Shi, Xihang
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
Probing topological protection using a designer surface plasmon structure
Gao, Fei; Gao, Zhen; Shi, Xihang; ...
2016-05-20
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
Delocalized metallic state on insulating, disordered BiSbTeSe2 thin films - a test of Z2 protection.
NASA Astrophysics Data System (ADS)
Gopal, Rk; Singh, Sourabh; Sarkar, Jit; Patro, Reshma; Roy, Subhadip; Mitra, Chiranjib; Quantum computation; Topological matter Group Team
We present thickness and temperature dependent magneto transport properties of bulk insulating and granular BiSbTeSe2 thin films, grown by pulsed laser deposition technique. The temperature dependent resistivity (R-T) of these films is found to be insulating (d ρ/dT <0) and resistivity changes thrice the magnitude measured at room temperature as temperature is varied from 300K to 1.8K. On application of small perpendicular magnetic field in the low temperature regime, the R-T takes an upward shift from the zero field R-T - a trademark signature of a metallic state on an insulating bulk film. The grain boundaries in these films, as seen by scanning electron microscopy, present an additional disorder and hence confinement/trapping centers to the surface Dirac states in comparison to the films grown by molecular beam epitaxy and single crystals, which have atomically flat surface. Therefore these films present real test for the topological protection of surface Dirac states and their immunity against localization which is known as Z2 protection. From the magnetoresistance (MR) measurements at low temperatures a sharp and relatively large rise in MR is found a signature of weak - antilocalization (WAL) -a signature of topologically protected surface states. The WAL analysis of the MR data reveals a phase breaking length of the order of grain size suggesting that grain Author is grateful to the Government of India and IISER-Kolkata for providing funding and experimental facilities for the following research work.
Arpino, K E; Wallace, D C; Nie, Y F; Birol, T; King, P D C; Chatterjee, S; Uchida, M; Koohpayeh, S M; Wen, J-J; Page, K; Fennie, C J; Shen, K M; McQueen, T M
2014-01-10
We report the discovery of surface states in the perovskite superconductor [Tl4]TlTe3 (Tl5Te3) and its nonsuperconducting tin-doped derivative [Tl4](Tl0.4Sn0.6)Te3 as observed by angle-resolved photoemission spectroscopy. Density functional theory calculations predict that the surface states are protected by a Z2 topology of the bulk band structure. Specific heat and magnetization measurements show that Tl5Te3 has a superconducting volume fraction in excess of 95%. Thus Tl5Te3 is an ideal material in which to study the interplay of bulk band topology and superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topp, Andreas; Queiroz, Raquel; Grüneis, Andreas
In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating bands, which are distinct from Shockley states, quantum well states or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between DFT calculations and ARPES measurements and presentmore » an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.« less
Topology and symmetry of surface Majorana arcs in cyclic superconductors
NASA Astrophysics Data System (ADS)
Mizushima, Takeshi; Nitta, Muneto
2018-01-01
We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid
2015-01-01
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717
Unconventional transformation of spin Dirac phase across a topological quantum phase transition
Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; ...
2015-04-17
The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from amore » surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.« less
Many-body instabilities and mass generation in slow Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Zhu, Jian-Xin; Migliori, Albert; Balatsky, Alexander V.
2015-07-01
Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum: the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model, we study the many-body instabilities of these systems and identify regions of parameter space in which the system exhibits spin density wave and charge density wave order.
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Using gapped topological surface states of Bi 2Se 3 films in a field effect transistor
Sun, Jifeng; Singh, David J.
2017-02-08
Three dimensional topological insulators are insulators with topologically protected surface states that can have a high band velocity and high mobility at room temperature. This then suggests electronic applications that exploit these surface states, but the lack of a band gap poses a fundamental difficulty. We report a first principles study based on density functional theory for thin Bi 2Se 3 films in the context of a field effect transistor. It is known that a gap is induced in thin layers due to hybridization between the top and bottom surfaces, but it is not known whether it is possible tomore » use the topological states in this type of configuration. In particular, it is unclear whether the benefits of topological protection can be retained to a sufficient degree. We also show that there is a thickness regime in which the small gap induced by hybridization between the two surfaces is sufficient to obtain transistor operation at room temperature, and furthermore, that the band velocity and spin texture that are important for the mobility are preserved for Fermi levels of relevance to device application.« less
Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface
NASA Astrophysics Data System (ADS)
Sun, Zhixiang; Maldonado, Ana; Paz, Wendel S.; Inosov, Dmytro S.; Schnyder, Andreas P.; Palacios, J. J.; Shitsevalova, Natalya Yu.; Filipov, Vladimir B.; Wahl, Peter
2018-06-01
The rise of topology in condensed-matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between 5 d and 4 f bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultralow-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about 8 meV and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point toward a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at 100 mK reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.
Many-body instabilities and mass generation in slow Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Zhu, Jianxin; Migliori, Albert; Balatsky, Alexander
2015-03-01
Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum, the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model we study the many-body instabilities of these systems and identify regions of parameter space for which antiferromagnetic, ferromagnetic and charge density wave instabilities occur. Work Supported by USDOE BES E304.
40 CFR 142.80 - Review procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
....80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Administrator's Review of State Decisions that... determine, in accordance with § 141.71 of this chapter, if public water systems using surface water sources...
40 CFR 142.80 - Review procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
....80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Administrator's Review of State Decisions that... determine, in accordance with § 141.71 of this chapter, if public water systems using surface water sources...
40 CFR 142.80 - Review procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
....80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Administrator's Review of State Decisions that... determine, in accordance with § 141.71 of this chapter, if public water systems using surface water sources...
40 CFR 142.80 - Review procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
....80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Administrator's Review of State Decisions that... determine, in accordance with § 141.71 of this chapter, if public water systems using surface water sources...
NASA Astrophysics Data System (ADS)
Li, Cai-Zhen; Li, Chuan; Wang, Li-Xian; Wang, Shuo; Liao, Zhi-Min; Brinkman, Alexander; Yu, Da-Peng
2018-03-01
A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usually hides the electronic transport from the surface state in Dirac semimetal. Here, we demonstrate the supercurrent carried by bulk and surface states in Nb -Cd3As2 nanowire-Nb short and long junctions, respectively. For the ˜1 -μ m -long junction, the Fabry-Pérot interferences-induced oscillations of the critical supercurrent are observed, suggesting the ballistic transport of the surface states carried supercurrent, where the bulk states are decoherent and the topologically protected surface states still stay coherent. Moreover, a superconducting dome is observed in the long junction, which is attributed to the enhanced dephasing from the interaction between surface and bulk states as tuning gate voltage to increase the carrier density. The superconductivity of topological semimetal nanowire is promising for braiding of Majorana fermions toward topological quantum computing.
Selective phonon damping in topological semimetals
NASA Astrophysics Data System (ADS)
Gordon, Jacob S.; Kee, Hae-Young
2018-05-01
Topological semimetals are characterized by their intriguing Fermi surfaces (FSs) such as Weyl and Dirac points, or nodal FS, and their associated surface states. Among them, topological crystalline semimetals, in the presence of strong spin-orbit coupling, possess a nodal FS protected by nonsymmorphic lattice symmetries. In particular, it was theoretically proposed that SrIrO3 exhibits a bulk nodal ring due to glide symmetries, as well as flat two-dimensional surface states related to chiral and mirror symmetries. However, due to the semimetallic nature of the bulk, direct observation of these surface states is difficult. Here we study the effect of flat-surface states on phonon modes for SrIrO3 side surfaces. We show that mirror odd optical surface phonon modes are damped at the zone center, as a result of coupling to the surface states with different mirror parities, while even modes are unaffected. This observation could be used to infer their existence, and experimental techniques for such measurements are also discussed.
Guidance includes technical assistance to state, local, and tribal program managers on means of reducing nonpoint source pollution of surface and ground water through the protection and restoration of wetlands and riparian areas.
The role of the micro environment on the tribological behavior of materials
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1980-01-01
The properties of the environment which exert an influence upon adhesion, friction, wear, and lubrication of materials in solid state contact are discussed. The effect of the environment upon lubricants and lubricant properties is considered in relation to the interaction of the lubricant with the material surfaces in solid state contact and the ability of lubricants to provide protective surface films.
Topologically nontrivial electronic states in CaSn3
NASA Astrophysics Data System (ADS)
Gupta, Sunny; Juneja, Rinkle; Shinde, Ravindra; Singh, Abhishek K.
2017-06-01
Based on the first-principles calculations, we theoretically propose topologically non-trivial states in a recently experimentally discovered superconducting material CaSn3. When the spin-orbit coupling (SOC) is ignored, the material is a host to three-dimensional topological nodal-line semimetal states. Drumhead like surface states protected by the coexistence of time-reversal and mirror symmetry emerge within the two-dimensional regions of the surface Brillouin zone connecting the nodal lines. When SOC is included, unexpectedly, each nodal line evolves into two Weyl nodes (W1 and W2) in this centrosymmetric material. Berry curvature calculations show that these nodes occur in a pair and act as either a source or a sink of Berry flux. This material also has unique surface states in the form of Fermi arcs, which unlike other known Weyl semimetals forms closed loops of surface states on the Fermi surface. Our theoretical realization of topologically non-trivial states in a superconducting material paves the way towards unraveling the interconnection between topological physics and superconductivity.
Multifunctional transparent ZnO nanorod films.
Kwak, Geunjae; Jung, Sungmook; Yong, Kijung
2011-03-18
Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.
Deformation and stability of surface states in Dirac semimetals
NASA Astrophysics Data System (ADS)
Kargarian, Mehdi; Lu, Yuan-Ming; Randeria, Mohit
2018-04-01
The unusual surface states of topological semimetals have attracted a lot of attention. Recently, we showed [Proc. Natl. Acad. Sci. USA 113, 8648 (2016), 10.1073/pnas.1524787113] that for a Dirac semimetal (DSM) arising from band inversion, such as Na3Bi and Cd3As2 , the expected double Fermi arcs on the surface are not topologically protected. Quite generally, the arcs deform into states similar to those on the surface of a strong topological insulator. Here we address two questions related to deformation and stability of surface states in DSMs. First, we discuss why certain perturbations, no matter how large, are unable to destroy the double Fermi arcs. We show that this is related to a certain extra (particle-hole) symmetry, which is nongeneric in materials. Second, we discuss situations in which the surface states are completely destroyed without breaking any symmetry or impacting the bulk Dirac nodes. We are not aware of any experimental or density functional theory (DFT) candidates for a material which is a bulk DSM without any surface states, but our results clearly show that this is possible.
Electrochemical Protection of Thin Film Electrodes in Solid State Nanopores
Harrer, Stefan; Waggoner, Philip S.; Luan, Binquan; Afzali-Ardakani, Ali; Goldfarb, Dario L.; Peng, Hongbo; Martyna, Glenn; Rossnagel, Stephen M.; Stolovitzky, Gustavo A.
2011-01-01
We have eliminated electrochemical surface oxidation and reduction as well as water decomposition inside sub-5-nm wide nanopores in conducting TiN membranes using a surface passivation technique. Nanopore ionic conductances, and therefore pore diameters, were unchanged in passivated pores after applying potentials of ±4.5 V for as long as 24 h. Water decomposition was eliminated by using aqueous 90% glycerol solvent. The use of a protective self-assembled monolayer of hexadecylphosphonic acid was also investigated. PMID:21597142
Li, C. H.; van ‘t Erve, O. M. J.; Rajput, S.; ...
2016-11-17
Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states with spin–momentum locking. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion. A bias current is expected to generate spin polarization in both systems, although with different magnitude and sign. Here we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) where Dirac surface states coexist with trivial 2DEG states, and in InAs(001) where only trivial 2DEG states are present. We observe spin polarization arising from spin–momentum locking in both cases, with oppositemore » signs of the measured spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the sign expected for the Dirac surface states, and show that the dominant contribution to the current-generated spin polarization in the TI is from the Dirac surface states.« less
[Studies on organic protective coatings for anti-atomic oxygen effects by spectrum analysis].
Zhang, Lei
2004-11-01
This paper describes organic protective coatings on space material for anti-AO effects and the experiments to assess properties of the coatings. Organic protection was analyzed after exposures to ground state fast atomic (AO) radiation in the atomic oxygen beam facility for ground simulation experiments. The tests results have been analyzed with advanced FTIR, XPS and SEM. The test indicated that epoxy, alkyd and urethane organic coatings were highly reactive to AO with a strong degradation and changed in morphology of the surface layer. It is evident that siloxane coatings have excellent properties for anti-AO effects. The erosion product has SiO2 left on the surface, thus providing protection from further attack by the energetic oxygen atoms.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
NASA Astrophysics Data System (ADS)
Singh, Bahadur; Zhou, Xiaoting; Lin, Hsin; Bansil, Arun
2018-02-01
Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low crystalline symmetric T T'X family of compounds (T ,T' = transition metal, X = Si or Ge) in the absence of spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this material harbors a single nodal line on the ky=0 plane with large energy dispersion and unique drumhead surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system transitions to a strong topological insulator state with Z2=(1 ;000 ) . The topological surface state evolves from the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These features differ remarkably from those of the currently known topological surface states in topological insulators such as Bi2Se3 with Dirac-cone-like energy dispersions.
Rules, Roles, and Responsibilities in Transportation Planning and Air Quality: One State's View
DOT National Transportation Integrated Search
1999-01-01
The Clean Air Act Amendments (CAAA) of 1990 and the Intermodal Surface : Transportation Efficiency Act (ISTEA) of 1991 are a pivotal moment in : transportation planning in the United States. In 1997 the U.S. Environmental : Protection Agency revised ...
Do the surface Fermi arcs in Weyl semimetals survive disorder?
NASA Astrophysics Data System (ADS)
Wilson, Justin H.; Pixley, J. H.; Huse, David A.; Refael, Gil; Das Sarma, S.
2018-06-01
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e., they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.
2016-03-04
release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Instead of characterizing a hypersonic flight environment and then selecting an appropriate thermal ...Instead of characterizing a hypersonic flight environment and then selecting an appropriate thermal protection system (TPS) that can survive the...than the O2(a1Δg) production rate on the surface. It is also interesting to note that the ground state formation seems to approach a constant
Topological crystalline materials: General formulation, module structure, and wallpaper groups
NASA Astrophysics Data System (ADS)
Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori
2017-06-01
We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.
The Outlook in the Protective Service Fields
ERIC Educational Resources Information Center
Talley, Gregory; Korsgren, Susan
2009-01-01
Opportunities abound for prospective employees in the protective services. On the surface, it appears that few employers require a college education as a condition of employment at the state or local level. But the reality is that many employers use at least some college as a screening tool for prospective employees. Although the federal…
Recipe for generating Weyl semimetals with extended topologically protected features
NASA Astrophysics Data System (ADS)
Wang, R.; Zhao, J. Z.; Jin, Y. J.; Xu, W. P.; Gan, L.-Y.; Wu, X. Z.; Xu, H.; Tong, S. Y.
2017-09-01
We present a recipe that leads to Weyl semimetals with extended topologically protected features. We show that compounds in a family that possess time-reversal symmetry and share a noncentrosymmetric cubic structure with the space group F -43 m (no. 216) host robust Weyl fermions with extended and easily measurable protected features. The candidates in this family are compounds with different chemical formulas, A B2 , ABC, AB C2 , and ABCD, and their Fermi levels are predominantly populated by nontrivial Weyl fermions. Symmetry of the system requires that the Weyl nodes with opposite chirality are well separated in momentum space. Adjacent Weyl points have the same chirality; thus these Weyl nodes would not annihilate each other with respect to lattice perturbations. As Fermi arcs and surface states connect Weyl nodes with opposite chirality, the large separation of the latter in momentum space guarantees the appearance of very long arcs and surface states. This work demonstrates that the use of system symmetry by first-principles calculations is a powerful approach for discovering new Weyl semimetals with attractive features whose protected fermions may be candidates of many applications.
Recent advances in spacecraft thermal-control materials research.
NASA Technical Reports Server (NTRS)
Zerlaut, G. A.; Gilligan, J. E.; Gates, D. W.
1972-01-01
The state-of-the-art of spacecraft thermal-control materials technology has been significantly advanced during the past 4 years. Selective black coatings are discussed together with black paints, dielectric films on metal surfaces, and white radiator coatings. Criteria for the selection of thermal-control surfaces are considered, giving attention to prelaunch protection, the capability of being measured, reproducibility, simulator response, and aspects of a nonindigenous space environment. Progress in space simulation is related to vacuum technology, ultraviolet sources, solar wind simulation, and the production of protons. Advances have been made in the protection against space environmental effects, and in the development of thermal-control surfaces and pigments.
Recent Progress on Stability and Passivation of Black Phosphorus.
Abate, Yohannes; Akinwande, Deji; Gamage, Sampath; Wang, Han; Snure, Michael; Poudel, Nirakar; Cronin, Stephen B
2018-05-11
From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in-plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi-metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semiconductor with protective surface coating and method of manufacture thereof. [Patent application
Hansen, W.L.; Haller, E.E.
1980-09-19
Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.
Optical Interface States Protected by Synthetic Weyl Points
NASA Astrophysics Data System (ADS)
Wang, Qiang; Xiao, Meng; Liu, Hui; Zhu, Shining; Chan, C. T.
2017-07-01
Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi arcs and chiral anomaly have fueled the interest in these topological points which are frequently perceived as monopoles in momentum space. Here, we report the experimental observation of generalized optical Weyl points inside the parameter space of a photonic crystal with a specially designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states between photonic crystals and any reflecting substrates. The reflection phase vortexes have been confirmed for the first time in our experiments, which serve as an experimental signature of the generalized Weyl points. The existence of these interface states is protected by the topological properties of the Weyl points, and the trajectories of these states in the parameter space resembles those of Weyl semimetal "Fermi arc surface states" in momentum space. Tracing the origin of interface states to the topological character of the parameter space paves the way for a rational design of strongly localized states with enhanced local field.
Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.
Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali
2016-03-11
Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.
2018-04-01
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.
2012-01-01
We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement. PMID:23072433
Fan, Zheyong; Zheng, Jiansen; Wang, Hui-Qiong; Zheng, Jin-Cheng
2012-10-16
We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement.
Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States
NASA Astrophysics Data System (ADS)
Hasan, M. Zahid; Xu, Su-Yang; Belopolski, Ilya; Huang, Shin-Ming
2017-03-01
Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk electronic wave functions of the material. Recently, it has been shown that the TaAs and NbAs classes of materials harbor such a state of topological matter. We review the basic phenomena and experimental history of the discovery of the first Weyl semimetals, starting with the observation of topological Fermi arcs and Weyl nodes in TaAs and NbAs by angle and spin-resolved surface and bulk sensitive photoemission spectroscopy and continuing through magnetotransport measurements reporting the Adler-Bell-Jackiw chiral anomaly. We hope that this article provides a useful introduction to the theory of Weyl semimetals, a summary of recent experimental discoveries, and a guideline to future directions.
The Environmental Protection Agency (USEPA) in collaboration with the States is assessing and reporting on the condition of surface waters in the United States using synoptic surveys and consistent field collections of water quality indicators (WQI). The survey is a probability-b...
Huang, Huaqing; Jin, Kyung-Hwan; Zhang, Shunhong; Liu, Feng
2018-03-14
Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y 2 C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y 2 C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y 2 C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.
Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z
2013-01-01
The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.
Three-component fermions with surface Fermi arcs in tungsten carbide
NASA Astrophysics Data System (ADS)
Ma, J.-Z.; He, J.-B.; Xu, Y.-F.; Lv, B. Q.; Chen, D.; Zhu, W.-L.; Zhang, S.; Kong, L.-Y.; Gao, X.; Rong, L.-Y.; Huang, Y.-B.; Richard, P.; Xi, C.-Y.; Choi, E. S.; Shao, Y.; Wang, Y.-L.; Gao, H.-J.; Dai, X.; Fang, C.; Weng, H.-M.; Chen, G.-F.; Qian, T.; Ding, H.
2018-04-01
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have a non-trivial band topology manifested by gapless surface states, which induce exotic surface Fermi arcs1,2. Recent advances suggest new types of topological semimetal, in which spatial symmetries protect gapless electronic excitations without high-energy analogues3-11. Here, using angle-resolved photoemission spectroscopy, we observe triply degenerate nodal points near the Fermi level of tungsten carbide with space group
Magnetic second-order topological insulators and semimetals
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-04-01
We propose magnetic second-order topological insulators (SOTIs). First, we study a three-dimensional model. It is pointed out that the previously proposed topological hinge insulator has actually surface states along the [001] direction in addition to hinge states. We gap out these surface states by introducing magnetization, obtaining a SOTI only with hinge states. The bulk topological number is the Z2 index protected by the combined symmetry of the fourfold rotation and the inversion symmetry. We next study two-dimensional magnetic SOTIs, where the corner states are robust also in the presence of the magnetization. Finally, we construct a magnetic second-order topological semimetal by layering the two-dimensional magnetic SOTIs, where hinge-arc states are robust also in the presence of the magnetization.
Experimental discovery of a topological Weyl semimetal state in TaP
Xu, Su -Yang; Belopolski, Ilya; Sanchez, Daniel S.; ...
2015-11-13
Here, Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we findmore » that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.« less
Faust, Derek R; Moore, Matthew T; Emison, Gerald Andrews; Rush, Scott A
2016-05-01
The 1972 Clean Water Act was passed to protect chemical, physical, and biological integrity of United States' waters. The U.S. Environmental Protection Agency and U.S. Army Corps of Engineers codified a new "waters of the United States" rule on June 29, 2015, because several Supreme Court case decisions caused confusion with the existing rule. Climate change could affect this rule through connectivity between groundwater and surface waters; floodplain waters and the 100-year floodplain; changes in jurisdictional status; and sea level rise on coastal ecosystems. Four approaches are discussed for handling these implications: (1) "Wait and see"; (2) changes to the rule; (3) use guidance documents; (4) Congress statutorily defining "waters of the United States." The approach chosen should be legally defensible and achieved in a timely fashion to provide protection to "waters of the United States" in proactive consideration of scientifically documented effects of climate change on aquatic ecosystems.
Skyrme insulators: insulators at the brink of superconductivity
Ertem, Onur; Chang, Po -Yao; Coleman, Piers; ...
2017-08-04
Current theories of superfluidity are based on the idea of a coherent quantum state with topologically protected, quantized circulation. When this topological protection is absent, as in the case of 3He-A, the coherent quantum state no longer supports persistent superflow. In this paper, we argue that the loss of topological protection in a superconductor gives rise to an insulating ground state. Specifically, we introduce the concept of a Skyrme insulator to describe the coherent dielectric state that results from the topological failure of superflow carried by a complex vector order parameter. Here, we apply this idea to the case ofmore » SmB6, arguing that the observation of a diamagnetic Fermi surface within an insulating bulk can be understood as a realization of this state. Our theory enables us to understand the linear specific heat of SmB6 in terms of a neutral Majorana Fermi sea and leads us to predict that in low fields of order a Gauss, SmB6 will develop a Meissner effect.« less
Skyrme Insulators: Insulators at the Brink of Superconductivity
NASA Astrophysics Data System (ADS)
Erten, Onur; Chang, Po-Yao; Coleman, Piers; Tsvelik, Alexei M.
2017-08-01
Current theories of superfluidity are based on the idea of a coherent quantum state with topologically protected quantized circulation. When this topological protection is absent, as in the case of 3He -A , the coherent quantum state no longer supports persistent superflow. Here, we argue that the loss of topological protection in a superconductor gives rise to an insulating ground state. We specifically introduce the concept of a Skyrme insulator to describe the coherent dielectric state that results from the topological failure of superflow carried by a complex-vector order parameter. We apply this idea to the case of SmB6 , arguing that the observation of a diamagnetic Fermi surface within an insulating bulk can be understood as a realization of this state. Our theory enables us to understand the linear specific heat of SmB6 in terms of a neutral Majorana Fermi sea and leads us to predict that in low fields of order a Gauss, SmB6 will develop a Meissner effect.
High surface conductivity of Fermi-arc electrons in Weyl semimetals
NASA Astrophysics Data System (ADS)
Resta, Giacomo; Pi, Shu-Ting; Wan, Xiangang; Savrasov, Sergey Y.
2018-02-01
Weyl semimetals (WSMs), a new type of topological condensed matter, are currently attracting great interest due to their unusual electronic states and intriguing transport properties such as chiral anomaly induced negative magnetoresistance, a semiquantized anomalous Hall effect, and the debated chiral magnetic effect. These systems are close cousins of topological insulators (TIs) which are known for their disorder-tolerant surface states. Similarly, WSMs exhibit unique topologically protected Fermi-arc surface states. Here, we analyze electron-phonon scattering, a primary source of resistivity in metals at finite temperatures, as a function of the shape of the Fermi arc where we find that the impact on surface transport is significantly dependent on the arc curvature and disappears in the limit of a straight arc. Next, we discuss the effect of strong surface disorder on the resistivity by numerically simulating a tight-binding model with the presence of quenched surface vacancies using the coherent potential approximation and Kubo-Greenwood formalism. We find that the limit of a straight arc geometry is remarkably disorder tolerant, producing surface conductivity that is one to two orders of magnitude larger than a comparable setup with surface states of TI. This is primarily attributed to a significantly different hybridization strength of the surface states with the remaining electrons in two systems. Finally, a simulation of the effects of surface vacancies on TaAs is presented, illustrating the disorder tolerance of the topological surface states in a recently discovered WSM material.
Fermi Level Manipulation through Native Doping in the Topological Insulator Bi2Se3.
Walsh, Lee A; Green, Avery J; Addou, Rafik; Nolting, Westly; Cormier, Christopher R; Barton, Adam T; Mowll, Tyler R; Yue, Ruoyu; Lu, Ning; Kim, Jiyoung; Kim, Moon J; LaBella, Vincent P; Ventrice, Carl A; McDonnell, Stephen; Vandenberghe, William G; Wallace, Robert M; Diebold, Alain; Hinkle, Christopher L
2018-06-08
The topologically protected surface states of three-dimensional (3D) topological insulators have the potential to be transformative for high-performance logic and memory devices by exploiting their specific properties such as spin-polarized current transport and defect tolerance due to suppressed backscattering. However, topological insulator based devices have been underwhelming to date primarily due to the presence of parasitic issues. An important example is the challenge of suppressing bulk conduction in Bi 2 Se 3 and achieving Fermi levels ( E F ) that reside in between the bulk valence and conduction bands so that the topologically protected surface states dominate the transport. The overwhelming majority of the Bi 2 Se 3 studies in the literature report strongly n-type materials with E F in the bulk conduction band due to the presence of a high concentration of selenium vacancies. In contrast, here we report the growth of near-intrinsic Bi 2 Se 3 with a minimal Se vacancy concentration providing a Fermi level near midgap with no extrinsic counter-doping required. We also demonstrate the crucial ability to tune E F from below midgap into the upper half of the gap near the conduction band edge by controlling the Se vacancy concentration using post-growth anneals. Additionally, we demonstrate the ability to maintain this Fermi level control following the careful, low-temperature removal of a protective Se cap, which allows samples to be transported in air for device fabrication. Thus, we provide detailed guidance for E F control that will finally enable researchers to fabricate high-performance devices that take advantage of transport through the topologically protected surface states of Bi 2 Se 3 .
18 CFR 740.4 - State water management planning program.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...
Wang, Ying; Luo, Guoyu; Liu, Junwei; ...
2017-08-28
Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Luo, Guoyu; Liu, Junwei
Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less
Chemical surface washing agents are formulations designed to help release stranded oil from shoreline substrates.The U.S. Environmental Protection Agency (EPA), in response to the Oil Pollution Act of 1990, Initiated study of these cleaning agents. The project summarized here had...
Ground Water Modeling Research
EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.
Effects of impurity adsorption on topological surface states of Bi2Te3
NASA Astrophysics Data System (ADS)
Shati, Khaqan; Arshad Farhan, M.; Selva Chandrasekaran, S.; Shim, Ji Hoon; Lee, Geunsik
2017-08-01
Electronic structures of Bi2Te3 with adsorption of Rb, In, Ga and Au atoms are studied by using the first-principle method, focusing on the effect of non-magnetic impurities on the topologically protected surface states. Upon monolayer formation, the bulk conduction band is moved down to the Fermi level with a significant Rashba splitting due to n-doping behavior with band modification details depending on the adatom chemistry. Our study shows the robustness of the intrinsic spin-momentum coupled surface band and emergence of a new similar one, which could provide helpful insight for developing novel spintronic devices.
Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.
Kubota, Takahiro
2012-06-01
Skin roughness is a term commonly used in Japan to describe a poor skin condition related to a rough and dry skin surface that develops as a result of various damaging effects from the environment or skin inflammation. Recovery from skin roughness requires skin care for a long period, thus it is important to prevent development of such skin changes. PROTECT X2 contains agents used for a protective covering of the skin from frequent hand washing or use of alcohol-based disinfectants. These unique components are also thought to be effective to treat skin roughness of the dorsa of the hands and heels. In the present study, we evaluated the effectiveness of PROTECT X2 to increase skin surface hydration state, as well as enhance the barrier function of the stratum corneum of the dorsa of the hands and heels in elderly individuals. A total of 8 elderly subjects and their caretakers without any skin diseases participated in the study. They applied PROTECT X2 by themselves to the dorsum area of 1 hand and heel 3 to 5 times daily for 1 month, while the opposite sides were left untreated. We measured stratum corneum (SC) hydration and transepidermal water loss (TEWL) before beginning treatment, then 1 week and 1 month after the start of treatment to compare between the treated and untreated skin. SC hydration state after applications of PROTECT X2 was 1.5- to 3.0-fold higher than that of the untreated skin in the dorsa of both hands and heels, indicating that the moisturizing ingredients accompanied by water were replenished in those areas where the cream was applied. Also, TEWL in the dorsum of the hands was 17.0-27.9% lower on the treated side, indicating improvement in SC barrier function. On the basis of these findings, we concluded that PROTECT X2 enhances water-holding in the SC and aids the barrier function of the skin in the dorsum of the hands. In addition, we consider that this formulation is useful for not only protecting the hands from the effects of such agents as detergents and alcohol-based disinfectants, but also for protecting heel skin covered by a thick SC from dry and cold conditions such as those encountered in winter. However, since the SC in that area is much thicker than that of the hands, the barrier function was not significantly improved within 1 month of daily treatments.
The effect of superhydrophobic wetting state on corrosion protection--the AKD example.
Ejenstam, Lina; Ovaskainen, Louise; Rodriguez-Meizoso, Irene; Wågberg, Lars; Pan, Jinshan; Swerin, Agne; Claesson, Per M
2013-12-15
Corrosion is of considerable concern whenever metal is used as construction material. In this study we address whether superhydrophobic coatings could be used as part of an environmentally friendly corrosion-protective system, and specific focus is put on how the wetting regime of a superhydrophobic coating affects corrosion inhibition. Superhydrophobic alkyl ketene dimer (AKD) wax coatings were produced, using different methods resulting in hierarchical structures, where the coatings exhibit the same surface chemistry but different wetting regimes. Contact angle measurements, ESEM, confocal Raman microscopy, open circuit potential and electrochemical impedance spectroscopy were used to evaluate the surfaces. Remarkably high impedance values of 10(10)Ω cm(2) (at 10(-2) Hz) were reached for the sample showing superhydrophobic lotus-like wetting. Simultaneous open circuit potential measurements suggest that the circuit is broken, most likely due to the formation of a thin air layer at the coating-water interface that inhibits ion transport from the electrolyte to the metal substrate. The remaining samples, showing superhydrophobic wetting in the rose state and hydrophobic Wenzel-like wetting, showed less promising corrosion-protective properties. Due to the absence of air films on these surfaces the coatings were penetrated by the electrolyte, which allowed the corrosion reaction to proceed. Copyright © 2013 Elsevier Inc. All rights reserved.
Direct observation of surface-state thermal oscillations in SmB6 oscillators
NASA Astrophysics Data System (ADS)
Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing
2018-01-01
SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.
Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008
Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.
2009-01-01
Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).
Surface field theories of point group symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Huang, Sheng-Jie; Hermele, Michael
2018-02-01
We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.
Effects of spin excitons on the surface states of SmB 6 : A photoemission study
Arab, Arian; Gray, A. X.; Nemšák, S.; ...
2016-12-12
We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB 6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4 f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about - 9 meV at low temperatures. We also attribute this feature tomore » a resonance caused by the spin-exciton scattering in SmB 6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. Thus, the existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.« less
ERIC Educational Resources Information Center
Kerns, Waldon R., Ed.
This publication contains the papers presented at a National Conference on Ground Water Quality Protection Policy held in April of 1977. Paper titles include: (1) Magnitude of the Ground-Water Contamination Problem; (2) Limited Degredation as a Ground-Water Quality Policy; (3) Surface and Subsurface Mining: Policy Implications; (4) Oil Well…
2016-03-16
whistleblower protection, please see the inside back cover. I N T E G R I T Y E F F I C I E N C Y A C C O U N T A B I L I T Y E X C E L L...USTRANSCOM United States Transportation Command Whistleblower Protection U.S. Department of Defense The Whistleblower Protection Enhancement Act of...2012 requires the Inspector General to designate a Whistleblower Protection Ombudsman to educate agency employees about prohibitions on retaliation
Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2.
Guan, Syu-You; Chen, Peng-Jen; Chu, Ming-Wen; Sankar, Raman; Chou, Fangcheng; Jeng, Horng-Tay; Chang, Chia-Seng; Chuang, Tien-Ming
2016-11-01
The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level ( E F ) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe 2 . Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross E F , on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe 2 as a promising candidate for TSC.
Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films
Logan, J. A.; Patel, S. J.; Harrington, S. D.; ...
2016-06-27
The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi 2Se 3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin-more » and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. As a result, this experimental verification of topological behavior is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices.« less
Maezawa, Shun-ya; Watanabe, Hiroshi; Takeda, Masahiro; Kuroda, Kenta; Someya, Takashi; Matsuda, Iwao; Suemoto, Tohru
2015-01-01
Ultrafast infrared photoluminescence spectroscopy was applied to a three-dimensional topological insulator TlBiSe2 under ambient conditions. The dynamics of the luminescence exhibited bulk-insulating and gapless characteristics bounded by the bulk band gap energy. The existence of the topologically protected surface state and the picosecond-order relaxation time of the surface carriers, which was distinguishable from the bulk response, were observed. Our results provide a practical method applicable to topological insulators under ambient conditions for device applications. PMID:26552784
Varied ecosystems need different fire protection
Gutsell, Sheri L.; Johnson, Edward A.; Miyanishi, Kiyoko; Keeley, Jon E.; Dickinson, Matthew; Bridge, Simon R. J.
2001-01-01
Covington states in his Commentary1 that the open ponderosa pine forests of the western United States are "in widespread collapse" because fire suppression by humans has eliminated the low-intensity surface fire regime that maintained the open, park-like structure of these forests. He fears this will lead to an "unprecedented" crown fire regime that will eliminate forests.
Disorder-Induced Topological State Transition in Photonic Metamaterials
NASA Astrophysics Data System (ADS)
Liu, Changxu; Gao, Wenlong; Yang, Biao; Zhang, Shuang
2017-11-01
The topological state transition has been widely studied based on the quantized topological band invariant such as the Chern number for the system without intense randomness that may break the band structures. We numerically demonstrate the disorder-induced state transition in the photonic topological systems for the first time. Instead of applying the ill-defined topological band invariant in a disordered system, we utilize an empirical parameter to unambiguously illustrate the state transition of the topological metamaterials. Before the state transition, we observe a robust surface state with well-confined electromagnetic waves propagating unidirectionally, immune to the disorder from permittivity fluctuation up to 60% of the original value. During the transition, a hybrid state composed of a quasiunidirectional surface mode and intensively localized hot spots is established, a result of the competition between the topological protection and Anderson localization.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
..., Landfill, and Surface Disposal in EPA Region 8 AGENCY: Environmental Protection Agency (EPA). ACTION... operations that generate, treat, and/or use/ dispose of sewage sludge by means of land application, landfill... application, landfill, and surface disposal in the States of CO, MT, ND, and WY and in Indian country in the...
Instream flow and water regime of selected riparian habitats in west-central Montana
Stephanie K. Mulica; Donald F. Potts; Robert D. Pfister
2002-01-01
Groundwater and surface water extraction and diversion for agricultural and human use has become common practice in the arid and semi-arid western United States. Surface water and groundwater are often not effectively managed during these processes, and few laws exist to protect riparian vegetation in the case of depletion of in-stream flows. "Instream flow"...
Ion-plasma protective coatings for gas-turbine engine blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.
2007-10-01
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).
Quasiparticle Interference Studies of Quantum Materials.
Avraham, Nurit; Reiner, Jonathan; Kumar-Nayak, Abhay; Morali, Noam; Batabyal, Rajib; Yan, Binghai; Beidenkopf, Haim
2018-06-03
Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of these surface states have provided a wealth of spectroscopic characterization, with the successful cooperation of ab initio calculations. The method of quasiparticle interference imaging proves to be particularly useful for probing the dispersion relation of the surface bands. Herein, how a variety of additional fundamental electronic properties can be probed via this method is reviewed. It is demonstrated how quasiparticle interference measurements entail mesoscopic size quantization and the electronic phase coherence in semiconducting nanowires; helical spin protection and energy-momentum fluctuations in a topological insulator; and the structure of the Bloch wave function and the relative insusceptibility of topological electronic states to surface potential in a topological Weyl semimetal. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The role of the micro environment on the tribological behavior of materials
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1980-01-01
The paper reviews studies of the role of the microenvironment in the adhesion, friction, and wear behavior of materials in solid-state contact. The microenvironment is defined as the environment on the surface of solids in solid-state contact. Properties of the environment are discussed which exert an influence on the adhesion, friction, wear, and lubrication of materials in contact. The effect of the environment on lubricants and their properties is considered with respect to the interaction of lubricants with material surfaces in contact; the effect on the ability of lubricants to provide protective surface films is also considered. It is concluded that naturally occurring oxides are probably the best available natural solid-film lubricants.
In Brief: Coal mining regulations
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-12-01
The U.S. Department of the Interior (DOI) announced on 18 November measures to strengthen the oversight of state surface coal mining programs and to promulgate federal regulations to protect streams affected by surface coal mining operations. DOI's Office of Surface Mining Reclamation and Enforcement (OSM) is publishing an advance notice of a proposed rule about protecting streams from adverse impacts of surface coal mining operations. A rule issued by the Bush administration in December 2008 allows coal mine operators to place excess excavated materials into streams if they can show it is not reasonably possible to avoid doing so. “We are moving as quickly as possible under the law to gather public input for a new rule, based on sound science, that will govern how companies handle fill removed from mountaintop coal seams,” according to Wilma Lewis, assistant secretary for Land and Minerals Management at DOI.
At present, over 40% of the earth's land surface has been converted from its natural state to one dominated by human activities such as agriculture and development. The destruction and degradation of natural habitats has been clearly linked to the loss of biodiversity. Biodiver...
Temperature-driven Topological Phase Transition in MoTe2
NASA Astrophysics Data System (ADS)
Notis Berger, Ayelet; Andrade, Erick; Kerelsky, Alex; Cheong, Sang-Wook; Li, Jian; Bernevig, B. Andrei; Pasupathy, Abhay
The discovery of several candidates predicted to be weyl semimetals has made it possible to experimentally study weyl fermions and their exotic properties. One example is MoTe2, a transition metal dichalcogenide. At temperatures below 240 K it is predicted to be a type II Weyl semimetal with four Weyl points close to the fermi level. As with most weyl semimetals, the complicated band structure causes difficulty in distinguishing features related to bulk states and those related to topological fermi arc surface states characteristic of weyl semimetals. MoTe2 is unique because of its temperature-driven phase change. At high temperatures, MoTe2 is monoclinic, with trivial surface states. When cooled below 240K, it undergoes a first order phase transition to become an orthorhombic weyl semimetal with topologically protected fermi arc surface states. We present STM and STS measurements on MoTe2 crystals in both states. In the orthorhombic phase, we observe scattering that is consistent with the presence of the Fermi-arc surface states. Upon warming into the monoclinic phase, these features disappear in the observed interference patterns, providing direct evidence of the topological nature of the fermi arcs in the Weyl phase
Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A
2015-09-02
We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.
Topological superfluids confined in a nanoscale slab geometry
NASA Astrophysics Data System (ADS)
Saunders, John
2013-03-01
Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464
Countering resistance to protected-area extension.
Lindenmayer, David; Thorn, Simon; Noss, Reed
2018-04-01
The establishment of protected areas is a critical strategy for conserving biodiversity. Key policy directives like the Aichi targets seek to expand protected areas to 17% of Earth's land surface, with calls by some conservation biologists for much more. However, in places such as the United States, Germany, and Australia, attempts to increase protected areas are meeting strong resistance from communities, industry groups, and governments. We examined case studies of such resistance in Victoria, Australia, Bavaria, Germany, and Florida, United States. We considered 4 ways to tackle this problem. First, broaden the case for protected areas beyond nature conservation to include economic, human health, and other benefits, and translate these into a persuasive business case for protected areas. Second, better communicate the conservation values of protected areas. This should include highlighting how many species, communities, and ecosystems have been conserved by protected areas and the counterfactual (i.e., what would have been lost without protected area establishment). Third, consider zoning of activities to ensure the maintenance of effective management. Finally, remind citizens to think about conservation when they vote, including holding politicians accountable for their environmental promises. Without tackling resistance to expanding the protected estate, it will be impossible to reach conservation targets, and this will undermine attempts to stem the global extinction crisis. © 2017 Society for Conservation Biology.
Atmospheric ammonia and particulate inorganic nitrogen over the United States
We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...
Addressing Uncertainty in Fecal Indicator Bacteria Dark Inactivation Rates
Fecal contamination is a leading cause of surface water quality degradation. Roughly 20% of all total maximum daily load assessments approved by the United States Environmental Protection Agency since 1995, for example, address water bodies with unacceptably high fecal indicator...
Superconducting quantum circuits at the surface code threshold for fault tolerance.
Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M
2014-04-24
A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.
NASA Astrophysics Data System (ADS)
Ali, A.; Jakubowski, M.; Greuner, H.; Böswirth, B.; Moncada, V.; Sitjes, A. Puig; Neu, R.; Pedersen, T. S.; the W7-X Team
2017-12-01
One of the aims of stellarator Wendelstein 7-X (W7-X), is to investigate steady state operation, for which power exhaust is an important issue. The predominant fraction of the energy lost from the confined plasma region will be absorbed by an island divertors, which is designed for 10 {{MWm}}-2 steady state operation. In order to protect the divertor targets from overheating, 10 state-of-the-art infrared endoscopes will be installed at W7-X. In this work, we present the experimental results obtained at the high heat flux test facility GLADIS (Garching LArge DIvertor Sample test facility in IPP Garching) [1] during tests of a new plasma facing components (PFCs) protection algorithm designed for W7-X. The GLADIS device is equipped with two ion beams that can generate a heat load in the range from 3 MWm-2 to 55 MWm-2. The algorithms developed at W7-X to detect defects and hot spots are based on the analysis of surface temperature evolution and are adapted to work in near real-time. The aim of this work was to test the near real-time algorithms in conditions close to those expected in W7-X. The experiments were performed on W7-X pre-series tiles to detect CFC/Cu delaminations. For detection of surface layers, carbon fiber composite (CFC) blocks from the divertor of the Wendelstein 7-AS stellarator were used to observe temporal behavior of fully developed surface layers. These layers of re-deposited materials, like carbon, boron, oxygen and iron, were formed during the W7-AS operation. A detailed analysis of the composition and their thermal response to high heat fluxes (HHF) are described in [2]. The experiments indicate that the automatic detection of critical events works according to W7-X PFC protection requirements.
U-Zr alloy: XPS and TEM study of surface passivation
NASA Astrophysics Data System (ADS)
Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.
2018-05-01
Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.
Gawande, Purushottam V; Bhagwat, Arvind A
2002-01-01
Salmonellae are the most frequently reported cause of outbreaks of food-borne gastroenteritis in the United States. In clinical trials, the oral infective dose (ID) for healthy volunteers was estimated to be approximately 1 million cells. However, in reports from various outbreaks, the ID of Salmonella species associated with solid foods was estimated to be as few as 100 cells. We found that fresh-cut produce surfaces not only provided suitable solid support for pathogen attachment but also played a critical role in increasing the acid tolerance of the pathogen. However the acidic nature of certain produce played no role in making salmonellae resistant to stomach acidity. Inoculation onto fresh-cut produce surfaces, as well as onto inert surfaces, such as polyethersulfone membranes and tissue paper, increased the survival of salmonellae during acid challenge (50 mM Na-citrate, pH 3.0; 37 degrees C; 2 h) by 4 to 5 log units. Acid challenge experiments using cells inoculated onto polyethersulfone membranes provided a model system suitable for studying the underlying fundamentals of the protection that occurs when Salmonella strains are associated with solid foods. The surface-associated acid protection, which was observed in several Salmonella strains, required de novo protein synthesis and was independent of stationary-phase sigma transcription factor.
Kwak, Jin Il; Nam, Sun-Hwa; An, Youn-Joo
2018-02-01
Since the Korean Ministry of the Environment established the Master Plan for Water Environment (2006-2015), the need to revise the water quality standards (WQSs) has driven government projects to expand the standards for the protection of human health and aquatic ecosystems. This study aimed to provide an historical overview of how these WQSs were established, amended, and expanded over the past 10 years in Korea. Here, major projects related to national monitoring in rivers and the amendment of WQSs were intensely reviewed, including projects on the categorization of hazardous chemicals potentially discharged into surface water, the chemical ranking and scoring methodology for surface water (CRAFT, Chemical RAnking of surFace water polluTants), whole effluent toxicity (WET) management systems, the 4th, 5th, and 6th revisions of the water quality standards for the protection of human health, and efforts toward developing the 7th revision. In this review, we assimilated the past and current status as well as future perspectives of Korean surface WQSs. This research provides information that aids our understanding of how surface WQSs have been expanded, and how scientific approaches to ensure water quality have been applied at each step of the process in Korea.
Gawande, Purushottam V.; Bhagwat, Arvind A.
2002-01-01
Salmonellae are the most frequently reported cause of outbreaks of food-borne gastroenteritis in the United States. In clinical trials, the oral infective dose (ID) for healthy volunteers was estimated to be approximately 1 million cells. However, in reports from various outbreaks, the ID of Salmonella species associated with solid foods was estimated to be as few as 100 cells. We found that fresh-cut produce surfaces not only provided suitable solid support for pathogen attachment but also played a critical role in increasing the acid tolerance of the pathogen. However the acidic nature of certain produce played no role in making salmonellae resistant to stomach acidity. Inoculation onto fresh-cut produce surfaces, as well as onto inert surfaces, such as polyethersulfone membranes and tissue paper, increased the survival of salmonellae during acid challenge (50 mM Na-citrate, pH 3.0; 37°C; 2 h) by 4 to 5 log units. Acid challenge experiments using cells inoculated onto polyethersulfone membranes provided a model system suitable for studying the underlying fundamentals of the protection that occurs when Salmonella strains are associated with solid foods. The surface-associated acid protection, which was observed in several Salmonella strains, required de novo protein synthesis and was independent of stationary-phase sigma transcription factor. PMID:11772613
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Pervious pavements - installation, operations and strength part 1 : pervious concrete.
DOT National Transportation Integrated Search
2011-08-01
Pervious pavement systems are now being recognized as a best management practice by the Environmental Protection Agency and the state of Florida. The pervious concrete system is designed to have enhanced pore sizes in the surface layer compared to co...
Pervious pavements - installation, operations and strength part 3 : permeable paver systems.
DOT National Transportation Integrated Search
2011-08-01
Pervious pavement systems are now being recognized as a best management practice by the Environmental Protection Agency and the state of Florida. The pervious pavement systems are designed to have enhanced pore sizes in the surface layer compared to ...
Pervious pavements - installation, operations and strength part 2 : porous asphalt systems.
DOT National Transportation Integrated Search
2011-08-01
Pervious pavement systems are now being recognized as a best management practice by the Environmental Protection Agency and the state of Florida. The pervious pavement systems are designed to have enhanced pore sizes in the surface layer compared to ...
National Recommended Water Quality Criteria
The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health in surface water for approximately 150 pollutants. These criteria provide guidance for states and tribes to use in adopting water quality standards.
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
NASA Astrophysics Data System (ADS)
Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Denlinger, Jonathan; Fedorov, Alexei; Yang, Haitao; Duan, Wenhui; Yao, Hong; Wu, Yang; Fan, Shoushan; Zhang, Haijun; Chen, Xi; Zhou, Shuyun
2016-12-01
Weyl semimetal is a new quantum state of matter hosting the condensed matter physics counterpart of the relativistic Weyl fermions originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance and possibly emergent supersymmetry. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs ,,). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.
NASA Astrophysics Data System (ADS)
Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.
2018-04-01
To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.
Planetary protection and the search for life beneath the surface of Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars.
Mancinelli, Rocco L
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Ideal Weyl points and helicoid surface states in artificial photonic crystal structures.
Yang, Biao; Guo, Qinghua; Tremain, Ben; Liu, Rongjuan; Barr, Lauren E; Yan, Qinghui; Gao, Wenlong; Liu, Hongchao; Xiang, Yuanjiang; Chen, Jing; Fang, Chen; Hibbins, Alastair; Lu, Ling; Zhang, Shuang
2018-03-02
Weyl points are the crossings of linearly dispersing energy bands of three-dimensional crystals, providing the opportunity to explore a variety of intriguing phenomena such as topologically protected surface states and chiral anomalies. However, the lack of an ideal Weyl system in which the Weyl points all exist at the same energy and are separated from any other bands poses a serious limitation to the further development of Weyl physics and potential applications. By experimentally characterizing a microwave photonic crystal of saddle-shaped metallic coils, we observed ideal Weyl points that are related to each other through symmetry operations. Topological surface states exhibiting helicoidal structure have also been demonstrated. Our system provides a photonic platform for exploring ideal Weyl systems and developing possible topological devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Multidomain Skyrmion Lattice State in Cu2OSeO3.
Zhang, S L; Bauer, A; Burn, D M; Milde, P; Neuber, E; Eng, L M; Berger, H; Pfleiderer, C; van der Laan, G; Hesjedal, T
2016-05-11
Magnetic skyrmions in chiral magnets are nanoscale, topologically protected magnetization swirls that are promising candidates for spintronics memory carriers. Therefore, observing and manipulating the skyrmion state on the surface level of the materials are of great importance for future applications. Here, we report a controlled way of creating a multidomain skyrmion state near the surface of a Cu2OSeO3 single crystal, observed by soft resonant elastic X-ray scattering. This technique is an ideal tool to probe the magnetic order at the L3 edge of 3d metal compounds giving an average depth sensitivity of ∼50 nm. The single-domain 6-fold-symmetric skyrmion lattice can be broken up into domains, overcoming the propagation directions imposed by the cubic anisotropy by applying the magnetic field in directions deviating from the major cubic axes. Our findings open the door to a new way to manipulate and engineer the skyrmion state locally on the surface or on the level of individual skyrmions, which will enable applications in the future.
DOCUMENTING THE U.S. LANDFILL/IMPOUNDMENT PERMIT: A GUIDE TO TECHNICAL RESOURCES
Since 1976, beginning with the Resource Conservation and Recovery Act (RCRA), the United States government has legislated standards for landfills and surface impoundments to make certain that when disposing of hazardous wstes, human health and the environment will be protected. ...
18 CFR 740.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-04-01
... authorized by the Act and those related programs of other Federal agencies; (2) Integration of water conservation with State water management planning; (3) Integration of water quantity and water quality planning; (4) Integration of ground and surface water planning; (5) Planning for protection and management of...
THE SOLUBILITY AND SURFACE CHEMISTRY OF FRESHLY PRECIPITATED COPPER SOLIDS
Since the implementation of the United States Environmental Protection Agency’s Lead and Copper Rule (LCR) in 1991, a great deal of research has been conducted on copper corrosion and the leaching of copper from materials in drinking water distribution systems. While important...
Kathuria, Sagar V; Chan, Yvonne H; Nobrega, R Paul; Özen, Ayşegül; Matthews, C Robert
2016-03-01
Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. © 2015 The Protein Society.
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria; ...
2017-06-13
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
USGS California Water Science Center water programs in California
Shulters, Michael V.
2005-01-01
California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.
Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content ofmore » RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).« less
Dirac cone and pseudogapped density of states in the topological half-Heusler compound YPtBi
NASA Astrophysics Data System (ADS)
Kronenberg, A.; Braun, J.; Minár, J.; Elmers, H.-J.; Kutnyakhov, D.; Zaporozhchenko, A. V.; Wallauer, R.; Chernov, S.; Medjanik, K.; Schönhense, G.; Kläui, M.; Chadov, S.; Ebert, H.; Jourdan, M.
2016-10-01
Topological insulators (TIs) are exciting materials, which exhibit unprecedented properties, such as helical spin-momentum locking, which leads to large torques for magnetic switching and highly efficient spin current detection. Here we explore the compound YPtBi, an example from the class of half-Heusler materials, for which the typical band inversion of topological insulators was predicted. We prepared this material as thin films by conventional cosputtering from elementary targets. By in situ time-of-flight momentum microscopy, a Dirac conelike surface state with a Dirac point ≃300 meV below the Fermi energy was observed, in agreement with electronic structure-photoemission calculations. Only little additional spectral weight due to other states was observed at EF, which corroborates the identification of the topologically protected surface state and is highly relevant for spintronics applications.
Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku
2016-04-18
One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Principles for urban stormwater management to protect stream ecosystems
Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela
2016-01-01
Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly insurmountable historical constraints, which guarantee future, ongoing degradation.
THE SOLUBILITY AND SURFACE CHEMISTRY OF FRESHLY PRECIPITATED COPPER SOLIDS
Since the implementation of the United States Environmental Protection Agency’s Lead and Copper Rule (LCR) in 1991, a great deal of research has been conducted on copper corrosion and the leaching of copper from materials in drinking water distribution systems. While important p...
Meteoroid Protection Methods for Spacecraft Radiators Using Heat Pipes
NASA Technical Reports Server (NTRS)
Ernst, D. M.
1979-01-01
Various aspects of achieving a low mass heat pipe radiator for the nuclear electric propulsion spacecraft were studied. Specific emphasis was placed on a concept applicable to a closed Brayton cycle power sub-system. Three aspects of inter-related problems were examined: (1) the armor for meteoroid protection, (2) emissivity of the radiator surface, and (3) the heat pipe itself. The study revealed several alternatives for the achievement of the stated goal, but a final recommendation for the best design requires further investigation.
Topographic and chemical surface modifications to metal brackets after a period in the mouth.
Houb-Dine, Afaf; Bahije, Loubna; Oualalou, Youssef; Benyahia, Hicham; Zaoui, Fatima
2017-09-01
In the current state of our knowledge, the effects of corrosion on the performance of orthodontic appliances and on patient health are far from clear. Awareness of these problems has led to a growing demand for nickel-free products. Titanium brackets were recently launched on the market as an alternative to stainless-steel brackets. However, the use of fluorides for caries prevention creates a risk of corrosion of these titanium appliances. The aim of this study is to examine the corrosion of stainless-steel and titanium brackets in clinical orthodontic use, focusing on the impact of fluorine. After approval by the ethics committee and the informed consent of the patients, 30 candidates for multi-bracket treatment were selected on the basis of certain exclusion criteria. The patients were divided into 4 groups: group 1: titanium brackets and fluorine protection; group 2: titanium brackets without fluorine protection; group 3: stainless-steel brackets and fluorine protection; group 4: stainless-steel brackets without fluorine protection. Analysis of the brackets removed after 4months in the mouth, using scanning electron microscopy (SEM) with phase contrast, revealed a difference in the surface topography of the metal brackets and the presence of chromium coating on the surface of the titanium appliances. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.
Holonomic surface codes for fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco
2018-02-01
Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.
Coating Systems for Magnesium-Based Biomaterials — State of the Art
NASA Astrophysics Data System (ADS)
Waterman, J.; Staiger, M. P.
Magnesium and its alloys have the potential to be used for biodegradable orthopedic implants. However, the corrosion rate in physiological conditions is too high for most applications. For this reason, surface modification to slow the corrosion rate is of great interest. Such modifications must remain biologically compatible as well as protective in corrosive environments. What follows is a brief review of recent research in inorganic coatings and surface modifications to create coatings for magnesium-based biomaterials.
Rulings in 2001 and 2006 by the United States Supreme Court concerning the protection of Geographically Isolated Wetlands (GIWs) unveiled a critical area of research: quantifying the extent of potential hydrologic connectivity of GIWs to navigable waters and their effects at a va...
30 CFR 717.17 - Protection of the hydrologic system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the location of surface water drainage channels shall be minimized and applicable Federal and State... quick growing stands of temporary vegetation, and lining drainage channels. If treatment is required to... disturbed areas that have met the requirements of § 717.20 shall be passed through a sedimentation pond or a...
76 FR 5157 - Public Water Supply Supervision Program; Program Revision for the State of Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9259-6] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; and Lead and...
78 FR 42945 - Public Water Supply Supervision Program; Program Revision for the State of Oregon
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9834-9] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Oregon has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; Ground Water...
Classification of reflection-symmetry-protected topological semimetals and nodal superconductors
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Schnyder, Andreas P.
2014-11-01
While the topological classification of insulators, semimetals, and superconductors in terms of nonspatial symmetries is well understood, less is known about topological states protected by crystalline symmetries, such as mirror reflections and rotations. In this work, we systematically classify topological semimetals and nodal superconductors that are protected, not only by nonspatial (i.e., global) symmetries, but also by a crystal reflection symmetry. We find that the classification crucially depends on (i) the codimension of the Fermi surface (nodal line or point) of the semimetal (superconductor), (ii) whether the mirror symmetry commutes or anticommutes with the nonspatial symmetries, and (iii) how the Fermi surfaces (nodal lines or points) transform under the mirror reflection and nonspatial symmetries. The classification is derived by examining all possible symmetry-allowed mass terms that can be added to the Bloch or Bogoliubov-de Gennes Hamiltonian in a given symmetry class and by explicitly deriving topological invariants. We discuss several examples of reflection-symmetry-protected topological semimetals and nodal superconductors, including topological crystalline semimetals with mirror Z2 numbers and topological crystalline nodal superconductors with mirror winding numbers.
Martina Barnes; Albert Todd; Rebecca Whitney Lilja; Paul Barten
2009-01-01
Forests are critically important to the supply of clean drinking water in the Northeast and Midwest portion of the United States. In this part of the country more than 52 million people depend on surface water supplies that are protected in large part by forested lands. The public is generally unaware of the threats to their water supplies or the connection between...
Effects of surface mining on fish and wildlife in Appalachia
Boccardy, Joseph A.; Spaulding, William M.
1968-01-01
This report on the effects of strip and surface mining on the fish and wildlife resources in eight Appalachian States is based in part on observation made during a tour of strip and surface mined area by the authors, as members of a team of specialist from six Federal agencies. Surface mining has caused extensive damage to fish and wildlife habitats and populations. A total of 832,605 acres of land have been disturbed; 81 percent of these are in Ohio, Pennsylvania, and West Virginia. More than 5,000 miles of Appalachian streams and 13,800 acres of impoundments have been seriously contaminated by acid mine water, some of it from surface mining. Additional water acreage has been adversely affected by tremendous quantities of silt and sediment. Reclamation of mined lands is needed. Three of the eight states visited in 1965-66 had no law requiring restoration of strip-mined lands, and other States needed stronger laws and more enforcement (Virginia and Tennessee have since passed laws governing strip mining). Reclamation as currently practiced in the Appalachian region does not adequately restore mined lands to minimal standards necessary to protect and improve fish and wildlife resources.
NASA Astrophysics Data System (ADS)
Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.
2018-02-01
Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.
Imaging electronic states on topological semimetals using scanning tunneling microscopy
Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; ...
2016-10-18
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions.Weemployed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. Bymore » mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd 3As 2 and Na 3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface projected Weyl nodes.« less
Stable surface passivation process for compound semiconductors
Ashby, Carol I. H.
2001-01-01
A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.
Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Miller, J. E.; Christiansen, E. L.; Deighton, K. D.
2014-01-01
Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.
NASA Astrophysics Data System (ADS)
Dénès, Georges; Muntasar, Abdualhafeed; Kozak, Kathy M.; Baig, Arif A.; White, Donald J.
2002-06-01
SnF2 is an important toothpaste ingredient, added for the provision of clinical efficacy for hard and soft tissue diseases and in breath protection. Synthetic calcium hydroxyapatite powders were exposed to liquid supernates (25 w/w% toothpaste water slurries, centrifuged) of Crest Gum Care® (SnF2) dentifrice. One-minute treatments were followed by 3x water washing, centrifugation and lyophilization. Post treatment, powders were analyzed by Mössbauer spectroscopy with 0.5-1 gram of treated apatite powder. Results show that tooth mineral stannous fluoride interactions include: (1) formation of surface reaction products with both Sn(II) and Sn(IV) oxidation states; (2) Sn-F binding on mineral surfaces with no evidence of SnO. The surface binding is, however, not pure Sn-F but contains contributions of other ligands, probably oxygens from surface phosphates or hydroxyl groups. Results also suggest that surface reacted stannous tin is oxidized with time, even when bound as a layer on the tooth surface. This study demonstrates for the first time the presence of Sn-F on tooth enamel post treatment and the contribution of passivation to long term stannous chemistry on tooth surfaces. The study also illustrates the practical applications of the Mössbauer technique.
Topological phases protected by point group symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hao; Huang, Sheng -Jie; Fu, Liang
We consider symmetry-protected topological (SPT) phases with crystalline point group symmetry, dubbed point group SPT (pgSPT) phases. We show that such phases can be understood in terms of lower-dimensional topological phases with on-site symmetry and that they can be constructed as stacks and arrays of these lower-dimensional states. This provides the basis for a general framework to classify and characterize bosonic and fermionic pgSPT phases, which can be applied for arbitrary crystalline point group symmetry and in arbitrary spatial dimensions. We develop and illustrate this framework by means of a few examples, focusing on three-dimensional states. We classify bosonic pgSPTmore » phases and fermionic topological crystalline superconductors with Z P 2 (reflection) symmetry, electronic topological crystalline insulators (TCIs) with U(1)×Z P 2 symmetry, and bosonic pgSPT phases with C 2v symmetry, which is generated by two perpendicular mirror reflections. We also study surface properties, with a focus on gapped, topologically ordered surface states. For electronic TCIs, we find a Z 8 × Z 2 classification, where the Z 8 corresponds to known states obtained from noninteracting electrons, and the Z 2 corresponds to a “strongly correlated” TCI that requires strong interactions in the bulk. Lastly, our approach may also point the way toward a general theory of symmetry-enriched topological phases with crystalline point group symmetry.« less
Experimental demonstration of anomalous Floquet topological insulator for sound
NASA Astrophysics Data System (ADS)
Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng
2016-11-01
Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.
Experimental demonstration of anomalous Floquet topological insulator for sound
Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng
2016-01-01
Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states. PMID:27834375
Self-organized pseudo-graphene on grain boundaries in topological band insulators
NASA Astrophysics Data System (ADS)
Slager, Robert-Jan; Juričić, Vladimir; Lahtinen, Ville; Zaanen, Jan
2016-06-01
Semimetals are characterized by nodal band structures that give rise to exotic electronic properties. The stability of Dirac semimetals, such as graphene in two spatial dimensions, requires the presence of lattice symmetries, while akin to the surface states of topological band insulators, Weyl semimetals in three spatial dimensions are protected by band topology. Here we show that in the bulk of topological band insulators, self-organized topologically protected semimetals can emerge along a grain boundary, a ubiquitous extended lattice defect in any crystalline material. In addition to experimentally accessible electronic transport measurements, these states exhibit a valley anomaly in two dimensions influencing edge spin transport, whereas in three dimensions they appear as graphenelike states that may exhibit an odd-integer quantum Hall effect. The general mechanism underlying these semimetals—the hybridization of spinon modes bound to the grain boundary—suggests that topological semimetals can emerge in any topological material where lattice dislocations bind localized topological modes.
SOLID STATE BONDING OF THORIUM WITH ALUMINUM
Storchhelm, S.
1959-12-01
A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.
Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio
USDA-ARS?s Scientific Manuscript database
Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...
Tribal water utility management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-01
Contents: primacy program (what is primacy, advantages and disadvantages, treatment as a state, grant applications and funding); safe drinking water act (sampling requirements, coliform standard, public notification, surface water treatment rule impacts, uic and wellhead protection programs, lead/copper rule); water utility management (how is the utility program evaluated, who's responsible, what is the board and tribal council role).
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.
Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie
2017-07-05
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry
Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A.; Volkov, V. T.; Khodos, I. I.; Brisset, F.; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie
2017-01-01
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents. PMID:28677681
Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-06-01
We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.
Phase coherence and Andreev reflection in topological insulator devices
Finck, A. D. K.; Kurter, C.; Hor, Y. S.; ...
2014-11-04
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less
Reimers, Jeffrey R; Ford, Michael J; Halder, Arnab; Ulstrup, Jens; Hush, Noel S
2016-03-15
The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)-thiyl, with Au(I)-thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)-thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s-d hybridization and charge polarization effects that perturbatively mix in some Au(I)-thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)-thiolate involvement. Predictions that Brust-Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)-thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established.
Reimers, Jeffrey R.; Ford, Michael J.; Halder, Arnab; Ulstrup, Jens; Hush, Noel S.
2016-01-01
The synthetic chemistry and spectroscopy of sulfur-protected gold surfaces and nanoparticles is analyzed, indicating that the electronic structure of the interface is Au(0)–thiyl, with Au(I)–thiolates identified as high-energy excited surface states. Density-functional theory indicates that it is the noble character of gold and nanoparticle surfaces that destabilizes Au(I)–thiolates. Bonding results from large van der Waals forces, influenced by covalent bonding induced through s–d hybridization and charge polarization effects that perturbatively mix in some Au(I)–thiolate character. A simple method for quantifying these contributions is presented, revealing that a driving force for nanoparticle growth is nobleization, minimizing Au(I)–thiolate involvement. Predictions that Brust–Schiffrin reactions involve thiolate anion intermediates are verified spectroscopically, establishing a key feature needed to understand nanoparticle growth. Mixing of preprepared Au(I) and thiolate reactants always produces Au(I)–thiolate thin films or compounds rather than monolayers. Smooth links to O, Se, Te, C, and N linker chemistry are established. PMID:26929334
Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I
2015-04-24
We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.
Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter
2018-02-14
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.
NASA Astrophysics Data System (ADS)
Sato, T.; Segawa, Kouji; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Yoichi; Takahashi, T.
2011-11-01
The three-dimensional (3D) topological insulator is a novel quantum state of matter where an insulating bulk hosts a linearly dispersing surface state, which can be viewed as a sea of massless Dirac fermions protected by the time-reversal symmetry (TRS). Breaking the TRS by a magnetic order leads to the opening of a gap in the surface state, and consequently the Dirac fermions become massive. It has been proposed theoretically that such a mass acquisition is necessary to realize novel topological phenomena, but achieving a sufficiently large mass is an experimental challenge. Here we report an unexpected discovery that the surface Dirac fermions in a solid-solution system TlBi(S1-xSex)2 acquire a mass without explicitly breaking the TRS. We found that this system goes through a quantum phase transition from the topological to the non-topological phase, and, by tracing the evolution of the electronic states using the angle-resolved photoemission, we observed that the massless Dirac state in TlBiSe2 switches to a massive state before it disappears in the non-topological phase. This result suggests the existence of a condensed-matter version of the `Higgs mechanism' where particles acquire a mass through spontaneous symmetry breaking.
Inhibiting the corrosion of MNZh 5-1 alloy in neutral solutions of 5-chloro-1,2,3-benzotrialzol
NASA Astrophysics Data System (ADS)
Kuznetsov, Yu. I.; Agafonkina, M. O.; Andreeva, N. P.; Arkhipushkin, I. A.; Kazansky, L. P.
2017-11-01
The adsorption and protective properties of 5-chloro-1,2,3-benzotriazol (5-chloro-BTA) are studied in relation to MNZh 5-1 alloy in a chloride borate buffer solution with pH 7.4. It is shown that this inhibitor can stabilize the passive state of the alloy at a concentration of 0.12 mmol/g. The adsorption of 5-chloro-BTA on a surface of MNZh 5-1 alloy is polymolecular; the free energy of adsorption is about 80 kJ/mol. The advantages of adsorption and protective properties of 5-chloro-BTA compared to BTA on both MNZh 5-1 alloy and the metals contained in the alloy (Ni, Cu) are shown. XPS data indicate a 5-chloro-BTA monolayer formed on the surface of the alloy. This monolayer was composed of inhibitor molecules, which are normally oriented toward a surface and are not removed during ultrasonic washing of the electrode.
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric
Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.
NASA Astrophysics Data System (ADS)
Zegre, N.; Strager, M.
2015-12-01
In January of 2014 West Virginia experienced a chemical spill upstream of a public water intake on the Elk River near Charleston, West Virginia that made the water unusable for 300,000 people for weeks. In response to this disaster, state officials enacted legislation to protect the future public water intake locations by requiring the delineation of zones of critical concern that extend a five hour travel time above the intakes. Each zone is defined by the travel time and buffered along the river mainstem and tributary locations to identify future potential threats to the water supply. While this approach helps to identify potential problems before they occur, the need existed to be able to respond to a spill with information regarding the real travel time of a spill to an intake with consideration of actual stream flow at the time of the spill. This study developed a real time surface flow model to protect the public water intakes using both regional and seasonal variables. Bayesian statistical inference enabled confidence levels to be placed on flow estimates and used to show the probability for the time steps as water approached an public water intake. The flow model has been incorporated into both a smartphone app and web-based tool for better emergency response and management of water resources throughout the state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions.Weemployed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. Bymore » mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd 3As 2 and Na 3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface projected Weyl nodes.« less
Observation of a nodal chain with Dirac surface states in Ti B2
NASA Astrophysics Data System (ADS)
Yi, C.-J.; Lv, B. Q.; Wu, Q. S.; Fu, B.-B.; Gao, X.; Yang, M.; Peng, X.-L.; Li, M.; Huang, Y.-B.; Richard, P.; Shi, M.; Li, G.; Yazyev, Oleg V.; Shi, Y.-G.; Qian, T.; Ding, H.
2018-05-01
Topological nodal-line semimetals (TNLSMs) are characterized by symmetry-protected band crossings extending along one-dimensional lines in momentum space. The nodal lines exhibit a variety of possible configurations, such as nodal ring, nodal link, nodal chain, and nodal knot. Here, using angle-resolved photoemission spectroscopy, we observe nodal rings on the orthogonal kz=0 and kx=0 planes of the Brillouin zone in Ti B2 . The nodal rings connect with each other on the intersecting line Γ-K of the orthogonal planes forming a remarkable nodal-chain structure. Furthermore, we observe surface states (SSs) on the (001) cleaved surface, which are consistent with the calculated SSs considering the contribution from both Ti and B terminations. The calculated SSs have novel Dirac-cone-like band structures, which are distinct from the usual drumhead SSs with a single flatband proposed in other TNLSMs.
Topological Oxide Insulator in Cubic Perovskite Structure
Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.
2013-01-01
The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973
NASA Astrophysics Data System (ADS)
Bagagnan, A. R.
2016-12-01
In the Gambia, Changes in the climate pattern has affected and continue to affect the agriculture sector and therefore calling for effective adaptation policies. The present study aimed to explain farmers' adoption of climate change adaptation measure through the protection motivation theory in The Central River Region of The Gambia. Primary data were collected in all the eight communities of the study area. A transect walk was conducted first followed by a survey with 283 informants. The perception variables were referring to the past 20 years while the stated implementation was addressing the current adaptation practices. Results showed that on one hand, most of the perception variables such as severity, ability to withstand, and internal barriers are significantly correlated to protection motivation and on the other hand Protection motivation and stated implementation for water conservation technique are strongly correlated. Structural Equation Modeling confirms the mediation role of Protection motivation between Farmers stated implementation and their perception of climate variability. Decrease in soil water storage capacity, degradation of the quality of soil surface structure, decrease of the length of the growing season are factors that motivate farmers to implement an adaptation measure. Cost of the implementation and farmers' vulnerability are factors that prevent farmers to implement an adaptation measure. The cost of the implementation is the main barrier to farmers `protection motivation. Therefore the study suggested that farmers' awareness about climate change/variability should be increased through farmers' field school and awareness campaigns, farmers' resilience should be improved and adaptation measures should be made accessible to farmers through loans facilities and subsidizes application.
36 CFR 1004.11 - Load, weight and size limits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...
36 CFR 1004.11 - Load, weight and size limits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...
36 CFR 1004.11 - Load, weight and size limits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...
James D. Wickham; Kurt H. Riitters; Timothy G. Wade; K. Bruce Jones
2005-01-01
The continuing degradation of United States surface waters by excessive nutrient loads has motivated the establishment of nutrient criteria for streams, lakes, and estuaries as a means to protect aquatic resources. Nutrient criteria have been established based on ecoregional differences, recognizing that geographic variation in climate, topography, geology, and land...
USDA-ARS?s Scientific Manuscript database
Prescribed burning and thinning are gaining popularity as low-cost forest protection measures. Such field management practices could alter the chemical properties of soil organic matter (SOM), especially humic substances. In this work, we collected surface soil samples from the Bankhead National For...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... groundwater drawdown from this well field to maintain surface flows and protect water-dependent ecosystems.... The United States Geological Survey (USGS) conducted the independent study from 2007-2009 to determine... during both time periods, there were no days of zero flow recorded at the Eagle Creek gage from 1969-1980...
NASA Astrophysics Data System (ADS)
Handrup, Karsten; Richards, Victoria J.; Weston, Matthew; Champness, Neil R.; O'Shea, James N.
2013-10-01
Two single molecule magnets based on the dodecamanganese (III, IV) cluster with either benzoate or terphenyl-4-carboxylate ligands, have been studied on the Au(111) and rutile TiO2(110) surfaces. We have used in situ electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. X-ray absorption spectroscopy measured at the Mn L-edge (Mn 2p) has been used to study the effect of adsorption on the oxidation states of the manganese atoms in the core. In the case of the benzoate-functionalised complex reduction of the manganese metal centres is observed due to the interaction of the manganese core with the underlying surface. In the case of terphenyl-4-carboxylate, the presence of this much larger ligand prevents the magnetic core from interacting with either the gold or the titanium dioxide surfaces and the characteristic Mn3+ and Mn4+ oxidation states necessary for magnetic behaviour are preserved.
Permeation of Comite through protective gloves.
Zainal, Hanaa; Que Hee, Shane S
2006-09-01
The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were < 10 min. The second steady state rate (P(s)) was on average four times the rate of the first period, and the second steady state period t(l) was about three times as long as that of the first steady state period, and about the same t(l) as for the aqueous solution. Sol-Vex gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest concentration for spraying.
Fabrication and Modification of Nanoporous Silicon Particles
NASA Technical Reports Server (NTRS)
Ferrari, Mauro; Liu, Xuewu
2010-01-01
Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.
State of Arts of Monumental Stones Diagnosis and Monitoring
NASA Astrophysics Data System (ADS)
Tiano, P.; Riminesi, C.
2017-08-01
The conservation and maintenance of a monumental stone building is a complex aim where different disciplines are involved. First step is concerning the determination of the state of conservation of stone material present, than determine its modification on time, as such and after conservation treatments applied on: cleaning, protecting, strengthening. In order to fulfill such objectives suitable parameters must be selected and the most appropriate diagnostic techniques for their quantitative evaluation operated. In this context, the determination of the surface water absorption, moisture content, colour variation and mechanical properties are important parameters for the control, and the monitoring over time, of the state of conservation of the monumental stone surfaces. These parameters are strongly related not only to the stone characteristics but also to the evaluation of products's performance: efficiency and durability. Their rate of variation, determined in monitoring campaigns, is fundamental for elaborate by properly predictive model a schedule maintenance protocol.
Weyl solitons in three-dimensional optical lattices
NASA Astrophysics Data System (ADS)
Shang, Ce; Zheng, Yuanlin; Malomed, Boris A.
2018-04-01
Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons proposed in this work constitute the third (and the last) member in this family of topological solitons.
In-use catalyst surface area and its relation to HC conversion efficiency and FTP emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, K.S.; Sabourin, M.A.; Larson, R.E.
1986-01-01
Surface area data, steady-state hydrocarbon conversion efficiency data, and hydrocarbon emissions results have been determined for catalysts collected by the U.S. Environmental Protection Agency from properly maintained 1981 and 1982 model year vehicles. Catalysts covered in this study were limited to those with three-way-plus-oxidation monolith technologies. Catalyst surface areas were measured using the BET method, conversion efficiencies were measured on an exhaust gas generator, and emissions results were determined using the Urban Driving Schedule of the Federal Test Procedure. Results indicate that correlation of catalyst surface area data with hydrocarbon conversion efficiency data and hydrocarbon emissions results is significant formore » the sample studied.« less
Fully gapped superconductivity in In-doped topological crystalline insulator Pb 0.5Sn 0.5Te
Du, Guan; Gu, G. D.; Du, Zengyi; ...
2015-07-27
In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb 0.5Sn 0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb 0.5Sn 0.5) 0.7In 0.3Te is produced by In doping in Pb 0.5Sn 0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb 0.5Sn 0.5) 0.7In 0.3Te on a (001)-oriented surface. The spectrum canmore » be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less
Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence
2017-10-25
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.
Fox-Rabinovich, German; Wagg, Terry
2017-01-01
During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405
Zeljkovic, Ilija; Okada, Yoshinori; Serbyn, Maksym; ...
2015-02-16
The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb 1-xSn xSe for a widemore » range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons—a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Lastly, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.« less
Top-down estimates of biomass burning emissions of black carbon in the western United States
Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou
2014-01-01
We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC.
This student manual comprises the United States Environmental Protection Agency's model renovation training course designed for renovation, remodeling, and painting contractors. It provides information regarding the containment, minimization, and cleanup of lead hazards during activities that disturb lead painted surfaces. Introductory material…
Development and validation of satellite-based estimates of surface visibility
NASA Astrophysics Data System (ADS)
Brunner, J.; Pierce, R. B.; Lenzen, A.
2016-02-01
A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V < 30 km), low (2 km ≤ V < 10 km), and poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.
Development and validation of satellite based estimates of surface visibility
NASA Astrophysics Data System (ADS)
Brunner, J.; Pierce, R. B.; Lenzen, A.
2015-10-01
A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V < 30 km), Low (2 km ≤ V < 10 km) and Poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.
Graphene coatings for protection against microbiologically induced corrosion
NASA Astrophysics Data System (ADS)
Krishnamurthy, Ajay
Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of this form of corrosion. Chapter 1 introduces the basics of microbiologically induced corrosion and graphene. A comprehensive review of literature is used to discuss the role of micro-organisms, their impact on corrosion and their eradication. The conflicting results behind the use of graphene as a coating material are evaluated using the available literature and its future as an effective MIC resistant coating is then discussed. Chapter 2 is a study of the effectiveness of graphene based coatings for passivating metal surfaces against microbial induced corrosion. The effectiveness of graphene is evaluated against a bare metal electrode and a regular carbon based electrode using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Spectrophotometry and Scanning Electron Microscopy (SEM). Results indicate 3-orders-of-magnitude lower corrosion currents in the graphene coated electrode and about two orders of magnitude higher impedance to interfacial electrochemical reactions. After establishing the superiority of graphene over bare metal electrode, further studies were conducted to compare its performance over other state of the art polymer coatings such as parylene and polyurethane. This study is discussed in detail in Chapter 3. Quantitatively, graphene outperforms the polymer coated electrodes by offering close to two orders of magnitude higher MIC resistance, while qualitatively, optical images indicate severe oxidation in both the polymer coated metal structures. The chapter is concluded with discussions on the unparalleled corrosion resistance provided by graphene based coatings. The success/failure of coating techniques is not purely dictated by their ability to protect the surface, but also by the ease of coating application onto any given surface. Chapter 4 explains the methods by which high quality graphene can be used to protect surfaces that are not conducive to graphene growth and the problems associated with the current transfer techniques. A Raman Spectroscopy based surface mapping is performed to understand the defect peak intensities across the surface and the reasons for coating failure when using the state-of-the-art transfer techniques is discussed.
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Zhou, Meng; Zeng, Chenjie; Chen, Yuxiang; ...
2016-10-24
The evolution from the metallic (or plasmonic) to molecular state in metal nanoparticles constitutes a central question in nanoscience research because of its importance in revealing the origin of metallic bonding and offering fundamental insights into the birth of surface plasmon resonance. Previous research has not been able to probe the transition due to the unavailability of atomically precise nanoparticles in the 1–3 nm size regime. Herein, we investigate the transition by performing ultrafast spectroscopic studies on atomically precise thiolate-protected Au 25, Au 38, Au 144, Au 333, Au ~520 and Au ~940 nanoparticles. Our results clearly map out threemore » distinct states: metallic (size larger than Au333, that is, larger than 2.3 nm), transition regime (between Au 333 and Au 144, that is, 2.3–1.7 nm) and non-metallic or excitonic state (smaller than Au 144, that is, smaller than 1.7 nm). As a result, the transition also impacts the catalytic properties as demonstrated in both carbon monoxide oxidation and electrocatalytic oxidation of alcohol.« less
Marchetti, Barbara; Karsili, Tolga N V
2016-02-07
Eumelanin (EM) and pheomelanin (PM) are ubiquitous in mammalian skin and hair--protecting against harmful radiation from the sun. Their primary roles are to absorb solar radiation and efficiently dissipate the excess excited state energy in the form of heat without detriment to the polymeric structure. EU and PM exist as polymeric chains consisting of exotic arrangements of functionalised heteroaromatic molecules. Here we have used state-of-the-art electronic structure calculations and on-the-fly surface hopping molecular dynamics simulations to study the intrinsic deactivation paths of various building blocks of EU and PM. Ultrafast excited state decay, via electron-driven proton transfer (in EU and PM) and proton-transfer coupled ring-opening (in PM) reactions, have been identified to proceed along hitherto unknown charge-separated states in EU and PM oligomers. These results shed light on the possible relaxation pathways that dominate the photochemistry of natural skin melanins. Extrapolation of such findings could provide a gateway into engineering more effective molecular constituents in commercial sunscreens--with reduced phototoxicity.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-01-01
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889
Performance of Topological Insulator Interconnects
NASA Astrophysics Data System (ADS)
Philip, Timothy M.; Hirsbrunner, Mark R.; Park, Moon Jip; Gilbert, Matthew J.
2017-01-01
The poor performance of copper interconnects at the nanometer scale calls for new material solutions for continued scaling of integrated circuits. We propose the use of three dimensional time-reversal-invariant topological insulators (TIs), which host backscattering-protected surface states, for this purpose. Using semiclassical methods, we demonstrate that nanoscale TI interconnects have a resistance 1-3 orders of magnitude lower than copper interconnects and graphene nanoribbons at the nanometer scale. We use the nonequilibrium Green function (NEGF) formalism to measure the change in conductance of nanoscale TI and metal interconnects caused by the presence of impurity disorder. We show that metal interconnects suffer a resistance increase, relative to the clean limit, in excess of 500% due to disorder while the TI's surface states increase less than 35% in the same regime.
Infrared studies of topological insulator systems
NASA Astrophysics Data System (ADS)
Post, Kirk; Chapler, Brian; Schafgans, Alex; Liu, Mengkun; Wu, Jih-Sheng; Richardella, Anthony; Lee, Joon Sue; Reijnders, Anjan; Lee, Yun Sang; He, Liang; Kou, Xufeng; Novak, Mario; Taskin, Alexey; Segawa, Kouji; Goldflam, Michael; Stinson, H. Theodore; Qi, Xiao Liang; Burch, Kenneth; Wang, Kang; Fogler, Michael; Samarth, Nitin; Ando, Yoichi; Basov, Dimitri
The theoretical prediction, and subsequent experimental realization, of topological insulator (TI) systems, has vaulted this new class of materials to the vanguard of condensed matter physics. Since their discovery, we have carried out a number of infrared studies on various TI systems, including Bi2Se3, Bi1-xSbx, and Bi2-xSbxTe3-ySey crystals as well as Bi2Se3 and (Bi,Sb)2Te3 thin films. A key element of these works is the revelation that the infrared response of Bi1-xSbx crystals and (Bi,Sb)2Te3 thin films possess a significant, or even dominant, component from the topologically protected surface states. I will review these works and discuss future prospects of measuring the surface state response through optical spectroscopy techniques
Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L
2015-03-05
Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.
Fox-Rabinovich, G.; Kovalev, A.; Veldhuis, S.; Yamamoto, K.; Endrino, J. L.; Gershman, I. S.; Rashkovskiy, A.; Aguirre, M. H.; Wainstein, D. L.
2015-01-01
Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment. PMID:25740153
Thermal Protection System with Staggered Joints
NASA Technical Reports Server (NTRS)
Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)
2014-01-01
The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.
Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins
NASA Astrophysics Data System (ADS)
Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.
2007-02-01
Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.
Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3.
Song, Jung-Hwan; Jin, Hosub; Freeman, Arthur J
2010-08-27
When the three-dimensional topological insulators Bi2Se3 and Bi2Te3 have an interface with vacuum, i.e., a surface, they show remarkable features such as topologically protected and spin-momentum locked surface states. However, for practical applications, one often requires multiple interfaces or channels rather than a single surface. Here, for the first time, we show that an interfacial and ideal Dirac cone is realized by alternating band and topological insulators. The multichannel Dirac fermions from the superlattice structures open a new way for applications such as thermoelectric and spintronics devices. Indeed, utilizing the interfacial Dirac fermions, we also demonstrate the possible power factor improvement for thermoelectric applications.
Giovagnetti, Vasco; Han, Guangye; Ware, Maxwell A; Ungerer, Petra; Qin, Xiaochun; Wang, Wen-Da; Kuang, Tingyun; Shen, Jian-Ren; Ruban, Alexander V
2018-06-01
The macroalga Bryopsis corticulans relies on a sustained protective NPQ and a peculiar body architecture to efficiently adapt to the extreme light changes of intertidal shores. During low tides, intertidal algae experience prolonged high light stress. Efficient dissipation of excess light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is therefore required to avoid photodamage. Light-harvesting regulation was studied in the intertidal macroalga Bryopsis corticulans, during high light and air exposure. Photosynthetic capacity and NPQ kinetics were assessed in different filament layers of the algal tufts and in intact chloroplasts to unravel the nature of NPQ in this siphonous green alga. We found that the morphology and pigment composition of the B. corticulans body provides functional segregation between surface sunlit filaments (protective state) and those that are underneath and undergo severe light attenuation (light-harvesting state). In the surface filaments, very high and sustained NPQ gradually formed. NPQ induction was triggered by the formation of transthylakoid proton gradient and independent of the xanthophyll cycle. PsbS and LHCSR proteins seem not to be active in the NPQ mechanism activated by this alga. Our results show that B. corticulans endures excess light energy pressure through a sustained protective NPQ, not related to photodamage, as revealed by the unusually quick restoration of photosystem II (PSII) function in the dark. This might suggest either the occurrence of transient PSII photoinactivation or a fast rate of PSII repair cycle.
Sarah K. Carter; Natasha B. Carr; Curtis H. Flather; Erica Fleishman; Matthias Leu; Barry R. Noon; David J. A. Wood
2016-01-01
The Bureau of Land Management manages 246 million surface acres (100 million hectares) across the United States for multiple uses and sustained yield. Ensuring protection of ecological systems in the context of multiple, and often conflicting, resource uses and values is a challenge. Ecological integrity and land health are terms used by the Bureau of Land Management...
Convection in Icy Satellites: Implications for Habitability and Planetary Protection
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2004-01-01
Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.
Bulk versus surface contributions to the Shubnikov-de Haas Effect
NASA Astrophysics Data System (ADS)
Maniv, E.; Petrushevsky, M.; Lahoud, E.; Ron, A.; Neder, I.; Wiedmann, S.; Guduru, V. K.; Zeitler, U.; Maan, J. C.; Chashka, K.; Kanigel, A.; Dagan, Y.
2013-03-01
Among the bulk materials that are considered as experimental realizations of topological insulators Bi2Se3 is of particular interest due to its large bulk band gap and surface states with a single Dirac cone. It has been recently shown that Bi2Se3 can become superconducting when Cuintercalation is introduced (Hor, Y. S.; Williams, A. J. et al. Phys. Rev. Lett.2010, 104, 057001). We report on transport measurements of cleaved flakes ~1 -100 μm thick of Cu intercalated Bi2Se2. Clear Shubnikov-de Haas oscillations are observed. We study the temperature and angular dependence of these oscillations together with the Hall coefficient at low temperatures for various Cu concentrations. We discuss possible contributions from bulk and the protected surface states to the various transport channels. Support from the infrastructure program of the Israeli Ministry of Science and Technology is acknowledged. Part of this work has been supported by EuroMagNET under the EU Contract No. 228043.
40 CFR 258.27 - Surface water requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water requirements. 258.27 Section 258.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF...
Dirac Fermions without bulk backscattering in rhombohedral topological insulators
NASA Astrophysics Data System (ADS)
Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto
2015-03-01
The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
Non-Abelian fractional topological insulators in three spatial dimensions from coupled wires
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher
The study of topological order in three spatial dimensions constitutes a major frontier in theoretical condensed matter physics. Recently, substantial progress has been made in constructing (3+1)-dimensional Abelian topological states of matter from arrays of coupled quantum wires. In this talk, I will illustrate how wire constructions based on non-Abelian bosonization can be used to build and characterize non-Abelian symmetry-enriched topological phases in three dimensions. In particular, I will describe a family of states of matter, constructed in this way, that constitute a natural non-Abelian generalization of strongly correlated three dimensional fractional topological insulators. These states of matter support strongly interacting symmetry-protected gapless surface states, and host non-Abelian pointlike and linelike excitations in the bulk.
Quantum strain sensor with a topological insulator HgTe quantum dot
Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.
1989-08-01
The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Anymore » system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.« less
Richard E. Weyers; Joseph R. Loferski; J. Daniel Dolan; John E. Haramis; Joseph H. Howard; Lola Hislop
2001-01-01
To enhance long-term timber bridge performance, timber material must be protected from moisture. Wearing surfaces made of asphalt pavement with and without a waterproof membrane have been used to provide protection from moisture on timber decks. This type of wearing surface also protects the deck from other damage while providing a smooth, skid-resistant surface....
Methamphetamine residue dermal transfer efficiencies from household surfaces.
Van Dyke, Mike; Martyny, John W; Serrano, Kate A
2014-01-01
Methamphetamine contamination from illegal production operations poses a potential health concern for emergency responders, child protective services, law enforcement, and children living in contaminated structures. The objective of this study was to evaluate dermal transfer efficiencies of methamphetamine from contaminated household surfaces. These transfer efficiencies are lacking for methamphetamine, and would be beneficial for use in exposure models. Surfaces were contaminated using a simulated smoking method in a stainless steel chamber. Household surfaces were carpet, painted drywall, and linoleum. Dermal transfer efficiencies were obtained using cotton gloves for two hand conditions, dry or saliva moistened (wet). In addition, three contact scenarios were evaluated for both hand conditions: one, two, or three contacts with contaminated surfaces. Dermal transfer efficiencies were calculated for both hand conditions and used as inputs in a Stochastic Human Exposure and Dose Simulation model (SHEDS-Multimedia, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, N.C.). Results of this study showed that average dermal transfer efficiencies of methamphetamine ranged from 11% for dry hands to 26% for wet hands. There was a significantly higher wet transfer as compared to dry transfer for all surfaces. For wet hands, dermal transfer depended on surface type with higher transfer from carpet and linoleum as compared to drywall. Based on our estimates of dermal transfer efficiency, a surface contamination clearance level of 1.5 μg/100 cm(2) may not ensure absorbed doses remain below the level associated with adverse health effects in all cases. Additional dermal transfer studies should be performed using skin surrogates that may better predict actual skin transfer.
NASA Astrophysics Data System (ADS)
La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping
2017-05-01
The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium-yttrium (Mg-Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg-Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhavan, N. D., E-mail: nima.dehdashti@uwa.edu.au; Jolley, G.; Umana-Membreno, G. A.
2014-08-28
Three-dimensional (3D) topological insulators (TI) are a new state of quantum matter in which surface states reside in the bulk insulating energy bandgap and are protected by time-reversal symmetry. It is possible to create an energy bandgap as a consequence of the interaction between the conduction band and valence band surface states from the opposite surfaces of a TI thin film, and the width of the bandgap can be controlled by the thin film thickness. The formation of an energy bandgap raises the possibility of thin-film TI-based metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this paper, we explore the performance of MOSFETs basedmore » on thin film 3D-TI structures by employing quantum ballistic transport simulations using the effective continuous Hamiltonian with fitting parameters extracted from ab-initio calculations. We demonstrate that thin film transistors based on a 3D-TI structure provide similar electrical characteristics compared to a Si-MOSFET for gate lengths down to 10 nm. Thus, such a device can be a potential candidate to replace Si-based MOSFETs in the sub-10 nm regime.« less
Subsurface microbial habitats on Mars
NASA Technical Reports Server (NTRS)
Boston, P. J.; Mckay, C. P.
1991-01-01
We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.
Germanium detector passivated with hydrogenated amorphous germanium
Hansen, William L.; Haller, Eugene E.
1986-01-01
Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.
Method for surface passivation and protection of cadmium zinc telluride crystals
Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim
2000-01-01
A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.
Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas
2003-01-01
In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life. Data collected by the NIWQP studies indicated that, in surface water, filtered and unfiltered samples had nearly the same concentrations of arsenic, boron, molybdenum, and selenium for concentrations greater than about 10 micrograms per liter. Therefore, in this concentration range, filtered concentrations can be directly compared to biological-effect levels developed for unfiltered samples. In the range of 1 to 10 micrograms per liter there may be a tendency for unfiltered arsenic concentrations to be greater than filtered concentrations. For selenium, however, the data suggest differences from equality in that range result from analytical imprecision and not a general tendency for unfiltered concentrations to be greater than filtered concentrations. This relation may not be true in lentic, nutrient-rich waters because in such settings algae can bioaccumulate large amounts of selenium and other trace elements. Selenium was the trace element in surface water that most commonly exceeded chronic criteria for the protection of freshwater aquatic life; more than 40 percent of the selenium concentrations in surface-water samples exceeded the U.S. Environmental Protection Agency (USEPA) aquatic-life chronic criterion (5 micrograms per liter). In 12 of the 26 areas at least 25 percent of the surface water-samples had selenium concentrations that either equaled or exceeded the chronic criterion (5 micrograms per liter). More than 28 percent of boron concentrations and almost 17 percent of the molybdenum concentrations exceeded the aquatic life criteria established by the State of California (550 and 19 micrograms per liter, respectively). In ground water, more than 22 percent of the arsenic concentrations and more than 35 percent of the selenium concentrations exceeded the MCL (10 and 50 micrograms per liter, respectively). Few samples of uranium in surface water exceeded a criterion for the protection of aquatic life (300 micrograms per liter), but 44 percent
40 CFR 258.27 - Surface water requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water requirements. 258.27 Section 258.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF units shall not: (a) Cause a discharge of...
Launch Preparation and Rocket Launching
1991-05-23
which do not exceed several hundred kilometers. In the USA MBR and heavy rocket carriers to distant distances are transported predominantly on air or...Balloon for transportation of MBR "Minuteman" (drawing): - balloon; 2 - rocket. DOC = 91032701 PAGE 34 Page 20. Thus, for the protection from the axial g...launching is suitable for rockets, launched from surface of the earth (water), or from silo (submarine in submerged state). The selection of
Dave Harmon; Jeff Jarvis
2011-01-01
The Bureau of Land Management administers over 256 million surface acres, more than any other U.S. public agency, the vast majority of which is in the western half of the United States. A land protection system was initiated in 1970 with the creation of the King Range National Conservation Area. In 1976, the Federal Land Policy and Management Act (http://www.blm.gov/...
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe 2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe 2 are not only protected by the reflection symmetry butmore » also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less
Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)
2002-01-01
The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.
Aerosolization properties, surface composition and physical state of spray-dried protein powders.
Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita
2004-10-19
Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.
NASA Technical Reports Server (NTRS)
Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.;
2016-01-01
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Maryland field campaign. Comparisons for the baseline simulation (Carbon Bond 2005 (CB05) chemistry, Environmental Protection Agency 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (Carbon Bond 6 Revision 2 chemistry (CB6r2), Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone.
Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida
NASA Astrophysics Data System (ADS)
Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.
2009-04-01
The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Preeti; Deep, Shashank, E-mail: sdeep@chemistry.iitd.ac.in
Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE atmore » which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII.« less
Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert Surfaces
USDA-ARS?s Scientific Manuscript database
Desert surfaces are typically stable and represent some of the oldest landforms on Earth. For surfaces without vegetation, the evolution of a desert pavements of gravel protects the surface from erosive forces and vegetation further protects the surface in arid and semi-arid rangelands. The suscep...
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Banks, B. A.; Lenczewski, M.; Demko, R.
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.
Operational test report -- Project W-320 cathodic protection systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, T.J.
1998-06-16
Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31).more » WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.« less
75 FR 28861 - Walking-Working Surfaces and Personal Protective Equipment (Fall Protection Systems)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
... workplaces walk or work on level surfaces, such as floors, where slips, trips, and falls are common..., and similar surfaces where slips, trips, or falls are likely to result in serious injury or death. The... receive a level of protection that is effective and necessary. OSHA believes many of these slips, trips...
Surface Defect Passivation and Reaction of c-Si in H2S.
Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W
2017-12-26
A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of <3 cm/s is achieved at a temperature range of 550-650 °C. X-ray photoelectron spectroscopy (XPS) confirmed the bonding states of Si and S and provides insights into the reaction pathway of Si with H 2 S and other impurity elements both during and after the reaction. Quantitative analysis of XPS spectra showed that the τ eff increases with an increase in the surface S content up to ∼3.5% and stabilizes thereafter, indicative of surface passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.
Associating Specific Materials with Topological Insulation Behavior
NASA Astrophysics Data System (ADS)
Zhang, Xiuwen
2014-03-01
The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.
Spray shadowing for stress relief and mechanical locking in thick protective coatings
Hollis, Kendall [Los Alamos, NM; Bartram, Brian [Los Alamos, NM
2007-05-22
A method for applying a protective coating on an article, comprising the following steps: selecting an article with a surface for applying a coating thickness; creating undercut grooves on the article, where the grooves depend beneath the surface to a bottom portion with the grooves having an upper width on the surface and a lower width on the bottom portion connected by side walls, where at least one of the side walls connects the upper width and the lower width to form an undercut angle with the surface less than 90.degree.; and, applying the protective coating onto the article to fill the undercut grooves and cover the surface, thereby forming weak paths within the protective coating.
Exploring the core level shift origin of sulfur and thiolates on Pd(111) surfaces.
Salvarezza, Roberto Carlos; Carro, Pilar
2015-10-07
Thiol molecules on planar metal surfaces are widely used for building sensing and electronic devices and also as capping agents to protect and to control the size and shape of nanoparticles. In the case of Pd the thiol molecules exhibit a complex behavior because C-S bond scission is possible, resulting in a significant amount of co-adsorbed S. Therefore identification of these species on Pd is a key point for many applications, a task that is usually achieved by XPS. Here we show, from DFT calculations, that the core level shift (CLS) of the S 2p binding energy (BE) of thiol and sulfur on different thiol-Pd(111) surface models strongly depends on the adsorbed or subsurface state of sulfur atoms. Our results reflect the complexity of S 2p BE behavior and contribute to understanding and reanalyzing the experimental data of thiolated Pd surfaces.
The Corrosion of High Performance Steel in Adverse Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Desmond C.
The corrosion products that have formed on weathering steel bridges exposed to different weather conditions in the United States have been evaluated. They have been analyzed by spectroscopic techniques to determine the relationship between protective and non-protective rust coatings, and their relationship to the exposure conditions. Bridges constructed recently using High Performance Steel, as well as older bridges built with Type A588B weathering steel, were evaluated for corrosion performance of the rust coatings. In locations where the steel is subjected to regular wet-dry cycling, where the surface is wet for less than about 20% of the time, a protective patinamore » starts to form after a few months exposure, and continues to an adherent, impervious coating after a decade. The protective patina is characterized by the formation of only goethite and lepidocrocite. The goethite makes up about 80% of the rust, and itself consists of a nanophase component, < 15 nm, making up about 70% of the goethite. The nanophase goethite is basically undetected by X-ray diffraction. In the presence of high time-of-wetness, >40%, or infrequent drying cycles (regions close to waterways, fog or having high humidity), the weathering steel forms a rust coating that consists of a large amount of maghemite, and goethite that contains very little of the nanophase component. The rust coating ex-foliates from the steel and is not protective. Under exposure conditions in which chlorides are deposited onto the weathering steel surface (marine or de-icing salt locations), the protective patina also does not form. Instead, the rust coating consists of a large fraction of akaganeite that forms at the expense of the lepidocrocite and nanophase goethite. The bridges exposed to high chloride concentrations, 1.5 wt%, and therefore having no protective patina, have corrosion rates measured to be 6 times larger than expected for weathering steel with the protective patina.« less
Distinctive features of transport in topological insulators
NASA Astrophysics Data System (ADS)
Sacksteder, Vincent; Wu, Quansheng; Arnardottir, Kristin; Shelykh, Ivan; Kettemann, Stefan
2015-03-01
The surface states of a topological insulator in a fine-tuned magnetic field are ideal candidates for realizing a topological metal which is protected against disorder. Its signatures are (1) a conductance plateau in long wires and (2) a conductivity which always increases with sample size. We numerically show that the bulk substantially accelerates the conductance plateaus's decay in a magnetic field. It also reduces the effects of surface disorder and causes the magnitude of the surface conductivity and the magnetoconductivity to depend systematically on sample details such as doping and disorder strength. In addition, we predict a new signature of the topological state: at low temperatures the magnetoresistance will deviate strongly from the Hikami-Larkin-Nagaoka (HLN) formula. In this regime the magnetoresistance is dominated by scattering processes which wrap around the TI sample. The HLN formula's shoulder is replaced by a feature with a larger critical field magnetic strength that is caused by wrapping. Inside the wrapping regime the magnetoconductance will lose its dependence on temperature. This new topological signature should be visible in the same samples and temperatures where the Altshuler-Aronov-Spivak (AAS) effect has already been observed.
Lacombe, Pierre J.; Zapecza, Otto S.
2006-01-01
Cape May County is investigating the feasibility of restoring the lowermost reach of Cox Hall Creek to its former state as a tidal saltwater wetland; however, the potential for contamination of the shallow ground-water system, which provides water to hundreds of nearby privately owned domestic wells, with saltwater from the restored wetland is of particular concern. To evaluate the potential effectiveness and risks of restoring the saltwater wetlands, the County needs information about the hydrogeologic framework in the area, and about the potential vulnerability of the domestic wells to contamination. The shallow ground-water system in the Cox Hall Creek area consists of unconsolidated Holocene and Pleistocene deposits. The Holly Beach water-bearing zone, the unconfined (water-table) aquifer, is about 35 feet thick and contains a 2- to 4-foot-thick clay lens about 10 feet below land surface; a lower, more discontinuous clay lens about 30 to 35 feet below land surface ranges up to 5 feet in thickness. A 75-foot-thick confining unit separates the Holly Beach water-bearing zone from the underlying estuarine sand aquifer. The clay lenses in the Holly Beach water-bearing zone likely retard the movement of contaminants from septic tanks, lawns, and other surficial sources, protecting wells that tap the lower, sandy part of the aquifer. The clay lenses also may protect these wells from salty surface water if withdrawals from the Holly Beach water-bearing zone are not increased substantially. Deeper wells that tap the estuarine sand aquifer are more effectively protected from saltwater from surface sources because of the presence of the overlying confining unit.
Water law - Public Trust Doctrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, E.S.
In a case involving California's Mono Lake, the State Supreme Court held that infringement of the values protected by the Public Trust Doctrine is a separate ground for challenging water appropriations, and that the continuing nature of the state's duty as trustee prevents the acquisition of a vested right to appropriations that injure navigation, commerce, and fisheries. The author summarizes the history and the competing claims of the Doctrine and the California Appropriative Water Rights System. The National Audubon suit now makes it possible for any member of the public to challenge any surface water diversion as injurious to themore » public trust, but it also offers the California courts an opportunity to redirect the state's water policies. 130 references.« less
Obermayr, U; Rose, A; Geier, M
2010-11-01
We have developed a novel test cage and improved method for the evaluation of mosquito repellents. The method is compatible with the United States Environmental Protection Agency, 2000 draft OPPTS 810.3700 Product Performance Test Guidelines for Testing of Insect Repellents. The Biogents cages (BG-cages) require fewer test mosquitoes than conventional cages and are more comfortable for the human volunteers. The novel cage allows a section of treated forearm from a volunteer to be exposed to mosquito probing through a window. This design minimizes residual contamination of cage surfaces with repellent. In addition, an air ventilation system supplies conditioned air to the cages after each single test, to flush out and prevent any accumulation of test substances. During biting activity tests, the untreated skin surface does not receive bites because of a screen placed 150 mm above the skin. Compared with the OPPTS 810.3700 method, the BG-cage is smaller (27 liters, compared with 56 liters) and contains 30 rather than hundreds of blood-hungry female mosquitoes. We compared the performance of a proprietary repellent formulation containing 20% KBR3023 with four volunteers on Aedes aegypti (L.) (Diptera: Culicidae) in BG- and conventional cages. Repellent protection time was shorter in tests conducted with conventional cages. The average 95% protection time was 4.5 +/- 0.4 h in conventional cages and 7.5 +/- 0.6 h in the novel BG-cages. The protection times measured in BG-cages were more similar to the protection times determined with these repellents in field tests.
New method for evaluating high-quality fog protective coatings
NASA Astrophysics Data System (ADS)
Czeremuszkin, Grzegorz; Latreche, Mohamed; Mendoza-Suarez, Guillermo
2011-05-01
Fogging is commonly observed when humid-warm air contacts the cold surface of a transparent substrate, i.e. eyewear lenses, making the observed image blurred and hazy. To protect from fogging, the lens inner surfaces are protected with Anti-Fog coatings, which render them hydrophilic and induce water vapor condensation as a smooth, thin and invisible film, which uniformly flows down on the lens as the condensation progresses. Coatings differ in protection level, aging kinetics, and susceptibility to contamination. Some perform acceptably in limited conditions, beyond which the condensing water film becomes unstable, nonuniform, and scatters light or shows refractory distortions, both affecting the observed image. Quantifying the performance of Anti-Fog coated lenses is difficult: they may not show classical fogging and the existing testing methods, based on fog detection, are therefore inapplicable. The presented method for evaluating and quantifying AF properties is based on characterizing light scattering on lenses exposed to controlled humidity and temperature. Changes in intensity of laser light scattered at low angles (1, 2 4 and 8 degrees), observed during condensation of water on lenses, provide information on the swelling of Anti-Fog coatings, formation of uniform water film, going from an unstable to a steady state, and on the coalescence of discontinuous films. Real time observations/measurements allow for better understanding of factors controlling fogging and fog preventing phenomena. The method is especially useful in the development of new coatings for military-, sport-, and industrial protective eyewear as well as for medical and automotive applications. It allows for differentiating between coatings showing acceptable, good, and excellent performance.
Natural Poly- and Oligosaccharides as Novel Delivery Systems for Plant Protection Compounds.
Selyutina, O Yu; Apanasenko, I E; Khalikov, S S; Polyakov, N E
2017-08-09
To increase the bioavailability of plant protection products, we have applied a new approach based on noncovalent association with natural water-soluble polysaccharides and oligosaccharides as delivery systems (DSs). The mechanochemical technique has been applied to prepare the solid-state nanodispersed compositions of antidote 1,8-naphthalic anhydride (NA) with arabinogalactan, sodium salt of carboxymethylcellulose, and glycyrrhizin as DSs. The effect of DSs on the solubility and the penetration of NA into the seeds of barley and wheat has been investigated by various physicochemical techniques. All DSs considerably enhance the solubility of NA and improve its penetration into the grain. The influence of polysaccharides and oligosaccharides on artificial lipid membranes was studied by the NMR relaxation method. It was concluded that the effect of polysaccharides and oligosaccharides on the penetration efficacy of plant protection products might be associated with the detected solubility enhancement and the affinity of DSs to the surface of cell membranes.
A consensus approach to planetary protection requirements: recommendations for Mars lander missions
NASA Technical Reports Server (NTRS)
Rummel, J. D.; Meyer, M. A.
1996-01-01
Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.
Protecting nonlocality of multipartite states by feed-forward control
NASA Astrophysics Data System (ADS)
Li, Xiao-Gang; Zou, Jian; Shao, Bin
2018-06-01
Nonlocality is a useful resource in quantum communication and quantum information processing. In practical quantum communication, multipartite entangled states must be distributed between different users in different places through a channel. However, the channel is usually inevitably disturbed by the environment in quantum state distribution processing and then the nonlocality of states will be weakened and even lost. In this paper, we use a feed-forward control scheme to protect the nonlocality of the Bell and GHZ states against dissipation. We find that this protection scheme is very effective, specifically, for the Bell state, we can increase the noise threshold from 0.5 to 0.98, and for GHZ state from 0.29 to 0.96. And we also find that entanglement is relatively easier to be protected than nonlocality. For our scheme, protecting entanglement is equivalent to protecting the state in the case of Bell state, while protecting nonlocality is not.
Strongly correlated surface states
NASA Astrophysics Data System (ADS)
Alexandrov, Victor A.
Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo band banding (KBB): a modification of edges and their properties due to interactions. We study (chapter 5) a simplified 1D Kondo model, showing that the topology of its ground state is unstable to KBB. Chapter 6 expands the study to 3D: we argue that not only KBB preserves the topology but it could also explain the experimentally observed anomalously high Fermi velocity at the surface as the case of large KBB effect.
Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C
NASA Astrophysics Data System (ADS)
Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; Del Giacco, Mattia; Heinzel, A.; Müller, G.; Markov, V. G.; Kasthanov, A. D.
2012-12-01
Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead bismuth. Pulsed electron beam treatment improves the density and more over the adherence of such layers. After the treatment of previously deposited coatings a surface graded material is achieved with a metallic bonded interface. Creep-rupture tests of T91 in lead-alloy at 550 °C reveal significant reduced creep strength of non-modified T91 test specimens. Oxide scales protecting the steels from attacks of the liquid metal will crack at a certain strain leading to a direct contact between the steel and the liquid metal. The negative influence of the lead-alloy on the creep behavior of non-modified T91 is stress dependent, but below a threshold stress value of 120 MPa at 550 °C this influence becomes almost negligible. At 500 °C and stress values of 200 MPa and 220 MPa the creep rates are comparable between them and significantly lower than creep rates at 180 MPa of original T91 in air at 550 °C. No signs of LBE influence are detected. The surface modified specimens tested at high stress levels instead had creep-rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead-alloy enhanced creep.
Monitoring surface-water quality in Arizona: the fixed-station network
Tadayon, Saeid
2000-01-01
Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).
NASA Astrophysics Data System (ADS)
Howard, J. H.; Baldwin, R.; Pitt, A. L.; Baldwin, E. D.
2013-12-01
Biodiversity management has been historically confined to parks and protected areas and these types of formally-protected areas may help to mitigate the effects of climate change and habitat loss by preventing further fragmentation, degradation and the spread of invasive species. Much research has demonstrated the importance of parks and other such protected areas for their ecological, conservational, and socio-cultural benefits. Protected areas constitute ~ 12% of the earth's land surface and are described as an essential core unit for for in situ conservation. State parks provide a type of a priori conservation, allowing areas which are identified as ecologically important within state park boundaries to be more rapidly prioritized for conservation and management. The development of South Carolina's state parks strongly contributed to cultural, social and ecological improvement across the state and we demonstrate that this network of protected areas can also help scientists to better locate, study and conserve cryptic or unprotected habitats. Our goals for this study were to use the SC state park system to 1) examine the structural and functional differences between wetlands located inside versus outside the state park system, and 2) suggest a conservation framework for small wetlands incorporating both state parks and adjacent areas with variable ownership status. At each wetland, we variables at the within-pond and local (5 m buffer around pool) scales. We visited each study wetland (N = 41, park pool = 19, non-park pools = 22) 5 times during both 2010 and 2011; collected water quality data and recorded the presence and activity of mammals, reptiles, amphibians, benthic invertebrates, zooplankton, phytoplankton and benthic algae. We hypothesized that wetlands within state parks would have better water quality and higher species richness compared to non-park wetlands. Our case study revealed that wetlands outside of state parks exhibited less variable depths and were deeper on average than park pools. We found significant differences in total taxonomic richness, invertebrate tolerance values and wetland depth between park and non-park wetlands. We relied heavily on local ecological knowledge (LEK) for identification and information on wetlands within parks. Furthermore, state parks played a vital role in the development of this project and our study was enriched as a result of utilizing state park personnel and their LEK. We were also able to interact with the public during our site visits and this two-way dialogue between scientists and the general public was useful for educating citizens about the importance of isolated/ephemeral wetlands and helped us better understand public perceptions of wetlands. State parks provided a number of study sites, various personnel who were knowledgeable about the locations and dynamics of wetlands and an a priori framework for conservation at the local scale which can help bolster conservation efforts at larger scales. We posit that state parks are an under-utilized but extremely important resource for filling the gaps in conservation.
Topological Nodal Cooper Pairing in Doped Weyl Metals
NASA Astrophysics Data System (ADS)
Li, Yi; Haldane, F. D. M.
2018-02-01
We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.
National Perspectives on Data Protection.
ERIC Educational Resources Information Center
Yurow, Jane
1983-01-01
Discussion of different approaches to protecting personal information in Europe and the United States highlights data protection laws and agreements (international transfer of personal data, European laws, United States state and federal laws), United States and European views of privacy protection, national economic and political goals, and…
NASA Technical Reports Server (NTRS)
Underwood, Lauren; Ryan, Robert E.
2007-01-01
This Candidate Solution is based on using NASA Earth science research on atmospheric ozone and aerosols data as a means to predict and evaluate the effectiveness of photocatalytically created surfaces (building materials like glass, tile and cement) for air pollution mitigation purposes. When these surfaces are exposed to near UV light, organic molecules, like air pollutants and smog precursors, will degrade into environmentally friendly compounds. U.S. EPA (Environmental Protection Agency) is responsible for forecasting daily air quality by using the Air Quality Index (AQI) that is provided by AIRNow. EPA is partnered with AIRNow and is responsible for calculating the AQI for five major air pollutants that are regulated by the Clean Air Act. In this Solution, UV irradiance data acquired from the satellite mission Aura and the OMI Surface UV algorithm will be used to help understand both the efficacy and efficiency of the photocatalytic decomposition process these surfaces facilitate, and their ability to reduce air pollutants. Prediction models that estimate photocatalytic function do not exist. NASA UV irradiance data will enable this capability, so that air quality agencies that are run by state and local officials can develop and implement programs that utilize photocatalysis for urban air pollution control and, enable them to make effective decisions about air pollution protection programs.
MER surface fault protection system
NASA Technical Reports Server (NTRS)
Neilson, Tracy
2005-01-01
The Mars Exploration Rovers surface fault protection design was influenced by the fact that the solar-powered rovers must recharge their batteries during the day to survive the night. the rovers needed to autonomously maintain thermal stability, initiate safe and reliable communication with orbiting assets or directly to Earth, while maintaining energy balance. This paper will describe the system fault protection design for the surface phase of the mission.
Thin film heater for removable volatile protecting coatings.
Karim, Abid
2013-01-01
Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
Modification of the contact surfaces for improving the puncture resistance of laminar structures.
Wang, Pengfei; Yang, Jinglei; Li, Xin; Liu, Mao; Zhang, Xin; Sun, Dawei; Bao, Chenlu; Gao, Guangfa; Yahya, Mohd Yazid; Xu, Songlin
2017-07-26
Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10 -5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
ARPES study of the epitaxially grown topological crystalline insulator SnTe(111)
Zhang, Yi; Liu, Zhongkai; Zhou, Bo; ...
2016-10-18
We present that SnTe is a prototypical topological crystalline insulator, in which the gapless surface state is protected by a crystal symmetry. The hallmark of the topological properties in SnTe is the Dirac cones projected to the surfaces with mirror symmetry, stemming from the band inversion near the L points of its bulk Brillouin zone, which can be measured by angle-resolved photoemission. We have obtained the (111) surface of SnTe film by molecular beam epitaxy on BaF 2(111) substrate. Photon-energy-dependence of in situ angle-resolved photoemission, covering multiple Brillouin zones in the direction perpendicular to the (111) surface, demonstrate the projected Dirac cones at themore » $$\\overline{Γ}$$ and $$\\overline{M}$$ points of the surface Brillouin zone. Additionally, we observe a Dirac-cone-like band structure at the Γ point of the bulk Brillouin zone, whose Dirac energy is largely different from those at the $$\\overline{Γ}$$ and $$\\overline{M}$$ points.« less
NASA Astrophysics Data System (ADS)
Butler, Christopher J.; Tseng, Yi; Hsing, Cheng-Rong; Wu, Yu-Mi; Sankar, Raman; Wang, Mei-Fang; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2017-02-01
The Dirac semimetal phase found in Cd3As2 is protected by a C4 rotational symmetry derived from a corkscrew arrangement of systematic Cd vacancies in its complicated crystal structure. It is therefore surprising that no microscopic observation, direct or indirect, of these systematic vacancies has so far been described. To this end, we revisit the cleaved (112) surface of Cd3As2 using a combined approach of scanning tunneling microscopy and ab initio calculations. We determine the exact position of the (112) plane at which Cd3As2 naturally cleaves, and describe in detail a structural periodicity found at the reconstructed surface, consistent with that expected to arise from the systematic Cd vacancies. This reconciles the current state of microscopic surface observations with those of crystallographic and theoretical models, and demonstrates that this vacancy superstructure, central to the preservation of the Dirac semimetal phase, survives the cleavage process and retains order at the surface.
40 CFR 761.372 - Specific requirements for relatively clean surfaces.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Specific requirements for relatively clean surfaces. 761.372 Section 761.372 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...
40 CFR 61.344 - Standards: Surface impoundments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Surface impoundments. 61.344 Section 61.344 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene...
40 CFR 61.344 - Standards: Surface impoundments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Surface impoundments. 61.344 Section 61.344 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene...
Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-09-01
This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating amore » much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health« less
Controls on the Stability of Atmospheric O2 over Geologic Time Scales (Invited)
NASA Astrophysics Data System (ADS)
Rothman, D.; Bosak, T.
2013-12-01
The concentration of free oxygen in Earth's surface environment represents a balance between the accumulation of O2, due to long-term burial of organic carbon in sediments, and the consumption of O2 by weathering processes and the oxidation of reduced gases. The stability of modern O2 levels is typically attributed to a negative feedback that emerges when the production and consumption fluxes are expressed as a function of O2 concentration. Empirical studies of modern burial of organic carbon suggest that the production of O2 is a logarithmically decreasing function of the duration of time---the "oxygen exposure time (OET)"--over which sedimentary organic carbon is exposed to O2. The OET hypothesis implies that a fraction of organic matter is physically protected from anaerobic decay by its association with clay-sized mineral surface area, but susceptible to aerobic decay, either oxidatively or via free extracellular hydrolytic enzymes. By assuming that the long-term aerobic degradation is diffusion-limited, we predict the logarithmic decay of the OET curve. We note, however, that exposure to O2 may enhance not only degradation but also physical protection due to the precipitation of iron oxides and clay minerals. When the rate of transformation from the unprotected state to the protected state exceeds a small fraction of the average oxidative degradation rate, our theoretical OET curve develops a maximum at small O2 exposure times. In this case, the equilibrium O2 concentration can lose its stability. These observations may help explain major fluctuations in Earth's carbon cycle and the rise of O2 during the Proterozoic (2000--542 Ma).
NASA Astrophysics Data System (ADS)
Camilloni, Carlo; Sala, Benedetta Maria; Sormanni, Pietro; Porcari, Riccardo; Corazza, Alessandra; De Rosa, Matteo; Zanini, Stefano; Barbiroli, Alberto; Esposito, Gennaro; Bolognesi, Martino; Bellotti, Vittorio; Vendruscolo, Michele; Ricagno, Stefano
2016-05-01
A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.
45 CFR 1386.20 - Designated State Protection and Advocacy agency.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.20 Designated State Protection... 45 Public Welfare 4 2012-10-01 2012-10-01 false Designated State Protection and Advocacy agency...
45 CFR 1386.20 - Designated State Protection and Advocacy agency.
Code of Federal Regulations, 2013 CFR
2013-10-01
... DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.20 Designated State Protection... 45 Public Welfare 4 2013-10-01 2013-10-01 false Designated State Protection and Advocacy agency...
45 CFR 1386.20 - Designated State Protection and Advocacy agency.
Code of Federal Regulations, 2011 CFR
2011-10-01
... DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.20 Designated State Protection... 45 Public Welfare 4 2011-10-01 2011-10-01 false Designated State Protection and Advocacy agency...
45 CFR 1386.20 - Designated State Protection and Advocacy agency.
Code of Federal Regulations, 2014 CFR
2014-10-01
... DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.20 Designated State Protection... 45 Public Welfare 4 2014-10-01 2014-10-01 false Designated State Protection and Advocacy agency...
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers get ready to remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Protected electrode structures and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhaylik, Yuriy V.; Laramie, Michael G.; Kopera, John Joseph Christopher
2017-08-08
An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer. The first release layer may have a low mean peak to valley surface roughness, which may enable the formation of a thin protective layer with a low mean peak to valley surface roughness.
Method for smoothing the surface of a protective coating
Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur
2001-01-01
A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.
Robinson, J.; Snider, M.; Duke, J.; Moyer, G.R.
2014-01-01
The southeastern United States is a recognized hotspot of biodiversity for a variety of aquatic taxa, including fish, amphibians, and mollusks. Unfortunately, the great diversity of the area is accompanied by a large proportion of species at risk of extinction . Gap analysis was employed to assess the representation of evolutionary hotspots in protected lands w h ere an evolutionary hotspot was defined as an area with high evolutionary potential and measured by atypical patterns of genetic divergence, genetic diversity, and to a lesser extent genetic similarity across multiple terrestrial or aquatic taxa. A survey of the primary literature produced 16 terrestrial and 14 aquatic genetic datasets for estimation of genetic divergence and diversity. Relative genetic diversity and divergence values for each terrestrial and aquatic dataset were used for interpolation of multispecies genetic surfaces and subsequent visualization using ArcGIS. The multispecies surfaces interpolated from relative divergences and diversity data identified numerous evolutionary hotspots for both terrestrial and aquatic taxa , many of which were afforded some current protection. For instance, 14% of the cells identified as hotspots of aquatic diversity were encompassed by currently protected areas. Additionally, 25% of the highest 1% of terrestrial diversity cells were afforded some level of protection. In contrast, areas of high and low divergence among species, and areas of high variance in diversity were poorly represented in the protected lands. Of particular interest were two areas that were consistently identified by several different measures as important from a conservation perspective. These included an area encompassing the panhandle of Florida and southern Georgia near the Apalachicola National Forest (displaying varying levels of genetic divergence and greater than average levels of genetic diversity) and a large portion of the coastal regions of North and South Carolina (displaying low genetic divergence and greater than average levels of genetic diversity) . Our results show the utility o f genetic data sets for identifying cross - species patterns of genetic diversity and divergence (i.e., evolutionary hotspots) in aquatic and terrestrial environments for use in conservation design and delivery across the southeastern United States.
Method of coating metal surfaces to form protective metal coating thereon
Krikorian, Oscar H.; Curtis, Paul G.
1992-01-01
A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.
Method of coating metal surfaces to form protective metal coating thereon
Krikorian, O.H.; Curtis, P.G.
1992-03-31
A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.
A quantized microwave quadrupole insulator with topologically protected corner states
NASA Astrophysics Data System (ADS)
Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav
2018-03-01
The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.
40 CFR 761.369 - Pre-cleaning the surface.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Pre-cleaning the surface. 761.369 Section 761.369 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 14 2013-07-01 2013-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
Bioinspired Surface Treatments for Improved Decontamination: Commercial Products
2017-07-28
simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a...treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on the surfaces and wetting angles...Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual protection
Assessing occupational exposure to sea lamprey pesticides.
Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin
2015-01-01
Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide(TM) into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. To assess occupational exposures to sea lamprey pesticides. We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker's skin contaminated with pesticides. We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment.
Erosion protection conferred by whole human saliva, dialysed saliva, and artificial saliva
NASA Astrophysics Data System (ADS)
Baumann, T.; Kozik, J.; Lussi, A.; Carvalho, T. S.
2016-10-01
During dental erosion, tooth minerals are dissolved, leading to a softening of the surface and consequently to irreversible surface loss. Components from human saliva form a pellicle on the tooth surface, providing some protection against erosion. To assess the effect of different components and compositions of saliva on the protective potential of the pellicle against enamel erosion, we prepared four different kinds of saliva: human whole stimulated saliva (HS), artificial saliva containing only ions (AS), human saliva dialysed against artificial saliva, containing salivary proteins and ions (HS/AS), and human saliva dialysed against deionised water, containing only salivary proteins but no ions (HS/DW). Enamel specimens underwent four cycles of immersion in either HS, AS, HS/AS, HS/DW, or a humid chamber (Ctrl), followed by erosion with citric acid. During the cycling process, the surface hardness and the calcium released from the surface of the specimens were measured. The different kinds of saliva provided different levels of protection, HS/DW exhibiting significantly better protection than all the other groups (p < 0.0001). Different components of saliva, therefore, have different effects on the protective properties of the pellicle and the right proportions of these components in saliva are critical for the ability to form a protective pellicle.
NASA Astrophysics Data System (ADS)
Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter
2016-07-01
Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars transit and surface stays that may be impacted by planetary protection requirements or be controlled for the protection of planetary science.
Preliminary test of two stump surface protectants against Fomes annosus.
E.E. Nelson; C.Y. Li
1980-01-01
Two materials, monolaurin (at two concentrations) and an unidentified species of the genus Streptomyces, were tested along with borax for ability to protect freshly cut stump surfaces of western hemlock (Tsuga heterophylla (Raf.) Sarg.) from colonization by Fomes annosus. Protectants were significantly (P...
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Mihelcic, Judith A.
1989-01-01
Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Complete theory of symmetry-based indicators of band topology.
Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki
2017-06-30
The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.
Wang, X.; Permentier, H. P.; Rink, R.; Kruijtzer, J. A. W.; Liskamp, R. M. J.; Wösten, H. A. B.; Poolman, B.; Robillard, G. T.
2004-01-01
The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate α-helical state to the stable end form called the β-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the α-helical state. The β-sheet state can be induced at elevated temperature in the presence of detergent. The structural changes of SC3 were monitored by various mass spectrometry techniques. We show that the so-called second loop of SC3 (C39–S72) has a high affinity for Teflon. Binding of this part of SC3 to Teflon was accompanied by the formation of α-helical structure and resulted in low solvent accessibility. The solvent-protected region of the second loop extended upon conversion to the β-sheet state. In contrast, the C-terminal part of SC3 became more exposed to the solvent. The results indicate that the second loop of class I hydrophobins plays a pivotal role in self-assembly at the hydrophilic-hydrophobic interface. Of interest, this loop is much smaller in case of class II hydrophobins, which may explain the differences in their assembly. PMID:15345568
40 CFR 300.605 - State trustees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false State trustees. 300.605 Section 300.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY... access to appropriate state officials with environmental protection, emergency response, and natural...
40 CFR 300.605 - State trustees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 29 2013-07-01 2013-07-01 false State trustees. 300.605 Section 300.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY... access to appropriate state officials with environmental protection, emergency response, and natural...
40 CFR 300.605 - State trustees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 27 2010-07-01 2010-07-01 false State trustees. 300.605 Section 300.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY... access to appropriate state officials with environmental protection, emergency response, and natural...
40 CFR 300.605 - State trustees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false State trustees. 300.605 Section 300.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY... access to appropriate state officials with environmental protection, emergency response, and natural...
40 CFR 300.605 - State trustees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 28 2014-07-01 2014-07-01 false State trustees. 300.605 Section 300.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY... access to appropriate state officials with environmental protection, emergency response, and natural...
NASA Astrophysics Data System (ADS)
Kamata, Noritsugu; Yuji, Toshifumi; Thungsuk, Nuttee; Arunrungrusmi, Somchai; Chansri, Pakpoom; Kinoshita, Hiroyuki; Mungkung, Narong
2018-06-01
The surface chemical structure of poly(ethylene naphthalate) (PEN) films treated with a low-pressure, high-frequency plasma was investigated by storing in a box at room temperature to protect the PEN film surface from dust. The functional groups on the PEN film surface changed over time. The functional groups of –C=O, –COH, and –COOH were abundant in the Ar + O2 mixture gas plasma-treated PEN samples as compared with those in untreated PEN samples. The changes occurred rapidly after 2 d following the plasma treatment, reaching steady states 8 d after the treatment. Hydrophobicity had an inverse relationship with the concentration of these functional groups on the surface. Thus, the effect of the low-pressure high-frequency plasma treatment on PEN varies as a function of storage time. This means that radical oxygen and oxygen molecules are clearly generated in the plasma, and this is one index to confirm that radical reaction has definitely occurred between the gas and the PEN film surface with a low-pressure high-frequency plasma.
NASA Technical Reports Server (NTRS)
Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.
2004-01-01
Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.
Gu, Zhenyu; Rao, Maithreyi K.; Forsyth, William R.
2009-01-01
The structures of partially-folded states appearing during the folding of a (βα)8 TIM barrel protein, the indole-3-glycerol phosphate synthase from S. solfataricus (sIGPS), was assessed by hydrogen exchange mass spectrometry (HX-MS) and Gō-model simulations. HX-MS analysis of the peptic peptides derived from the pulse-labeled product of the sub-millisecond folding reaction from the urea-denatured state revealed strong protection in the (βα)4 region, modest protection in the neighboring (βα)1–3 and (βα)5β6 segments and no significant protection in the remaining N- and C-terminal segments. These results demonstrate that this species is not a collapsed form of the unfolded state under native-favoring conditions nor is it the native state formed via fast-track folding. However, the striking contrast of these results with the strong protection observed in the (βα)2–5β6 region after 5 s of folding demonstrates that these species represent kinetically-distinct folding intermediates that are not identical as previously thought. A re-examination of the kinetic folding mechanism by chevron analysis of fluorescence data confirmed distinct roles for these two species: the burst-phase intermediate is predicted to be a misfolded, off-pathway intermediate while the subsequent 5 s intermediate corresponds to an on-pathway equilibrium intermediate. Comparison with the predictions using a Cα Gō-model simulation of the kinetic folding reaction for sIGPS shows good agreement with the core of structure offering protection against exchange in the on-pathway intermediate(s). Because the native-centric Gō-model simulations do not explicitly include sequence-specific information, the simulation results support the hypothesis that the topology of TIM barrel proteins is a primary determinant of the folding free energy surface for the productive folding reaction. The early misfolding reaction must involve aspects of non-native structure not detected by the Gō-model simulation. PMID:17942114
Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran
2016-01-01
The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.
Vegetation growth enhancement in urban environments of the Conterminous United States.
Jia, Wenxiao; Zhao, Shuqing; Liu, Shuguang
2018-05-19
Cities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization on vegetation growth into direct (replacement of original land surfaces by impervious built-up) and indirect (urban environments) components, using a conceptual framework and remotely-sensed data for 377 metropolitan statistical areas (MSAs) in the conterminous United States (CONUS) in 2001, 2006, and 2011. Results showed that urban pixels are often greener than expected given the amount of paved surface they contain. The vegetation growth enhancement due to indirect effects occurred in 88.4%, 90.8% and 92.9% of urban bins in 2001, 2006 and 2011, respectively. By defining offset value as the ratio of the absolute indirect and direct impact, we obtained that growth enhancement due to indirect effects compensated for about 29.2%, 29.5% and 31.0% of the reduced productivity due to loss of vegetated surface area on average in 2001, 2006, and 2011, respectively. Vegetation growth responses to urbanization showed little temporal variation but large regional differences with higher offset value in the western CONUS than in the eastern CONUS. Our study highlights the prevalence of vegetation growth enhancement in urban environments and the necessity of differentiating various impacts of urbanization on vegetation growth, and calls for tailored field experiments to understand the relative contributions of various driving forces to vegetation growth and predict vegetation responses to future global change using cities as harbingers. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
40 CFR 763.123 - May a State implement its own asbestos worker protection plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false May a State implement its own asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos Worker Protection § 763.123 May a State implement its own asbestos worker protection plan? This section describes the process under which a State may be...
40 CFR 763.123 - May a State implement its own asbestos worker protection plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false May a State implement its own asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos Worker Protection § 763.123 May a State implement its own asbestos worker protection plan? This section describes the process under which a State may be...
40 CFR 763.123 - May a State implement its own asbestos worker protection plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false May a State implement its own asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos Worker Protection § 763.123 May a State implement its own asbestos worker protection plan? This section describes the process under which a State may be...
40 CFR 763.123 - May a State implement its own asbestos worker protection plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false May a State implement its own asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos Worker Protection § 763.123 May a State implement its own asbestos worker protection plan? This section describes the process under which a State may be...
40 CFR 763.123 - May a State implement its own asbestos worker protection plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false May a State implement its own asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos Worker Protection § 763.123 May a State implement its own asbestos worker protection plan? This section describes the process under which a State may be...
High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction
NASA Astrophysics Data System (ADS)
Fukui, Kosuke; Tomita, Akihisa; Okamoto, Atsushi; Fujii, Keisuke
2018-04-01
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.
Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?
NASA Astrophysics Data System (ADS)
Feng, Ellias Y.; Keller, David P.; Koeve, Wolfgang; Oschlies, Andreas
2016-07-01
Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.
40 CFR 761.267 - Sampling non-porous surfaces.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
40 CFR 761.267 - Sampling non-porous surfaces.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
40 CFR 761.267 - Sampling non-porous surfaces.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
Protection of lithographic components from particle contamination
Klebanoff, Leonard E.; Rader, Daniel J.
2000-01-01
A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.
Method for protection of lithographic components from particle contamination
Klebanoff, Leonard E.; Rader, Daniel J.
2001-07-03
A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.
22 CFR 102.19 - Protection of United States property.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Protection of United States property. 102.19... States Aircraft Accidents Abroad Foreign Aircraft Accidents Involving United States Persons Or Property § 102.19 Protection of United States property. The local Foreign Service office shall follow...
22 CFR 102.19 - Protection of United States property.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Protection of United States property. 102.19... States Aircraft Accidents Abroad Foreign Aircraft Accidents Involving United States Persons Or Property § 102.19 Protection of United States property. The local Foreign Service office shall follow...
22 CFR 102.19 - Protection of United States property.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Protection of United States property. 102.19... States Aircraft Accidents Abroad Foreign Aircraft Accidents Involving United States Persons Or Property § 102.19 Protection of United States property. The local Foreign Service office shall follow...
Altered states: state health privacy laws and the impact of the Federal Health Privacy Rule.
Pritts, Joy L
2002-01-01
Although the Federal Health Privacy Rule has evened out some of the inconsistencies between states' health privacy laws, gaps in protection still remain. Furthermore, the Federal Rule contains some lax standards for the disclosure of health information. State laws can play a vital role in filling these gaps and strengthening the protections afforded health information. By enacting legislation that has higher privacy-protective standards than the Federal Health Privacy Rule, states can play three important roles. First, because they can directly regulate entities that are beyond HHS's mandate, states can afford their citizens a broader degree of privacy protection than the Federal Health Privacy Rule. Second, by having state health privacy laws, states can enforce privacy protections at the local level. Finally, action by the states can positively influence health privacy policies at the federal level by raising the standard as to what constitutes sufficient privacy protection. High privacy protections imposed by states may serve as the standard for comprehensive federal legislation, if and when Congress reconsiders the issue. So far, states' reactions to the Federal Privacy Rule have been mixed. Only time will tell whether states will assume the mantle of leadership on health privacy or relinquish their role as the primary protectors of health information.
IRIS Summary and Supporting Documents for Methylmercury ...
In January 2001, U.S. EPA finalized the guidance for methylmercury in the water quality criteria for states and authorized tribes. The links below take you to the best resources for this guidance. This final Guidance for Implementing the January 2001 Methylmercury Water Quality Criterion provides technical guidance to states and authorized tribes on how they may want to use the January 2001 fish tissue-based recommended water quality criterion for methylmercury in surface water protection programs (e.g., TMDLs, NPDES permitting). The guidance addresses questions related to water quality standards adoption (e.g., site-specific criteria, variances), assessments, monitoring, TMDLs, and NPDES permitting. The guidance consolidates existing EPA guidance where relevant to mercury.
Demineralization of resin-sealed enamel by soft drinks in a clinically relevant pH cycling model.
Bartels, Agata A; Evans, Carla A; Viana, Grace; Bedran-Russo, Ana K
2016-04-01
To compare the in vitro protective effect of orthodontic sealants on the enamel demineralization under a soft drink-induced erosive challenge. The facial surfaces of bovine incisors were sectioned into 5 mm x 4 mm x 4 mm enamel blocks. Specimens were randomly assigned to three surface protection measures: control (exposed enamel), coating with Transbond XT (unfilled resin primer), or coating with Opal Seal (filled and fluoride releasing primer). Thermocycling was used to simulate aging. The specimens were pH cycled through an acidic buffer, test beverage and a neutral buffer for a total of 7 days. Test beverages included water, Diet Mountain Dew, and Coke Classic. Quantitative light-induced fluorescence (QLF) images were taken at baseline and after aging. Final QLF images were taken to evaluate the demineralization of enamel. Data were analyzed statistically using a two-way ANOVA to compare the interaction between enamel surface protection and beverages as well as one-way ANOVA to compare surface protection and the test beverage levels. A statistically significant interaction was found between the surface protected groups and the test beverage groups (P < 0.05). Statistically significant differences were found among the test beverage groups (P < 0.05) and among the surface protection groups (P < 0.05). Coke Classic went through the sealant layer resulting in high enamel demineralization. Enamel coating with Opal Seal significantly reduced the erosive attack of beverages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.j; Iguchi, Motoi; Oku, Takeo
2010-04-15
Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis ofmore » a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.« less
Guidelines for preparation of the 1996 state water quality assessments (305(b) reports)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
The Federal Water Polluton Control Act (PL92-500, commonly known as the Clean Water Act), establishes a process for States to use to develop information on the quality of the Nation`s water resources and to report this information to the U.S. Environmental Protection Agency (EPA), the U.S. Congress, and the citizens of this country. Each State must develop a program to monitor the quality of its surface and ground waters and prepare a report every 2 years describing the status of its water quality. EPA compiles the data from the State reports, summarizes them, and transmits the summaries to Congress alongmore » with an analysis of the status of water quality nationwide. This process, referred to as the 305(b) process, is an essential aspect of the Nation`s water pollution control effort.« less
MER Surface Phase; Blurring the Line Between Fault Protection and What is Supposed to Happen
NASA Technical Reports Server (NTRS)
Reeves, Glenn E.
2008-01-01
An assessment on the limitations of communication with MER rovers and how such constraints drove the system design, flight software and fault protection architecture, blurring the line between traditional fault protection and expected nominal behavior, and requiring the most novel autonomous and semi-autonomous elements of the vehicle software including communication, surface mobility, attitude knowledge acquisition, fault protection, and the activity arbitration service.
NASA Astrophysics Data System (ADS)
Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin
2017-03-01
Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.
NASA Astrophysics Data System (ADS)
Leydsman-McGinty, E. I.; Ramsey, R. D.; McGinty, C.
2013-12-01
The Remote Sensing/GIS Laboratory at Utah State University, in cooperation with the United States Environmental Protection Agency, is quantifying impervious surfaces for three watershed sub-basins in Utah. The primary objective of developing watershed-scale quantifications of impervious surfaces is to provide an indicator of potential impacts to wetlands that occur within the Wasatch Front and along the Great Salt Lake. A geospatial layer of impervious surfaces can assist state agencies involved with Utah's Wetlands Program Plan (WPP) in understanding the impacts of impervious surfaces on wetlands, as well as support them in carrying out goals and actions identified in the WPP. The three watershed sub-basins, Lower Bear-Malad, Lower Weber, and Jordan, span the highly urbanized Wasatch Front and are consistent with focal areas in need of wetland monitoring and assessment as identified in Utah's WPP. Geospatial layers of impervious surface currently exist in the form of national and regional land cover datasets; however, these datasets are too coarse to be utilized in fine-scale analyses. In addition, the pixel-based image processing techniques used to develop these coarse datasets have proven insufficient in smaller scale or detailed studies, particularly when applied to high-resolution satellite imagery or aerial photography. Therefore, object-based image analysis techniques are being implemented to develop the geospatial layer of impervious surfaces. Object-based image analysis techniques employ a combination of both geospatial and image processing methods to extract meaningful information from high-resolution imagery. Spectral, spatial, textural, and contextual information is used to group pixels into image objects and then subsequently used to develop rule sets for image classification. eCognition, an object-based image analysis software program, is being utilized in conjunction with one-meter resolution National Agriculture Imagery Program (NAIP) aerial photography from 2011.
Ramey, Jordan D.; Villareal, Valerie A.; Ng, Charles; Ward, Sabrina; Xiong, Jian-Ping; Clubb, Robert T.; Bradley, Kenneth A.
2010-01-01
Anthrax toxin receptor 1 (ANTXR1) / tumor endothelial marker 8 (TEM8) is one of two known proteinaceous cell surface anthrax toxin receptors. A metal ion dependent adhesion site (MIDAS) present in the integrin-like inserted (I) domain of ANTXR1 mediates the binding of the anthrax toxin subunit, protective antigen (PA). Here we provide evidence that single point mutations in the I domain can override regulation of ANTXR1 ligand-binding activity mediated by intracellular signals. A previously reported MIDAS-mutant of ANTXR1 (T118A) was found to retain normal metal ion binding and secondary structure but failed to bind PA, consistent with a locked inactive state. Conversely, mutation of a conserved I domain phenylalanine residue to a tryptophan (F205W) increased the proportion of cell-surface ANTXR1 that bound PA, consistent with a locked active state. Interestingly, the KD and total amount of PA bound by the isolated ANTXR1 I domain was not affected by the F205W mutation, indicating that ANTXR1 is preferentially found in the active state in the absence of inside-out signaling. Circular dichroism (CD) spectroscopy and 1H-15N heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) revealed that structural changes between T118A, F205W and WT I domains were minor despite a greater than 103-fold difference in their abilities to bind toxin. Regulation of toxin binding has important implications for the design of toxin inhibitors and for the targeting of ANTXR1 for anti-tumor therapies. PMID:20690680
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Sources of Water to Wells for Transient Cyclic Systems
Reilly, T.E.; Pollock, D.W.
1996-01-01
Many state agencies are currently (1995) developing wellhead protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. The area contributing recharge to a discharging well is the surface area at the water table through which the water flowing to the well entered the ground-water system. In the analyses of ground-water flow systems, steady-state average conditions are commonly used to simplify the problem and make a solution tractable. However, recharge is usually cyclic in nature, with seasonal cycles and longer term climatic cycles. The effect of these cyclic stresses on the area contributing recharge to wells is quantitatively analyzed for a hypothetical alluvial valley aquifer system that is representative of a large class of ground-water systems that are extensively developed for water supply. The analysis shows that, in many cases, these cyclic changes in the recharge rates do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to be an indicator of whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. However, cyclic stresses on systems with ratios less than one do have an effect on the location and size of the areas contributing recharge to wells.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, Thomas M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.
Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe
NASA Astrophysics Data System (ADS)
Li, Jiangxu; Xie, Qing; Ullah, Sami; Li, Ronghan; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2018-02-01
In analogy to various fermions of electrons in topological semimetals, topological mechanical states with two types of bosons, Dirac and Weyl bosons, were reported in some macroscopic systems of kHz frequency, and those with a type of doubly-Weyl phonons in atomic vibrational framework of THz frequency of solid crystals were recently predicted. Here, through first-principles calculations, we have reported that the phonon spectra of the WC-type TiS, ZrSe, and HfTe commonly host the unique triply degenerate nodal points (TDNPs) and single two-component Weyl points (WPs) in THz frequency. Quasiparticle excitations near TDNPs of phonons are three-component bosons, beyond the conventional and known classifications of Dirac, Weyl, and doubly-Weyl phonons. Moreover, we have found that both TiS and ZrSe have five pairs of type-I Weyl phonons and a pair of type-II Weyl phonons, whereas HfTe only has four pairs of type-I Weyl phonons. They carry nonzero topological charges. On the (10 1 ¯0 ) crystal surfaces, we observe topological protected surface arc states connecting two WPs with opposite charges, which host modes that propagate nearly in one direction on the surface.
40 CFR 721.91 - Computation of estimated surface water concentrations: Instructions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Computation of estimated surface water concentrations: Instructions. 721.91 Section 721.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.91 Computation of...
40 CFR 721.91 - Computation of estimated surface water concentrations: Instructions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Computation of estimated surface water concentrations: Instructions. 721.91 Section 721.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.91 Computation of...
METHOD OF FORMING A PROTECTIVE COATING ON FERROUS METAL SURFACES
Schweitzer, D.G.; Weeks, J.R.; Kammerer, O.F.; Gurinsky, D.H.
1960-02-23
A method is described of protecting ferrous metal surfaces from corrosive attack by liquid metals, such as liquid bismuth or lead-bismuth alloys. The nitrogen content of the ferrous metal surface is first reduced by reacting the metal surface with a metal which forms a stable nitride. Thereafter, the surface is contacted with liquid metal containing at least 2 ppm zirconium at a temperature in the range of 550 to 1100 deg C to form an adherent zirconium carbide layer on the ferrous surface.
Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.
Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy
2017-12-01
Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO 2 -PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.
Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers
NASA Astrophysics Data System (ADS)
Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy
2017-03-01
Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.
40 CFR 73.86 - State regulatory autonomy.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false State regulatory autonomy. 73.86 Section 73.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... regulatory autonomy. Nothing in this subpart shall preclude a State or State regulatory authority from...
Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.
2015-01-01
The data, analysis, and conclusions associated with this study can be used by regulatory agencies, resource managers, and wastewater-treatment operators to (1) better understand the quantity and characteristics of nutrients, bacteria, metals, and contaminants of emerging concern that are transported away from biosolids land-application fields to surface water and groundwater under current regulations for the purposes of establishing effective total maximum daily loads (TMDLs) and restoring impaired water resources, (2) assess how well existing regulations protect waters of the State and potentially recommend effective changes to regulations or land-application procedures, and (3) establish a framework for developing guidance on effective techniques for monitoring and regulatory enforcement of permitted biosolids land-application fields.
Soil and solid poultry waste nutrient management and water quality.
Chapman, S L
1996-07-01
Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production.
Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.
Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B
2018-05-17
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.
Leung, Kevin
2016-12-10
The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
Battaglin, William A.; Ulery, Randy L.; Winterstein, Thomas; Welborn, Toby
2003-01-01
In the State of Texas, surface water (streams, canals, and reservoirs) and ground water are used as sources of public water supply. Surface-water sources of public water supply are susceptible to contamination from point and nonpoint sources. To help protect sources of drinking water and to aid water managers in designing protective yet cost-effective and risk-mitigated monitoring strategies, the Texas Commission on Environmental Quality and the U.S. Geological Survey developed procedures to assess the susceptibility of public water-supply source waters in Texas to the occurrence of 227 contaminants. One component of the assessments is the determination of susceptibility of surface-water sources to nonpoint-source contamination. To accomplish this, water-quality data at 323 monitoring sites were matched with geographic information system-derived watershed- characteristic data for the watersheds upstream from the sites. Logistic regression models then were developed to estimate the probability that a particular contaminant will exceed a threshold concentration specified by the Texas Commission on Environmental Quality. Logistic regression models were developed for 63 of the 227 contaminants. Of the remaining contaminants, 106 were not modeled because monitoring data were available at less than 10 percent of the monitoring sites; 29 were not modeled because there were less than 15 percent detections of the contaminant in the monitoring data; 27 were not modeled because of the lack of any monitoring data; and 2 were not modeled because threshold values were not specified.
77 FR 32901 - State Enforcement of Household Goods Consumer Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
... enforce certain consumer protection provisions of Title 49 of the United States Code (U.S.C.) and related... bring civil actions in the U.S. district courts to enforce the consumer protection provisions that apply..., 386, and 387 State Enforcement of Household Goods Consumer Protection AGENCY: Federal Motor Carrier...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-15
... environmental protection, (e) Integrated water resources management and protection, (f) Coastal protection and... protected areas. The Department of the Interior, the Environmental Protection Agency, the United States...
Optical Manipulation and Detection of Emergent Phenomena in Topological Insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gedik, Nuh
The three-dimensional topological insulator (TI) is a new quantum phase of matter that exhibits quantum-Hall-like properties, even in the absence of an external magnetic field. These materials are insulators in the bulk but have a topologically protected conducting state at the surface. Charge carriers on these surface states behave like a two-dimensional gas of massless helical Dirac fermions for which the spin is ideally locked perpendicular to the momentum. The purpose of this project is to probe the unique collective electronic behaviors of topological insulators by developing and using advanced time resolved spectroscopic techniques with state-of-the-art temporal and spatial resolutions.more » The nature of these materials requires development of specialized ultrafast techniques (such as time resolved ARPES that also has spin detection capability, ultrafast electron diffraction that has sub-100 fs time resolution and THz magneto-spectroscopy). The focus of this report is to detail our achievements in terms of establishing state of the art experimental facilities. Below, we will describe achievements under this award for the entire duration of five years. We will focus on detailing the development of ultrafast technqiues here. The details of the science that was done with these technqiues can be found in the publications referencing this grant.« less
Assessing occupational exposure to sea lamprey pesticides
Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin
2015-01-01
Background: Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and BayluscideTM into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. Objectives: To assess occupational exposures to sea lamprey pesticides. Methods: We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. Results: We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker’s skin contaminated with pesticides. Conclusion: We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment. PMID:25730600
Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.
1984-01-01
An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.
Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.
Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno
2017-06-14
Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.
The role of organo-mineral interactions on the capacity of soils to store carbon
NASA Astrophysics Data System (ADS)
Georgiou, K.; Abramoff, R. Z.; Riley, W. J.; Torn, M. S.
2017-12-01
Observed patterns of soil organic carbon (SOC) content across geochemical regimes are signatures of process and provide opportunities to understand the underlying decomposition and stabilization mechanisms that can guide their representation in models. The type of sorption equation used in soil decomposition models has large implications for both SOC stock and its temperature sensitivity. Here we compared different model formulations of SOC sorption to mineral surfaces, motivated by the myriad of chemical associations between organic and mineral surfaces, and used laboratory and field incubations to inform model parameters. We explored linear, Langmuir, and Freundlich adsorption models, where the latter emerges from heterogeneous compositions of substrate and surface components. We show the effect of model representations on predicted trends of SOC as a function of mineralogy and discuss the role of soil C saturation on emergent patterns. Specifically, our results highlight that the response of mineral-associated (`protected') SOC to changes in plant C inputs depends greatly on the C saturation deficit of the soil and thus, the representation of organo-mineral interactions in models can lead to nonlinear steady-state responses in protected SOC. We also find that, consistent with field experiments, the trend in protected SOC and mineral C saturation capacity is linear, but, interestingly, the slope depends on the degree of C saturation. We contend that this latter finding is an important consideration for field studies that did not find a universal slope and interpreted this as an inability of mineralogy to explain observed patterns. Our results also suggest that warming affects this slope, with higher temperatures causing a decrease in the amount of protected C for a given saturation capacity and C input rate. This means that more C inputs will be needed to keep the same amount of protected C at higher temperatures. Organo-mineral interactions play a key role in governing soil C stabilization and long-term storage, and thus, improving their representation for inclusion in Earth system models is crucial for understanding and predicting feedbacks under global change.
Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander
NASA Technical Reports Server (NTRS)
Hernandez, Carlos A.; Sunder, Sankar; Vestgaard, Baard
1989-01-01
The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed.
40 CFR 60.4140 - State trading budgets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false State trading budgets. 60.4140 Section 60.4140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Electric Steam Generating Units Hg Allowance Allocations § 60.4140 State trading budgets. The State trading...
40 CFR 59.697 - State actions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false State actions. 59.697 Section 59.697 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... State actions. The provisions in this subpart do not preclude any State or any political subdivision of...
2D approaches to 3D watermarking: state-of-the-art and perspectives
NASA Astrophysics Data System (ADS)
Mitrea, M.; Duţă, S.; Prêteux, F.
2006-02-01
With the advent of the Information Society, video, audio, speech, and 3D media represent the source of huge economic benefits. Consequently, there is a continuously increasing demand for protecting their related intellectual property rights. The solution can be provided by robust watermarking, a research field which exploded in the last 7 years. However, the largest part of the scientific effort was devoted to video and audio protection, the 3D objects being quite neglected. In the absence of any standardisation attempt, the paper starts by summarising the approaches developed in this respect and by further identifying the main challenges to be addressed in the next years. Then, it describes an original oblivious watermarking method devoted to the protection of the 3D objects represented by NURBS (Non uniform Rational B Spline) surfaces. Applied to both free form objects and CAD models, the method exhibited very good transparency (no visible differences between the marked and the unmarked model) and robustness (with respect to both traditional attacks and to NURBS processing).
Dobrikova, Anelia G; Apostolova, Emilia L
2015-07-20
The effect of the exogenously added quercetin against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes suspended at different pH of the medium (6.5, 7.6 and 8.4) was investigated. The data revealed that the interaction of this flavonoid with the membranes depends on the pH and influences the initial S0-S1 state distribution of PSII in the dark, the energy transfer between pigment-protein complexes of the photosynthetic apparatus and the membrane fluidity. Quercetin also displays a different UV-protective effect depending on its location in the membranes, as the effect is more pronounced at pH 8.4 when it is located at the membrane surface. The results suggest that quercetin induces structural changes in thylakoid membranes, one of the possible reasons for its protection of the photosynthetic apparatus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Protection of tokamak plasma facing components by a capillary porous system with lithium
NASA Astrophysics Data System (ADS)
Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.
2015-08-01
Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.
NASA Astrophysics Data System (ADS)
Lasseur, Christophe
Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination. These risks concern both crew health via the metabolic consumables contamination (water, air,.) but and also the hardware degradation. In parallel to these life support issues, planetary protection experts have agreed to place clear specifications of the microbial quality of future hardware landing on extraterrestrial planets as well as elaborate the requirements of contamination for manned missions on surface. For these activities, it is necessary to have a better understanding of microbial activity, to create culture collections and to develop on-line detection tools. . In this respect, over the last 6 years , ESA has supported active scientific research on the choice of critical genes and functions, including those linked to horizontal gene pool of bacteria and its dissemination. In parallel, ESA and European industries have been developing an automated instrument for rapid microbial detection on air and surface samples. Within this paper, we first present the life support and planetary protection requirements, and the state of the art of the instrument development. Preliminary results at breadboard level, including a mock-up view of the final instrument are also presented. Finally, the remaining steps required to reach a functional instrument for planetary hardware integration and life support flight hardware are also presented.
Functions of ocular surface mucins in health and disease
Mantelli, Flavio; Argüeso, Pablo
2009-01-01
Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205
Apparatus and method for the electrolytic production of metals
Sadoway, Donald R.
1991-01-01
Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.
Thermal and aerothermal performance of a titanium multiwall thermal protection system
NASA Technical Reports Server (NTRS)
Avery, D. E.; Shideler, J. L.; Stuckey, R. N.
1981-01-01
A metallic thermal protection system (TPS) concept the multiwall designed for temperature and pressure at Shuttle body point 3140 where the maximum surface temperature is approximately 811 K was tested to evaluate thermal performance and structural integrity. A two tile model of titanium multiwall and a model consisting of a low temperature reusable surface insulation (LRSI) tiles were exposed to 25 simulated thermal and pressure Shuttle entry missions. The two systems performed the same, and neither system deteriorated during the tests. It is indicated that redesign of the multiwall tiles reduces tile thickness and/or weight. A nine tile model of titanium multiwal was tested for radiant heating and aerothermodynamics. Minor design changes that improve structural integrity without having a significant impact on the thermal protection ability of the titanium multiwall TPS are identified. The capability of a titanium multiwall thermal protection system to protect an aluminum surface during a Shuttle type entry trajectory at locations on the vehicle where the maximum surface temperature is below 811 K is demonstrated.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Heo, Jinhwa; Kang, Taegon; Jang, Se Gyu; Hwang, Dong Soo; Spruell, Jason M.; Killops, Kato L.; Waite, J. Herbert; Hawker, Craig J.
2012-01-01
A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor – eugenol – and efficient chemistries – tris(pentafluorophenyl)borane catalyzed silation and thiol-ene coupling is reported. Silyl-protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing which allows functionalized polysiloxane derivatives to be fabricated into 3-D microstructures as well as 2-D patterned surfaces. Deprotection gives stable catechol surfaces with adhesion to a variety of oxide surfaces being precisely tuned by the level of catechol incorporation. The advantage of silyl-protection for catechol functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments. PMID:23181614
Surface protected lithium-metal-oxide electrodes
Thackeray, Michael M.; Kang, Sun-Ho
2016-04-05
A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
DOE Office of Scientific and Technical Information (OSTI.GOV)
ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.
Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situatedmore » above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.« less
Bondable Stainless Surface Coats Protect Against Rust
NASA Technical Reports Server (NTRS)
Davis, G. D.; Shaffer, D. K.; Clearfield, H. M.; Nagle, D.; Groff, G.
1995-01-01
Report describes tests conducted to assess use of bondable stainless surface (BOSS) coating materials to protect steel cases of solid-fuel rocket motors against corrosion and to provide surface microstructure and chemistry suitable for bonding to insulating material. Eliminates need to cover cases with grease to prevent corrosion and degreasing immediately prior to use.
Myths and Misconceptions in Fall Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epp, R J
2006-02-23
Since 1973, when OSHA CFRs 1910 and 1926 began to influence the workplace, confusion about the interpretation of the standards has been a problem and fall protection issues are among them. This confusion is verified by the issuance of 351 (as of 11/25/05) Standard Interpretations issued by OSHA in response to formally submitted questions asking for clarification. Over the years, many workers and too many ES&H Professionals have become 'self-interpreters', reaching conclusions that do not conform to either the Standards or the published Interpretations. One conclusion that has been reached by the author is that many ES&H Professionals are eithermore » not aware of, or do not pay attention to the Standard Interpretations issued by OSHA, or the State OSHA interpretation mechanism, whoever has jurisdiction. If you fall in this category, you are doing your organization or clients a disservice and are not providing them with the best information available. Several myths and/or misconceptions have been promulgated to the point that they become accepted fact, until an incident occurs and OSHA becomes involved. For example, one very pervasive myth is that you are in compliance as long as you maintain a distance of 6 feet from the edge. No such carte blanche rule exists. In this presentation, this myth and several other common myths/misconceptions will be discussed. This presentation is focused only on Federal OSHA CFR1910 Subpart D--Walking-Working Surfaces, CFR1926 Subpart M--Fall Protection and the Fall Protection Standard Interpretation Letters. This presentation does not cover steel erection, aerial lifts and other fall protection issues. Your regulations will probably be different than those presented if you are operating under a State plan.« less
Guide to Louisiana's ground-water resources
Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.
1994-01-01
Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.
40 CFR 35.925-4 - State allocation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false State allocation. 35.925-4 Section 35.925-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-4 State...
40 CFR 35.925-4 - State allocation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false State allocation. 35.925-4 Section 35.925-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-4 State...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false State. 40.115-6 Section 40.115-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.115-6 State. (a) Under the Federal Water Pollution Control Act, a State, the District...
40 CFR 121.14 - Forwarding to affected State.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Forwarding to affected State. 121.14 Section 121.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE CERTIFICATION OF ACTIVITIES REQUIRING A FEDERAL LICENSE OR PERMIT Determination of Effect on Other States § 121...
40 CFR 121.14 - Forwarding to affected State.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Forwarding to affected State. 121.14 Section 121.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE CERTIFICATION OF ACTIVITIES REQUIRING A FEDERAL LICENSE OR PERMIT Determination of Effect on Other States § 121...
40 CFR 121.14 - Forwarding to affected State.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Forwarding to affected State. 121.14 Section 121.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE CERTIFICATION OF ACTIVITIES REQUIRING A FEDERAL LICENSE OR PERMIT Determination of Effect on Other States § 121...
40 CFR 121.14 - Forwarding to affected State.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Forwarding to affected State. 121.14 Section 121.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE CERTIFICATION OF ACTIVITIES REQUIRING A FEDERAL LICENSE OR PERMIT Determination of Effect on Other States § 121...
40 CFR 121.14 - Forwarding to affected State.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Forwarding to affected State. 121.14 Section 121.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS STATE CERTIFICATION OF ACTIVITIES REQUIRING A FEDERAL LICENSE OR PERMIT Determination of Effect on Other States § 121...
32 CFR 9.9 - Protection of State secrets.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 1 2014-07-01 2014-07-01 false Protection of State secrets. 9.9 Section 9.9... § 9.9 Protection of State secrets. Nothing in this part shall be construed to authorize disclosure of state secrets to any person not authorized to receive them. ...
32 CFR 9.9 - Protection of State secrets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Protection of State secrets. 9.9 Section 9.9... § 9.9 Protection of State secrets. Nothing in this part shall be construed to authorize disclosure of state secrets to any person not authorized to receive them. ...
32 CFR 9.9 - Protection of State secrets.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 1 2013-07-01 2013-07-01 false Protection of State secrets. 9.9 Section 9.9... § 9.9 Protection of State secrets. Nothing in this part shall be construed to authorize disclosure of state secrets to any person not authorized to receive them. ...
32 CFR 9.9 - Protection of State secrets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false Protection of State secrets. 9.9 Section 9.9... § 9.9 Protection of State secrets. Nothing in this part shall be construed to authorize disclosure of state secrets to any person not authorized to receive them. ...
32 CFR 9.9 - Protection of State secrets.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 1 2012-07-01 2012-07-01 false Protection of State secrets. 9.9 Section 9.9... § 9.9 Protection of State secrets. Nothing in this part shall be construed to authorize disclosure of state secrets to any person not authorized to receive them. ...
Chaudhary, Bhumika; Kulkarni, Ashish; Jena, Ajay Kumar; Ikegami, Masashi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Miyasaka, Tsutomu
2017-06-09
It is well known that the surface trap states and electronic disorders in the solution-processed CH 3 NH 3 PbI 3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (V oc ) by 120 to 160 mV whereas the standard cell fabricated in same conditions showed V oc as low as 0.9 V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with V oc more than 1.05 V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30 days of exposure to open atmosphere (50 % humidity). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multisensor system for the protection of critical infrastructure of a seaport
NASA Astrophysics Data System (ADS)
Kastek, Mariusz; Dulski, Rafał; Zyczkowski, Marek; Szustakowski, Mieczysław; Trzaskawka, Piotr; Ciurapinski, Wiesław; Grelowska, Grazyna; Gloza, Ignacy; Milewski, Stanislaw; Listewnik, Karol
2012-06-01
There are many separated infrastructural objects within a harbor area that may be considered "critical", such as gas and oil terminals or anchored naval vessels. Those objects require special protection, including security systems capable of monitoring both surface and underwater areas, because an intrusion into the protected area may be attempted using small surface vehicles (boats, kayaks, rafts, floating devices with weapons and explosives) as well as underwater ones (manned or unmanned submarines, scuba divers). The paper will present the concept of multisensor security system for a harbor protection, capable of complex monitoring of selected critical objects within the protected area. The proposed system consists of a command centre and several different sensors deployed in key areas, providing effective protection from land and sea, with special attention focused on the monitoring of underwater zone. The initial project of such systems will be presented, its configuration and initial tests of the selected components. The protection of surface area is based on medium-range radar and LLTV and infrared cameras. Underwater zone will be monitored by a sonar and acoustic and magnetic barriers, connected into an integrated monitoring system. Theoretical analyses concerning the detection of fast, small surface objects (such as RIB boats) by a camera system and real test results in various weather conditions will also be presented.
75 FR 34666 - Stream Protection Rule; Environmental Impact Statement
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Chapter VII RIN 1029-AC63 Stream Protection Rule; Environmental Impact Statement AGENCY: Office of Surface Mining... impact statement. [[Page 34667
Kikuchi-Numagami, K; Suetake, T; Yanai, M; Takahashi, M; Tanaka, M; Tagami, H
2000-06-01
The skin of golfers' hands provides a suitable model to study the effect of chronic sun exposure, because one of their hands is exposed to the outer environment, especially sunlight, while the other one is always protected by a glove during play. Our purpose was to find out the influence of photodamage on the properties of the skin surface of middle-aged Japanese by using non-invasive methods. We measured hydration state, and water barrier function of the stratum corneum (SC) and the color of the skin of the dorsum of the hands. In a separate study, we evaluated the skin surface contour by using replicas taken from the skin in a slightly stretched or relaxed position. We found a significant decrease in hydration of the skin surface of the exposed skin as compared to that of the protected skin, whereas no such difference was found with transepidermal water loss, a parameter for water barrier function of the SC. Luminance of skin color was also reduced in the sun-exposed skin. Replica analysis revealed that large wrinkles developing in a relaxed position were more prominent on the exposed than on the protected skin, while fine furrows noted in a slightly stretched position were shallower on the former than the latter. The data obtained indicate that the chronically exposed skin of golfers' hands shows morphological and functional changes resulting from long time exposure to the outer environment especially sunlight. Furthermore, bioengineering non-invasive methods are found to be useful to detect early photodamage of the skin in a more quantitative fashion which is rather difficult to demonstrate clinically.
NASA Technical Reports Server (NTRS)
Klein, S. B.
1980-01-01
Although many states afford some measure of protection for wetland areas through flood-plain regulations or through programs for coastal areas, shorelands, scenic and wild rivers or pollution control, few states have programs that adequately deal with conservation of wetlands. Only 16 states have legislation specifically regulating development or use of wetlands. Most of the wetland acts apply only to coastal wetlands, several to inland wetlands and three acts apply to both. Many other states are still regulating wetland use through the dredge and fill and/or critical area program. Several offer tax incentives to property owners to encourage protection of wetlands or broader open spaces. Many states have acquired wetlands for park and wildlife purposes and a large measure of wetland protection is achieved by the very restrictive controls applied to floodways areas. Direct floodplain or floodway regulations or state standards for local regulations were adopted in 24 states but protection of ecological values of wetlands is rarely an explicit objective of these programs. Scenic and wild river programs adopted in one half of the states provide some protection for wetland areas.
NASA Astrophysics Data System (ADS)
Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.
2014-06-01
Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.
Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.
Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge
2005-02-01
The present paper reviews aspects related to the biocompatibility of NiTi shape memory alloys used for medical applications. These smart metallic materials, which are characterised by outstanding mechanical properties, have been gaining increasing importance over the last two decades in many minimal invasive surgery and diagnostic applications, as well as for other uses, such as in orthodontic appliances. Due to the presence of high amounts of Ni, the cytotoxicity of such alloys is under scrutiny. In this review paper we analyse work published on the biocompatibility of NiTi alloys, considering aspects related to: (1) corrosion properties and the different methods used to test them, as well as specimen surface states; (2) biocompatibility tests in vitro and in vivo; (3) the release of Ni ions. It is shown that NiTi shape memory alloys are generally characterised by good corrosion properties, in most cases superior to those of conventional stainless steel or Co-Cr-Mo-based biomedical materials. The majority of biocompatibility studies suggest that these alloys have low cytotoxicity (both in vitro and in vivo) as well as low genotoxicity. The release of Ni ions depends on the surface state and the surface chemistry. Smooth surfaces with well-controlled structures and chemistries of the outermost protective TiO2 layer lead to negligible release of Ni ions, with concentrations below the normal human daily intake.
Surface Majorana fermions and bulk collective modes in superfluid 3He-B
NASA Astrophysics Data System (ADS)
Park, YeJe; Chung, Suk Bum; Maciejko, Joseph
2015-02-01
The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.
Electrode structure and method for making the same
Affinito, John D.; Lowe, Gregory K.
2015-05-26
Electrode structures, and more specifically, electrode structures for use in electrochemical cells, are provided. The electrode structures described herein may include one or more protective layers. In one set of embodiments, a protective layer may be formed by exposing a lithium metal surface to a plasma comprising ions of a gas to form a ceramic layer on top of the lithium metal. The ceramic layer may be highly conductive to lithium ions and may protect the underlying lithium metal surface from reaction with components in the electrolyte. In some cases, the ions may be nitrogen ions and a lithium nitride layer may be formed on the lithium metal surface. In other embodiments, the protective layer may be formed by converting lithium to lithium nitride at high pressures. Other methods for forming protective layers are also provided.
40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 23 2013-07-01 2013-07-01 false General permits (applicable to State NPDES programs, see § 123.25). 122.28 Section 122.28 Protection of Environment ENVIRONMENTAL PROTECTION...) City, county, or State political boundaries; (iv) State highway systems; (v) Standard metropolitan...
40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 22 2014-07-01 2013-07-01 true General permits (applicable to State NPDES programs, see § 123.25). 122.28 Section 122.28 Protection of Environment ENVIRONMENTAL PROTECTION...) City, county, or State political boundaries; (iv) State highway systems; (v) Standard metropolitan...
40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 23 2012-07-01 2012-07-01 false General permits (applicable to State NPDES programs, see § 123.25). 122.28 Section 122.28 Protection of Environment ENVIRONMENTAL PROTECTION...) City, county, or State political boundaries; (iv) State highway systems; (v) Standard metropolitan...
40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false General permits (applicable to State NPDES programs, see § 123.25). 122.28 Section 122.28 Protection of Environment ENVIRONMENTAL PROTECTION...) City, county, or State political boundaries; (iv) State highway systems; (v) Standard metropolitan...
Refractory thermal insulation for smooth metal surfaces
NASA Technical Reports Server (NTRS)
1964-01-01
To protect rocket metal surfaces from engine exhaust heat, a refractory thermal insulation mixture, which adheres to smooth metals, has been developed. Insulation protection over a wide temperature range can be controlled by thickness of the applied mixture.
"Electroless" E-Coating for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Song, Guang-Ling
By utilizing the unique electrochemistry of Mg, a thin organic film can rapidly be deposited on the surface of a Mg alloy by dipping the Mg alloy in a cathodic E-coating bath solution without applying a current or potential. The self-deposited coating is selectively formed on Mg alloy surfaces. Although the "electroless" E-coating pre-film is relatively thin, it can offer sufficient corrosion protection for Mg alloys in a chloride-containing environment. The stability of the film can be significantly improved after curing. The corrosion resistance of the substrate Mg alloy has an important effect on the corrosion protection performance of the coating. The coating is more protective on a corrosion resistant Mg alloy than on a non-corrosion resistant Mg substrate. The coating protection performance is also influenced by the substrate surface condition or pre-treatment process. Wet cleaning + heat-treatment may be a cost-effective surface preparation/treatment for the "electroless" E-coating in industrial applications.
Surface protection coating material for controlling the decay of major construction stone
NASA Astrophysics Data System (ADS)
Arun, T.; Ray, D. K.; Gupta, V. P.; Panda, S. S.; Sahoo, P. K.; Ghosh, Jaydip; Sengupta, Pranesh; Satyam, P. V.
2017-05-01
Degradation of the building stones are creating instability in the old building and monuments which is to be protected. To investigate the characteristics of such a stones used for the construction in eastern India, we have collected the khondalite stones. The microstructural and elemental composition analysis of the khondalite stones are analyzed by using SEM, EDX and PIXE trace elemental analysis. We have prepared surface protection coating material with graphene oxide and cobalt ferrite as a base material along with other residuals. The prepared coating materials is coated on the galvanized iron substrate for further characterization. The surface morphology characteristics of the coating material is analyzed by SEM and AFM. The corrosion resistance characteristics of the prepared coating material is studied by the electrochemical impedance spectroscopy. The results suggests that the prepared coating material can be used as a surface protection materials to control the self-destruction of khondalite stones.
40 CFR 147.1200 - State-administered program. [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false State-administered program. [Reserved] 147.1200 Section 147.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Minnesota...
40 CFR 147.1200 - State-administered program. [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false State-administered program. [Reserved] 147.1200 Section 147.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Minnesota...
40 CFR 147.1200 - State-administered program. [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false State-administered program. [Reserved] 147.1200 Section 147.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Minnesota...
40 CFR 147.1200 - State-administered program. [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false State-administered program. [Reserved] 147.1200 Section 147.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Minnesota...
40 CFR 147.1200 - State-administered program. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false State-administered program. [Reserved] 147.1200 Section 147.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Minnesota...
40 CFR 147.600 - State-administered program. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false State-administered program. [Reserved] 147.600 Section 147.600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Hawaii...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Prohibition. 501.18 Section 501.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STATE SLUDGE MANAGEMENT PROGRAM REGULATIONS Development and Submission of State Programs § 501.18 Prohibition. State permit...
Effect of seasonal and long-term changes in stress on sources of water to wells
Reilly, Thomas E.; Pollock, David W.
1995-01-01
The source of water to wells is ultimately the location where the water flowing to a well enters the boundary surface of the ground-water system . In ground-water systems that receive most of their water from areal recharge, the location of the water entering the system is at the water table . The area contributing recharge to a discharging well is the surface area that defines the location of the water entering the groundwater system. Water entering the system at the water table flows to the well and is eventually discharged from the well. Many State agencies are currently (1994) developing wellhead-protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. In the analyses of ground-water flow systems, steady-state average conditions are frequently used to simplify the problem and make a solution tractable. Recharge is usually cyclic in nature, however, having seasonal cycles and longer term climatic cycles. A hypothetical system is quantitatively analyzed to show that, in many cases, these cyclic changes in the recharge rates apparently do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to indicate whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. Noncyclic long-term transient changes in water use, however, and cyclic stresses on systems with ratios less than 1 can and do affect the location and size of the areas contributing recharge to wells.
Determinants of the Rigor of State Protection Policies for Persons With Dementia in Assisted Living.
Nattinger, Matthew C; Kaskie, Brian
2017-01-01
Continued growth in the number of individuals with dementia residing in assisted living (AL) facilities raises concerns about their safety and protection. However, unlike federally regulated nursing facilities, AL facilities are state-regulated and there is a high degree of variation among policies designed to protect persons with dementia. Despite the important role these protection policies have in shaping the quality of life of persons with dementia residing in AL facilities, little is known about their formation. In this research, we examined the adoption of AL protection policies pertaining to staffing, the physical environment, and the use of chemical restraints. For each protection policy type, we modeled policy rigor using an innovative point-in-time approach, incorporating variables associated with state contextual, institutional, political, and external factors. We found that the rate of state AL protection policy adoptions remained steady over the study period, with staffing policies becoming less rigorous over time. Variables reflecting institutional policy making, including legislative professionalism and bureaucratic oversight, were associated with the rigor of state AL dementia protection policies. As we continue to evaluate the mechanisms contributing to the rigor of AL protection policies, it seems that organized advocacy efforts might expand their role in educating state policy makers about the importance of protecting persons with dementia residing in AL facilities and moving to advance appropriate policies.
Corrosion of Metal Films with Defective Surface Protection Layers.
1980-07-01
ranged from 1 x 10- 10 to I x 10-9 A and were fairly constant (within a factor of 2) throughout the test, except for one line pair which intermit ...SCE) OOV (SCE) ( I -0.5V (b.) -0.5V FAST SCAN SLOW SCAN 0.05 Hz 0.01 Hz Figure 39. E-vs-I curves for gold-trimetal substrate. and Au 3+ *.dation states...an additional complication because the fast scan time may not provide for the diffusion of constituents for the electrochemical process. However, the
Synopsis of the history of sea otter conservation in the United States
VanBlaricom, Glenn R.
2015-01-01
In the late 1860s, declining US sea otter populations elicited concern because of prior excessive harvests. Congress mandated protection of Alaskan sea otters in 1868, but hunting continued unrestrained. The Fur Seal Treaty of 1911 (abrogated in 1941) protected sea otters in international waters, but was not applicable to most sea otter habitats and failed to terminate all legal sea otter harvests. Between 1941 and 1972 only the State of California was consistently engaged in sea otter conservation, based on a 1913 state law. Trends in cultural values toward protection of species based on imperiled status rather than economics led to the Marine Mammal Protection Act (1972), giving sea otters unambiguous protection in all US territorial waters. Sea otter habitat protection by the US government began in the 1890s. State marine protected areas potentially support sea otter conservation, particularly when paired with adjacent federal protected entities in or near sea otter habitat.
Modeling of fracture of protective concrete structures under impact loads
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-10-01
This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.
Dynamics and protection of tripartite quantum correlations in a thermal bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long
2015-03-15
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successfulmore » protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.« less
40 CFR 147.1650 - State-administered program. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false State-administered program. [Reserved] 147.1650 Section 147.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS New York...
45 CFR 1386.20 - Designated State Protection and Advocacy agency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS State System for Protection and Advocacy of the Rights of Individuals with Developmental Disabilities § 1386.20 Designated State Protection...
40 CFR 233.52 - Program reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Program reporting. 233.52 Section 233.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE... cumulative impacts of the State's permit program on the integrity of the State regulated waters...
40 CFR 233.52 - Program reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Program reporting. 233.52 Section 233.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE... cumulative impacts of the State's permit program on the integrity of the State regulated waters...
Portable flooring protects finished surfaces, is easily moved
NASA Technical Reports Server (NTRS)
Carmody, R. J.
1964-01-01
To protect curved, finished surface and provide support for workmen, portable flooring has been made from rigid plastic foam blocks, faced with aluminum strips. Held together by nylon webbing, the flooring can be rolled up for easy carrying.
40 CFR 233.50 - Review of and objection to State permits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Review of and objection to State permits. 233.50 Section 233.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM REGULATIONS Federal Oversight § 233.50 Review of and objection to State permits. (a) The Director shall promptly transmit...
40 CFR 233.50 - Review of and objection to State permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Review of and objection to State permits. 233.50 Section 233.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM REGULATIONS Federal Oversight § 233.50 Review of and objection to State permits. (a) The Director shall promptly transmit...
40 CFR 233.50 - Review of and objection to State permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Review of and objection to State permits. 233.50 Section 233.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM REGULATIONS Federal Oversight § 233.50 Review of and objection to State permits. (a) The Director shall promptly transmit...
40 CFR 233.50 - Review of and objection to State permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Review of and objection to State permits. 233.50 Section 233.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING 404 STATE PROGRAM REGULATIONS Federal Oversight § 233.50 Review of and objection to State permits. (a) The Director shall promptly transmit...
40 CFR 60.1535 - What compliance schedule must I include in my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What compliance schedule must I include in my State plan? 60.1535 Section 60.1535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Introduction § 60.1535 What compliance schedule must I include in my State plan? (a) Your State...
40 CFR 60.1535 - What compliance schedule must I include in my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What compliance schedule must I include in my State plan? 60.1535 Section 60.1535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Introduction § 60.1535 What compliance schedule must I include in my State plan? (a) Your State...
40 CFR 60.1535 - What compliance schedule must I include in my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What compliance schedule must I include in my State plan? 60.1535 Section 60.1535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Introduction § 60.1535 What compliance schedule must I include in my State plan? (a) Your State...
40 CFR 60.1535 - What compliance schedule must I include in my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What compliance schedule must I include in my State plan? 60.1535 Section 60.1535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 1999 Introduction § 60.1535 What compliance schedule must I include in my State plan? (a) Your State...
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce; Lenczewski, Mary; Demko, Rikako
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.
Wang, Yang; Kern, Aurélie; Boatright, Naomi K; Schiller, Zachary A; Sadowski, Andrew; Ejemel, Monir; Souders, Colby A; Reimann, Keith A; Hu, Linden; Thomas, William D; Klempner, Mark S
2016-07-15
Tick transmission of Borrelia spirochetes to humans results in significant morbidity from Lyme disease worldwide. Serum concentrations of antibodies against outer surface protein A (OspA) were shown to correlate with protection from infection with Borrelia burgdorferi, the primary cause of Lyme disease in the United States. Mice transgenic for human immunoglobulin genes were immunized with OspA from B. burgdorferi to generate human monoclonal antibodies (HuMabs) against OspA. HuMabs were generated and tested in in vitro borreliacidal assays and animal protection assays. Nearly 100 unique OspA-specific HuMabs were generated, and 4 HuMabs (221-7, 857-2, 319-44, and 212-55) were selected as lead candidates on the basis of borreliacidal activity. HuMabs 319-44, 857-2, and 212-55 were borreliacidal against 1 or 2 Borrelia genospecies, whereas 221-7 was borreliacidal (half maximal inhibitory concentration, < 1 nM) against B. burgdorferi, Borrelia afzelii, and Borrelia garinii, the 3 main genospecies endemic in the United States, Europe, and Asia. All 4 HuMabs completely protected mice from infection at 10 mg/kg in a murine model of tick-mediated transmission of B. burgdorferi Our study indicates that OspA-specific HuMabs can prevent the transmission of Borrelia and that administration of these antibodies could be employed as preexposure prophylaxis for Lyme disease. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Insect contamination protection for laminar flow surfaces
NASA Technical Reports Server (NTRS)
Croom, Cynthia C.; Holmes, Bruce J.
1986-01-01
The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.
Latent Hardeners for the Assembly of Epoxy Composites
NASA Technical Reports Server (NTRS)
Palmieri, Frank; Wohl, Christopher J.; Connell, John W.; Mercado, Zoar; Galloway, Jordan
2016-01-01
Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint strengths. In contrast, assemblies made by co-curing, although limited in size by the mold, result in stable structures, and are certifiable for commercial aviation because of structural continuity through the joints. Multifunctional epoxy resins were prepared that should produce fully-cured subcomponents with uncured joining surfaces, enabling them to be assembled by co-curing in a subsequent out-of-autoclave process. Aromatic diamines were protected by condensation with a ketone or aldehyde to form imines. Properties of the amine-cured epoxy were compared with those of commercially available thermosetting epoxy resins and rheology and thermal analysis were used to demonstrate the efficacy of imine protection. Optimum conditions to reverse the protecting chemistry in the solid state using moisture and acid catalysis were determined. Alternative chemistries were also investigated. For example, chain reaction depolymerization and photoinitiated catalysts would be expected to minimize liberation of volatile organic content upon deprotection and avoid residual reactive species that could damage the resin. Results from the analysis of protected and deprotected resins will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-06
In February 1992, the United State Environmental Protection Agency (USEPA) proposed that the McCormick and Baster Creosoting Company in Stockton, California be listed on the National Priorities List (NPL) because of contamination resulting from a wood preserving plant that operated there from 1942 until 1990. Chemicals used in the preservative solutions included creosote, pentachlorophenol, arsenic, copper, and chromium. Contamination has been detected in the on-site surface soil, subsurface soil, on-site air when the site was in operation, nearby off-site surface, soil, on-sit groundwater, off-site groundwater to a small extent, and perhaps in the fish living in the Old Mormon Slough,more » New Mormon Slough, and the Port of Stockton.« less
Owais, Ahmed; Smith-Palmer, Truis; Gentle, Angus; Neto, Chiara
2018-06-26
Underwater superoleophobic surfaces can be considered a particular type of lubricant-infused surface, that have anti-fouling properties by virtue of a trapped water layer that repels oils. However, as their function relies on a water layer being trapped in the surface roughness, it is crucial to understand the factors that determine the layer stability. In this work, the forces that are responsible for the stability of thin liquid films within structured surfaces were quantified, and the conclusions were tested against the performance of wrinkled surfaces as underwater superoleophobic coatings. Here, the system studied was a family of wrinkled surfaces made of hydrophilic poly(4-vinylpyridine) (P4VP), whereby the wrinkle width could be controllably tuned in the range 90 nm to 8000 nm. The van der Waals free energy was quantified and the capillary forces trapping water in the surface micro- and nano-wrinkle structure were estimated. P4VP surfaces with micro-scale wrinkles had underwater superoleophobic properties, and low adhesion to different oils with droplet roll-off angle below 6° ± 1°. Despite the van der Waals free energy of the system pointing to the dewetting of a water film under oil on top of a smooth P4VP film, the wrinkled structure is sufficient to induce a Cassie state with a trapped water layer. The micro-scale wrinkles (average width 4-12 μm) were found to be particularly effective in the trapping of the water in a Cassie non-adhesive state. The P4VP wrinkled surfaces are superamphiphobic, as when they were first infused with oil, and then exposed to a droplet of water under oil, they exhibited superhydrophobic behavior. The P4VP wrinkles have the additional useful feature of being transparent underwater, which makes them useful candidates for the protection of underwater cameras and sensors.
Fast Three-Dimensional Method of Modeling Atomic Oxygen Undercutting of Protected Polymers
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce A.
2002-01-01
A method is presented to model atomic oxygen erosion of protected polymers in low Earth orbit (LEO). Undercutting of protected polymers by atomic oxygen occurs in LEO due to the presence of scratch, crack or pin-window defects in the protective coatings. As a means of providing a better understanding of undercutting processes, a fast method of modeling atomic-oxygen undercutting of protected polymers has been developed. Current simulation methods often rely on computationally expensive ray-tracing procedures to track the surface-to-surface movement of individual "atoms." The method introduced in this paper replaces slow individual particle approaches by substituting a model that utilizes both a geometric configuration-factor technique, which governs the diffuse transport of atoms between surfaces, and an efficient telescoping series algorithm, which rapidly integrates the cumulative effects stemming from the numerous atomic oxygen events occurring at the surfaces of an undercut cavity. This new method facilitates the systematic study of three-dimensional undercutting by allowing rapid simulations to be made over a wide range of erosion parameters.
Influence of microclimate on the sustainability and reliability of weathering steel bridge
NASA Astrophysics Data System (ADS)
Kubzova, M.; Krivy, V.; Kreislova, K.
2018-04-01
Reliability and sustainability of bridge structures designed from weathering steel are influenced by the development of a sufficiently protective layer of corrosion products on its surface. The development of this protective layer is affected by several parameters such as air pollution around the bridge structure, the microclimate under the bridge, the location of surface within the bridge structure and the time of wetness. Design of structural details also significantly influences the development of the protective corrosion layer. The article deals with the results of the experimental tests carried out on the road bridge located in the city of Ostrava in the Czech Republic. The development of the protective corrosion layer on the surface of the bridge is significantly influenced by the intensive traffic under the bridge construction and the design solution of the bridge itself. Attention is focused mainly on the influence of chloride deposition on the protective function of the corrosion layer. Corrosion samples were placed on the bridge to evaluate the influence of the above-mentioned parameters. The deposition rate of chlorides spreading from the road to surfaces of the steel structure is also measured.
Ground-water contamination and legal controls in Michigan
Deutsch, Morris
1963-01-01
The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power of the Water Resources Commission to control pollution of ground water, in effect has introduced the doctrine of reasonable use into the law of the State. Excluding controls administered by the Department of Conservation on activities of the oil and gas industry, however, legal controls have not been used abate intrusion of natural saline waters into fresh-water aquifers in response to pumping and other manmade changes in the hydrologic regimen.
Numerical investigation on properties of attack angle for an opposing jet thermal protection system
NASA Astrophysics Data System (ADS)
Lu, Hai-Bo; Liu, Wei-Qiang
2012-08-01
The three-dimensional Navier—Stokes equation and the k-in viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow conditions. The numerical method is validated by the relevant experiment. The flow field parameters, aerodynamic forces, and surface heat flux distributions for attack angles of 0°, 2°, 5°, 7°, and 10° are obtained. The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters, aerodynamic force, and surface heat flux distribution of the supersonic vehicle nose-tip with an opposing jet thermal protection system. When the attack angle reaches 10°, the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system, thus the thermal protection has failed.
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State regulatory powers. 256.21 Section 256.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommendations for State regulatory powers. 256.22 Section 256.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 272.951 - Louisiana state-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Louisiana state-administered program: Final authorization. 272.951 Section 272.951 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.951...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Subgrants. 31.37 Section 31.37 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE UNIFORM... Requirements Changes, Property, and Subawards § 31.37 Subgrants. (a) States. States shall follow State law and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Payments. 35.3155 Section 35.3155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3155 Payments. (a) Payment schedule. The State...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Payments. 35.3155 Section 35.3155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3155 Payments. (a) Payment schedule. The State...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Payments. 35.3155 Section 35.3155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3155 Payments. (a) Payment schedule. The State...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Payments. 35.3155 Section 35.3155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3155 Payments. (a) Payment schedule. The State...
40 CFR 57.815 - State notification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false State notification. 57.815 Section 57.815 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Technology § 57.815 State notification. The Administrator shall give notice of the final decision in writing...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
40 CFR 256.20 - Requirements for State legal authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Requirements for State legal authority. 256.20 Section 256.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Payments. 35.3155 Section 35.3155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE State Water Pollution Control Revolving Funds § 35.3155 Payments. (a) Payment schedule. The State...
Protective measurement of the wave function of a single squeezed harmonic-oscillator state
NASA Astrophysics Data System (ADS)
Alter, Orly; Yamamoto, Yoshihisa
1996-05-01
A scheme for the "protective measurement"
Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Guerniche, Djamal; Hommen, Udo; Klein, Michael; Kubiak, Roland; Müller, Alexandra; Priegnitz, Jan; Reichenberger, Stefan; Thomas, Kai; Trapp, Matthias
2016-07-01
In 2001, the European Commission introduced a risk assessment project known as FOCUS (FOrum for the Coordination of pesticide fate models and their USe) for the surface water risk assessment of active substances in the European Union. Even for the national authorisation of plant protection products (PPPs), the vast majority of EU member states still refer to the four runoff and six drainage scenarios selected by the FOCUS Surface Water Workgroup. However, our study, as well as the European Food Safety Authority (EFSA), has stated the need for various improvements. Current developments in pesticide exposure assessment mainly relate to two processes. Firstly, predicted environmental concentrations (PECs) of pesticides are calculated by introducing model input variables such as weather conditions, soil properties and substance fate parameters that have a probabilistic nature. Secondly, spatially distributed PECs for soil-climate scenarios are derived on the basis of an analysis of geodata. Such approaches facilitate the calculation of a spatiotemporal cumulative distribution function (CDF) of PECs for a given area of interest and are subsequently used to determine an exposure concentration endpoint as a given percentile of the CDF. For national PPP authorisation, we propose that, in the future, exposure endpoints should be determined from the overall known statistical PEC population for an area of interest, and derived for soil and climate conditions specific to the particular member state. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Leder, Martin; Grossert, Christopher; Sitta, Lukas; Genske, Maximilian; Rosch, Achim; Weitz, Martin
2016-01-01
To describe a mobile defect in polyacetylene chains, Su, Schrieffer and Heeger formulated a model assuming two degenerate energy configurations that are characterized by two different topological phases. An immediate consequence was the emergence of a soliton-type edge state located at the boundary between two regions of different configurations. Besides giving first insights in the electrical properties of polyacetylene materials, interest in this effect also stems from its close connection to states with fractional charge from relativistic field theory. Here, using a one-dimensional optical lattice for cold rubidium atoms with a spatially chirped amplitude, we experimentally realize an interface between two spatial regions of different topological order in an atomic physics system. We directly observe atoms confined in the edge state at the intersection by optical real-space imaging and characterize the state as well as the size of the associated energy gap. Our findings hold prospects for the spectroscopy of surface states in topological matter and for the quantum simulation of interacting Dirac systems. PMID:27767054
Method for providing mirror surfaces with protective strippable polymeric film
Edwards, Charlene C.; Day, Jack R.
1980-01-01
This invention is a method for forming a protective, strippable, elastomeric film on a highly reflective surface. The method is especially well suited for protecting diamond-machined metallic mirrors, which are susceptible not only to abrasion and mechanical damage but also to contamination and corrosion by various fluids. In a typical use of the invention, a diamond-machined copper mirror surface is coated uniformly with a solution comprising a completely polymerized and completely cured thermoplastic urethane elastomer dissolved in tetrahydrofuran. The applied coating is evaporated to dryness, forming a tough, adherent, impermeable, and transparent film which encapsulates dust and other particulates on the surface. The film may be left in place for many months. When desired, the film may be stripped intact, removing the entrapped particulates and leaving no residue on the mirror surface.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface water...
40 CFR 264.220 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments... that use surface impoundments to treat, store, or dispose of hazardous waste except as § 264.1 provides...
Jeong, Seung-Woo; An, Youn-Joo
2014-01-01
This study suggested the first Korean site-specific ecological surface water quality criteria for the protection of ecosystems near an artillery range at a Korean military training facility. Surface water quality (SWQ) criteria in Korea address human health protection but do not encompass ecological criteria such as limits for metals and explosives. The first objective of this study was to derive site-specific SWQ criteria for the protection of aquatic ecosystems in Hantan River, Korea. The second objective was to establish discharge criteria for the artillery range to protect the aquatic ecosystems of Hantan River. In this study, we first identified aquatic organisms living in the Hantan River, including fishes, reptiles, invertebrates, phytoplankton, zooplankton, and amphibians. Second, we collected ecotoxicity data for these aquatic organisms and constructed an ecotoxicity database for Cd, Cu, Zn, TNT, and RDX. This study determined the ecological maximum permissible concentrations for metals and explosives based on the ecotoxicity database and suggested ecological surface water quality criteria for the Hantan River by considering analytical detection limits. Discharge limit criteria for the shooting range were determined based on the ecological surface water quality criteria suggested for Hantan River with further consideration of the dilution of the contaminants discharged into the river.
An Augmentation of G-Guidance Algorithms
NASA Technical Reports Server (NTRS)
Carson, John M. III; Acikmese, Behcet
2011-01-01
The original G-Guidance algorithm provided an autonomous guidance and control policy for small-body proximity operations that took into account uncertainty and dynamics disturbances. However, there was a lack of robustness in regards to object proximity while in autonomous mode. The modified GGuidance algorithm was augmented with a second operational mode that allows switching into a safety hover mode. This will cause a spacecraft to hover in place until a mission-planning algorithm can compute a safe new trajectory. No state or control constraints are violated. When a new, feasible state trajectory is calculated, the spacecraft will return to standard mode and maneuver toward the target. The main goal of this augmentation is to protect the spacecraft in the event that a landing surface or obstacle is closer or further than anticipated. The algorithm can be used for the mitigation of any unexpected trajectory or state changes that occur during standard mode operations
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 214(e) (42 U.S.C 1436a(e)). (b) Protection from liability for State and local government agencies... responsible entities and State and local government agencies and officials. 5.526 Section 5.526 Housing and... for responsible entities and State and local government agencies and officials. (a) Protection from...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Section 214(e) (42 U.S.C 1436a(e)). (b) Protection from liability for State and local government agencies... responsible entities and State and local government agencies and officials. 5.526 Section 5.526 Housing and... for responsible entities and State and local government agencies and officials. (a) Protection from...
Nodal surface semimetals: Theory and material realization
NASA Astrophysics Data System (ADS)
Wu, Weikang; Liu, Ying; Li, Si; Zhong, Chengyong; Yu, Zhi-Ming; Sheng, Xian-Lei; Zhao, Y. X.; Yang, Shengyuan A.
2018-03-01
We theoretically study the three-dimensional topological semimetals with nodal surfaces protected by crystalline symmetries. Different from the well-known nodal-point and nodal-line semimetals, in these materials, the conduction and valence bands cross on closed nodal surfaces in the Brillouin zone. We propose different classes of nodal surfaces, both in the absence and in the presence of spin-orbit coupling (SOC). In the absence of SOC, a class of nodal surfaces can be protected by space-time inversion symmetry and sublattice symmetry and characterized by a Z2 index, while another class of nodal surfaces are guaranteed by a combination of nonsymmorphic twofold screw-rotational symmetry and time-reversal symmetry. We show that the inclusion of SOC will destroy the former class of nodal surfaces but may preserve the latter provided that the inversion symmetry is broken. We further generalize the result to magnetically ordered systems and show that protected nodal surfaces can also exist in magnetic materials without and with SOC, given that certain magnetic group symmetry requirements are satisfied. Several concrete nodal-surface material examples are predicted via the first-principles calculations. The possibility of multi-nodal-surface materials is discussed.
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 142.4 - State and local authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false State and local authority. 142.4 Section 142.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... local authority. Nothing in this part shall diminish any authority of a State or political subdivision...
40 CFR 142.4 - State and local authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false State and local authority. 142.4 Section 142.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... local authority. Nothing in this part shall diminish any authority of a State or political subdivision...
40 CFR 239.12 - Modifications of state programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Modifications of state programs. 239.12 Section 239.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...'s initial application, but may have a significant impact on the adequacy of the state's permit...
40 CFR 239.12 - Modifications of state programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Modifications of state programs. 239.12 Section 239.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...'s initial application, but may have a significant impact on the adequacy of the state's permit...
40 CFR 239.12 - Modifications of state programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Modifications of state programs. 239.12 Section 239.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...'s initial application, but may have a significant impact on the adequacy of the state's permit...
40 CFR 239.12 - Modifications of state programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Modifications of state programs. 239.12 Section 239.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...'s initial application, but may have a significant impact on the adequacy of the state's permit...
40 CFR 239.12 - Modifications of state programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Modifications of state programs. 239.12 Section 239.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...'s initial application, but may have a significant impact on the adequacy of the state's permit...
40 CFR 256.62 - Requirements for public participation in State regulatory development.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Requirements for public participation in State regulatory development. 256.62 Section 256.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 501.34 - Procedures for withdrawal of State programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Procedures for withdrawal of State programs. 501.34 Section 501.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STATE SLUDGE MANAGEMENT PROGRAM REGULATIONS Program Approval, Revision and Withdrawal § 501...
40 CFR 501.33 - Criteria for withdrawal of State programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Criteria for withdrawal of State programs. 501.33 Section 501.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STATE SLUDGE MANAGEMENT PROGRAM REGULATIONS Program Approval, Revision and Withdrawal § 501...
40 CFR 56.7 - State agency performance audits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... which grantees use Federal monies, to assure that an adequate evaluation of each State's performance in... 40 Protection of Environment 5 2010-07-01 2010-07-01 false State agency performance audits. 56.7 Section 56.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...
Surface-water nutrient conditions and sources in the United States Pacific Northwest
Wise, D.R.; Johnson, H.M.
2011-01-01
The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.
Spatial fluctuations of helical Dirac fermions on the surface of topological insulators
NASA Astrophysics Data System (ADS)
Beidenkopf, Haim
2013-03-01
Strong topological insulators are materials that host exotic states on their surfaces due to a topological band inversion in their bulk band structure. These surface states have Dirac dispersion as if they were massless relativistic particles, and are assured to remain metallic by time reversal symmetry. The helical spin texture associated with the Dirac dispersion prohibits backscattering, which we have imaged using scanning tunneling microscopy (STM) and spectroscopic mappings. This topological protection can be lifted by time-reversal breaking perturbations that induce a gap at the Dirac point and cant the helical spin texture. Massive Dirac electrons had been visualized by angular resolved photo emission spectroscopy in magnetically doped topological insulators. While we do not identify a gapped spectrum in our STM measurements of similar compounds, we do find a dominating electrostatic response to the charged content of those dopants. In their presence the Dirac spectrum exhibits strong spatial fluctuations. As a result translational invariance is broken over a characteristic length scale and the Dirac-point energy is only locally defined. Possible global manifestations of these local fluctuations will be discussed, as well as alternative avenues for breaking time reversal symmetry while maintaining the integrity of the Dirac spectrum. This work was supported by NSF, NSF-MRSEC, and DARPA.
Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes
NASA Astrophysics Data System (ADS)
Jin, Haoming; Hebard, Arthur
Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.
Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
Jiang, Zilong; Chang, Cui -Zu; Masir, Massoud Ramezani; ...
2016-05-04
Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (Bi xSb 1–x) 2Te 3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (Bi xSbmore » 1–x) 2Te 3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. Lastly, the enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.« less
Estimated water use in Mississippi, 1980
Callahan, J.A.
1980-01-01
Large quantities of good quality ground and surface water are readily available in nearly all parts of Mississippi, and there is also an abundant supply of saline water in the estuaries along the Mississippi Gulf Coast. The total estimated water use in the State in 1980 from groundwater and surface water was 3532 million gallons/day (mgd), including 662 mgd of saline water. Freshwater used from all sources in Mississippi during the period 1975 through 1980 increased from 2510 mgd to > 2870 mgd, a 14% increase. Although modest increases of freshwater use may be expected in public, self-supplied industrial, and thermoelectric supplies, large future increases in the use of freshwater may be expected primarily as a result of growth in irrigation and aquaculture. Management and protection of the quantity and quality of the available freshwater supply are often problems associated with increased use. Water use data, both temporal and spatial, are needed by the State of Mississippi to provide for intelligent, long-term management of the resources; one table gives data on the principal categories of water use, sources, and use by county. (Lantz-PTT)
30 CFR 816.79 - Protection of underground mining.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Protection of underground mining. 816.79 Section 816.79 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING...
Modeling the protection afforded by burrows, cavities, and roosts during wildland surface fires
Anthony Bova; Matthew Dickinson
2009-01-01
Wildland surface fires produce many toxic and irritating compounds, such as formaldehyde and acrolein, and harmful gases such as carbon monoxide. Several factors influence the degree of protection offered by animal shelters against combustion products and heat.
30 CFR 816.79 - Protection of underground mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Protection of underground mining. 816.79 Section 816.79 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING...
40 CFR 745.119 - Impact on State and local requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Impact on State and local requirements. 745.119 Section 745.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC....119 Impact on State and local requirements. Nothing in this subpart shall relieve a seller, lessor, or...
40 CFR 745.119 - Impact on State and local requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Impact on State and local requirements. 745.119 Section 745.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC....119 Impact on State and local requirements. Nothing in this subpart shall relieve a seller, lessor, or...
42 CFR 457.1110 - Privacy protections.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Privacy protections. 457.1110 Section 457.1110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Applicant and Enrollee Protections §...
42 CFR 457.1110 - Privacy protections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Privacy protections. 457.1110 Section 457.1110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Applicant and Enrollee Protections §...
42 CFR 457.1110 - Privacy protections.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 4 2014-10-01 2014-10-01 false Privacy protections. 457.1110 Section 457.1110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Applicant and Enrollee Protections §...
42 CFR 457.1110 - Privacy protections.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 4 2012-10-01 2012-10-01 false Privacy protections. 457.1110 Section 457.1110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Applicant and Enrollee Protections §...
42 CFR 457.1110 - Privacy protections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Privacy protections. 457.1110 Section 457.1110 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Applicant and Enrollee Protections §...
40 CFR 142.18 - EPA review of State monitoring determinations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false EPA review of State monitoring determinations. 142.18 Section 142.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Responsibility § 142.18 EPA review of State monitoring determinations. (a) A Regional Administrator may annul a...
40 CFR 256.61 - Requirements for public participation in the annual State work program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Requirements for public participation in the annual State work program. 256.61 Section 256.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.61 - Requirements for public participation in the annual State work program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Requirements for public participation in the annual State work program. 256.61 Section 256.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.61 - Requirements for public participation in the annual State work program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Requirements for public participation in the annual State work program. 256.61 Section 256.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...
40 CFR 256.61 - Requirements for public participation in the annual State work program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Requirements for public participation in the annual State work program. 256.61 Section 256.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE...