Sample records for protection programs radon

  1. 40 CFR 35.700 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306) § 35.700 Purpose. (a... programs that assess and mitigate radon and that aim at reducing radon health risks. Indoor Radon Grant...

  2. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  3. 40 CFR 700.41 - Radon user fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Radon user fees. 700.41 Section 700.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.41 Radon user fees. User fees relating to radon proficiency programs authorized under the...

  4. 40 CFR 35.290 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants State Indoor Radon Grants (section 306) § 35.290 Purpose. (a) Purpose... mitigate radon and that aim at reducing radon health risks. State Indoor Radon Grant funds may be used for...

  5. AN OVERVIEW OF INDOOR RADON RISK REDUCTION IN THE UNITED STATES

    EPA Science Inventory

    Radon in the indoor environment is a recognized environmental hazard. The Environmental Protection Agency (EPA) has established several programs to develop, demonstrate, and transfer radon mitigation technology. Administration and management of these programs are shared by EPA's ...

  6. Protecting People and Families from Radon: A Federal Action Plan for Saving Lives

    EPA Pesticide Factsheets

    This strategy for radon action outlines actions federal agencies can take within existing resources and program capacities to advance the Healthy People 2020 radon objectives and launch a national effort to end all avoidable radon-induced lung cancer death

  7. SOIL RADON POTENTIAL MAPPLING OF TWELVE COUNTIES IN NORTH-CENTRAL FLORIDA

    EPA Science Inventory

    The report describes the approach, methods, and detailed data used to prepare soil radon potential maps of 12 counties in North-Central Florida. he maps were developed under the Florida Radon Research Program to provide a scientific basis for implementing radon-protective buildin...

  8. Guidance on Radon Resistant Construction and Radon Mitigation

    EPA Pesticide Factsheets

    This Unnumbered Letter regarding radon gas mitigation applies to all housing and community facilities, low-rise buildings and dwellings for the mentioned programs. Its intention is to guide staff to best serve our borrowers and protect their health.

  9. 40 CFR 35.708 - Award limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....708 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306...)(iv)) and demonstration of radon mitigation, methods, and technologies (see § 35.820(b)(1)(ix)) shall...

  10. 40 CFR 35.298 - Award limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants State Indoor Radon Grants (section 306) § 35.298... measurement equipment or devices (see § 35.290(b)(1)(iv)) and demonstration of radon mitigation, methods, and...

  11. Radon control activities for lung cancer prevention in national comprehensive cancer control program plans, 2005-2011.

    PubMed

    Neri, Antonio; Stewart, Sherri L; Angell, William

    2013-08-08

    Radon is the second leading cause of lung cancer among smokers and the leading cause among nonsmokers. The US Environmental Protection Agency recommends that every home be tested for radon. Comprehensive Cancer Control (CCC) programs develop cancer coalitions that coordinate funding and resources to focus on cancer activities that are recorded in cancer plans. Radon tests, remediation, and radon mitigation techniques are relatively inexpensive, but it is unclear whether coalitions recognize radon as an important carcinogen. We reviewed 65 cancer plans created from 2005 through 2011 for the terms "radon," "radiation," or "lung." Plan activities were categorized as radon awareness, home testing, remediation, supporting radon policy activities, or policy evaluation. We also reviewed each CCC program's most recent progress report. Cancer plan content was reviewed to assess alignment with existing radon-specific policies in each state. Twenty-seven of the plans reviewed (42%) had radon-specific terminology. Improving awareness of radon was included in all 27 plans; also included were home testing (n=21), remediation (n=11), support radon policy activities (n=13), and policy evaluation (n=1). Three plans noted current engagement in radon activities. Thirty states had radon-specific laws; most (n=21) were related to radon professional licensure. Eleven states had cancer plan activities that aligned with existing state radon laws. Although several states have radon-specific policies, approximately half of cancer coalitions may not be aware of radon as a public health issue. CCC-developed cancer coalitions and plans should prioritize tobacco control to address lung cancer but should consider addressing radon through partnership with existing radon control programs.

  12. 40 CFR 195.20 - Fee payments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS RADON... or Seeking Listing for Primary Measurement Services in the RMP Program. (i) In order to remain a listed participant, each organization that is listed for primary measurement services in the RMP program...

  13. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against radon gas. 57.5046 Section... Protection against radon gas. Where radon daughter concentrations exceed 10 WL, respirator protection against radon gas shall be provided in addition to protection against radon daughters. Protection against radon...

  14. Radon Control Activities for Lung Cancer Prevention in National Comprehensive Cancer Control Program Plans, 2005–2011

    PubMed Central

    Stewart, Sherri L.; Angell, William

    2013-01-01

    Introduction Radon is the second leading cause of lung cancer among smokers and the leading cause among nonsmokers. The US Environmental Protection Agency recommends that every home be tested for radon. Comprehensive Cancer Control (CCC) programs develop cancer coalitions that coordinate funding and resources to focus on cancer activities that are recorded in cancer plans. Radon tests, remediation, and radon mitigation techniques are relatively inexpensive, but it is unclear whether coalitions recognize radon as an important carcinogen. Methods We reviewed 65 cancer plans created from 2005 through 2011 for the terms “radon,” “radiation,” or “lung.” Plan activities were categorized as radon awareness, home testing, remediation, supporting radon policy activities, or policy evaluation. We also reviewed each CCC program’s most recent progress report. Cancer plan content was reviewed to assess alignment with existing radon-specific policies in each state. Results Twenty-seven of the plans reviewed (42%) had radon-specific terminology. Improving awareness of radon was included in all 27 plans; also included were home testing (n = 21), remediation (n = 11), support radon policy activities (n = 13), and policy evaluation (n = 1). Three plans noted current engagement in radon activities. Thirty states had radon-specific laws; most (n = 21) were related to radon professional licensure. Eleven states had cancer plan activities that aligned with existing state radon laws. Conclusion Although several states have radon-specific policies, approximately half of cancer coalitions may not be aware of radon as a public health issue. CCC-developed cancer coalitions and plans should prioritize tobacco control to address lung cancer but should consider addressing radon through partnership with existing radon control programs. PMID:23928457

  15. Radon Pollution Control Act of 1987. Hearing before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, First Session, April 23, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Ten witnesses from the Environmental Protection Agency (EPA), state and local environmental agencies, teachers, health providers, and others testified on the risks and possible control measures of radon gas emissions in homes. Home tests are finding as many as 40% to have unacceptable levels, but EPA and other government agencies have waited for the media to alert the population. The witnesses were asked to suggest ways in which EPA can initiate assistance in this area in order to protect public health. EPA spokesmen reviewed their programs, including the Radon Action Program, which began operating in 1985. Material submitted for themore » record by EPA follows the testimony.« less

  16. Citizen's Guide to Radon: The Guide to Protecting Yourself and Your Family from Radon

    MedlinePlus

    ... Radon: The Guide to Protecting Yourself and Your Family from Radon Contains basic information about Radon in ... Radon Zones and State Contact Information Individuals and Families Radon Publications Home Buyers and Sellers Builders and ...

  17. 40 CFR 61.224 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Recordkeeping requirements. 61.224 Section 61.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  18. 40 CFR 61.25 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Recordkeeping requirements. 61.25 Section 61.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  19. 40 CFR 61.255 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Recordkeeping requirements. 61.255 Section 61.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  20. 40 CFR 61.208 - Certification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Certification requirements. 61.208 Section 61.208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  1. 40 CFR 61.25 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Recordkeeping requirements. 61.25 Section 61.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  2. 40 CFR 61.208 - Certification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Certification requirements. 61.208 Section 61.208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  3. 40 CFR 61.21 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Definitions. 61.21 Section 61.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From...

  4. 40 CFR 61.224 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Recordkeeping requirements. 61.224 Section 61.224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  5. 40 CFR 61.255 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Recordkeeping requirements. 61.255 Section 61.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  6. 40 CFR 61.20 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Designation of facilities. 61.20 Section 61.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  7. 40 CFR 61.250 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Designation of facilities. 61.250 Section 61.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  8. 40 CFR 61.23 - Determining compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Determining compliance. 61.23 Section 61.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions...

  9. 40 CFR 61.209 - Required records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Required records. 61.209 Section 61.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From...

  10. 40 CFR 61.220 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Designation of facilities. 61.220 Section 61.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  11. 40 CFR 61.200 - Designation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Designation of facilities. 61.200 Section 61.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  12. 40 CFR 61.254 - Annual reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Annual reporting requirements. 61.254 Section 61.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  13. 40 CFR 61.209 - Required records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Required records. 61.209 Section 61.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions From...

  14. 40 CFR 61.250 - Designation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Designation of facilities. 61.250 Section 61.250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  15. 40 CFR 61.20 - Designation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Designation of facilities. 61.20 Section 61.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  16. 40 CFR 61.253 - Determining compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Determining compliance. 61.253 Section 61.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions...

  17. 40 CFR 61.200 - Designation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Designation of facilities. 61.200 Section 61.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  18. 40 CFR 61.23 - Determining compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Determining compliance. 61.23 Section 61.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions...

  19. 40 CFR 61.220 - Designation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Designation of facilities. 61.220 Section 61.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...

  20. DEVELOPMENT OF A RADON PROTECTION MAP FOR LARGE BUILDINGS IN FLORIDA

    EPA Science Inventory

    The report discusses the development of a radon protection map to show from soil and geological features the areas of Florida that require different levels of Radon protection for large building construction. The map was proposed as a basis for implementing radon-protective const...

  1. SITE-SPECIFIC MEASUREMENTS OF RESIDENTIAL RADON PROTECTION CATEGORY

    EPA Science Inventory

    The report describes a series of benchmark measurements of soil radon potential at seven Florida sites and compares the measurements with regional estimates of radon potential from the Florida radon protection map. The measurements and map were developed under the Florida Radon R...

  2. Successes and Challenges in Implementation of Radon Control Activities in Iowa, 2010-2015.

    PubMed

    Bain, Allison A; Abbott, Anne L; Miller, Laura L

    2016-04-14

    Radon gas has recently become more prominent in discussions of lung cancer prevention nationally and in Iowa. A review in 2013 of cancer plans in the National Comprehensive Cancer Control Program found that 42% of cancer plans, including Iowa's, had terminology on radon. Plans included awareness activities, home testing, remediation, policy, and policy evaluation. Iowa has the highest average radon concentrations in the United States; 70% of homes have radon concentrations above the Environmental Protection Agency's action levels. Radon control activities in Iowa are led by the Iowa Cancer Consortium, the Iowa Department of Public Health, and the Iowa Radon Coalition. A collaborative approach was used to increase levels of awareness, testing, and (if necessary) mitigation, and to introduce a comprehensive radon control policy in Iowa by engaging partners and stakeholders across the state. The multipronged approach and collaborative work in Iowa appears to have been successful in increasing awareness: the number of radon tests completed in Iowa increased by 20% from 19,600 in 2009 to 23,500 in 2014, and the number of mitigations completed by certified mitigators increased by 108% from 2,600 to more than 5,400. Through collaboration, Iowa communities are engaged in activities that led to increases in awareness, testing, mitigation, and policy. States interested in establishing a similar program should consider a multipronged approach involving multiple entities and stakeholders with different interests and abilities. Improvements in data collection and analysis are necessary to assess impact.

  3. 40 CFR 61.253 - Determining compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 61.253 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon Emissions... measurements are to be made over a one year period, EPA shall be provided with a schedule of the measurement...

  4. The effectiveness of mitigation for reducing radon risk in single-family Minnesota homes.

    PubMed

    Steck, Daniel J

    2012-09-01

    Increased lung cancer incidence has been linked with long-term exposure to elevated residential radon. Experimental studies have shown that soil ventilation can be effective in reducing radon concentrations in single-family homes. Most radon mitigation systems in the U.S. are installed by private contractors. The long-term effectiveness of these systems is not well known, since few state radon programs regulate or independently confirm post-mitigation radon concentrations. The effectiveness of soil ventilation systems in Minnesota was measured for 140 randomly selected clients of six professional mitigators. Homeowners reported pre-mitigation radon screening concentrations that averaged 380 Bq m (10.3 pCi L). Long term post-mitigation radon measurements on the two lowest floors show that, even years after mitigation, 97% of these homes have concentrations below the 150 Bq m U.S. Environmental Protection Agency action level. The average post-mitigation radon in the houses was 30 Bq m, an average observed reduction of >90%. If that reduction was maintained over the lifetime of the 1.2 million Minnesotans who currently reside in single-family homes with living space radon above the EPA action level, approximately 50,000 lives could be extended for nearly two decades by preventing radon-related lung cancers.

  5. 40 CFR 141.55 - Maximum contaminant level goals for radionuclides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...

  6. 40 CFR 141.55 - Maximum contaminant level goals for radionuclides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...

  7. 40 CFR 141.55 - Maximum contaminant level goals for radionuclides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radionuclides. 141.55 Section 141.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level Goals and... and radium-228 Zero. 2. Gross alpha particle activity (excluding radon and uranium) Zero. 3. Beta...

  8. Successes and Challenges in Implementation of Radon Control Activities in Iowa, 2010–2015

    PubMed Central

    Abbott, Anne L.; Miller, Laura L.

    2016-01-01

    Background Radon gas has recently become more prominent in discussions of lung cancer prevention nationally and in Iowa. A review in 2013 of cancer plans in the National Comprehensive Cancer Control Program found that 42% of cancer plans, including Iowa’s, had terminology on radon. Plans included awareness activities, home testing, remediation, policy, and policy evaluation. Community Context Iowa has the highest average radon concentrations in the United States; 70% of homes have radon concentrations above the Environmental Protection Agency’s action levels. Radon control activities in Iowa are led by the Iowa Cancer Consortium, the Iowa Department of Public Health, and the Iowa Radon Coalition. Methods A collaborative approach was used to increase levels of awareness, testing, and (if necessary) mitigation, and to introduce a comprehensive radon control policy in Iowa by engaging partners and stakeholders across the state. Outcome The multipronged approach and collaborative work in Iowa appears to have been successful in increasing awareness: the number of radon tests completed in Iowa increased by 20% from 19,600 in 2009 to 23,500 in 2014, and the number of mitigations completed by certified mitigators increased by 108% from 2,600 to more than 5,400. Interpretation Through collaboration, Iowa communities are engaged in activities that led to increases in awareness, testing, mitigation, and policy. States interested in establishing a similar program should consider a multipronged approach involving multiple entities and stakeholders with different interests and abilities. Improvements in data collection and analysis are necessary to assess impact. PMID:27079648

  9. Radon Resources for Home Buyers and Sellers

    MedlinePlus

    ... and Research Centers Radon Contact Us Share Radon Resources for Home Buyers and Sellers Radon Protection: Buying ... Radon-Resistant New Construction Radon and Real Estate Resources Home Buyer's/Seller's Guide to Radon Consumer's Guide ...

  10. SITE-SPECIFIC PROTOCOL FOR MEASURING SOIL RADON POTENTIALS FOR FLORIDA HOUSES

    EPA Science Inventory

    The report describes a protocol for site-specific measurement of radon potentials for Florida houses that is consistent with existing residential radon protection maps. The protocol gives further guidance on the possible need for radon-protective house construction features. In a...

  11. Protection from radon exposure at home and at work in the directive 2013/59/Euratom.

    PubMed

    Bochicchio, F

    2014-07-01

    In recent years, international organisations involved in radiation protection and public health have produced new guidance, recommendations and requirements aiming better protection from radon exposure. These organisations have often worked in close collaboration in order to facilitate the establishment of harmonised standards. This paper deals with such standards and specifically with the new European Council Directive of 5 December 2013 on basic safety standards for protection against the dangers arising from exposure to ionising radiation (2013/59/Euratom). This new Directive has established a harmonised framework for the protection against ionising radiations, including protection from radon exposure. Requirements for radon in workplace are much more tightening than in previous Directive, and exposures to radon in dwellings are regulated for the first time in a Directive. Radon-related articles of this Directive are presented and discussed in this paper, along with some comparisons with other relevant international standards. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. 40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...

  13. 40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...

  14. Radon inhalation protects against transient global cerebral ischemic injury in gerbils.

    PubMed

    Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori

    2014-10-01

    Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.

  15. Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice

    PubMed Central

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Taguchi, Takehito

    2017-01-01

    ABSTRACT Radon therapy using radon (222Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were provided with hot spring water for 2 weeks. The activity density of 222Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying). Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury. PMID:28498931

  16. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague.

    PubMed

    Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L

    2014-07-01

    During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Low-cost Radon Reduction Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, William B.; Francisco, Paul W.; Merrin, Zachary

    The U.S. Department of Energy's Building America research team Partnership for Advanced Residential Retrofits conducted a primary scoping study on the impact of air sealing between the foundation and the living space on radon transport reduction across the foundation and living space floor assembly. Fifteen homes in the Champaign, Illinois, area participated in the study. These homes were instrumented for hourly continuous radon measurements and simultaneous temperature and humidity measurements. Blower door and zone pressure diagnostics were conducted at each house. The treatments consisted of using air-sealing foams at the underside of the floor that separated the living space frommore » the foundation and providing duct sealing on the ductwork that is situated in the foundation area. The hypothesis was that air sealing the floor system that separated the foundation from the living space should better isolate the living space from the foundation; this isolation should lead to less radon entering the living space from the foundation. If the hypothesis had been proven, retrofit energy-efficiency programs may have chosen to adopt these isolation methods for enhanced radon protection to the living space.« less

  18. 40 CFR 195.30 - Failure to remit fee.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Failure to remit fee. 195.30 Section... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application... appropriate remittance provided in § 195.20(a) has been received by EPA. Failure by a currently EPA-listed...

  19. 40 CFR 195.30 - Failure to remit fee.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Failure to remit fee. 195.30 Section... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application... appropriate remittance provided in § 195.20(a) has been received by EPA. Failure by a currently EPA-listed...

  20. 40 CFR 195.30 - Failure to remit fee.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Failure to remit fee. 195.30 Section... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application... appropriate remittance provided in § 195.20(a) has been received by EPA. Failure by a currently EPA-listed...

  1. 40 CFR 195.1 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS RADON PROFICIENCY PROGRAMS General Provisions § 195.1 Purpose and applicability. (a) Purpose. The... following programs: The National Radon Measurement Proficiency (RMP) Program, the individual proficiency component of the RMP Program, and the National Radon Contractor Proficiency (RCP) Program. (b) Applicability...

  2. 40 CFR 195.1 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS RADON PROFICIENCY PROGRAMS General Provisions § 195.1 Purpose and applicability. (a) Purpose. The... following programs: The National Radon Measurement Proficiency (RMP) Program, the individual proficiency component of the RMP Program, and the National Radon Contractor Proficiency (RCP) Program. (b) Applicability...

  3. Development of a System to Perform, Record, and Analyze Measurements of Radon Concentrations on a Large Scale.

    DTIC Science & Technology

    1990-10-01

    Radiation Protection and Measurements. Measurement of Radon and Radon Daughters in Air, NCRP Report No. 97. 1988. 2. Cohen, Bernard L., et al. "Theory and...Measurements. Measurement of Radon and Radon Daughters in Air, NCRP Report No. 97. 1988. 4. Stein, Lawrence. "Chemical Properties of Radon," Radon and Its...Measurement of Radon and Radon Daughters in Air, NCRP Report No. 97. 1988. 6. Frame, R. "Radon and Its Daughters." ORNL Briefing, June 16, 1989. 7

  4. 40 CFR 61.203 - Radon monitoring and compliance procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Radon monitoring and compliance... for Radon Emissions From Phosphogypsum Stacks § 61.203 Radon monitoring and compliance procedures. (a..., each owner or operator of an inactive phosphogypsum stack shall test the stack for radon-222 flux in...

  5. 40 CFR 61.203 - Radon monitoring and compliance procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Radon monitoring and compliance... for Radon Emissions From Phosphogypsum Stacks § 61.203 Radon monitoring and compliance procedures. (a..., each owner or operator of an inactive phosphogypsum stack shall test the stack for radon-222 flux in...

  6. TECHNICAL BASIS FOR A CANDIDATE BUILDING MATERIALS RADIUM STANDARD

    EPA Science Inventory

    The report summarizes the technical basis for a candidate building materials radium standard. It contains the standard and a summary of the technical basis for the standard. (NOTE: The Florida Radon Research Program (FRRP), sponsored by the Environmental Protection Agency and the...

  7. [Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations].

    PubMed

    Walczak, Katarzyna; Zmyślony, Marek

    2013-01-01

    Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.

  8. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    PubMed

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place.

  9. Uranium and radon in ground water in the lower Illinois River basin

    USGS Publications Warehouse

    Morrow, William S.

    2001-01-01

    Uranium and radon are present in ground water throughout the United States, along with other naturally occurring radionuclides. The occurrence and distribution of uranium and radon are of concern because these radionuclides are carcinogens that can be ingested through drinking water. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program, water samples were collected and analyzed for uranium and radon from 117 wells in four aquifers in the lower Illinois River Basin (LIRB) from 1996 to 1997. The aquifers were the shallow glacial drift deposits of the Bloomington Ridged Plain (BRP) not overlying a buried bedrock valley (BRP N/O BV), shallow glacial drift deposits of the BRP overlying the Mahomet Buried Bedrock Valley (BRP O/L MBBV), shallow glacial drift deposits of the Galesburg/Springfield Plain not overlying a buried bedrock valley (GSP N/O BV), and the deep glacial drift deposits of the Mahomet Buried Bedrock Valley (MBBV). Uranium was detected in water samples from all aquifers except the MBBV and ranged in concentration from less than 1 microgram per liter ( ? g/L) to 17 ? g/L. Uranium concentrations did not exceed 20 ? g/L, the proposed U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) at the time of sampling (1996?97). The current (2001) promulgated MCL is 30 ? g/L (U.S. Environmental Protection Agency, 2000). The highest median uranium concentration (2.0 ? g/L) among the four aquifers was in the BRP N/O BV. Uranium most often occurred in oxidizing and sulfate-rich water. Radon was detected in water samples from all aquifers in the LIRB. Radon concentrations in all aquifers ranged from less than 80 picocuries per liter (pCi/L) to 1,300 pCi/L. Of 117 samples, radon concentrations exceeded 300 pCi/L (the proposed USEPA MCL) in 34 percent of the samples. Radon concentrations exceeded 300 pCi/L in more than one-half of the samples from the GSP N/O BV and the BRP O/L MBBV. No sample exceeded the proposed Alternative Maximum Contaminant Level (AMCL) of 4,000 pCi/L. Concentrations of uranium and radon were not correlated.

  10. Radon in ground water of the Lower Susqehanna and Potomac River basins

    USGS Publications Warehouse

    Lindsey, Bruce D.; Ator, Scott W.

    1996-01-01

    Ground-water samples collected from 267 wells were analyzed for radon as part of a water-quality reconnaissance of subunits of the Lower Susquehanna and Potomac River Basins conducted by the United States Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. Radon is a product of the radioactive decay of uranium. Airborne radon has been cited by the Surgeon General of the United States as the second-leading cause of lung cancer and the United States Environmental Protection Agency (USEPA) has identified ground-water supplies as possible contributing sources of indoor radon. Eighty percent of ground-water samples collected for this study were found to contain radon at activities greater than 300 pCi/L (picocuries per liter), the USEPA's proposed Maximum Contaminant Level for radon in drinking water, and 31 percent of samples contained radon at activities greater than 1,000 pCi/L. The 10 subunits where samples were collected were grouped into three classes - median ground-water radon activity less than 300 pCi/L, between 300 pCi/L and 1,000 pCi/L, and greater than 1,000 pCi/L. Subunits underlain by igneous and metamorphic rocks of the Piedmont Physiographic Province typically have the highest median ground-water radon activities (greater than 1,000 pCi/L); although there is a large variation in radon activities within most of the subunits. Lower median radon activities (between 300 pCi/L and 1,000 pCi/L) were found in ground water in subunits underlain by limestone and dolomite. Of three subunits underlain by sandstone and shale, one fell into each of the three radon-activity classes. The large variability within these subunits may be attributed to the fact that the uranium content of sandstone and shale is related to the uranium content of the sediments from which they formed.

  11. Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice.

    PubMed

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Taguchi, Takehito; Yamaoka, Kiyonori

    2017-09-01

    Radon therapy using radon (222Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were provided with hot spring water for 2 weeks. The activity density of 222Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying). Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. 40 CFR 195.30 - Failure to remit fee.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application or continue a participant's listing in the National Radon Measurement Proficiency program, individual proficiency component of the RMP program, or the National Radon Contractor Proficiency program until the...

  13. 40 CFR 195.30 - Failure to remit fee.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application or continue a participant's listing in the National Radon Measurement Proficiency program, individual proficiency component of the RMP program, or the National Radon Contractor Proficiency program until the...

  14. Radon inhalation protects mice from carbon-tetrachloride-induced hepatic and renal damage.

    PubMed

    Kataoka, Takahiro; Nishiyama, Yuichi; Toyota, Teruaki; Yoshimoto, Masaaki; Sakoda, Akihiro; Ishimori, Yuu; Aoyama, Yutaka; Taguchi, Takehito; Yamaoka, Kiyonori

    2011-12-01

    We assessed whether radon inhalation provided protection from carbon tetrachloride (CCl4)-induced hepatic and renal damage in mice. Mice were subjected to intraperitoneal injection of CCl4 after inhaling approximately 18 kBq/m3 radon for 6 h. Radon inhalation significantly increased total glutathione (t-GSH) content and glutathione peroxidase (GPx) activity in the liver and kidney. Injection of CCl4 was associated with significantly higher levels of glutamic oxaloacetic transaminase (GOT) and alkaline phosphatase (ALP) activity and creatinine level in serum, and pretreatment with radon significantly decreased the GOT and ALP activity and creatinine level associated with CCl4 injection, suggesting that radon inhalation alleviates CCl4-induced hepatic and renal damage. The t-GSH contents and GPx activity in the liver and kidney of animals pretreated with radon were significantly higher than those of the CCl(4)-only group. These findings suggested that radon inhalation activated antioxidative functions and inhibited CCl4-induced hepatic and renal damage in mice.

  15. Controlling the Radon Threat Needn't Be Another Costly Nightmare.

    ERIC Educational Resources Information Center

    Freije, Matthew R.

    1989-01-01

    After a study of 3,000 classrooms in 130 schools in 16 states, the Environmental Protection Agency urged all schools to conduct tests for radon. Explains a 6-step screening test, methods of reducing radon concentrations, and how the risk from radon exposure compares with other risks. (MLF)

  16. What Are the Risk Factors?

    MedlinePlus

    ... lung cancer due to secondhand smoke every year. Radon Radon is a naturally occurring gas that comes from ... According to the U.S. Environmental Protection Agency (EPA), radon causes about 20,000 cases of lung cancer ...

  17. The new social marketing challenge to promote radon testing.

    PubMed

    DiPofi, J A; LaTour, M S; Henthorne, T L

    2001-01-01

    As part of a project funded by the Environmental Protection Agency, exploratory qualitative analysis was conducted to gain insight into perceptions of the threat of radon in the Karst geological region (i.e., Northern Alabama, Central Tennessee, Central Kentucky). Based on health practitioner input, it was clear that the tenets of Protection Motivation Theory (PMT) and the probing afforded by focus group research would provide greatly needed theory-based insight into the public reactions (or lack thereof) to the threat posed by radon. Qualitative research findings of this project are discussed as well as preliminary recommendations are provided to advance the protection motivation theory research agenda for promoting awareness of the threat of radon and to influence appropriate response to that threat.

  18. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The trace elements detected with the highest median concentrations were strontium and iron in unfiltered water and strontium and barium in filtered water. Concentrations of trace elements in several samples exceeded U.S. Environmental Protection Agency secondary drinking-water standards, including aluminum (50-200 micrograms per liter, three wells), arsenic (10 micrograms per liter, one well), iron (300 micrograms per liter, three wells), and manganese (50 micrograms per liter, four wells). The median concentration of radon-222 was 1,580 picoCuries per liter. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a maximum contaminant level of 300 picoCuries per liter along with an alternative maximum contaminant level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed maximum contaminant level in all 19 of the samples and exceeded the proposed alternative maximum contaminant level in 1 sample. Eleven pesticides and pesticide degradates were detected in samples from ten wells; all were herbicides or herbicide degradates. Three volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria were detected in samples from five wells, four of which were finished in sand and gravel; Escherichia coli was not detected in any sample.

  19. Provision of Guidance, Information and Basic Criteria for Radiation Protection and Measurements.

    DTIC Science & Technology

    1984-02-27

    Environmental Exposures to Radon and Radon Daughters in the. United States". The report is now in press and a copy of the proofs is enclosed. The report...treats sources of radon n the atmosphere, dosimetry of inhaled uranium mine aerosols, dosimetry of inhaled radon daughters n environmental atmosphere

  20. A DISCUSSION ON DIFFERENT APPROACHES FOR ASSESSING LIFETIME RISKS OF RADON-INDUCED LUNG CANCER.

    PubMed

    Chen, Jing; Murith, Christophe; Palacios, Martha; Wang, Chunhong; Liu, Senlin

    2017-11-01

    Lifetime risks of radon induced lung cancer were assessed based on epidemiological approaches for Canadian, Swiss and Chinese populations, using the most recent vital statistic data and radon distribution characteristics available for each country. In the risk calculation, the North America residential radon risk model was used for the Canadian population, the European residential radon risk model for the Swiss population, the Chinese residential radon risk model for the Chinese population, and the EPA/BEIR-VI radon risk model for all three populations. The results were compared with the risk calculated from the International Commission on Radiological Protection (ICRP)'s exposure-to-risk conversion coefficients. In view of the fact that the ICRP coefficients were recommended for radiation protection of all populations, it was concluded that, generally speaking, lifetime absolute risks calculated with ICRP-recommended coefficients agree reasonably well with the range of radon induced lung cancer risk predicted by risk models derived from epidemiological pooling analyses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Canadian individual risks of radon-induced lung cancer for different exposure profiles.

    PubMed

    Chen, Jing

    2005-01-01

    Indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. There is an increasing need among radiation practitioners to have numerical values of lung cancer risks for men and women, ever-smokers and never-smokers exposed to radon in homes. This study evaluates individual risks for the Canadian population exposed to radon in homes at different radon concentrations and for different periods of their lives. Based on the risk model developed recently by U.S. Environmental Protection Agency (EPA), individual risks of radon-induced lung cancers are calculated with Canadian age-specific rates for overall and lung cancer mortalities (1996-2000) as well as the Canadian smoking prevalence data in 2002. Convenient tables of lifetime relative risks are constructed for lifetime exposures and short exposures between any two age intervals from 0 to 110, and for various radon concentrations found in homes from 50 to 1000 Bq/m3. The risk of developing lung cancer from residential radon exposure increases with radon concentration and exposure duration. For short exposure periods, such as 10 or 20 years, risks are higher in middle age groups (30-50) compared especially to the later years. Individuals could lower their risks significantly by reducing radon levels earlier in life. The tables could help radiation protection practitioners to better communicate indoor radon risk to members of the public.

  2. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones.

    PubMed

    Foster, Stephanie; Everett Jones, Sherry

    2016-12-13

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff.

  3. Association of School District Policies for Radon Testing and Radon-Resistant New Construction Practices with Indoor Radon Zones

    PubMed Central

    Foster, Stephanie; Everett Jones, Sherry

    2016-01-01

    Radon is a naturally occurring, colorless, odorless, and tasteless radioactive gas. Without testing, its presence is unknown. Using nationally representative data from the 2012 School Health Policies and Practices Study, we examined whether the prevalence of school district policies for radon testing and for radon-resistant new construction practices varied by district location in relation to the U.S. Environmental Protection Agency Map of Radon Zones. Among school districts located in counties with high predicted average indoor radon, 42.4% had policies for radon testing and 37.5% had policies for radon-resistant new construction practices. These findings suggest a critical need for improved awareness among policy makers regarding potential radon exposure for both students and school staff. PMID:27983613

  4. Radon Testing: Community Engagement By a Rural Family Medicine Office.

    PubMed

    Levy, Barcey T; Wolff, Cynthia K; Niles, Paul; Morehead, Heather; Xu, Yinghui; Daly, Jeanette M

    2015-01-01

    Iowa has the highest average radon concentrations in the nation, with an estimated 400 radon-induced lung cancer deaths each year. Radon is the second leading cause of lung cancer death overall. The objectives of this study were (1) to educate the population attending a family medicine office about the dangers of radon, (2) to encourage homeowners to test for radon, (3) to work with the community to identify resources for mitigation, and (4) to assess the utility of working with a local family medicine office as a model that could be adopted for other communities with high home radon concentrations. Participants obtained a US Environmental Protection Agency-certified activated charcoal short-term radon kit through their primary care office or by attending a seminar held by their medical office. Participants completed a short investigator-developed questionnaire about their home, heating, and demographics. Of 746 radon kits handed out, 378 valid results (51%) were received, of which 351 questionnaires could be matched to the kit results. The mean radon result was 10.0 pCi/L (standard deviation, 8.5 pCi/L). A radon result of 4 pCi/L or higher, the Environmental Protection Agency action level for mitigation, was found in 81% of homes (n = 285). Four of 5 homes tested had elevated radon levels. This family medicine office/university collaborative educational model could be useful for educating patients about other environmental dangers. © Copyright 2015 by the American Board of Family Medicine.

  5. Human Lung Cancer Risks from Radon – Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2012-01-01

    Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874

  6. Radon remediation and prevention status in 23 European countries.

    PubMed

    Holmgren, O; Arvela, H; Collignan, B; Jiránek, M; Ringer, W

    2013-12-01

    Radon remediation and prevention aim at reducing indoor radon concentrations in the existing and new buildings. This paper gives an estimate of the number of dwellings where remediation or preventive measures have been applied so far in Europe. Questionnaires were sent to contact persons in national radiation protection authorities and radon-related research institutes. Answers from 23 European countries were obtained. Approximately 26 000 dwellings have been remediated in total. Millions of dwellings remain to be remediated and the number is increasing due to the rare use of radon prevention. These facts imply a need for an efficient radon strategy to promote radon remediation. Moreover, the importance of radon prevention in new construction and the regulations concerning radon in the national building codes should be emphasised.

  7. The history, development and the present status of the radon measurement programme in the United States of America.

    PubMed

    George, A C

    2015-11-01

    The US radon measurement programme began in the late 1950s by the US Public Health Service in Colorado, New Mexico and Utah during the uranium frenzy. After the 1967 Congressional Hearings on the working conditions in uranium mines, the US Atomic Energy Commission (AEC) was asked to conduct studies in active uranium mines to assess the exposure of the miners on the Colorado Plateau and in New Mexico. From 1967 to 1972, the Health and Safety Laboratory of the US AEC in New York investigated more than 20 uranium mines for radon and radon decay product concentrations and particle size in 4 large uranium mines in New Mexico. In 1970, the US Environmental Protection Agency (EPA) was established and took over some of the AEC radon measurement activities. Between 1975 and 1978, the Environmental Measurements Laboratory of the US Department of Energy conducted the first detailed indoor radon survey in the USA. Later in 1984, the very high concentrations of radon found in Pennsylvania homes set the wheels in motion and gave birth to the US Radon Industry. The US EPA expanded its involvement in radon issues and assumed an active role by establishing the National Radon Proficiency Program to evaluate the effectiveness of radon measurement and mitigation methods. In 1998, due to limited resources EPA privatised the radon programme. This paper presents a personal perspective of past events and current status of the US radon programme. It will present an update on radon health effects, the incidence rate of lung cancer in the USA and the number of radon measurements made from 1988 to 2013 using short-term test methods. More than 23 million measurements were made in the last 25 y and as a result more than 1.24 million homes were mitigated successfully. It is estimated that <2 % of the radon measurements performed in the USA are made using long-term testing devices. The number of homes above the US action level of 148 Bq m(-3) (4 pCi l(-1)) may be ∼8.5 million because ∼50 million homes were added since 1990 to the home inventory. This paper will discuss the current instruments and methods used to measure radon in the USA, and what is the effectiveness of radon resistant new construction, the current status of mitigation standards and the proposed testing protocols in schools and large buildings. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. FEASIBILITY AND APPROACH FOR MAPPING RADON POTENTIALS IN FLORIDA

    EPA Science Inventory

    The report gives results of an analysis of the feasibility and approach for developing statewide maps of radon potentials in Florida. he maps would provide a geographic basis for implementing new radon-protective building construction standards to reduce public health risks from ...

  9. Find a Radon Test Kit or Measurement and Mitigation Professional

    EPA Pesticide Factsheets

    Find a qualified radon service professional to fix or mitigate your home. If you have questions about a radon, you should contact your state radon contact and/or contact one or both of the two privately-run National Radon Proficiency Programs

  10. The Montana Radon Study: social marketing via digital signage technology for reaching families in the waiting room.

    PubMed

    Larsson, Laura S

    2015-04-01

    I tested a social marketing intervention delivered in health department waiting rooms via digital signage technology for increasing radon program participation among priority groups. I conducted a tri-county, community-based study over a 3-year period (2010-2013) in a high-radon state by using a quasi-experimental design. We collected survey data for eligible participants at the time of radon test kit purchase. Radon program participation increased at the intervention site (t38 = 3.74; P = .001; 95% confidence interval [CI] = 4.8, 16.0) with an increase in renters (χ(2)1,228 = 4.3; P = .039), Special Supplementary Nutrition Program for Women, Infants, and Children families (χ(2)1,166 = 3.13; P = .077) and first-time testers (χ(2)1,228 = 10.93; P = .001). Approximately one third (30.3%; n = 30) attributed participation in the radon program to viewing the intervention message. The intervention crossover was also successful with increased monthly kit sales (t37 = 2.69; P = .01; 95% CI = 1.20, 8.47) and increased households participating (t23 = 4.76; P < .001; 95% CI = 3.10, 7.88). A social marketing message was an effective population-based intervention for increasing radon program participation. The results prompted policy changes for Montana radon programming and adoption of digital signage technology by 2 health departments.

  11. Novel method of measurement of radon exhalation from building materials.

    PubMed

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Managing Radon in Schools

    EPA Pesticide Factsheets

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  13. Radon diffusion coefficients in 360 waterproof materials of different chemical composition.

    PubMed

    Jiránek, M; Kotrbatá, M

    2011-05-01

    This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.

  14. Radon: Counseling patients about risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, R.B.

    Exposure to radon and its decay products has increased as the United States has changed from an outdoor society to a largely indoor society. Radon, which is found primarily in the soil, enters houses and buildings through cracks, holes and pipes in foundation walls and floors. Although radon is suspected of being a significant cause of lung cancer, comparisons with other risk factors cannot yet be made. Radon levels in the home can be measured with commercially available kits. Guidelines for reducing the amount of radon in a home are provided by the U.S. Environmental Protection Agency.18 references.

  15. Radon Measurement in Schools. Revised Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Environmental Protection Agency (EPA) and other major national and international scientific organizations have concluded that radon is a human carcinogen and a serious environmental health problem. The EPA has conducted extensive research on the presence and measurement of radon in schools. This report provides school administrators and…

  16. RADON-RESISTANT CONSTRUCTION TECHNIQUES FOR NEW RESIDENTIAL CONSTRUCTION: TECHNICAL GUIDANCE

    EPA Science Inventory

    Radon, a naturally occurring radioactive gas, is found in varying amounts in nearly all houses. The U.S. Environmental Protection Agency (EPA) has developed and demonstrated methods that have been used to reduce radon levels in existing houses. Many of these methods could be appl...

  17. SUPPLEMENT TO: STANDARD MEASUREMENT PROTOCOLS - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report supplements earlier published standard protocols for key measurements where data quality is vital to the Florida Radon Research Program. The report adds measurements of small canister radon flux and soil water potential to the section on soil measurements. It adds indo...

  18. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  19. 40 CFR 35.298 - Award limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants State Indoor Radon Grants (section 306) § 35.298 Award limitations. (a) The Regional Administrator shall not include State Indoor Radon funds in a... has the primary responsibility for radon programs as designated by the Governor of the affected State...

  20. Current knowledge on radon risk: implications for practical radiation protection? radon workshop, 1/2 December 2015, Bonn, BMUB (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety).

    PubMed

    Müller, Wolfgang-Ulrich; Giussani, Augusto; Rühm, Werner; Lecomte, Jean-Francois; Harrison, John; Kreuzer, Michaela; Sobotzki, Christina; Breckow, Joachim

    2016-08-01

    ICRP suggested a strategy based on the distinction between a protection approach for dwellings and one for workplaces in the previous recommendations on radon. Now, the Commission recommends an integrated approach for the protection against radon exposure in all buildings irrespective of their purpose and the status of their occupants. The strategy of protection in buildings, implemented through a national action plan, is based on the application of the optimisation principle below a derived reference level in concentration (maximum 300 Bq m(-3)). A problem, however, arises that due to new epidemiological findings and application of dosimetric models, ICRP 115 (Ann ICRP 40, 2010) presents nominal probability coefficients for radon exposure that are approximately by a factor of 2 larger than in the former recommendations of ICRP 65 (Ann ICRP 23, 1993). On the basis of the so-called epidemiological approach and the dosimetric approach, the doubling of risk per unit exposure is represented by a doubling of the dose coefficients, while the risk coefficient of ICRP 103 (2007) remains unchanged. Thus, an identical given radon exposure situation with the new dose coefficients would result in a doubling of dose compared with the former values. This is of serious conceptual implications. A possible solution of this problem was presented during the workshop.

  1. The Austrian radon activities on the way to the national radon action plan.

    PubMed

    Gruber, V; Ringer, W; Wurm, G; Haider, W

    2014-07-01

    Based on the new Euratom Basic Safety Standards (BSS), all EU member states will be obliged to design a strategy to address long-term risks from radon exposure, which is laid down in the 'national radon action plan'. In Austria, the National Radon Centre is responsible for the development of the action plan. This paper presents the current and planned radon protection activities on the way to establish the radon action plan--like the national radon database, the definition of radon risk areas by improving the existing radon map, as well as strategies and activities to increase the radon awareness of the public and decision-makers and to involve the building sector. The impact of and the need for actions caused by the BSS requirements on the Austrian radon legislation, strategy and programme are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Asha, E-mail: ashasachdeva78@gmail.com; Mittal, Sudhir, E-mail: sudhirmittal03@gmail.com; Mehra, Rohit

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The surveymore » reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)« less

  3. Radon and monocytic leukaemia in England.

    PubMed Central

    Eatough, J P; Henshaw, D L

    1993-01-01

    The relationship between the standardised registration ratio (SRR) for monocytic leukaemia and the radon concentration by county in England was investigated. Leukaemia data were obtained from the OPCS and cover the age range 0-74 years and the period 1975-86. Radon concentrations were obtained from a recent National Radiological Protection Board report. A significant correlation was observed between the SRR for monocytic leukaemia and the radon concentration by county. PMID:8120509

  4. Radon and monocytic leukaemia in England.

    PubMed

    Eatough, J P; Henshaw, D L

    1993-12-01

    The relationship between the standardised registration ratio (SRR) for monocytic leukaemia and the radon concentration by county in England was investigated. Leukaemia data were obtained from the OPCS and cover the age range 0-74 years and the period 1975-86. Radon concentrations were obtained from a recent National Radiological Protection Board report. A significant correlation was observed between the SRR for monocytic leukaemia and the radon concentration by county.

  5. ICRP draft publication on 'radiological protection against radon exposure'.

    PubMed

    Lecomte, J-F

    2014-07-01

    To control the main part of radon exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) recommends an integrated approach focused as far as possible on the management of the building or location in which radon exposure occurs whatever the purpose of the building and the types of its occupants. This approach is based on the optimisation principle and a graded approach according to the degree of responsibilities at stake, notably in workplace, as well as the level of ambition of the national authorities. The report which is being developed by the Committee 4 is considering the recently consolidated ICRP general recommendations, the new scientific knowledge about the radon risk and the experience gained by many organisations and countries in the control of radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Environmental Challenges: Radon and Carbon Dioxide in School Buildings.

    ERIC Educational Resources Information Center

    Krueger, James

    1991-01-01

    Many school buildings with high radon levels also exhibit high carbon dioxide levels that starve the minds of students for oxygen. Administrators must realize that the world's best educator cannot teach minds made dysfunctional by their environment. This article describes Environmental Protection Agency testing results and offers radon monitoring…

  7. Radon Measurements in Schools: An Interim Report.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation Programs.

    Radon-222 is a colorless, odorless, tasteless, radioactive gas that occurs naturally in soil, rocks, underground water, and air. The United States Environmental Protection Agency (EPA) and other scientific organizations have identified an increased risk of lung cancer associated with exposure to elevated levels of radon in homes. Schools in many…

  8. Characteristics of School Buildings in the U.S.

    ERIC Educational Resources Information Center

    Chmelynski, Harry J.; Leovic, Kelly W.

    The Environmental Protection Agency's (EPA's) Radon Mitigation Branch (RMB) conducts research and development on the reduction of indoor radon levels. Finding that there was no comprehensive database on the physical characteristics of the nations's school buildings (with information specific to radon-mitigation research), the RMB conducted a study…

  9. The Montana Radon Study: Social Marketing via Digital Signage Technology for Reaching Families in the Waiting Room

    PubMed Central

    2015-01-01

    Objectives. I tested a social marketing intervention delivered in health department waiting rooms via digital signage technology for increasing radon program participation among priority groups. Methods. I conducted a tri-county, community-based study over a 3-year period (2010–2013) in a high-radon state by using a quasi-experimental design. We collected survey data for eligible participants at the time of radon test kit purchase. Results. Radon program participation increased at the intervention site (t38 = 3.74; P = .001; 95% confidence interval [CI] = 4.8, 16.0) with an increase in renters (χ21,228 = 4.3; P = .039), Special Supplementary Nutrition Program for Women, Infants, and Children families (χ21,166 = 3.13; P = .077) and first-time testers (χ21,228 = 10.93; P = .001). Approximately one third (30.3%; n = 30) attributed participation in the radon program to viewing the intervention message. The intervention crossover was also successful with increased monthly kit sales (t37 = 2.69; P = .01; 95% CI = 1.20, 8.47) and increased households participating (t23 = 4.76; P < .001; 95% CI = 3.10, 7.88). Conclusions. A social marketing message was an effective population-based intervention for increasing radon program participation. The results prompted policy changes for Montana radon programming and adoption of digital signage technology by 2 health departments. PMID:25121816

  10. 40 CFR 35.703 - Eligible recipients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306... Consortium as eligible to apply for an Indoor Radon Grant if the Tribe or each member of the Intertribal... that information unique to the radon grant program required by paragraphs (a)(3) and (4) of this...

  11. 40 CFR 35.703 - Eligible recipients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306... Consortium as eligible to apply for an Indoor Radon Grant if the Tribe or each member of the Intertribal... that information unique to the radon grant program required by paragraphs (a)(3) and (4) of this...

  12. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection against radon gas. 57.5046 Section 57.5046 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  13. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection against radon gas. 57.5046 Section 57.5046 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  14. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection against radon gas. 57.5046 Section 57.5046 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  15. 30 CFR 57.5046 - Protection against radon gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection against radon gas. 57.5046 Section 57.5046 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  16. Radon program of the Czech Republic.

    PubMed

    Petrová, K; Pravdová, E

    2014-07-01

    The Radon Program of the Czech Republic 2010-2019--Action Plan is based on Governmental Decision No. 594/2009 (Radon Program of the Czech Republic 2010-2019--Action Plan, Government of the Czech Republic, Decision No. 594/2009, May 4 2009) and is coordinated by the State Office for Nuclear Safety. It covers both prevention in new house construction and intervention in existing houses with high indoor radon concentration. The Program is aimed at developing an effective public information system. It takes advantage of long-term experience and good scientific and technological background-staff, methods, standards and technologies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Radon Reduction Methods: A Homeowner's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is studying the effectiveness of various ways to reduce high concentrations of radon in houses. This booklet was produced to share what has been learned with those whose radon problems demand immediate action. The booklet describes nine methods that have been tested successfully--by EPA and/or other…

  18. A REVIEW OF RADON MITIGATION IN LARGE BUILDINGS IN THE US

    EPA Science Inventory

    The Environmental Protection Agency of the US carried out its initial research on radon mitigation in houses, both existing and new. A review of this work is presented in another paper at this workshop. Four years ago, this work was expanded to include the study of radon in schoo...

  19. Implementation of the new international standards in Swiss legislation on radon protection in dwellings.

    PubMed

    Palacios Gruson, Martha; Barazza, Fabio; Murith, Christophe; Ryf, Salome

    2015-04-01

    The current revision of the Swiss Radiological Protection Ordinance aims to bring Swiss legislation in line with new international standards. In future, the control of radon exposure in dwellings will be based on a reference level of 300 Bq m(-3). Since this value is exceeded in >10 % of the buildings so far investigated nationwide, the new strategy requires the development of efficient measures to reduce radon-related health risks at an acceptable cost. The minimisation of radon concentrations in new buildings is therefore of great importance. This can be achieved, for example, through the enforcement of building regulations and the education of construction professionals. With regard to radon mitigation in existing buildings, synergies with the ongoing renewal of the building stock should be exploited. In addition, the dissemination of knowledge about radon and its risks needs to be focused on specific target groups, e.g. notaries, who play an important information role in real estate transactions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. An overview of Ireland's National Radon Policy.

    PubMed

    Long, S; Fenton, D

    2011-05-01

    In Ireland radon is a significant public health issue and is linked to 150-200 lung cancer deaths each year. Irish National Radon Policy aims to reduce individual risk by identifying and remediating buildings with high radon concentrations and also to reduce collective dose through radon prevention as required by revised building regulations. Achievements to date are significant and include the completion of the National Radon Survey, the testing of every school in Ireland, the on-going testing of social housing, collaboration between the public health and radiation protection authorities and the inclusion of radon in inspections of workplaces. However, this work now needs to be drawn together centrally to comprehensively address the radon problem. The RPII and the relevant central governing department, the Department of Environment, Heritage and Local Government are currently working to constitute a group of key experts from relevant public authorities to drive the development of a National Radon Control Strategy.

  1. Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice.

    PubMed

    Kataoka, Takahiro; Teraoka, Junichi; Sakoda, Akihiro; Nishiyama, Yuichi; Yamato, Keiko; Monden, Mayuko; Ishimori, Yuu; Nomura, Takaharu; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-04-01

    We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m(3) of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema.

  2. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  3. GUIDANCE FOR RESEARCH HOUSE STUDIES OF THE FLORIDA RADON RESEARCH PROGRAM, VOLUME 2: MODEL-BACKED EXPERIMENTAL PROTOCOL FOR DETERMINING RADON

    EPA Science Inventory

    The report provides guidance and a readily available reference to groups involved with the Florida Radon Research Program's (FRRP's) research house studies. It includes: 1): Lists of Parameters for continuous and periodic high and low resolution measurements; (2) Protocols for c...

  4. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    NASA Astrophysics Data System (ADS)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  5. Removal of Radon from Household Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    By far, the greatest risk to health from radon occurs when the gas enters the house from underlying soil and is inhaled. The U.S. Environmental Protection Agency (EPA) is studying ways to reduce radon in houses, including methods to remove the gas from water to prevent its release in houses when the water is used. While this research has not…

  6. Incidence rates of chronic lymphocytic leukemia in US states are associated with residential radon levels.

    PubMed

    Schwartz, Gary G; Klug, Marilyn G

    2016-01-01

    Environmental risk factors for chronic lymphocytic leukemia (CLL) have not been consistently identified. An etiologic role for ionizing radiation in CLL is controversial. Because most of the ionizing radiation to which individuals are exposed comes from radon at home, we examined CLL incidence rates in relation to residential radon levels. We used population-based rates for CLL for US states from 2007 to 2011 and measurements of residential radon made by the US Environmental Protection Agency. Incidence rates for CLL were significantly correlated with residential radon levels among whites (both genders together and each gender separately; p < 0.005) and among blacks (p < 0.05). We speculate that radon increases CLL risk and that the mechanisms may be similar to those by which radon causes lung cancer.

  7. Ground-Water Quality in the St. Lawrence River Basin, New York, 2005-06

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act requires that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major river basins each year. To characterize the quality of ground water in the St. Lawrence River Basin in northern New York, water samples were collected from 14 domestic and 11 production wells between August 2005 and January 2006. Eight of the wells were finished in sand and gravel and 17 wells were finished in bedrock. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 229 constituents and physical properties, including inorganic constituents, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-six constituents were detected above laboratory reporting levels. Concentrations of most compounds at most sites were within drinking water standards established by the U.S. Environmental Protection Agency and New York State Department of Health, but a few compounds exceeded drinking water standards at some sites. Water in the basin is generally hard to very hard (hardness equal to 121 mg/L as CaCO3 or greater); hardness and alkalinity were generally higher in the St. Lawrence Valley than in the Adirondack Mountains. The cation with the highest median concentration was calcium; the anion with the highest median concentration was bicarbonate. The concentration of chloride in one sample exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard; the concentration of sulfate in one sample also exceeded the 250 milligrams per liter U.S. Environmental Protection Agency Secondary Drinking Water Standard. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency Maximum Contaminant Level. The trace elements detected with the highest median concentrations were strontium, barium, and iron. Concentration of trace elements in several samples exceeded U.S. Environmental Protection Agency Secondary Drinking Water Standards, including aluminum (50 micrograms per liter, 4 samples), iron (300 micrograms per liter, 5 samples), and manganese (50 micrograms per liter, 4 samples). The concentration of uranium in one sample from a domestic well finished in crystalline bedrock was three times the U.S. Environmental Protection Agency Maximum Contaminant Level of 30 micrograms per liter. The median concentration of radon-222 was 600 picoCuries per liter, but concentrations as high as 18,800 picoCuries per liter were detected; two wells with high radon concentrations also had high uranium concentrations. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a Maximum Contaminant Level of 300 picoCuries per liter along with an Alternative Maximum Contaminant Level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed Maximum Contaminant Level in 60 percent of samples and exceeded the proposed Alternative Maximum Contaminant Level in 8 percent of samples. Six pesticides and pesticide degradates were detected; all were amide or triazine herbicides or degradates. Five volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria, including Escherichia coli, were detected in three wells finished in carbonate bedrock.

  8. Maywood Interim Storage Site: Annual environmental report for calendar year 1990, Maywood, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Environmental monitoring of the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) and surrounding area began in 1984. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The MISS Environmental monitoring programs was established to accommodate facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and localmore » public interest or concern. The environmental monitoring program at MISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium, radium-226, and thorium-232 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards; federal, state, and local applicable or relevant and appropriate requirements (ARARs); and/or DOE derived concentration guidelines (DCGs). Environmental standards, ARARs, and DCGs are established to protect public health and the environment. Results from the 1990 environmental monitoring program show that concentrations of the contaminants of concern were all below applicable standards. Because the site is used only for interim storage and produces no processing effluents, all monitoring, except for radon and direct gamma radiation, was done on a quarterly basis. 18 refs., 17 figs., 28 tabs.« less

  9. Radon in Wisconsin.

    PubMed

    Weiffenbach, C; Anderson, H A

    2000-11-01

    Owners of about 15% to 20% of the homes in Wisconsin have tested their indoor air for the carcinogenic gas radon. Five percent to 10% of homes have year-average main-floor radon levels that exceed the US Environmental Protection Agency (EPA) exposure guideline, and they are found in most regions of the state. Attempting to retroactively seal foundations to keep radon from the ground out of a home is largely ineffective. However, a soil-depressurization radon mitigation system is highly effective for existing houses, and new homes can easily be built radon-resistant. As the number of homeowners obtaining needed repairs increases, significant lung cancer risk reduction is being achieved in a voluntary, non-regulatory setting. In coming years, as radon in community drinking water supplies becomes regulated under the federal 1996 Safe Drinking Water Act, the "multimedia" option of the act may result in additional attention to mitigation of radon in indoor air.

  10. Radon in Irish Show Caves—Personal Monitoring Data From 2001-2006

    NASA Astrophysics Data System (ADS)

    Currivan, L.; Murray, M.; O'Colmain, M.; Pollard, D.

    2008-08-01

    The European Directive 96/29/EURATOM and its transposition into national legislation demands the application of radiation protection measures if the presence of radon and radon decay products leads to significant increase in exposures of workers. Irish legislation further demands that laboratories carrying out radon measurements operate a high level quality assurance programme. As a result of a reconnaissance survey regular measurements of show cave guides have been made in order to assess exposure to radon in such workplaces and to ascertain that the limits set for radon are not exceeded. In 2000, an action level of 400 Bqm-3, was established. Doses in the range 0.3-12.0 mSv have been estimated for workers for the period 2001-2006.

  11. 40 CFR 35.705 - Maximum federal share.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306... up to 75 percent of the approved costs for the development and implementation of radon program...

  12. STANDARD MEASUREMENT PROTOCOLS - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The manual, in support of the Florida Radon Research Program, contains standard protocols for key measurements where data quality is vital to the program. t contains two sections. he first section, soil measurements, contains field sampling protocols for soil gas permeability and...

  13. Estimating the burden of lung cancer and the efficiency of home radon mitigation systems in some Canadian provinces.

    PubMed

    Al-Arydah, Mo'tassem

    2018-06-01

    Lung cancer (LC) is the leading cause of death of cancer in Canada in both men and women, and indoor radon is the second leading cause of LC after tobacco smoking. The Population Attributable Risk (PAR) is used to assess radon exposure risk. In this work we estimate the burden of LC in some Canadian provinces. We use the PAR to identify the radon levels responsible for most LC cases. Finally, we use the PAR function of the two variables, radon action and target levels, to search for a possible optimal mitigation program. The LC burden for Ontario, Alberta, Manitoba, Quebec and British Columbia was estimated using provincial radon and mortality data. Then the PAR and LC cases for these provinces were estimated over the period 2006-2009 at different given indoor radon exposure levels. Finally, the PAR function when radon action levels and radon target levels are variables was analyzed. The highest burden of LC in 2006-2009 was in Ontario and Quebec. During the period 2006-2009, 6% of houses in Ontario, 9% of houses in Alberta, 19% of houses in Manitoba, 7% of houses in Quebec, and 5% of houses in British Columbia had radon levels higher than 200 Bq/m 3 and were responsible about 913, 211, 260, 972, and 258 lives, respectively. Radon mitigation programs could have prevented these LC cases. The BEIR VI assumption for the United States (US) population, 95% of LC deaths in men and 90% of LC deaths in women are Ever-Smokers (ES), can be applied to the Canadian population. The PAR is a linear function in the target radon value with an estimated slope of 0.0001 for Ontario, Alberta, Quebec and British Columbia, and 0.0004 for Manitoba. The PAR is almost a square root function in the radon action level. The PAR is sensitive to changes in the radon mitigation program and as such, any improvement is a worthwhile investment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Local Efforts to Reduce Radon Risks - Highlights and Lessons Learned

    EPA Pesticide Factsheets

    In these stories, you will read about people who educated their families, neighbors, colleagues,and communities, and challenged local builders, governments, code enforcement officials, and others to protect the public from indoor radon.

  15. Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas.

    PubMed

    Kümmel, M; Dushe, C; Müller, S; Gehrcke, K

    2014-06-01

    In the German Federal States of Saxony, Saxony-Anhalt and Thuringia, centuries of mining and milling activities resulted in numerous residues with increased levels of natural radioactivity such as waste rock dumps and tailings ponds. These may have altered potential radiation exposures of the population significantly. Especially waste rock dumps from old mining activities as well as 20th century uranium mining may, due to their radon ((222)Rn) exhalation capacity, lead to significant radiation exposures. They often lie close to or within residential areas. In order to study the impact on the natural radon level, the Federal Office for Radiation Protection (BfS) has run networks of radon measurement points in 16 former mining areas, together with 2 networks in regions not influenced by mining for comparison purposes. Representative overviews of the long-term outdoor radon concentrations could be established including estimates of regional background concentrations. Former mining and milling activities did not result in large-area impacts on the outdoor radon level. However, significantly increased radon concentrations were observed in close vicinity of shafts and large waste rock dumps. They are partly located in residential areas and need to be considered under radiation protection aspects. Examples are given that illustrate the consequences of the Wismut Ltd. Company's reclamation activities on the radon situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A Citizen's Guide to Radon. What It Is and What To Do about It.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) are concerned about the increased risk of developing lung cancer faced by persons exposed to above-average levels of radon in their homes. The purpose of this pamphlet is to help readers to understand the radon problem and decide if they need to take…

  17. Measurements of 222Rn, 220Rn, and CO 2 Emissions in Natural CO 2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, John; Sims, Kenneth

    An integrated field-laboratory program evaluated the use of radon and CO 2 flux measurements to constrain source and timescale of CO 2 fluxes in environments proximate to CO 2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO 2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO 2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensuremore » 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO 2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO 2-bearing environments. The field program also identified issues with radon and CO 2-flux measurements in soil gases at a natural CO 2 analog. A systematic survey of radon and CO 2 flux in soil gases at the LaBarge CO 2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO 2 flux may not be a robust method for monitoring the integrity of a CO 2 storage reservoir. The field program was also not able to correlate radon and CO 2 flux in the CO 2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO 2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO 2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO 2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO 2-bearing experiments is greater at all temperatures compared to the experiments without CO 2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO 2-rich waters.« less

  18. MODELNG RADON ENTRY INTO FLORIDA HOUSES WITH CONCRETE SLABS AND CONCRETE-BLOCK STEM WALLS, FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...

  19. A Physician's Guide to Radon

    EPA Pesticide Factsheets

    This booklet has been developed for physicians by the U.S. Environmental Protection Agency in consultation with the American Medical Association (AMA). Its purpose is to enlist physicians in the national effort to inform the American public about radon.

  20. The Therapeutic use of Radon: A Biomedical Treatment in Europe; An “Alternative” Remedy in the United States

    PubMed Central

    Erickson, Barbra E.

    2007-01-01

    There is a growing recognition in the United States and Europe that health care is driven to a significant extent by an emphasis on consumer choice and demand. As consumers, people regularly choose their own solutions for health promotion and maintenance, solutions which may or may not be sanctioned by mainstream medicine. Radioactive radon therapy exemplifies a non-sanctioned treatment eagerly sought by certain patients, but scorned or dismissed by many physicians. This is certainly the case in the United States, where well-publicized Environmental Protection Agency (EPA) warnings portray radon as a potential carcinogen. Between 1997 and 2001, I worked with a population of arthritis sufferers who expose themselves to radon gas in Montana radon health mines in order to alleviate their symptoms. In this paper I discuss the decision-making process involved in using radon, and compare the Montana radon health mine facilities with selected radon mines and spas in Europe. PMID:18648554

  1. Promoting the Adoption of Radon-Resistant New Construction Codes: Kane County, Illinois

    EPA Pesticide Factsheets

    As a member of the Manhattan City Council and the Kansas State Radon Extension Program, Bruce Snead was in an excellent position to champion the adoption of radon-resistant new construction (RRNC) in Manhattan, Kansas.

  2. One Approach to Adopting Codes for Radon-Resistant New Construction: Manhattan, Kansas

    EPA Pesticide Factsheets

    As a member of the Manhattan City Council and the Kansas State Radon Extension Program, Bruce Snead was in an excellent position to champion the adoption of radon-resistant new construction (RRNC) in Manhattan, Kansas.

  3. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

  4. Bureau of Mines method of calibrating a primary radon measuring apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holub, R.F.; Stroud, W.P.

    1991-04-01

    This paper reports on the Bureau of Mines method of calibrating a primary radon measuring apparatus. One requirement for accurate monitoring of radon in working environments, dwellings, and outdoors is to ensure that the measurement instrumentation is properly calibrated against a recognized standard. To achieve this goal, the U.S. Bureau of Mines Radiation Laboratory has participated since 1988 in a program to establish international radon measurement standards. Originally sponsored by the Organization for Economic Cooperation and Development (OECD), the program is also sponsored by the International Atomic Energy Agency. While the National Institute of Standards and Technology (NIST) radium solutionmore » ampules are acceptable to all participating laboratories as a primary standard, a method of transferring radon from the NIST source into The Bureau's method transfers radon from the primary solution by bubbling 3 L of air through it into a steel cylinder. After homogenizing the radon concentrations in the cylinder, eight alpha-scintillation cells are filled consecutively and measured in a standard counting system. The resulting efficiency is 81.7 {plus minus} 1.2 pct.« less

  5. Analysis of radon reduction and ventilation systems in uranium mines in China.

    PubMed

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  6. MANUAL: ALTERNATIVE WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Indoor radon, a naturally occurring radioactive gas, is found in varying amounts in nearly all houses. The U.S. Environmental Protection Agency (EPA) has developed and demonstrated methods that have been used to reduce radon levels in existing houses. Many of these methods could ...

  7. 40 CFR 195.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... program. Device/measurement device means a unit, component, or system designed to measure radon gas or... application for each location from which it provides radon measurement services. After the application is... exam means the exam which evaluates individuals who provide radon measurement services in a residential...

  8. EML indoor radon workshop, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Lowder, W.; Fisenne, I.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniquesmore » for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs.« less

  9. Quantile regression and Bayesian cluster detection to identify radon prone areas.

    PubMed

    Sarra, Annalina; Fontanella, Lara; Valentini, Pasquale; Palermi, Sergio

    2016-11-01

    Albeit the dominant source of radon in indoor environments is the geology of the territory, many studies have demonstrated that indoor radon concentrations also depend on dwelling-specific characteristics. Following a stepwise analysis, in this study we propose a combined approach to delineate radon prone areas. We first investigate the impact of various building covariates on indoor radon concentrations. To achieve a more complete picture of this association, we exploit the flexible formulation of a Bayesian spatial quantile regression, which is also equipped with parameters that controls the spatial dependence across data. The quantitative knowledge of the influence of each significant building-specific factor on the measured radon levels is employed to predict the radon concentrations that would have been found if the sampled buildings had possessed standard characteristics. Those normalised radon measures should reflect the geogenic radon potential of the underlying ground, which is a quantity directly related to the geological environment. The second stage of the analysis is aimed at identifying radon prone areas, and to this end, we adopt a Bayesian model for spatial cluster detection using as reference unit the building with standard characteristics. The case study is based on a data set of more than 2000 indoor radon measures, available for the Abruzzo region (Central Italy) and collected by the Agency of Environmental Protection of Abruzzo, during several indoor radon monitoring surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Human Lung Cancer Risks from Radon – Part II – Influence from Combined Adaptive Response and Bystander Effects – A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage. PMID:22461760

  11. A generic biokinetic model for noble gases with application to radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Marsh, James; Gregoratto, Demetrio

    The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny willmore » be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.« less

  12. Effect of energy-efficient measures in building construction on indoor radon in Russia.

    PubMed

    Vasilyev, A; Yarmoshenko, I

    2017-04-28

    The effect of implementation of energy-efficient measures in building construction was studied. Analysis includes study of indoor radon in energy-efficient buildings in Ekaterinburg, Russia, and results of radiation measurements in 83 regions of Russia conducted within the regional programmes. The forecast distribution of radon concentration in Ekaterinburg was built with regard to the city development programme. With Ekaterinburg taken as representative case, forecast distribution of radon concentration in Russia in 2030 was built. In comparison with 2000, average radon concentration increases by a factor of 1.42 in 2030 year; percentage above the reference level 300 Bq/m3 increases by a factor of 4 in 2030 year. It is necessary to perceive such an increase with all seriousness and to prepare appropriate measures for optimization of protection against indoor radon. Despite the high uncertainty, reconstructed distribution of radon concentration can be applied for justification of measures to be incorporated in the radon mitigation strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Distribution of radon concentrations in child-care facilities in South Korea.

    PubMed

    Lee, Cheol-Min; Kwon, Myung-Hee; Kang, Dae-Ryong; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun

    2017-02-01

    This study was conducted to provide fundamental data on the distribution of radon concentrations in child day-care facilities in South Korea and to help establish radon mitigation strategies. For this study, 230 child-care centers were randomly chosen from all child-care centers nationwide, and alpha track detectors were used to examine cumulative radon exposure concentrations from January to May 2015. The mean radon concentration measured in Korean child-care centers is approximately 52 Bq m -3 , about one-third of the upper limit of 148 Bq m -3 , which is recommended by South Korea's Indoor Air Quality Control in Public Use Facilities, etc. Act and the U.S. Environmental Protection Agency (EPA). Furthermore, this concentration is about 50% lower than 102 Bq m -3 , which is the measured concentration of radon in houses nationwide from December 2013 to February 2014. Our results indicate that the amount of ventilation, as a major determining factor for indoor radon concentrations, is strongly correlated with the fluctuation of indoor radon concentrations in Korean child-care centers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation.

    PubMed

    Nishiyama, Y; Kataoka, T; Teraoka, J; Sakoda, A; Tanaka, H; Ishimori, Y; Mitsunobu, F; Taguchi, T; Yamaoka, K

    2013-01-01

    We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.

  15. Suppression of dextran sulfate sodium-induced colitis in mice by radon inhalation.

    PubMed

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m³ from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon.

  16. Suppression of Dextran Sulfate Sodium-Induced Colitis in Mice by Radon Inhalation

    PubMed Central

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m3 from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon. PMID:23365486

  17. Evaluation and equity audit of the domestic radon programme in England.

    PubMed

    Zhang, Wei; Chow, Yimmy; Meara, Jill; Green, Martyn

    2011-09-01

    The U.K. has a radon programme to limit the radon risk to health. This involves advice on protective measures in new buildings, technical guidance on their installation, encouragement of radon measurements and remediation in existing dwellings in high radon areas. We have audited the radon programme at the level of individual homes to identify factors that influence the likelihood of remediation. 49% of the householders responded to our survey and 30% of the respondents stated that they had done some remediation to reduce the indoor radon levels. We found that householders with higher incomes and higher socio-economic status are more likely than others to remediate. Householders are less likely to remediate if they have one of the following: living in a property with a high radon concentration, current smokers in the dwelling, being unemployed or an unskilled worker, long length of time living in that property or elderly (65+ years) living by themselves. Householders appeared to be more likely to remediate if they considered the information on radon and its risk to be very clear and useful. This emphasises the importance of communication with householders. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  19. Model-derived dose rates per unit concentration of radon in air in a generic plant geometry.

    PubMed

    Vives i Batlle, J; Smith, A; Vives-Lynch, S; Copplestone, D; Pröhl, G; Strand, T

    2011-11-01

    A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant's epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of (214)Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.

  20. OCCUPATIONAL EXPOSURE TO RADON IN DIFFERENT KINDS OF NON-URANIUM MINES.

    PubMed

    Fan, D; Zhuo, W; Zhang, Y

    2016-09-01

    For more accurate assessments of the occupational exposure to radon for miners, the individual monitoring was conducted by using an improved passive integrating (222)Rn monitor. A total of 120 miners in 3 different kinds of mines were monitored throughout a year. The results showed that the individual exposure to radon significantly varied with types of mines and work. Compared with the exposure to coal miners, the exposure to copper miners was much higher. Furthermore, it was found that the exposure might be overestimated if the environmental (222)Rn monitored by the passive integrating monitors was used for assessment. The results indicate that the individual monitoring of radon is necessary for an accurate assessment of radon exposure to miners, and radon exposure to non-uranium miners should also be assessed from the viewpoint of radiation protection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Field comparison of several commercially available radon detectors.

    PubMed Central

    Field, R W; Kross, B C

    1990-01-01

    To determine the accuracy and precision of commercially available radon detectors in a field setting, 15 detectors from six companies were exposed to radon and compared to a reference radon level. The detectors from companies that had already passed National Radon Measurement Proficiency Program testing had better precision and accuracy than those detectors awaiting proficiency testing. Charcoal adsorption detectors and diffusion barrier charcoal adsorption detectors performed very well, and the latter detectors displayed excellent time averaging ability. Alternatively, charcoal liquid scintillation detectors exhibited acceptable accuracy but poor precision, and bare alpha registration detectors showed both poor accuracy and precision. The mean radon level reported by the bare alpha registration detectors was 68 percent lower than the radon reference level. PMID:2368851

  2. RADON REDUCTION IN A CRAWL SPACE HOUSE

    EPA Science Inventory

    Radon, a naturally occurring radioactive gas, is drawn from the soil into a house when low air pressure exists in the house. This is a commonplace environmental hazard in the United States, Canada, and northern Europe. The U.S. Environmental Protection Agency (EPA) is developing ...

  3. National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity - A Field Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigg, Scott

    2014-09-01

    The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP).

  4. 40 CFR 35.702 - Basis for allotment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306) § 35.702 Basis for allotment. (a) The Regional Administrator will allot Indoor Radon Grant funds based... Control Act. (b) No Tribe or Intertribal Consortium may receive an Indoor Radon Grant in excess of 10...

  5. 40 CFR 35.292 - Basis for allotment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants State Indoor Radon Grants (section 306) § 35.292 Basis for allotment. (a) The Regional Administrator will allot State Indoor Radon Grant funds based on... Control Act. (b) No State may receive a State Indoor Radon Grant in excess of 10 percent of the total...

  6. 40 CFR 35.292 - Basis for allotment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants State Indoor Radon Grants (section 306) § 35.292 Basis for allotment. (a) The Regional Administrator will allot State Indoor Radon Grant funds based on... Control Act. (b) No State may receive a State Indoor Radon Grant in excess of 10 percent of the total...

  7. 40 CFR 35.702 - Basis for allotment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Indoor Radon Grants (section 306) § 35.702 Basis for allotment. (a) The Regional Administrator will allot Indoor Radon Grant funds based... Control Act. (b) No Tribe or Intertribal Consortium may receive an Indoor Radon Grant in excess of 10...

  8. Predictors of Home Radon Testing and Implications for Testing Promotion Programs.

    ERIC Educational Resources Information Center

    Sandman, Peter M.; Weinstein, Neil D.

    1993-01-01

    Analysis of 4 New Jersey studies of 3,329 homeowners found that (1) thinking about radon testing is predicted by general radon knowledge; (2) decision to test is related to perceived likelihood of risk; and (3) actual testing is influenced by situational factors such as locating and choosing test kits. (SK)

  9. A multiyear quality control study of alpha-track radon monitors.

    PubMed

    Pearson, M D; Martz, D E; George, J L; Langner, G H

    1992-01-01

    Quality control exposures of commercial alpha-track radon monitors have been conducted approximately weekly at the U.S. Department of Energy (DOE) Grand Junction Projects Office since early 1987 in support of DOE remedial action programs. The results of these exposures provide a historical record of the comparative performances of these radon monitors.

  10. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont Physiographic Province, had a median radon concentration greater than the EPA proposed AMCL of 4,000 pCi/L. Median concentrations of radon in groundwater and indoor air were determined to differ significantly among the geologic units (Kruskal-Wallis test, significance probability, p<0.001), and Tukey’s test indicated that radon concentrations in groundwater and indoor air in the Peters Creek Schist (Xpc) were significantly higher than those in the other units. Also, the Peters Creek Schist (Xpc) was determined to be the area with highest potential of radon exposure from groundwater and indoor air and one of two units with the highest percentage of population assumed to be using domestic self-supplied water (81 percent), which puts the population at greater potential of exposure to radon from groundwater.Potential radon exposure determined from classification of geologic units by median radon concentrations in groundwater and indoor air according to proposed and recommended regulatory limits is useful for drawing general conclusions about the presence, variation, and potential radon exposure in specific geologic units, but the associated data and maps have limitations. The aggregated indoor air radon data have spatial accuracy limitations owing to imprecision of geocoded test locations. In addition, the associated data describing geologic units and the public water supplier’s service areas have spatial and interpretation accuracy limitations. As a result, data and maps associated with this report are not recommended for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for radon concentrations at specific locations. Instead, the data and maps are meant to promote awareness regarding potential radon exposure in Pennsylvania and to point out data gaps that exist throughout the State.

  11. Radon testing in schools in New York State: a 20-year summary.

    PubMed

    Kitto, Michael

    2014-11-01

    For nearly 20 years the Department of Health has conducted programs to assist in the measurement and reduction of indoor radon concentrations in 186 schools located primarily in Zone 1 areas of New York State. Although many schools had few or no rooms containing radon above 148 Bq/m(3), some rooms had >740 Bq/m(3) and remediation techniques were utilized to reduce exposure. Short-term radon measurements in the schools showed little correlation to basement and first-floor radon results from single-family homes in the towns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. REVIEW OF SELECTED STATE-OF-THE-ART APPLICATIONS OF DIAGNOSTIC MEASUREMENTS FOR RADON MITIGATION PLANNING

    EPA Science Inventory

    Since late-1984, EPA's AEERL has supported a program to develop and demonstrate radon mitigation techniques for single-family detached dwellings. As part of the program, projects have been started directed at developing and demonstrating the use of diagnostic measurements in all ...

  13. GUIDANCE FOR RESEARCH HOUSE STUDIES OF THE FLORIDA RADON RESEARCH PROGRAM, VOLUME 1: RESEARCH PLAN

    EPA Science Inventory

    The report provides guidance and a readily available reference to groups involved with the Florida Radon Research Program's (FRRP's) research house studies. t includes: 1): Lists of Parameters for continuous and periodic high and low resolution measurements; (2) Protocols for cha...

  14. Canadian Lung Cancer Relative Risk from Radon Exposure for Short Periods in Childhood Compared to a Lifetime

    PubMed Central

    Chen, Jing

    2013-01-01

    Long-term exposure to elevated indoor radon concentrations has been determined to be the second leading cause of lung cancer in adults after tobacco smoking. With the establishment of a National Radon Program in Canada in 2007 thousands of homes across the country have been tested for radon. Although the vast majority of people are exposed to low or moderate radon concentrations; from time to time; there are homes found with very high concentrations of radon. Among those living in homes with very high radon concentrations, it is typically parents of young children that demonstrate a great deal of concern. They want to know the equivalent risk in terms of the lifetime relative risk of developing lung cancer when a child has lived in a home with high radon for a few years. An answer to this question of risk equivalency is proposed in this paper. The results demonstrate clearly that the higher the radon concentration; the sooner remedial measures should be undertaken; as recommended by Health Canada in the Canadian radon guideline. PMID:23698696

  15. The newest international trend about regulation of indoor radon.

    PubMed

    Bochicchio, Francesco

    2011-07-01

    On the basis of recent epidemiological findings, many international and national organisations have revised their recommendations and regulations on radon exposure in dwellings and workplaces, or are in the process to do it. In particular, new recommendations and regulations were recently published (or are going to be) by World Health Organization, Nordic Countries, International Commission on Radiological Protection, International, Atomic Energy Agency (and the other international organisations sponsoring the International Basic Safety Standards), European Commission. Although with some differences, these new documents recommend lower radon concentrations in indoor air, especially in dwellings, compared with previous ones. Moreover, preventive measures in all new buildings are more and more considered as one of the most cost-effective way to reduce the radon-related lung cancers, compared with previous approach restricting preventive measures in radon-prone areas only. A comprehensive national action plan, involving several national and local authorities, is generally considered a necessary tool to deal with the many complex actions needed to reduce the risk from radon exposure in an effective way.

  16. Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian

    2018-01-01

    Central Laboratory for Radiological Protection, in cooperation with Central Mining Institute performed measurements of radon concentration in air, potential alpha energy concentration (PAEC), particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist-Educational Route "Liczyrzepa" Mine in Kowary Adit. A research study was developed to investigate the appropriate dose conversion factors for short-lived radon progeny. The particle size distribution of radon progeny was determined using Radon Progeny Particle Size Spectrometer (RPPSS). The device allows to receive the distribution of PAEC in the particle size range from 0.6 nm to 2494 nm, based on their activity measured on 8 stages composed of impaction plates or diffusion screens. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometres to about 20 micrometres using Aerodynamic Particle Sizer (APS) spectrometer and the Scanning Mobility Particle Sizer Spectrometer (SMPS).

  17. Determination of radon concentration in water using RAD7 with RAD H{sub 2}O accessories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M. F. I.; Rabaiee, N. A.; Jaafar, M. S.

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20more » samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public.« less

  18. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    PubMed

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Map showing radon potential of rocks and soils in Fairfax County, Virginia

    USGS Publications Warehouse

    Otton, James K.; Schumann, R. Randall; Owen, Douglass E.; Thurman, Nelson; Duval, Joseph S.

    1988-01-01

    Since 1984, indoor radon has gained national attention as a significant health hazard in the United States. Radon is a colorless, odorless, radioactive gas derived from uranium by radioactive decay. The U.S. Environmental Protection Agency (EPA) now projects that 5,000 to 20,000 lung-cancer deaths per year may be attributed to the long-term exposure to indoor radon and its radioactive decay products. Indoor radon has been previously recognized as a health hazard associated with uranium-bearing mill tailings or building materials, but it was not until December 1984 that some natural soils and rocks were found to be sources of indoor radon at levels comparable to those in uranium mines. It is now suspected that elevated indoor radon levels are far more widespread than initially though. The EPA considers 4 picoCuries of radon per liter of air (pCi/L) as the level (in a year-round measurement) at which actions ought to be taken to lower the concentration of indoor radon. All soils and rocks contain measurable amounts of uranium, which generate measurable amounts of radon. Certain soils and rocks, however, have a greater potential to cause indoor radon problems than others because (1) they have a higher uranium content and thus can generate higher levels of radon in soil gas (gas that occupies the pores of the soil), and (2) the permeability of the sol or rack is sufficiently high that radon-bearing soil gas can flow freely and move indoors through the foundation of the structure. This study was designed to demonstrate the correlation between the geologic environment and indoor radon levels and to demonstrate a method of assessment that could be used by other informed workers in areas of their interest. A parallel study by Gundersen and others (1988) of the radon potential of rocks and soils in Montgomery County, Md., used somewhat different methods of assessment because the data available for and assessment of Montgomery County differed.

  20. Mapping the geogenic radon potential of the eastern Canary Islands.

    NASA Astrophysics Data System (ADS)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    The main contribution of indoor radon comes from soils and thus, the knowledge of the concentration of this gas in soils is important for estimating the risk of finding high radon indoor concentrations. To characterize the behavior of radon in soils, it is common to use the a quantity named Radon Potential which results of a combination of properties of the soil itself and from the underlying rock, such as concentration and distribution of radium, porosity, permeability, the moisture content and meteorological parameters, among others. In this work, the results three year of campaigns of measurement radon gas as well as the permeability in soils of the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) are presented. By combining these two parameters and through the use of geostatistic interpolation techniques, the radon potential of soils is estimated and it is used to carry on a classification of the territory into hazard zones according to their potential for radon emanation. To measure the radon soil gas a probe equipped with a "lost" sharp tip is inserted to the desired sampling depth. One of the characteristics of the Canary Islands is the absence of developed soils and so the bedrock is found typically at very shallow depth. This fact has led us to adopt a sampling depth of 50 cm at most. The probe is connected to the continuous radon monitor Durridge RAD7 equipped with a solid-state alpha spectrometer to determine concentration radon using the activity its short-lived progeny. Dried soil air is delivered to the RAD7 radon monitor by pumping. A half hour counting time for all sampling points has been taken. In parallel to the radon measurement campaign, the permeability of soils has also been determined at each point using the permeameter RADON-JOK. The principle of operation of this equipment consists of air withdrawal by means of negative pressure. The gas permeability is then calculated using the known flow of air flowing through the probe using a calibrated nomogram. As results, maps of radon in soils have been developed for the three islands to identify areas where may appear high activity concentrations of radon due to natural sources. Finally to determine the radon potential of soils analyzed we applied a procedure to classify the radon areas in several levels of risk using the measured values of radon activity concentration and soil permeability. Acknowledgments: This work was financed by the Nuclear Safety Council (CSN) through a grant in its R&D program 2009 and by the European Development Fund (ERDF) through a research project program 2007 granted by Canary Agency for Research, Innovation and Information Society (ACIISI) of the Canary Islands.

  1. Monitoring of Radon in Tourist Part of Skocjan Caves

    NASA Astrophysics Data System (ADS)

    Debevec Gerjevic, Vanja; Jovanovic, Peter

    2010-05-01

    Due to their exceptional significance for cultural and natural heritage, the Škocjan Caves were entered on UNESCO's list of natural and cultural world heritage sites in 1986. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the yearly dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data, beside the most convenient measuring technique. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. The survey will be described along with education of the staff working in the caves in the field of radiation protection. An overview of Slovene legislation with practical example on implementation will be demonstrated in the case of Škocjan Caves where the managing authority considers the monitoring of Radon as one of the tools for adaptive management.

  2. Predicted indoor radon concentrations from a Monte Carlo simulation of 1,000,000 granite countertop purchases.

    PubMed

    Allen, J G; Zwack, L M; MacIntosh, D L; Minegishi, T; Stewart, J H; McCarthy, J F

    2013-03-01

    Previous research examining radon exposure from granite countertops relied on using a limited number of exposure scenarios. We expanded upon this analysis and determined the probability that installing a granite countertop in a residential home would lead to a meaningful radon exposure by performing a Monte Carlo simulation to obtain a distribution of potential indoor radon concentrations attributable to granite. The Monte Carlo analysis included estimates of the probability that a particular type of granite would be purchased, the radon flux associated with that type, the size of the countertop purchased, the volume of the home where it would be installed and the air exchange rate of that home. One million countertop purchases were simulated and 99.99% of the resulting radon concentrations were lower than the average outdoor radon concentrations in the US (14.8 Bq m(-3); 0.4  pCi l(-1)). The median predicted indoor concentration from granite countertops was 0.06 Bq m(-3) (1.59 × 10(-3) pCi l(-1)), which is over 2000 times lower than the US Environmental Protection Agency's action level for indoor radon (148 Bq m(-3); 4 pCi l(-1)). The results show that there is a low probability of a granite countertop causing elevated levels of radon in a home.

  3. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York. [Niagara Falls Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  4. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  5. Should radon be reduced in homes? A cost-effect analysis.

    PubMed

    Stigum, Hein; Strand, Terje; Magnus, Per

    2003-02-01

    Radon is a radioactive gas that may leak into buildings from the ground. Radon exposure is a risk factor for lung cancer. An intervention against radon exposure in homes may consist of locating homes with high radon exposure (above 200 Bq m(-3)) and improving these, and protecting future houses. The purpose of this paper is to calculate the costs and the effects of this intervention. We performed a cost-effect analysis from the perspective of the society, followed by an uncertainty and sensitivity analysis. The distribution of radon levels in Norwegian homes is lognormal with mean = 74.5 Bq m(-3), and 7.6% above 200 Bq m(-3). The preventable attributable fraction of radon on lung cancer was 3.8% (95% uncertainty interval: 0.6%, 8.3%). In cumulative present values the intervention would cost $238 (145, 310) million and save 892 (133, 1981) lives; each life saved costs $0.27 (0.09, 0.9) million. The cost-effect ratio was sensitive to the radon risk, the radon exposure distribution, and the latency period of lung cancer. Together these three parameters explained 90% of the variation in the cost-effect ratio. The uncertainty in the estimated cost per life is large, mainly due to uncertainty in the risk of lung cancer from radon. Based on estimates from road construction, the Norwegian society has been willing to pay $1 million to save a life. This is above the upper uncertainty limit of the cost per life. The intervention against radon in homes, therefore, seems justifiable.

  6. Radon Risk Communication Strategies: A Regional Story.

    PubMed

    Cheng, Winnie

    2016-01-01

    Risk communication on the health effects of radon encounters many challenges and requires a variety of risk communication strategies and approaches. The concern over radon exposure and its health effects may vary according to people's level of knowledge and receptivity. Homeowners in radon-prone areas are usually more informed and have greater concern over those not living in radon-prone areas. The latter group is often found to be resistant to testing. In British Columbia as well as many other parts of the country, some homes have been lying outside of the radon-prone areas have radon levels above the Canadian guideline, which is the reason Health Canada recommends that all homes should be tested. Over the last five years, the Environment Health Program (EHP) of Health Canada in the British Columbia region has been using a variety of different approaches in their radon risk communications through social media, workshops, webinars, public forums, poster contests, radon distribution maps, public inquiries, tradeshows and conference events, and partnership with different jurisdictions and nongovernmental organizations. The valuable lessons learned from these approaches are discussed in this special report.

  7. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    USGS Publications Warehouse

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential ratings that were developed for this study; and 3) the characteristics of the rocks and soils in Montgomery County that give them their radon potential.

  8. Characterization of radon levels in soil and groundwater in the North Maladeta Fault area (Central Pyrenees) and their effects on indoor radon concentration in a thermal spa.

    PubMed

    Moreno, V; Bach, J; Zarroca, M; Font, Ll; Roqué, C; Linares, R

    2018-09-01

    Radon levels in the soil and groundwater in the North Maladeta Fault area (located in the Aran Valley sector, Central Pyrenees) are analysed from both geological and radiation protection perspectives. This area is characterized by the presence of two important normal faults: the North Maladeta fault (NMF) and the Tredós Fault (TF). Two primary aspects make this study interesting: (i) the NMF shows geomorphic evidence of neotectonic activity and (ii) the presence of a thermal spa, Banhs de Tredós, which exploits one of the several natural springs of the area and needs to be evaluated for radiation dosing from radon according to the European regulation on basic safety standards for protection against ionizing radiation. The average soil radon and thoron concentrations along a profile perpendicular to the two normal faults - 22 ± 3 kBq·m -3 and 34 ± 3 kBq·m -3 , respectively - are not high and can be compared to the radionuclide content of the granitic rocks of the area, 25 ± 4 Bq·kg -1 for 226 Ra and 38 ± 2 Bq·kg -1 for 224 Ra. However, the hypothesis that the normal faults are still active is supported by the presence of anomalies in both the soil radon and thoron levels that are unlikely to be of local origin together with the presence of similar anomalies in CO 2 fluxes and the fact that the highest groundwater radon values are located close to the normal faults. Additionally, groundwater 222 Rn data have complemented the hydrochemistry data, enabling researchers to better distinguish between water pathways in the granitic and non-granitic aquifers. Indoor radon levels in the spa vary within a wide range, [7-1664] Bq·m -3 because the groundwater used in the treatment rooms is the primary source of radon in the air. Tap water radon levels inside the spa present an average value of 50 ± 8 kBq·m -3 , which does not exceed the level stipulated by the Spanish Nuclear Safety Council (CSN) of 100 kBq·m -3 for water used for human consumption. This finding implies that even relatively low radon concentration values in water can constitute a relevant indoor radon source when the transfer from water to indoor air is efficient. The estimated effective dose range of values for a spa worker due to radon inhalation is [1-9] mSv·y -1 . The use of annual averaged radon concentration values may significantly underestimate the dose in these situations; therefore, a detailed dynamic study must be performed by considering the time that the workers spend in the spa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Canadian population risk of radon induced lung cancer: a re-assessment based on the recent cross-Canada radon survey

    PubMed Central

    Chen, J.; Moir, D.; Whyte, J.

    2012-01-01

    Exposure to indoor radon has been determined to be the second leading cause of lung cancer after tobacco smoking. Canadian population risk of radon induced lung cancer was assessed in 2005 with the radon distribution characteristics determined from a radon survey carried out in the late 1970s in 19 cities. In that survey, a grab sampling method was used to measure radon levels. The observed radon concentration in 14 000 Canadian homes surveyed followed a log–normal distribution with a geometric mean (GM) of 11.2 Bq m–3 and a geometric standard deviation (GSD) of 3.9. Based on the information from that survey, it was estimated that ∼10 % of lung cancers in Canada resulted from indoor radon exposure. To gain a better understanding of radon concentrations in homes across the country, a national residential radon survey was launched in April 2009. In the recent survey, long-term (3 month or longer) indoor radon measurements were made in roughly 14 000 homes in 121 health regions across Canada. The observed radon concentrations follow, as expected, a log–normal distribution with a GM of 41.9 Bq m–3 and a GSD of 2.8. Based on the more accurate radon distribution characteristics obtained from the recent cross-Canada radon survey, a re-assessment of Canadian population risk for radon induced lung cancer was undertaken. The theoretical estimates show that 16 % of lung cancer deaths among Canadians are attributable to indoor radon exposure. These results strongly suggest the ongoing need for the Canadian National Radon Program. In particular, there is a need for a focus on education and awareness by all levels of government, and in partnership with key stakeholders, to encourage Canadians to take action to reduce the risk from indoor radon exposure. PMID:22874897

  10. Lung cancer risk due to residential radon exposures: estimation and prevention.

    PubMed

    Truta, L A; Hofmann, W; Cosma, C

    2014-07-01

    Epidemiological studies proved that cumulative exposure to radon is the second leading cause of lung cancer, the world's most common cancer. The objectives of the present study are (i) to analyse lung cancer risk for chronic, low radon exposures based on the transformation frequency-tissue response (TF-TR) model formulated in terms of alpha particle hits in cell nuclei; (ii) to assess the percentage of attributable lung cancers in six areas of Transylvania where the radon concentration was measured and (iii) to point out the most efficient remediation measures tested on a pilot house in Stei, Romania. Simulations performed with the TF-TR model exhibit a linear dose-effect relationship for chronic, residential radon exposures. The fraction of lung cancer cases attributed to radon ranged from 9 to 28% for the investigated areas. Model predictions may represent a useful tool to complement epidemiological studies on lung cancer risk and to establish reasonable radiation protection regulations for human safety. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague.

    PubMed

    Jílek, K; Timková, J

    2015-06-01

    During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Radon Levels in Indoor Environments of the University Hospital in Bari-Apulia Region Southern Italy

    PubMed Central

    Fucilli, Fulvio; Cavone, Domenica; De Maria, Luigi; Birtolo, Francesco; Ferri, Giovanni Maria; Soleo, Leonardo

    2018-01-01

    Since 1988, the International Agency for Research on Cancer (IARC) has classified radon among the compounds for which there is scientific evidence of carcinogenicity for humans (group 1). The World Health Organization (WHO) recommends a reference radon level between 100 and 300 Bq/m3 for homes. The objective of this study is to measure the radon concentrations in 401 workplaces, different from the patient rooms, in 28 different buildings of the university hospital in Bari (Apulia region, Southern Italy) to evaluate the exposure of health care workers. Radon environmental sampling is performed over two consecutive six-month periods via the use of passive dosimeters of the CR-39 type. We find an average annual radon concentration expressed as median value of 48.0 Bq/m3 (range 6.5–388.0 Bq/m3) with a significant difference between the two six-month periods (median value: February/July 41.0 Bq/m3 vs. August/January 55.0 Bq/m3). An average concentration of radon lower than the WHO reference level (100 Bq/m3) is detected in 76.1% of monitored environments, while higher than 300 Bq/m3 only in the 0.9%. Most workplaces report radon concentrations within the WHO reference level, therefore, the risk to workers’ health deriving from occupational exposure to radon can be considered to be low. Nevertheless, the goal is to achieve near-zero exposures to protect workers’ health. PMID:29642436

  13. Dose conversion factors for radon: recent developments.

    PubMed

    Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot

    2010-10-01

    Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.

  14. What You Can Do to Protect Children from Environmental Risks

    EPA Pesticide Factsheets

    Tips for protection from pesticides, chemical poisoning, lead poisoning, respiratory problems, carbon monoxide poisoning, contaminated fish, radon, too much sun, and mercury. Also how to promote healthier communities.

  15. Radon mitigation at Birch Cliff Public School.

    PubMed

    Moridi, R; Becker, E

    1996-01-01

    In 1991, Canadian Institute for Radiation Safety (CAIRS) conducted a radon screening program in all Metropolitan Toronto public schools. Birch Cliff Public School had a radon progeny level higher than the action level of 4.16 x 10(-7) Jm-3 (20 mWL). Follow-up radon testing was carried out at the school. Locations on the ground floor and in the basement were tested. All locations on the ground floor had radon progeny levels below the action level. Six locations in the basement had readings above the action level. All cracks and openings in the basement were sealed and a new heating/ventilating (HV) system for the basement was designed and installed. Then, the basement was tested again. Radon progeny levels are now well below the action level with an average of 7.43 x 10(-8) Jm-3 (3.57 mWL). This is about one fifth of the average radon progeny level found in the first stage of follow-up testing.

  16. Radon in ground water: A study of the measurement and release of waterborne radon and modeling of radon variation in bedrock wells

    NASA Astrophysics Data System (ADS)

    Guiseppe, Vincente E.

    Naturally occurring radon gas (222Rn) exists in ground water and drinking water supplies. Research involving radon in ground water requires the ability to accurately measure radon in water. In the absence of a national program, an intercomparison study of laboratories was sanctioned by the State of Maine. The University of Maine research laboratory supplied each laboratory with water samples of various radon concentrations, served as the reference laboratory, and analyzed the results presented here. The external review of the University of Maine laboratory and agreement with some of the participating laboratories verifies its accuracy in measuring radon in water. A study of nine elementary schools in Maine examined the release of waterborne radon during water use. The release of radon into the kitchen air was measured to be greater than the EPA action level of 0.150 Bq L -1 (4 pCi L-1) in all schools but negligible concentrations of radon were found in adjacent classrooms. In two schools over a three-fold spatial radon variation was measured suggesting that multiple detectors are needed to accurately measure waterborne radon in air. During water use, the radon in water concentration was measured periodically and many of the schools showed an increase in the radon concentration by 200 BqL-1 or more. To explore this effect, nine bedrock wells were studied in detail. Measurements of the ambient and purged radon profiles in the wells showed variations of radon concentration of samples within the well. The rock chips removed during well-drilling were analyzed for radionuclides in the 238U decay series. The 226Ra concentrations in the rock chips do not explain the measured vertical variation of dissolved radon. The vertical flow and fracture locations were previously determined by borehole logging to determine location of ground water inflow. A mathematical model of the ground-water flow into and through the well with radon as a tracer was tested. The model was successfully fit to data obtained from the wells that had a variation in radon concentration.

  17. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  18. Bureau of Mines method of calibrating a primary radon-measuring apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holub, R.R.; Stroud, W.P.

    1990-01-01

    One important requirement for accurate monitoring of radon in working environments, dwellings, and outdoors is to ensure that the measurement instrumentation is properly calibrated against a recognized standard. To achieve this goal, the U.S. Department of Interior Bureau of Mines (BoM) Radiation Laboratory has participated since 1983 in a program to establish international radon measurement standards. While the National Institute of Standards and Technology (NIST) radium solution ampules are acceptable to all participating laboratories as a primary standard, a method of transferring radon from the NIST source into each laboratory's primary counting apparatus is a critical problem. The Bureau's methodmore » transfers radon from the primary solution by bubbling 3 L of air through it into a steel cylinder. After homogenizing the radon concentrations in the cylinder, eight alpha-scintillation cells are filled consecutively and measured in a standard counting system. The resulting efficiency is 81.7 + or - 1.2%.« less

  19. High Radon Areas and lung cancer prevalence: Evidence from Ireland.

    PubMed

    Dempsey, Seraphim; Lyons, Seán; Nolan, Anne

    2018-02-01

    This paper examined the relationship between radon risk and lung cancer prevalence using a novel dataset combining spatially-coded survey data with a radon risk map. A logit model was employed to test for significant associations between a high risk of indoor radon and lung cancer prevalence using data on 5590 people aged 50+ from The Irish Longitudinal Study on Ageing (TILDA) and radon risk data from Ireland's Environmental Protection Agency (EPA). The use of data at the individual level allowed a wide range of potentially confounding factors (such as smoking) to be included. Results indicate that those who lived in an area in which 10%-20% of households were above the national reference level (200 Bq/m 3 ) were 2.9-3.1 times more likely to report a lung cancer diagnosis relative to those who lived in areas in which less than 1% of households were above the national reference level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Radon safety in terms of energy efficiency classification of buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  1. The effect on the radon diffusion coefficient of long-term exposure of waterproof membranes to various degradation agents.

    PubMed

    Navrátilová Rovenská, Katerina

    2014-07-01

    Waterproofing, usually made of bitumen or polymers with various additives, is used to protect buildings mainly against dampness, but also against radon transported from the soil beneath the building. The radon diffusion coefficient is a material property which is considered to be strongly influenced by the inner structure (chemical composition, crystallinity) of a measured sample. We have used this parameter together with measurements of mechanical properties (hardness, tensile strength, elongation at break, etc.) and FTIR spectroscopy has been used in order to describe the changes in material properties induced by long-term degradation. This paper summarizes the results of radon diffusion coefficient measurements of waterproof materials exposed to radon, soil bacteria, high temperature and combinations of these factors. We have discovered changes as high as 83 % have been discovered compared to virgin samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    PubMed

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  4. Radon abate: Who should pay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Z.P.

    Radon is blamed for thousands of deaths from lung cancer annually. This radioactive gas most often seeps into buildings through structural defects. The cost of protecting tenants and homeowners from the health risks of radon adds to the cost of housing, particularly for those who can least afford it. Tenants and people whose homes need repair are at higher risk for radon exposure than are people living in well-constructed and well-maintained homes. Renters are at particular risk, says Joseph Laquatra, associate professor of design and environmental analysis, because they are powerless to implement radon mitigation. Moreover, they could be hurtmore » financially if landlords were forced to upgrade buildings in an attempt to reduce radon levels. [open quotes]A balance has to be struck,[close quotes] Laquatra says, [open quotes]between making rental units safer and not reducing the availability of affordable housing for people with low incomes.[close quotes] In a study of housing in central and western New York State, Laquatra and Peter Chi, professor of consumer economics and housing, found that up to 66 percent of rental units had excessive radon levels, versus 41 percent of owner-occupied homes costing less than $40,000 and 36 percent of homes worth more than $40,000.« less

  5. 'Radon Concentration Survey in Inner Rooms from Deputy Chamber and National Congress-Brasilia/DF'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicoli, Ieda Gomes; Cardozo, Katia Maria; Azevedo Gouvea, Vandir de

    2008-08-07

    Radon gas has been monitored in many environments such as rural and urban houses, high natural radioactivity areas and underground mining regions. Nevertheless few data are reported in literature about studies in state buildings. So we get in touch with these buildings managers, where work the Deputy Chamber and the National Congress in Brasilia--DF, in order to obtain radon data in these state buildings, so representative for brazilian people. In order to make a preliminary scanning of radon concentration in these buildings, it was put in selected points, radon nuclear track passive detectors type SSNTD, specifically polycarbonate Lexan, which weremore » exposed for periods from two to five months. Afterwards they were sent to Nuclear Engineering Institute in Rio de Janeiro for analysis of {sup 222}Rn contents. Derived values, whose average value was about 73 Bq/m{sup 3}, were all under maximum permissible limits for radon 200 Bq/m{sup 3}, established by International Comission on Radiological Protection--ICRP 65, for inner environments of houses and state buildings. This work has been coordinated by CNEN Office in Braselia with effective participation of Nuclear Engineering Institute from CNEN--RJ, that has worked since beginning of april 2004, supplying and analysing radon detectors.« less

  6. 40 CFR 35.700 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... residential construction types); (ii) Development of public information and education materials concerning... management system for information concerning radon occurrence, levels, and programs; (ix) Payment of costs of demonstration of radon mitigation methods and technologies as approved by EPA, including Tribal and Intertribal...

  7. 40 CFR 35.700 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... residential construction types); (ii) Development of public information and education materials concerning... management system for information concerning radon occurrence, levels, and programs; (ix) Payment of costs of demonstration of radon mitigation methods and technologies as approved by EPA, including Tribal and Intertribal...

  8. Envitonmental monitoring and radiation protection in Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjeviè, V.; Jovanovič, P.

    2012-04-01

    Škocjan Caves were listed as UNESCO World Heritage Sites in 1986, due to their exceptional significance for cultural and natural heritage. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data. Relation of background radiation to carrying capacity will be explained. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. A system of education of the staff working in the caves in the field of radiation protection will be presented as well.

  9. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota

    PubMed Central

    Kearfott, Kimberlee J.; Whetstone, Zachary D.; Rafique Mir, Khwaja M.

    2016-01-01

    Because 222Rn is a progeny of 238U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. PMID:26472478

  10. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. [Maywood Interim Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less

  11. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of themore » nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.« less

  12. A study of Monitoring and Mapping for Radon-Concentration Distribution in Gyeongju - 12201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chan Hee; Lee, Jung Min; Jang, So Young

    Radon is one of the most important contributors to the radiation exposure in humans. This study measured the indoor radon concentrations at the 17 elementary school auditoriums that were sampled from those in the city of Gyeongju, Korea. The reason that an elementary school was selected as a measurement object is that many students and teachers stay for a long time in a day and it's easy to identify the characteristics of the auditorium building such as the essential building. The measurement shows that most of the indoor radon concentrations at the 17 elementary school auditoriums did not exceed 148more » Bq/m{sup 3} that is the action level recommended by U.S. Environmental Protection Agency. This study measured the indoor radon concentrations at the elementary school auditoriums in Gyeongju. The measurements were analyzed according to the bedrock type and the time intervals per day. In this study, it was found that the indoor radon concentrations over off-duty hours were generally higher that those over on-duty hours, and the indoor radon concentration in the area whose bedrock is volcanic rock was higher than those in the area of the other types of bedrock. As mentioned above, attention has to be paid to an elementary school since many young students and teachers stay for more 6 hours a day at it. Hence, it is necessary to continuously monitor and properly manage the indoor radon concentrations in the elementary schools. (authors)« less

  13. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  14. Radiation Protection. Measurement of radioactivity in the environment - Air- radon 222. A proposed ISO standard.

    NASA Astrophysics Data System (ADS)

    Gillmore, G.; Woods, M.

    2009-04-01

    Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of this work item is 2011. The ISO document here highlighted is a working draft. ISO is a worldwide federation of national standards bodies. Keywords: radon; international standards; measurement techniques.

  15. A generic biokinetic model for noble gases with application to radon.

    PubMed

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric

    2013-06-01

    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  16. Caves, mines and subterranean spaces: hazard and risk from exposure to radon.

    NASA Astrophysics Data System (ADS)

    Crockett, R. G. M.; Gillmore, G. K.

    2009-04-01

    Radon is a naturally occurring radioactive gas. It is colourless, odourless and chemically inert. The most hazardous isotope is 222Rn. Radon is formed in the natural environment by the radioactive decay of the element uranium (238U) and is a daughter product of daughter product of radium (226Ra). Uranium and radium are found, in differing degrees, in a wide range of rocks, soils (and building materials that are made from these). Radon concentrations in caves, e.g. limestone caves such as the Great Cave of Niah, Borneo, and caves in the Mendips and Peak District in the UK, has been documented and reveal that both (prehistoric) cave-dwellers and other users such as archaeologists are at risk from exposure to radon a naturally occurring radioactive gas. In general, but dependent on cave geometry and ventilation, radon concentration increases with increasing distance from the entrance, implying that the hazard also increases with distance from the entrance. With regard to mines and mining operations, as well as modern extraction of uranium and radium ores, both ores commonly occur alongside other metallic ores, e.g. silver at Schneeberg and Joachimsthal, and tin in Cornwall, and in some instances, waste from earlier metalliferious mining activity has itself been ‘mined' for uranium and/or radium ores. It is not solely the miners and other subterranean workers which are at risk, other workers and local inhabitants are also at risk. Also, that risk is not eliminated by protection against dust/airborne particulates: the risk from inhalation of radon is only reduced by reducing the inhalation of radon, i.e. use of breathing apparatus. Amongst the general population, radon is the second most significant cause of lung cancer behind tobacco smoking. Estimates vary but 6-9% of lung-cancers are attributable to radon and approximately 2% all cancer deaths are attributable to radon. These proportions will increase in higher-radon environments such as caves, mines and mining areas (via spoil heaps, settlement lagoons etc. containing uranium and radium). We here present an overview of the potential hazard presented by radon in subterranean spaces and by metalliferous mining activities. We also present some speculation as to evidence of (pre-) historic exposure to radon which might potentially exist in archaeological remains and oral traditions. Keywords: radon; caves; metalliferous mining; cave-dwellers; archaeologists.

  17. RECOMMENDED HVAC STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report contains the recommended language for the heating, ventilation, and air conditioning (HVAC) section of the "Florida Code for Radon-resistant Construction and Mitigation." t deals with elements of construction that relate to the HVAC of houses. ts primary intent is to p...

  18. Communicating radon risk effectively: a mid-course evaluation. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, V.K.; Desvousges, W.H.; Fisher, A.

    A panel of 2300 homeowners was divided into subgroups to test the effectiveness of six alternative ways of explaining the risk from naturally occurring radon gas. The research design focused on two dimensions: qualitative vs. quantitative and directive vs. evaluative. These characteristics led to 4 experimental booklets, which were compared with EPA's Citizen's Guide and a one-page fact sheet. The evaluation examined how much people learned about radon; whether they could form risk perceptions consistent with their home's measured radon level; and whether they felt they had enough information to make a decision about mitigation. The fact sheet did notmore » perform well on any of these evaluation criteria. None of the five booklets clearly was best for all 3 evaluation criteria; the report discusses the implications for designing an effective radon-risk communication program.« less

  19. United States Air Force Research Initiation Program. 1985 Technical Report. Volume 3.

    DTIC Science & Technology

    1987-04-01

    miners exposed to airborne radon (7). Thus the major health effect associated with radon is thought to be production of lung cancers by radon decay...Based Instruction: Effect Dr. Linda J. Buehner of Cognitive Style, Instructional Format, and Subject-Matter Content 160-OMG-085 9 Nonlinear Feedback...Instrumentation 760-OMG-042 16 Investigation of the Effects of Dr. David R. Cochran an Applied Electric Field on the InP Melt 760-OMG-014 17 Below-Melt

  20. Lung Cancer Risk from Radon in Marcellus Shale Gas in Northeast U.S. Homes.

    PubMed

    Mitchell, Austin L; Griffin, W Michael; Casman, Elizabeth A

    2016-11-01

    The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon-induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m 3 (41-74 pCi/L), and the throughput-weighted average was 1,983 Bq/m 3 (54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent-free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m 3 (<1% of the U.S. Environmental Protection Agency's action level). Using worst-case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10 -4 (interval spanning 95% of simulation results: 8.5×10 -5 , 3.4×10 -4 ). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10 -3 . Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates. © 2016 Society for Risk Analysis.

  1. RECOMMENDED SUB-SLAB DEPRESSURIZATION SYSTEMS DESIGN STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report recommends sub-slab depressurization systems design criteria to the State of Florida's Department of Community Affairs for their building code for radon resistant houses. Numerous details are set forth in the full report. Primary criteria include: (1) the operating soi...

  2. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    PubMed

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis. Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989-2013. Environ Health Perspect 123:1130-1137; http://dx.doi.org/10.1289/ehp.1409014.

  3. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989–2013

    PubMed Central

    Casey, Joan A.; Ogburn, Elizabeth L.; Rasmussen, Sara G.; Irving, Jennifer K.; Pollak, Jonathan; Locke, Paul A.

    2015-01-01

    Background Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). Objectives We evaluated predictors of indoor radon concentrations. Methods Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Results Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167–679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52–178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = –0.323, 95% CI: –0.333, –0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p < 0.001), with higher levels in counties having ≥ 100 drilled wells versus counties with none, and with highest levels in the Reading Prong. Conclusions Geologic unit, well water, community, weather, and unconventional natural gas development were associated with indoor radon concentrations. Future studies should include direct environmental measurement of radon, as well as building features unavailable for this analysis. Citation Casey JA, Ogburn EL, Rasmussen SG, Irving JK, Pollak J, Locke PA, Schwartz BS. 2015. Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environ Health Perspect 123:1130–1137; http://dx.doi.org/10.1289/ehp.1409014 PMID:25856050

  4. A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: the case of Lombardy, Northern Italy.

    PubMed

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-05-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully.

  5. Children's Exposure to Radon in Nursery and Primary Schools.

    PubMed

    Branco, Pedro T B S; Nunes, Rafael A O; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2016-03-30

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children's exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings' construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings' construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks.

  6. A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy

    PubMed Central

    Borgoni, Riccardo; Tritto, Valeria; Bigliotto, Carlo; de Bartolo, Daniela

    2011-01-01

    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully. PMID:21655128

  7. Children’s Exposure to Radon in Nursery and Primary Schools

    PubMed Central

    Branco, Pedro T. B. S.; Nunes, Rafael A. O.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2016-01-01

    The literature proves an evident association between indoor radon exposure and lung cancer, even at low doses. This study brings a new approach to the study of children’s exposure to radon by aiming to evaluate exposure to indoor radon concentrations in nursery and primary schools from two districts in Portugal (Porto and Bragança), considering different influencing factors (occupation patterns, classroom floor level, year of the buildings’ construction and soil composition of the building site), as well as the comparison with IAQ standard values for health protection. Fifteen nursery and primary schools in the Porto and Bragança districts were considered: five nursery schools for infants and twelve for pre-schoolers (seven different buildings), as well as eight primary schools. Radon measurements were performed continuously. The measured concentrations depended on the building occupation, classroom floor level and year of the buildings’ construction. Although they were in general within the Portuguese legislation for IAQ, exceedances to international standards were found. These results point out the need of assessing indoor radon concentrations not only in primary schools, but also in nursery schools, never performed in Portugal before this study. It is important to extend the study to other microenvironments like homes, and in time to estimate the annual effective dose and to assess lifetime health risks. PMID:27043596

  8. Constraining radon backgrounds in LZ

    NASA Astrophysics Data System (ADS)

    Miller, E. H.; Busenitz, J.; Edberg, T. K.; Ghag, C.; Hall, C.; Leonard, R.; Lesko, K.; Liu, X.; Meng, Y.; Piepke, A.; Schnee, R. W.

    2018-01-01

    The LZ dark matter detector, like many other rare-event searches, will suffer from backgrounds due to the radioactive decay of radon daughters. In order to achieve its science goals, the concentration of radon within the xenon should not exceed 2 µBq/kg, or 20 mBq total within its 10 tonnes. The LZ collaboration is in the midst of a program to screen all significant components in contact with the xenon. The four institutions involved in this effort have begun sharing two cross-calibration sources to ensure consistent measurement results across multiple distinct devices. We present here five preliminary screening results, some mitigation strategies that will reduce the amount of radon produced by the most problematic components, and a summary of the current estimate of radon emanation throughout the detector. This best estimate totals < 17.3 mBq, sufficiently low to meet the detector's science goals.

  9. The April 1994 and October 1994 radon intercomparisons at EML

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Perry, P.M.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities andmore » foreign institutions participated in these exercises. The majority of the participant`s results were within {+-}10% of the EML value at radon concentrations of 570 and 945 Bq m{sup {minus}3}.« less

  10. Simulation and experimental measurement of radon activity using a multichannel silicon-based radiation detector.

    PubMed

    Ozdemir, F B; Selcuk, A B; Ozkorucuklu, S; Alpat, A B; Ozdemir, T; Ӧzek, N

    2018-05-01

    In this study, high-precision radiation detector (HIPRAD), a new-generation semiconductor microstrip detector, was used for detecting radon (Rn-222) activity. The aim of this study was to detect radon (Rn-222) activity experimentally by measuring the energy of particles in this detector. Count-ADC channel, eta-charge, and dose-response values were experimentally obtained using HIPRAD. The radon simulation in the radiation detector was theoretically performed using the Geant4 software package. The obtained radioactive decay, energy generation, energy values, and efficiency values of the simulation were plotted using the root program. The new-generation radiation detector proved to have 95% reliability according to the obtained dose-response graphs. The experimental and simulation results were found to be compatible with each other and with the radon decays and literature studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are comparedmore » to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.« less

  12. Estimation of the residential radon levels and the annual effective dose in dwellings of Shiraz, Iran, in 2015

    PubMed Central

    Yarahmadi, Maryam; Shahsavani, Abbas; Mahmoudian, Mohammad Hassan; Shamsedini, Narges; Rastkari, Noushin; Kermani, Majid

    2016-01-01

    Introduction Radon is the second most important cause of lung cancer after smoking. Thus, the determination of indoor radon concentrations in dwellings and workplaces is an important public health concern. The purpose of this research was to measure the concentration of radon gas in residential homes and public places in the city of Shiraz and its relationship with the type and age of the buildings as well as the type of materials used to construct the building (brick, block). We also determined the radon dosages that occupants of the building would receive. Methods The present study is a descriptive-analytical and cross-sectional research that was conducted on the building’s indoor air in the city of Shiraz in 2015. Using geographic information system (GIS) software and a spatial sampling cell with an area of 25 square kilometers, 200 points were selected. In this study, we used passive diffusive samplers as Solid State Nuclear Track Detector (SSNTD) CR-39 polycarbonate films for three months in the winter. Sampling was conducted in accordance with the U.S. Environmental Protection Agency’s protocol. We determined the concentrations of radon gas at the time of sampling, and calibration factors were determined. The data were analyzed by IBM-SPSS, version 20, descriptive statistics, Kruskal-Wallis, and Mann–Whitney tests. Results This study showed that the average radon concentration was 57.6 ± 33.06 Bq/m3 in residential dwellings. The average effective dose was 1.45 mSv/y. The concentration of radon in 5.4% of the houses was found to be greater than 100 Bq/m3, which is above the level allowed by the World Health Organization (WHO). Conclusion Since radon is the second leading cause of lung cancer, it seems necessary to increase the public’s awareness of this issue and to take action to reduce radon in homes when the concentrations are above the WHO’s guideline. PMID:27504164

  13. Radon detection system, design, test and performance

    NASA Astrophysics Data System (ADS)

    Balcázar, M.; Chávez, A.; Piña-Villalpando, G.; Navarrete, M.

    1999-02-01

    A portable radon detection system (α-Inin) has been designed and constructed for using it in adverse environmental conditions where humidity, temperature and chemical vaporous are present. The minimum integration time is in periods of 15 min during 41 days. A 12 V battery and a photovoltaic module allow the α-Inin autonomy in field measurements. Data is collected by means of a laptop computer where data processing and α-Inin programming are carried out. α-Inin performance was simultaneously tested in a controlled radon chamber, together with a commercial α-Meter.

  14. Environmental Protection Agency, Office of Air and Radiation

    MedlinePlus

    ... What We Do OTAQ’s mission is to protect human health and the environment by reducing air pollution and ... and Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science Water A-Z Index Laws & Regulations ...

  15. Evaluation of Radon Outreach Programming in Chaffee and Park Counties, Colorado

    ERIC Educational Resources Information Center

    Jones, Kurt M.

    2015-01-01

    Colorado State University Extension in Chaffee and Park Counties conducted numerous outreach educational activities between 2007 and 2010. A follow-up evaluation was conducted to determine whether one outreach activity was more effective at encouraging individuals to test their homes for radon or to mitigate their homes. Participants in the…

  16. Reducing the risks from radon indoors: an IAEA perspective.

    PubMed

    Boal, T; Colgan, P A

    2014-07-01

    The IAEA has a mandate to develop, in collaboration with other relevant international organisations, 'standards of safety for protection of health and minimisation of danger to life and property', and to provide for the application of these standards. The most recent edition of the International Basic Safety Standards includes, for the first time, requirements to protect the public from exposure due to radon indoors. As a result, the IAEA has already developed guidance material in line with accepted best international practice and an international programme to assist its Member States in identifying and addressing high radon concentrations in buildings is being prepared. This paper overviews the current situation around the world and summarises the management approach advocated by the IAEA. A number of important scientific and policy issues are identified and discussed from the point-of-view of how they may impact on national action plans and strategies. Finally, the assistance and support available through the Agency is described. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri. [Hazelwood Interim Storage Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of themore » nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.« less

  18. Seeds of discord: the politics of radon therapy in Canada in the 1930s.

    PubMed

    Hayter, Charles

    2003-01-01

    In the early twentieth century, the therapeutic use of radon gas became an accepted medical practice. "Radium emanation" plants were established in many parts of North America to supply radon seeds to physicians. In Canada, these plants were usually established as part of state-supported cancer programs, creating concern among the medical profession, which had hitherto directed cancer treatment. This article explores how issues surrounding the ownership and distribution of radon played out in two Canadian provinces, Manitoba and Ontario. The main focus is an analysis of a computerized database created from more than two thousand radon order forms, dating from 1933 to 1940, preserved in the Archives of Ontario, which reveals interesting information about patients and the uses of radon in the 1930s, as well as discrepancies between policy and practice that illuminate the medical politics of the era. Although the radon seeds were intended for use in the government-supported central cancer clinics, they were widely distributed to practitioners throughout Ontario, and many patients received treatment for noncancerous conditions. These discrepancies are explored in the context of the struggles over cancer policy between the government and the Ontario medical profession. The article also shows how similar conflicts evolved in Manitoba. Finally, the distribution of radon is linked to the public acceptance of medical radiation despite contemporary reports of harm.

  19. Lung Cancer Attributable to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis

    PubMed Central

    Catelinois, Olivier; Rogel, Agnès; Laurier, Dominique; Billon, Solenne; Hemon, Denis; Verger, Pierre; Tirmarche, Margot

    2006-01-01

    Objective The inhalation of radon, a well-established human carcinogen, is the principal—and omnipresent—source of radioactivity exposure for the general population of most countries. Scientists have thus sought to assess the lung cancer risk associated with indoor radon. Our aim here is to assess this risk in France, using all available epidemiologic results and performing an uncertainty analysis. Methods We examined the exposure–response relations derived from cohorts of miners and from joint analyses of residential case-control studies and considered the interaction between radon and tobacco. The exposure data come from measurement campaigns conducted since the beginning of the 1980s by the Institute for Radiation Protection and Nuclear Safety and the Directorate-General of Health in France. We quantified the uncertainties associated with risk coefficients and exposures and calculated their impact on risk estimates. Results The estimated number of lung cancer deaths attributable to indoor radon exposure ranges from 543 [90% uncertainty interval (UI), 75–1,097] to 3,108 (90% UI, 2,996–3,221), depending on the model considered. This calculation suggests that from 2.2% (90% UI, 0.3–4.4) to 12.4% (90% UI, 11.9–12.8) of these deaths in France may be attributable to indoor radon. Discussion In this original work we used different exposure–response relations from several epidemiologic studies and found that regardless of the relation chosen, the number of lung cancer deaths attributable to indoor radon appears relatively stable. Smokers can reduce their risk not only by reducing their indoor radon concentration but also by giving up smoking. PMID:16966089

  20. The cost effectiveness of radon mitigation in existing German dwellings--a decision theoretic analysis.

    PubMed

    Haucke, Florian

    2010-11-01

    Radon is a naturally occurring inert radioactive gas found in soils and rocks that can accumulate in dwellings, and is associated with an increased risk of lung cancer. This study aims to analyze the cost effectiveness of different intervention strategies to reduce radon concentrations in existing German dwellings. The cost effectiveness analysis (CEA) was conducted as a scenario analysis, where each scenario represents a specific regulatory regime. A decision theoretic model was developed, which reflects accepted recommendations for radon screening and mitigation and uses most up-to-date data on radon distribution and relative risks. The model was programmed to account for compliance with respect to the single steps of radon intervention, as well as data on the sensitivity/specificity of radon tests. A societal perspective was adopted to calculate costs and effects. All scenarios were calculated for different action levels. Cost effectiveness was measured in costs per averted case of lung cancer, costs per life year gained and costs per quality adjusted life year (QALY) gained. Univariate and multivariate deterministic and probabilistic sensitivity analyses (SA) were performed. Probabilistic sensitivity analyses were based on Monte Carlo simulations with 5000 model runs. The results show that legal regulations with mandatory screening and mitigation for indoor radon levels >100 Bq/m(3) are most cost effective. Incremental cost effectiveness compared to the no mitigation base case is 25,181 euro (95% CI: 7371 euro-90,593 euro) per QALY gained. Other intervention strategies focussing primarily on the personal responsibility for screening and/or mitigative actions show considerably worse cost effectiveness ratios. However, targeting radon intervention to radon-prone areas is significantly more cost effective. Most of the uncertainty that surrounds the results can be ascribed to the relative risk of radon exposure. It can be concluded that in the light of international experience a legal regulation requiring radon screening and, if necessary, mitigation is justifiable under the terms of CEA. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. THE NRPI MULTI-PURPOSE ON-LINE MONITORING STATION FOR MEASUREMENT OF NATURAL RADIOACTIVITY IN THE AMBIENT ATMOSPHERE AND IN THE SOIL.

    PubMed

    Jílek, K; Slezáková, M; Fronka, A; Prokop, T; Neubauer, L

    2017-11-01

    During years 2010-12 an automated, on-line and wireless outdoor measurement station of atmospheric radon, gamma dose rate and meteorological parameters was realised at the National Radiation Protection Institute (NRPI) in Prague. At the turn of the year 2013 an expansion of the existing station was completed. Under the project funded by the Czech Technological Agency a new updated station was established, additionally equipped with modules for measurement of atmospheric radon/thoron short-lived decay products, radon in water and soil and radon exhalation rate from soil. After the introduction of the station updated key detection parameters and benefits, its use for atmospheric modelling and monitoring is demonstrated. There are summarised results from the 3-year measurement period in the NRPI outdoor area in Prague and from simultaneous annual measurement performed by another similar station located near uranium mud fields in DIAMO, state enterprise, Stráž pod Ralskem. Observed seasonal and diurnal variations of atmospheric radon concentrations and variability of the equilibrium factor, F, are illustrated and compared. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The effects of geology and the impact of seasonal correction factors on indoor radon levels: a case study approach.

    PubMed

    Gillmore, Gavin K; Phillips, Paul S; Denman, Antony R

    2005-01-01

    Geology has been highlighted by a number of authors as a key factor in high indoor radon levels. In the light of this, this study examines the application of seasonal correction factors to indoor radon concentrations in the UK. This practice is based on an extensive database gathered by the National Radiological Protection Board over the years (small-scale surveys began in 1976 and continued with a larger scale survey in 1988) and reflects well known seasonal variations observed in indoor radon levels. However, due to the complexity of underlying geology (the UK arguably has the world's most complex solid and surficial geology over the shortest distances) and considerable variations in permeability of underlying materials it is clear that there are a significant number of occurrences where the application of a seasonal correction factor may give rise to over-estimated or under-estimated radon levels. Therefore, the practice of applying a seasonal correction should be one that is undertaken with caution, or not at all. This work is based on case studies taken from the Northamptonshire region and comparisons made to other permeable geologies in the UK.

  3. Changes in Polish law related to the implementation of COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013

    NASA Astrophysics Data System (ADS)

    Wołoszczuk, Katarzyna; Skubacz, Krystian; Podgórska, Zuzanna

    2018-01-01

    Radon is an invisible, naturally occurring radioactive noble gas. According to the WHO report, it is the most important cause of lung cancer after smoking [1]. Recent epidemiological studies show that a statistically significant increase in the risk of lung cancer already occurs as a result of prolonged exposure to radon inside rooms where the concentration is at 100 Bq/m3 and increases by 16% per 100 Bq/m3 increase (considering a prolonged exposure period). For this reason, the Council Directive 2013/59/Euratom (BSS) [2] establishing the basic safety standards for the protection against the hazards related to ionizing radiation, that was passed in 2013, pays particular attention to issues related to radon exposure. BSS reduce radon concentration limits in workplaces to 300 Bq/m3. According to the regulations in force, the BSS must be implemented in the Polish Atomic Law no later than 6th February 2018.

  4. Regional and Detailed Survey for Radon Activities in Soil-Gas and Groundwater in the Okchon Zone, Korea

    NASA Astrophysics Data System (ADS)

    Je, H.-K.; Chon, H.-T.

    2012-04-01

    The Okchon zone in Korea provides a typical example of natural geological materials enriched in potentially toxic elements including uranium which is parent nuclide for radon gas. For the purpose of radon radioactivity risk assessment, making the map of radon risk grade from Okchon zone, regional and detailed field surveys were carried out during 3 years. The study area is located in the central part of Korea, called the Okchon zone (about 5,100 km2), which occur in a 80km wide, northeast-trending belt that extends across the Korean Peninsula. The Okchon zone is underlain by metasedimentary rocks of unknown age that are composed mainly of black slate, phyllite, shale, and limestone. The three research areas (defined as Boeun, Chungju, and Nonsan) for detailed survey were selected from the results of regional survey. Results of detailed radon survey indicated a wide range of radon activities for soil-gases (148-1,843 pCi/L) and ground waters (23-5,540 pCi/L). About 15 percent of soil-gas samples exceeded 1,000 pCi/L and 84 percent of ground water samples exceeded the MCL (maximum contaminant level) of drinking water, 300 pCi/L, which proposed by U.S. Environmental Protection Agency in 1999. For detailed survey, radon activities of soil-gas and ground water were classified as bedrock geology, based on 1/50,000 geological map and field research. For soil-gas measurements, mean values of radon activity from black slate-shale (789 pCi/L) were highest among the other base rocks. And for groundwater measurements, mean value of radon activities were decreased in the order of granite (1,345 pCi/L) > black shale-slate (915 pCi/L) > metasediments (617 pCi/L). Result of indoor radon measurement from detailed survey areas showed that about 50% of houses exceeded the indoor guideline, 4 pCi/L. For the radon risk assessment in indoor environment showed that probability of lung cancer risk from the houses located on the granite base rock (3.0×10-2) was highest among the other base rocks. Finally, the maps of radon risk grade from detailed survey areas were developed by the application of field data and statistical simulation.

  5. Use of linear regression models to determine influence factors on the concentration levels of radon in occupied houses

    NASA Astrophysics Data System (ADS)

    Buermeyer, Jonas; Gundlach, Matthias; Grund, Anna-Lisa; Grimm, Volker; Spizyn, Alexander; Breckow, Joachim

    2016-09-01

    This work is part of the analysis of the effects of constructional energy-saving measures to radon concentration levels in dwellings performed on behalf of the German Federal Office for Radiation Protection. In parallel to radon measurements for five buildings, both meteorological data outside the buildings and the indoor climate factors were recorded. In order to access effects of inhabited buildings, the amount of carbon dioxide (CO2) was measured. For a statistical linear regression model, the data of one object was chosen as an example. Three dummy variables were extracted from the process of the CO2 concentration to provide information on the usage and ventilation of the room. The analysis revealed a highly autoregressive model for the radon concentration with additional influence by the natural environmental factors. The autoregression implies a strong dependency on a radon source since it reflects a backward dependency in time. At this point of the investigation, it cannot be determined whether the influence by outside factors affects the source of radon or the habitant’s ventilation behavior resulting in variation of the occurring concentration levels. In any case, the regression analysis might provide further information that would help to distinguish these effects. In the next step, the influence factors will be weighted according to their impact on the concentration levels. This might lead to a model that enables the prediction of radon concentration levels based on the measurement of CO2 in combination with environmental parameters, as well as the development of advices for ventilation.

  6. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    PubMed

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of cataract and corneal opacity in mice due to radon exposure

    NASA Astrophysics Data System (ADS)

    Abdelkawi, S. A.; Abo-Elmagd, M.; Soliman, H. A.

    This work investigates the radiation damage on the eye of albino mice exposed to effective radon doses ranging from 20.92 to 83.68 mSv. These doses were taken over 2-8 weeks using a radon chamber constructed by the National Institute for Standard (Egypt). The guidance on the quality assurance program for radon measurements was followed. Therefore, the estimated doses received by the laboratory animals meet the requirements of national standardE The refractive index(RI) and protein concentration were measured for soluble proteins of both corneas and lenses. In addition, the sodium dodecyle sulfate polyacrylamide gel electrophoresis (SDSPAGE) technique was used. The results show increasing of the RI of both cornea and lens proteins and decreasing in total protein concentration of exposed animals. These results were accompanied with changes in the SDSPAGE profile for both cornea and lens. Therefore, radon exposure produces substantial hazards to the cornea and lens of experimental animals and has a crucial role in the development of cataract and corneal opacity.

  8. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.

    PubMed

    Al-Jundi, J; Li, W B; Abusini, M; Tschiersch, J; Hoeschen, C; Oeh, U

    2011-06-01

    High indoor radon concentrations in Jordan result in internal exposures of the residents due to the inhalation of radon and its short-lived progeny. It is therefore important to quantify the annual effective dose and further the radiation risk to the radon exposure. This study describes the methodology and the biokinetic and dosimetric models used for calculation of the inhalation doses exposed to radon progeny. The regional depositions of aerosol particles in the human respiratory tract were firstly calculated. For the attached progeny, the activity median aerodynamic diameters of 50 nm, 230 nm and 2500 nm were chosen to represent the nucleation, accumulation and coarse modes of the aerosol particles, respectively. For the unattached progeny, the activity median thermodynamic diameter of 1 nm was chosen to represent the free progeny nuclide in the room air. The biokinetic models developed by the International Commission on Radiological Protection (ICRP) were used to calculate the nuclear transformations of radon progeny in the human body, and then the dosimetric model was applied to estimate the organ equivalent doses and the effective doses with the specific effective energies derived from the mathematical anthropomorphic phantoms. The dose conversion coefficient estimated in this study was 15 mSv WLM(-1) which was in the range of the values of 6-20 mSv WLM(-1) reported by other investigators. Implementing the average indoor radon concentration in Jordan, the annual effective doses were calculated to be 4.1 mSv y(-1) and 0.08 mSv y(-1) due to the inhalation of radon progeny and radon gas, respectively. The total annual effective dose estimated for Jordanian population was 4.2 mSv y(-1). This high annual effective dose calculated by the dosimetric approach using ICRP biokinetic and dosimetric models resulted in an increase of a factor of two in comparison to the value by epidemiological study. This phenomenon was presented by the ICRP in its new published statement on radon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Shelter and indoor air in the twenty-first century--radon, smoking, and lung cancer risks.

    PubMed Central

    Fabrikant, J I

    1990-01-01

    Recognition that radon and its daughter products may accumulate to high levels in homes and in the workplace has led to concern about the potential lung cancer risk resulting from indoor domestic exposure. While such risks can be estimated with current dosimetric and epidemiological models for excess relative risks, it must be recognized that these models are based on data from occupational exposure and from underground miners' mortality experience. Several assumptions are required to apply risk estimates from an occupational setting to the indoor domestic environment. Analyses of the relevant data do not lead to a conclusive description of the interaction between radon daughters and cigarette smoking for the induction of lung cancer. The evidence compels the conclusion that indoor radon daughter exposure in homes represents a potential life-threatening public health hazard, particularly in males, and in cigarette smokers. Resolution of complex societal interactions will require public policy decisions involving the governmental, scientific, financial, and industrial sectors. These decisions impact the home, the workplace, and the marketplace, and they extend beyond the constraints of science. Risk identification, assessment, and management require scientific and engineering approaches to guide policy decisions to protect the public health. Mitigation and control procedures are only beginning to receive attention. Full acceptance for protection against what could prove to be a significant public health hazard in the twenty-first century will certainly involve policy decisions, not by scientists, but rather by men and women of government and law. PMID:2401265

  10. Healthy Home Action Brochure (English)

    EPA Pesticide Factsheets

    Tips to save energy, save money, protect inhabitants, and make your home more environmentally-friendly. Information on mold, radon, carbon monoxide, asthma/allergies, secondhand smoke, contaminants, lead, mercury, and pesticides.

  11. St. Louis Airport Site. Annual site environmental report, calendar year 1985. Formerly Utilized Sites Remedial Action Program (FUSRAP). Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) aremore » not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.« less

  12. Exposure of population from residential radon: a case study for district Hattian, Azad Kashmir, Sub-Himalayas, Pakistan.

    PubMed

    Rafique, M; Rahman, S U; Matiullah

    2012-11-01

    Indoor air quality has acquired considerable importance in recent years. Tighter buildings with poorer ventilation systems have led towards higher levels of indoor air pollution. Radon is considered to be most significant perilous gas among the various air contaminants found in the residential environment. To determine the risk posed by residential radon exposure, a survey was carried out in the Hattian district of the state of Azad Jammu and Kashmir, Pakistan. In this context, 160 houses were carefully selected for the installation of CR-39-based National Radiological Protection Board-type detectors installation. After exposing the CR-39 detectors for a period of 90 d, they were etched in 6 M chemical solution of sodium hydroxide at a temperature of 80°C for a period of 16 h. The detectors were read under an optical microscope and observed track densities were converted into the indoor radon concentration using a calibration factor of 2.7 tracks cm(-2) h(-1) per kBqm(-3). For the current study, observed radon concentrations ranged from 35 to 175 Bqm(-3), whereas the mean annual effective radon doses received by the inhabitants of the area ranged from 0.88 ± 0.12 to 4.41 ± 0.20 mSv with an average value of 2.62 ± 0.12 mSv. These reported values are less than the limits (standards) recommended by the different world organisations.

  13. Uranium mining industry views on ICRP statement on radon.

    PubMed

    Takala, J

    2012-01-01

    In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items. Copyright © 2012. Published by Elsevier Ltd.

  14. Protecting Your Lungs

    MedlinePlus

    ... Pollutants That Can Damage Your Lungs Secondhand smoke, outdoor air pollution , chemicals in the home and workplace, ... smokefree. Test your home for radon . Avoid exercising outdoors on bad air days. And talk to your ...

  15. Risks from Radon: Reconciling Miner and Residential Epidemiology

    NASA Astrophysics Data System (ADS)

    Chambers, Douglas B.; Harley, Naomi H.

    2008-08-01

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the baseline lung cancer rate for smokers is much higher than for non or never smokers, smokers account for nearly 90% of the population risk from residential exposure to radon. As described in the paper, an excess relative risk (ERR) of 0.12(95% CI: 0.08-0.2)per 100 Bq m-3 (radon gas) can be estimated from combined miner studies. This compares well with the ERR from pooled residential case-control studies (for restricted analysis) for Europe of 0.16(95% CI: 0.05-0.31)[1] and for North America of 0.11(95% CI: 0.0-0.28)[2].

  16. Radon in harvested rainwater at the household level, Palestine.

    PubMed

    Al-Khatib, Issam A; Al Zabadi, Hamzeh; Saffarini, Ghassan

    2017-04-01

    The main objective of this study was to assess Radon concentration in the harvested rainwater (HRW) at the household level in Yatta area, Palestine. HRW is mainly used for drinking as it is the major source of water for domestic uses due to water scarcity. Ninety HRW samples from the household cisterns were collected from six localities (a town and five villages) and Radon concentrations were measured. The samples were randomly collected from different households to represent the Yatta area. Fifteen samples were collected from each locality at the same day. RAD7 device was used for analysis and each sample was measured in duplicate. Radon concentrations ranged from 0.037 to 0.26 Bq/L with a mean ± standard deviation of 0.14 ± 0.06 Bq/L. The estimated annual effective radiation doses for babies, children and adults were all far below the maximum limit of 5 mSvy -1 set by the National Council on Radiation Protection and Measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Naturally occurring radionuclides in the ground water of southeastern Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2000-01-01

    Naturally occurring radionuclides in the ground water of southeastern Pennsylvania may pose a health hazard to some residents, especially those drinking water from wells drilled in the Chickies Quartzite. Water from 46 percent of wells sampled in the Chickies Quartzite and 7 percent of wells sampled in other geologic formations exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for total radium. Radon-222 may pose a health problem for homeowners by contributing to indoor air radon-222 levels. The radon-222 activity of water from 89 percent of sampled wells exceeded 300 pCi/L (picocuries per liter), the proposed USEPA MCL, and water from 16 percent of sampled wells exceeded 4,000 pCi/L. Uranium does not appear to be present in elevated concentrations in ground water in southeastern Pennsylvania.

  18. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    PubMed Central

    2012-01-01

    Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625

  19. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine.

    PubMed

    Al Zabadi, Hamzeh; Musmar, Samar; Issa, Shaza; Dwaikat, Nidal; Saffarini, Ghassan

    2012-01-13

    Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.

  20. Healthy Home Action Card (English)

    EPA Pesticide Factsheets

    Brief tips to save energy, save money, protect inhabitants, and make your home more environmentally-friendly. Topics include mold, radon, carbon monoxide, asthma, secondhand smoke, indoor air pollution, water safety, lead, and pest control.

  1. Children Health Tips in Other Languages

    EPA Pesticide Factsheets

    These tips for protecting children from environmental risks/exposures are available in spanish, chinese, vietnamese, and korean. They cover topics such as lead, pesticides, carbon monoxide, air pollution, drinking water contaminants, and radon.

  2. Geographical Correlations between Indoor Radon Concentration and Risks of Lung Cancer, Non-Hodgkin’s Lymphoma, and Leukemia during 1999–2008 in Korea

    PubMed Central

    Ha, Mina; Hwang, Seung-sik; Kang, Sungchan; Park, No-Wook; Chang, Byung-Uck; Kim, Yongjae

    2017-01-01

    Indoor radon is the second most important risk factor for lung cancer and may also be a risk factor for hematopoietic cancers, particularly in children and adolescents. The present study measured indoor radon concentration nationwide at 5553 points during 1989–2009 and spatially interpolated using lognormal kriging. The incidences of lung cancer, non-Hodgkin’s lymphoma (NHL), and leukemia, stratified by sex and five-year age groups in each of the 234 administrative regions in the country during 1999–2008, were obtained from the National Cancer Registry and used to calculate the standardized incidence ratios. After considering regional deprivation index values and smoking rates by sex in each region as confounding variables, the cancer risks were estimated based on Bayesian hierarchical modeling. We found that a 10 Bq/m3 increase in indoor radon concentration was associated with a 1% increase in the incidence of lung cancer in male and a 7% increase in NHL in female children and adolescents in Korea aged less than 20 years. Leukemia was not associated with indoor radon concentration. The increase in NHL risk among young women requires confirmation in future studies, and the radon control program should consider children and adolescents. PMID:28338643

  3. Geographical Correlations between Indoor Radon Concentration and Risks of Lung Cancer, Non-Hodgkin's Lymphoma, and Leukemia during 1999-2008 in Korea.

    PubMed

    Ha, Mina; Hwang, Seung-Sik; Kang, Sungchan; Park, No-Wook; Chang, Byung-Uck; Kim, Yongjae

    2017-03-24

    Indoor radon is the second most important risk factor for lung cancer and may also be a risk factor for hematopoietic cancers, particularly in children and adolescents. The present study measured indoor radon concentration nationwide at 5553 points during 1989-2009 and spatially interpolated using lognormal kriging. The incidences of lung cancer, non-Hodgkin's lymphoma (NHL), and leukemia, stratified by sex and five-year age groups in each of the 234 administrative regions in the country during 1999-2008, were obtained from the National Cancer Registry and used to calculate the standardized incidence ratios. After considering regional deprivation index values and smoking rates by sex in each region as confounding variables, the cancer risks were estimated based on Bayesian hierarchical modeling. We found that a 10 Bq/m³ increase in indoor radon concentration was associated with a 1% increase in the incidence of lung cancer in male and a 7% increase in NHL in female children and adolescents in Korea aged less than 20 years. Leukemia was not associated with indoor radon concentration. The increase in NHL risk among young women requires confirmation in future studies, and the radon control program should consider children and adolescents.

  4. Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revisedmore » since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.« less

  5. Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation).

    PubMed

    Keramati, Hassan; Ghorbani, Raheb; Fakhri, Yadolah; Mousavi Khaneghah, Amin; Conti, Gea Oliveri; Ferrante, Margherita; Ghaderpoori, Mansour; Taghavi, Mahmoud; Baninameh, Zahra; Bay, Abotaleb; Golaki, Mohammad; Moradi, Bigard

    2018-05-01

    The current study was performed to review the conducted studies regarding the concentration of radon 222 in the tap drinking water; furthermore, by estimation of ingestion and inhalation effective dose, the health risk assessment in the adults and children using MCS technique was assessed. All related studies published among January 1990 to October 2016; were screened in the available databases such as Web of Science, PubMed, Science Direct, Scopus, SID, and Irandoc. The total effective dose was estimated by calculating E ing (Effective dose of ingestion) and E inh (Effective dose of inhalation) by Monte Carlo simulation (MCS) method. The range of ND ─ 40.9 Bq/L for radon 222 in water resources was proposed after evaluation of data collected from 13 studies with 1079 samples. The overall concentration of radon 222 in drinking water in Iran was 3.98: 95%CI (3.79 ─ 4.17 Bq/L). Also, the effective ingestion dose of radon 222 in adults age groups was 1.35 times higher than children. The rank order of drinking water resources based on the concentration of radon 222 was Spring > Spring and Well > Well > Spring and Qanat > Tap water. The overall concentration of radon 222 in drinking water in Iran was lower than WHO and EPA standard limits. Also, the rank order regarding area studied based on the concentration of radon 222 was Gillan > Mashhad > Mazandaran > Kerman > Yazd > Tehran > Kermanshah > Golestan > Hormozgan. The effective ingestion dose of radon 222 to consumers in the Gillan, Mashhad, Mazandaran, and Kerman were higher than WHO guidance (0.1 mSv/y). Also except consumers in the Hormozgan, inhalation effective dose radon 222, in the other investigated areas were higher than WHO guidance (0.1 mSv/y). Therefore, it is recommended to conduct the required programs regarding control and elimination of radon 222 concentration in Iranian drinking water supply. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.; Baig, M. R.

    2011-10-01

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0±14.2 Bq/m3, 83.4±6.0 Bq/m3, 61.6±6.4 Bq/m3, 63.7±5.4 Bq/m3 and 87.5±6.Bq/m3 and the minimum concentrations are 28.0 Bq/m3, 5.5 Bq/m3, 1.1 Bq/m3, 1.0 Bq/m3 and 24 Bq/m3 respectively. These results are still within normal limits and below the action level of 148 Bqm-3 set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The "within regions" (different location) test yielded, region 2 is not significant versus region "1" (p = 0.783) and versus region "5" (P = 0.646), whereas it is significant versus region "3" ( P = 0.0160) and also versus region "4" (p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and 3, these regions are relatively close to the Tuwaiq mountains whereas other regions are near to the Al-Thuwayrat sands.

  7. Investigating Indoor Radon Levels and Influencing Factors in Primary Schools of Zulfi City, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Al-Mosa, Tahani M.

    Measurement of indoor Concentrations were performed in Zulfi city of Saudi Arabia, using CR-39 track etch detectors. This investigation focused on the influence of different parameters, namely different locations, school categories, school building types, and room type as well as on the existence of differences in radon concentration at floor levels. We divided the Zulfi city into five regions, keeping in mind their geographical locations between Tuwaiq Mountains and Al-Thuwayrat sands. The measured average radon concentrations for regions 1-5 respectively are: 87.0{+-}14.2 Bq/m{sup 3}, 83.4{+-}6.0 Bq/m{sup 3}, 61.6{+-}6.4 Bq/m{sup 3}, 63.7{+-}5.4 Bq/m{sup 3} and 87.5{+-}6.Bq/m{sup 3} and the minimum concentrationsmore » are 28.0 Bq/m{sup 3}, 5.5 Bq/m{sup 3}, 1.1 Bq/m{sup 3}, 1.0 Bq/m{sup 3} and 24 Bq/m{sup 3} respectively. These results are still within normal limits and below the action level of 148 Bqm{sup -3} set by the U.S. Environmental Protection Agency (EPA). A test of significance using Minitab program was applied to investigate if radon levels in regions are significantly different from each other. We tried all combinations, and found the following results. The ''within regions''(different location) test yielded, region 2 is not significant versus region ''1''(p = 0.783) and versus region ''5''(P = 0.646), whereas it is significant versus region ''3''(P = 0.0160) and also versus region ''4''(p = 0.018). We investigated government and rented school's building also and none was found significantly different (p = 0.052). Floors of the same building were tested in order to examine the radon concentration as a function of storey level. No significant difference was observed at floor levels (p = 0.009). When girl's schools versus Boys and kindergartens schools were tested they were found significantly different. It is believed that this significant difference is due to geographical nature of the area, since most of the girl's schools were selected from regions 2 and 3, these regions are relatively close to the Tuwaiq mountains whereas other regions are near to the Al-Thuwayrat sands.« less

  8. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1992

    USGS Publications Warehouse

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-01-01

    Dissolved concentrations of radon-222, a naturally occurring radioactive gas, are found in water in Idaho. The U.S. Geological Survey collected water samples for radon-222 analyses from 339 Idaho wells and springs during 1989-91. These water samples were collected as part of ongoing monitoring programs with the Idaho Department of Water Resources and the U.S. Department of Energy. Concentrations of dissolved radon-222 ranged from -58+30 to 5,715+66 picocuries per liter; the mean and median concentrations were 446+35 and 242+25 picocuries per liter, respectively.

  9. Occurrence of Uranium and 222Radon in Glacial and Bedrock Aquifers in the Northern United States, 1993-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Flanagan, Sarah M.; Morrow, William S.

    2007-01-01

    Water-quality data collected from 1,426 wells during 1993-2003 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were evaluated to characterize the water quality in glacial and bedrock aquifers of the northern United States. One of the goals of the NAWQA program is to synthesize data from individual studies across the United States to gain regional- and national-scale information about the behavior of contaminants. This study focused on the regional occurrence and distribution of uranium and 222radon in ground water in the glacial aquifer system of the United States as well as in the Cambrian-Ordovician and the New York and New England crystalline aquifer systems that underlie the glacial aquifer system. The occurrence of uranium and 222radon in ground water has long been a concern throughout the United States. In the glacial aquifers, as well as the Cambrian-Ordovician and the New York and New England crystalline aquifer systems of the United States, concentrations of uranium and 222radon were highly variable. High concentrations of uranium and 222radon affect ground water used for drinking water and for agriculture. A combination of information or data on (1) national-scale ground-water regions, (2) regional-scale glacial depositional models, (3) regional-scale geology, and (4) national-scale terrestrial gamma-ray emissions were used to confirm and(or) refine the regions used in the analysis of the water-chemistry data. Significant differences in the occurrence of uranium and 222radon, based primarily on geologic information were observed and used in this report. In general, uranium was highest in the Columbia Plateau glacial, West-Central glacial, and the New York and New England crystalline aquifer groups (75th percentile concentrations of 22.3, 7.7, and 2.9 micrograms per liter (ug/L), respectively). In the Columbia Plateau glacial and the West-Central glacial aquifer groups, more than 10 percent of wells sampled had concentrations of uranium that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level of 30 ug/L; in the New York and New England crystalline aquifer group, 4 percent exceeded 30 ug/L. Ground-water samples with high concentrations of uranium were commonly linked to geologic sources rich in uranium. In eight of nine aquifer groups defined for this study, concentrations of uranium correlated significantly with concentrations of sulfate in ground water (Spearman's rho = 0.20 to 0.56; p < 0.05). In the Columbia Plateau, glacial aquifers were derived in part from basaltic lava flows, some felsic volcanic rocks, and some paleo-lake bed materials that may be rich in uranium. In the Columbia Plateau and West-Central glacial aquifer groups, uranium correlated with total dissolved solids, bicarbonate, boron, lithium, selenium, and strontium. In the West-Central glacial aquifer group, rocks such as Cretaceous marine shales, which are abundant in uranium, probably contribute to the high concentrations in ground water; in the southern part of this group, which extends into Nebraska, the glacial or glacial-related sediment may be interbedded with uranium-rich materials that originated to the north and west and in the Rocky Mountains. In New England, crystalline bedrock that is granitic, such as two-mica granites, as well as other high-grade metamorphic rocks, has abundant uranium that is soluble in the predominantly oxic to sub-oxic geochemical conditions. This appears to contribute to high uranium concentrations in ground water. The highest 222radon concentrations were present in samples from wells completed in the New York and New England crystalline aquifer group; the median value (2,122 picocurries per liter (pCi/L)) was about 10 times the median values of all other aquifer groups. More than 25 percent of the samples from the New York and New England crystalline aquifer group wells had 222radon concentrations that exceeded the USEPA Alternative

  10. The Navajo Nation Radon Program

    EPA Pesticide Factsheets

    The Bois Forte Indoor Air Quality Program acted swiftly and aggressively to tackle mold and moisture problems in its community members’ homes after several residents became ill as a result of environmental exposures.

  11. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor ofmore » radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.« less

  12. Diurnal and seasonal variability of outdoor radon concentration in the area of the NRPI Prague.

    PubMed

    Jilek, K; Slezákova, M; Thomas, J

    2014-07-01

    In autumn 2010, an outdoor measuring station for measurement of atmospheric radon, gamma equivalent dose rate in the range of 100 nSv h(-1)-1 Sv h(-1) and proper meteorological parameters such as thermal air gradient, relative air humidity, wind speed and direction and solar radiation intensity was built in the area of the National Radiation Protection Institute vvi. The station was designed to be independent of an electrical network and enables on-line wireless transfer of all data. After introduction of the station, illustrations of its measurement properties and the results of measured diurnal and seasonal variability of atmospheric radon, based on annual continuous measurement using a high-volume scintillation cell at a height of 2.5 m above the ground, are presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. RADON LEVELS AND ЕQUIVALENT DOSE RATES AT THE IRT-SOFIA RESEARCH REACTOR SITE.

    PubMed

    Krezhov, Kiril; Mladenov, Aleksander; Dimitrov, Dobromir

    2018-06-11

    Results from radon measurements by active sampling of indoor air in the buildings within the Nuclear Scientific Experimental and Educational Centre (NSEEC) protected site at the Institute for Nuclear Research and Nuclear Energy (INRNE) are presented. The inspected buildings included in this report are the IRT research reactor structure and several auxiliary formations wherein the laundry facilities and the gamma irradiator GOU-1 (60Co source) are installed as well as the Central Alarm Station (CAS) premises. Besides the reactor hall and the primary cooling loop area, special attention was given to the premises of the First Class Radiochemical Laboratory in the IRT reactor basement. Determination of radon concentration distribution in the premises of the constructions within the site is an important part of radiation surveillance during the operation and maintenance of the NSEEC facilities as well as for their involvement in the educational activities at INRNE.

  14. Human Lung Cancer Risks from Radon – Part I - Influence from Bystander Effects - A Microdose Analysis

    PubMed Central

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    Since the publication of the BEIR VI report in 1999 on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, at low domestic and workplace radon levels, in particular the Bystander Effect (BE) and the Adaptive Response radio-protection (AR). We analyzed the microbeam and broadbeam alpha particle data of Miller et al. (1995, 1999), Zhou et al. (2001, 2003, 2004), Nagasawa and Little (1999, 2002), Hei et al. (1999), Sawant et al. (2001a) and found that the shape of the cellular response to alphas is relatively independent of cell species and LET of the alphas. The same alpha particle traversal dose response behavior should be true for human lung tissue exposure to radon progeny alpha particles. In the Bystander Damage Region of the alpha particle response, there is a variation of RBE from about 10 to 35. There is a transition region between the Bystander Damage Region and Direct Damage Region of between one and two microdose alpha particle traversals indicating that perhaps two alpha particle “hits” are necessary to produce the direct damage. Extrapolation of underground miners lung cancer risks to human risks at domestic and workplace levels may not be valid. PMID:21731539

  15. St. Louis Airport Site annual site environmental report. Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to identify, decontaminate, or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. The site is not currently controlled or regulated by DOE or NRC, although radiological monitoring of the site has been authorized by the DOE. The monitoringmore » program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) are not applicable to SLAPS, but are included as a basis for comparison only. The DOE DCGs and the DOE radiation protection standard have been revised.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minormore » point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance« less

  17. 40 CFR 35.501 - Environmental programs covered by the subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Program Act of 1992, 42 U.S.C. 4368b. (3) Clean Air Act. Air pollution control (section 105). (4) Clean... Substances Control Act. (i) Lead-based paint program (section 404(g)). (ii) Indoor radon grants (section 306...

  18. 40 CFR 35.501 - Environmental programs covered by the subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Program Act of 1992, 42 U.S.C. 4368b. (3) Clean Air Act. Air pollution control (section 105). (4) Clean... Substances Control Act. (i) Lead-based paint program (section 404(g)). (ii) Indoor radon grants (section 306...

  19. Ask Dr. Sue.

    ERIC Educational Resources Information Center

    Aronson, Susan S.

    1989-01-01

    Answers child care center directors' questions about effects of new recommendations for measles immunization on child care programs, the process of finding a pediatrician interested in working with child care programs on health promotion, and radon. (BB)

  20. An improved electrostatic integrating radon monitor with the CR-39 as alpha-particle detector.

    PubMed

    Fan, D; Zhuo, W; Chen, B; Zhao, C; Yi, Y; Zhang, Y

    2015-11-01

    In this study, based on the electrostatic integrating radon monitor (EIRM) developed by Iida et al., a new type of EIRM with the allyl glycol carbonate (CR-39) as alpha-particle detector was developed for outdoor radon measurements. Besides using the CR-39 to replace the cellulose nitrate film as alpha-particle detector, the electrode and the setting place of the CR-39 were also optimally designed based on the simulation results of the electric field and the detection efficiency. The calibration factor of the new EIRM was estimated to be 0.136±0.002 tracks cm(-2) (Bq m(-3) h)(-1), with the lower detection limit of 0.6 Bq m(-3) for a 2-month exposure. Furthermore, both the battery and the dry agent were also replaced to protect the environment. The results of intercomparison and field experiments showed that the performances of the new EIRM were much better than the original one. It suggests that the new type of ERIM is more suitable for large-scale and long-term outdoor radon surveys. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Simultaneous Measurements of Nanoaerosols and Radioactive Aerosols Containing the Short-lived Radon Isotopes.

    PubMed

    Otahal, P P S; Burian, I; Ondracek, J; Zdimal, V; Holub, R F

    2017-11-01

    The activity size distribution of the Equilibrium-Equivalent Concentration (EER) of 222Rn is one of the most important parameters for the estimation of radiation dose by inhalation of radon decay products. A series of measurements of the EER activity size distribution were performed by the screen diffusion battery in Radon-Aerosol chamber (10 m3) at the National Institute for Nuclear, Chemical, and Biological Protection (SUJCHBO). These measurements were performed at different levels of radon concentration. For this study, the Graded Screen Array Diffusion Battery (GSA DB), developed by the SUJCHBO (based on Earl Knutson and Robert F Holub design), consists of 10 screens and backup filter used to collect all particles that penetrated the screens. The measuring range of this GSA DB allows measuring the radioactive nanoaerosols in the size range from 0.5 to 100 nm. The Earl Knutson algorithm was used for EER activity size distribution evaluation. The results of EER activity size distribution were subsequently compared with the aerosol particle size distribution measured by Scanning Mobility Particle Sizer Spectrometer (SMPS 3936 N, TSI Inc., MN, USA). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Outdoor (222)Rn-concentrations in Germany - part 1 - natural background.

    PubMed

    Kümmel, M; Dushe, C; Müller, S; Gehrcke, K

    2014-06-01

    To determine the natural radiation exposure due to outdoor radon ((222)Rn) and its short-lived decay products in Germany, the Federal Office for Radiation Protection (BfS) conducted a measuring programme over three years. The annual mean radon concentration at 1.5 m above ground level was measured with solid-state track etch detectors at 173 measuring points in an even grid with a grid length of approx. 50 km. Furthermore, annual mean values of the equilibrium-equivalent radon concentration (EEC) and the equilibrium factor were estimated on the basis of the activity concentrations of (214)Pb and (214)Bi measured at 27 stations of the German Meteorological Service (DWD). Our study yielded a spatial mean outdoor radon concentration for Germany of 9 ± 1 Bq m(-3) (median: 8 (-0.5/+1.0) Bq m(-3)), with regional means varying from 4.5 Bq m(-3) in Hamburg to 14 Bq m(-3) in Bavaria. The determined EEC are in a range from 1.4 to 11 Bq m(-3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Four Years of Practical Arrangements between IAEA and Moscow SIA 'Radon': Preliminary Results - 13061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Karlina, O.K.; Neveikin, P.P.

    The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 15 years. Since 1997, the educational system of the enterprise with the support of the IAEA has acquired an international character: more than 470 experts from 35 countries- IAEA Member States completed the professional development. Training is conducted at various thematic courses or fellowships for individual programs and seminars on IAEA technical projects. In June 2008 a direct agreement (Practicalmore » Arrangements) was signed between SIA 'Radon' and the IAEA on cooperation in the field of development of new technologies, expert's advice to IAEA Member States, and, in particular, the training of personnel in the field of radioactive waste management (RWM), which opens up new perspectives for fruitful cooperation of industry professionals. The paper summarizes the current experience of the SIA 'Radon' in the organization and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.; Shy, C.M.; Allen, J.W.

    The exfoliated-cell micronucleus (MN) assay was used to assess cytogenetic effects of exposure to radon progeny and cigarette smoke among 99 Colorado plateau uranium workers. Subjects were selected at random from employees in underground and open-pit uranium mines, ore mills, laboratories, and offices participating in a sputum screening program from 1964-88. The prevalence of cells with MN was determined by scoring one sputum specimen for each worker. Data obtained by interview were used to classify exposure to radon progeny and smoking at the time sputum specimens were taken. Underground miners were considered exposed to radon progeny, and others were consideredmore » unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of cells with MN; crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CE 0.6-1.3), respectively. The effects of radon and smoking were not confounded by each other or by age, and there was no evidence of synergy between exposures. The findings appear to cast doubt on the epidemiological utility of a sputum-based MN assay for studies of other populations exposed to occupational or environmental lung carcinogens.« less

  5. Health risk profile for terrestrial radionuclides in soil around artisanal gold mining area at Alsopag, Sudan

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; AL-Rajhi, M. A.; Osman, Alshfia; Adreani, Tahir Elamin; Abdelgalil, M. Y.; Ali, Nagi I.

    2018-06-01

    This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard H ex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg-1). Soil radon (4671 Bq m-3) and radon in air (14.77 Bq m-3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg-1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg-1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h-1) was slightly higher than average value of 57 nGy h-1 ( 45% from 40K), and that of AGDE (444 μSv year-1) was higher than worldwide average reported value (300 μSv year-1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.

  6. 76 FR 52022 - Environmental Assessment and Finding of No Significant Impact for License Amendment No. 64 for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ..., namely sub-grade erosion of the erosion protection layer resulting in isolated, shallow incisions of the underlying cover soils. While this issue has resulted in shallow incisions of the underlying cover soils in... layer is 54 inches thick on the cover and the radon barrier is located beneath the frost protection...

  7. [Assessment of radon-induced health risk for occupants of a house built on uranium ore residue].

    PubMed

    Cléro, E; Marie, L; Challeton-De Vathaire, C; Laurier, D; Rannou, A

    2016-09-01

    At the request of French public authorities, the Institute of Radiological Protection and Nuclear Safety has assessed the radiological situation of a house built on uranium ore residues in Haute-Vienne and the health risks induced from exposure to radon for all occupants. Classified as a lung carcinogen by the World Health Organization, radon is a proven cause of lung cancer in case of regular inhalation over a long period, and the risk increases with cumulative exposure. Radon exposure was reconstructed for various standard profiles of house occupancy. A risk model derived from a European epidemiological study was used to calculate the lifetime probability of death from lung cancer according to these standard profiles. Risk assessment of the occupants of the house highlighted the following main findings. For a resident school child having been exposed to radon from birth to the age of 7, the lifetime relative risk (LRR) was estimated at 5. For last adult and young adult residents having lived more than 10years in the house, the probability of death from lung cancer was in the same order of magnitude as that of a regular cigarette smoker, with a LRR from 10 to 13 and a lifetime probability of death from lung cancer between 3 and 4%. If these individuals smoked regularly, in addition to being exposed to radon, this probability would be between 6 and 32% (supposing an additive or multiplicative interaction). For former occupants (non-smokers) having been exposed 10years during childhood, the LRR was two-fold lower. For children having been in day care in the house, the increased probability of death from lung cancer was low, with a LRR lower than 2. Supposing, as in adults, that the risk decreases beyond 30years after the end of radon exposure, the increase was almost zero for former occupants exposed during childhood and during day care, with a LRR close to 1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Measurement of the concentration of radon gas in the Toirano's caves (Liguria).

    PubMed

    Bruzzone, Diego; Bussallino, Massimo; Castello, Gianrico; Maggiolo, Stefano; Rossi, Daniela

    2006-01-01

    The radioactive gas radon, intermediate term of the decay series of uranium and thorium, is the main contamination source of underground places and may be a risk for high concentration and long exposure time. European and Italian law requires radon concentration to be measured in workplaces and, if the "action level" of 500 Bq/m3 is reached, proper actions must be made in order to decrease the dose commitment. Considering natural showcaves or artificial cavities open to public, the exposition of the visitors is frequently small, due to the short residence time, but accompanying people, remaining underground for long time, may be subject to appreciable dose and the radon concentration should therefore be monitored. The high humidity in natural caves may impair the use of some measuring devices. Therefore, different detection methods were compared (ZnS scintillation counters, E-PERM electret ionisation chambers, cellulose nitrate alpha-track dosimeters) to select the best procedure for long-term investigation. The LR-115 (Kodak) alpha-track dosimeters were insensitive to humidity and permitted to monitor a great number of places at the same time. Measurements have been carried out in the speleological and archaeological site of the Toirano's Caves (Savona, Liguria, Italy) and several points were monitored for two years. Radon concentration strongly depends on the site and changes during the year, due to the difference between internal and external temperature. The maximum dose commitment during the visitors tour, considering the average yearly value of radon concentration, was found to be between 1.5 and 4 microSv. It was found that no risk exists for visitors, but the evaluation of the dose absorbed by the guides and their classification according to the radiation protection law requires a complete monitoring of the average yearly concentration of radon and of the total time spent by each worker into the cave.

  9. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  10. Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan, Nigeria.

    PubMed

    Ademola, Janet Ayobami; Oyeleke, Oyebode Akanni

    2017-03-20

    Radon concentration in groundwater collected from the eleven Local Government Areas (LGAs) of Ibadan, Nigeria, was analyzed. Annual effective doses due to ingestion and inhalation of radon from the consumption of the water were determined. The arithmetic means (AMs) of radon concentration for the 11 LGAs varied from 2.18 to 76.75 Bq l -1 with a standard deviation of 1.57 and 70.64 Bq l -1 , respectively. The geometric means (GMs) varied from 1.67 to 49.47 Bq l -1 with geometric standard deviation of 2.22 and 3.04, respectively. About 58% of the 84 water samples examined had a higher concentration of radon than the 11.1 Bq l -1 recommended by United States Environmental Protection Agency (USEPA); the AMs of six LGAs and GMs of three LGAs were higher than the recommended value. However the AMs and GMs of all the LGAs with about 93% of the water sampled were lower than the 100 Bq l -1 recommended by the World Health Organization and EURATOM drinking water directive. The concentration of radon varied with the geological formation of the area. The AMs of the annual effective dose due to ingestion of radon in water ranged from 0.036 to 1.261 mSv y -1 , 0.071 to 2.521 mSv y -1 and 0.042 to 1.471 mSv y -1 for adult, child and infant, respectively and the GMs in the range of 0.026 to 0.813, 0.055 to 1.625 and 0.032 to 0.948 mSv y -1 , respectively. The AMs of 10 LGAs and GMs of 7 LGAs were higher than the recommended reference dose level of 0.1 mSv y -1 from the consumption of water for the duration of one year for all the three categories of people. The AMs and GMs of the annual effective dose due to inhalation of radon in drinking water ranged from 0.533 to 18.82 μSv y -1 and 0.411 to 12.13 μSv y -1 , respectively, contributing less to the overall dose.

  11. Evaluating the health benefits and cost-effectiveness of the radon remediation programme in domestic properties in Northamptonshire, UK.

    PubMed

    Denman, Antony; Groves-Kirkby, Christopher; Coskeran, Thomas; Parkinson, Steven; Phillips, Paul; Tornberg, Roges

    2005-08-01

    Although previous analysis of health benefits and cost-effectiveness of radon remediation in a series of houses in Northamptonshire suggested that testing and remediation was justified, recent results indicate fewer predicted affected houses than previously assumed. Despite numerous awareness campaigns, limited numbers of householders have tested their homes, only a minority of affected householders have remediated, and those most at risk generally fail to remediate. Moreover, a recent survey shows a wide range of public perception of radon risk, not significantly influenced by public health campaigns. These observations impact our previous analysis, which has been reviewed in the light of these observations. Following the declaration of Northamptonshire, UK, as a radon Affected Area in 1992, a series of public awareness campaigns encouraged householders to assess domestic radon levels and, if appropriate, to take action to reduce them. Despite these awareness campaigns, however, only moderate numbers of householders have taken remediatory action. The costs of such remedial work in a series of domestic properties in Northamptonshire, the radon level reduction achieved, and the resultant heath benefit to the residents, have been the subject of study by our group for some years. Previous analysis, based on estimates of the total number of affected houses derived from the National Radiological Protection Board (NRPB) test data for the area, suggested that a programme of testing and remediation in Northamptonshire could be justified. The NRPB has continued to initiate and to collate radon testing, and published further results in 2003. These results include revised predictions of the numbers of affected houses, now considered to be less than the numbers previously assumed. More recently, the availability of the European Community Radon Software (ECRS) has permitted calculation of individual, rather than population-average, risk, demonstrating that those most at risk are generally those who do not take action. In addition, a recent survey of risk perception shows an extremely wide range of public perception of radon risk, a perception that has not been significantly altered by public health campaigns. These predictions have profound effects, both on our previous analysis, particularly since only limited numbers of householders test their homes and even fewer remediate if they discover raised levels, and also on the public health strategies for this risk.

  12. German Support Program for Retrieval and Safe Storage of Disused Radioactive Sealed Sources in Ukraine - 13194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzsch, Gunter; Salewski, Peter; Sogalla, Martin

    2013-07-01

    The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the Government of the Federal Republic of Germany supports the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) in enhancement of nuclear safety and radiation protection and strengthening of the physical protection. One of the main objectives of the agreement concluded by these parties in 2008 was the retrieval and safe interim storage of disused orphan high radioactive sealed sources in Ukraine. At present, the Ukrainian National Registry does not account all high active radiation sources but only for about 70 - 80 %. GRSmore » in charge of BMU to execute the program since 2008 concluded subcontracts with the waste management and interim storage facilities RADON at different regions in Ukraine as well with the waste management and interim storage facility IZOTOP at Kiev. Below selected examples of removal of high active Co-60 and Cs-137 sources from irradiation facilities at research institutes are described. By end of 2012 removal and safe interim storage of 12.000 disused radioactive sealed sources with a total activity of more than 5,7.10{sup 14} Bq was achieved within the frame of this program. The German support program will be continued up to the end of 2013 with the aim to remove and safely store almost all disused radioactive sealed sources in Ukraine. (authors)« less

  13. Health Effects of High Radon Environments in Central Europe: Another Test for the LNT Hypothesis?

    PubMed Central

    Becker, Klaus

    2003-01-01

    Among the various “natural laboratories” of high natural or technical enhanced natural radiation environments in the world such as Kerala (India), Brazil, Ramsar (Iran), etc., the areas in and around the Central European Ore Mountains (Erzgebirge) in the southern parts of former East Germany, but also including parts of Thuringia, northern Bohemia (now Czech Republic), and northeastern Bavaria, are still relatively little known internationally. Although this area played a central role in the history of radioactivity and radiation effects on humans over centuries, most of the valuable earlier results have not been published in English or quotable according to the current rules in the scientific literature and therefore are not generally known internationally. During the years 1945 to 1989, this area was one of the world’s most important uranium mining areas, providing the former Soviet Union with 300,000 tons of uranium for its military programs. Most data related to health effects of radon and other carcinogenic agents on miners and residents became available only during the years after German reunification. Many of the studies are still unpublished, or more or less internal reports. By now, substantial studies have been performed on the previously unavailable data about the miners and the population, providing valuable insights that are, to a large degree, in disagreement with the opinion of various international bodies assuming an increase of lung cancer risk in the order of 10% for each 100 Bq/m3 (or doubling for 1000 Bq/m3), even for small residential radon concentrations. At the same time, other studies focusing on never-smokers show little or no effects of residential radon exposures. Experiments in medical clinics using radon on a large scale as a therapeutic against various rheumatic and arthritic disease demonstrated in randomized double-blind studies the effectiveness of such treatments. The main purpose of this review is to critically examine, including some historical references, recent results primarily in three areas, namely the possible effects of the inhalation of very high radon concentrations on miners; the effect of increased residential radon concentrations on the population; and the therapeutic use of radon. With many of the results still evolving and/or under intense discussion among the experts, more evidence is emerging that radon, which has been inhaled at extremely high concentrations in the multimillion Bq/m3 range by many of older miners (however, with substantial confounders, and large uncertainties in retrospective dosimetry), was perhaps an important but not the dominating factor for an increase in lung cancer rates. Other factors such as smoking, inhalation of quartz and mineral dust, arsenic, nitrous gases, etc. are likely to be more serious contributors to increased miner lung cancer rates. An extrapolation of miner data to indoor radon situations is not feasible. Concerning indoor radon studies, the by far dominating effect of smoking on the lung cancer incidence makes the results of some studies, apparently showing a positive dose-response relationship, questionable. According to recent studies in several countries, there are no, or beneficial, residential radon effects below about 600 to 1000 Bq/m3 (the extensive studies in the U.S., in particular by B. Cohen, and the discussions about these data, will not be part of this review, because they have already been discussed in detail in the U.S. literature). As a cause of lung cancer, radon seems to rank — behind active and passive smoking, and probably also air pollution in densely populated and/or industrial areas (diesel exhaust soot, etc.) — as a minor contributor in cases of extremely high residential radon levels, combined with heavy smoking of the residents. As demonstrated in an increasing number of randomized double-blind clinical studies for various painful inflammatory joint diseases such as rheumatism, arthritic problems, and Morbus Bechterew, radon treatments are beneficial, with the positive effect lasting until at least 6 months after the normally 3-week treatment by inhalation or bathes. Studies on the mechanism of these effects are progressing. In other cases of extensive use of radon treatment for a wide spectrum of various diseases, for example, in the former Soviet Union, the positive results are not so well established. However, according to a century of radon treatment experience (after millenniums of unknown radon therapy), in particular in Germany and Austria, the positive medical effects for some diseases far exceed any potential detrimental health effects. The total amount of available data in this field is too large to be covered in a brief review. Therefore, less known — in particular recent — work from Central Europe has been analyzed in an attempt to summarize new developments and trends. This includes cost/benefit aspects of radon reduction programs. As a test case for the LNT (linear non-threshold) hypothesis and possible biopositive effects of low radiation exposures, the data support a nonlinear human response to low and medium-level radon exposures. PMID:19330110

  14. Formerly Utilized Sites Remedial Action Program (FUSRAP) Hazelwood Interim Storage Site annual site environmental report. Calendar year 1985. [FUSRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/y. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/y; the limits applied for 1985 are based on a standard of 100 mrem/y. The HISSmore » is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program at the HISS measures uranium, radium, and thorium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation exposure rates. Potential radiation doses to the public are also calculated. The HISS was designated for remedial action under FUSRAP because radioactivity above applicable limits was found to exist at the site and its vicinity. Elevated levels of radiation still exist in areas where remedial action has not yet been completed.« less

  15. 40 CFR 195.20 - Fee payments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organization or individual who is not a listed participant in EPA's radon proficiency programs on the effective... and RCP programs shall pay fees according to the following fee schedule: (1) Organizations Listed for... listed participant, each organization that is listed for primary measurement services in the RMP program...

  16. Earthquake forecasting studies using radon time series data in Taiwan

    NASA Astrophysics Data System (ADS)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  17. Health risks due to radon in drinking water

    USGS Publications Warehouse

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  18. EPA Awards $25K Grant to Lewiston, Maine Non-profit for Indoor Air Quality Efforts

    EPA Pesticide Factsheets

    A non-profit in Lewiston, Maine, has received $25,000 from the US Environmental Protection Agency to reduce health threats caused by poor indoor air quality, including radon indoors, mold and secondhand smoke.

  19. CHARACTERISTICS OF SCHOOL BUILDINGS IN THE U.S.

    EPA Science Inventory

    The report gives results of visiting a subsample of 100 schools from the Environmental Protection Agency's (EPA's) National School Radon Survey to obtain information on building structure, location of utility lines, and the type of heating, ventilating, and air conditioning (HVAC...

  20. Radon-222 as Natural Tracer for Monitoring the Remediation of NAPL Contamination in the Subsurface

    DTIC Science & Technology

    2008-03-01

    aquifer interrogated during the test using: w NAPL S S K1R +== radon tracer V V (3) where R is the retardation factor (dimensionless), Vtracer is...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT

  1. The portable device for continual measurement of radon progenies on filter using the detector Timepix.

    PubMed

    Bulanek, Boris; Hulka, Jiri; Jilek, Karel; Stekl, Ivan

    2015-06-01

    In this article, a portable device was presented for continual measuring of equilibrium equivalent concentration (EEC) of (222)Rn based on the Timepix detector with 300-µm-thick active layer. In order to have a portable device, a filtration head was developed for collecting short-lived radon progenies attached on aerosols. The short-lived progenies are estimated from analysing alphas from decay of (218,214)Po from Millipore filter after termination of filtration. Comparison with beta measurement was done as well. The dependence of EEC on an air flow and filtration time was studied. The low-level detection limit for EEC was estimated from the last 10 min of 3-h decay measurement and was found in the range of 40-70 Bq m(-3). EEC was measured in National Radiation Protection Institute radon chamber, and results were compared with the commercial detector Fritra4. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Lack of evidence for an association between the frequency of mutants or translocations in circulating lymphocytes and exposure to radon gas in the home.

    PubMed

    Cole, J; Green, M H; Bridges, B A; Waugh, A P; Beare, D M; Henshaw, D; Last, R; Liu, Y; Cortopassi, G

    1996-01-01

    Radon measurements in the living room and main bedroom of 41 houses in the town of Street, Somerset, England have been made. Exposure levels, weighted using the formula of the UK National Radiological Protection Board, of 19-484 Bq m-3 (about half > 100 Bq m-3) were found. Blood samples were obtained from a total of 66 occupants in these homes, and the frequency of genetic alterations in lymphocytes was estimated using two different end points. Gene mutations at the hypoxanthine guanine phosphoribosyl transferase locus were determined in T lymphocytes for 65 subjects using a clonal assay, and the frequency of the BCL-2 t(14;18) translocation, a chromosomal event associated with leukemia/lymphoma, was estimated in lymphocytes using a polymerase chain reaction-based technique for 64 subjects. In neither case was a significant correlation with radon levels in the home found, in contrast to our earlier observation with a smaller series.

  3. A survey of ²²²Rn in drinking water in Mexico City.

    PubMed

    Vázquez-López, C; Zendejas-Leal, B E; Golzarri, J I; Espinosa, G

    2011-05-01

    In Mexico City there are more than 22 millions of inhabitants (10 in the metropolitan area and 12 in the suburban zone) exposed to drinking water. The local epidemiological authorities recognised that exposure to radon contaminated drinking water is a potential health hazard, as has been considered worldwide. The United States Environmental Protection Agency has proposed a limit of 11.1 Bq l(-1) for the radon level in drinking water. In Mexico a maximum contamination level of radon in drinking water has not yet even considered. In this work, a (222)Rn study of drinking water in Mexico City has revealed a range of concentrations from background level to 3.8 Bq l(-1). (222)Rn was calculated using a portable degassing system (AquaKIT) associated with an AlphaGUARD measuring system. Samples from 70 wells of the water system of the south of the Valley Basin of Mexico City and from houses of some other political administrative divisions of Mexico City were taken.

  4. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping.

    PubMed

    Smethurst, M A; Watson, R J; Baranwal, V C; Rudjord, A L; Finne, I

    2017-01-01

    It is estimated that exposure to radon in Norwegian dwellings is responsible for as many as 300 deaths a year due to lung cancer. To address this, the authorities in Norway have developed a national action plan that has the aim of reducing exposure to radon in Norway (Norwegian Ministries, 2010). The plan includes further investigation of the relationship between radon hazard and geological conditions, and development of map-based tools for assessing the large spatial variation in radon hazard levels across Norway. The main focus of the present contribution is to describe how we generate map predictions of radon potential (RP), a measure of radon hazard, from available airborne gamma ray spectrometry (AGRS) surveys in Norway, and what impact these map predictions can be expected to have on radon protection work including land-use planning and targeted surveying. We have compiled 11 contiguous AGRS surveys centred on the most populated part of Norway around Oslo to produce an equivalent uranium map measuring 180 km × 102 km that represents the relative concentrations of radon in the near surface of the ground with a spatial resolution in the 100 s of metres. We find that this map of radon in the ground offers a far more detailed and reliable picture of the distribution of radon in the sub-surface than can be deduced from the available digital geology maps. We tested the performances of digital geology and AGRS data as predictors of RP. We find that digital geology explains approximately 40% of the observed variance in ln RP nationally, while the AGRS data in the Oslo area split into 14 bands explains approximately 70% of the variance in the same parameter. We also notice that there are too few indoor data to characterise all geological settings in Norway which leaves areas in the geology-based RP map in the Oslo area, and elsewhere, unclassified. The AGRS RP map is derived from fewer classes, all characterised by more than 30 indoor measurements, and the corresponding RP map of the Oslo area has no unclassified parts. We used statistics of proportions to add 95% confidence limits to estimates of RP on our predictive maps, offering public health strategists an objective measure of uncertainty in the model. The geological and AGRS RP maps were further compared in terms of their performances in correctly classifying local areas known to be radon affected and less affected. Both maps were accurate in their predictions; however the AGRS map out-performed the geology map in its ability to offer confident predictions of RP for all of the local areas tested. We compared the AGRS RP map with the 2015 distribution of population in the Oslo area to determine the likely impact of radon contamination on the population. 11.4% of the population currently reside in the area classified as radon affected. 34% of ground floor living spaces in this affected area are expected to exceed the maximum limit of 200 Bq/m 3 , while 8.4% of similar spaces outside the affected area exceed this same limit, indicating that the map is very efficient at separating areas with quite different radon contamination profiles. The usefulness of the AGRS RP map in guiding new indoor radon surveys in the Oslo area was also examined. It is shown that indoor measuring programmes targeted on elevated RP areas could be as much as 6 times more efficient at identifying ground floor living spaces above the radon action level compared with surveys based on a random sampling strategy. Also, targeted measuring using the AGRS RP map as a guide makes it practical to search for the worst affected homes in the Oslo area: 10% of the incidences of very high radon contamination in ground floor living spaces (≥800 Bq/m 3 ) are concentrated in just 1.2% of the populated part of the area. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Radon measurements in the lower tropical stratosphere - Evidence for rapid vertical transport and dehydration of tropospheric air

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.; Kelly, Kenneth K.; Loewenstein, Max; Chan, K. R.

    1993-01-01

    During the tropical experiment of NASA's Stratosphere-Troposphere Exchange Program (STEP), in situ radon and other trace constituent measurements were made aboard a NASA ER-2 high-altitude research aircraft to investigate the mechanisms of irreversible transfers from the troposphere into the tropical stratosphere. Observations made in and downwind of the cirrus shields of three large tropical cyclones and downwind of the cirrus anvil of a large cumulonimbus cloud cluster showed several clear instances of elevated radon activity occurring simultaneously with low total water mixing ratios. These observations are unambiguous evidence of an effective dehydration process, capable of reducing total water vapor mixing ratios to less than 2.5 ppmv, occurring in conjunction with troposphere-to-stratosphere transport and indicate that rapid localized convection, rather than slow regional mean motions, was responsible for the observed transports and associated with the accompanying dehydration. Radon activities measured in regions of active or recent troposphere-to-stratosphere transport were consistent with the 17 pCi/scm mean value needed to support the observed abundance of stratospheric 210 Pb.

  6. Measurements of indoor 222RN activity in dwellings and workplaces of Curitiba (Brazil)

    NASA Astrophysics Data System (ADS)

    Corrêa, Janine N.; Paschuk, Sergei A.; Del Claro, Flávia; Kappke, Jaqueline; Perna, Allan F. N.; Schelin, Hugo R.; Denyak, Valeriy

    2014-11-01

    The present work describes the results of systematic measurements of radon (222Rn) in residential environments and workplaces in the Metropolitan Region of Curitiba (Paraná State, Brazil) during the period 2004-2012. For radon in air activity measurements, polycarbonate Track Etch Detectors CR-39, mounted in diffusion chambers protected by borosilicate glass fiber filters, were used. After being exposed in air, the CR-39 detectors were submitted to a chemical etching in a 6.25 M NaOH solution at 70 °C for 14 h. The alpha particle tracks were identified and manually counted with an optical microscope, and with the results of previously performed calibrations, the indoor activity concentration of 222Rn was calculated. The calibration of CR-39 and the alpha particle tracks chemical development procedures were performed in collaboration the National Institute of Radiological Sciences (NIRS, Japan). The major part of indoor 222Rn concentration in residences was found to be below 100 Bq/m3. In the case of working places, all measurements of 222Rn concentrations were below 100 Bq/m3. These values are considered within the limits set by international regulatory agencies, such as the US EPA and ICRP, which adopt up to 148 and 300 Bq/m3 as upper values for the reference levels for radon gas activity in dwellings, respectively. The latest value of 300 Bq/m3 for radon activity in air is proposed by ICRP considering the upper value for the individual dose reference level for radon exposure of 10 mSv/yr.

  7. Maywood Interim Storage Site environmental report for calendar year 1992, 100 West Hunter Avenue, Maywood, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Maywood Interim Storage Site (MISS) and provides the results for 1992. Environmental monitoring of MISS began in 1984, when the site was assigned to DOE by Congress through the Energy and Water Development Appropriations Act and was placed under DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. MISS is part of amore » National Priorities List (NPL) site. The environmental surveillance program at MISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analysis includes metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling the DOE objective of measuring and monitoring effluents from DOE activities and calculating hypothetical doses to members of the general public. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Environmental standards are established to protect public health and the environment. The radiological data for all media sampled support the conclusion that doses to the public are not distinguishable from natural background radiation.« less

  8. A decade of changes in radiation protection.

    PubMed

    Moulder, J E

    1992-04-01

    Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer.

  9. Geochemical challenge to earthquake prediction.

    PubMed Central

    Wakita, H

    1996-01-01

    The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented. PMID:11607665

  10. REFERENCE MANUAL FOR RASSMIT VERSION 2.1: SUB-SLAB DEPRESSURIZATION SYSTEM DESIGN PERFORMANCE SIMULATION PROGRAM

    EPA Science Inventory

    The report is a reference manual for RASSMlT Version 2.1, a computer program that was developed to simulate and aid in the design of sub-slab depressurization systems used for indoor radon mitigation. The program was designed to run on DOS-compatible personal computers to ensure ...

  11. Radiological assessment for bauxite mining and alumina refining.

    PubMed

    O'Connor, Brian H; Donoghue, A Michael; Manning, Timothy J H; Chesson, Barry J

    2013-01-01

    Two international benchmarks assess whether the mining and processing of ores containing Naturally Occurring Radioactive Material (NORM) require management under radiological regulations set by local jurisdictions. First, the 1 Bq/g benchmark for radionuclide head of chain activity concentration determines whether materials may be excluded from radiological regulation. Second, processes may be exempted from radiological regulation where occupational above-background exposures for members of the workforce do not exceed 1 mSv/year. This is also the upper-limit of exposure prescribed for members of the public. Alcoa of Australia Limited (Alcoa) has undertaken radiological evaluations of the mining and processing of bauxite from the Darling Range of Western Australia since the 1980s. Short-term monitoring projects have demonstrated that above-background exposures for workers do not exceed 1 mSv/year. A whole-of-year evaluation of above-background, occupational radiological doses for bauxite mining, alumina refining and residue operations was conducted during 2008/2009 as part of the Alcoa NORM Quality Assurance System (NQAS). The NQAS has been guided by publications from the International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). The NQAS has been developed specifically in response to implementation of the Australian National Directory on Radiation Protection (NDRP). Positional monitoring was undertaken to increase the accuracy of natural background levels required for correction of occupational exposures. This is important in view of the small increments in exposure that occur in bauxite mining, alumina refining and residue operations relative to natural background. Positional monitoring was also undertaken to assess the potential for exposure in operating locations. Personal monitoring was undertaken to characterise exposures in Similar Exposure Groups (SEGs). The monitoring was undertaken over 12 months, to provide annual average assessments of above-background doses, thereby reducing temporal variations, especially for radon exposures. The monitoring program concentrated on gamma and radon exposures, rather than gross alpha exposures, as past studies have shown that gross alpha exposures from inhalable dust for most of the workforce are small in comparison to combined gamma and radon exposures. The natural background determinations were consistent with data in the literature for localities near Alcoa's mining, refining and residue operations in Western Australia, and also with UNSCEAR global data. Within the mining operations, there was further consistency between the above-background dose estimates and the local geochemistry, with slight elevation of dose levels in mining pits. Conservative estimates of above-background levels for the workforce have been made using an assumption of 100% occupancy (1920 hours per year) for the SEGs considered. Total incremental composite doses for individuals were clearly less than 1.0 mSv/year when gamma, radon progeny and gross alpha exposures were considered. This is despite the activity concentration of some materials being slightly higher than the benchmark of 1 Bq/g. The results are consistent with previous monitoring and demonstrate compliance with the 1 mSv/year exemption level within mining, refining and residue operations. These results will be of value to bauxite mines and alumina refineries elsewhere in the world.

  12. Comparative survey of outdoor, residential and workplace radon concentrations

    PubMed Central

    Barros, Nirmalla; Field, Dan W.; Steck, Daniel J.; Field, R. William

    2015-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m−3. Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. PMID:24936021

  13. SOIL AND FILL LABORATORY SUPPORT - 1991

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in Support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1991 by the FRRP Research House program and the New House Evaluation P...

  14. Groundwater quality in West Virginia, 1993-2008

    USGS Publications Warehouse

    Chambers, Douglas B.; Kozar, Mark D.; White , Jeremy S.; Paybins, Katherine S.

    2012-01-01

    Approximately 42 percent of all West Virginians rely on groundwater for their domestic water supply. However, prior to 2008, the quality of the West Virginia’s groundwater resource was largely unknown. The need for a statewide assessment of groundwater quality prompted the U.S. Geological Survey (USGS), in cooperation with West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management, to develop an ambient groundwater-quality monitoring program. The USGS West Virginia Water Science Center sampled 300 wells, of which 80 percent were public-supply wells, over a 10-year period, 1999–2008. Sites for this statewide ambient groundwater-quality monitoring program were selected to provide wide areal coverage and to represent a variety of environmental settings. The resulting 300 samples were supplemented with data from a related monitoring network of 24 wells and springs. All samples were analyzed for field measurements (water temperature, pH, specific conductance, and dissolved oxygen), major ions, trace elements, nutrients, volatile organic compounds, fecal indicator bacteria, and radon-222. Sub-sets of samples were analyzed for pesticides or semi-volatile organic compounds; site selection was based on local land use. Samples were grouped for comparison by geologic age of the aquifer, Groups included Cambrian, Ordovician, Silurian, Devonian, Pennsylvanian, Permian, and Quaternary aquifers. A comparison of samples indicated that geologic age of the aquifer was the largest contributor to variability in groundwater quality. This study did not attempt to characterize drinking water provided through public water systems. All samples were of raw, untreated groundwater. Drinking-water criteria apply to water that is served to the public, not to raw water. However, drinking water criteria, including U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL), non-enforceable secondary maximum contaminant level (SMCL), non-enforceable proposed MCL, or non-enforceable advisory health-based screening level (HBSL), were used as benchmarks against which to compare analytical results. Constituent concentrations were less than the MCLs in most samples. However, some samples exceeded non-enforceable SMCLs, proposed MCLs, or advisory HBSLs. Radon-222 concentrations exceeded the proposed MCL of 300 pCi/L in 45 percent of samples, and iron concentrations exceeded the SMCL of 300 µg/L in 57 percent of samples. Manganese concentrations were greater than the SMCL (50 µg/L) in 62 percent of samples and greater than the HBSL (300 µg/L) in 25 percent of the samples. Other sampled constituents, including organic compounds and trace elements, exceeded drinking-water criteria at much lower frequencies. The radon-222 median concentrations in samples from Cambrian, Ordovician, Silurian, Permian, and Quaternary aquifers exceeded the proposed 300 pCi/L MCL. Although median radon concentrations for wells in Devonian, Mississippian, and Pennsylvanian aquifers were less than the proposed MCL, radon concentrations greater than the proposed MCL were measured in samples from aquifers of all geologic ages. The median iron concentrations for samples from Devonian and Pennsylvanian aquifers were greater than the 300 µg/L SMCL. Iron concentrations exceeded the SMCL in aquifers of all geologic ages, except Cambrian. Median concentrations of manganese exceeded the SMCL in samples from Devonian, Pennsylvanian, and Quaternary aquifers. As with iron, manganese concentrations were found to exceed the SMCL in at least one sample from aquifers of all geologic ages, except Cambrian. Pesticides were detected most frequently and in higher concentrations in limestone-dominated areas. Most of West Virginia’s agriculture is concentrated in those areas. This study, the most comprehensive assessment of West Virginia groundwater quality to date, indicates the water quality of West Virginia’s groundwater is generally good; in the majority of cases raw-water samples met primary drinking water-criteria. However, some constituents, notably iron and manganese, exceeded the secondary drinking criteria in more than half the samples.

  15. A History of the Committee on Science and Technology

    DTIC Science & Technology

    2008-08-01

    Cyber porn : Protecting Our Children from the Back Alleys of the Internet (No. 16) U.S.-Japanese Cooperation in Human Spaceflight (No. 22...promote bills dealing with monitoring the quality of indoor air, radon gas, and child nutritional studies. With Albert Gore’s departure from the

  16. An application of the NCRP screening techniques to atmospheric radon releases from the former feed materials production center near Fernald, Ohio. National Council on Radiation Protection and Measurements.

    PubMed

    Miller, C W

    1999-11-01

    The National Council on Radiation Protection and Measurements has published a series of screening models for releases of radionuclides to the environment. These models have been used to prioritize radionuclides being considered in environmental dose reconstructions. The NCRP atmospheric models are also accepted by the U.S. Nuclear Regulatory Commission for demonstrating compliance with the constraint on releases of airborne radioactive materials to the environment from licensees other than power reactors. This study tested the NCRP atmospheric techniques by comparing annual average predicted air concentrations of radon with measured radon concentrations at 14 locations 43 m to 598 m downwind of the former U.S. Department of Energy Feed Materials Production Center (FMPC) near Fernald, Ohio, for the period 2 July 1985 to 2 July 1986. Predictions were made using five different sets of meteorological data as input: (1) NCRP default values; (2) composite FMPC site data; (3) data from the Greater Cincinnati Airport; (4) data from the Dayton, Ohio, airport; and (5) data collected at Miami University, located near Oxford, Ohio. Following are the respective medians and ranges of the ratio of the predicted to observed annual radon air concentrations for each of these sources of meteorological data: (1) 5.2, 0.9-54; (2) 1.4, 0.1-8.2; (3) 0.7, 0.1-7.2; (4) 0.7, 0.1-8.4; and (5) 0.6, 0.1-10. The stated goal of the NCRP models is to predict doses that do not underpredict actual doses by greater than a factor of 10. In this comparison, all of the meteorological data produced air concentration predictions that meet this criteria. However, to ensure that final doses meet this criterion, one would need to carefully evaluate all assumptions used to calculate dose from each of these air concentrations.

  17. [The modern applications of radon therapy for the medical rehabilitation of the patients].

    PubMed

    Razumov, A N; Puriga, A O; Yurova, O V

    2015-01-01

    Radon therapy is one of the methods of physiobalneotherapy the mechanism of action of which is believed to consist of the influence of the small radiation doses of radon and its daughter products on the nervous, vascular, and immune apparatuses of the skin and mucosal membranes that eventually enhances the protective and adaptive potential of the body and thereby its ability to resist pathological impacts. At present, the high effectiveness of radon therapy is universally recognized and this method is widely applied for the combined treatment of various diseases in different fields of medicine. These include (1) diseases of the musculoskeletal system and locomotor disorders in the patients presenting with recurrent rheumatic fever, reactive arthritis, ankylosing spondylitis, post-traumatic osteoarthrosis and knee joint synovitis, the sympathico-tonic course of vegetative dystonia associated with connective tissue dysplasia, etc.; (2) neurological disorders in the patients presenting with cervical dorsopathy, neurological manifedstations of degenerative lesions of the cervical and lumbar spine, etc.; (3) cardiological disorders in the patients presenting with hypertensive disease, coronary heart disease, atherosclerosis of different localization, etc.; (4) gastrointestinal disorders in the patients presenting with gastric and duodenal ulcers, irritated bowel syndrome, etc.; (5) gynecological problems in the patients presenting with primary and secondary dysmenorrhea, genital endometriosis, uterine myoma, dysregulated reproductive function, polycystic ovary - syndrome, polycystic ovary syndrome and ovulatory disorders of proinflammatory origin, etc.

  18. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia

    2014-09-01

    Short-term (222)Rn activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno were studied, based on continuous measurements conducted between 16 May 2008 and 15 May 2010. The results were analysed in the context of numbers of visitors arriving at the facility in particular seasons and the time per day spent inside by staff and visitors. This choice was based on partially published earlier findings (Fijałkowska-Lichwa and Przylibski, 2011). Results for the year 2009 were analysed in depth, because it is the only period of observation covering a full calendar year. The year 2009 was also chosen for detailed analysis of short-term radon concentration changes, because in each period of this year (hour, month, season) fluctuations of noted values were the most visible. Attention has been paid to three crucial issues linked to the occurrence and behaviour of radon and to the radiological protection of workers and visitors at the tourist route in Kletno. The object of study is a complex of workings in a former uranium mine situated within a metamorphic rock complex in the most radon-prone area in Poland. The facility has been equipped with a mechanical ventilation system, which is turned on after the closing time and at the end of the working day for the visitor service staff, i.e. after 6 p.m. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno are related to the activity of the facility's mechanical ventilation. Its inactivity in the daytime results in the fact that the highest values of (222)Rn activity concentration are observed at the time when the facility is open to visitors, i.e. between 10 a.m. and 6 p.m. The improper usage of the mechanical ventilation system is responsible for the extremely unfavourable working conditions, which persist in the facility for practically all year. The absence of appropriate radiological protection (i.e. preventive measures like shortening working day, dosimetric measurements in the workplace) is a serious problem in the Kletno adit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Measurement of Radon-Induced Backgrounds in the NEXT Double Beta Decay Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novella, P.; et al.

    The measurement of the internal 222Rn activity in the NEXT-White detector during the so-called Run-II period with 136Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222Rn and its alpha-emitting progeny. The specific activity is measured to bemore » $$(37.5\\pm 2.3~\\mathrm{(stat.)}\\pm 5.9~\\mathrm{(syst.)})$$~mBq/m$^3$. Radon-induced electrons have also been characterized from the decay of the 214Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.2~counts/yr in the neutrinoless double beta decay sample.« less

  20. Personnel training experience in the radioactive waste management: 10 years of Moscow SIA 'RADON' international education training centre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, Olga; Dmitriev, Sergey; Arustamov, Artur

    Available in abstract form only. Full text of publication follows: The education service for specialists dealing with radioactive waste was established in Russia (former USSR) in 1983 and was based on the capabilities of two organisations: the Moscow Scientific and Industrial Association 'Radon' (SIA 'Radon') and the Chemical Department of Lomonosov's Moscow State University. These two organizations are able to offer training programs in the science fundamentals, applied research and in practical operational areas of the all pre-disposal activities of the radioactive waste management. Since 1997 this system was upgraded to the international level and now acts as International Educationmore » Training Centre (IETC) at SIA 'Radon' under the guidance of the IAEA. During 10 years more than 300 specialists from 26 European and Asian countries enhanced their knowledge and skills in radioactive waste management. The IAEA supported specialized regional training courses and workshops, fellowships, on-the-job training, and scientific visits are additional means to assure development of personnel capabilities. Efficiency of training was carefully analysed using the structural adaptation of educational process as well as factors, which have influence on education quality. Social-psychological aspects were also taken into account in assessing the overall efficiency. The analysis of the effect of individual factors and the efficiency of education activity were carried out based on attestation results and questioning attendees. A number of analytical methods were utilised such as Ishikawa's diagram method and Pareto's principle for improving of training programs and activities. (authors)« less

  1. SWOT analysis of the Czech Radon programme.

    PubMed

    Fojtíková, I

    2014-07-01

    Since the early 1990s, the Czech Republic has been one of the countries that carry out a radon programme on its territory, with the aim of protecting people from unnecessary long-term exposure in their homes. Since that time, many achievements have been registered, and many unexpected difficulties have cropped up. This may be the right moment to take some time out to analyse the state of the programme and to determine the direction for its future development. An extended SWOT analysis can serve as a useful tool for this purpose. Originally, SWOT analyses were used exclusively by for-profit organisations aiming to evaluate their perspectives, develop strategies and make plans in order to achieve their objectives. More recently, it has been used in a wide range of decision-making situations when a desired end-state is to be defined. Here, an extended SWOT analysis is used to formulate possible beneficial strategies for advancing anti-radon policy in the Czech Republic. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. 40 CFR 61.91 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... included. The method for calculating effective dose equivalent and the definition of reference man are... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Definitions. 61.91 Section 61.91... Other Than Radon From Department of Energy Facilities § 61.91 Definitions. As used in this subpart, all...

  3. A review of lung-to-blood absorption rates for radon progeny.

    PubMed

    Marsh, J W; Bailey, M R

    2013-12-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.

  4. Comparative survey of outdoor, residential and workplace radon concentrations.

    PubMed

    Barros, Nirmalla; Field, Dan W; Steck, Daniel J; Field, R William

    2015-02-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m(-3). Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Residential radon in Galicia: a cross-sectional study in a radon-prone area.

    PubMed

    Lorenzo-González, María; Ruano-Ravina, Alberto; Peón, Joaquín; Piñeiro, María; Barros-Dios, Juan Miguel

    2017-09-01

    Residential radon exposure is a major public health problem. It is the second greatest cause of lung cancer, after smoking, and the greatest in never-smokers. This study shows the indoor radon exposure distribution in Galicia and estimates the percentage of dwellings exceeding reference levels. It is based on 3245 residential radon measurements obtained from the Galician Radon Map project and from controls of two previous case-control studies on residential radon and lung cancer. Results show a high median residential radon concentration in Galicia (99 Bq m -3 ), with 49.3% of dwellings having a radon concentration above 100 Bq m -3 and 11.1% having a concentration above 300 Bq m -3 . Ourense and Pontevedra, located in South Galicia, are the provinces with the highest median indoor radon concentrations (137 Bq m -3 and 123.5 Bq m -3 , respectively). Results also show lower radon levels in progressively higher building storeys. These high residential radon concentrations confirm Galicia as a radon-prone area. A policy on radon should be developed and implemented in Galicia to minimize the residential radon exposure of the population.

  6. Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Langtang Himal (Nepal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtscheller, F.; Pirchl, T.; Sieder, G.

    1995-07-01

    The identification of extremely high indoor radon concentrations in the village Umhausen (Tyrol, Austria) initiated a scientific program to get information about the source and distribution of this noble gas. The high concentrations can not be related to U anomalies or large-scale fault zones. The nearby giant landslide of Koefels, with its highly fractured and crushed orthogneisses, are the only possible source of radon, despite the fact that the U and Ra content of the rocks is by no means exceptional. The reasons for the high emanation rates from the landslide are discussed and compared to results gained from amore » similar examination of the giant landslide of Langtang Himal (Nepal). The exceptional geologic situation in both cases, as well as the spatial distribution of different concentration levels, indicate that both landslides must be considered as the production sites of radon. Independent of the U and Ra contents of the rocks, the most important factors producing high emanation rates are the production of a high active surface area in circulation pathways for Rn-enriched soil air by brittle deformation due to the impact of the landslidemass. 37 refs., 4 figs., 1 tab.« less

  7. First radon measurements and occupational exposure assessments in underground geodynamic laboratory the Polish Academy of Sciences Space Research Centre in Książ Castle (SW Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia; Przylibski, Tadeusz A

    2016-12-01

    The article presents the results of the first radon activity concentration measurements conducted continuously between 17 th May 2014 and 16 th May 2015 in the underground geodynamic laboratory of the Polish Academy of Sciences Space Research Centre in Książ. The data were registered with the use of three Polish semiconductor SRDN-3 detectors located the closest (SRDN-3 No. 6) to and the furthest (SRDN-3 No. 3) from the facility entrance, and in the fault zone (SRDN-3 No. 4). The study was conducted to characterize the radon behaviour and check it possibility to use with reference to long- and short-term variations of radon activity concentration observed in sedimentary rocks strongly fractured and intersected by systems of multiple faults, for integrated comparative assessments of changes in local orogen kinetics. The values of radon activity concentration in the underground geodynamic laboratory of the Polish Academy of Sciences (PAN) Space Research Centre in Książ undergo changes of a distinctly seasonal character. The highest values of radon activity concentration are recorded from late spring (May/June) to early autumn (October), and the lowest - from November to April. Radon activity concentrations varied depending on the location of measurement points. Between late spring and autumn they ranged from 800 Bq·m -3 to 1200 Bq·m -3 , and even 3200 Bq·m -3 in the fault zone. Between November and April, values of radon activity concentration are lower, ranging from 500 Bq·m -3 to 1000 Bq·m -3 and 2700 Bq·m -3 in the fault zone. The values of radon activity concentration recorded in the studied facility did not undergo short-term changes in either the whole annual measuring cycle or any of its months. Effective doses received by people staying in the underground laboratory range from 0.001 mSv/h to 0.012 mSv/h. The mean annual effective dose, depending on the measurement site, equals 1 or is slightly higher than 10 mSv/year, while the maximum dose exceeds 20 mSv/year. The estimated annual effective doses are comparable to the standard value of 20 mSv/year defined by Polish law for people employed in the conditions of radiation exposure. They are also in the range of annual effective dose value (8 mSv/year) recommended in workplaces by International Commission on Radiation Protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Remote online monitoring of radon wells used for therapy in bathtubs

    NASA Astrophysics Data System (ADS)

    von Philipsborn, Henning

    2017-04-01

    Sibyllenbad, in the community of Neualbenreuth, 140 km NNE of Regensburg, is well known for two radon wells and one containing carbon dioxide. The water is used pure or mixed for therapy in 200 L bathtubs for a number of indications. Since its beginning, 26 years ago, the author is active in measuring radon and radon decay products and their factor of equilibrium in air and in water for radiation protection of the personnel and for radon water quality assurance for the patients. For the special local operating conditions - high time resolution of measurements is asked - novel measuring methods and instruments were developed. These proved to be useful for several other applications, not foreseen at the beginning. Recently, a probe was installed for online monitoring of water entering the main water storage tank of 42 m3, at the Kurhaus, two km from the radon wells. The probe consists of a 51 mm x 76 mm NaI (Tl) scintillator with photomultiplier, immersed in continuously flowing water in an 8 L pot. The MCA registers the pulses between 200 and 650 keV of the Rn decay products Pb-214 and Bi-214. Specially developed software calculates the gross [cps] from the total counts for variable counting times. The background, determined separately, is subtracted and the net is multiplied with a calibration factor [Bq/L per net cps], determined separately. The activity concentration [Bq/L] of the radon decay products in water is plotted vs. real time (plot P). With Teamviewer, remote online monitoring is possible from the Radiometric Seminar. At the Rn wells, the flow rate [L/s] of the discontinuously working pumps and the lowering of the water level in [m] is measured online. The two quantities are directly correlated, and with a time lag to the demand of radon water from the Kurhaus. Several series of discrete measurements of water, both at the well and at the storage tank, fresh and after 1, 2 and 3 h after storage in full, closed bottles, reveal factors of equilibrium k between Rn and the decay products as low as 0.5. This explains strong, but systematic fluctuations in the continuous plot P following demand of water for the patients. The true Rn-222 concentration fluctuates much less and is not lowered at the well after heavy rain falls. The variation of k requires a lengthy discussion and reveals valuable information.

  9. Training activities at FSUE 'RADON' and Lomonosov's Moscow state university under practical arrangements with IAEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Karlina, O.K.; Neveykin, P.P.

    The International Education Training Centre (IETC) at Moscow Federal State Unitary Enterprise (FSUE) 'Radon', in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 15 years. Since 1997, the educational system of the enterprise with the support of the IAEA has acquired an international character: more than 470 experts from 35 countries - IAEA Member States completed the professional development. Training is conducted at various thematic courses or fellowships for individual programs and seminars on IAEA technical projects. In June 2008 a direct agreement (Practical Arrangements) has beenmore » signed between FSUE 'Radon' and the IAEA on cooperation in the field of development of new technologies, expert's advice to IAEA Member States, and, in particular, the training of personnel in the field of radioactive waste management (RWM), which opens up new perspectives for fruitful cooperation of industry professionals. A similar agreement - Practical Arrangements - has been signed between Lomonosov's MSU and the IAEA in 2012. In October 2012 a new IAEA two-weeks training course started at Lomonosov's MSU and FSUE 'Radon' in the framework of the Practical Agreements signed. Pre-disposal management of waste was the main topic of the courses. The paper summarizes the current experience of the FSUE 'Radon' in the organization and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)« less

  10. [The results of the combined application of extracorporeal shock-wave therapy and radon baths during the rehabilitative treatment of the patients presenting with gonarthrosis].

    PubMed

    Razumov, A N; Puriga, A O; Yurova, O V

    2015-01-01

    Osteoarthritis (OA) is one of the leading diseases of the musculoskeletal system and the main cause of arthritic joint damage. The objective of the present study was to evaluate the effectiveness of the combined application of radon baths and shock-wave therapy in the patients suffering from knee OA. The study involved 75 patients at the age of 35 to 62 years with the confirmed diagnosis of stage II and III gonarthrosis; they were divided into 3 groups. The patients of the main group received the combined treatment including extracorporeal shock-wave therapy and radon baths The patients comprising the group of comparison were given the course of radon therapy alone while those in the control group were offered the standard treatment including physiotherapy, magnetic therapy, and NSAIDs. The study has demonstrated the high effectiveness of the combined application of the radon baths and extracorporeal shock-wave therapy for the rehabilitation of the patients with deforming arthrosis of the knee that was apparent from the substantial decrease of pain syndrome, the increase of the range of motions in the knee joints, and the overall improvement of the quality of life. These beneficial changes persisted for a period of up to 6 months. The results of the present study give reason to recommend the proposed method of the remedial treatment for the wide practical application as a component in the framework of the medical rehabilitation programs.

  11. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  12. Comparison of urinary excretion of radon from the human body before and after radon bath therapy.

    PubMed

    Kávási, Norbert; Kovács, Tibor; Somlai, János; Jobbágy, Viktor; Nagy, Katalin; Deák, Eszter; Berhés, István; Bender, Tamás; Ishikawa, Tetsuo; Tokonami, Shinji

    2011-07-01

    Theoretically, the human body absorbs radon through the lungs and the skin and excretes it through the lungs and the excretory organs during radon bath therapy. To check this theory, the radon concentrations in urine samples were compared before and after radon bath therapy. During the therapy, the geometric mean (GM) and the geometric standard deviation of the radon concentration in air and in the bath water were 979 Bq m(-3), 1.58 and 73.6 Bq dm(-3), 1.1, respectively. Since radon was detected in each urine sample (GM around 3.0 Bq dm(-3)), urinary excretion of radon was confirmed. The results of this study can neither reject nor confirm the hypothesis of radon absorption through the skin. A 15 times higher increment of inhaled radon level did not cause significant changes in radon of urine samples.

  13. Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.

    PubMed

    Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G

    2017-01-01

    The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 40 CFR 195.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROFICIENCY PROGRAMS General Provisions § 195.2 Definitions. Definitions in 15 U.S.C. 2602 and 2662 apply to... exam means the exam which evaluates individuals who provide radon measurement services in a residential...

  15. [Patients' exposure to electromagnetic fields and radon in radon spas].

    PubMed

    Politański, Piotr; Olszewski, Jerzy; Mamrot, Paweł; Mariańska, Mlagda; Zmyślony, Marek

    2014-01-01

    Many patients of physiotherapeutic facilities using therapeutic radon are also referred to other treatments involving the use of electromagnetic field (EMF). However, in the light of the theory of EMF influence on free radicals, it is still an open question whether, application of EMF shortly after the radon treatment may alter the biological effects of radon or EMF. The aim of the study was to determine how large is the group of patients exposed to radon and EMF in Poland, and how high is the exposure of these patients to analyzed factors. The results of the study are to be used in the future assessment of the combined effects of radon and EMF in radon spas. Based on the statistical data and interviews held in the major Polish radon spas, the analysis of treatment structure was performed and exposure to radon and EMF was assessed by measuring radon concentrations and characteristic values of exposure to EMF. More than 8000 people per year are subjected to combined exposure to radon and EMF. Significant differences were found between measured radon concentrations (they ranged from approximately 61 kBq/m3 for inhalations with inhaler to only 290 Bq/m3 for graduation towers, p = 0.049) and EMF intensities corresponded to those observed in hazardous and dangerous zones for occupational exposure. The results of the study showed significant differences between radon concentrations during various radon treatments. There is a need to develop clear and universal procedures for the application of radon or radon combined with EMF in radon spas. The effects of patients' exposure to radon, especially combined with EMF need to be further studied.

  16. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities.

    PubMed

    Chen, Jing; Ford, Ken L

    2017-01-01

    Exposure to indoor radon is identified as the main source of natural radiation exposure to the population. Since radon in homes originates mainly from soil gas radon, it is of public interest to study the correlation between radon in soil and radon indoors in different geographic locations. From 2007 to 2010, a total of 1070 sites were surveyed for soil gas radon and soil permeability. Among the sites surveyed, 430 sites were in 14 cities where indoor radon information is available from residential radon and thoron surveys conducted in recent years. It is observed that indoor radon potential (percentage of homes above 200 Bq m -3 ; range from 1.5% to 42%) correlates reasonably well with soil radon potential (SRP: an index proportional to soil gas radon concentration and soil permeability; average SRP ranged from 8 to 26). In five cities where in-situ soil permeability was measured at more than 20 sites, a strong correlation (R 2  = 0.68 for linear regression and R 2  = 0.81 for non-linear regression) was observed between indoor radon potential and soil radon potential. This summary report shows that soil gas radon measurement is a practical and useful predictor of indoor radon potential in a geographic area, and may be useful for making decisions around prioritizing activities to manage population exposure and future land-use planning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Effects of radon mitigation vs smoking cessation in reducing radon-related risk of lung cancer.

    PubMed Central

    Mendez, D; Warner, K E; Courant, P N

    1998-01-01

    OBJECTIVES: The purpose of this paper is to provide smokers with information on the relative benefits of mitigating radon and quitting smoking in reducing radon-related lung cancer risk. METHODS: The standard radon risk model, linked with models characterizing residential radon exposure and patterns of moving to new homes, was used to estimate the risk reduction produced by remediating high-radon homes, quitting smoking, or both. RESULTS: Quitting smoking reduces lung cancer risk from radon more than does reduction of radon exposure itself. CONCLUSIONS: Smokers should understand that, in addition to producing other health benefits, quitting smoking dominates strategies to deal with the problem posed by radon. PMID:9585753

  18. Radon potential, geologic formations, and lung cancer risk

    PubMed Central

    Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay

    2015-01-01

    Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090

  19. Radon assay and purification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simgen, Hardy

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  20. Radon assay and purification techniques

    NASA Astrophysics Data System (ADS)

    Simgen, Hardy

    2013-08-01

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive 222Rn-daughters and the question of gas purification from radon is addressed.

  1. What Teachers Should Know about Radon.

    ERIC Educational Resources Information Center

    Bettis, Clifford; Throckmorton, Carl

    1991-01-01

    Attempts to clear up misunderstandings about radon and outlines information teachers can convey to their students. Includes a brief history of radon, health threats posed by radon, methods to measure radon quantities, homeowner risks and preventative actions, and a glossary of radon terms. (MDH)

  2. 40 CFR 61.96 - Applications to construct or modify.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Applications to construct or modify. 61... Emissions of Radionuclides Other Than Radon From Department of Energy Facilities § 61.96 Applications to...) An application for approval under § 61.07 or notification of startup under § 61.09 does not need to...

  3. 40 CFR 61.96 - Applications to construct or modify.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Applications to construct or modify. 61... Emissions of Radionuclides Other Than Radon From Department of Energy Facilities § 61.96 Applications to...) An application for approval under § 61.07 or notification of startup under § 61.09 does not need to...

  4. 40 CFR 61.96 - Applications to construct or modify.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Applications to construct or modify. 61... Emissions of Radionuclides Other Than Radon From Department of Energy Facilities § 61.96 Applications to...) An application for approval under § 61.07 or notification of startup under § 61.09 does not need to...

  5. 40 CFR 61.96 - Applications to construct or modify.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Applications to construct or modify. 61... Emissions of Radionuclides Other Than Radon From Department of Energy Facilities § 61.96 Applications to...) An application for approval under § 61.07 or notification of startup under § 61.09 does not need to...

  6. 40 CFR 61.96 - Applications to construct or modify.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Applications to construct or modify. 61... Emissions of Radionuclides Other Than Radon From Department of Energy Facilities § 61.96 Applications to...) An application for approval under § 61.07 or notification of startup under § 61.09 does not need to...

  7. The Concept of Equivalent Radon Concentration for Practical Consideration of Indoor Exposure to Thoron

    PubMed Central

    Chen, Jing; Moir, Deborah

    2012-01-01

    To consider the total exposure to indoor radon and thoron, a concept of equivalent radon concentration for thoron is introduced, defined as the radon concentration that delivers the same annual effective dose as that resulting from the thoron concentration. The total indoor exposure to radon and thoron is then the sum of the radon concentration and the equivalent radon concentration for thoron. The total exposure should be compared to the radon guideline value, and if it exceeds the guideline value, appropriate remedial action is required. With this concept, a separate guideline for indoor thoron exposure is not necessary. For homes already tested for radon with radon detectors, Health Canada’s recommendation of a 3-month radon test performed during the fall/winter heating season not only ensures a conservative estimate of the annual average radon concentration but also covers well any potentially missing contribution from thoron exposure. In addition, because the thoron concentration is much lower than the radon concentration in most homes in Canada, there is no real need to re-test homes for thoron. PMID:22470292

  8. Review of technical justification of assumptions and methods used by the Environmental Protection Agency for estimating risks avoided by implementing MCLs for radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, S.C.; Rowe, M.D.; Holtzman, S.

    1992-11-01

    The Environmental Protection Agency (EPA) has proposed regulations for allowable levels of radioactive material in drinking water (40 CFR Part 141, 56 FR 33050, July 18, 1991). This review examined the assumptions and methods used by EPA in calculating risks that would be avoided by implementing the proposed Maximum Contaminant Levels for uranium, radium, and radon. Proposed limits on gross alpha and beta-gamma emitters were not included in this review.

  9. Task Order 2 enhanced preliminary assessment, Fort Douglas, Salt Lake City, Utah. Final report, October-December 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirchandani, M.G.; Johnson, G.M.; Bove, L.J.

    1989-12-01

    An enhanced preliminary assessment (PA) of air pollution was conducted at Fort Douglas (FD) under the Base Closure Program. FD is an active military installation located in Salt Lake City, Utah. The Fort consists of the U.S. Army and Navy Reserve Centers, family housing units, a military museum, a chapel, clubs, swimming pool, a cemetery and various other support buildings. 50.8 acres of the 119 acres owned by FD are proposed to be excessed. Based on information obtained during the onsite visit and from available drawings and reports, three environmentally significant operations (ESOs) have been identified. These include asbestos, radonmore » and transformers. No immediate action has been recommended for any of the ESOs. Site investigations have been recommended for asbestos and the transformers. A radon sampling program is currently underway at FD. This radon sampling program is being conducted by Fort Carson; the results should be evaluated as they become available, and the appropriate actions taken.« less

  10. RADON REDUCTION AND RADON-RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK - VOLUME 1: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of radon reduction and radon-resistant construction demonstrations in New York. The existing house evaluation demonstrated radon mitigation techniques where indoor radon concentrations exceeded 4 pCi/L. Results demonstrated that sealing all accessible fou...

  11. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.

    PubMed

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Onischenko, A; Seleznev, A

    2016-11-15

    Indoor radon concentration was studied in the 14 settlements located near the Techa River, which was contaminated by radioactive wastes in 1950-s. Results of the radon survey were used for analysis of the relationship between the indoor radon and main geologic factors (Pre-Jurassic formations, Quaternary sediments and faults), local geogenic radon potential and anthropogenic factors. Main influencing factors explain 58% of the standard deviation of indoor radon concentration. Association of the air exchange influence over radon concentration with underlying geological media was related to different contributions of geogenic advective and diffusive radon entries. The properties of geological formation to transfer radon gas in interaction with the house can be considered within the radon geogenic potential concept. The study of the radon exposure of the Techa River population can be used to estimate the contribution of natural radon to the overall radiation exposure of the local population during the period of radioactive waste discharges. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Radon

    MedlinePlus

    ... My Home? Radon Guide for Tenants Builders and Contractors Radon-Resistant Construction Basics and Techniques EPA's Directory of Builders Resources for Builders and Contractors Radon Action Plans The National Radon Action Plan ( ...

  13. Variation of the unattached fraction of radon progeny and its contribution to radon exposure.

    PubMed

    Guo, Lu; Zhang, Lei; Guo, Qiuju

    2016-06-01

    The unattached fraction of radon progeny is one of the most important factors for radon exposure evaluation through the dosimetric approach. To better understand its level and variation in the real environment, a series of field measurements were carried out indoors and outdoors, and radon equilibrium equivalent concentration was also measured. The dose contribution of unattached radon progeny was evaluated in addition. The results show that no clear variation trend of the unattached fraction of radon progeny is observed in an indoor or outdoor environment. The average unattached fraction of radon progeny for the indoors and outdoors are (8.7  ±  1.6)% and (9.7  ±  2.1)%, respectively. The dose contribution of unattached radon progeny to total radon exposure is some 38.8% in an indoor environment, suggesting the importance of the evaluation on unattached radon progeny.

  14. Exposure to atmospheric radon.

    PubMed Central

    Steck, D J; Field, R W; Lynch, C F

    1999-01-01

    We measured radon (222Rn) concentrations in Iowa and Minnesota and found that unusually high annual average radon concentrations occur outdoors in portions of central North America. In some areas, outdoor concentrations exceed the national average indoor radon concentration. The general spatial patterns of outdoor radon and indoor radon are similar to the spatial distribution of radon progeny in the soil. Outdoor radon exposure in this region can be a substantial fraction of an individual's total radon exposure and is highly variable across the population. Estimated lifetime effective dose equivalents for the women participants in a radon-related lung cancer study varied by a factor of two at the median dose, 8 mSv, and ranged up to 60 mSv (6 rem). Failure to include these doses can reduce the statistical power of epidemiologic studies that examine the lung cancer risk associated with residential radon exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924007

  15. RADON REDUCTION AND RADON RESISTANT CONSTRUCTION DEMONSTRATIONS IN NEW YORK

    EPA Science Inventory

    The report covers three tasks related to indoor radon: (1) the demonstration of radon reduction techniques in 8 houses in each of two uniquely different radon prone areas of the State of New York; (2) the evaluation and repair of 14 radon mitigation systems in houses mitigated 4 ...

  16. Modeling of indoor radon concentration from radon exhalation rates of building materials and validation through measurements.

    PubMed

    Kumar, Amit; Chauhan, R P; Joshi, Manish; Sahoo, B K

    2014-01-01

    Building materials are the second major source of indoor radon after soil. The contribution of building materials towards indoor radon depends upon the radium content and exhalation rates and can be used as a primary index for radon levels in the dwellings. The radon flux data from the building materials was used for calculation of the indoor radon concentrations and doses by many researchers using one and two dimensional model suggested by various researchers. In addition to radium content, the radon wall flux from a surface strongly depends upon the radon diffusion length (L) and thickness of the wall (2d). In the present work the indoor radon concentrations from the measured radon exhalation rate of building materials calculated using different models available in literature and validation of models was made through measurement. The variation in the predicted radon flux from different models was compared with d/L value for wall and roofs of different dwellings. The results showed that the radon concentrations predicted by models agree with experimental value. The applicability of different model with d/L ratio was discussed. The work aims to select a more appropriate and general model among available models in literature for the prediction of indoor radon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Setting radon-specific release criteria and demonstrating compliance for land affected by NORM.

    PubMed

    García-Talavera, M; Martínez, M; Matarranz, J L M; Ramos, L

    2008-11-01

    Residues from industrial activities involving naturally occurring radioactive materials (NORMs) may cause radiation exposures to members of the public, particularly when NORM-affected land is brought into residential use. To provide an adequate protection against radiation in such situations, the following limiting criteria are currently required in Spain for releasing NORM-affected land: (i) no more than a 300 microSv yr(-1) increase (excluding radon doses) over the natural background; (ii) (222)Rn concentrations in hypothetical future dwellings lower than 200 Bq m(-3); and (iii) reduction of all radiation exposures to as low as reasonable achievable. This paper addresses some of the problems encountered in translating the (222)Rn criterion into site-specific release limits and in demonstrating compliance with them.

  18. Continental United States Military Housing Inspection National Capital Region

    DTIC Science & Technology

    2015-08-13

    that was flaking, peeling, or chalking. JBAB did not have an asbestos management program, plan, or an appointed asbestos program manager...housing partner to ensure inspection and maintenance plan is achieved; and • Implement an asbestos management plan and appoint an asbestos program...select environmental health and safety requirements, such as those for drinking water, radon, asbestos , and lead based paint. We conducted this

  19. Enhanced Preliminary Assessment Fort Devens, Massachusetts

    DTIC Science & Technology

    1992-04-30

    remedial programs and RCRA corrective actions at Fort Devens . The areas regulated under RCRA will require closure when no longer in...under which the work in the MEP has been developed requires full integration of CERCLA remedial programs and RCRA corrective actions at Fort Devens ...AREEs 65 and 67, asbestos and radon, respectively. Fort Devens has ongoing programs that deal with these concerns. Any remedial action or disturbance

  20. State Indoor Radon Grants Resources

    EPA Pesticide Factsheets

    This guidance explains the standardized state template for SIRG measures,as required by the OMB and answers questions about the template. The Program guidance is intended to reconcile all legal, policy and programmatic changes that affected SIRG.

  1. Comparison study and thoron interference test of different radon monitors.

    PubMed

    Sumesh, C G; Kumar, A Vinod; Tripathi, R M; Puranik, V D

    2013-03-01

    A comparison study and thoron interference test for different continuous radon monitors were carried out. The comparison study includes three passive diffusion monitors [one pulse ionisation chamber based-Alpha Guard and two silicon semi-conductor based-Radon Scout Plus (RSP)] and one silicon semi-conductor-based active radon thoron discriminating monitor--RAD 7. Radon emanation standard, supplied by National Institute of Science and Technology, has been utilised for the comparison study to qualify the calibration of the continuous radon monitors. All the instruments showed good agreement with the estimated radon concentration using (226)Ra/(222)Rn emanation standard. It was found that the active radon monitoring system is having a higher initial response towards the transient radon concentration than the passive radon monitors studied. The instruments measuring radon concentration without energy discrimination are likely to have some sensitivity towards the thoron concentration. Thus, thoron interference study was carried out in the above monitors. Nine percent interference in measured radon concentration in the Alpha Guard monitor and 4 % interference in the semi-conductor-based RSP monitors was observed. Study indicates that the interference of thoron in radon monitors depends on the area of diffusion of gas, volume of detection and sensitivity factor.

  2. Radon monitoring and hazard prediction in Ireland

    NASA Astrophysics Data System (ADS)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given that an estimated 250,000 people in Ireland are exposed to high radon levels, the findings of this research stand to make a considerable positive impact in enhancing the quality of life and long-term health for a significant proportion of inhabitants.

  3. 76 FR 72006 - Draft Interim Staff Guidance: Evaluations of Uranium Recovery Facility Surveys of Radon and Radon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    .... Discussion Uranium recovery facility licensees, including in-situ recovery facilities and conventional... Recovery Facility Surveys of Radon and Radon Progeny in Air and Demonstrations of Compliance AGENCY... Staff Guidance, ``Evaluations of Uranium Recovery Facility Surveys of Radon and Radon Progeny in Air and...

  4. Effects of air exchange property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements.

    PubMed

    Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S

    2012-11-01

    Pairs of diffusion chambers with different air exchange rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different air exchange properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.

  5. A method of discriminating transuranic radionuclides from radon progeny using low-resolution alpha spectroscopy and curve-fitting techniques.

    PubMed

    Konzen, Kevin; Brey, Richard

    2012-05-01

    ²²²Rn (radon) and ²²⁰Rn (thoron) progeny are known to interfere with determining the presence of long-lived transuranic radionuclides, such as plutonium and americium, and require from several hours up to several days for conclusive results. Methods are proposed that should expedite the analysis of air samples for determining the amount of transuranic radionuclides present using low-resolution alpha spectroscopy systems available from typical alpha continuous air monitors (CAMs) with multi-channel analyzer (MCA) capabilities. An alpha spectra simulation program was developed in Microsoft Excel visual basic that employed the use of Monte Carlo numerical methods and serial-decay differential equations that resembled actual spectra. Transuranic radionuclides were able to be quantified with statistical certainty by applying peak fitting equations using the method of least squares. Initial favorable results were achieved when samples containing radon progeny were decayed 15 to 30 min, and samples containing both radon and thoron progeny were decayed at least 60 min. The effort indicates that timely decisions can be made when determining transuranic activity using available alpha CAMs with alpha spectroscopy capabilities for counting retrospective air samples if accompanied by analyses that consider the characteristics of serial decay.

  6. Future initiatives to reduce lung cancer incidence in the United Kingdom: smoking cessation, radon remediation and the impact of social change.

    PubMed

    Denman, Antony R; Rogers, Stephen; Timson, Karen; Phillips, Paul S; Crockett, Robin Gm; Groves-Kirkby, Christopher J

    2015-03-01

    Smoking and radon cause lung cancer, with smoking being the more significant risk factor. Although programmes to identify UK houses with raised radon levels and to encourage remedial action started in 1990, uptake has been limited and those most at risk, smokers and young families, are not being reached. The risks from smoking and radon are multiplicative. Public health campaigns have reduced smoking prevalence significantly. Since most radon-induced lung cancers occur in smokers, reducing the number of smokers will reduce the number of radon-induced lung cancers. This article considers the impact of reducing smoking prevalence on the effectiveness of radon remediation programmes, combining this with demographic trends and regional variations to assess implications for future public health. Results on cost-effectiveness of smoking cessation and radon remediation programmes were combined with government figures for smoking prevalence to estimate the number of cancers averted and the cost-effectiveness of such programmes, taking into account demographic changes, including increasing life expectancy. Regional variations in smoking prevalence and smoking cessation programmes were reviewed, comparing these to the geographic variation of radon. The continuing impact of smoking cessation programmes in reducing smoking prevalence will reduce the number of radon-induced lung cancers, but with a lag. Smoking cessation programmes are more cost-effective than radon remediation programmes, presenting an additional opportunity to reduce radon risk to smokers. Regional data show no correlation between smoking prevalence and radon levels. Reduced smoking prevalence reduces the effectiveness of radon remediation programmes. This, coupled with limited uptake of radon remediation, suggests that radon remediation programmes should be targeted, and that an integrated public health policy for smoking and radon is appropriate. Lack of correlation between smoking prevalence and radon suggests that local assessment of relative priorities for public health strategies, such as the 'Total Place' initiative, is appropriate. © Royal Society for Public Health 2014.

  7. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    PubMed

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are generally clustered with no obvious correlation, the data from this study have substantially different relationships depending largely on the permeability of the underlying geology. Models for the relatively impermeable geological units plot parallel to the average indoor radon: soil ²²⁶Ra model but with lower indoor radon: soil ²²⁶Ra ratios, whilst the models for the permeable geological units plot parallel to the average indoor radon: soil ²²⁶Ra model but with higher than average indoor radon: soil ²²⁶Ra ratios. Copyright © 2010 Natural Environment Research Council. Published by Elsevier Ltd.. All rights reserved.

  8. STUDY OF RADON FLUX FROM SOIL IN BUDHAKEDAR REGION USING SRM.

    PubMed

    Bourai, A A; Aswal, Sunita; Kandari, Tushar; Kumar, Shiv; Joshi, Veena; Sahoo, B K; Ramola, R C

    2016-10-01

    In the present study, the radon flux rate of the soil is measured using portable radon monitor (scintillation radon monitor) in the Budhakedar region of District Tehri, India. The study area falls along a fault zone named Main Central Thrust, which is relatively rich in radium-bearing minerals. Radon flux rate from the soil is one of the most important factors for the evaluation of environmental radon levels. The earlier studies in the Budhakedar region shows a high level of radon (>4000 Bq m -3 ). Hence, it is important to measure the radon flux rate. The aim of the present study is to calculate the average estimate of the surface radon flux rate as well as the effective mass exhalation rate. A positive correlation of 0.54 was found between radon flux rate and radon mass exhalation rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Radon Testing for Safe Schools Act. Report (To Accompany S. 1697) from the Committee on Environment and Public Works, United States Senate, One Hundred First Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Environment and Public Works.

    This report was written to accompany the Radon Testing for Safe Schools Act (S.1697), a bill that provides for radon testing of schools located in high risk radon areas and provides limited financial assistance to schools for mitigation of high levels of radon. A description of radon, its harmful effects, and the radon levels detected in schools…

  10. Lung dosimetry for inhaled radon progeny in smokers.

    PubMed

    Baias, Paul F; Hofmann, Werner; Winkler-Heil, Renate; Cosma, Constantin; Duliu, Octavian G

    2010-02-01

    Cigarette smoking may change the morphological and physiological parameters of the lung. Thus the primary objective of the present study was to investigate to what extent these smoke-induced changes can modify deposition, clearance and resulting doses of inhaled radon progeny relative to healthy non-smokers (NSs). Doses to sensitive bronchial target cells were computed for four categories of smokers: (1) Light, short-term (LST) smokers, (2) light, long-term (LLT) smokers, (3) heavy, short-term (HST) smokers and (4) heavy, long-term (HLT) smokers. Because of only small changes of morphological and physiological parameters, doses for the LST smokers hardly differed from those for NSs. For LLT and HST smokers, even a protective effect could be observed, caused by a thicker mucus layer and increased mucus velocities. Only in the case of HLT smokers were doses higher by about a factor of 2 than those for NSs, caused primarily by impaired mucociliary clearance, higher breathing frequency, reduced lung volume and airway obstructions. These higher doses suggest that the contribution of inhaled radon progeny to the risk of lung cancer in smokers may be higher than currently assumed on the basis of NS doses.

  11. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  12. Radon intercomparisons at EML, January 1983 and February 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1985-02-01

    This report summarizes the results of two radon measurement intercomparison exercises held at the Environmental Measurements Laboratory (EML) in January 1983 and February 1984. Nineteen organizations, including five US federal facilities, one national laboratory, two state laboratories, six universities, three private sector laboratories and two non-US facilities participated in these exercises. The results indicate good agreement among the participants at /sup 222/Rn concentration levels of 50 and 80 pCi.L/sup -1/. Improvements in the EML calibration facilities, and the participation of two US laboratories in a Nuclear Energy Agency intercomparison program are also discussed. 8 references, 6 figures, 8 tables.

  13. Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India.

    PubMed

    Sahoo, Sushanta Ku; Katlamudi, Madhusudhanarao; Shaji, Jerin P; Murali Krishna, K S; Udaya Lakshmi, G

    2018-02-02

    The soil radon (Rn 222 ) and thoron (Rn 220 ) concentrations recorded at Badargadh and Desalpar observatories in the Kutch region of Gujarat, India, have been analyzed to study the sources of the radon emissions, earthquake precursors, and the influence of meteorological parameters on radon emission. Radon and meteorological parameters were recorded using Radon Monitor RMT 1688-2 at these two stations. We used the radon data during February 21, 2011 to June 8, 2011, for Badargadh and March 2, 2011 to May 19, 2011, for the Desalpar station with a sampling interval of 10 min. It is observed that the radon concentrations at Desalpar varies between 781 and 4320 Bq m -3 with an average value of 2499 Bq m -3 , whereas thoron varies between 191 and 2017 Bq m -3 with an average value of 1433.69 Bq m -3 . The radon concentration at Badargadh varies between 264 and 2221 Bq m -3 with an average value of 1135.4 Bq m -3 , whereas thoron varies between 97 and 556 Bq m -3 . To understand how the meteorological parameters influence radon emanation, the radon and other meteorological parameters were correlated with linear regression analysis. Here, it was observed that radon and temperature are negatively correlated whereas radon and other two parameters, i.e., humidity and pressure are positively correlated. The cross correlogram also ascertains similar relationships between radon and other parameters. Further, the ratio between radon and thoron has been analyzed to determine the deep or shallow source of the radon emanation in the study area. These results revealed that the ratio radon/thoron enhanced during this period which indicates the deeper source contribution is prominent. Incidentally, all the local earthquakes occurred with a focal depth of 18-25 km at the lower crust in this region. We observed the rise in the concentrations of radon and the ratio radon/thoron at Badargadh station before the occurrence of the local earthquakes on 29th March 2011 (M 3.7) and 17th May 2011 (M 4.2). We clearly observed the radon level crossing the mean + 2*sigma level before the occurrence of these events. We conclude that these enhanced radon emissions are linked with alteration of the crustal stress/strain in this region as this observing station is near the epicenters of the earthquakes. We did not observe considerable variations in radon at the Desalpar station which is far from the earthquake location.

  14. Development and management of a radon assessment strategy suitable for underground railway tunnelling projects.

    PubMed

    Purnell, C J; Frommer, G; Chan, K; Auch, A A

    2004-01-01

    The construction of underground tunnels through radon-bearing rock poses a radiation health risk to tunnelling workers from exposure to radon gas and its radioactive decay products. This paper presents the development and practical application of a radon assessment strategy suitable for the measurement of radon in tunnelling work environments in Hong Kong. The assessment strategy was successfully evaluated on a number of underground railway tunnelling projects over a 3 y period. Radon measurements were undertaken using a combination of portable radon measurement equipment and track etch detectors (TEDs) deployed throughout the tunnels. The radon gas monitoring results were used to confirm that ventilation rates were adequate or identified, at an early stage, when further action to reduce radon levels was required. Exposure dose estimates based on the TED results showed that the exposure of tunnel workers to radon did not exceed 3 mSv per annum for the duration of each project.

  15. Emanation of radon from household granite.

    PubMed

    Kitto, Michael E; Haines, Douglas K; Arauzo, Hernando Diaz

    2009-04-01

    Emanation of radon (222Rn) from granite used for countertops and mantels was measured with continuous and integrating radon monitors. Each of the 24 granite samples emitted a measurable amount of radon. Of the two analytical methods that utilized electret-based detectors, one measured the flux of radon from the granite surfaces, and the other one measured radon levels in a glass jar containing granite cores. Additional methods that were applied utilized alpha-scintillation cells and a continuous radon monitor. Measured radon flux from the granites ranged from 2 to 310 mBq m-2 s-1, with most granites emitting <20 mBq m-2 s-1. Emanation of radon from granites encapsulated in airtight containers produced equilibrium concentrations ranging from <0.01 to 11 Bq kg-1 when alpha-scintillation cells were used, and from <0.01 to 4.0 Bq kg-1 when the continuous radon monitor was used.

  16. Analysis of Radon and Radon Progeny in Residences: Factors that Affect Their Amounts and Methods of Reduction

    DTIC Science & Technology

    1985-03-01

    figures 6 - 14 a plot of the radon daughters concentration versua the Electronic Air Cleener operation time is shown. The variations in the daughter...34Uncertainties in the Measurement of Airborne Radon Daughters ," Health Physics, 39, 943-955 (1980). 4. Cliff, K.D. and others. "Radon Daughter Exposures in...Radon and Radon Daughters in Canadian Homes," Health Physics, 39: 285-289 (1980). 25. Nero, A.V. "Indoor Radiation Exposures from Rn-222 and its

  17. 40 CFR 35.101 - Environmental programs covered by the subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stat. 1344, 1373 (1997)). (2) Air pollution control (section 105 of the Clean Air Act). (3) Water... Control Act). (12) State indoor radon grants (section 306 of the Toxic Substances Control Act). (13) Toxic...

  18. State Indoor Radon Grants Guidance and Tools

    EPA Pesticide Factsheets

    This guidance explains the standardized state template for SIRG measures,as required by the OMB and answers questions about the template. The Program guidance is intended to reconcile all legal, policy and programmatic changes that affected SIRG.

  19. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  20. Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania).

    PubMed

    Cosma, Constantin; Cucoş-Dinu, Alexandra; Papp, Botond; Begy, Robert; Sainz, Carlos

    2013-02-01

    Radon contributes to over than 50% of the natural radiation dose received by people. In radon risk areas this contribution can be as high as 90-95%, leading to an exposure to natural radiation 5-10 times higher than normal. This work presents results from radon measurements (indoor, soil and exhalation from building materials) in Băiţa-Ştei, a former uranium exploitation area in NW Romania. In this region, indoor radon concentrations found were as high as 5000 Bq m(-3) and soil radon levels ranged from 20 to 500 kBq m(-3). An important contribution from building materials to indoor radon was also observed. Our results indicate two independent sources of indoor radon in the surveyed houses of this region. One source is coming from the soil and regular building materials, and the second source being uranium waste and local radium reached material used in building construction. The soil as source of indoor radon shows high radon potential in 80% of the investigated area. Some local building materials reveal high radon exhalation rate (up to 80 mBq kg(-1) h(-1) from a sandy-gravel material, ten times higher than normal material). These measurements were used for the radon risk classification of this area by combining the radon potential of the soil with the additional component from building materials. Our results indicate that Băiţa-Ştei area can be categorized as a radon prone area. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Effect of soil moisture on seasonal variation in indoor radon concentration: modelling and measurements in 326 Finnish houses

    PubMed Central

    Arvela, H.; Holmgren, O.; Hänninen, P.

    2016-01-01

    The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611

  2. Residents in a High Radon Potential Geographic Area: Their Risk Perception and Attitude toward Testing and Mitigation.

    ERIC Educational Resources Information Center

    Ferng, Shiaw-Fen; Lawson, Jay K.

    1996-01-01

    Results of a study in Boone County, Indiana--a high radon potential geographic area--show that residents' knowledge about radon is at a relatively superficial level. A significant correlation between radon knowledge and home radon tests is observed. Respondents chose the newspaper as the favorite medium through which to launch radon health…

  3. Effects of Radon Inhalation on Some Biophysical Properties of Blood in Rats

    NASA Astrophysics Data System (ADS)

    Essa, M. F.; Shahin, Fayez M.; Ahmed, Ashour M.; Abdel-Salam, Omar

    2013-03-01

    The major source of human exposure to natural radiation arises from the inhalation of radon (222Rn) gas. Exposure to high concentrations of radon 222Rn and its daughters for long period leads to pathological effects like lung cancer, leukaemia, skin cancer and kidney diseases. The present study was performed on rats to investigate the effect of radon exposure on the absorption spectra of hemoglobin. Measurements have been performed in a radon chamber where rats were exposed to radon for 1, 5 or 7 weeks. The inhalation of radon resulted in decrease in intensity of the absorption bands characterizing the hemoglobin molecular structure with increased radon doses.

  4. Significance of independent radon entry rate and air exchange rate assessment for the purpose of radon mitigation effectiveness proper evaluation: case studies.

    PubMed

    Froňka, A; Jílek, K; Moučka, L; Brabec, M

    2011-05-01

    Two new single-family houses identified as insufficient with regard to existing radon barrier efficiency, have been selected for further examination. A complex set of radon diagnosis procedures has been applied in order to localise and quantify radon entry pathways into the indoor environment. Independent assessment of radon entry rate and air exchange rate has been carried out using the continuous indoor radon measurement and a specific tracer gas application. Simultaneous assessment of these key determining factors has turned out to be absolutely crucial in the context of major cause identification of elevated indoor radon concentration.

  5. Experimental assessment of indoor radon and soil gas variability: the RADON project

    NASA Astrophysics Data System (ADS)

    Barbosa, S. M.; Pereira, A. J. S. C.; Neves, L. J. P. F.; Steinitz, G.; Zafrir, H.; Donner, R.; Woith, H.

    2012-04-01

    Radon is a radioactive noble gas naturally present in the environment, particularly in soils derived from rocks with high uranium content. Radon is formed by alpha decay from radium within solid mineral grains, but can migrate via diffusion and/or advection into the air space of soils, as well as into groundwater and the atmosphere. The exhalation of radon from the pore space of porous materials into the atmosphere of indoor environments is well known to cause adverse health effects due to the inhalation of radon's short-lived decay products. The danger to human health is particularly acute in the case of poorly ventilated dwellings located in geographical areas of high radon potential. The RADON project, funded by the Portuguese Science Foundation (FCT), aims to evaluate the temporal variability of radon in the soil and atmosphere and to examine the influence of meteorological effects in radon concentration. For that purpose an experimental monitoring station is being installed in an undisturbed dwelling located in a region of high radon potential near the old uranium mine of Urgeiriça (central Portugal). The rationale of the project, the set-up of the experimental radon monitoring station, and preliminary monitoring results will be presented.

  6. Radon in the Exhaled Air of Patients in Radon Therapy.

    PubMed

    Lettner, Herbert; Hubmer, Alexander; Hofmann, Werner; Landrichinger, Julia; Gaisberger, Martin; Winkler-Heil, Renate

    2017-11-01

    In the Gastein valley, numerous facilities use radon for the treatment of various diseases either by exposure to radon in air or in radon rich thermal water. In this study, six test persons were exposed to radon thermal water in a bathtub and the time-dependent radon activity concentration in the exhaled air was recorded. At temperatures between 38°C and 40°C, the radon activity concentration in the water was about 900 kBq/m3 in a total volume of 600 l, where the patients were exposed for 20 min, while continuously sampling the exhaled air during the bathing and 20 min thereafter. After entering the bath, the exhaled radon activity concentration rapidly increased, reaching some kind of saturation after 20 min exposure. The radon activity concentration in the exhaled air was about 8000 Bq/m3 at the maximum, with higher concentrations for male test persons. The total radon transfer from water to the exhaled air was between 480 and 1000 Bq, which is equivalent to 0.08% and 0.2% of the radon in the water. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    PubMed Central

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon. PMID:24748485

  8. Occurrence and distribution of arsenic and radon in water from private wells in the Rancocas aquifer, southern New Castle and northern Kent Counties, Delaware, 2015

    USGS Publications Warehouse

    Denver, Judith M.

    2016-10-12

    Water samples were collected and analyzed for arsenic and radon from 36 private, mostly domestic wells that tap the Rancocas aquifer in southern New Castle and northern Kent Counties, Delaware, during the summer of 2015. Both arsenic and radon are from natural mineral sources, in particular glauconitic and other marine-derived sediments, which are important components of the geologic formations comprising the Rancocas aquifer. Routine testing of domestic wells is not required in Delaware; as a result, many homeowners are not aware of potential water-quality problems with these chemicals in their well water. Arsenic has previously been detected at levels of potential concern for human health in this aquifer in adjacent parts of Maryland where it is referred to as the Aquia aquifer. Arsenic and radon also have previously been detected in several Rancocas aquifer wells in Delaware. The Delaware Department of Natural Resources and Environmental Control intends to use the data from this project to better identify areas with potential for levels of concern for domestic well owners. This report includes chemical results and maps showing the distribution of sampled wells and concentrations of arsenic and radon. All data collected for this study also are available in the U.S. Geological Survey’s National Water Information System database.Arsenic was detected above the minimum reporting limit of 0.1 micrograms per liter (µg/L) in 34 of the 36 wells sampled with concentrations ranging from about 0.11 to 27 µg/L. In 15 of the samples, arsenic concentrations were at or above the U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 10 µg/L for public wells. Most of the higher concentrations are clustered along a band running from the southwest to northeast in the southern part of the study area.Radon, which is an inert gas derived from radium, was detected in all water samples with concentrations ranging from 85 to 1,870 picocuries per liter (pCi/L). Currently, the EPA has not set a MCL for radon in public water systems. There were no samples where radon was detected at a concentration exceeding the proposed alternative MCL of 4,000 pCi/L. Samples from 16 of 36 wells were above the lower proposed MCL of 300 pCi/L. Most of these samples were from wells greater than 200 feet deep located in a similar part of the aquifer as the higher concentrations of arsenic along an east-northeasterly line in the southern part of the study area.

  9. Estimation of residential radon exposure and definition of Radon Priority Areas based on expected lung cancer incidence.

    PubMed

    Elío, J; Crowley, Q; Scanlon, R; Hodgson, J; Zgaga, L

    2018-05-01

    Radon is a naturally occurring gas, classified as a Class 1 human carcinogen, being the second most significant cause of lung cancer after tobacco smoking. A robust spatial definition of radon distribution in the built environment is therefore essential for understanding the relationship between radon exposure and its adverse health effects on the general population. Using Ireland as a case study, we present a methodology to estimate an average indoor radon concentration and calculate the expected radon-related lung cancer incidence. We use this approach to define Radon Priority Areas at the administrative level of Electoral Divisions (EDs). Geostatistical methods were applied to a data set of almost 32,000 indoor radon measurements, sampled in Ireland between 1992 and 2013. Average indoor radon concentrations by ED range from 21 to 338 Bq m -3 , corresponding to an effective dose ranging from 0.8 to 13.3 mSv y -1 respectively. Radon-related lung cancer incidence by ED was calculated using a dose-effect model giving between 15 and 239 cases per million people per year, depending on the ED. Based on these calculations, together with the population density, we estimate that of the approximately 2,300 lung cancer cases currently diagnosed in Ireland annually, about 280 may be directly linked to radon exposure. This figure does not account for the synergistic effect of radon exposure with other factors (e.g. tobacco smoking), so likely represents a minimum estimate. Our approach spatially defines areas with the expected highest incidence of radon-related lung cancer, even though indoor radon concentrations for these areas may be moderate or low. We therefore recommend that both indoor radon concentration and population density by small area are considered when establishing national radon action plans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    NASA Astrophysics Data System (ADS)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  11. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    PubMed Central

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  12. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them

    PubMed Central

    Read, Simon; McGale, Paul; Darby, Sarah

    2009-01-01

    Objective To determine the number of deaths from lung cancer related to radon in the home and to explore the cost effectiveness of alternative policies to control indoor radon and their potential to reduce lung cancer mortality. Design Cost effectiveness analysis. Setting United Kingdom. Data sources Epidemiological data on risks from indoor radon and from smoking, vital statistics on deaths from lung cancer, survey information on effectiveness and costs of radon prevention and remediation. Main outcome measures Estimated number of deaths from lung cancer related to indoor radon, lifetime risks of death from lung cancer before and after various potential interventions to control radon, the cost per quality adjusted life year (QALY) gained from different policies for control of radon, and the potential of those policies to reduce lung cancer mortality. Results The mean radon concentration in UK homes is 21 becquerels per cubic metre (Bq/m3). Each year around 1100 deaths from lung cancer (3.3% of all deaths from lung cancer) are related to radon in the home. Over 85% of these arise from radon concentrations below 100 Bq/m3 and most are caused jointly by radon and active smoking. Current policy requiring basic measures to prevent radon in new homes in selected areas is highly cost effective, and such measures would remain cost effective if extended to the entire UK, with a cost per QALY gained of £11 400 ( €12 200; $16 913). Current policy identifying and remediating existing homes with high radon levels is, however, neither cost effective (cost per QALY gained £36 800) nor effective in reducing lung cancer mortality. Conclusions Policies requiring basic preventive measures against radon in all new homes throughout the UK would be cost effective and could complement existing policies to reduce smoking. Policies involving remedial work on existing homes with high radon levels cannot prevent most radon related deaths, as these are caused by moderate exposure in many homes. These conclusions are likely to apply to most developed countries, many with higher mean radon concentrations than the UK. PMID:19129153

  13. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them.

    PubMed

    Gray, Alastair; Read, Simon; McGale, Paul; Darby, Sarah

    2009-01-06

    To determine the number of deaths from lung cancer related to radon in the home and to explore the cost effectiveness of alternative policies to control indoor radon and their potential to reduce lung cancer mortality. Cost effectiveness analysis. United Kingdom. Epidemiological data on risks from indoor radon and from smoking, vital statistics on deaths from lung cancer, survey information on effectiveness and costs of radon prevention and remediation. Estimated number of deaths from lung cancer related to indoor radon, lifetime risks of death from lung cancer before and after various potential interventions to control radon, the cost per quality adjusted life year (QALY) gained from different policies for control of radon, and the potential of those policies to reduce lung cancer mortality. The mean radon concentration in UK homes is 21 becquerels per cubic metre (Bq/m(3)). Each year around 1100 deaths from lung cancer (3.3% of all deaths from lung cancer) are related to radon in the home. Over 85% of these arise from radon concentrations below 100 Bq/m(3) and most are caused jointly by radon and active smoking. Current policy requiring basic measures to prevent radon in new homes in selected areas is highly cost effective, and such measures would remain cost effective if extended to the entire UK, with a cost per QALY gained of pound11,400 ( euro12 200; $16,913). Current policy identifying and remediating existing homes with high radon levels is, however, neither cost effective (cost per QALY gained pound36,800) nor effective in reducing lung cancer mortality. Policies requiring basic preventive measures against radon in all new homes throughout the UK would be cost effective and could complement existing policies to reduce smoking. Policies involving remedial work on existing homes with high radon levels cannot prevent most radon related deaths, as these are caused by moderate exposure in many homes. These conclusions are likely to apply to most developed countries, many with higher mean radon concentrations than the UK.

  14. High sensitivity detectors for measurement of diffusion, emanation and low activity of radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    Today's underground experiments require ultra-low background conditions. One of the most important source of background is radon. It is necessary to suppress it and consequently to detect very low radon concentration. In the frame of SuperNEMO collaboration experimental setups for measurement of low radon activity, radon diffusion through shielding foils and radon emanation from construction materials have been constructed in IEAP CTU in Prague and the obtained results are presented. The application of Timepix device in radon detection is briefly discussed.

  15. A continuous plutonium aerosol monitor for use in high radon environments.

    PubMed

    Li, HuiBin; Jia, MingYan; Li, GuoShen; Wang, YinDong

    2012-01-01

    Radon concentration is very high in underground basements and other facilities. Radon concentration in a nuclear facility locates in the granite tunnel can be as high as 10(4) Bq m(-3) in summer. Monitoring plutonium aerosol in this circumstance is seriously interfered by radon daughters. In order to solve this problem, a new continuous aerosol monitor that can monitor very low plutonium aerosol concentration in high radon background was developed. Several techniques were used to reduce interference of radon daughters, and the minimum detectable concentrations in various radon concentrations were measured.

  16. Radon mitigation in domestic properties and its health implications--a comparison between during-construction and post-construction radon reduction.

    PubMed

    Groves-Kirkby, C J; Denman, A R; Phillips, P S; Crockett, R G M; Woolridge, A C; Tornberg, R

    2006-05-01

    Although United Kingdom (UK) Building Regulations applicable to houses constructed since 1992 in Radon Affected Areas address the health issues arising from the presence of radon in domestic properties and specify the installation of radon-mitigation measures during construction, no legislative requirement currently exists for monitoring the effectiveness of such remediation once construction is completed and the houses are occupied. To assess the relative effectiveness of During-Construction radon reduction and Post-Construction remediation, radon concentration data from houses constructed before and after 1992 in Northamptonshire, UK, a designated Radon Affected Area, was analysed. Post-Construction remediation of 73 pre-1992 houses using conventional fan-assisted sump technology proved to be extremely effective, with radon concentrations reduced to the Action Level, or below, in all cases. Of 64 houses constructed since 1992 in a well-defined geographical area, and known to have had radon-barrier membranes installed during construction, 11% exhibited radon concentrations in excess of the Action Level. This compares with the estimated average for all houses in the same area of 17%, suggesting that, in some 60% of the houses surveyed, installation of a membrane has not resulted in reduction of mean annual radon concentrations to below the Action Level. Detailed comparison of the two data sets reveals marked differences in the degree of mitigation achieved by remediation. There is therefore an ongoing need for research to resolve definitively the issue of radon mitigation and to define truly effective anti-radon measures, readily installed in domestic properties at the time of construction. It is therefore recommended that mandatory testing be introduced for all new houses in Radon Affected Areas.

  17. Quantitative health impact of indoor radon in France.

    PubMed

    Ajrouche, Roula; Roudier, Candice; Cléro, Enora; Ielsch, Géraldine; Gay, Didier; Guillevic, Jérôme; Marant Micallef, Claire; Vacquier, Blandine; Le Tertre, Alain; Laurier, Dominique

    2018-05-08

    Radon is the second leading cause of lung cancer after smoking. Since the previous quantitative risk assessment of indoor radon conducted in France, input data have changed such as, estimates of indoor radon concentrations, lung cancer rates and the prevalence of tobacco consumption. The aim of this work was to update the risk assessment of lung cancer mortality attributable to indoor radon in France using recent risk models and data, improving the consideration of smoking, and providing results at a fine geographical scale. The data used were population data (2012), vital statistics on death from lung cancer (2008-2012), domestic radon exposure from a recent database that combines measurement results of indoor radon concentration and the geogenic radon potential map for France (2015), and smoking prevalence (2010). The risk model used was derived from a European epidemiological study, considering that lung cancer risk increased by 16% per 100 becquerels per cubic meter (Bq/m 3 ) indoor radon concentration. The estimated number of lung cancer deaths attributable to indoor radon exposure is about 3000 (1000; 5000), which corresponds to about 10% of all lung cancer deaths each year in France. About 33% of lung cancer deaths attributable to radon are due to exposure levels above 100 Bq/m 3 . Considering the combined effect of tobacco and radon, the study shows that 75% of estimated radon-attributable lung cancer deaths occur among current smokers, 20% among ex-smokers and 5% among never-smokers. It is concluded that the results of this study, which are based on precise estimates of indoor radon concentrations at finest geographical scale, can serve as a basis for defining French policy against radon risk.

  18. [Evaluation of radon levels in bank buildings: results of a survey on a major Italian banking group].

    PubMed

    Urso, Patrizia; Ronchin, M; Lietti, Barbara; Izzo, A; Colloca, G; Russignaga, D; Carrer, P

    2008-01-01

    Radon, the second cause of lung cancer after smoking, is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. Italian legislation recommends an action level of 500 Bq/m3 per year for occupational exposure in underground premises. Since banks usually use various underground premises (archives, safe-deposit room), a study was made of the radon levels on such premises with the aim of identifying useful monitoring strategies. 134 branches of a major Italian banking group were examined using 1817 nuclear track dosimeters at ground level and underground level premises. The branches were located in 7 Italian regions in the north (Piedmont, Lombardy, Veneto), centre (Lazio) and south (Campania, Apulia, Sicily). Information on measurement points was recorded in a technical sheet and statistical analysis was carried out. Annual underground measurements gave an average concentration of 157 Bq/m3, with 5.1% for 400 < C < 500 Bq/m3 and 2.9%for C > 500 Bq/m3. Seasonal variability was reflected in a significant decrease in concentrations between winter and spring (delta(mean)% = -47.3%) and good stability between autumn and winter (delta(mean)% = 3%); moreover quarterly concentrations account for 85% of the variability of the corresponding annual level. A multiple linear regression model (R2 = 0.33) indicated geographic location as the principal factor in radon accumulation, followed by underground level, humidity, use, lack of windows, heating and natural ventilation, and direct contact of at least one wall with ground rock; whereas the safe-deposit room structure seems to protect from radon accumulation. Moreover, the ground level measurement results were significantly associated with the corresponding underground average concentrations (p < 0.001). The results could be a useful tool in planning a monitoring strategy for assessment of bank worker exposure, especially for banking groups with a large number of branches.

  19. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.

    2011-10-27

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m{sup 2} and has 350 palm trees and the second farm is about 7000 m{sup 2} and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samplesmore » were taken from different depths and positions between the trees and from the irrigation reservoir.A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K.The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically.The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m{sup 3}. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.« less

  20. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  1. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, Jr., G. Harold

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  2. Automatically processed alpha-track radon monitor

    DOEpatents

    Langner, G.H. Jr.

    1993-01-12

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided.

  3. Development of a real-time radon monitoring system for simultaneous measurements in multiple sites

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Yamasoto, K.; Iida, T.

    1999-12-01

    A real-time radon monitoring system that can simultaneously measure radon concentrations in multiple sites was developed and tested. The system consists of maximum of four radon detectors, optical fiber cables and a data acquisition personal computer. The radon detector uses a plastic scintillation counter that collects radon daughters in the chamber electrostatically. The applied voltage on the photocathode for the photomultiplier tube (PMT) acts as an electrode for radon daughters. The thickness of the plastic scintillator was thin, 50 /spl mu/m, so as to minimize the background counts due to the environmental gamma rays or beta particles. The energy discriminated signals from the radon detectors are fed to the data acquisition personal computer via optical fiber cables. The system made it possible to measure the radon concentrations in multiple sites simultaneously.

  4. Radon Detection and Counting

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2004-11-01

    One of the daughter products of the naturally occuring U 238 decay chain is the colorless, odorless, inert gas radon. The daughter products of the radon, from Po 218 through Po 214, can remain in the lungs after breathing radon that has diffused into the atmosphere. Radon testing of homes before sale or purchase is necessary in many parts of the U.S. Testing can be accomplished by the simple procedure of exposing a canister of activated charcoal to the ambient air. Radon atoms in the air are adsorbed onto the surface of the charcoal, which is then sealed in the canister. Gamma rays of the daughter products of the radon, in particular Pb 214 and Bi 214, can then be detected in low background counting system. Radon remediation procedures are encouraged for radon activities in the air greater than 4 pCi/L.

  5. The use of mapped geology as a predictor of radon potential in Norway.

    PubMed

    Watson, Robin J; Smethurst, Mark A; Ganerød, Guri V; Finne, Ingvild; Rudjord, Anne Liv

    2017-01-01

    Radon exposure is considered to cause several hundred fatalities from lung-cancer each year in Norway. A national map identifying areas which are likely to be exposed to elevated radon concentrations would be a useful tool for decision-making authorities, and would be particularly important in areas where only few indoor radon measurements exist. An earlier Norwegian study (Smethurst et al. 2008) produced radon hazard maps by examining the relationship between airborne gamma-ray spectrometry, bedrock and drift geology, and indoor radon. The study was limited to the Oslo region where substantial indoor radon and airborne equivalent uranium datasets were available, and did not attempt to test the statistical significance of relationships, or to quantify the confidence of its predictions. While it can be anticipated that airborne measurements may have useful predictive power for indoor radon, airborne measurement coverage in Norway is at present sparse; to provide national coverage of radon hazard estimates, a good understanding of the relationship between geology and indoor radon is therefore important. In this work we use a new enlarged (n = 34,563) form of the indoor radon dataset with national coverage, and we use it to examine the relationship between geology and indoor radon concentrations. We use this relationship to characterise geological classes by their radon potential, and we produce a national radon hazard map which includes confidence limits on the likelihood of areas having elevated radon concentrations, and which covers the whole of mainland Norway, even areas where little or no indoor radon data are available. We find that bedrock and drift geology classes can account for around 40% of the total observed variation in radon potential. We test geology-based predictions of RP (radon potential) against locally-derived estimates of RP, and produce classification matrices with kappa values in the range 0.37-0.56. Our classifier has high predictive value but suffers from low sensitivities for radon affected areas. We investigate an alternative classification method based on a Naïve Bayes classifier which results in similar overall performance. The work forms part of an ongoing study which will eventually incorporate airborne equivalent uranium data, as and when new airborne data become available. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Radon measurement and mitigation activity in Finland.

    PubMed

    Valmari, T; Arvela, H; Reisbacka, H; Holmgren, O

    2014-07-01

    Radon prevention, measurement and mitigation activities have been increasing in Finland during the 2000s. Nowadays, many municipal authorities, especially those located in high-radon areas, require radon prevention measures. This has activated radon measurements. Owners of new houses having radon piping installed under the floor slab are the most active group to measure and reduce the found high-radon values. Their radon awareness is apparently better than on the average, and the existing piping makes it easier and cheaper to reduce the radon levels. Local campaigns involving invitation flyers mailed to the residents have been a cost-effective means to activate measurements of older houses. So far 116,611 dwellings in low-rise residential buildings have been measured. At least 15% of the 16,860 dwellings found to exceed the reference level of 400 Bq m(-3) had their indoor radon level reduced below that. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Radon Sampling, Building 54, Nellis AFB, NV

    DTIC Science & Technology

    2012-07-13

    BEF) performed radon testing in response to a concern of elevated radon levels in Building 54. The building was previously remediated to reduce the... TESTING METHODOLOGY: a. Test Scenario: Building 54 was chosen to test for radon gas levels. Radon detectors were placed in the test ...Consultative Letter 3. DATES COVERED (From – To) 22-24 March 2012 4. TITLE AND SUBTITLE Radon Sampling, Building 54, Nellis AFB, NV 5a. CONTRACT

  8. Temporal variations of radon in soil related to earthquakes.

    PubMed

    Planinić, J; Radolić, V; Lazanin, Z

    2001-08-01

    A radon detector with LR-115 nuclear track film was constructed for radon concentration measurements in soil. Temporal radon variations, as well as the barometric pressure, precipitation and temperature were measured for two years. Negative correlation between radon concentration in soil and barometric pressure was found. For some of the recorded earthquakes that occurred during the observation period, soil radon anomalies may be noticed one month before the quakes.

  9. The radon indicator

    NASA Astrophysics Data System (ADS)

    Samuelsson, L.

    2005-11-01

    The radon indicator is an efficient instrument for measuring the radon daughter concentrations in a house or dwelling. Physics or environmental science students could build a radon indicator as a student project. Another possibility would be to use a radon indicator in a student investigation of radon levels in different houses. Finally the radon indicator is an excellent device for producing a radioactive source, free of charge, for the study of α-, β- and γ-radiation. The half-life of the activity collected is approximately 40 min. The radon indicator makes use of an electrostatic method by which charged particles are drawn to a small aluminium plate with a high negative voltage (-5 kV), thus creating a strong electric field between the plate and a surrounding copper wire. The radioactivity on the plate is subsequently measured by a GM-counter and the result calculated in Bq m-3. The collecting time is just 5.5 min and therefore the instrument is only suitable for use in a short-time method for indicating the radon concentration. An improved diagram, ground-radon and/or wall-radon in houses, is presented on the basis of the author's measurements recorded with the radon indicator over many years. This diagram is very useful when discussing how to reduce radiation levels in homes.

  10. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Knutson, E.O.; Tu, K.W.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC).more » There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is <5,000 cm{sup -3}.« less

  11. An updated review of case-control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer?

    PubMed

    Sheen, Seungsoo; Lee, Keu Sung; Chung, Wou Young; Nam, Saeil; Kang, Dae Ryong

    2016-01-01

    Lung cancer is a leading cause of cancer-related death in the world. Smoking is definitely the most important risk factor for lung cancer. Radon ((222)Rn) is a natural gas produced from radium ((226)Ra) in the decay series of uranium ((238)U). Radon exposure is the second most common cause of lung cancer and the first risk factor for lung cancer in never-smokers. Case-control studies have provided epidemiological evidence of the causative relationship between indoor radon exposure and lung cancer. Twenty-four case-control study papers were found by our search strategy from the PubMed database. Among them, seven studies showed that indoor radon has a statistically significant association with lung cancer. The studies performed in radon-prone areas showed a more positive association between radon and lung cancer. Reviewed papers had inconsistent results on the dose-response relationship between indoor radon and lung cancer risk. Further refined case-control studies will be required to evaluate the relationship between radon and lung cancer. Sufficient study sample size, proper interview methods, valid and precise indoor radon measurement, wide range of indoor radon, and appropriate control of confounders such as smoking status should be considered in further case-control studies.

  12. An investigation into the knowledge and attitudes towards radon testing among residents in a high radon area.

    PubMed

    Clifford, Susan; Hevey, David; Menezes, Gerard

    2012-12-01

    The aim of this study was to investigate the knowledge and attitudes of residents in the Castleisland area to radon. Castleisland in Co. Kerry was described as a high radon area following the discovery of a house in the area with radon levels 245 times that of the national reference level. Residents in this area were then asked to measure their homes for radon in the Castleisland radon survey. The uptake of this measurement was 17%. In order to investigate this response rate further, a questionnaire was designed and distributed to residents in the Castleisland area. This questionnaire measured the testing history of the participants, the reasons for testing/not testing, the factors important to them when considering having their home tested, radon knowledge and finally intentions to measure their home for radon. It was found that the main reason people do not test their home for radon is that they believe their home does not have a problem. Optimistic bias was thought to play a role here. The subjective norm component of the theory of planned behaviour was found to have a significant independent contribution in the variation in intentions to measure one's home for radon and this in turn could be targeted to increase uptake of radon measurement in the future.

  13. Environmental radon exposure and childhood leukemia.

    PubMed

    Tong, Jian; Qin, Liqiang; Cao, Yi; Li, Jianxiang; Zhang, Jie; Nie, Jihua; An, Yan

    2012-01-01

    Despite the fact that animal and human epidemiological studies confirmed a link between radon exposure in homes and increased risk of lung cancer in general population, other types of cancers induced by radon, such as leukemia, have not been consistently demonstrated. The aim of this review was to summarize data published thus far from ecological and case-control studies in exposed populations, taking into account radon dose estimation and evidence of radon-induced genotoxicity, in an effort to clarify the correlation between home radon exposure and incidence of childhood leukemia. Among 12 ecological studies, 11 reported a positive association between radon levels and elevated frequency of childhood leukemia, with 8 being significant. In conjunction with ecological studies, several case-control studies on indoor radon exposure and childhood leukemia were examined, and most investigations indicated a weak association with only a few showing significance. A major source of uncertainty in radon risk assessment is radon dose estimate. Methods for radon exposure measurement in homes of children are one of the factors that affect the risk estimates in a case-control study. The effects of radon-induced genetic damage were studied both in vitro and in vivo using genetic endpoints including chromosomal aberration (CA), micronuclei (MN) formation, gene mutation, and deletions and insertions. By applying a meta-analysis, an increased risk of childhood leukemia induced by indoor radon exposure was noted for overall leukemia and for acute lymphoblastic leukemia (ALL). Data thus indicated an association between environmental radon exposure and elevated leukemia incidence, but more evidence is required in both human investigations and animal mechanistic research before this assumption may be confirmed with certainty.

  14. Radon concentration of waters in Greece and Cyprus

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and Alpha Guard are connected via plastic radon proof tubes. Forced degassing of radon gas is performed by circulating the air in the set up with the use of a pump. Water sampling (to avoid radon escape) was driven by a strict protocol. Water taps were opened for 10 minutes before drawing the sample. Glass storage vessels of 200 to 1000 ml, with adjustment glass stoppers with standard NS 29/32 grounding, as well as sealing rings and granted security clamps for taper grounding, were completely filled slowly and immediately closed (to avoid the formation of air bubbles). Similar procedure (except tap opening) was followed for underground and surface waters. Laboratory measurements were performed at least one hour after drawing the sample in order to assure the full decay of any thoron content and to the minimum achievable time interval, so as the radon content to be the highest possible to allow higher precision. For the measurement the glass stopper was removed and immediately exchanged with the degassing cap. Afterwards water quantity was reduced to about half and measured. From the measurements, the mean annual equivalent dose rate (aEDr) delivered to stomach due to ingestion and the contribution to aEDr due to inhalation of radon in drinking water were calculated as using the EURATOM 2001 dose conversion factor (0.00144 mSv/Bq). Radon concentrations in drinking waters ranged between (1.1+/-0.5) Bq/L and (15+/4) Bq/L. Only three samples collected from the radon prone area of Arnea Chalkidikis presented high radon concentrations (120+/20 Bq/L, 320+/-40 Bq/L, 410+/-50 Bq/L). Radon concentrations in underground waters ranged between (1.2+/-0.7) Bq/L and (14.7+/-1.1) Bq/L. The corresponding concentration range in surface waters was (2.7+/-0.8) Bq/L and (24+/-6) Bq/L. The radon concentrations in thermal waters (some of which are used for drinking) were quite higher (in the range of (220+/-20) to (340+/-40) Bq/L). In both countries, no correlation of radon in underground waters with depth was observed. In Cyprus, the highest water radon concentrations were found in Protaras region. The average value of radon in water resulted to an average contribution of 0.3% in respect to the average indoor radon concentration and mean annual effective dose. The corresponding values for Greece resulted to a 0.1% contribution. This contribution is considered quite low both for Cyprus and Greece (0.1%) and hence this part of effective dose may be considered of slighter significance compared to inhalation of total radon. Yet this contribution is comparable to the effective dose values delivered through medical uses of radiation. On the other hand, significant doses are delivered to stomach of the Cypriot and Greek population due to ingested radon following water consumption. The corresponding average annual dose rates were found equal to 0.085 mSv/y (S.D of 0.080 mSv/y) for Cyprus and 0.081 mSv/y (S.D of 0.081 mSv/y) for Greece.

  15. RADON MITIGATION IN SCHOOLS: CASE STUDIES OF RADON MITIGATION SYSTEMS INSTALLED BY EPA IN FOUR MARYLAND SCHOOLS ARE PRESENTED

    EPA Science Inventory

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air-conditioning -- HVAC-- system design and operation) that influence radon entry and mitigation system ...

  16. Field evaluations of digital radon detectors.

    PubMed

    Chen, Jing; Falcomer, Renato; Walker, Bill

    2007-11-01

    Recently, digital radon detectors were made available on the market for homeowners at a cost comparable to that charged by some service providers for a single radon test. Digital radon detectors provide an easy and less expensive way for homeowners to monitor radon levels in their homes. In order to answer a frequently asked question regarding the performance of such low-cost electronic radon detectors, field evaluations were conducted. Evaluation results are reported here.

  17. The Effects of Radon Exposure on Physical and Psychological Health

    DTIC Science & Technology

    1991-08-15

    by inhaled radon-222 at various equilibriums with radon daughters . In E. Karbe & J. F. Parke (Eds.) Experimental lung cancer. Carcinogenesis and...Relationship between the ’̂’°Pb content of teeth and exposure to radon and radon daughters . Health Physics. 47. 253-262. 49 Cohen, B. L. & Gromicko, N...ore dust, radon daughters , and diesel oil exhaust fumes in hamsters and dogs (Report No. DNL—2744). Richland, WA: Batelle Pacific Northwest

  18. Radon Assessment of Occupational Facilities, Homestead ARB, FL

    DTIC Science & Technology

    2013-11-21

    electrets is directly measured and used to calculate radon levels. The radon detectors were placed in the test locations for greater than 90 days in...of USAFSAM’s radon analysis. A proficiency test was last performed and passed on 18 July 2012. (2) Blanks: Six field blanks were used during the...voltage. 5. CONCLUSIONS AND RECOMMENDATIONS: a. All 46 facilities tested had radon concentrations below the action limit of 4 pCi/L; no radon

  19. Measurement of radon concentration in water using the portable radon survey meter.

    PubMed

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be <20 %, when the radon concentration in the mineral water was >20 Bq l(-1).

  20. Radon Exposure: Using the Spectrum of Prevention Framework to Increase Healthcare Provider Awareness.

    PubMed

    Worrell, Jane; Gibson, Phillip; Allen, Deborah

    2016-12-01

    The radioactive properties of radon have been known for decades, but the risks of exposure have been understated in most professional healthcare curriculums. Healthcare providers in areas with low levels of radon exposure may not consider radon to be a main source of concern in the development of lung and other cancers. Just as nurses counsel patients to avoid tobacco exposure, they should advocate that patients have their homes tested for radon. This article aims to increase radon awareness and address opportunities for providers to work toward various objectives to reduce radon exposure.
.

  1. Radon, smoking, and lung cancer: the need to refocus radon control policy.

    PubMed

    Lantz, Paula M; Mendez, David; Philbert, Martin A

    2013-03-01

    Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy.

  2. Effect of biogas generation on radon emissions from landfills receiving radium-bearing waste from shale gas development.

    PubMed

    Walter, Gary R; Benke, Roland R; Pickett, David A

    2012-09-01

    Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings. Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.

  3. Nanomaterial containing wall paints can increase radon concentration in houses located in radon prone areas.

    PubMed

    Haghani, M; Mortazavi, S M J; Faghihi, R; Mehdizadeh, S; Moradgholi, J; Darvish, L; Fathi-Pour, E; Ansari, L; Ghanbar-Pour, M R

    2013-09-01

    Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m-3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m(3) while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m(3). The difference between these means was statistically significant (P<0.001). To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes.

  4. Nanomaterial Containing Wall Paints Can Increase Radon Concentration in Houses Located in Radon Prone Areas

    PubMed Central

    Haghani, M.; Mortazavi, S. M. J.; Faghihi, R.; Mehdizadeh, S.; Moradgholi, J.; Darvish, L.; Fathi-Pour, E.; Ansari, L.; Ghanbar-pour, M. R.

    2013-01-01

    Background: Nowadays, extensive technological advancements have made it possible to use nanopaints which show exciting properties. In IR Iran excessive radon levels (up to 3700 Bq m–3) have been reported in homes located in radon prone areas. Over the past decades, concerns have been raised about the risk posed by residential radon exposure. Objective: This study aims at investigating the effect of using nanomaterial containing wall paints on radon concentration in homes. Methods: Two wooden model houses were used in this study. Soil samples from Ramsar high background radiation areas were used for simulating the situation of a typical house in radon-prone areas. Conventional water-soluble wall paint was used for painting the walls of the 1st house model; while the 2nd house model was painted with the same wall paint with montmorillonitenanoclay. Results: Three days after sealing the house models, radon level was measured by using a portable radon survey meter. The mean radon level inside the 1st house model (conventional paint) was 515.3 ± 17.8 Bq/m3 while the mean radon concentration in the 2nd house model (nano-painted house model) was 570.8 ± 18.5 Bq/m3. The difference between these means was statistically significant (P<0.001). Conclusion: To the best of our knowledge, this study is the first investigation on the effect of nano-material containing wall paints on indoor radon concentrations.  It can be concluded that nano-material-containing wall paints should not be used in houses with wooden walls located in radon prone areas. Although the mechanism of this effect is not clearly known, decreased porosity in nano-paints might be a key factor in increasing the radon concentration in homes. PMID:25505754

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.

    The exfoliated-cell micronucleus assay is a relatively new cytogenetic technique which can provide a measure of the genetic effect of exposure to carcinogens and mutagens in target tissues where tumors arise among exposed populations. It is responsive to the effects of ionizing radiation and tobacco smoke in some in vivo human cell systems, but has not been extensively field tested as an indicator of lung cancer-related effects, despite the public health importance of exposure to occupational and environmental lung carcinogens. In this study the exfoliated-cell micronucleus assay was used to assess effects of exposure to radon progeny and cigarette smokemore » in a population of uranium industry workers (including employees in underground and open-pit mines, mills, laboratories, and administrative offices); underground uranium miners experience markedly elevated lung cancer risk because of exposure to ionizing radiation from radon progeny. Ninety-nine workers were selected at random from among workers in Colorado Plateau uranium-related facilities who participated in a workplace sputum cytology screening program from 1964-1988. The prevalence of cells with micronuclei was determined by a manual assay of one sputum specimen for each worker under a light microscope. Occupational and smoking data obtained by interview during screening were used to classify exposure and smoking status at the time the sputum specimen was taken and to obtain information on potential confounders and effect modifiers; underground miners were classified as exposed to radon progeny, and others were considered unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of micronucleated cells. Crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CI 0.6-1.3), respectively, for radon exposure and smoking.« less

  6. Environmental Sensor Technologies and Procedures for Detecting and Identifying Indoor Air Pollution

    DTIC Science & Technology

    1992-03-01

    problem of radon or biological contaminants. Radon daughters --the radioactive decay products of radon gas-are most dangerous when they attach to a...entry points. Radon itself decays into radon daughters which are dangerous when they bond with dust particles that allow them to embed in the lining...because it contains respirable particles to which radon daughters can attach and embed in the lungs. The most direct way to check the ETS level is to

  7. Environmental Sensor Technologies and Procedures for Detecting and Identifying Indoor Air Pollution

    DTIC Science & Technology

    1992-03-01

    level of RSP in the air. RSP aggravates dust-related allergies. It also aggravates the problem of radon or biological contaminants. Radon daughters -the...the earth and is pulled into buildings through cracks in the foundation and other entry points. Radon itself decays into radon daughters which are...heart disease. ETS aggravates the danger of exposure to radon by a factor of 5 because it contains respirable particles to which radon daughters can

  8. Activation of Antioxidative Functions by Radon Inhalation Enhances the Mitigation Effects of Pregabalin on Chronic Constriction Injury-Induced Neuropathic Pain in Mice

    PubMed Central

    Horie, Shunsuke; Etani, Reo; Kanzaki, Norie; Sasaoka, Kaori; Kobashi, Yusuke; Hanamoto, Katsumi; Yamaoka, Kiyonori

    2016-01-01

    Radon inhalation brings pain relief for chronic constriction injury- (CCI-) induced neuropathic pain in mice due to the activation of antioxidative functions, which is different from the mechanism of the pregabalin effect. In this study, we assessed whether a combination of radon inhalation and pregabalin administration is more effective against neuropathic pain than radon or pregabalin only. Mice were treated with inhaled radon at a concentration of 1,000 Bq/m3 for 24 hours and pregabalin administration after CCI surgery. In mice treated with pregabalin at a dose of 3 mg/kg weight, the 50% paw withdrawal threshold of mice treated with pregabalin or radon and pregabalin was significantly increased, suggesting pain relief. The therapeutic effects of radon inhalation or the combined effects of radon and pregabalin (3 mg/kg weight) were almost equivalent to treatment with pregabalin at a dose of 1.4 mg/kg weight or 4.1 mg/kg weight, respectively. Radon inhalation and the combination of radon and pregabalin increased antioxidant associated substances in the paw. The antioxidant substances increased much more in radon inhalation than in pregabalin administration. These findings suggested that the activation of antioxidative functions by radon inhalation enhances the pain relief of pregabalin and that this combined effect is probably an additive effect. PMID:26798431

  9. Activation of Antioxidative Functions by Radon Inhalation Enhances the Mitigation Effects of Pregabalin on Chronic Constriction Injury-Induced Neuropathic Pain in Mice.

    PubMed

    Kataoka, Takahiro; Horie, Shunsuke; Etani, Reo; Kanzaki, Norie; Sasaoka, Kaori; Kobashi, Yusuke; Hanamoto, Katsumi; Yamaoka, Kiyonori

    2016-01-01

    Radon inhalation brings pain relief for chronic constriction injury- (CCI-) induced neuropathic pain in mice due to the activation of antioxidative functions, which is different from the mechanism of the pregabalin effect. In this study, we assessed whether a combination of radon inhalation and pregabalin administration is more effective against neuropathic pain than radon or pregabalin only. Mice were treated with inhaled radon at a concentration of 1,000 Bq/m(3) for 24 hours and pregabalin administration after CCI surgery. In mice treated with pregabalin at a dose of 3 mg/kg weight, the 50% paw withdrawal threshold of mice treated with pregabalin or radon and pregabalin was significantly increased, suggesting pain relief. The therapeutic effects of radon inhalation or the combined effects of radon and pregabalin (3 mg/kg weight) were almost equivalent to treatment with pregabalin at a dose of 1.4 mg/kg weight or 4.1 mg/kg weight, respectively. Radon inhalation and the combination of radon and pregabalin increased antioxidant associated substances in the paw. The antioxidant substances increased much more in radon inhalation than in pregabalin administration. These findings suggested that the activation of antioxidative functions by radon inhalation enhances the pain relief of pregabalin and that this combined effect is probably an additive effect.

  10. Diffusion of radon through concrete block walls: A significant source of indoor radon

    USGS Publications Warehouse

    Lively, R.S.; Goldberg, L.F.

    1999-01-01

    Basement modules located in southern Minnesota have been the site of continuous radon and environmental measurements during heating seasons since 1993. Concentrations of radon within the basement modules ranged from 70 Bq.m-3 to over 4000 Bq.m-3 between November to April during the three measurement periods. In the soil gas for the same times, concentrations of radon ranged between 25,000 and 70,000 Bq.m-3. Levels of radon within the basement modules changed by factors of five or more within 24 h, in concert with pressure gradients of 4 to 20 Pa that developed between the basement modules and their surroundings. Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules, and appears to be relatively independent of insulating materials and vapour retarders. The variability of radon and correlations with differential pressure gradients may be related to air currents in the block walls and soil that interrupt radon diffusing inward. This yields a net decrease of radon in the basement modules by decay and outward diffusion. Levels of radon within the basement modules increase when the pressure differential is zero and air flow ceases, allowing diffusion gradients to be re-established. Radon levels in both the soil and the basement modules then increase until an equilibrium is achieved.

  11. Coosa River Storage Annex, Talladega, Alabama. Environmental Investigation Report. Volume 1 of 2

    DTIC Science & Technology

    1992-09-01

    radon and radon daughters using an alpha track detector; and the interior surfaces of six igloos were analyzed for the presence of polychlorinated...ATSDR, 1990]. Radon gas is a health hazard due to its radioactive transformation or decay into radioactive by- products or radon daughters . As radon

  12. Hidden Hazards of Radon: Scanning the Country for Problem Locations.

    ERIC Educational Resources Information Center

    Gundersen, Linda C. S.

    1992-01-01

    Describes the geology of the radon problem in the United States and suggests how homeowners can cope with the radio active gas. Vignettes illustrate how and where radon is produced beneath the earth's surface, testing sites and procedures for radon in houses, and locations for potential radon problems across the United States. (MCO)

  13. RADON MITIGATION IN SCHOOLS: HVAC SYSTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    EPA Science Inventory

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  14. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    EPA Science Inventory

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  15. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  16. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure;more » radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.« less

  17. Radon: The Invisible Invader.

    ERIC Educational Resources Information Center

    School Leader, 1987

    1987-01-01

    A brief background on indoor radon and the health risks associated with radon exposure, with special emphasis on nonresidential buildings. One school district's experience in radon testing and monitoring is included. (MLF)

  18. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ajay, E-mail: ajay782@rediffmail.com; Sharma, Sumit, E-mail: sumitshrm210@gmail.com

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEARmore » [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].« less

  19. Radon, Smoking, and Lung Cancer: The Need to Refocus Radon Control Policy

    PubMed Central

    Mendez, David; Philbert, Martin A.

    2013-01-01

    Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy. PMID:23327258

  20. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  1. A combined analysis of North American case-control studies of residential radon and lung cancer.

    PubMed

    Krewski, Daniel; Lubin, Jay H; Zielinski, Jan M; Alavanja, Michael; Catalan, Vanessa S; Field, R William; Klotz, Judith B; Létourneau, Ernest G; Lynch, Charles F; Lyon, Joseph L; Sandler, Dale P; Schoenberg, Janet B; Steck, Daniel J; Stolwijk, Jan A; Weinberg, Clarice; Wilcox, Homer B

    2006-04-01

    Cohort studies have consistently shown underground miners exposed to high levels of radon to be at excess risk of lung cancer, and extrapolations based on those results indicate that residential radon may be responsible for nearly 10-15% of all lung cancer deaths per year in the United States. However, case-control studies of residential radon and lung cancer have provided ambiguous evidence of radon lung cancer risks. Regardless, alpha-particle emissions from the short-lived radioactive radon decay products can damage cellular DNA. The possibility that a demonstrated lung carcinogen may be present in large numbers of homes raises a serious public health concern. Thus, a systematic analysis of pooled data from all North American residential radon studies was undertaken to provide a more direct characterization of the public health risk posed by prolonged radon exposure. To evaluate the risk associated with prolonged residential radon exposure, a combined analysis of the primary data from seven large scale case-control studies of residential radon and lung cancer risk was conducted. The combined data set included a total of 4081 cases and 5281 controls, representing the largest aggregation of data on residential radon and lung cancer conducted to date. Residential radon concentrations were determined primarily by a-track detectors placed in the living areas of homes of the study subjects in order to obtain an integrated 1-yr average radon concentration in indoor air. Conditional likelihood regression was used to estimate the excess risk of lung cancer due to residential radon exposure, with adjustment for attained age, sex, study, smoking factors, residential mobility, and completeness of radon measurements. Although the main analyses were based on the combined data set as a whole, we also considered subsets of the data considered to have more accurate radon dosimetry. This included a subset of the data involving 3662 cases and 4966 controls with a-track radon measurements within the exposure time window (ETW) 5-30 yr prior to the index date considered previously by Krewski et al. (2005). Additional restrictions focused on subjects for which a greater proportion of the ETW was covered by measured rather than imputed radon concentrations, and on subjects who occupied at most two residences. The estimated odds ratio (OR) of lung cancer generally increased with radon concentration. The OR trend was consistent with linearity (p = .10), and the excess OR (EOR) was 0.10 per Bq/m3 with 95% confidence limits (-0.01, 0.26). For the subset of the data considered previously by Krewski et al. (2005), the EOR was 0.11 (0.00, 0.28). Further limiting subjects based on our criteria (residential stability and completeness of radon monitoring) expected to improve radon dosimetry led to increased estimates of the EOR. For example, for subjects who had resided in only one or two houses in the 5-30 ETW and who had a-track radon measurements for at least 20 yr of this 25-yr period, the EOR was 0.18 (0.02, 0.43) per 100 Bq/m3. Both estimates are compatible with the EOR of 0.12 (0.02, 0.25) per 100 Bq/m3 predicted by downward extrapolation of the miner data. Collectively, these results provide direct evidence of an association between residential radon and lung cancer risk, a finding predicted by extrapolation of results from occupational studies of radon-exposed underground miners.

  2. Variations of radon concentration in the atmosphere. Gamma dose rate

    NASA Astrophysics Data System (ADS)

    Tchorz-Trzeciakiewicz, D. E.; Solecki, A. T.

    2018-02-01

    The purposes of research were following: observation and interpretation of variations of radon concentration in the atmosphere - vertical, seasonal, spatial and analysis of relation between average annual radon concentration and ground natural radiation and gamma dose rate. Moreover we wanted to check the occurrence of radon density currents and the possibility of radon accumulation at the foot of the spoil tip. The surveys were carried out in Okrzeszyn (SW Poland) in the area of the spoil tip formed during uranium mining that took place in 60's of 20th century. The measurements were carried out in 20 measurements points at three heights: 0.2 m, 1 m and 2 m a.g.l. using SSNTD LR-115. The survey lasted one year and detectors were exchanged at the beginning of every season. Uranium eU (ppm), thorium eTh (ppm) and potassium K (%) contents were measured using gamma ray spectrometer Exploranium RS-230, ambient gamma dose rate using radiometer RK-100. The average radon concentration on this area was 52.8 Bq m-3. The highest radon concentrations were noted during autumn and the lowest during winter. We observed vertical variations of radon concentration. Radon concentrations decreased with increase of height above ground level. The decrease of radon with increase of height a.g.l. had logarithmic character. Spatial variations of radon concentrations did not indicate the occurrence of radon density currents and accumulation of radon at the foot of the spoil tip. The analysis of relation between average radon concentrations and ground natural radiation (uranium and thorium content) or gamma dose rate revealed positive relation between those parameters. On the base of results mentioned above we suggested that gamma spectrometry measurements or even cheaper and simpler ambient gamma dose rate measurements can be a useful tool in determining radon prone areas. This should be confirmed by additional research.

  3. Compact anti-radon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajt, L.; Kouba, P.; Mamedov, F.

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  4. Mapping radon-prone areas using γ-radiation dose rate and geological information.

    PubMed

    García-Talavera, M; García-Pérez, A; Rey, C; Ramos, L

    2013-09-01

    Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions.

  5. Radon in Schools

    MedlinePlus

    ... Radon Measurement in Schools Radon Prevention in the Design and Construction of Schools and Other Large Buildings ( ... techniques and quality assurance to address complicated building designs and specialized airflow. Protocols for Measuring Radon and ...

  6. Evaluation of the intake of radon through skin from thermal water

    PubMed Central

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-01-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model—the skin permeability coefficient K (m s−1)—were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). PMID:26983980

  7. Lung cancer prevalence associated with radon exposure in Norwegian homes.

    PubMed

    Hassfjell, Christina Søyland; Grimsrud, Tom Kristian; Standring, William J F; Tretli, Steinar

    2017-08-22

    Radioactive radon gas is generated from uranium and thorium in underlying rocks and seeps into buildings. The gas and its decay products emit carcinogenic radiation and are regarded as the second most important risk factor for lung cancer after active tobacco smoking. The average radon concentration in Norwegian homes is higher than in most other Western countries. From a health and cost perspective, it is important to be able to quantify the risk of lung cancer posed by radon exposure. We estimated the radon-related risk of lung cancer in Norway based on risk estimates from the largest pooled analysis of European case-control studies, combined with the hitherto largest set of data on radon concentration measurements in Norwegian homes. Based on these estimates, we calculate that radon is a contributory factor in 12 % of all cases of lung cancer annually, assuming an average radon concentration of 88 Bq/m3 in Norwegian homes. For 2015, this accounted for 373 cases of lung cancer, with an approximate 95 % confidence interval of 145 – 682. Radon most likely contributes to a considerable number of cases of lung cancer. Since most cases of radon-associated lung cancer involve smokers or former smokers, a reduction of the radon concentration in homes could be a key measure to reduce the risk, especially for persons who are unable to quit smoking. The uncertainty in the estimated number of radon-associated cases can be reduced through a new national radon mapping study with an improved design.

  8. Radon as a causative factor in induction of myeloid leukaemia and other cancers.

    PubMed

    Henshaw, D L; Eatough, J P; Richardson, R B

    1990-04-28

    The international incidence of myeloid leukaemia, cancer of the kidney, melanoma, and certain childhood cancers all show significant correlation with radon exposure in the home. For myeloid leukaemia, analysis suggests that in the UK 6-12% of incidence may be attributed to radon. In Cornwall, where radon levels are higher, the range is 23-43%. For the world average radon exposure of 50 Bq.m-3, 13-25% of myeloid leukaemia at all ages may be caused by radon.

  9. Indoor radon survey in Visegrad countries.

    PubMed

    Műllerová, Monika; Kozak, Krzysztof; Kovács, Tibor; Smetanová, Iveta; Csordás, Anita; Grzadziel, Dominik; Holý, Karol; Mazur, Jadwiga; Moravcsík, Attila; Neznal, Martin; Neznal, Matej

    2016-04-01

    The indoor radon measurements were carried out in 123 residential buildings and 33 schools in Visegrad countries (Slovakia, Hungary and Poland). In 13.2% of rooms radon concentration exceeded 300Bqm(-3), the reference value recommended in the Council Directive 2013/59/EURATOM. Indoor radon in houses shows the typical radon behavior, with a minimum in the summer and a maximum in the winter season, whereas in 32% of schools the maximum indoor radon was reached in the summer months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Error in measuring radon in soil gas by means of passive detectors

    USGS Publications Warehouse

    Tanner, A.B.

    1991-01-01

    Passive detection of radon isotopes depends on diffusion of radon atoms from the sites of their generation to the location of the detecting or collecting device. Because some radon decays en route to a passive detector in soil, the radon concentration measured by the detector must be less than the concentration in those soil pores where it is undiminished by diffusion to the detector cavity. The true radon concentration may be significantly underestimated in moist soils. -Author

  11. Using geographic information systems for radon exposure assessment in dwellings in the Oslo region, Norway

    NASA Astrophysics Data System (ADS)

    Kollerud, R.; Blaasaas, K.; Ganerød, G.; Daviknes, H. K.; Aune, E.; Claussen, B.

    2014-04-01

    Radon exposures were assigned to each residential address in the Oslo region using a geographic information system (GIS) that included indoor radon measurements. The results will be used in an epidemiologic study regarding leukemia and brain cancer. The model is based on 6% of measured residential buildings. High density of indoor radon measurements allowed us to develop a buffer model where indoor radon measurements found around each dwelling were used to assign a radon value for homes lacking radon measurement. Intraclass correlation coefficients (ICCs) were used to study the agreement between radon values from the buffer method, from indoor radon values of measured houses, and from a regression model constructed with radiometric data (eTh, eU) and bedrock geology. We obtained good agreement for both comparisons with ICC values between 0.54 and 0.68. GIS offers a useful variety of tools to study the indoor-radon exposure assessment. By using the buffer method it is more likely that geological conditions are similar within the buffer and this may take more into account the variation of radon over short distances. It is also probable that short-distance-scale correlation patterns express similarities in building styles and living habits. Although the method has certain limitations, we regard it as acceptable for use in epidemiological studies.

  12. Radon as an Anthropogenic Indoor Air Pollutant

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Crockett, Robin

    2016-04-01

    Radon is generally regarded as a naturally occurring radiological hazard but we report here measurements of significant, hazardous radon concentrations that arise from man-made sources, including granite ornaments/artefacts, uranium glass and glazed objects as well radium dial watches. This presentation concerns an examination and assessment of health risks from radium and uranium found in historical artefacts, many of which were once viewed as everyday items, and the radon that emanates from them. Such objects were very popular in industrialised countries such as the USA, UK and European countries) particularly between and including the two World Wars but are still readily available. A watch collection examined gave rise to a hazardous radon concentration of 13.24 kBq•m-3 approximately 67 times the Domestic Action Level of 200 Bq•m-3.The results for an aircraft altimeter are comparable to those of the watches, indicating radon activity equivalent to several watches, and also indicate an equilibrium concentration in the 16.3 m3 room ca. 33 times the UK domestic Action Level. Results from a granite block indicate a radon emanation of 19.7 Bq•kg-1, but the indicated equilibrium concentration in the 16.3 m3 room is only ca. 1.7% of the UK domestic Action Level. Uranium-glazed crockery and green uranium glass were scoped for radon activity. The former yielded a radon concentration of ca. 44 Bq•m-3 in a small (7 L) sealed container. The latter yielded a lower radon concentration in a larger (125 L) sealed container of ca. 6 Bq•m-3. This is barely above the background radon concentration in the laboratory, which was typically ca. 1-2 Bq•m-3. Individual items then are capable of giving rise to radon concentrations in excess of the UK Domestic Action Level in rooms in houses, particularly if poorly ventilated. We highlight the gap in the remediation protocols, which are focused on preventing radon entering buildings from outside, with regard to internally-generated radon hazards. We conclude with a recommendation that radon as arising from artefacts and ornaments is considered appropriately in radon protocols and guidelines.

  13. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.

  14. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Girault, F.; Pili, E.

    2017-12-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.

  15. Assessment of the unattached fraction of indoor radon progeny and its contribution to dose: a pilot study in China.

    PubMed

    Guo, Qiuju; Zhang, Lei; Guo, Lu

    2012-12-01

    The unattached fraction of radon progeny (f(p)) is one of the most important factors for accurate evaluation of the effective dose from a unit of radon exposure, and it may vary greatly in different environments. For precise evaluation of the indoor radon exposure dose and the influence of unattached radon progeny, a pilot survey of f(p) in different environments was carried out in China with a portable and integrating monitor. The dose conversion factors for radon progeny are calculated with LUDEP(®) code, and the dose contributions from the unattached and the attached radon progenies were simultaneously evaluated based on the results of field measurements. The results show that even though the concentrations of radon progeny vary significantly among different indoor environments, the variations of f(p) seem relatively small (9.3-16.9%). The dose contribution from unattached radon progeny is generally larger (30.2-46.2%) in an indoor environment.

  16. Radon as a Source of External Background at Homestake Mine

    NASA Astrophysics Data System (ADS)

    Thomas, Keenan; Mei, Dongming; Zhang, Chao; Gray, Fred; Gaitskell, Richard; Fiorucci, Simon

    2009-05-01

    External sources of radioactivity are important concerns for experiments planned for DUSEL at the Homestake Mine in Lead, South Dakota. Radon emanation and deposition is a major threat to the targeted sensitivity of low background experimentation such as double beta decay detection and dark matter searches. Methods to reduce and mitigate these measured levels will need to be developed to prevent experimental signals from contamination through airborne radon decays as well as the deposition of radon daughters. Radon levels were measured at various depths at the Homestake Mine in December of 2008, January and March of 2009. These measurements will be useful in the development of an underground ventilation system to dilute radon concentrations in the air and subsequent systems to provide radon-free air to clean rooms, as well as preparing researchers for the hazards they pose to their experiments. In addition, the measured radon level will be used to understand the radon emanation from different types of rock.

  17. First Map of Residential Indoor Radon Measurements in Azerbaijan.

    PubMed

    Hoffmann, M; Aliyev, C S; Feyzullayev, A A; Baghirli, R J; Veliyeva, F F; Pampuri, L; Valsangiacomo, C; Tollefsen, T; Cinelli, G

    2017-06-15

    This article describes results of the first measurements of indoor radon concentrations in Azerbaijan, including description of the methodology and the mathematical and statistical processing of the results obtained. Measured radon concentrations varied considerably: from almost radon-free houses to around 1100 Bq m-3. However, only ~7% of the total number of measurements exceeded the maximum permissible concentrations. Based on these data, maps of the distribution of volumetric activity and elevated indoor radon concentrations in Azerbaijan were created. These maps reflect a mosaic character of distribution of radon and enhanced values that are confined to seismically active areas at the intersection of an active West Caspian fault with sub-latitudinal faults along the Great and Lesser Caucasus and the Talysh mountains. Spatial correlation of radon and temperature behavior is also described. The data gathered on residential indoor radon have been integrated into the European Indoor Radon Map. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Monitoring trends in civil engineering and their effect on indoor radon.

    PubMed

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Novel determination of radon-222 velocity in deep subsurface rocks and the feasibility to using radon as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zafrir, Hovav; Ben Horin, Yochai; Malik, Uri; Chemo, Chaim; Zalevsky, Zeev

    2016-09-01

    A novel technique utilizing simultaneous radon monitoring by gamma and alpha detectors to differentiate between the radon climatic driving forces and others has been improved and used for deep subsurface investigation. Detailed long-term monitoring served as a proxy for studying radon movement within the shallow and deep subsurface, as well as for analyzing the effect of various parameters of the radon transport pattern. The main achievements of the investigation are (a) determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m/h on average; (b) distinguishing between the diurnal periodical effect of the ambient temperature and the semidiurnal effect of the ambient pressure on the radon temporal spectrum; and (c) identification of a radon random preseismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone.

  20. Radon exhalation rates from building materials using electret ion chamber radon monitors in accumulators.

    PubMed

    Kotrappa, Payasada; Stieff, Frederick

    2009-08-01

    An electret ion chamber (EIC) radon monitor in a sealed accumulator measures the integrated average radon concentration at the end of the accumulation duration. Theoretical equations have been derived to relate such radon concentrations (Bq m(-3) ) to the radon emanation rate (Bq d(-1)) from building materials enclosed in the accumulator. As an illustration, a 4-L sealable glass jar has been used as an accumulator to calculate the radon emanation rate from different granite samples. The radon emanation rate was converted into radon flux (Bq mm(-2) d(-1)) by dividing the emanation rate by surface area of the sample. Fluxes measured on typical, commercially available granites ranged from 20-30 Bq m(-2) d(-1). These results are similar to the results reported in the literature. The lower limit of detection for a 2-d measurement works out to be 7 Bq m(-2) d(-1). Equations derived can also be used for other sealable accumulators and other integrating detectors, such as alpha track detectors.

  1. Residential radon exposure and risk of lung cancer in Missouri.

    PubMed Central

    Alavanja, M C; Lubin, J H; Mahaffey, J A; Brownson, R C

    1999-01-01

    OBJECTIVES: This study investigated residential radon exposure and lung cancer risk, using both standard radon dosimetry and a new radon monitoring technology that, evidence suggests, is a better measure of cumulative radon exposure. METHODS: Missouri women (aged 30 to 84 years) newly diagnosed with primary lung cancer during the period January 1, 1993, to January 31, 1994, were invited to participate in this population-based case-control study. Both indoor air radon detectors and CR-39 alpha-particle detectors (surface monitors) were used. RESULTS: When surface monitors were used, a significant trend in lung cancer odds ratios was observed for 20-year time-weighted-average radon concentrations. CONCLUSIONS: When surface monitors were used, but not when standard radon dosimetry was used, a significant lung cancer risk was found for radon concentrations at and above the action level for mitigation of houses currently used in the United States (148 Bqm-3). The risk was below the action level used in Canada (750 Bqm-3) and many European countries (200-400 Bqm-3). PMID:10394313

  2. Numerical and analytical assessment of radon diffusion in various media and potential of charcoal as radon detector

    NASA Astrophysics Data System (ADS)

    Rybalkin, Andrey

    Numerical assessments of radon diffusion together with analytical estimates for short-time and long-time exposure were the first objective of this thesis with the goal to demonstrate how radon propagates in various media. Theoretical predictions were compared to numerical simulations, and obtained values of total radon activities inside each material match quite well with the analytical estimates. These estimates, for activated and nonactivated charcoal, were then used to evaluate the possibility of designing a charcoal system to be used as a radon detector. Another objective was to use nonactivated charcoal samples and measure the level of radon accumulation, and use these data to estimate radon diffusion and adsorption coefficients. The analytical approach was developed to estimate these values. Radon adsorption coefficient in nonactivated charcoal was found to be from 0.2 to 0.4 m3/kg. Radon diffusion coefficient for nonactivated charcoal is in the range of 1.2×10-11 to 5.1×10-10 m2/s in comparison to activated charcoal with adsorption coefficient of 4 m3/kg and diffusion coefficient of 1.43×10-9 m2/s. The third objective was to use GEANT4 numerical code to simulate decay of 238U series and 222Rn in an arbitrary soil sample. Based on that model, the goal was to provide a guideline for merging GEANT4 radioactive decay modeling with the diffusion of radon in a soil sample. It is known that radon can be used as an earthquake predictor by measuring its concentration in groundwater, or if possible, along the faults. Numerical simulations of radon migration by diffusion only were made to estimate how fast and how far radon can move along the fault strands. Among the known cases of successful correlations between radon concentration anomalies and earthquake are the 1966 Tashkent and 1976 Songpan-Pingwu earthquakes. Thus, an idea of radon monitoring along the Wasatch Fault, using system of activated/nonactivated charcoals together with solid state radon detectors is suggested in the thesis. Also, the use of neutron activation analysis for soil samples, collected along and away from Wasatch Fault, and looking for the trace elements can result in correlation with earthquakes, occurred in the past. This approach can be used for earthquake prediction in future.

  3. Radon Testing in Schools.

    ERIC Educational Resources Information Center

    Wheeler, Robert

    1989-01-01

    Schools may be a significant source of radon exposure for children and staff. Describes radon detection kits and technologies, when to use them, and what action to take given the results of a radon test. (MLF)

  4. Radon programmes and health marketing.

    PubMed

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  5. Testing radon mitigation techniques in a pilot house from Băiţa-Ştei radon prone area (Romania).

    PubMed

    Cosma, Constantin; Papp, Botond; Cucoş Dinu, Alexandra; Sainz, Carlos

    2015-02-01

    This work presents the implementation and testing of several radon mitigation techniques in a pilot house in the radon prone area of Băiţa-Ştei in NW part of Romania. Radon diagnostic investigations in the pilot house showed that the main source of radon was the building sub-soil and the soil near the house. The applied techniques were based on the depressurization and pressurization of the building sub-soil, on the combination of the soil depressurization system by an electric and an eolian fans. Also, there was made an application of a radon barrier membrane and a testing by the combination of the radon membrane by the soil depressurization system. Finally, the better obtained remedial efficiency was about 85%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    This report documents radionuclide air emissions that result in the 2014 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI due to routine major andmore » minor point source emissions in 2014 from PNNL Campus sources is 2E 05 mrem (2E-07 mSv) EDE. The dose from all fugitive sources is 3E-6 mrem (3E-8 mSv) EDE. The dose from radon emissions is 1E-6 mrem (1E-8 mSv) EDE. No nonroutine emissions occurred in 2014. The total radiological dose for 2014 to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 3E-5 mrem (3E-7 mSv) EDE, or more than 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Campus is in compliance.« less

  7. Assessing the deposition of radon progeny from a uranium glass necklace.

    PubMed

    Hansen, M F; Moss, G R

    2015-06-01

    Could jewellery made from uranium glass beads pose an increased risk to skin cancer? The literature Eatough (Alpha-particle dosimetry for the basal layer of the skin and the radon progeny (218)Po and (214)Po. Phys. Med. Biol. 1997; 42: 1899-1911.) suggests that the alphas from the short-lived radon daughters, (218)Po and (214)Po, may reach the basal layer of the epidermis, which is believed to be important in the induction of skin cancers. The deposition of the alphas from the (218)Po and (214)Po daughters was investigated using PADC detector material. The expectation would be that no alpha particles would penetrate through the dead skin layer, assuming the average of 70 microns used in radiation protection, but the skin around the collar bone could potentially be thinner than the assumed average. It should be noticed that by inserting a slice of pig skin in between the necklace and the PADC, no great excess of alpha tracks were seen after 1 week of exposure in the freezer. There was, however, a clear signal through the pig skin from beta particles, confirming the potential of a uranium bead necklace posing a health risk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Controlling alpha tracks registration in Makrofol DE 1-1 detector

    NASA Astrophysics Data System (ADS)

    Hassan, N. M.; Hanafy, M. S.; Naguib, A.; El-Saftawy, A. A.

    2017-09-01

    Makrofol DE 1-1 is a recent type of solid state nuclear track detectors could be used to measure radon concentration in the environment throughout the detection of α-particles emitted from radon decay. Thus, studying the physical parameters that control the formation of alpha tracks is vital for environmental radiation protection. Makrofol DE 1-1 polycarbonate detector was irradiated by α-particles of energies varied from 2 to 5 MeV emitted from the 241Am source of α-particle energy of 5.5 MeV. Then, the detector was etched in an optimum etching solution of mixed ethyl alcohol in KOH aqueous solution of (85% (Vol.) of 6 M KOH + 15% (Vol.) C2H5OH) at 50 °C for 3 h. Afterward, the bulk etch rate, etching sensitivity, and the registration efficiency of the detector, which control the tracks registration, were measured. The bulk etch rate of Makrofol detector was found to be 3.71 ± 0.71 μm h-1. The etching sensitivity and the detector registration efficiency were decreased exponentially with α-particles' energies following Bragg curve. A precise registration of α-particle was presented in this study. Therefore, Makrofol DE 1-1 can be applied as a radiation dosimeter as well as radon and thoron monitors.

  9. Radon Concentration in the Drinking Water of Aliabad Katoul, Iran.

    PubMed

    Adinehvand, Karim; Sahebnasagh, Amin; Hashemi-Tilehnoee, Mehdi

    2016-07-01

    According to the world health organization, radon is a leading cause of cancer in various internal organs and should be regarded with concern. The aim of this study is to evaluate the concentration of soluble radon in the drinking water of the city of Aliabad Katoul, Iran. The radon concentration was measured by using a radon meter, SARAD(TM) model RTM 1688-2, according to accepted standards of evaluation. The mean radon concentration in the drinking water of Aliabad Katoul is 2.90 ± 0.57 Bq/L. The radon concentration in Aliabad Katoul is below the limit for hazardous levels, but some precautions will make conditions even safer for the local populace.

  10. Use of radon and cosmogenic radionuclides as indicators of exchange between troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.

    1994-01-01

    This research grant covered participation in the operational phase of NASA's Stratosphere-Troposphere Exchange Project (STEP), a multi-agency airborne science program conducted aboard NASA U-2 and ER-2 high altitude research aircraft. The primary goals of STEP were to investigate the mechanisms of irreversible movement of mass, trace gases, and aerosols from the troposphere into the stratosphere, and to explain the observed dryness of the stratosphere. Three flight experiments were conducted to address these questions: two extratropical experiments, in 1984 and 1986, and a tropical experiment, in 1987. The cosmogenic radionuclides Be-7 and P-32, produced in the stratosphere by cosmic rays, and Rn-222 (radon), emitted from continental soils, were well-suited as tracers of intra-stratospheric air mass movements, and to follow episodes of troposphere to stratosphere exchange. Measurements of Be-7 and P-32 were made in all three STEP experiments. Measurements of radon were made in the tropical experiment only. The equipment worked well, and produced a valuable data set in support of the STEP objectives, as indicated by the 'quick-look' results outlined.

  11. Management of radon: a review of ICRP recommendations.

    PubMed

    Vaillant, Ludovic; Bataille, Céline

    2012-09-01

    This article proposes a review of past and current ICRP publications dealing with the management of radon exposures. Its main objective is to identify and discuss the driving factors that have been used by the Commission during the last 50 years so as to better appreciate current issues regarding radon exposure management. The analysis shows that major evolutions took place in very recent years. As far as the management of radon exposures is concerned, ICRP recommended, until ICRP Publication 103 (ICRP 2007 ICRP Publication 103; Ann. ICRP 37), to use action levels and to consider only exposures above these levels. The Commission has reviewed its approach and now proposes to manage any radon exposure through the application of the optimisation principle and associated reference levels. As far as the assessment of the radon risk is concerned, it appears that the successive changes made by ICRP did not have a strong impact on the values of radon gas concentration recommended as action levels either in dwellings or in workplaces. The major change occurred in late 2009 with the publication of the ICRP Statement on Radon, which acknowledged that the radon risk has been underestimated by a factor of 2, thus inducing a major revision of radon reference levels.

  12. Potential health effects of indoor radon exposure.

    PubMed Central

    Radford, E P

    1985-01-01

    Radon-222 is a ubiquitous noble gas arising from decay of radium-226 normally present in the earth's crust. Alpha radiation from inhaled short-lived daughters of radon readily irradiates human bronchial epithelium, and there is now good evidence of excess risk of lung cancer in underground miners exposed to higher concentrations. In homes, radon levels are highly variable, showing approximately log-normal distributions and often a small fraction of homes with high concentrations of radon and radon daughters. Factors affecting indoor concentrations include type of bedrock under dwellings, house foundation characteristics, radon dissolved in artesian water, and ventilation and degree of air movement in living spaces. Despite much recent work, exposures to radon daughters by the general public are not well defined. From application of risk assessments in miners to home conditions, it appears that about 25% or more of lung cancers among nonsmokers over the age of 60, and about 5% in smokers, may be attributable to exposure to radon daughters at home. It may be necessary to take remedial action to reduce this hazard in those dwellings with elevated levels of radon, and new construction should take account of this problem. PMID:4085431

  13. Radon exhalation from building materials for decorative use.

    PubMed

    Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim

    2010-04-01

    Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of themore » isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer`s classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation.« less

  15. Lung cancer incidence attributable to residential radon exposure in Alberta in 2012

    PubMed Central

    Grundy, Anne; Brand, Kevin; Khandwala, Farah; Poirier, Abbey; Tamminen, Sierra; Friedenreich, Christine M.; Brenner, Darren R.

    2017-01-01

    Background: Radon is carcinogenic, and exposure to radon has been shown to increase the risk of lung cancer. The objective of this study was to quantify the proportion and number of lung cancer cases in Alberta in 2012 that could be attributed to residential radon exposure. Methods: We estimated the population attributable risk of lung cancer for residential radon using radon exposure data from the Cross-Canada Survey of Radon Concentrations in Homes from 2009-2011 and data on all-cause and lung cancer mortality from Statistics Canada from 2008-2012. We used cancer incidence data from the Alberta Cancer Registry for 2012 to estimate the total number of lung cancers attributable to residential radon exposure. Estimates were also stratified by sex and smoking status. Results: The mean geometric residential radon level in Alberta in 2011 was 71.0 Bq/m3 (geometric standard deviation 2.14). Overall, an estimated 16.6% (95% confidence interval 9.4%-29.8%) of lung cancers were attributable to radon exposure, corresponding to 324 excess attributable cancer cases. The estimated population attributable risk of lung cancer due to radon exposure was higher among those who had never smoked (24.8%) than among ever smokers (15.6%). However, since only about 10% of cases of lung cancer occur in nonsmokers, the estimated total number of excess cases was higher for ever smokers (274) than for never smokers (48). Interpretation: With about 17% of lung cancer cases in Alberta in 2012 attributable to residential radon exposure, exposure reduction has the potential to substantially reduce Alberta's lung cancer burden. As such, home radon testing and remediation techniques represent important cancer prevention strategies. PMID:28663187

  16. Evaluation of the intake of radon through skin from thermal water.

    PubMed

    Sakoda, Akihiro; Ishimori, Yuu; Tschiersch, Jochen

    2016-07-01

    The biokinetics of radon in the body has previously been studied with the assumption that its absorption through the skin is negligibly small. This assumption would be acceptable except in specific situations, such as bathing in a radon hot spring where the radon concentration in thermal water is far higher than that in air. The present study focused on such a situation in order to better understand the biokinetics of radon. To mathematically express the entry of radon through the skin into the body, we first modified the latest sophisticated biokinetic model for noble gases. Values of an important parameter for the model-the skin permeability coefficient K (m s(-1))-were derived using data from previous human studies. The analysis of such empirical data, which corresponded to radon concentrations in the air exhaled by subjects during and following bathing in radon-rich thermal water, revealed that the estimated K values had a log-normal distribution. The validity of the K values and the characteristics of the present model are then discussed. Furthermore, the impact of the intake of radon or its progeny via inhalation or skin absorption on radiation dose was also assessed for possible exposure scenarios in a radon hot spring. It was concluded that, depending on the radon concentration in thermal water, there might be situations in which the dose contribution resulting from skin absorption of radon is comparable to that resulting from inhalation of radon and its progeny. This conclusion can also apply to other therapeutic situations (e.g. staying in the pool for a longer period). © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    PubMed

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  18. Indoor Radon: The Deadliest Pollutant.

    ERIC Educational Resources Information Center

    Kerr, Richard A.

    1988-01-01

    Describes the origin, occurrence, and effects of radon gas. Cites studies which attribute 5,000 to 20,000 deaths per year to radon exposure and the synergistic effect between radon and smoking. Explains ways to reduce risks. (RT)

  19. Radiological Air Sampling. Protocol Development for the Canadian Forces

    DTIC Science & Technology

    2003-03-01

    samplers trap these airborne radon daughters . Because radon is ubiquitous, all air samplers will catch these radioactive radon daughters in the...environment is complicated because all air sampler filters are radioactive because of the radon daughters . ’Actually, D will often depend on the isotope that...simply as "radon". 2 DRDC Ottawa TM 2003-149 -28 - 22 R_ 211p0 214pb 3.8 d 3.0 m 27 m 214Bi 210TI Radon Daughters 20 m ŕ.3 m (Uranium Decay Chain

  20. A comparative study on the characteristics of radioactivities and negative air ions originating from the minerals in some radon hot springs.

    PubMed

    Sakoda, Akihiro; Hanamoto, Katsumi; Haruki, Naoto; Nagamatsu, Tomohiro; Yamaoka, Kiyonori

    2007-01-01

    To elucidate the characteristics of some radon hot springs, we simulated a hot spring by soaking the rocks for the radon therapy in water and measured the concentrations of radon and negative air ions in various conditions. In the results, the individual rock structure could contribute to radon leaching because the radon leaching rates were independent of the grain sizes. More negative air ions were generated by the wet rocks than by the dry rocks.

  1. An electrical circuit model for simulation of indoor radon concentration.

    PubMed

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  2. Assessment of the uncertainties in the Radiological Protection Institute of Ireland (RPII) radon measurements service.

    PubMed

    Hanley, O; Gutiérrez-Villanueva, J L; Currivan, L; Pollard, D

    2008-10-01

    The RPII radon (Rn) laboratory holds accreditation for the International Standard ISO/IEC 17025. A requirement of this standard is an estimate of the uncertainty of measurement. This work shows two approaches to estimate the uncertainty. The bottom-up approach involved identifying the components that were found to contribute to the uncertainty. Estimates were made for each of these components, which were combined to give a combined uncertainty of 13.5% at a Rn concentration of approximately 2500 Bq m(-3) at the 68% confidence level. By applying a coverage factor of k=2, the expanded uncertainty is +/-27% at the 95% confidence level. The top-down approach used information previously gathered from intercomparison exercises to estimate the uncertainty. This investigation found an expanded uncertainty of +/-22% at approximately 95% confidence level. This is good agreement for such independent estimates.

  3. Spatio-temporal variations of soil radon patterns around the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Seyis, Cemil; Woith, Heiko

    2016-04-01

    Typically, the noble gas radon displays cyclic daily (S1), semidiurnal (S2) as well as seasonal variations in geological environments like soil air, groundwater, rock, caves, and tunnels. But there are also cases where theses cycles are absent. We present examples from a radon monitoring network of 21 sites around the Sea of Marmara. The works were carried out in the frame of MARsite, a project related to the EU supersite initiative (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). Alpha-meters from the Canadian company alpha-nuclear are used to measure the radon concentration in counts per 15 minutes at a depth of 80 cm. The long-term average radon concentrations at 21 sites vary between 35 and 1,000 counts per 15 minutes. Typical seasonal variations are absent at more than 6 sites. Sites with seasonal variations have radon minima usually during winter (December to April), radon maxima during summer months (June to October). We carefully investigated radon time series for all the monitoring stations. We find that at some sites the empirical distribution of radon counts is clearly bimodal and in other bimodality is absent. In those stations we analysed the time series in different time intervals in order to highlight seasonal periodicity in the radon emission. The empirical distributions obtained by time-windowing of the radon signals results to be statistically different one another after applying a Kolmogorov-Smirnov test at significance level of 0.1. Usually the maxima in radon emission occur in summer time but, interestingly enough, two sites are characterized by radon maxima in winter periods. We further investigate the radon signals seeking for smaller scale periodicity. We calculated Fourier spectra of all 21 sites. Daily cycles are absent at 6 sites which is an unusual phenomenon. Daily cycles may disappear, if the local system is heavily disturbed, e.g. by fluid extraction from geothermal systems or during earthquakes.

  4. Radon as a natural tracer for underwater cave exploration.

    PubMed

    Csondor, Katalin; Erőss, Anita; Horváth, Ákos; Szieberth, Dénes

    2017-07-01

    The Molnár János cave is one of the largest hypogenic caves of the Buda Thermal Karst (Budapest, Hungary) and mainly characterized by water-filled passages. The major outflow point of the waters of the cave system is the Boltív spring, which feeds the artificial Malom Lake. Previous radon measurements in the cave system and in the spring established the highest radon concentration (71 BqL -1 ) in the springwater. According to previous studies, the origin of radon was identified as iron-hydroxide containing biofilms, which form where there is mixing of cold and thermal waters, and these biofilms efficiently adsorb radium from the thermal water component. Since mixing of waters is responsible for the formation of the cave as well, these iron-hydroxide containing biofilms and the consequent high radon concentrations mark the active cave forming zones. Based on previous radon measurements, it is supposed that the active mixing and cave forming zone has to be close to the spring, since the highest radon concentration was measured there. Therefore radon mapping was carried out with the help of divers in order to get a spatial distribution of radon in the cave passages closest to the spring. Based on our measurements, the highest radon activity concentration (84 BqL -1 ) was found in the springwater. Based on the distribution of radon activity concentrations, direct connection was established between the spring and the István-room of the cave, which was verified by an artificial tracer. However, the distribution of radon in the cave passages shows lower concentrations (18-46 BqL -1 ) compared to the spring, therefore an additional deep inflow from hitherto unknown cave passages is assumed, from which waters with high radon content arrive to the spring. These passages are assumed to be in the active cave formation zone. This study proved that radon activity concentration distribution is a useful tool in underwater cave exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Comprehensive survey of household radon gas levels and risk factors in southern Alberta

    PubMed Central

    Stanley, Fintan K.T.; Zarezadeh, Siavash; Dumais, Colin D.; Dumais, Karin; MacQueen, Renata; Clement, Fiona; Goodarzi, Aaron A.

    2017-01-01

    Background: The inhalation of naturally occurring radon (222Rn) gas from indoor air exposes lung tissue to α-particle bombardment, a highly mutagenic form of ionizing radiation that damages DNA and increases the lifetime risk of lung cancer. We analyzed household radon concentrations and risk factors in southern Alberta, including Calgary, the third-largest Canadian metropolis. Methods: A total of 2382 residential homes (2018 in Calgary and 364 in surrounding townships) from an area encompassing 82% of the southern Alberta population were tested for radon, per Health Canada guidelines, for at least 90 days (median 103 d) between 2013 and 2016. Participants also provided home metrics (construction year, build type, foundation type, and floor and room of deployment of the radon detector) via an online survey. Homes that were subsequently remediated were retested to determine the efficacy of radon reduction techniques in the region. Results: The average indoor air radon level was 126 Bq/m3, which equates to an effective absorbed radiation dose of 3.2 mSv/yr. A total of 1135 homes (47.6%) had levels of 100 Bq/m3 or higher, and 295 homes (12.4%) had levels of 200 Bq/m3 or higher; the range was less than 15 Bq/m3 to 3441 Bq/m3. Homes built in 1992 or later had radon levels 31.5% higher, on average, than older homes (mean 142 Bq/m3 v. 108 Bq/m3). For 90 homes with an average radon level of 575 Bq/m3 before mitigation, radon suppression successfully reduced levels to an average of 32.5 Bq/m3. Interpretation: Our findings show that radon exposure is a genuine public health concern in southern Alberta, suggest that modern building practices are associated with increased indoor air radon accumulation, legitimatize efforts to understand the consequences of radon exposure to the public, and suggest that radon testing and mitigation are likely to be impactful cancer prevention strategies. PMID:28401142

  6. Iowa radon leukaemia study: a hierarchical population risk model for spatially correlated exposure measured with error.

    PubMed

    Smith, Brian J; Zhang, Lixun; Field, R William

    2007-11-10

    This paper presents a Bayesian model that allows for the joint prediction of county-average radon levels and estimation of the associated leukaemia risk. The methods are motivated by radon data from an epidemiologic study of residential radon in Iowa that include 2726 outdoor and indoor measurements. Prediction of county-average radon is based on a geostatistical model for the radon data which assumes an underlying continuous spatial process. In the radon model, we account for uncertainties due to incomplete spatial coverage, spatial variability, characteristic differences between homes, and detector measurement error. The predicted radon averages are, in turn, included as a covariate in Poisson models for incident cases of acute lymphocytic (ALL), acute myelogenous (AML), chronic lymphocytic (CLL), and chronic myelogenous (CML) leukaemias reported to the Iowa cancer registry from 1973 to 2002. Since radon and leukaemia risk are modelled simultaneously in our approach, the resulting risk estimates accurately reflect uncertainties in the predicted radon exposure covariate. Posterior mean (95 per cent Bayesian credible interval) estimates of the relative risk associated with a 1 pCi/L increase in radon for ALL, AML, CLL, and CML are 0.91 (0.78-1.03), 1.01 (0.92-1.12), 1.06 (0.96-1.16), and 1.12 (0.98-1.27), respectively. Copyright 2007 John Wiley & Sons, Ltd.

  7. Assessing exposure to granite countertops--Part 2: Radon.

    PubMed

    Allen, Joseph G; Minegishi, Taeko; Myatt, Theodore A; Stewart, James H; McCarthy, John F; Macintosh, David L

    2010-05-01

    Radon gas ((222)Rn) is a natural constituent of the environment and a risk factor for lung cancer that we are exposed to as a result of radioactive decay of radium ((226)Ra) in stone and soil. Granite countertops, in particular, have received recent media attention regarding their potential to emit radon. Radon flux was measured on 39 full slabs of granite from 27 different varieties to evaluate the potential for exposure and examine determinants of radon flux. Flux was measured at up to six pre-selected locations on each slab and also at areas identified as potentially enriched after a full-slab scan using a Geiger-Muller detector. Predicted indoor radon concentrations were estimated from the measured radon flux using the CONTAM indoor air quality model. Whole-slab average emissions ranged from less than limit of detection to 79.4 Bq/m(2)/h (median 3.9 Bq/m(2)/h), similar to the range reported in the literature for convenience samples of small granite pieces. Modeled indoor radon concentrations were less than the average outdoor radon concentration (14.8 Bq/m(3); 0.4 pCi/l) and average indoor radon concentrations (48 Bq/m(3); 1.3 pCi/l) found in the United States. Significant within-slab variability was observed for stones on the higher end of whole slab radon emissions, underscoring the limitations of drawing conclusions from discrete samples.

  8. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Radon/radon daughter environmental chamber located in the northwest end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Radon/radon daughter environmental chamber located in the northwest end of building. VIEW LOOKING WEST - Department of Energy, Grand Junction Office, Building No. 32, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  10. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  11. Impact of radon gas concentration in the aerosoles profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukaj, Edmond, E-mail: mondilukaj@yahoo.com; Vila, Floran, E-mail: floranvila@yahoo.com; Mandija, Florian, E-mail: fmandija@yahoo.com

    Radon gases relased from building materials and from earth surface are the major responsibility of air ionization. Radon nuclear decay can produce an alpha particle with high energy and Radon progeny. This particle and gamma rays can deliver particles in the air and produce ions with different polarities. This ions, because of induced electric charge, can attach with air aerosols and charge them with their electric charge. The charged aerosols can interact with the other aerosols and ions. Because of this exchange, the air conductivity and the aerosol profiles will change dependently by Radon gas concentration and gamma radiation. Observationsmore » show an increase in concentration of Radon during the night, and a decrease during the daylight time. The Radon gas concentration changed hour by hour can induce aerosol profile to change. This dependency between the aerosol profiles and the Radon gas concentrations is discussed.« less

  12. Factors Affecting Radon Concentration in Houses

    NASA Astrophysics Data System (ADS)

    Al-Sharif, Abdel-Latif; Abdelrahman, Y. S.

    2001-03-01

    The dangers to the human health upon exposure to radon and its daughter products is the main motivation behind the vast number of studies performed to find the concentration of radon in our living environment, including our houses. The presence of radon and its daughter products in houses are due to various sources including building materials and the soil under the houses. Many factors affect radon concentration in our houses, the elevation above ground level,ventilation, building materials and room usage being among these factors. In our paper, we discuss the effect of elevation above ground level, room usage and ventilation on the Radon concentration in houses. The faculty residences of the Mu'tah University (Jordan) were chosen in our study. Our results showed that the concentration of radon decreases with elevation. Ventilation rate was also found to affect radon concentration, where low concentrations observed for areas with good ventilation.

  13. Creating Geologically Based Radon Potential Maps for Kentucky

    NASA Astrophysics Data System (ADS)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  14. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals.

    PubMed

    Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Tanaka, Hiroshi; Kataoka, Takahiro; Sakoda, Akihiro

    2011-07-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

  15. Radon Levels in Nurseries and Primary Schools in Bragança District-Preliminary Assessment.

    PubMed

    Sousa, S I V; Branco, P T B S; Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G

    2015-01-01

    Lung cancer has been associated with radon concentration even at low levels such as those found in dwellings. This study aimed to (i) determine radon diurnal variations in three nurseries and one primary school in the Bragança district (north of Portugal) and (ii) compare radon concentrations with legislated standards and assess the legislated procedures. Radon was measured in three nurseries and a primary school in a rural area with nongranite soil. Measurements were performed continuously to examine differences between occupation and nonoccupation periods. Indoor temperature and relative humidity were also measured continuously. A great variability was found in radon concentrations between the microenvironments examined. Radon concentrations surpassed by severalfold the recommended guidelines and thresholds, and excessive levels of health concern were sporadically found (361.5-753.5 Bq m(-3)). Thus, it is of importance to perform a national campaign on radon measurements and to reduce exposure.

  16. Results of a Test and Win Contest to Raise Radon Awareness in Urban and Rural Settings

    ERIC Educational Resources Information Center

    Hahn, Ellen J.; Rayens, Mary Kay; Kercsmar, Sarah E.; Robertson, Heather; Adkins, Sarah M.

    2014-01-01

    Background: Radon is a leading cause of lung cancer, but few test their homes to determine radon levels. Purpose: The study assessed feasibility and success of a Test and Win Contest to promote radon testing in rural and urban communities. Methods: The prospective, quasi-experimental study tested a novel contest to raise radon awareness. Paid and…

  17. The mathematical model of radon-222 accumulation in underground mines

    NASA Astrophysics Data System (ADS)

    Klimshin, A.

    2012-04-01

    Necessity to control underground mine air radon level arises during building and operating mines as well as auto and railway tunnels including those for metros. Calculation of underground mine air radon level can be fulfilled for estimation of potential radon danger of area for underground structure building. In this work the new mathematical model of radon accumulation in underground mines has been suggested. It takes into consideration underground mine dimensions, air exchange factor and soils ability to emanate radon. The following assumptions have been taken for model development. It is assumed that underground mine is a cylinder of length L and of base area S. Due to ventilation atmosphere air of volume activity Catm, is coming in through one cylinder base and is going out of volume activity Cind from underground mine. Diffusion radon flux is coming in through side surfaces of underground mine. The sources of this flux are radium-226 atoms distributed evenly in rock. For simplification of the task it considered possible to disregard radon emanation by loosened rock and underground waters. As a result of solution of the radon diffusion equation the following expression for calculation of radon volume activity in underground space air has been got: 2·r0 ·λv ·Catm-·l·K0(r0/l)-+D-·K1(r0/l)·C0- Cind = 2·(λ+ λv)·r0 ·l·K0 (r0/l)+ D ·K1(r0/l) . The following designations are used in this expression: Kν(r) - the second genus modified Bessel's function, C0 - equilibrium radon volume activity in soil air, l - diffusion radon length in soil, D - radon diffusion factor, r0 - radius of underground tunnel, λv - factor of air exchange. Expression found may be used for calculation of the minimum factor of necessary air exchange for ensuring safe radon levels in underground spaces. With this worked out model expected levels of radon volume activity were calculated for air in the second metro line underground spaces in the city of Yekaterinburg, Russia.

  18. Kinetics of the water/air phase transition of radon and its implication on detection of radon-in-water concentrations: practical assessment of different on-site radon extraction methods.

    PubMed

    Schubert, Michael; Paschke, Albrecht; Bednorz, Denise; Bürkin, Walter; Stieglitz, Thomas

    2012-08-21

    The on-site measurement of radon-in-water concentrations relies on extraction of radon from the water followed by its detection by means of a mobile radon-in-air monitor. Many applications of radon as a naturally occurring aquatic tracer require the collection of continuous radon concentration time series, thus necessitating the continuous extraction of radon either from a permanent water stream supplied by a water pump or directly from a water body or a groundwater monitoring well. Essentially, three different types of extraction units are available for this purpose: (i) a flow-through spray chamber, (ii) a flow-through membrane extraction module, and (iii) a submersible (usually coiled) membrane tube. In this paper we discuss the advantages and disadvantages of these three methodical approaches with particular focus on their individual response to instantaneously changing radon-in-water concentrations. After a concise introduction into theoretical aspects of water/air phase transition kinetics of radon, experimental results for the three types of extraction units are presented. Quantitative suggestions for optimizing the detection setup by increasing the water/air interface and by reducing the air volume circulating through the degassing unit and radon detector are made. It was shown that the flow-through spray chamber and flow-through membrane perform nearly similarly, whereas the submersible membrane tubing has a significantly larger delay in response to concentration changes. The flow-through spray chamber is most suitable in turbid waters and to applications where high flow rates of the water pump stream can be achieved (e.g., where the power supply is not constrained by field conditions). The flow-through membrane is most suited to radon extraction from clear water and in field conditions where the power supply to a water pump is limited, e.g., from batteries. Finally, the submersible membrane tube is most suitable if radon is to be extracted in situ without any water pumping, e.g., in groundwater wells with a low yield, or in long-term time series, in which short-term variations in the radon concentration are of no relevance.

  19. Intercomparison of active and passive instruments for radon and radon progeny in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Tu, Keng-Wu; Knutson, E.O.

    1995-02-01

    An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- andmore » beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within {plus_minus}10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement.« less

  20. Thoron in the environment and its related issues

    NASA Astrophysics Data System (ADS)

    Tokonami, Shinji

    2009-06-01

    Since radon is internationally noted as the second cause of lung cancer, many countries are trying about to solve the problem worldwide. In addition, a new evidence of lung cancer risk has been recently found out with a low level below 200 Bq m-3. Thus the action level will have to be set lower than before. Importance of radon exposure has been further recognized and accurate radon concentrations will be required. Recently thoron has also been recognized from the viewpoint of accurate radon measurements. The present paper describes specification of the NIRS radon and thoron chambers, passive measurement technique of radon and thoron and thoron interference on radon measurements from both experimental studies and field experiences on epidemiological study area.

Top