Process for producing radiation-induced self-terminating protective coatings on a substrate
Klebanoff, Leonard E.
2001-01-01
A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.
NASA Astrophysics Data System (ADS)
Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati
2013-06-01
Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.
NASA Astrophysics Data System (ADS)
Wang, Dailin
During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the organic coatings were exposed to a corrosive environment with presence of H2S, thicker coatings provided better protection regardless of the amount and types of filler particles present in the coatings. For zinc-rich coatings, coatings with CNTs provided better barrier protection for the steel substrate than traditional zinc-rich coatings in a corrosive environment alone. However, the CNTs-filled zinc-rich epoxy coatings did not provide adequate protection when the coated specimens were exposed to erosion and corrosion.
1984-04-01
Strategic Materials Usage. Practical Implications of the Use of Aluminide Coatings for the Corrosion Protection of Superalloys in Gas Turbines. Coatings...requirements of using aluminide coatings, the processes currently commercially available, the compatabi1ity of aluminide coatings with...components, it is the intention of this paper to concentrate on those ed by reaction or diffusion type processes, In particular the aluminides
Ranking protective coatings: Laboratory vs. field experience
NASA Astrophysics Data System (ADS)
Conner, Jeffrey A.; Connor, William B.
1994-12-01
Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.
Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing
NASA Astrophysics Data System (ADS)
Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.
2017-08-01
The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.
NASA Astrophysics Data System (ADS)
Pinc, William Ross
The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.
Development of Protective Coatings for Co-Sequestration Processes and Pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwagen, Gordon; Huang, Yaping
2011-11-30
The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied asmore » potential candidates for internal pipeline coating to transport SCCO2.« less
Convergent spray process for environmentally friendly coatings
NASA Technical Reports Server (NTRS)
Scarpa, Jack
1995-01-01
Conventional spray application processes have poor transfer efficiencies, resulting in an exorbitant loss in materials, solvents, and time. Also, with ever tightening Environmental Protection Agency (EPA) regulations and Occupational Safety and Health Administration requirements, the low transfer efficiencies have a significant impact on the quantities of materials and solvents that are released into the environment. High solids spray processes are also limited by material viscosities, thus requiring many passes over the surface to achieve a thickness in the 0.125 -inch range. This results in high application costs and a negative impact on the environment. Until recently, requirements for a 100 percent solid sprayable, environmentally friendly, lightweight thermal protection system that can be applied in a thick (greater than 0.125 inch) single-pass operation exceeded the capability of existing systems. Such coatings must be applied by hand lay-up techniques, especially for thermal and/or fire protection systems. The current formulation of these coatings has presented many problems such as worker safety, environmental hazards, waste, high cost, and application constraints. A system which can apply coatings without using hazardous materials would alleviate many of these problems. Potential applications include the aerospace thermal protective specialty coatings, chemical and petroleum industries that require fire-protection coatings that resist impact, chemicals, and weather. These markets can be penetrated by offering customized coatings applied by automated processes that are environmentally friendly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke
2015-02-23
Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysismore » also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.« less
NASA Astrophysics Data System (ADS)
Han, Su Jung; Pala, Zdenek; Sampath, Sanjay
2016-02-01
Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Mihelcic, Judith A.
1989-01-01
Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.
Metallized coatings for corrosion control of Naval ship structures and components
NASA Technical Reports Server (NTRS)
1983-01-01
In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.
Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.
2017-03-01
In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.
Iridium Aluminide Coats For Protection Against Ox idation
NASA Technical Reports Server (NTRS)
Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Jang, Qin
1996-01-01
Iridium aluminide coats investigated for use in protecting some metallic substrates against oxidation at high temperatures. Investigation prompted by need for cost-effective anti-oxidation coats for walls of combustion chambers in rocket engines. Also useful in special terrestrial applications like laboratory combustion chambers and some chemical-processing chambers.
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Processing of fused silicide coatings for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1982-01-01
The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.
"Electroless" E-Coating for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Song, Guang-Ling
By utilizing the unique electrochemistry of Mg, a thin organic film can rapidly be deposited on the surface of a Mg alloy by dipping the Mg alloy in a cathodic E-coating bath solution without applying a current or potential. The self-deposited coating is selectively formed on Mg alloy surfaces. Although the "electroless" E-coating pre-film is relatively thin, it can offer sufficient corrosion protection for Mg alloys in a chloride-containing environment. The stability of the film can be significantly improved after curing. The corrosion resistance of the substrate Mg alloy has an important effect on the corrosion protection performance of the coating. The coating is more protective on a corrosion resistant Mg alloy than on a non-corrosion resistant Mg substrate. The coating protection performance is also influenced by the substrate surface condition or pre-treatment process. Wet cleaning + heat-treatment may be a cost-effective surface preparation/treatment for the "electroless" E-coating in industrial applications.
Precision Optical Coatings for Large Space Telescope Mirrors
NASA Astrophysics Data System (ADS)
Sheikh, David
This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.
Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead
NASA Astrophysics Data System (ADS)
Gu, Hongping; Van Gelder, Aldo
Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.
Method of coating metal surfaces to form protective metal coating thereon
Krikorian, Oscar H.; Curtis, Paul G.
1992-01-01
A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.
Method of coating metal surfaces to form protective metal coating thereon
Krikorian, O.H.; Curtis, P.G.
1992-03-31
A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.
Self-healing effect of the protective inhibitor-containing coatings on Mg alloys
NASA Astrophysics Data System (ADS)
Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.
2017-09-01
The method of self-healing coating formation on the surface of magnesium alloys on the base of plasma electrolytic oxidation (PEO) with subsequent impregnation of the obtained layer with inhibitor has been suggested. The protective and electrochemical properties of such coatings have been described. Localised Scanning Electrochemical Methods were used for determining the kinetics and mechanism of the self-healing process. The treatment with the solution containing inhibitor enables us to increase the protective properties of the PEO-coating in 30 times in the corrosion-active environment.
Processing of SiO2 protective layer using HMDS precursor by combustion CVD.
Park, Kyoung-Soo; Kim, Youngman
2011-08-01
Hexamethyldisilazane (HMDS, [(CH3)3Si]2NH) was used as a precursor to form SiO2 protective coatings on IN738LC alloys by combustion chemical vapor deposition (CCVD). SEM and XPS showed that the processed coatings were composed mainly of SiO2. The amount of HMDS had the largest effect on the size of the SiO2 agglomerates and the thickness of the deposited coatings. The specimens coated with SiO2 using the 0.05 mol/l HMDS solution showed a significantly higher temperature oxidation resistance than those deposited under other conditions.
NASA Astrophysics Data System (ADS)
Orgon, Casey Roy
Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.
Processing of fused silicide coatings for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1983-01-01
The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks. Previously announced in STAR as N83-27019
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Mckechnie, Timothy N.
1989-01-01
Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.
NASA Astrophysics Data System (ADS)
Molin, S.; Jasinski, P.; Mikkelsen, L.; Zhang, W.; Chen, M.; Hendriksen, P. V.
2016-12-01
In this study two materials, MnCo2O4 and MnCo1.8Fe0.2O4 are studied as potential protective coatings for Solid Oxide Fuel Cell interconnects working at 750 °C. First powder fabrication by a modified Pechini method is described followed by a description of the coating procedure. The protective action of the coating applied on Crofer 22 APU is evaluated by following the area specific resistance (ASR) of the scale/coating for 5500 h including several thermal cycles. The coating is prepared by brush painting and has a porous structure after deposition. Post mortem microstructural characterization performed on the coated samples shows good protection against chromium diffusion from the chromia scale ensured by a formation of a dense reaction layer. This study shows, that even without high temperature sintering and/or reactive sintering it is possible to fabricate protective coatings based on MnCo spinels.
A parylene coating process for hybrid circuits
NASA Technical Reports Server (NTRS)
1976-01-01
The parylene coating process developed during this program consists of (1) obtaining a hybrid cover with a hole in it, (2) sealing of the circuit with a hole in the cover, (3) parylene coating through the hole with the external leads protected from parylene by appropriate fixturing, and (4) sealing of the hole by soldering a pretinned kovar tab. Development of the above process required optimization of the parylene coater parameters to obtain a uniform consistent coating which could offer adequate protection to the circuits, fixture design for packages of various types, determination of the size of the deposition hole, and the amount of dimer charge per run, a process to hermetically seal the deposition holes and establishment of quality control techniques or acceptance criteria for the deposited film.
Nondestructive evaluation of protective coatings for the conservation of industrial monuments
NASA Astrophysics Data System (ADS)
Welp, Hubert; Lenz, Marcel; Mazzon, Cristian; Dillmann, Christopher; Gerhardt, Nils C.; Prange, Michael; Hofmann, Martin R.
2017-07-01
For the conservation of cultural monuments standard anti-corrosion coatings are not applicable because the historical character of the objects would be lost. Alternative transparent coatings have to be evaluated and monitored nondestructively with respect to their effectiveness in protecting metal surfaces. We demonstrate that Optical Coherence Tomography (OCT) can be an alternative to the currently used method of Electrochemical Impedance Spectroscopy (EIS) for the characterization of coating defects and corrosion processes.
Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendra Bordia
The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-firedmore » environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.« less
An alternate to chromate conversion coatings for the corrosion protection of aluminum 2024-T3
NASA Astrophysics Data System (ADS)
Guo, Ruiguang
Corrosion of high-strength aluminum alloys used for airspace application is an expensive and serious problem. The most significant environmental factor contributing to the corrosion of these alloys is water condensed from humid air and contaminated with soluble chloride salts. The Al 2024 series used for aircraft are particularly susceptible to corrosion in aqueous chloride solutions due to alloying constituents such as copper and other impurities. Chromates are efficient inhibitors of corrosion of aluminum in near neutral aqueous environments containing aggressive anions such as chlorides. Usually, aluminum alloys are initially protected by chromate conversion coatings. Additional polymer coatings are sometimes added during exposure to corrosive atmospheres such as marine environments. Although chromate coatings are widely used, they require the use of noxious solutions, so they have always presented effluent disposal problems. There are health and safety concerns over the use of chromates due to their toxicity and carcinogenic nature and, as a consequence, the environmental and health risks associated with the use of such coatings will be restricted in the future. It was these health and safety concerns that led to the development of alternative non-toxic coating processes with comparable adhesion properties and corrosion protection. A variety of process technologies are under development and are vying for acceptance in industrial markets. As an alternate conversion coating, a new titanate conversion coating was systematically researched and developed. Research concentrated on producing passive surfaces from a simple titanate solution using an immersion process. The corrosion resistance of the treated surface has been evaluated using simple, rapid electrochemical techniques as well as a more long-term salt spray test. Passivation by titanate conversion treatment exhibits many similarities to chromate conversion treatment. Based on this study of corrosion protection of the titanate coating formed at different conditions, a possible formation mechanism of a titanate coating is proposed. A conclusion may be drawn that titanate coating seems to be a viable alternative to chromate coatings.
Titanium Nitride: An Oxidizable Coating for the High-Temperature Protection of Graphite
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.
1961-01-01
A titanium nitride coating for graphite, prepared by deposition process, protected test specimens for 60 seconds the vapors in a supersonic ceramic-heated air jet with a stagnation temperature of approximately 2,250 K. For the same test conditions, coated specimens showed no damage to the graphite body for the 60-second test, whereas uncoated specimens were very severely damaged after 20 seconds and were destroyed toward the end of the test. A discussion of the coating of these graphite specimens and of some of the conditions necessary for the utilization of oxidizable substances as oxidation-protective coatings for bodies facing high convective heat transfer in the atmosphere is presented.
Li, Liangliang; Swain, Greg M
2013-08-28
The effects of aging temperature and time on the physical structure of and corrosion protection provided by trivalent chromium process (TCP) coatings on AA2024-T3 are reported. The TCP coating forms a partially blocking barrier layer on the alloy surface that consists of hydrated channels and or defects. It is through these channels and defects that ions and dissolved O2 can be transported to small areas of the underlying alloy. Reactions initiate at these sites, which can ultimately lead to undercutting of the coating and localized corrosion. We tested the hypothesis that collapsing the channels and or reducing the number of defects in the coating might be possible through post-deposition heat treatment, and that this would enhance the corrosion protection provided by the coating. This was tested by aging the TCP-coated AA2024 alloys in air overnight at room temperature (RT), 55, 100, or 150 °C. The TCP coating became dehydrated and thinner at the high temperatures (55 and 100 °C). This improved the corrosion protection as evidenced by a 2× increase in the charge transfer resistance. Aging at 150 °C caused excessive coating dehydration and shrinkage. This led to severe cracking and detachment of the coating from the surface. The TCP-coated AA2024 samples were also aged in air at RT from 1 to 7 days. There was no thinning of the coating, but the corrosion protection was enhanced with a longer aging period as evidenced by a 4× increase in the charge transfer resistance. The coating became more hydrophobic after aging at elevated temperature (up to 100 °C) and with aging time at RT as evidenced by an increased water contact angle from 7 to 100 °C.
Field repair of coated columbium Thermal Protection System (TPS)
NASA Technical Reports Server (NTRS)
Culp, J. D.
1972-01-01
The requirements for field repair of coated columbian panels were studied, and the probable cause of damage were identified. The following types of repair methods were developed, and are ready for use on an operational system: replacement of fused slurrey silicide coating by a short processing cycle using a focused radiant spot heater; repair of the coating by a glassy matrix ceramic composition which is painted or sprayed over the defective area; and repair of the protective coating by plasma spraying molybdenum disilicide over the damaged area employing portable equipment.
NASA Astrophysics Data System (ADS)
Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.
2017-11-01
Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.
NASA Astrophysics Data System (ADS)
Wang, Z. B.; Wang, Z. Y.; Hu, H. X.; Liu, C. B.; Zheng, Y. G.
2016-09-01
Five kinds of nano-SiO2/epoxy composite coatings were prepared on mild steels, and their corrosion protection performance was evaluated at room temperature (RT) and 50 °C (HT) using electrochemical methods combined with scanning electron microscopy (SEM). The effects of preparation and sealing processes on the corrosion protection performance of epoxy coatings were specially focused on. The results showed that it was favorable for the corrosion protection and durable performance to add the modified nano-SiO2 during rather than after the synthesis of epoxy coatings. Furthermore, the employment of sealer varnish also had beneficial effects. The two better coatings still exhibited higher impedance values even after immersion tests for up to 1000 h at RT and 500 h at HT. SEM revealed that the improvement of corrosion protection performance mainly resulted from the enhancement of coating density. Moreover, the evolution of electrochemical behavior of the two better coatings with immersion time was also discussed by means of fitting the electrochemical impedance spectroscopy results using equivalent circuits with different physical meanings.
Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics
NASA Astrophysics Data System (ADS)
Aadhavan, R.; Suresh Babu, K.
2017-07-01
Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.
Protective overcoating of films
NASA Technical Reports Server (NTRS)
Maas, K. A.
1972-01-01
Kodak Film Type SO-212 was emulsion overcoated with gelatin and lacquer to evaluate the feasibility of application of the coatings, any image degradation, and the relative protection offered against abrasion. Evaluated were: Eastman motion picture film lacquer Type 485, water solutions of Eastman purified Calfskin gelatin, and experimental Eastman gelatin stripping film of 4 and 6 microns. Conclusions reached were: (1) All coatings can be applied with relative ease with the only limitation being that of equipment. (2) None of the coatings degrade the processed image. (3) All of the coatings provide protection to the emulsion. These conclusions apply to any film which may be considered for overcoating.
NASA Astrophysics Data System (ADS)
Haruvy, Yair; Liedtke, Volker
2003-09-01
Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.
Si, Yifan; Guo, Zhiguang; Liu, Weimin
2016-06-29
Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.
COATED CARBON ELEMENT FOR USE IN NUCLEAR REACTORS AND THE PROCESS OF MAKING THE ELEMENT
Pyle, R.J.; Allen, G.L.
1963-01-15
S>This patent relates to a carbide-nitride-carbide coating for carbon bodies that are to be subjected to a high temperature nuclear reactor atmosphere, and a method of applying the same. This coating is a highly efficient diffusion barrier and protects the C body from corrosion and erosion by the reactor atmosphere. Preferably, the innermost coating is Zr carbide, the middle coatlng is Zr nitride, and the outermost coating is a mixture of Zr and Nb carbide. The nitride coating acts as a diffusion barrier, while the innermost carbide bonds the nitride to the C body and prevents deleterious reaction between the nitride and C body. The outermost carbide coating protects the nitride coating from the reactor atmosphere. (AEC)
Solventless pharmaceutical coating processes: a review.
Bose, Sagarika; Bogner, Robin H
2007-01-01
Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.
Process for non-contact removal of organic coatings from the surface of paintings
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)
1995-01-01
The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo
1998-01-01
A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.
Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)
2002-01-01
The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.
Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen
2016-11-01
Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.
Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N
2014-03-01
A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings
NASA Technical Reports Server (NTRS)
Harder, Bryan J.; Zhu, Dongming
2011-01-01
In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers
NASA Astrophysics Data System (ADS)
Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong
2017-09-01
Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.
Bley, O; Siepmann, J; Bodmeier, R
2009-08-13
The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates).
Deposition and Characterization of Thin Films on Metallic Substrates
NASA Technical Reports Server (NTRS)
Gatica, Jorge E.
2005-01-01
A CVD method was successfully developed to produce conversion coatings on aluminum alloys surfaces with reproducible results with a variety of precursors. A well defined protocol to prepare the precursor solutions formulated in a previous research was extended to other additives. It was demonstrated that solutions prepared following such a protocol could be used to systematically generate protective coatings onto aluminum surfaces. Experiments with a variety of formulations revealed that a refined deposition protocol yields reproducible conversion coatings of controlled composition. A preliminary correlation between solution formulations and successful precursors was derived. Coatings were tested for adhesion properties enhancement for commercial paints. A standard testing method was followed and clear trends were identified. Only one precursors was tested systematically. Anticipated work on other precursors should allow a better characterization of the effect of intermetallics on the production of conversion/protective coatings on metals and ceramics. The significance of this work was the practical demonstration that chemical vapor deposition (CVD) techniques can be used to systematically generate protective/conversion coating on non-ferrous surfaces. In order to become an effective approach to replace chromate-based pre- treatment processes, namely in the aerospace or automobile industry, the process parameters must be defined more precisely. Moreover, the feasibility of scale-up designs necessitates a more comprehensive characterization of the fluid flow, transport phenomena, and chemical kinetics interacting in the process. Kinetic characterization showed a significantly different effect of magnesium-based precursors when compared to iron-based precursors. Future work will concentrate on refining the process through computer simulations and further experimental studies on the effect of other transition metals to induce deposition of conversion/protective films on aluminum and other metallic substrates.
NASA Astrophysics Data System (ADS)
Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.
2016-12-01
Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.
Sputtered protective coatings for die casting dies
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.
1981-01-01
Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.
Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.
Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna
2018-01-26
Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.
Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation
Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna
2018-01-01
Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540
NASA Technical Reports Server (NTRS)
1994-01-01
During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.
Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.
1991-01-01
Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.
Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets.
de Y Pozzo, Ludmila; da Conceição, Thiago F; Spinelli, Almir; Scharnagl, Nico; Pires, Alfredo T N
2018-02-01
In this study, coatings of chitosan crosslinked with genipin were prepared on sheets of AZ31 magnesium alloy and their corrosion protection properties were characterized by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were also characterized by means of FTIR and XPS. It was observed that the crosslinking process decreases the corrosion current and shifts the corrosion potential of the alloy to less negative values. The EIS analysis demonstrated that the crosslinking process increases the maximum impedance after short and long exposure times. The superior performance of the crosslinked coatings is related to a lower degree of swelling, as observed in the swelling tests carried out on free-standing films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ion-plasma protective coatings for gas-turbine engine blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.
2007-10-01
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslam, J J; Farmer, J C
2004-03-31
Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plainmore » carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.« less
Investigation of corrosion protection performance of sol-gel surface treatments on AA2024-T3
NASA Astrophysics Data System (ADS)
Voevodin, Natalia Nikolajevna
The dissertation research project addresses the technologically important problem of replacement of chromate based coatings for corrosion protection of aircraft. A review of corrosion processes in high-strength aluminum alloys indicated that the strengthening intermetallic precipitates provide local cathodic areas, which may initiate surface pitting. The mechanisms of chromate inhibition in these localized corrosion processes were identified. The environmental hazard of chromates was also highlighted, serves as the impetus for chromate coating replacement. Sol-gel coatings are shown as an excellent alternative, based on environment compliance, flexibility in the composition control, and reasonable costs. Several sol-gel coatings were formulated and applied to the surface of an AA2024-T3 alloy. The coating composition and bonding were analyzed with XPS and FTIR, surface morphology was studied with SEM and AFM, and corrosion protection properties were tested with EIS, PDS, salt water immersion, and salt-fog exposure. The results demonstrated that epoxy-zirconate sol-gel coatings can provide excellent barrier properties. A novel SVET technique was applied for studies of local electrochemical processes in the pitting formation. This technique was further refined in model studies of aluminum surfaces with artificially created local cathodic regions, experimental studies of chromate inhibition with pit formation, and pitting development studies in sol-gel coatings with artificially introduced defects. Mechanisms of pitting development and inhibition with the pit initiation and growth kinetics were established. The Zr-epoxy coatings are subjected to the pit development and undercutting in the absence of the corrosion inhibitors. Several organic and non-organic inhibitors were evaluated in the sol-gel coating composition. Organic inhibitors had a better compliance with sol-gel chemistry and were identified for future studies. Experiments were performed to verify that sol-gel coatings can be used as barrier layers in complex coating systems. The results clearly demonstrated that Zr-epoxy sol-gel coatings are a viable replacement for the currently used chromate-based surface treatments. This work expands the fundamental knowledge of chromate coating replacement with chromate-free sol-gel coatings and identifies possible ways to implement this goal.
NASA Astrophysics Data System (ADS)
Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.
2015-11-01
Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c
An environmentally compliant cerium-based conversion coating for aluminum protection
NASA Astrophysics Data System (ADS)
Lin, Xuan
Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.
NASA Technical Reports Server (NTRS)
Zinn, Alfred A. (Inventor); Tarkanian, Ryan Jeffrey (Inventor)
2007-01-01
The invented insulation is a ceramic fiber insulation wherein the ceramic fibers are treated with a coating which contains transition metal oxides. The invented process for coating the insulation is a process of applying the transition metal oxide coating to the fibers of the insulation after the fibers have been formed into a tile or other porous body. The coating of transition metal oxide lowers the transmittance of radiation through the insulation thereby lowering the temperature of the backface of the insulation and better protecting the structure that underlies the insulation.
Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation
NASA Astrophysics Data System (ADS)
Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji
2018-06-01
Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.
A Multifunctional Smart Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.
2012-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.
2010-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.
NASA Technical Reports Server (NTRS)
Clayton, C.; Raley, R.; Zook, L.
2001-01-01
The solid rocket booster (SRB) has historically used a chromate conversion coating prior to protective finish application. After conversion coating, an organic paint system consisting of a chromated epoxy primer and polyurethane topcoat is applied. An overall systems approach was selected to reduce waste generation from the coatings application and removal processes. While the most obvious waste reduction opportunity involved elimination of the chromate conversion coating, several other coating system configurations were explored in an attempt to reduce the total waste. This paper will briefly discuss the use of a systems view to reduce waste generation from the coating process and present the results of the qualification testing of nonchromated aluminum pretreatments and alternate coating systems configurations.
The Effectiveness of a NiCrY-Coating on a Powder Metallurgy Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Miller, Robert A.; Nesbitt, James A.; Draper, Susan L.; Rogers, Richard B.; Telesman, Jack
2018-01-01
Protective ductile coatings could be necessary to mitigate oxidation and corrosion attack on superalloy disks in some turbine engine applications. However, the effects of coatings on fatigue life of the disk during service are an important concern. The objective of this study was to investigate how such a coating could perform after varied post-coating processing. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, preparation treated, exposed, and then subjected to fatigue at high temperature. The effects of varied shot peening, preparation treatment, and exposures on fatigue life with and without the coating were compared. Each of these variables and several of their interactions significantly influenced fatigue life.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface coating processes. EPA is approving this revision concerning the adoption of the EPA CTG requirements for flat wood...
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2004-08-31
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
Solar selective absorption coatings
Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY
2003-10-14
A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.
The application of epoxy resin coating in grounding grid
NASA Astrophysics Data System (ADS)
Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.
2018-01-01
Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.
Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Rogers, Richard B.; Nesbitt, James A.; Puleo, Bernadette J.; Miller, Robert A.; Telesman, Ignacy; Draper, Susan L.; Locci, Ivan E.
2017-01-01
Protective ductile coatings will be necessary to mitigate oxidation and corrosion attack on superalloy disks exposed to increasing operating temperatures in some turbine engine environments. However, such coatings must be resistant to harmful surface cracking during service. The objective of this study was to investigate how residual stresses evolve in such coatings. Cylindrical gage fatigue specimens of powder metallurgy-processed disk superalloy LSHR were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of shot peening and fatigue cycling on average residual stresses and other aspects of the coating were assessed. Shot peening did induce beneficial compressive residual stresses in the coating and substrate. However, these stresses became more tensile in the coating with subsequent heating and contributed to cracking of the coating in long intervals of cycling at 760 C. Substantial compressive residual stresses remained in the substrate adjacent to the coating, sufficient to suppress fatigue cracking. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vackel, Andrew; Sampath, Sanjay
Thermal spray deposited WC-CoCr coatings are extensively used for surface protection of wear prone components in a variety of applications. Although the primary purpose of the coating is wear and corrosion protection, many of the coated components are structural systems (aero landing gear, hydraulic cylinders, drive shafts etc.) and as such experience cyclic loading during service and are potentially prone to fatigue failure. It is of interest to ensure that the coating and the application process does not deleteriously affect the fatigue strength of the parent structural metal. It has long been appreciated that the relative fatigue life of amore » thermal sprayed component can be affected by the residual stresses arising from coating deposition. The magnitude of these stresses can be managed by torch processing parameters and can also be influenced by deposition effects, particularly the deposition temperature. In this study, the effect of both torch operating parameters (particle states) and deposition conditions (notably substrate temperature) were investigated through rotating bending fatigue studies. The results indicate a strong influence of process parameters on relative fatigue life, including credit or debit to the substrate's fatigue life measured via rotating bend beam studies. Damage progression within the substrate was further explored by stripping the coating off part way through fatigue testing, revealing a delay in the onset of substrate damage with more fatigue resistant coatings but no benefit with coatings with inadequate properties. Finally, the results indicate that compressive residual stress and adequate load bearing capability of the coating (both controlled by torch and deposition parameters) delay onset of substrate damage, enabling fatigue credit of the coated component.« less
Vackel, Andrew; Sampath, Sanjay
2017-02-27
Thermal spray deposited WC-CoCr coatings are extensively used for surface protection of wear prone components in a variety of applications. Although the primary purpose of the coating is wear and corrosion protection, many of the coated components are structural systems (aero landing gear, hydraulic cylinders, drive shafts etc.) and as such experience cyclic loading during service and are potentially prone to fatigue failure. It is of interest to ensure that the coating and the application process does not deleteriously affect the fatigue strength of the parent structural metal. It has long been appreciated that the relative fatigue life of amore » thermal sprayed component can be affected by the residual stresses arising from coating deposition. The magnitude of these stresses can be managed by torch processing parameters and can also be influenced by deposition effects, particularly the deposition temperature. In this study, the effect of both torch operating parameters (particle states) and deposition conditions (notably substrate temperature) were investigated through rotating bending fatigue studies. The results indicate a strong influence of process parameters on relative fatigue life, including credit or debit to the substrate's fatigue life measured via rotating bend beam studies. Damage progression within the substrate was further explored by stripping the coating off part way through fatigue testing, revealing a delay in the onset of substrate damage with more fatigue resistant coatings but no benefit with coatings with inadequate properties. Finally, the results indicate that compressive residual stress and adequate load bearing capability of the coating (both controlled by torch and deposition parameters) delay onset of substrate damage, enabling fatigue credit of the coated component.« less
Cleaning By Blasting With Pellets Of Dry Ice
NASA Technical Reports Server (NTRS)
Fody, Jody
1993-01-01
Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.
Evaluation of selected thermal control coatings for long-life space structures
NASA Technical Reports Server (NTRS)
Teichman, Louis A.; Slemp, Wayne S.; Witte, William G., Jr.
1992-01-01
Graphite-reinforced resin matrix composites are being considered for spacecraft structural applications because of their light weight, high stiffness, and lower thermal expansion. Thin protective coatings with stable optical properties and the proper ratio of solar absorption (alpha sub s) to thermal emittance (epsilon) minimize orbital thermal extremes and protect these materials against space environment degradation. Sputtered coatings applied directly to graphite/epoxy composite surfaces and anodized coatings applied to thin aluminum foil were studied for use both as an atomic oxygen barrier and as thermal control coatings. Additional effort was made to develop nickel-based coatings which could be applied directly to composites. These coating systems were selected because their inherent tenacity made them potentially more reliable than commercial white paints for long-life space missions. Results indicate that anodized aluminum foil coatings are suitable for tubular and flat composite structures on large platforms in low Earth orbit. Anodized foil provides protection against some elements of the natural space environment (atomic oxygen, ultraviolet, and particulate radiation) and offers a broad range of tailored alpha sub s/epsilon. The foil is readily available and can be produced in large quantities, while the anodizing process is a routine commercial technique.
NASA Technical Reports Server (NTRS)
Benkel, Samantha; Zhu, Dongming
2011-01-01
Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.
Eduok, Ubong; Szpunar, Jerzy
2018-06-01
Zinc molybdate (ZM) is a safer anticorrosive additive for cooling systems when compared with chromates and lead salts, due to its insolubility in aqueous media. For most molybdate pigments, their molybdate anion (MoO 4 -2 ) acts as an anionic inhibitor and its passivation capacity is comparable with chromate anion (CrO 4 -2 ). To alleviate the environmental concerns involving chromates-based industrial protective coatings, we have proposed new alternative in this work. We have synthesized ZM nanocrystals via ultrasound-assisted process and encapsulated them within an epoxy/PDMS coating towards corrosion protection. The surface morphology and mechanical properties of these ZM doped epoxy/PDMS nanocomposite coatings is exhaustively discussed to show the effect of ZM content on protective properties. The presence of ZM nanocrystals significantly contributed to the corrosion barrier performance of the coating while the amount of ZM nanocrystals needed to prepare an epoxy coating with optimum barrier performance was established. Beyond 2 wt% ZM concentration, the siloxane-structured epoxy coating network became saturated with ZM pigments. This further broadened inherent pores channels, leading to the percolation of corrosion chloride ions through the coating. SEM evidence has revealed proof of surface delamination on ZM3 coating. A model mechanism of corrosion resistance has been proposed for ZM doped epoxy/PDMS nanocomposite coatings from exhaustive surface morphological investigations and evidence. This coating matrix may have emerging applications in cooling systems as anticorrosive surface paints as well as create an avenue for environmental corrosion remediation. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrical contact arrangement for a coating process
Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W
2013-09-17
A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
Electrocurtain coating process for coating solar mirrors
Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.
2013-10-15
An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.
An improved technique for the use of zinc-rich coatings
NASA Technical Reports Server (NTRS)
Paton, W. J.
1973-01-01
Blistering and peeling of topcoats used over ethyl silicate, inorganic, zinc-rich protective coatings are virtually eliminated when primer is allowed to cure outdoors for extended period of time and is moistened during process.
Nanocontainer-based corrosion sensing coating.
Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L
2013-10-18
The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.
Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules
NASA Astrophysics Data System (ADS)
Liang, Kang; Ricco, Raffaele; Doherty, Cara M.; Styles, Mark J.; Bell, Stephen; Kirby, Nigel; Mudie, Stephen; Haylock, David; Hill, Anita J.; Doonan, Christian J.; Falcaro, Paolo
2015-06-01
Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.
NASA Astrophysics Data System (ADS)
Sadeghimeresht, E.; Markocsan, N.; Nylén, P.
2016-12-01
Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.
Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C
NASA Astrophysics Data System (ADS)
Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon
2018-04-01
In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.
NASA Astrophysics Data System (ADS)
Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri
2011-01-01
Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.
NASA Astrophysics Data System (ADS)
Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao
2015-06-01
The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.
Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating
NASA Astrophysics Data System (ADS)
Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian
2015-12-01
In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.
Vacuum Sputtered and Ion-Plated Coatings for Wear and Corrosion Protection
NASA Technical Reports Server (NTRS)
Spalvins, T.
1982-01-01
The plasma or ion-assisted coating techniques such as sputtering and ion plating are discussed in view of wear and corrosion protection. The basic processes and the unique features of the technique are discussed in regard to the synthesis and development of high reliability wear and corrosion resistant films. The ions of the plasma which transfer energy, momentum, and charge to the substrate and the growing films can be beneficially used. As a result, coating adherence and cohesion is improved. Favorable morphological growth such as high density and porosity-free films can be developed, and residual stresses can be reduced.
NASA Astrophysics Data System (ADS)
Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali
2016-07-01
An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, J.C.; Glovan, R.J.; Witt, S.J.
1995-12-31
A four-phase experimental design was utilized to evaluate the abrasive wear and corrosion protection characteristics of VERSAlloy 50 coatings applied to AISI 4130 steel sheet. The coatings were applied with the Pressure Controlled Atomization Process (PCAP), a new thermal spray process being developed for the United States Air Force to replace hard chromium plating. Phase 1 of the design consisted of an evaluation of deposit profiles that were sprayed at five different standoff distances. Profile measurements yielded standard deviations ({sigma}) of the plume at each of the spray distances. Phase 2 consisted of a completely randomized series of eight spraymore » tests in which the track gap or distance between consecutive spray passes was varied by amounts of 0.5{sigma}, 1{sigma}, 2{sigma}, and 3{sigma}. The sprayed test coupons were then evaluated for corrosion protection, abrasive wear resistance, microhardness, and porosity. Results from Phase 2 were used to determine the best track gap or overlap for Phase 3 and Phase 4 testing. Phase 3 consisted of 22-run central composite design. The test coupons were evaluated the same as in Phase 2. Statistical analysis of Phase 3 data revealed that the optimal system operating parameters produced coatings that would either provide superior corrosion protection or resistance to abrasive wear. Phase 4 consisted of four spray tests to validate the results obtained in Phase 3. Phase 4 test coupons were again evaluated with the same analysis as in Phases 2 and 3. The validation tests indicated that PCAP system operating parameters could be controlled to produce VERSAlloy 50 coatings with superior corrosion protection or resistance to abrasive wear.« less
NASA Astrophysics Data System (ADS)
Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.
2017-11-01
The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.
NASA Astrophysics Data System (ADS)
Liu, C. L.; Chu, Paul K.; Yang, D. Z.
2007-04-01
Diamond-like carbon (DLC) coatings were produced with a Si/SiCx interlayer by a hybrid plasma immersion ion implantation and deposition process to improve the adhesion between the carbon layer and surgical NiTi alloy substrate. The structure, mechanical properties, corrosion resistance and biocompatibility of the coatings were evaluated in vitro by Raman spectroscopy, pin-on-disk tests, potentiodynamic polarization tests and simulated fluid immersion tests. The DLC coatings with a Si/SiCx interlayer of a suitable thickness have better adhesion, lower friction coefficients and enhanced corrosion resistance. In the simulated body fluid tests, the coatings exhibit effective corrosion protection and good biocompatibility as indicated by PC12 cell cultures. DLC films fabricated on a Si/SiCx interlayer have high potential as protective coatings for biomedical NiTi materials.
Coatings for minimally processed fruits and vegetables
USDA-ARS?s Scientific Manuscript database
Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...
Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.
2010-01-01
In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.
Liquid Coatings for Reducing Corrosion of Steel in Concrete
NASA Technical Reports Server (NTRS)
MacDowell, Louis G.; Curran, Joseph
2003-01-01
Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.
de Barros, João M S; Lechner, Tabea; Charalampopoulos, Dimitrios; Khutoryanskiy, Vitaliy V; Edwards, Alexander D
2015-09-30
We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid. Copyright © 2015 Elsevier B.V. All rights reserved.
The Use af Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)
NASA Technical Reports Server (NTRS)
Novak, Howard L.
2002-01-01
The USA LLC Materials & Processes (M&P) Engineering Department had recommended the application and evaluation of Ion Vapor Deposition (IVD) aluminum to SRB Hardware for corrosion protection and elimination of hazardous materials and processes such as cadmium plating. IVD is an environmentally friendly process that has no volatile organic compounds (VOCs), or hazardous waste residues. It lends itself to use with hardware exposed to corrosive seacoast environments as found at Kennedy Space Center (KSC), and Cape Canaveral Air Force Station (CCAFS), Florida. Lifting apparatus initially coated with cadmium plating for corrosion protection; was stripped and successfully re-coated with IVD aluminum after the cadmium plating no longer protected the GSE from corrosion, Since then, and after completion of a significant test program, the first flight application of the IVD Aluminum process on the Drogue Parachute Ratchet Assembly is scheduled for 2002.
Advanced Coating Removal Techniques
NASA Technical Reports Server (NTRS)
Seibert, Jon
2006-01-01
An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid nitrogen operations include cutting of both soft and hard materials. While the laser will not cut materials, it can be used to roughen surfaces and to remove other materials from the substrate including oil, grease, and mold. The space program can benefit from several of these applications with the need for precise removal of coatings and other organic compounds in areas adjacent to sensitive space flight hardware. Significant advantages are evident when comparing liquid nitrogen and laser removal operations over current techniques of media blasting and sanding.
The effect of irradiation process on the optical fiber coating
NASA Astrophysics Data System (ADS)
Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei
2018-03-01
Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.
NASA Astrophysics Data System (ADS)
Aljassem, Nasser Ashoor
Considerable attention has been given by the industries and researchers to develop the organic coating systems because of their importance in protecting and maintaining the integrity of the internal surfaces of oil and gas pipelines against corrosive solutions. Oil and natural gas pipelines mostly encounter both corrosion and wear degradations. The current study focuses on the development of coating systems by incorporating various types and amounts of fillers that are improving its barrier function to ward off the internal pipeline surfaces from the corrosive constituents. Simultaneously, fillers enhance the mechanical property of the coating systems that are capable of resisting a physical wear damage. The coating systems ranged in thickness and with micro to nano-size fillers. The pin-ball wear process, with two loads (100 N and 200 N), were applied on the surfaces of the coating systems. The hardness and reduced Young's modulus of the coated surfaces were characterized. The effect of the wear process with different loads were evaluated by employing a three dimensions (3D)-image profile-meter. A simulation of the sweet (CO2) and sour (CO2 and H2S) environments, with 2000 ppm Cl - ions, pH 4, at (60 °C and 1 bar), and (100 °C and 100 bar), respectively, used in the oil and gas industry were used to immerse and evaluate the coating systems. The coating system surface topographies, after the exposure to corrosive solutions, were evaluated by the 3-D profile-meter, stereoscope and scanning electron microscopy (SEM). The intentional defects imposed on the coating systems were exposed to corrosive solutions and their performance were periodically studied by the electrochemical impedance spectroscopy (EIS) technique. The electrochemical actions and coating system degradations due to the exposure to the corrosive solution were studied by the equivalent circuit models. The calculated EIS parameters were used to understand the interactions between the coating systems and corrosive solution. The effect of the high-load wear process was not considerable on the coating systems with significant amount of fillers. The coating systems with high amount of conductive and non-conductive fillers significantly showed high impedance in both the intact coating case and the highest coating resistance in case of the surface with intentional defects. No critical impact of the harsh environment with high pressure and temperature was observed on the powder phenolic Novolac coating system with defects. The harsh corrosive environment (sour), with high pressure and temperature, had a significant impact on most of the coating systems with defects and, specifically, the coating system that had carbon nanotube fillers. Protection and degradation mechanisms of the coating systems have been proposed.
Semiconductor with protective surface coating and method of manufacture thereof. [Patent application
Hansen, W.L.; Haller, E.E.
1980-09-19
Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.
Choi, Woong Kirl; Baek, Seung Yub
2015-09-22
In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond's extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer-platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged by the grinding process will be increased. Despite the etching method requiring more procedures to remove the Pt coating layer after FIB milling, it is a feasible method for diamond tools with under 500 nm width.
Conformal chemically resistant coatings for microflow devices
Folta, James A.; Zdeblick, Mark
2003-05-13
A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.
Microencapsulation of fish oil by spray granulation and fluid bed film coating.
Anwar, Sri Haryani; Weissbrodt, Jenny; Kunz, Benno
2010-08-01
The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 degrees C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 +/- 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process.
Development & characterization of alumina coating by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Sebastian, Jobin; Scaria, Abyson; Kurian, Don George
2018-03-01
Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.
Thermal Protective Coating for High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Barron, Andrew R.
1999-01-01
The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.
Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C T; Xiao, Xingcheng; Gao, Huajian; Qi, Yue
2016-02-07
Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself. However, the chemical composition and mechanical property change of coating materials during the lithiation and delithiation process imposed a grand challenge to design coating/Si nanostructure as an integrated electrode system. In our work, we first developed reactive force field (ReaxFF) parameters for Li-Si-Al-O materials to simulate the lithiation process of Si-core/Al2O3-shell and Si-core/SiO2-shell nanostructures. With reactive dynamics simulations, we were able to simultaneously track and correlate the lithiation rate, compositional change, mechanical property evolution, stress distributions, and fracture. A new mechanics model based on these varying properties was developed to determine how to stabilize the coating with a critical size ratio. Furthermore, we discovered that the self-accelerating Li diffusion in Al2O3 coating forms a well-defined Li concentration gradient, leading to an elastic modulus gradient, which effectively avoids local stress concentration and mitigates crack propagation. Based on these results, we propose a modulus gradient coating, softer outside, harder inside, as the most efficient coating to protect the Si electrode surface and improve its current efficiency.
NASA Astrophysics Data System (ADS)
Flannery, Matthew; Fan, Angie; Desai, Tapan G.
2014-03-01
High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.
Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms
NASA Technical Reports Server (NTRS)
Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo
2004-01-01
With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Stuckey, C. Irvin; Davis, Darrell W.; Davis, Darrell (Technical Monitor)
2002-01-01
Ablatable Thermal Protection System (TPS) coatings are used on the Space Shuttle Vehicle Solid Rocket Boosters in order to protect the aluminum structure from experiencing excessive temperatures. The methodology used to characterize the recession of such materials is outlined. Details of the tests, including the facility, test articles and test article processing are also presented. The recession rates are collapsed into an empirical power-law relation. A design curve is defined using a 95-percentile student-t distribution. based on the nominal results. Actual test results are presented for the current acreage TPS material used.
Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A.
2016-01-01
Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions. PMID:28773875
Lee, Han-Seung; Park, Jin-Ho; Singh, Jitendra Kumar; Ismail, Mohamed A
2016-09-03
Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance-a mixture of Cr 3+ enriched with Cr₂O₃ and Cr-hydroxide in inner and Fe 3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.
Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3
NASA Astrophysics Data System (ADS)
Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW
2018-03-01
Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.
Method for smoothing the surface of a protective coating
Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur
2001-01-01
A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.
Development of Oxidation Resistant Coatings on GRCop-84 Substrates by Cold Spray Process
NASA Technical Reports Server (NTRS)
Karthikeyan, J.
2007-01-01
GRCop-84, a Cu-CR-Nb alloy, has been developed for rocket engine liner applications. For maximum life additional oxidation protection is required to prevent blanching. NiCrAlY was identified as a suitable coating, and efforts were initiated to develop suitable coating techniques. Cold spray is one technique under consideration. Efforts at ASB Industries to produce dense, adherent coatings are detailed. The work culminated in the production of samples for testing at NASA Glenn Research Center.
Study of powder coatings formation modes in Transport Machine-Building Industry
NASA Astrophysics Data System (ADS)
Bodrov, A. S.; Panichkin, A. V.; Kamanin, Y. N.; Kulev, M. V.
2018-03-01
This article describes the use of powder coating materials as an effective corrosion protection system. The correlation between the substrate heating temperature on the optical characteristics of the radiator used and coating material applied was analyzed. The assumption that the process of thermoradiation curing of powder coatings is influenced by two factors (temperature and radiation effect) is confirmed. It was determined that there is a possibility of improving the resource-saving technology based on the conducted studies.
Surface modification of acetaminophen particles by atomic layer deposition.
Kääriäinen, Tommi O; Kemell, Marianna; Vehkamäki, Marko; Kääriäinen, Marja-Leena; Correia, Alexandra; Santos, Hélder A; Bimbo, Luis M; Hirvonen, Jouni; Hoppu, Pekka; George, Steven M; Cameron, David C; Ritala, Mikko; Leskelä, Markku
2017-06-15
Active pharmaceutical ingredients (APIs) are predominantly organic solid powders. Due to their bulk properties many APIs require processing to improve pharmaceutical formulation and manufacturing in the preparation for various drug dosage forms. Improved powder flow and protection of the APIs are often anticipated characteristics in pharmaceutical manufacturing. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD, utilizing common chemistries for Al 2 O 3 , TiO 2 and ZnO, is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating process and maintains its stable polymorphic structure. Acetaminophen with nanometer scale ALD coatings shows slowed drug release. ALD TiO 2 coated acetaminophen particles show cytocompatibility whereas those coated with thicker ZnO coatings exhibit the most cytotoxicity among the ALD materials under study when assessed in vitro by their effect on intestinal Caco-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings
NASA Astrophysics Data System (ADS)
Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas
2017-11-01
Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.
NASA Astrophysics Data System (ADS)
Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong
2014-09-01
Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03306j
NASA Astrophysics Data System (ADS)
Wang, Yongguang; Chen, Yao; Zhao, Dong; Lu, Xiaolong; Liu, Weiwei; Qi, Fei; Chen, Yang
2018-07-01
CrN coatings are widely used to protect metals from wear in industrial engineering. However, fundamental deformation mechanism of these coatings under heavy loading conditions remains elusive. In this paper, multilayered hard coatings with a CrN matrix and a supporting layer were developed by means of the hybrid deposition process combined with PVD and ionicnitriding. The tribological behavior of coatings with and without ionicnitriding were investigated by a pin-on-disk arrangement under heavy loading conditions. In addition, the deformation mechanism of the multilayered hard coatings was studied by nano-scratch experiment with ramp load model, which has not been discussed previously. It was found that the deformation process of coatings could be divided into three regimes based on the evolution of frictional coefficient. The insertion of nitriding films leads to the further increase in frictional resistance owing to the elastic-plastic deformation. The results and analysis reveal some insights into the coating design for multilayered hard coatings with the consideration of deformation mechanisms.
Protective coating for ceramic materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.
Thick-film materials for silicon photovoltaic cell manufacture
NASA Technical Reports Server (NTRS)
Field, M. B.
1977-01-01
Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.
NASA Technical Reports Server (NTRS)
1999-01-01
F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents
NASA Astrophysics Data System (ADS)
Ashassi-Sorkhabi, H.; Bagheri, R.; Rezaei-Moghadam, B.
2016-02-01
In this research, the nanocomposite coatings comprising the polypyrrole-nanodiamond, PPy-ND, on St-12 steel electrodes were electro-synthesized using in situ polymerization process under ultrasonic irradiation. The corrosion protection performance and morphology characterization of prepared coatings were investigated by electrochemical methods and scanning electron microscopy, SEM, respectively. Also, the experimental design was employed to determine the best values considering the effective parameters such as the concentration of nanoparticles, the applied current density and synthesis time to achieve the most protective films. A response surface methodology, RSM, involving a central composite design, CCD, was applied to the modeling and optimization of the PPy-ND nanocomposite deposition. Pareto graphic analysis of the parameters indicated that the applied current density and some of the interactions were effective on the response. The electrochemical results proved that the embedment of diamond nanoparticle, DNP, improves the corrosion resistance of PPy coatings significantly. Therefore, desirable correlation exists between predicted data and experimental results.
Thin film heater for removable volatile protecting coatings.
Karim, Abid
2013-01-01
Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.
Protective coatings of metal surfaces by cold plasma treatment
NASA Technical Reports Server (NTRS)
Manory, R.; Grill, A.
1985-01-01
The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.
Protection method for an optical information carrier
NASA Astrophysics Data System (ADS)
Pitsyuga, Vitaly V.; Kolesnikov, Michael Y.; Kosyak, Igor V.
1997-02-01
Now information protection on personal carriers (for example, cards) from an unauthorized access (UA) is a very important problem in connection with wide introduction of proper automatic systems for information processing in different spheres of human activity. These are financial, medical and information services, an access to restricted units and so on. There is proposed to use physical parameters of the special coating part (so-called restricted zone) to information protection on optical carriers (laser cards). There is formed restricted zone on the surface of the recording coating of a laser card. The unique information about every laser card to creating a protective passport from UA is obtained by readout of defects parameters.
2013-12-23
the CnC drive, building and integration of the plasma head, installation of gas distribution system, and control systems for the machine. The machine...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 antimicrobial coatings, atmospheric pressure plasma liquid deposition...polyester fabric using Triton Systems novel atmospheric pressure plasma deposition process (Invexus™). It is envisioned that these new antimicrobial
Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella
2013-01-01
Summary Background Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. Aim The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Materials and methods Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. Results No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. Conclusions When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs. PMID:24611090
Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella
2013-01-01
Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan James
2014-01-01
Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.
Sprayable Phase Change Coating Thermal Protection Material
NASA Technical Reports Server (NTRS)
Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj
2005-01-01
NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce the launch and processing costs of a reusable space vehicle to an affordable level, refurbishment costs must be substantially reduced. A key component of such a cost effective approach is the use of a reusable, phase change, thermal protection coating.
Magnetic strength and corrosion of rare earth magnets.
Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen
2006-09-01
Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.
NASA Astrophysics Data System (ADS)
Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.
2009-01-01
Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.
Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface
Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei
2017-01-01
Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating. PMID:28773013
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...
Liquid Galvanic Coatings for Protection of Imbedded Metals
NASA Technical Reports Server (NTRS)
MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)
2003-01-01
Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.
Spectroscopic studies of triethoxysilane sol-gel and coating process.
Li, Ying-Sing; Ba, Abdul
2008-10-01
Silica sol-gels have been prepared under different conditions using triethoxysilane (TES) as precursor. The prepared sol-gels have been used to coat aluminum for corrosion protection. Vibrational assignments have been made for most vibration bands of TES, TES sol-gel, TES sol-gel-coated aluminum and xerogel. It has been noticed that air moisture may have helped the hydrolysis of the thin coating films. Xerogels have been obtained from the sol-gel under different temperature conditions and the resulting samples have been characterized by using infrared and Raman spectroscopic methods. IR data indicate that the sol-gel process is incomplete under the ambient conditions although an aqueous condition can have slightly improved the process. Two nonequivalent silicon atoms have been identified from the collected 29Si NMR spectra for the sol-gel, supporting the result derived from the IR data. The frequency of Si-H bending vibration has been found to be more sensitive to the skeletal structure than that of the Si-H stretching vibration. A higher temperature condition could favor the progression of hydrolysis and condensation. A temperature higher than 300 degrees C would cause sample decomposition without seriously damaging the silica network. From infrared intensity measurements and thermo-gravimetric analyses, the fractions of incomplete hydrolysis and condensation species have been estimated to be 4% and 3%, respectively. Electrochemical data have shown that the sol-gel coating significantly improves the corrosion protection properties of aluminum.
NASA Astrophysics Data System (ADS)
Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert
2017-09-01
Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T < 1050 °C). This transformation is connected to an oxygen incorporation which occurs at regions facing high oxygen partial pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...
Waterjet processes for coating removal
NASA Technical Reports Server (NTRS)
Burgess, Fletcher; Cosby, Steve; Hoppe, David
1995-01-01
USBI and NASA have been testing and investigating the use of high pressure water for coating removal for approximately the past 12 years at the Automated TPS (Thermal Protection System - ablative materials used for thermal protection during ascent and descent of the solid rocket boosters) Removal Facility located in the Productivity Enhancement Complex at Marshall Space Flight Center. Originally the task was to develop and automate the removal process and transfer the technology to a production facility at Kennedy Space Center. Since that time more and more applications and support roles for the waterjet technology have been realized. The facility has become a vital part of development activities ongoing at MSFC. It supports the development of environmentally compliant insulations, sealants, and coatings. It also supports bonding programs, test motors, and pressure vessels. The most recent role of the cell is supporting Thiokol Corporation's solid rocket motor program in the development of waterjet degreasing and paint stripping methods. Currently vapor degreasing methods use 500,000 lbs. of ozone depleting chemicals per year. This paper describes the major cell equipment, test methods practiced, and coatings that have been removed.
In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina
2018-01-01
In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Young, S. G. (Inventor)
1982-01-01
A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.
Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings
NASA Astrophysics Data System (ADS)
Ciubotariu, Costel-Relu; Frunzăverde, Doina; Mărginean, Gabriela; Șerban, Viorel-Aurel; Bîrdeanu, Aurel-Valentin
2016-03-01
Cobalt base alloys are used in all industrial areas due to their excellent wear resistance. Several studies have shown that Stellite 6 coatings are suitable not only for protection against sliding wear, but also in case of exposure to impact loading. In this respect, a possible application is the protection of hydropower plant components affected by cavitation. The main problem in connection with Stellite 6 is the deposition procedure of the protective layers, both welding and thermal spraying techniques requesting special measures in order to prevent the brittleness of the coating. In this study, Stellite 6 layers were HVOF thermally sprayed on a martensitic 13-4 stainless steel substrate, as usually used for hydraulic machinery components. In order to improve the microstructure of the HVOF-sprayed coatings and their adhesion to the substrate, laser remelting was applied, using a TRUMPF Laser type HL 124P LCU and different working parameters. The microstructure of the coatings, obtained for various remelting conditions, was evaluated by light microscopy, showing the optimal value of the pulse power, which provided a homogenous Stellite 6 layer with good adhesion to the substrate.
High temperature corrosion-resistant protective coatings in stationary gas turbines
NASA Technical Reports Server (NTRS)
Gruenling, H. W.
1977-01-01
Methods currently used to deposit protective coatings in gas turbines are reviewed, and the structure of the respective coatings is examined. The corrosion behavior of such coatings is discussed on the basis of experimental data. General trends in the preparation of protective coatings are noted.
DOT National Transportation Integrated Search
2009-01-01
Underground pipelines are protected by a combination of cathodic protection and a protective coating. Multi-layer coatings offer protection against corrosion and from mechanical damage during construction or during service. Multi-layer coatings are w...
Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay
2015-07-01
Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Möhwald, K.; Maier, H. J.
2017-10-01
The repair and maintenance of components in the aerospace industry play an increasingly important role due to rising manufacturing costs. Besides welding, vacuum brazing is a well-established repair process for turbine blades made of nickel-based alloys. After the coating of the worn turbine blade has been removed, the manual application of the nickel-based filler metal follows. Subsequently, the hot gas corrosion-protective coating is applied by thermal spraying. The brazed turbine blade is aluminized to increase the hot gas corrosion resistance. The thermal spray technology is used to develop a two-stage hybrid technology that allows shortening the process chain for repair brazing turbine blades and is described in the present paper. In the first step, the coating is applied on the base material. Specifically, the coating system employed here is a layer system consisting of nickel filler metal, NiCoCrAlY and aluminum. The second step represents the combination of brazing and aluminizing of the coating system which is subjected to a heat treatment. The microstructure, which results from the combined brazing and aluminizing process, is characterized and the relevant diffusion processes in the coating system are illustrated. The properties of the coating and the ramifications with respect to actual applications will be discussed.
Progress in Protective Coatings for Aircraft Gas Turbines: A Review of NASA Sponsored Research
NASA Technical Reports Server (NTRS)
Merutka, J. P.
1981-01-01
Problems associated with protective coatings for advanced aircraft gas turbines are reviewed. Metallic coatings for preventing titanium fires in compressors are identified. Coatings for turbine section are also considered, Ductile aluminide coatings for protecting internal turbine-blade cooling passage surface are also identified. Composite modified external overlay MCrAlY coatings deposited by low-pressure plasma spraying are found to be better in surface protection capability than vapor deposited MCrAlY coatings. Thermal barrier coating (TBC), studies are presented. The design of a turbine airfoil is integrated with a TBC, and computer-aided manufacturing technology is applied.
Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings
NASA Astrophysics Data System (ADS)
Schuöcker, Georg D.; Bielak, Robert
2007-05-01
During the last years surface preparation prior to coating operations became an important research and development task, since tightened environmental regulations have to be faced in view of the deliberation of hazardous compounds of coatings. Especially, ship-yards get more and more under pressure, because the environmental commitment of their Asian competitors is fairly limited. Therefore, in the US and in Europe several technology evaluation projects have been launched to face this challenge. The majority of coating service providers and ship yards use grit blasting; this process causes heavy emissions as of dust and enormous amounts of waste as polluted sand. Coating removal without any blasting material would reduce the environmental impact. Laser processing offers ecological advantages. Therefore thermal processes like laser ablation have been studied thoroughly in several published projects and also in this study. Many of these studies have been focused on the maintenance of airplanes, but not on de-coating of heavy protective coatings. In this case the required laser power is extra-high. This study is focused on the maintenance of heavy anti-corrosion coatings and compares the industrial requirements and the opportunities of the innovative laser processes. Based on the results of this analysis similar approaches as e.g. plasma jet coating ablation have been studied. It was concluded that none of these methods can compete economically with the conventional processes as grit blasting and water jetting since the required ablation rate is very high (>60m2/h). A new process is required that is not based on any blasting operation and which does not depend strongly on the coating's characteristic. The delamination of the coating where the coatings is not removed by evaporation, but in little pieces of the complete coating system meets these requirements. The delamination can be accomplished by the thermal destruction of the primer coating by an intense heat pulse generated by inductive heating of substrate's surface. After this operation the coating can be peeled off.
Low Earth Orbit Environmental Effects on Space Tether Materials
NASA Technical Reports Server (NTRS)
Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed
2005-01-01
Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.
System and process for aluminization of metal-containing substrates
Chou, Yeong-Shyung; Stevenson, Jeffry W.
2017-12-12
A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.
System and process for aluminization of metal-containing substrates
Chou, Yeong-Shyung; Stevenson, Jeffry W
2015-11-03
A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.
2013-03-01
household bleach in water at a pH controlled at 7–10, or in a dilute solution of bromine. The loading of the halogen on the coatings was determined using ...or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process...disclosed, or represents that its use would not infringe privately owned rights. Standard Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed
Mirkarimi, P B; Baker, S L; Montcalm, C; Folta, J A
2001-01-01
Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO(3) also showed promise.
Mirror coatings for large aperture UV optical infrared telescope optics
NASA Astrophysics Data System (ADS)
Balasubramanian, Kunjithapatham; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Del Hoyo, Javier; Quijada, Manuel
2017-09-01
Large space telescope concepts such as LUVOIR and HabEx aiming for observations from far UV to near IR require advanced coating technologies to enable efficient gathering of light with important spectral signatures including those in far UV region down to 90nm. Typical Aluminum mirrors protected with MgF2 fall short of the requirements below 120nm. New and improved coatings are sought to protect aluminum from oxidizing readily in normal environment causing severe absorption and reduction of reflectance in the deep UV. Choice of materials and the process of applying coatings present challenges. Here we present the progress achieved to date with experimental investigations of coatings at JPL and at GSFC and discuss the path forward to achieve high reflectance in the spectral region from 90 to 300nm without degrading performance in the visible and NIR regions taking into account durability concerns when the mirrors are exposed to normal laboratory environment as well as high humidity conditions. Reflectivity uniformity required on these mirrors is also discussed.
Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings
NASA Astrophysics Data System (ADS)
Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.
2010-01-01
Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.
Article having an improved platinum-aluminum-hafnium protective coating
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)
2005-01-01
An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.
NASA Astrophysics Data System (ADS)
Dur, Ender; Cora, Ömer Necati; Koç, Muammer
2014-01-01
Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.
NASA Astrophysics Data System (ADS)
Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao
2015-10-01
A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.
Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Young, S. G. (Inventor)
1983-01-01
A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.
Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties
NASA Astrophysics Data System (ADS)
Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.
In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Popov, S. I.; Kirichek, A. V.
2018-03-01
The article suggests the technology of vibration finishing processing of aluminum alloys with simultaneous coating. On the basis of experimental studies, cast alloys, working media, operating modes of equipment, activating solutions were chosen. The practical application of the developed technology on real parts is shown.
NASA Astrophysics Data System (ADS)
Garcia, R. B. R.; Silva, F. S.; Kawachi, E. Y.
2017-02-01
For corrosion protection of aluminum alloy AA2024 -T3 a silicon/zirconium films were obtained via sol-gel process, prepared from tetraethoxysilane and zirconium acetate, in acid medium with a 5 wt% of nonionic surfactant in order to replace the pre-treatment based on chromium conversion coatings. A homogeneous film was obtained and deposited, at low viscosity condition of the sol (˜10cP), by dip and spray coating techniques. The films morphology was evaluated by Scanning Electron Microscopy (SEM), and to know more about the used deposition methodology, the deposited mass and the film thickness were measured. The corrosion protection efficiency of deposited films was evaluated by potentiodynamic polarization. The film deposition by both dip and spray coatings were effective for the deposition of a homogeneous film layer, and the results showed the thickness is directly related with the deposited mass, and the film deposited by spray technique presented the lower value. Potentiodynamic polarization indicated that the film deposited by spray coating apparently has a better inert ceramic film due the polarization resistance increased around 57% against 27 and 14% of dip coating samples (4 and 1 layer, respectively).
A production parylene coating process for hybrid microcircuits
NASA Technical Reports Server (NTRS)
Kale, V. S.; Riley, T. J.
1977-01-01
The real impetus for developing a production parylene coating process for internal hybrid passivation came as a result of the possibility of loose conductive particles in hybrid microelectronic circuits, causing intermittent and sometimes permanent failures. Because of the excellent mechanical properties of parylene, it is capable of securing the loose particles in place and prevent such failures. The process of coating described consists of (1) vaporizing the initial charge, which is in the form of a dimer; (2) conversion of the dimer into a reactive monomer; and (3) deposition and subsequent polymerization of the monomer in the deposition chamber which forms a uniform parylene film over all the cold surfaces in contact. Experimental results are discussed in terms of wire bond reliability, resistor drift, high-temperature storage characteristics of parylene, and coating acceptance standards. It is concluded that internal cavities of microelectronic circuits can be successfully coated with parylene provided appropriate tooling is used to protect external leads from the parylene monomer.
Metallization of Kevlar fibers with gold.
Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G
2011-06-01
Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Gao, Feng
The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.
One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok
2015-03-25
In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.
Design and research of thermal protective material from short basalt fibres
NASA Astrophysics Data System (ADS)
Komkov, MA; Tarasov, VA; Boyarskaya, RA; Filimonov, AS
2016-10-01
Design and manufacture issues regarding highly porous thermal protection coatings of products by means of liquid filtration of short basalt fibres and mineral binder are considered. The technological process of manufacture of thermally loaded products from the short basalt fibres of thermal protective material (TPM) in the form of tiles and rings, was developed based on a liquid filtration method. The structural and mechanical properties of the highly porous TPM technological modes were determined. The thermal testing of the pipe model samples was carried out on a thermal bench, which showed the temperature on the coating reaching less than 60°C during a hot air run through the pipe at 400°C.
Environmental protection to 922K (1200 F) for titanium alloys
NASA Technical Reports Server (NTRS)
Groves, M. T.
1973-01-01
Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.
Corrosion Protection by Calcite-Type Coatings
1989-10-01
CORROSION PROTECTION BY CALCITE -TYPE COATINGS OCTOBER, 1989 Prepared by: OCEAN CITY RESEARCH CORPORATION Tennessee Avenue & Beach Thorofare Ocean...REPORT DATE OCT 1989 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Corrosion Protection by Calcite -Type Coatings 5a. CONTRACT... calcite -type coatings to segregated seawater ballast tanks. If perfected, a calcite coating approach could substantially reduce the cost of corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhav Rao Gonvindaraju
1999-10-18
Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less
An experimental, low-cost, silicon slurry/aluminide high-temperature coating for superalloys
NASA Technical Reports Server (NTRS)
Young, S. G.; Deadmore, D. L.
1979-01-01
A duplex silicon-slurry/aluminide coating has been developed and cyclically tested in Mach 1 combustion gases for oxidation and thermal fatigue resistance at 1093 C and in Mach 0.3 gases for hot-corrosion resistance at 900 C. The base-metal superalloys were VIA and B-1900. The coated B-1900 specimens performed much better in oxidation than similar specimens coated with aluminides and almost as well as the more-expensive Pt-Al and MCrAlY (where M is Ni and/or Co) coatings deposited by the physical vapor deposition process. The coating also provided good hot-corrosion protection. Metallographic, X-ray, and electron microprobe studies were made to characterize the coating, determine failure mechanisms, and study some of the changes due to exposure.
Development of improved high temperature coatings for IN-792 + HF
NASA Technical Reports Server (NTRS)
Profant, D. D.; Naik, S. K.
1981-01-01
The development for t-55 l712 engine of high temperature for integral turbine nozzles with improved thermal fatigue resistance without sacrificing oxidation/corrosion protection is discussed. The program evaluated to coating systems which comprised one baseline plasma spray coating (12% Al-NiCoCrALY), three aluminide coatings including the baseline aluminide (701), two CoNiCrAly (6% Al) + aluminide systems and four NiCoCrY + aluminide coating were evaluated. The two-step coating processes were investigated since it offered the advantage of tailoring the composition as well as properly coating surfaces of an integral or segmented nozzle. Cyclic burner rig thermal fatigue and oxidation/corrosion tests were used to evaluate the candidate coating systems. The plasma sprayed 12% Al-NiCoCrAlY was rated the best coating in thermal fatigue resistance and outperformed all coatings by a factor between 1.4 to 2.5 in cycles to crack initiation. However, this coatings is not applicable to integral or segmented nozzles due to the line of sight limitation of the plasma spray process. The 6% Al-CoNiCrAlY + Mod. 701 aluminide (32 w/o Al) was rated the best coating in oxidation/corrosion resistance and was rated the second best in thermal fatigue resistance.
Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties
NASA Astrophysics Data System (ADS)
Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.
2007-12-01
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.
Evaluation of glass resin coatings for solar cell applications
NASA Technical Reports Server (NTRS)
Field, M. B.
1978-01-01
Using a variety of non-vacuum deposition techniques coatings were implemented on silicon solar cells and arrays of cells interconnected on Kapton substrates. The coatings provide both antireflection optical matching and environmental protection. Reflectance minima near 2% was achieved at a single wavelength in the visible. Reflectance averaging below 5% across the useful collection range was demonstrated. The coatings and methods of deposition were: (1) Ta2O5 spun, dipped or sprayed; (2) Ta2O5.SiO2 spun, dipped or sprayed; (3) GR908 (SiO2) spun, dipped, or sprayed. Total coating thickness were in the range of 18 microns to 25 microns. The coatings and processes are compatible with single cells or cells mounted on Kapton substrates.
Process for applying a superconductive powder to a wide variety of substrates
NASA Astrophysics Data System (ADS)
Hooker, Matthew W.; Wise, Stephanie A.; Tran, Sang Q.
1992-12-01
A fine superconducting powder such as YBa2Cu3O(7-x), wherein x is less than one, is blended into a liquid mixture comprising an epoxy resin and a thinner. This liquid mixture with the blended superconducting powder is coated onto a substrate. Next, the thinner is evaporated and the remaining coating cured, resulting in a coating of cured epoxy resin having superconducting powder suspended therein. This coating exhibits the Meissner effect, i.e., it expels a magnetic flux which protects the substrate from external magnetic interference. Since the coated substrate need only be heated for evaporation and curing at relatively low temperatures compared to firing, the superconducting coating can be applied to a wide variety of different materials.
Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization
NASA Astrophysics Data System (ADS)
Qi, Jiantao; Thompson, George E.
2016-07-01
In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.
2014-08-01
of the GEGR pilot membrane coater; b) configuration of the coating station; and c) web path of the dip-knife coating process for RO membrane...Energy-dispersive X-ray spectroscopy EPA Environmental Protection Agency F:M Food-To-Microorganism Ratio FOB Forward Operating Base FT- IR Fourier...report 03/2014 3.3 Submit draft Interim report/Go No-Go decision point white paper 05/2013 3.4 Submit final report 05/2014 3.5 Final debrief
The corrosion protection of aluminum by various anodizing treatments
NASA Technical Reports Server (NTRS)
Danford, Merlin D.
1989-01-01
Corrosion protection to 6061-T6 aluminum, afforded by both teflon-impregnated anodized coats (Polylube and Tufram) and hard-anodized coats (water sealed and dichromate sealed), was studied at both pH 5.5 and pH 9.5, with an exposure period of 28 days in 3.5 percent NaCl solution (25 C) for each specimen. In general, corrosion protection for all specimens was better at pH 9.5 than at pH 5.5. Protection by a Tufram coat proved superior to that afforded by Polylube at each pH, with corrosion protection by the hard-anodized, water-sealed coat at pH 9.5 providing the best protection. Electrochemical work in each case was corroborated by microscopic examination of the coats after exposure. Corrosion protection by Tufram at pH 9.5 was most comparable to that of the hard-anodized samples, although pitting and some cracking of the coat did occur.
Refinement of Promising Coating Compositions for Directionally Cast Eutectics
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Felten, E. J.; Benden, R. S.
1976-01-01
The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Flat Wood Paneling Surface Coating Processes AGENCY: Environmental Protection Agency (EPA). ACTION... sources covered by EPA's Control Techniques Guidelines (CTG) standards for flat wood paneling surface... Protection (PADEP) submitted to EPA a SIP revision concerning the adoption of the CTG for flat wood paneling...
Corrosion-protective coatings from electrically conducting polymers
NASA Technical Reports Server (NTRS)
Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.
1991-01-01
In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.
Wong, Chun Y; Martinez, Jorge; Carnagarin, Revathy; Dass, Crispin R
2017-03-01
The aim of this study was to develop an enteric coated insulin tablet formulation using polymers, absorption enhancer and enzyme inhibitor, which protect the tablets in acidic pH and enhance systemic bioavailability. In this study, the influence of coating by cellulose acetate hydrogen phthalate solution and chosen excipients on Glut-4 transporter translocation in C2C12 skeletal muscle cells was examined. Following the determination of optimum number of coating layers, two dissolution buffers such as 0.01 m hydrochloric acid, pH 2, and 50 mm phosphate, pH 7.4, were employed to determine the in-vitro release of insulin. Insulin was protected by the coating during the dissolution process. Five (5-CL) coating layers and eight (8-CL) coating layers had minimal insulin release in hydrochloric acid, but not three (3-CL) coating layers. Glut-4 translocation in C2C12 cells was promoted by the chosen excipients. No detrimental metabolic effects were observed in these cells. To date, limited studies combine the overall effectiveness of multiple excipients. Our study showed that the coated tablets have an immediate release effect in phosphate buffer. In Glut-4 translocation assay, insulin was still functional after releasing from the tablet. Such tablet formulation can be potentially beneficial to type 1 diabetes patients. © 2017 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Rehman, Zeeshan Ur; Koo, Bon Heun
2016-08-01
In this study, protective ceramic coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) to improve the corrosion and mechanical properties of AZ91D magnesium alloy. The process was conducted in silicate-fluoride-based electrolyte solution. It was found that the average micro-hardness of the coating was significantly increased with an increase in the PEO processing time. The highest value of the average micro-hardness ~1271.2 HV was recorded for 60-min processing time. The phase analysis of the coatings indicated that they were mainly composed of Mg2SiO4, MgO, and MgF2 phases. The surface and cross-sectional study demonstrated that porosity was largely reduced with processing time, together with the change in pore geometry from irregular to spherical shape. The results of the polarization test in 3.5 wt.% NaCl solution revealed that aggressive corrosion took place for 5-min sample; however, the corrosion current was noticeably decreased to 0.43 × 10-7 A/cm2 for the 60-min-coated sample. The superior nobility and hardness for long processing time are suggested to be due to the dense and highly thick coating, coupled with the presence of MgF2 phase.
Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B
2016-06-01
Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Galvanic Protection Of 2219 Al By Al/Li Powder
NASA Technical Reports Server (NTRS)
Daech, Alfred
1995-01-01
Coatings consisting of aluminum/lithium powders incorporated into acrylic resin found to protect panels of 2219 aluminum from corrosion by salt spray better than coating consisting of 2219 aluminum in same acrylic resin. Exact mechanism by which aluminum/lithium coatings protect against corrosion unknown, although galvanic mechanism suspected. These coatings (instead of chromium) applied to fasteners and bars to provide cathodic protection, both with and without impressed electrical current.
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce; Lenczewski, Mary; Demko, Rikako
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.
Fault location method for unexposed gas trunk line insulation at stray current constant effect area
NASA Astrophysics Data System (ADS)
Tsenev, A. N.; Nosov, V. V.; Akimova, E. V.
2017-10-01
For the purpose of gas trunk lines safe operation, two types of pipe wall metal anticorrosion protection are generally used - the passive (insulation coating) protection and the active (electrochemical) protection. In the process of a pipeline long-term operation, its insulation is subject to wear and damage. Electrochemical protection means of a certain potential value prevent metal dissolution in the soil. When insulation wear and tear attains a level of insufficiency of the protection potential value, the insulating coating needs repair which is a labor-consuming procedure. To reduce the risk of such situation, it is necessary to make inspection rounds to monitor the condition of pipe insulation. A method for pipeline insulation coating unexposed fault location based on Pearson method is considered, wherein a working cathodic protection station signal of 100 Hz frequency is used, which makes installation of a generator unnecessary, and also a specific generator signal of 1 kHz frequency is used at high noise immunity and sensitivity of the instrument complex. This method enables detection and sizing of unexposed pipeline defects within the zones of earth current permanent action. High noise immunity of selective indicators allows for operation in proximity to 110 kV, 220 kV, and 500 kV power transmission lines in action.
Diffusional aspects of the high-temperature oxidation of protective coatings
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.
1989-01-01
The role of diffusional transport associated with the high-temperature oxidation of coatings is examined, with special attention given to the low-pressure plasma spraying MCrAl-type overlay coatings and similar Ni-base alloys which form protective AlO3 scales. The use of diffusional analysis to predict the minimum solute concentration necessary to form and grow a solute oxide scale is illustrated. Modeling procedures designed to simulate the diffusional transport in coatings and substrates are presented to show their use in understanding coating degradation, predicting the protective life of a coating, and evaluating various coating parameters to guide coating development.
Overlay metallic-cermet alloy coating systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
2011-01-01
be an adequate alternative for chromate-based coatings [Nanna, 2004] for the protection of aluminum alloys from corrosion . Its protection behavior ...alternative for chromate-based coatings for the protection of aluminum alloys from corrosion . Their protection behavior was attributed to a combination...Topcoat Under Prohesion® Conditions ........ 12 2.4 Remote Corrosion Sensor Design
NASA Astrophysics Data System (ADS)
Wang, Ruofan; Sun, Zhihao; Pal, Uday B.; Gopalan, Srikanth; Basu, Soumendra N.
2018-02-01
Chromium poisoning is one of the major reasons for cathode performance degradation in solid oxide fuel cells (SOFCs). To mitigate the effect of Cr-poisoning, a protective coating on the surface of interconnect for suppressing Cr vaporization is necessary. Among the various coating materials, Cu-Mn spinel coating is considered to be a potential candidate due to their good thermal compatibility, high stability and good electronic conductivity at high temperature. In this study, Crofer 22 H meshes with no protective coating, those with commercial CuMn2O4 spinel coating and the ones with lab-developed CuMn1.8O4 spinel coating were investigated. The lab-developed CuMn1.8O4 spinel coating were deposited on Crofer 22 H mesh by electrophoretic deposition and densified by a reduction and re-oxidation process. With these different Crofer 22 H meshes (bare, CuMn2O4-coated, and CuMn1.8O4-coated), anode-supported SOFCs with Sr-doped LaMnO3-based cathode were electrochemically tested at 800 °C for total durations of up to 288 h. Comparing the mitigating effects of the two types of Cu-Mn spinel coatings on Cr-poisoning, it was found that the performance of the denser lab-developed CuMn1.8O4 spinel coating was distinctly better, showing no degradation in the cell electrochemical performance and significantly less Cr deposition near the cathode/electrolyte interface after the test.
Spinoff from a Mooncraft Technology
NASA Technical Reports Server (NTRS)
1988-01-01
Avco Specialty Materials' Chartek III fireproofing provides longterm fire protection for structural steel in high risk industrial applications such as structural conduits, pipes and valves of offshore platforms, and storage tanks used in hydrocarbon processing industry. In the presence of fire, Chartek III fire-proofing provides two kinds of protection. One of them is ablation, technique used on Apollo involving dissipation of heat by burnoff. The other is called intumescence or swelling. Heat causes the Chartek coating to swell to a thickness six times greater than when it was applied forming a protective blanket of char that retards transfer of heat to the steel structure. Mesh reinforcement keeps the char intact and reduces metal fatigue. Chartek provides fire protection for as much as two or three hours depending on the type of fire and the thickness of the coating applied.
Protection of cooled blades of complex internal structure
NASA Technical Reports Server (NTRS)
Glamiche, P.
1977-01-01
The problem of general protection of cooled blades of complex internal structure was solved by a method called SF technique which makes possible the protection of both external and internal surfaces, as well as those of the orifices of cooling air, whatever their diameter. The SF method is most often applied in the case of pack process, at controlled or high activity; it can be of use on previously uncoated parts, but also on pieces already coated by a thermochemical, chemical or PVD method. The respective thickness of external and internal coatings may be precisely predetermined, no parasitic particle being liable to remain inside the parts after application of the protecting treatment. Results obtained to date by application of this method are illustrated by the presentation and examination of a various selection of advanced turbo engines.
Process for making RF shielded cable connector assemblies and the products formed thereby
NASA Technical Reports Server (NTRS)
Fisher, A.; Clatterbuck, C. H. (Inventor)
1973-01-01
A process for making RF shielded cable connector assemblies and the resulting structures is described. The process basically consists of potting wires of a shielded cable between the cable shield and a connector housing to fill in, support, regidize, and insulate the individual wires contained in the cable. The formed potting is coated with an electrically conductive material so as to form an entirely encompassing adhering conductive path between the cable shield and the metallic connector housing. A protective jacket is thereby formed over the conductive coating between the cable shield and the connector housing.
NASA Astrophysics Data System (ADS)
Lozhechnikova, Alina; Bellanger, Hervé; Michen, Benjamin; Burgert, Ingo; Österberg, Monika
2017-02-01
Protection from liquid water and UV radiation are equally important, and a sophisticated approach is needed when developing surface coatings that preserve the natural and well-appreciated aesthetic appearance of wood. In order to prevent degradation and prolong the service life of timber, a protective coating was assembled using carnauba wax particles and zinc oxide nanoparticles via layer-by-layer deposition in water. For this purpose, a facile sonication route was developed to produce aqueous wax dispersion without any surfactants or stabilizers. The suspension was stable above pH 4 due to the electrostatic repulsion between the negatively charged wax particles. The particle size could be controlled by the initial wax concentration with average particle sizes ranging from 260 to 360 nm for 1 and 10 g/L, respectively. The deposition of wax particles onto the surface of spruce wood introduced additional roughness to the wood surface at micron level, while zinc oxide provided nano roughness and UV-absorbing properties. In addition to making wood superhydrophobic, this novel multilayer coating enhanced the natural moisture buffering capability of spruce. Moreover, wood surfaces prepared in this fashion showed a significant reduction in color change after exposure to UV light. A degradation of the wax through photocatalytic activity of the ZnO particles was measured by FTIR, indicating that further studies are required to achieve long-term stability. Nevertheless, the developed coating showed a unique combination of superhydrophobicity and excellent moisture buffering ability and some UV protection, all achieved using an environmentally friendly coating process, which is beneficial to retain the natural appearance of wood and improve indoor air quality and comfort.
NASA Astrophysics Data System (ADS)
Ma, X.; Ruggiero, P.
2018-04-01
Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.
NASA Astrophysics Data System (ADS)
Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.
2018-04-01
The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ- ɛ martensitic transformation.
Temporary coatings for protection of microelectronic devices during packaging
Peterson, Kenneth A.; Conley, William R.
2005-01-18
The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.
High power impulse magnetron sputtering and its applications
NASA Astrophysics Data System (ADS)
Yan, YUAN; Lizhen, YANG; Zhongwei, LIU; Qiang, CHEN
2018-04-01
High power impulse magnetron sputtering (HiPIMS) has attracted a great deal of attention because the sputtered material is highly ionized during the coating process, which has been demonstrated to be advantageous for better quality coating. Therefore, the mechanism of the HiPIMS technique has recently been investigated. In this paper, the current knowledge of HiPIMS is described. We focus on the mechanical properties of the deposited thin film in the latest applications, including hard coatings, adhesion enhancement, tribological performance, and corrosion protection layers. A description of the electrical, optical, photocatalytic, and functional coating applications are presented. The prospects for HiPIMS are also discussed in this work.
Vacuum application of thermal barrier plasma coatings
NASA Technical Reports Server (NTRS)
Holmes, R. R.; Mckechnie, T. N.
1988-01-01
Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.
NASA Astrophysics Data System (ADS)
Anwar, M. A.; Kurniawan, T.; Asmara, Y. P.; Harun, W. S. W.; Oumar, A. N.; Nandyanto, A. B. D.
2017-10-01
In this work, the morphology of ZrO2 thin film from dip coating process on mild steel has been investigated. Mild steel was dip-coated on solution made of zirconium butoxide as a precursor, ethanol as solvent, acetylacetone as chelating agent and water for hydrolysis. Number of dipping was adjusted at 3, 5 and 7 times. The dipped sample then annealed at 350°C for two hours by adjusting the heating rate at 1°C/min respectively. The optical microscope showed that micro-cracks were observed on the surface of the coating with its concentration reduced as dipping sequence increased. The XRD result showed that annealing process can produce polycrystalline tetragonal-ZrO2. Meanwhile, SEM image showed that the thicknesses of the ZrO2 coatings were in between 400-600 nm. The corrosion resistance of uncoated and coated substrates was studied by polarization test through potentio-dynamic polarization curve at 1mV/s immersed in with 3.5% NaCl. The coating efficiency was improved as the number of layer dip coated increased, which showed improvement in corrosion protection.
NASA Astrophysics Data System (ADS)
Gambina, Federico
In this study, the corrosion protection provided by of a number of chromate and chromate-free coatings systems was characterized in detail. High-solids SrCrO4-pigmented epoxy primers applied to 2024 and 7075 substrates were subject to salt spray exposure testing for 30 days. Samples were removed periodically and an electrochemical impedance measurement (EIS) was made. Although none of the coatings tested showed visual evidence of corrosion, the total impedance of the samples decreased by as much as two orders of magnitude. An analysis of capacitance showed that the primer coatings rapidly took up water from the exposure environment, but the coating-metal remained passive despite the fact that it was wet. These results support the idea that chromate coatings protect by creating a chromate-rich electrolyte within the coating that is passivating to the underlying metal substrate. They also suggest that indications of metal substrate passivity found in the low-frequency capacitive reactance of the impedance spectra are a better indicator of corrosion protection than the total impedance. The low-frequency capacitive reactance from EIS measurements is also good at assessing the protectiveness of chromate-free coatings systems. Fifteen different coatings systems comprising high-solids, chromate-free primers and chromate-free conversion coatings were applied to 2024 and 7075 substrates. These coatings were subject to salt spray exposure and EIS measurements. All coatings were inferior to coating systems containing chromate, but changes in the capacitive reactance measured in EIS was shown to anticipate visual indications of coating failure. A predictive model based on neural networks was trained to recognize the pattern in the capacitive reactance in impedance spectra measured after 48 hours of exposure and make an estimate of remaining coating life. A sensitivity analysis was performed to prune the impedance inputs. As a result of this analysis, a very simple but highly predictive model was constructed that used low-frequency phase angle information extracted directly from EIS measurements to predict time to failure in salt spray up to 30 days of exposure. The exposure and EIS characterization of the chromate-free coatings systems enabled a ranking of the coatings systems in terms of corrosion protection provided. Coating systems were ranked according to several different methods described in the literature. Among the coatings evaluated, Deft 02GN084, a high solids, solvent-borne and Pr-containing primer coating showed best protection when used in conjunction with a number of different conversion coatings and surface pretreatments. Several different trivalent chromium conversion coatings and pretreatment were used. This general type of conversion coating appeared to provide better corrosion protection than other pretreatments whose functions were primarily surface cleaning or adhesion promotion.
Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; MacDowell, Louis G.
1996-01-01
Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.
Sputtered silicon nitride coatings for wear protection
NASA Technical Reports Server (NTRS)
Grill, A.; Aron, P. R.
1982-01-01
Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.
NASA Astrophysics Data System (ADS)
Rochmah, D. N.; Syakir, N.; Susilawati, T.; Suryaningsih, S.; Fitrilawati
2017-05-01
The hybrid polymer precursor was synthesized from monomer of 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) using sol-gel method and doped with inhibitor of Cerium Nitrate Hexahydrate with a concentration of 0.2%. The synthesized material was coated on a carbon steel surface by solution casting technique and followed by a photopolymerisation process. Corrosion tests were performed by using Electrochemical Impedance Spectroscopy (EIS) in 3.5% NaCl at the critical temperature of 75°C. Result of EIS data and their fitting analysis using an equivalent circuit model shows that a coating of poly(TMSPMA)-Cerium on the surface of carbon steel form a layer of protection and caused increasing of impedance value significantly. The impedance is higher compared to the carbon steel that coated with poly(TMSPMA) only.
NASA Technical Reports Server (NTRS)
Tiede, D. A.
1972-01-01
A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.
Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum
2018-01-01
Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel’s models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien. PMID:29596448
Initial Assessment of Environmental Barrier Coatings for the Prometheus Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Frederick
2005-12-15
Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods formore » environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.« less
Formation of protective composite coatings with the use of SPTFE suspensions
NASA Astrophysics Data System (ADS)
Nadaraia, K. V.; Mashtalyar, D. V.; Sinebryukhov, S. L.; Gnedenkov, S. V.
2017-09-01
The method of protective composite coatings formation with the use of the plasma electrolytic oxidation (PEO) and subsequent treatment in isopropanol or aqueous suspension of the superdispersed polytetrafluoroethylene (SPTFE) have been developed. Morphological, electrochemical and tribological studies, as well as wetting ability of the protective coatings have been carried out. The obtained results corroborated the increase of the corrosion and wear resistance parameters for the polymer-containing coating in comparison with the base PEO-coating and uncoated material.
Zinc-rich coatings: A market survey
NASA Technical Reports Server (NTRS)
Lizak, R.
1975-01-01
Zinc-rich coatings with both organic and inorganic binders were considered for coastal bridges which require more corrosion protection than inland bridges because of exposure to salt spray and fog. Inorganics give longer protection and may be applied without a finish coat; those currently available are harder to apply than organics. The NASA potassium silicate/zinc - dust coating appears to provide longer protection, resist thermal shock, and overcome the application problem. Panels coated with the formulation withstood 5308 hours in a salt spray chamber with no rusting or blistering.
The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum
NASA Technical Reports Server (NTRS)
Danford, M. D.
1993-01-01
A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.
High temperature gradient cobalt based clad developed using microwave hybrid heating
NASA Astrophysics Data System (ADS)
Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy
2018-04-01
The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.
40 CFR 413.50 - Applicability: Description of the coatings subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the coatings subcategory. 413.50 Section 413.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Coatings Subcategory § 413...
Lim, Kaiyang; Saravanan, Rathi; Chong, Kelvin K L; Goh, Sharon H M; Chua, Ray R Y; Tambyah, Paul A; Chang, Matthew W; Kline, Kimberly A; Leong, Susanna S J
2018-04-17
Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability. © 2018 Wiley Periodicals, Inc.
Ion-plating of solar cell arrays encapsulation task: LSA project 32
NASA Technical Reports Server (NTRS)
Volkers, J. C.
1983-01-01
An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.
Dense protective coatings, methods for their preparation and coated articles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.
A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.
Protective coatings for composite tubes in space applications
NASA Technical Reports Server (NTRS)
Dursch, Harry W.; Hendricks, Carl L.
1987-01-01
Protective coatings for graphite/epoxy (Gr/Ep) tubular structures for a manned Space Station truss structure were evaluated. The success of the composite tube truss structure depends on its stability to long-term exposure to the low earth orbit (LEO) environment, with particular emphasis placed on atomic oxygen. Concepts for protectively coating Gr/Ep tubes include use of inorganic coated metal foils and electroplating. These coatings were applied to Gr/Ep tubes and then subjected to simulated LEO environment to evaluate survivability of coatings and coated tubes. Evaluation included: atomic oxygen resistance, changes in optical properties and adhesion, abrasion resistance, surface preparation required, coating uniformity, and formation of microcracks in the Gr/Ep tubes caused by thermal cycling. Program results demonstrated that both phosphoric and chromic acid anodized Al foil provided excellent adhesion to Gr/Ep tubes and exhibited stable optical properties when subjected to simulated LEO environment. The SiO2/Al coatings sputtered onto Al foils also resulted in an excellent protective coating. Electroplated Ni exhibited unacceptable adhesion loss to Gr/Ep tubes during atomic oxygen exposure.
Protective coatings for composite tubes in space applications
NASA Technical Reports Server (NTRS)
Dursch, Harry W.; Hendricks, Carl L.
1987-01-01
Protective coatings for graphite/epoxy (Gr/Ep) tubular structures for a Manned Space Station truss structure were evaluated. The success of the composite tube truss structure depends on its stability to long-term exposure to the Low Earth Orbit (LEO) environment with particular emphasis placed on atomic oxygen. Concepts for protectively coating Gr/Ep tubes include use of inorganic coated metal foils and electroplating. These coatings were applied to Gr/Ep tubes and then subjected to simulated LEO environmnet to evaluate survivability of coatings and coated tubes. Evaluation included: atomic oxygen resistance, changes in optical properties and adhesion, abrasion resistancem surface preparation required, coating uniformity, and formation of microcracks in the Gr/Ep tubes caused by thermal cycling. Program results demonstrated that both phosphoric and chromic acid anodized Al foil provided excellent adhesion to Gr/Ep tubes and exhibited stable optical properties when subjected to simulated LEO environment. The SiO2/Al coatings speuttered onto Al foils also resulted in an excellent protective coating. Electroplated Ni exhibited unaccepatble adhesion loss to Gr/Ep tubes during atomic oxygen exposure.
Development and Testing of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating behavior and temperature limits, in order to potentially take full advantage of the current coating capability, and also accurately assess the benefit gained from advanced coating development. In this study, thermal conductivity behavior and cyclic durability of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under laser heat-flux simulated high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack propagation driving forces and resulting failure modes will be discussed in light of high temperature mechanical fatigue and fracture testing results.
Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process
NASA Astrophysics Data System (ADS)
Levy, Galit Katarivas; Aghion, Eli
Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.
Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings
NASA Astrophysics Data System (ADS)
Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.
2017-12-01
Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.
Effective modern methods of protecting metal road structures from corrosion
NASA Astrophysics Data System (ADS)
Panteleeva, Margarita
2017-10-01
In the article the ways of protection of barrier road constructions from various external influences which cause development of irreversible corrosion processes are considered. The author studied modern methods of action on metal for corrosion protection and chose the most effective of them: a method of directly affecting the metal structures themselves. This method was studied in more detail in the framework of the experiment. As a result, the article describes the experiment of using a three-layer polymer coating, which includes a thermally activated primer, an elastomeric thermoplastic layer with a spatial structure, and a strong outer polyolefin layer. As a result of the experiment, the ratios of the ingredients for obtaining samples of the treated metal having the best parameters of corrosion resistance, elasticity, and strength were revealed. The author constructed a regression equation describing the main properties of the protective polymer coating using the simplex-lattice planning method in the composition-property diagrams.
MMOD Protection and Degradation Effects for Thermal Control Systems
NASA Technical Reports Server (NTRS)
Christiansen, Eric
2014-01-01
Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.
Vacuum plasma coatings for turbine blades
NASA Technical Reports Server (NTRS)
Holmes, R. R.
1985-01-01
Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.
Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings
NASA Astrophysics Data System (ADS)
Ghauri, Faizan Ali; Raza, Mohsin Ali; Saad Baig, Muhammad; Ibrahim, Shoaib
2017-12-01
This work aims to determine the effect of graphene oxide (GO) and reduced graphene oxide (rGO) incorporation as filler on the corrosion protection ability of epoxy coatings in saline media. GO was derived from graphite powder following modified Hummers’ method, whereas rGO was obtained after reduction of GO with hydrazine solution. About 1 wt.% of GO or rGO were incorporated in epoxy resin by solution mixing process followed by ball milling. GO and rGO-based epoxy composite coatings were coated on mild steel substrates using film coater. The coated samples were characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 1 and 24 h immersion in 3.5% NaCl. The results suggested that GO-based epoxy composite coatings showed high impedance and low corrosion rate.
NASA Technical Reports Server (NTRS)
1985-01-01
Corrosion protection for the Statue of Liberty's interior structure is provided by a coating called IC 531, manufactured by Inorganic Coatings, Inc. The coating was developed by Goddard to protect structures at KSC. Inorganic Coatings has an exclusive to this high ratio potassium silicate formula. The coating is water based, nontoxic, nonflammable, and bonds to steel in 30 minutes. Tests on a variety of coated structures have been very positive.
NASA Technical Reports Server (NTRS)
Milhoan, James D.; Pham, Vuong T.; Sherborne, William D.
1993-01-01
Thermal tests of Orbiter thermal protection system (TPS) tiles, which were coated with borosilicate glass slurries fabricated at Kennedy Space Center (KSC), were performed in the Radiant Heat Test Facility and the Atmospheric Reentry Materials & Structures Evaluation Facility at Johnson Space Center to verify tile coating integrity after exposure to multiple entry simulation cycles in both radiant and convective heating environments. Eight high temperature reusable surface insulation (HRSI) tiles and six low temperature reusable surface insulation (LRSI) tiles were subjected to 25 cycles of radiant heat at peaked surface temperatures of 2300 F and 1200 F, respectively. For the LRSI tiles, an additional cycle at peaked surface temperature of 2100 F was performed. There was no coating crack on any of the HRSI specimens. However, there were eight small coating cracks (less than 2 inches long) on two of the six LRSI tiles on the 26th cycle. There was practically no change on the surface reflectivity, physical dimensions, or weight of any of the test specimens. There was no observable thermal-chemical degradation of the coating either. For the convective heat test, eight HRSI tiles were tested for five cycles at a surface temperature of 2300 F. There was no thermal-induced coating crack on any of the test specimens, almost no change on the surface reflectivity, and no observable thermal-chemical degradation with an exception of minor slumping of the coating under painted TPS identification numbers. The tests demonstrated that KSC's TPS slurries and coating processes meet the Orbiter's thermal specification requirements.
Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D
2010-04-01
Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.
Protective Coatings for Metals
NASA Technical Reports Server (NTRS)
Ruggieri, D. J.; Rowe, A. P.
1986-01-01
Report evaluates protective coatings for metal structures in seashore and acid-cloud environments. Evaluation result of study of coating application characteristics, repair techniques, and field performance. Products from variety of manufacturers included in study. Also factory-coated panels and industrial galvanized panels with and without topcoats.
Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability
NASA Technical Reports Server (NTRS)
Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.
2015-01-01
Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.
Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...
2015-11-09
Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm 2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.
Electrodeposited Zinc-Nickel as an Alternative to Cadmium Plating for Aerospace Application
NASA Technical Reports Server (NTRS)
Mcmillan, V. C.
1991-01-01
Corrosion evaluation studies were conducted on 4130 alloy steel samples coated with electrodeposited zinc-nickel and samples coated with electrodeposited cadmium. The zinc nickel was deposited by the selection electrochemical metallizing process. These coated samples were exposed to a 5-percent salt fog environment at 35 plus or minus 2 C for a period ranging from 96 to 240 hours. An evaluation of the effect of dichromate coatings on the performance of each plating was conducted. The protection afforded by platings with a dichromate seal was compared to platings without the seal. During the later stages of testing, deposit adhesion and the potential for hydrogen entrapment were also evaluated.
High-Temperature Erosive Behavior of Plasma Sprayed Cr3C2-NiCr/Cenosphere Coating
NASA Astrophysics Data System (ADS)
Mathapati, Mahantayya; Doddamani, Mrityunjay; Ramesh, M. R.
2018-02-01
This research examines the deposition of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings on MDN 321 steel through the process of plasma spray. In this process, the solid particle erosion test is established at 200, 400, 600 °C with 30° and 90° impact angles. Alumina erodent is adopted to investigate the erosive behavior of the coating at higher temperatures. The properties of the Cr3C2-NiCr/cenosphere coating are established based on the microhardness, the adhesive strength, the fracture toughness, and the ductility. To quantify volume loss as a result of erosion, an optical profilometer is used. At higher temperature, decrease in the erosion volume loss of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings is observed. The erosion-resistive property of Cr3C2-NiCr/cenosphere coating is higher than that of MDN 321 steel by 76%. This property is influenced by high-temperature stability of mullite, alumina, and protective oxide layer that is formed at elevated temperatures. The morphology of eroded coating discloses a brittle mode of material removal.
NASA Technical Reports Server (NTRS)
Patel, Anil K.; Meeks, C.
1998-01-01
This paper discusses the application of Convergent Spray Technologies (TM) Spray Process to the development and successful implementation of Marshall Convergent Coating (MCC-1) as a primary Thermal Protection System (TPS) for the Space Shuttle Solid Rocket Boosters (SRBs). This paper discusses the environmental and process benefits of the MCC-1 technology, shows the systematic steps taken in developing the technology, including statistical sensitivity studies of about 35 variables. Based on the process and post-flight successes on the SRB, it will be seen that the technology is "field-proven". Application of this technology to other aerospace and commercial programs is summarized to illustrate the wide range of possibilities.
Surface protection coating material for controlling the decay of major construction stone
NASA Astrophysics Data System (ADS)
Arun, T.; Ray, D. K.; Gupta, V. P.; Panda, S. S.; Sahoo, P. K.; Ghosh, Jaydip; Sengupta, Pranesh; Satyam, P. V.
2017-05-01
Degradation of the building stones are creating instability in the old building and monuments which is to be protected. To investigate the characteristics of such a stones used for the construction in eastern India, we have collected the khondalite stones. The microstructural and elemental composition analysis of the khondalite stones are analyzed by using SEM, EDX and PIXE trace elemental analysis. We have prepared surface protection coating material with graphene oxide and cobalt ferrite as a base material along with other residuals. The prepared coating materials is coated on the galvanized iron substrate for further characterization. The surface morphology characteristics of the coating material is analyzed by SEM and AFM. The corrosion resistance characteristics of the prepared coating material is studied by the electrochemical impedance spectroscopy. The results suggests that the prepared coating material can be used as a surface protection materials to control the self-destruction of khondalite stones.
Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating
NASA Astrophysics Data System (ADS)
Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.
2014-08-01
Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.
NASA Technical Reports Server (NTRS)
Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.
1995-01-01
With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.
Development and Fatigue Testing of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.
NASA Astrophysics Data System (ADS)
Chang, Chun-Chao; Wang, Chiung-Chi; Wu, Chia-Wei; Liu, Shou-Ching; Mai, Fu-Der
2008-12-01
Increasing environmental concern has led to the restrictive use of chromate conversion coatings to protect Al-alloys from corrosion. Our research is under way to find environmentally compliant substitute coating such as Si/Zr/Ce hybrid coating. The corrosion protection effect of green pretreatment reagent consisted of Si-containing base solution, Ce- and Zr-containing sealing solutions on the corrosion protection of Al-alloys was studied with a 3.5% NaCl aqueous testing solution. The correlation between the corrosion resistance measured by electrochemical impedance spectroscopy (EIS) and surface chemical composition of the hybrid coating measured by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was studied. The proposed green pretreatment reagent was found improve the corrosion protection of Al-alloys, presumably due to the formation of protective oxide film acting as an oxygen barrier.
Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate.
Han, J H; Hwang, H-M; Min, S; Krochta, J M
2008-10-01
Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and alpha-tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high-speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 degrees C, and the oxidation of peanuts was determined by hexanal analysis using solid-phase micro-extraction samplers and GC-MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants.
NASA Technical Reports Server (NTRS)
Kravchenko, Michael; ORourke, Mary Jane; Golden, Johnny; Finckenor, Miria; Leatherwood, Michael; Alred, John
2010-01-01
The International Space Station Materials and Processes (ISS M&P) team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. The ISS M&P team has participated in previous MISSE activities in order to better characterize the LEO effects on Space Station materials. This investigation will further this effort. Results for the following MISSE 6 samples materials will be presented: a comparison of anodize and chemical conversion coatings on various aluminum alloys, electroless nickel; AZ93 white ceramic thermal control coating with and without Teflon; Hyzod(TM) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; reformulated Teflon (TM) coated Beta Cloth (Teflon TM without perfluorooctanoic acid (PFOA)) and a Dutch version of beta cloth. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: deionized water sealed anodized aluminum Photofoil(TM); indium tin oxide (ITO)- coated Kapton(TM) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth ( alpha/Beta transformation); Crew Exploration Vehicle (CEV) parachute soft goods. MISSE 8 sample: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, Davlyn fiberglass sleeve material, Permacel and Intertape protective tapes, and ITO-coated Kapton.
The corrosion protection of 2219-T87 aluminum by anodizing
NASA Technical Reports Server (NTRS)
Danford, M. D.
1991-01-01
Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).
Vynckier, A-K; De Beer, M; Monteyne, T; Voorspoels, J; De Beer, T; Remon, J P; Vervaet, C
2015-08-01
In this study hot-melt co-extrusion is used as processing technique to manufacture a fixed-dose combination product providing enteric protection to naproxen incorporated in the core and immediate release to esomeprazole magnesium embedded in the coat. The plasticizing effect of naproxen and triethyl citrate (TEC) was tested on the enteric polymers investigated (Eudragit(®) L100-55, HPMC-AS-LF and HPMCP-HP-50). Core matrix formulations containing HPMC-AS-LF, TEC and a naproxen load of 15, 30 and 50% were processed and characterized. The in vitro naproxen release in 0.1N HCl was prevented for 2h for all formulations. The physicochemical state of the drug in the extrudates was determined and a stability study was performed. Intermolecular interactions between naproxen and polymer were identified using attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy. When esomeprazole magnesium was formulated in a polyethylene oxide 100K:polyethylene glycol 4K (1:1) matrix, separated from the naproxen-containing layer, the formulation could be easily processed and complete in vitro drug release was observed after 45 min. When co-extruding the core/coat dosage form it was observed that a third layer of polymer, separating the naproxen loaded enteric formulation in the core from the coat, is required to prevent degradation of the acid-labile esomeprazole magnesium at the core/coat interface. Copyright © 2015 Elsevier B.V. All rights reserved.
Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA
2009-08-18
Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.
Fernández-Perea, Mónica; Larruquert, Juan I; Aznárez, José A; Pons, Alicia; Méndez, José A
2007-08-01
Ion-beam sputtering (IBS) and evaporation are the two deposition techniques that have been used to deposit coatings of Al protected with MgF(2) with high reflectance in the vacuum ultraviolet down to 115 nm. Evaporation deposited (ED) Al protected with IBS MgF(2) resulted in a larger (smaller) reflectance below (above) 125 nm than the well-known all-evaporated coatings. A similar comparison is obtained when the Al film is deposited by IBS instead of evaporation. The lower reflectance of the coatings protected with IBS versus ED MgF(2) above 125 nm is because of larger absorption of the former. Both nonprotected IBS Al, as well as IBS Al protected with ED MgF(2), resulted in a band of reflectance loss that was peaked at 127 and 157 nm, respectively. This result was attributed to the excitation of surface plasmons due to the enhancement of surface roughness with large spatial wave vectors in the sputter deposition. This reflectance loss for IBS Al protected with MgF(2) is small at the short (lambda~120 nm) and long (lambda<350 nm) wavelengths investigated. IBS Al protected with ED MgF(2) is thus a promising coating for these two spectral regions. Coatings protected with IBS MgF(2) resulted in a reflectance as high as coatings protected with ED MgF(2) at wavelengths longer than 550 nm, whereas the former had a lower reflectance below this wavelength.
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Banks, B. A.; Lenczewski, M.; Demko, R.
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.
NASA Astrophysics Data System (ADS)
Mardare, L.; Benea, L.
2017-06-01
The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.
Oxidation Protection of Porous Reaction-Bonded Silicon Nitride
NASA Technical Reports Server (NTRS)
Fox, D. S.
1994-01-01
Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.
Effect of Protein-Based Edible Coating from Red Snapper (Lutjanus sp.) Surimi on Cooked Shrimp
NASA Astrophysics Data System (ADS)
Rostini, I.; Ibrahim, B.; Trilaksani, W.
2018-02-01
Surimi can be used as a raw material for making protein based edible coating to protect cooked shrimp color. The purpose of this study was to determine consumers preference level on cooked shrimp which coated by surimi edible coating from red snapper and to know the microscopic visualization of edible coating layer on cooked shrimp. The treatments for surimi edible coating were without and added by sappan wood (Caesalpinia sappan Linn) extract. Application of surimi edible coating on cooked shrimp was comprised methods (1) boiled then coated and (2) coated then boiled. Edible coating made from surimi with various concentrations which were 2, 6, 10 and 14% of distillated water. The analysis were done using hedonic test and microscopic observation with microscope photographs. Effect of surimi edible coating on cooked shrimp based on the hedonic and colour test results showed that the 14% surimi concentration, added by sappan wood (Caesalpinia sappan Linn) extract on edible coating was the most preferable by panellist and giving the highest shrimp colour. The edible coating surimi application on cooked shrimp which gave the best result was processed by boiling followed by coating.
NASA Astrophysics Data System (ADS)
Glazunov, Anatoly; Ishchenko, Aleksandr; Afanas'eva, Svetlana; Belov, Nikolai; Burkin, Viktor; Rogaev, Konstantin; Yugov, Nikolai
2016-01-01
The given article presents the conducted calculation and experimental study on destruction of heat-resistant coating material of an aircraft in the process of high-speed interaction of the steel spherical projectile. The projectile is imitating a meteoric particle. The study was conducted in the wide range of velocities. The mathematical behavioral model of heat-resistant coating under high-speed impact was developed. The interaction of ameteoric particle with an element of the protective structure has especially individual character and depends on impact velocity and angle, materials of the interacting solids.
Shellac/nanoparticles dispersions as protective materials for wood
NASA Astrophysics Data System (ADS)
Weththimuni, Maduka L.; Capsoni, Doretta; Malagodi, Marco; Milanese, Chiara; Licchelli, Maurizio
2016-12-01
Wood is a natural material that finds numerous and widespread applications, but is subject to different decay processes. Surface coating is the most common method used to protect wood against deterioration and to improve and stabilize its distinctive appearance. Shellac is a natural resin that has been widely used as a protective material for wooden artefacts (e.g. furniture, musical instruments), due to its excellent properties. Nevertheless, diffusion of shellac-based varnishes has significantly declined during the last decades, because of some limitations such as the softness of the coating, photo-degradation, and sensitivity to alcoholic solvents and to pH variations. In the present study, different inorganic nanoparticles were dispersed into dewaxed natural shellac and the resulting materials were investigated even after application on wood specimens in order to assess variations of the coating properties. Analyses performed by a variety of experimental techniques have shown that dispersed nanoparticles do not significantly affect some distinctive and desirable features of the shellac varnish such as chromatic aspect, film-forming ability, water repellence, and adhesion. On the other hand, the obtained results suggested that some weak points of the coating, such as low hardness and poor resistance to UV-induced ageing, can be improved by adding ZrO2 and ZnO nanoparticles, respectively.
Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2011-01-01
The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
Petry, Ina; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Leopold, Claudia S
2017-10-01
A promising approach to improve the solubility of poorly water-soluble drugs and to overcome the stability issues related to the plain amorphous form of the drugs, is the formulation of drugs as co-amorphous systems. Although polymer coatings have been proven very useful with regard to tablet stability and modifying drug release, there is little known on coating co-amorphous formulations. Hence, the aim of the present study was to investigate whether polymer coating of co-amorphous formulations is possible without inducing recrystallization. Tablets containing either a physical mixture of crystalline indomethacin and arginine or co-amorphous indomethacin-arginine were coated with a water soluble polyvinyl alcohol-polyethylene glycol graft copolymer (Kollicoat® Protect) and stored at 23°C/0% RH and 23°C/75% RH. The solid state properties of the coated tablets were analyzed by XRPD and FTIR and the drug release behavior was tested for up to 4h in phosphate buffer pH 4.5. The results showed that the co-amorphous formulation did not recrystallize during the coating process or during storage at both storage conditions for up to three months, which confirmed the high physical stability of this co-amorphous system. Furthermore, the applied coating could partially inhibit recrystallization of indomethacin during drug release testing, as coated tablets reached a higher level of supersaturation compared to the respective uncoated formulations and showed a lower decrease of the dissolved indomethacin concentration upon precipitation. Thus, the applied coating enhanced the AUC of the dissolution curve of the co-amorphous tablets by about 30%. In conclusion, coatings might improve the bioavailability of co-amorphous formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen
2018-02-28
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.
Protection of microelectronic devices during packaging
Peterson, Kenneth A.; Conley, William R.
2002-01-01
The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.
Evaluation of several corrosion protective coating systems on aluminum
NASA Technical Reports Server (NTRS)
Higgins, R. H.
1981-01-01
A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.
Thin coatings for heavy industry: Advanced coatings for pipes and valves
NASA Astrophysics Data System (ADS)
Vernhes, Luc
Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other characteristics suitable for applications such as pipes and valves. From these general objectives, three specific objectives were derived: 1) to select and assess the best candidates for alternatives to hard chromium electroplating, which has been classified by the U.S. Environmental Protection Agency (EPA) as an environmentally unfriendly process; 2) to investigate recurrent failures occurring in the field with thermal sprayed HVOF Cr3C 2-NiCr coating applied to Inconel 718 PH when exposed to supercritical steam lines and thermal shocks in supercritical power plants (determining the root causes of coating failures and assessing potential coating alternatives to alleviate these issues); and 3) to develop new coating architectures, including complex microstructures and interfaces, and to better understand and optimize complex tribomechanical properties. The main results are presented in the form of articles in peer-reviewed journals. In the first article, a variety of chromium-free protective coatings were assessed as alternatives to hard chromium (HC) electroplating, such as nanostructured cobalt-phosphor (NCP) deposited by electroplating and tungsten/tungsten carbide (W/WC) applied by chemical vapor deposition. In order to compare performance across the coatings, a series of laboratory tests were performed, including hardness, microscratch, pin-on-disk, and electrochemical polarization measurements. Mechanical and fatigue resistance were also determined using prototype valves with coated ball under severe tribocorrosion conditions. It was found that W/WC coating exhibits superior wear and corrosion resistance due to high hardness and high pitting resistance, respectively, whereas NCP exhibits better wear resistance than HC with alumina ball as well as low corrosion potential, making it suitable for use as sacrificial protective coating. Both nanostructured coatings exhibited superior tribomechanical and functional characteristics compared to HC. The second article presents an investigation of an HVOF 80/20 Cr 3C2-NiCr coating failure in an on-off metal-seated ball valve (MSBV) used in supercritical steam lines in a power plant, along with an assessment of alternative coating solutions that are less susceptible to this failure mode. HVOF 80/20 Cr3C2-NiCr coating has been used to protect thousands of MSBVs without incident. However, in this case the valves were challenged with exposure to rapid variations in high-pressure flow and temperature, resulting in a unique situation that caused the coating to undergo cracking and cohesive failure. Carbide precipitation was found to be a major factor, resulting in coating embrittlement. Reduced coating toughness and ductility allowed thermal, mechanical, and residual stresses to initiate cracks and propagate them more easily, leading to coating failure with exposure to thermal shock. To alleviate these issues, possible coating alternatives were assessed. The third article presents the mechanical, tribological, and corrosion properties of two novel hybrid coating systems: 1) a tungsten-tungsten carbide (W-WC) top layer and a laser cladded cobalt-chromium (Co-Cr) interlayer (StelliteRTM 6 superalloy) applied to a 316 stainless steel substrate; and 2) the same W-WC top layer and an HVOF spray-and-fused Ni-W-Cr-B interlayer (ColmonoyRTM 88 superalloy) applied to an InconelRTM 718 substrate. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used to analyze the microstructure of the coating layers. Microindentation was used to measure surface hardness and the hardness profile of the coating systems. Rockwell indentation was used to assess coating adhesion according to CEN/TS 1071-8. Surface load-carrying capacity was also assessed by measuring micro- and macrohardness at high loads. Tribological properties were assessed with a linear reciprocating ball-on-flat sliding wear test, and corrosion resistance was measured by potentiodynamic polarization and electrochemical impedance spectroscopy.
Infusible silazane polymer and process for producing same. [protective coatings
NASA Technical Reports Server (NTRS)
Burks, R. E., Jr.; Lacey, R. E.; Christy, C. L., Jr. (Inventor)
1967-01-01
Coatings of high thermal and chemical stability for application to metal, glass, ceramics, and other surfaces are formed by reacting diphenyldichlorosilane in the presence of triethylamine with a nitrogen base selected from the group consisting of ammonia and methylamine. The pl polymeric, noncrystalline reaction product is heated in a reaction zone open to the atmosphere at a temperature ranging from approximately 250 C to 450 C until the infusible polymer is formed.
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
NASA Astrophysics Data System (ADS)
Razak, Khalil Abdul; Fuad, Mohd Fazril Irfan Ahmad; Alias, Nur Hashimah; Othman, Nur Hidayati; Zahari, Muhammad Imran
2017-12-01
Special attention has been paid in the past decade on the use of metal corrosion protection to conserve natural resources and to improve the performance of engine, build structures and other equipment. Coating is considered as one of the promising methods that can be used to protect the metal against corrosion. However, not many attentions have been given on the evaluation of coating mechanism towards corrosion protection. In this work, the performance of zinc-rich paint (ZRP) was investigated under saltwater environment as to simulate the nature of corrosion in seawater. The adhesion of the coated steel was also studied to determine the adherence of the coatings to the metal substrate. Results obtained from the immersion test was then used to determine the corrosion rate of the coatings. The mechanisms and the function of ZRP as a protection layer were also investigated. By using 3 coated system of ZRP, the corrosion rate of the steel was observed to decrease thus provide better protection in seawater environment.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C
NASA Technical Reports Server (NTRS)
Lee, K. N.; Barrett, C. A.; Smith, J.
1999-01-01
Very long-term cyclic oxidation behavior of Re-108 and ln-939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and ln-939 without a protective coating began to show rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and ln-939. VPA and CODEP on Re-108 and all three coatings on ln-939 showed excellent cyclic oxidation resistance out to 10000 hr. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10000 h of cyclic exposure. Oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.
Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst
2017-09-01
The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Lu, Hongbin; Meng, Xiangkang
2018-05-01
In the present paper, polyaniline (PANI) coating was electropolymerized in the presence of phosphoric acid with subsequent deposition of Ni(OH)2 particles. The Ni(OH)2 reinforced PANI coating significantly enhances the corrosion resistance of 304 stainless steel (304SS) in comparison with the pristine PANI coating. The galvanostatically deposited Ni(OH)2 particles fill the pores of the pristine PANI coating and improves the coatings hydrophobicity which decreases the diffusion of aggressive media. Importantly, the Rp values of Ni(OH)2 reinforced PANI coating is much higher than that of pristine PANI coating and the Ni(OH)2 reinforced PANI coating presents a long-term anti-corrosive ability (360 h) in 3.5 wt% NaCl solution. The prolonged corrosion protection of Ni(OH)2 reinforced PANI coating is attributed to the improved physical barrier as well as the facile formation of passive oxide film that sustain the anodic protection of the coating.
NASA Astrophysics Data System (ADS)
de Luna, Martina Salzano; Buonocore, Giovanna; Di Carlo, Gabriella; Giuliani, Chiara; Ingo, Gabriel M.; Lavorgna, Marino
2016-05-01
Protective coatings based on polymers synthesized from renewable sources (chitosan or an amorphous vinyl alcohol based polymer) have been prepared for the protection of bronze artifacts from corrosion. Besides acting as an effective barrier against corrosive species present in the environment, the efficiency of the coatings has been improved by adding corrosion inhibitor compounds (benzotriazole or mercaptobenzothiazole) to the formulations. The liquid medium of the formulations has been carefully selected looking at maximizing the wettability on the bronze substrate and optimizing the solvent evaporation rate. The minimum amount of inhibitor compounds has been optimized by performing accelerated corrosion tests on coated bronze substrates. The inhibitors have been directly dissolved in the coating-forming solutions and/or introduced by means of nanocarriers, which allow to control the release kinetics. The free dissolved inhibitor molecules immediately provide a sufficient protection against corrosion. On the other hand, the inhibitor molecules contained in the nanocarriers serve as long-term reservoir, which can be activated by external corrosion-related stimuli in case of particularly severe conditions. Particular attention has been paid to other features which affect the coating performances. Specifically, the adhesion of the protective polymer layer to the bronze substrate has been assessed, as well as its permeability properties and transparency, the latter being a fundamental feature of protective coating for cultural heritages. Finally, the protective efficiency of the produced smart coatings has been assessed through accelerated corrosion tests.
Continuous API-crystal coating via coacervation in a tubular reactor.
Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G
2014-11-20
We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.
Nuclear Technology. Course 30: Mechanical Inspection. Module 30-6, Protective Coating Inspection.
ERIC Educational Resources Information Center
Espy, John
This sixth in a series of eight modules for a course titled Mechanical Inspection describes the duties of the nuclear quality assurance/quality control technician that are associated with protective coatings, and the national standards that govern the selection, application, and inspection of protective coatings for the reactor containment…
Silica-gelatin hybrid sol-gel coatings: a proteomic study with biocompatibility implications.
Araújo-Gomes, N; Romero-Gavilán, F; Lara-Sáez, I; Elortza, F; Azkargorta, M; Iloro, I; Martínez-Ibañez, M; Martín de Llano, J J; Gurruchaga, M; Goñi, I; Suay, J; Sánchez-Pérez, A M
2018-05-21
Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin, were applied as coatings on sandblasted, acid-etched titanium (SAE-Ti) substrates and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan
2017-10-01
A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.
pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors
NASA Technical Reports Server (NTRS)
Li, Wenyan; Calle, Luz M.
2006-01-01
A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.
Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite
NASA Astrophysics Data System (ADS)
Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying
2011-06-01
Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.
NASA Astrophysics Data System (ADS)
Davidov, D. I.; Kazantseva, N. V.; Vinogradova, N. I.; Ezhov, I. V.
2017-12-01
Investigation of the structure and chemical composition of the protective coating of the first stage IN738 gas turbine blade after standard regenerative heat treatment was done. It was found the degradation of microstructure and chemical composition of both the blade feather and its protective coating. Redistribution of the chemical elements decreasing the corrosion resistance was observed inside the protective coating. Cracks on the boundary between the blade feather and the protective coating were found by scanning electron microscopy. The carbide transformation and sigma phase were found in the structure of the blade feather. Based upon the structural and chemical composition studies, it is concluded that the standard regenerative heat treatment of the IN738 operative gas turbine blade does not provide full structure regeneration.
NASA Astrophysics Data System (ADS)
Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun
2018-04-01
Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.
Nickel, H; Quadakkers, W J; Singheiser, L
2002-10-01
In three different examples, the effects of the oxidation behaviour as well as the microstructural stability of high temperature materials and protective coatings was determined by combining the results of kinetic studies with extensive analytical investigations using, among other techniques, SNMS, SIMS, SEM, TEM, Rutherford back scattering (RBS) as well as X-ray diffraction. 1). The effect of water vapour on the oxidation behaviour of 9% Cr steels in simulated combustion gases has been determined. The effects of O2 and H2O content on the oxidation behaviour of 9% Cr steel in the temperature range 600-800 degrees C showed that in dry oxygen a protective scale was formed with an oxidation rate controlled by diffusion in the protective scale. In the presence of water vapour, after an incubation period, the scales became non-protective as a result of a change in the oxidation limiting process. The destruction of the protective scale by water vapour does not only depend on H2O content but also on the H2O/O2-ratio. 2). The increase of component surface temperature in modern gas turbines leads to an enhanced oxidation attack of the blade coating. Improvements in corrosion resistance and longer lifetime thermal barrier coatings in gas turbines have been achieved by improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements such as yttrium, silicon and titanium. 3). The use of oxide dispersion strengthened (ODS) alloys provides excellent creep resistance up to much higher temperatures than can be achieved with conventional wrought or cast alloys in combination with suitable high temperature oxidation/corrosion resistance. Investigation of the growth mechanisms of protective chromia and alumina scales were examined by a two-stage oxidation method with 18O tracer. The distribution of the oxygen isotopes in the oxide scale was determined by SIMS and SNMS. The results show the positive influence of a Y2O3 dispersion on the oxidation resistance of the ODS alloys and its effect on growth mechanisms.
Coating Performance in Duluth Superior Harbor. Part 2
2012-10-01
tures in fresh water , and nine coatings were evaluated for corrosion protection of CS coupons and I-beams around DSH after 46 and 35 months...following coatings were selected for this evaluation: 1 Aquapure HR* 2 Chevron Phillips 1ZSMV 3 Standard epoxy 4 HumidurML* 5 Wasser MC-zinc/MC-tar* 6...one option for protection of extensive structures in fresh water , and nine coatings were evaluated for corrosion protection of CS coupons and I-beams
VPS Process for Copper Components in Thrust Chamber Assemblies
NASA Technical Reports Server (NTRS)
Elam, Sandra; Holmes, Richard; Hickman, Robert; McKechnie, Tim; Thom, George
2005-01-01
For several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc., (PPI) to fabricate thrust chamber liners with GRCop-84. Using the vacuum plasma spray (VPS) process, chamber liners of a variety of shapes and sizes have been created. Each has been formed as a functional gradient material (FGM) that creates a unique protective layer of NiCrAlY on the GRCop-84 liner s hot wall surface. Hot-fire testing was successfully conducted on a subscale unit to demonstrate the liner's durability and performance. Similar VPS technology has also been applied to create functional gradient coatings (FGC) on copper injector faceplates. Protective layers of NiCrAlY and zirconia were applied to both coaxial and impinging faceplate designs. Hot-fire testing is planned for these coated injectors in April 2005. The resulting material systems for both copper alloy components allows them to operate at higher temperatures with improved durability and operating margins.
NASA Astrophysics Data System (ADS)
Farahmand, Parisa
In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance of developed MMC coatings were examined under highly accelerated slurry erosion, corrosion, and wear as the most frequently encountered failure modes of mechanical components. The microstructure, mechanical properties, and the level of induced residual stress on the coating after cladding procedure are closely related to cladding process variables. Study about the effect of processing parameters on clad quality and experienced thermal history and thermally-induced stress evolution requires both theoretical and experimental understanding of the associated physical phenomena. Numerical modeling offers a cost-efficient way to better understand the related complex physics in laser cladding process. It helps to reveal the effects and significance of each processing parameters on the desired characteristics of clad parts. Successful numerical simulation can provide unique insight into complex laser cladding process, efficiently calculate the complex procedure, and help to obtain coating parts with quality integrity. Therefore, current study develops a three-dimensional (3D) transient and uncoupled thermo-elastic-plastic model to study thermal history, molten pool evolution, thermally induced residual stress, and the effect of utilizing an induction heater as a second heat source on the mechanical properties and microstructural properties of final cladded coating.
Parylene C coating for high-performance replica molding.
Heyries, Kevin A; Hansen, Carl L
2011-12-07
This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.
NASA Technical Reports Server (NTRS)
Lomness, Janice K.; Calle, Luz Marina
2006-01-01
Super Koropon primer (MB0125-055) plays a significant role in the corrosion protection of areas throughout the Orbiter. Because the Shuttle Program relies so heavily upon the performance of the Koropon primer, it is necessary to fully understand all aspects of the behavior of the coating. One area where little understanding of the Koropon primer still exists is the level of risk associated with age related degradation. Recently, efforts were undertaken to better understand the age life of the Koropon primer and to gain some insight into the aging process of this coating. In that study, an aluminum access panel from the Orbiter Enterprise was used to investigate the performance of the old Koropon film. A control panel was also used to study the performance of new Koropon coating. Preliminary investigations into the performance of aged Super Koropon primer indicated a significant decrease in corrosion protection. This investigation serves as an example of how Focused Ion Beam/Scanning Microscopy can be used to characterize the changes that occur as coatings age.
Spray shadowing for stress relief and mechanical locking in thick protective coatings
Hollis, Kendall [Los Alamos, NM; Bartram, Brian [Los Alamos, NM
2007-05-22
A method for applying a protective coating on an article, comprising the following steps: selecting an article with a surface for applying a coating thickness; creating undercut grooves on the article, where the grooves depend beneath the surface to a bottom portion with the grooves having an upper width on the surface and a lower width on the bottom portion connected by side walls, where at least one of the side walls connects the upper width and the lower width to form an undercut angle with the surface less than 90.degree.; and, applying the protective coating onto the article to fill the undercut grooves and cover the surface, thereby forming weak paths within the protective coating.
[Studies on organic protective coatings for anti-atomic oxygen effects by spectrum analysis].
Zhang, Lei
2004-11-01
This paper describes organic protective coatings on space material for anti-AO effects and the experiments to assess properties of the coatings. Organic protection was analyzed after exposures to ground state fast atomic (AO) radiation in the atomic oxygen beam facility for ground simulation experiments. The tests results have been analyzed with advanced FTIR, XPS and SEM. The test indicated that epoxy, alkyd and urethane organic coatings were highly reactive to AO with a strong degradation and changed in morphology of the surface layer. It is evident that siloxane coatings have excellent properties for anti-AO effects. The erosion product has SiO2 left on the surface, thus providing protection from further attack by the energetic oxygen atoms.
NASA Astrophysics Data System (ADS)
Wesling, V.; Schram, A.; Müller, T.; Treutler, K.
2016-03-01
Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes are significantly affected by thin film coatings on solid wire electrodes for Gas Metal Arc welding. The influences are regarding the stability of the arc, the properties of the weld metal in terms of geometric expression, chemical composition and mechanical properties, the composition of the arc-plasma and the dynamics of the molten metal.
Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Snyder, Aaron; Miller, Sharon K.; Demko, Rikako
2002-01-01
Hydrocarbon based polymers that are exposed to atomic oxygen in low Earth orbit are slowly oxidized which results in recession of their surface. Atomic oxygen protective coatings have been developed which are both durable to atomic oxygen and effective in protecting underlying polymers. However, scratches, pin window defects, polymer surface roughness and protective coating layer configuration can result in erosion and potential failure of protected thin polymer films even though the coatings are themselves atomic oxygen durable. This paper will present issues that cause protective coatings to become ineffective in some cases yet effective in others due to the details of their specific application. Observed in-space examples of failed and successfully protected materials using identical protective thin films will be discussed and analyzed. Proposed approaches to prevent the failures that have been observed will also be presented.
NASA Technical Reports Server (NTRS)
1984-01-01
Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.
Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy.
Ren, Yufu; Babaie, Elham; Lin, Boren; Bhaduri, Sarit B
2017-08-18
Due to the combination of many unique properties, magnesium alloys have been widely recognized as suitable metallic materials for fabricating degradable biomedical implants. However, the extremely high degradation kinetics of magnesium alloys in the physiological environment have hindered their clinical applications. This paper reports for the first time the use of a novel microwave-assisted coating process to deposit magnesium phosphate (MgP) coatings on the Mg alloy AZ31 and improve its in vitro corrosion resistance. Newberyite and trimagnesium phosphate hydrate (TMP) layers with distinct features were fabricated at various processing times and temperatures. Subsequently, the corrosion resistance, degradation behavior, bioactivity and cytocompatibility of the MgP coated AZ31 samples were investigated. The potentiodynamic polarization tests reveal that the corrosion current density of the AZ31 magnesium alloy in simulated body fluid (SBF) is significantly suppressed by the deposited MgP coatings. Additionally, it is seen that MgP coatings remarkably reduced the mass loss of the AZ31 alloy after immersion in SBF for two weeks and promoted precipitation of apatite particles. The high viability of preosteoblast cells cultured with extracts of coated samples indicates that the MgP coatings can improve the cytocompatibility of the AZ31 alloy. These attractive results suggest that MgP coatings, serving as the protective and bioactive layer, can enhance the corrosion resistance and biological response of magnesium alloys.
Diffusion Barriers to Increase the Oxidative Life of Overlay Coatings
NASA Technical Reports Server (NTRS)
Nesbitt, James A.; Lei, Jih-Fen
1999-01-01
Currently, most blades and vanes in the hottest section of aero gas turbine engines require some type of coating for oxidation protection. Newly developed single crystal superalloys have the mechanical potential to operate at increasingly higher component temperatures. However, at these elevated temperatures, coating/substrate interdiffusion can shorten the protective life of the coating. Diffusion barriers between overlay coatings and substrates are being examined to extend the protective life of the coating. A previously- developed finite-difference diffusion model has been modified to predict the oxidative life enhancement due to use of a diffusion barrier. The original diffusion model, designated COSIM, simulates Al diffusion in the coating to the growing oxide scale as well as Al diffusion into the substrate. The COSIM model incorporates an oxide growth and spalling model to provide the rate of Al consumption during cyclic oxidation. Coating failure is predicted when the Al concentration at the coating surface drops to a defined critical level. The modified COSIM model predicts the oxidative life of an overlay coating when a diffusion barrier is present eliminating diffusion of Al from the coating into the substrate. Both the original and the modified diffusion models have been used to predict the effectiveness of a diffusion barrier in extending the protective life of a NiCrAl overlay coating undergoing cyclic oxidation at 1100 C.
NASA Astrophysics Data System (ADS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.
1992-11-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
Silicone Coating on Polyimide Sheet
NASA Technical Reports Server (NTRS)
Park, J. J.
1985-01-01
Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.
Mo-Si-B-Based Coatings for Ceramic Base Substrates
NASA Technical Reports Server (NTRS)
Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)
2015-01-01
Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.
Vakhitov, T R; Katnov, V E; Grishin, P V; Stepin, S N; Grigoriev, D O
2017-03-01
An attempt to combine two 'green' compounds in nanocomposite microcontainers in order to increase protection properties of waterborne acryl-styrene copolymer (ASC) coatings has been made. N -lauroylsarcosine (NLS) served as a corrosion inhibitor, and linseed oil (LO) as a carrier-forming component. LO is compatible with this copolymer and can impart to the coating self-healing properties. For the evaluation of the protective performance, three types of coatings were compared. In the first two, NLS was introduced in the coating formulation in the forms of free powder and micro-containers filled with LO, correspondingly. The last one was a standard ASC coating without inhibitor at all. Low-carbon steel substrates were coated by these formulations by spraying and subjected subsequently to the neutral salt spray test according to DIN ISO 9227. Results of these tests as well as the data obtained by electrochemical study suggest that such containers can be used for the improvement of adhesion of ASC-based coatings to the substrate and for the enhancement of their protective performance upon integrity damage, whereas the barrier properties of intact coatings were decreased.
Space station protective coating development
NASA Technical Reports Server (NTRS)
Pippin, H. G.; Hill, S. G.
1989-01-01
A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.
Civil Engineering Corrosion Control. Volume 3. Cathodic Protection Design
1975-02-01
coatings, test stations bonds, and insulation. It is certainly not a "cure-all Its economics and feasibility mus’ always be carefully studied .. An in...General Description of Cathodic Protection. Cath- odic protection, as the name signifies, is the process by which an entire surface is transformed into a...The National Asaoeiation of Corrosion Enguler "I i ,.I-11 Standard RP-Ol-69, "Recommended Practice Por ront.ol ol." Ex - ternal Corrosion on
Study on the strategies of waste solvent minimization in automobile production industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.T.; Lin, K.L.; Wu, Y.P.
1998-12-31
There are six automobile manufacturers who produce several kinds of vehicles in Taiwan. To meet the consumer`s needs, the automobile coating processes are necessary for the basic functions of anti-rust protection, weatherproofing and appearance. Some kinds of solvents are added as thinners and additives to avoid excessive viscosity of the coating materials and to increase facility productivity. The total consumption of volatile organic solvents is about 407,000 ton/year of which about 100,700 ton/year is used in surface coating. It is worthy of attention that solvents used in automobile industries account for 7,200 ton/year in major coating processes, including electrodeposition coating,more » primer coating, top coating, and bar coating, according to statistics of VOCs emission rate calculated from the data of consumption provided by each automobile plant. The amount of solvents used for washing spray gun and base coating are about 3,350 ton/year; and about 1,700 ton/year for primer coat and clear coat. The species of organic solvents include toluene, xylene, ethylacetate, n-butyl acetate, ketone, etc. VOCs emission factor from each plant lies between 500 to 650 g-VOCs/L coating. To reduce the amount of coating and waste liquor, the suggested methods include increasing gun spray efficiency, lengthening same colors painting period, reducing the solvent content in paint, and adding treatment equipment. The high solid content painting, waterborne coat, and powder coat should be used for traditional painting. Additionally, a carbon adsorption bed and zeolite rotator recovery system can replace scrubbers since they can be used as solvent recovery equipment.« less
Deposition and characterization of magnetron sputtered bcc tantalum
NASA Astrophysics Data System (ADS)
Patel, Anamika
The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum under increasing loads revealed high critical load values for failure (>15 N) for the bcc coatings versus the low load values (<9 N) for the beta coatings. The coating deposited on TaN interlayers on sputter-etched steel had better adhesion than those on steel surface without sputter etching. The results for this work have demonstrated that by controlling the various process parameters of do magnetron sputtering, high quality bcc Ta coatings of multi-micron thickness with excellent adhesion to steel can be made. An important contribution of this dissertation is in the enhancing an understanding of this process. The impact of this research will be in a number of fields where superior protective castings are needed. These include military applications, electronic components, chemical processing, and others.
Spraylon fluorocarbon encapsulation for silicon solar cell arrays
NASA Technical Reports Server (NTRS)
1977-01-01
A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.
Paint Removal from Composites and Protective Coating Development
1991-01-01
bonds between these layers relax, and the removal of the top layer is facilitated. This phenomena is known as fracking . Cold Jet has completed an initial...sublimed carbon dioxide "atmosphere" and the top layer of material, so that fracking occurs. Cold Jet adds that removal tends to occur layer by layer...often removed faster (than thinner coatings) as a result of the fracking mechanism. The paint residue from the stripping process is comprised of varying
Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat
2013-01-01
Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155
A Review to the Laser Cladding of Self-Lubricating Composite Coatings
NASA Astrophysics Data System (ADS)
Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.
2016-06-01
Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.
Effect of edible coating on the aromatic attributes of roasted coffee beans.
Rattan, Supriya; Parande, A K; Ramalakshmi, K; Nagaraju, V D
2015-09-01
Coffee is known throughout the world for its distinct aroma and flavour which results from a number of volatile compounds present in it. It is very difficult to arrest the aromatic compounds once the roasting process is complete and it becomes even more challenging to store the beans for a longer time with the retained volatiles as these compounds are easily lost during industrialized processing such as the grinding of roasted coffee beans and storage of ground coffee. Thus, an attempt was made to minimise the loss of volatile from roasted coffee beans by coating with Carboxymethyl cellulose (CMC), Hydroxypropylmethyl cellulose (HPMC) and Whey protein concentrate. Coffee volatiles were analysed by Gas chromatography and 14 major compounds were identified and compared in this study. Results showed an increase in the relative area of major volatile compounds in coated roasted coffee beans when compared with unroasted coffee beans for consecutive two months. Moreover, effect of coating on textural properties and non-volatiles were also analysed. The results have indicated that edible coatings preserve the sensory properties of roasted coffee beans for a longer shelf life and cellulose derivatives, as an edible coating, exhibited the best protecting effect on roasted coffee beans.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1981-01-01
Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds
Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites: Influence of Interface Modification
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1998-01-01
Unidirectional celsian matrix composites having 42-45 vol % of uncoated or BN-SIC coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01%, respectively, with ultimate strength as high as 960 MPa. The elastic Young modulus of the uncoated and coated fiber-reinforced composites were 184 +/- 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of composite with uncoated fibers is due to degradation of the fiber strength from mechanical damage during processing. Because both the coated- and uncoated-fiber-reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SIC dual layer is primarily the protection of fibers from mechanical damage during processing.
2011-12-05
Report: Grant N00014-08-0331 Technical Objectives As critical components of advanced aircraft engines , turbine airfoils require coatings for...advanced aircrafi engines , turbine airfoils require coatings for enhancement of oxidation, corrosion and thermal capabilities . Airfoil coatings ofien...Oxidation and Corrosion Protection Coatings for Enhanced Thermo-Mechanical Durability of Turbine Airfoils 5b. GRANT NUMBER N00014-08-l-0331 5c
Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C
NASA Technical Reports Server (NTRS)
Lee, K. N.; Barrett, C. A.; Smith, J.
2000-01-01
Very long-term cyclic oxidation behavior of Re108 and In939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and In-939 without a protective coating began to show a rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and In-939. The VPA and CODEP on Re-108 and all three coatings on In-939 showed excellent cyclic oxidation resistance out to 10,000 h. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10,000 h of cyclic exposure. The oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.
2003-01-01
Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.
1990-01-01
Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.
Deposition of aluminum coatings on bio-composite laminates
NASA Astrophysics Data System (ADS)
Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.
2018-05-01
As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.
NASA Astrophysics Data System (ADS)
Jiménez, H.; Salazar, V. H.; Devia, A.; Jaramillo, S.; Velez, G.
2006-12-01
A study of materials used in the molds production to aluminium rims manufacture in the MADEAL S.A. factory was carried out for apply a plasma assisted surface treatment consists in growing TiAlN hard coatings that it protects this molds in the productive process. This coating resists high oxidation temperatures, of the other of 800 °C, high hardness (2800 Vickers) and low friction coefficient. A plasma assisted repetitive pulsed arcs mono-evaporator system was used in the grow of the TiAlN coatings, the TiAlN target is a sinterized 50% Ti and 50% Al, in the substrate they were used two types of steel that compose the molds injection pieces for the rims production. These materials were subjected to linear and fluctuating thermal changes in the Bruker axs X-Ray diffractometer temperature chamber, what simulated the molds thermal variation in the rims production process and they were compared with TiAlN coatings subjected to same thermal changes. The Materials characterization, before and later of thermal process, was carried out using XRD, SPM and EDS techniques, to analyze the crystallographic, topographic and chemical surface structure behaviours.
An evaluation of candidate oxidation resistant materials for space applications in LEO
NASA Technical Reports Server (NTRS)
Rutledge, Sharon; Banks, Bruce; Difilippo, Frank; Brady, Joyce; Dever, Therese; Hotes, Deborah
1986-01-01
Ground based testing of materials considered for polyimide (Kapton) solar array blanket protection and graphite-epoxy stroctural member protection was performed in an RF plasma asher. Protective coatings on Kapton from various commercial sources and from NASA Lewis Research Center were exposed to the air plasma; and mass loss per unit area was measured for each sample. All samples evaluated provided some protection to the underlying surface, but metal-oxide-fluoropolymer coatings provided the best protection by exhibiting very little degradation after 47 hr of asher exposure. Mica paint was evaluated as a protective coating for graphite-epoxy structural members. Mica appeared to be resistant to attack by atomic oxygen, but only offered limited protection as a paint. this is believed to be due to the paint vehicle ashing underneath the mica leaving unattached mica flakes lying on the surface. The protective coatings on Kapton evaluated so far are promising but further research on protection of graphite-epoxy support structures is needed.
Fused silicon-rich coatings for superalloys
NASA Technical Reports Server (NTRS)
Smialek, J. L.
1974-01-01
Various compositions of nickel-silicon and aluminum-silicon slurries were sprayed on IN 100 specimens and fusion-sintered to form fully dense coatings. Cyclic furnace oxidation tests in 1 atm air at 1100 C showed all the coatings to be protective for at least 600 hours, and one slurry, Al-60Si, was protective for 1000 hours. This coating also protected NASA TAZ 8A and NASA-TRW VIA for 1000 hours in the same furnace test. Alloys B 1900, TD-NiCr, and Mar-M200 were protected for lesser times, while NX 188 and NASA WAZ 20 were scarcely protected at all. Limited stress-rupture testing on 0.64-cm-diam IN 100 specimens detected no degradation of mechanical properties due to silicon diffusion.
Protective Behavior of Poly(m-aminophenol) and Polypyrrole Coatings on Mild Steel
NASA Astrophysics Data System (ADS)
Yahaya, Sabrina M.; Harun, M. K.; Rosmamuhamadani, R.; Bonnia, N. N.; Ratim, S.
2018-01-01
Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.
Poly(hydroxyalkanoate)s-Based Hydrophobic Coatings for the Protection of Stone in Cultural Heritage
Andreotti, Serena; Fabbri, Paola
2018-01-01
Reversibility is a mandatory requirement for materials used in heritage conservation, including hydrophobic protectives. Nevertheless, current protectives for stone are not actually reversible as they remain on the surfaces for a long time after their hydrophobicity is lost and can hardly be removed. Ineffective and aged coatings may jeopardise the stone re-treatability and further conservation interventions. This paper aims at investigating the performance of PHAs-based coatings for stone protection, their main potential being the ‘reversibility by biodegradation’ once water repellency ended. The biopolymer coatings were applied to three different kinds of stone, representative of lithotypes used in historic architecture: sandstone, limestone and marble. Spray, poultice and dip-coating were tested as coating techniques. The effectiveness and compatibility of the protectives were evaluated in terms of capillary water absorption, static and dynamic contact angles, water vapour diffusion, colour alteration and surface morphology. The stones’ wettability after application of two commercial protectives was investigated too, for comparison. Finally, samples were subjected to artificial ageing to investigate their solar light stability. Promising results in terms of efficacy and compatibility were obtained, although the PHAs-based formulations developed here still need improvement for increased durability and on-site applicability. PMID:29361721
Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating.
Kim, Dong-Min; Cho, Yu-Jin; Choi, Ju-Young; Kim, Beom-Jun; Jin, Seung-Won; Chung, Chan-Moon
2017-09-14
Low-temperature self-healing capabilities are essential for self-healing materials exposed to cold environments. Although low-temperature self-healing concepts have been proposed, there has been no report of a microcapsule-type low-temperature self-healing system wherein the healing ability was demonstrated at low temperature. In this work, low-temperature self-healing of a microcapsule-type protective coating was demonstrated. This system employed silanol-terminated polydimethylsiloxane (STP) as a healing agent and dibutyltin dilaurate (DD) as a catalyst. STP underwent a condensation reaction at -20 °C in the presence of DD to give a viscoelastic product. The reaction behavior of STP and the viscoelasticity of the reaction product were investigated. STP and DD were separately microencapsulated by in situ polymerization and interfacial polymerization methods, respectively. The STP- and DD-loaded microcapsules were mixed into a commercial enamel paint, and the resulting formulation was applied to glass slides, steel panels, and mortars to prepare self-healing coatings. When the self-healing coatings were damaged at a low temperature (-20 °C), STP and DD were released from broken microcapsules and filled the damaged area. This process was effectively visualized using a fluorescent dye. The self-healing coatings were scratched and subjected to corrosion tests, electrochemical tests, and saline solution permeability tests. The temperature of the self-healing coatings was maintained at -20 °C before and after scratching and during the tests. We successfully demonstrated that the STP/DD-based coating system has good low-temperature self-healing capability.
Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.
Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M
1999-08-01
The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are exempt...
Protective Coats For Zinc-Rich Primers
NASA Technical Reports Server (NTRS)
Macdowell, Louis G, III
1993-01-01
Report describes tests of topcoats for inorganic zinc-rich primers on carbon steel. Topcoats intended to provide additional protection against corrosion in acidic, salty seacoast-air/rocket-engine-exhaust environment of Space Shuttle launch site. Tests focused on polyurethane topcoats on epoxy tie coats on primers. Part of study involved comparison between "high-build" coating materials and thin-film coating materials.
NASA Technical Reports Server (NTRS)
Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.
1995-01-01
Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.
NASA Technical Reports Server (NTRS)
Deadmore, D. L.
1974-01-01
Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.
Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene
NASA Astrophysics Data System (ADS)
Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer
2017-11-01
The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.
NASA Astrophysics Data System (ADS)
Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb
Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
Oxidation and Emittance Studies of Coated Mo-Re
NASA Technical Reports Server (NTRS)
Glass, David E.
1997-01-01
A commercially available Fe-Cr-Si coating (R512E) and a silicide coating were evaluated regarding their ability to protect Mo-Re from oxidation. The R512E coating provided very good oxidation protection at 1260 C in atmospheric air. Oxidation tests were also performed at Mach 4 in the HYMETS facility at NASA Langley Research Center where again the R512E provided good oxidation protection but for much shorter times. Emittance measurements as a function of wavelength were also obtained for the R512E coating on Mo-Re after exposure to the Mach 4 environment at 1150 C and 1230 C.
Carbó, Anna; Torres, Rosario; Usall, Josep; Solsona, Cristina; Teixidó, Neus
2017-11-01
The biocontrol agent Candida sake CPA-1 has demonstrated to be effective against several diseases on fruit. However, for application of CPA-1 under field conditions, it was necessary to mix it with a food coating to improve survival under stress conditions, as well as adherence and distribution on fruit surfaces. The objective of this study was to obtain a more competitive formulation under field conditions to be applied independently of any product. To achieve this purpose, the drying process of CPA-1 by a fluidised-bed spray-drying system together with biodegradable coatings was optimised. This approach is novel for the drying system used and the formulation obtained which was able to form a film or coating on fruit surfaces. Several substances were tested as carriers and binders, and drying temperature was optimised. The addition of protective compounds was also tested to improve survival of CPA-1 during the dehydration process. Product shelf life, biocontrol efficacy on grapes against Botrytis cinerea, and the improvement of C. sake behaviour under stress conditions were tested. The optimal temperature of drying was 55 °C and two formulations that were able to develop a coating on fruit surfaces were obtained. One of the formulations was created by using a combination of native and pregelatinised potato starch; the other formulation was obtained using maltodextrin and by adding skimmed milk and sucrose as protectant compounds. The formulated products reduced the incidence and severity of B. cinerea, and CPA-1 survival rate was increased under stress conditions of temperature and humidity.
Do petroleum-based protective coatings add fuel value to slash
James L. Murphy; Charles W. Philpot
1965-01-01
Asphalts and wax emulsions have been recommended as protective coatings to help obtain clean, safe burns in slash disposal work. Fuel value determinations in the laboratory indicate that such coatings add little to the fuel value of slash.
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables
Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin
2014-01-01
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables.
Alvarez, Noe T; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J; Shanov, Vesselin
2014-11-04
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter-which is approximately four times the diameter of a red blood cell-is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.
NASA Astrophysics Data System (ADS)
Fox-Rabinovich, G. S.; Endrino, J. L.; Aguirre, M. H.; Beake, B. D.; Veldhuis, S. C.; Kovalev, A. I.; Gershman, I. S.; Yamamoto, K.; Losset, Y.; Wainstein, D. L.; Rashkovskiy, A.
2012-03-01
Recently, a family of hard mono- and multilayer TiAlCrSiYN-based coatings have been introduced that exhibit adaptive behavior under extreme tribological conditions (in particular during dry ultrahigh speed machining of hardened tool steels). The major feature of these coatings is the formation of the tribo-films on the friction surface which possess high protective ability under operating temperatures of 1000 °C and above. These tribo-films are generated as a result of a self-organization process during friction. But the mechanism how these films affect adaptability of the hard coating is still an open question. The major mechanism proposed in this paper is associated with a strong gradient of temperatures within the layer of nano-scaled tribo-films. This trend was outlined by the performed thermodynamic analysis of friction phenomena combined with the developing of a numerical model of heat transfer within cutting zone based on the finite element method. The results of the theoretical studies show that the major physical-chemical processes during cutting are mostly concentrated within a layer of the tribo-films. This nano-tribological phenomenon produces beneficial heat distribution at the chip/tool interface which controls the tool life and wear behavior.Results of x-ray photoelectron spectroscopy studies indicate enhanced formation of protective sapphire- and mullite-like tribo-films on the friction surface of the multilayer TiAlCrSiYN/TiAlCrN coating. Comprehensive investigations of the structure and phase transformation within the coating layer under operation have been performed, using high resolution transmission electron microscopy, synchrotron radiation technique: x-ray absorption near-edge structure and XRD methods.The data obtained show that the tribo-films efficiently perform their thermal barrier functions preventing heat to penetrate into the body of coated cutting tool. Due to this the surface damaging process as well as non-beneficial phase transformation (formation of AlN hex phase) drastically diminishes within the layer of the adaptive coating. Micro-mechanical properties measurements performed at room and elevated temperatures show that the hardness of the multilayer TiAlCrSiYN/TiAlCrN coating appears stable to 500 °C and then drops a little at 600 °C but still remains high. It means that if the surface tribo-films can reduce actual temperature down to this level the coating underneath is able to efficiently withstand heavy loads under operation.
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.
1992-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.
Performance and properties of atomic oxygen protective coatings for polymeric materials
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Lamoreaux, Cynthia
1992-01-01
Such large LEO spacecraft as the Space Station Freedom will encounter high atomic oxygen fluences which entail the use of protective coatings for their polymeric structural materials. Such coatings have demonstrated polymer mass losses due to oxidation that are much smaller than those of unprotected materials. Attention is here given to protective and/or electrically conductive coatings of SiO(x), Ge, and indium-tin oxide which have been exposed to atomic oxygen in order to ascertain mass loss, electrical conductivity, and optical property dependence on atomic oxygen exposure.
Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings
NASA Technical Reports Server (NTRS)
Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.
2003-01-01
Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.
NASA Astrophysics Data System (ADS)
Zeng, H. J.; Zhang, L. Q.; Lin, J. P.; He, X. Y.; Zhang, Y. C.; Jia, P.
2012-12-01
Hot dip galvanizing has been extensively employed for corrosion protection of steel structures. However, during the process of galvanization, the corrosion in molten zinc brings many problems to galvanization industry. In this study, as a material of corrosion resistance to molten zinc intended for application in Hot-dip galvanization, HVOF Ti28.15Al63.4Nb8.25Y (at.%) coatings with different bond coats (NiCr5Al, NiCoCrAlY, CoCrAlYTaSi, and NiCr80/20) were deposited onto 316L stainless steel substrate, respectively. The influences of different bond coats on HVOF Ti28.15Al63.4Nb8.25Y coatings were investigated. The results showed that bond coat had an obvious influence on improving the mechanical properties of HVOF Ti28.15Al63.4Nb8.25Y coatings. HVOF Ti28.15Al63.4Nb8.25Y coatings with NiCoCrAlY bond coat displayed the best mechanical properties. However, bond coats had no obvious effects on the microstructure, porosity, and hardness of HVOF Ti28.15Al63.4Nb8.25Y top coatings. The effects of as-received powder morphology and grain size on the characteristics of coatings were also discussed.
Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran.
Elschner, Thomas; Obst, Franziska; Stana-Kleinschek, Karin; Kargl, Rupert; Heinze, Thomas
2017-04-01
Carbonic acid derivatives of dextran possessing furfuryl- and maleimido moieties were synthesized and processed into thin films by spin coating. First, products with different degrees of substitution (DS) of up to 3.0 and substitution patterns were obtained and characterized by NMR- and FTIR spectroscopy, as well as elemental analysis. Thin films possessing maleimide groups were obtained by spin coating of maleimido dextran (furan-protected) and dextran furfuryl carbamate that was converted with bismaleimide. The removal of the protecting group (furan) on the thin film was monitored by QCM-D and compared with gravimetric analysis of the bulk material. Film morphology and wettability were determined by means of AFM and contact angle measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...
40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...
40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...
40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...
40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...
40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...
40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...
40 CFR 174.512 - Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat Protein of Potato Virus Y...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.512 Coat Protein of Potato Virus Y; exemption from the requirement of a tolerance. Residues of Coat Protein of Potato Virus Y are exempt from...
40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...
40 CFR 174.531 - Coat protein of plum pox virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat protein of plum pox virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.531 Coat protein of plum pox virus; exemption from the requirement of a tolerance. Residues of the coat protein of plum pox virus in or on the...
Ionic Transport Through Metal-Rich Organic Coatings
2016-08-19
COVERED October 2013-Septermber 2015 4. TITLE AND SUBTITLE Ionic Transport Through Metal-Rich Organic Coatings 5a. CONTRACT NUMBER 5b. GRANT...NOTES 14. ABSTRACT Organic coatings are commonly used on aircraft and in the automotive industry to protect against corrosive environments. Although...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal-rich organic (MRO) coatings. Following design
Ionic Transport Through Metal-Rich Organic Coatings
2016-08-19
COVERED October 2013-Septermber 2015 4. TITLE AND SUBTITLE Ionic Transport Through Metal-Rich Organic Coatings 5a. CONTRACT NUMBER 5b. GRANT...14. ABSTRACT Organic coatings are commonly used on aircraft and in the automotive industry to protect against corrosive environments. Although...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal-rich organic (MRO) coatings. Following design of
NASA Astrophysics Data System (ADS)
Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan
2014-09-01
In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.
OXIDATION-RESISTANT COATING ON ARTICLES OF YTTRIUM METAL
Wilder, D.R.; Wirkus, C.D.
1963-11-01
A process for protecting yttrium metal from oxidation by applying thereto and firing thereon a liquid suspension of a fritted ground silicate or phosphate glass plus from 5 to 35% by weight of CeO/sub 2/ is presented. (AEC)
NASA Astrophysics Data System (ADS)
Shokouhfar, M.; Dehghanian, C.; Baradaran, A.
2011-01-01
Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.
NASA Astrophysics Data System (ADS)
Goudarzi, Mona; Batmanghelich, Farhad; Afshar, Abdollah; Dolati, Abolghasem; Mortazavi, Golsa
2014-05-01
Hydroxyapatite (HA) coatings in and onto anodized TiO2 nanotube arrays were presented and prepared by electrophoretic deposition technique (EPD). Coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). EPD proved to be an innovative and versatile technique to coat HA on and into nanotubular structures of TiO2 with enhanced adhesion between nanotubes and HA particles provided by mechanical interlocking. After EPD of HA on TiO2 layer, samples were sintered at 400 °C, 600 °C and 800 °C for 2 h in an Ar atmosphere. Effect of EPD processing parameters on thickness of the deposits and rate of deposition was elucidated for HA coatings on the nanotubular TiO2 structures. It was shown that higher applied voltages increase deposition rate and thickness of the coatings. Potentiodynamic polarization measurements proved corrosion protection caused by both HA coating and nanotubular TiO2 structure in simulated body fluid (SBF). Effect of sintering temperature on adhesion strength of HA coatings on TiO2 nanotubes and their composition were also studied.
Formation of Ca/P ceramic coatings by Plasma Electrolytic Oxidation (PEO) on Ti6Al4V ELI alloy
NASA Astrophysics Data System (ADS)
Rodriguez-Jaimes, Y.; Naranjo, D. I.; Blanco, S.; García-Vergara, S. J.
2017-12-01
The formation of PEO ceramic coatings on Ti6Al4V ELI alloy was investigated using a phosphate/calcium containing electrolyte at 300 and 400V at 310K for different times. The Plasma Electrolytic Oxidation (PEO) coated specimens were then heat treated at 873 and 1073K for 2 hours. Scanning electron microscopy, Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction analysis were used to study the composition and the morphology of the ceramic coatings. The corrosion behaviour of the coatings was studied by Electrochemical Impedance Spectroscopy (EIS) in Simulated Body Fluid (SBF). The PEO-treated specimens primarily revealed a porous structure with thickness between 4 and 12μm, according to the voltage and process time used. The coatings are mainly composed of hydroxyapatite; however, as the voltage and anodizing time increase, the Ca/P ratio decreases. Generally, the corrosion resistance of the alloy was improved by the PEO-treated coatings, although the specimens treated at 1073K showed the presence of cracks that reduced the protective effect of the coatings.
Cieślik, Monika; Kot, Marcin; Reczyński, Witold; Engvall, Klas; Rakowski, Wiesław; Kotarba, Andrzej
2012-01-01
The mechanical and protective properties of parylene N and C coatings (2-20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.; Gedwill, M. A.
1984-01-01
Hot-section gas-turbine components typically require some form of coating for oxidation and corrosion protection. Efficient use of coatings requires reliable and accurate predictions of the protective life of the coating. Currently engine inspections and component replacements are often made on a conservative basis. As a result, there is a constant need to improve and develop the life-prediction capability of metallic coatings for use in various service environments. The purpose of this present work is aimed at developing of an improved methodology for predicting metallic coating lives in an oxidizing environment and in a corrosive environment.
Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts
NASA Technical Reports Server (NTRS)
Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)
1981-01-01
A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.
NASA Technical Reports Server (NTRS)
Hollahan, J. R.; Wydeven, T.
1975-01-01
The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.
Renewal of corrosion protection of coated aluminum after welding
NASA Technical Reports Server (NTRS)
Higgins, R. H.
1969-01-01
Effectiveness of conversion coatings designed to protect aluminum alloys against atmospheric corrosion is reduced after exposure to high temperature or welding. Damaged coating should be manually stripped six inches from the weld and then recoated by sponge or spray with the original solution.
Che Rose, Laili; Bear, Joseph C; McNaughter, Paul D; Southern, Paul; Piggott, R Ben; Parkin, Ivan P; Qi, Sheng; Mayes, Andrew G
2016-02-04
An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems.
Influence of dielectric protective layer on laser damage resistance of gold coated gratings
NASA Astrophysics Data System (ADS)
Wu, Kepeng; Ma, Ping; Pu, Yunti; Xia, Zhilin
2016-03-01
Aiming at the problem that the damage threshold of gold coated grating is relatively low, a dielectric film is considered on the gold coated gratings as a protective layer. The thickness range of the protective layer is determined under the prerequisite that the diffraction efficiency of the gold coated grating is reduced to an acceptable degree. In this paper, the electromagnetic field, the temperature field and the stress field distribution in the grating are calculated when the silica and hafnium oxide are used as protective layers, under the preconditions of the electromagnetic field distribution of the gratings known. The results show that the addition of the protective layer changes the distribution of the electromagnetic field, temperature field and stress field in the grating, and the protective layer with an appropriate thickness can improve the laser damage resistance of the grating.
Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.
Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria
2012-01-01
Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes.
Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection
NASA Technical Reports Server (NTRS)
De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.
2015-01-01
Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per square meter and DC-7-16.4 percent Z-cote coated seals were undamaged at all exposures up to the limits tested thus far which were 147 megajoules per square meter UV-C and 245 megajoules per square meter NUV. The coatings decreased adhesion sufficiently for docking seals at temperatures equal to or greater than -8 degrees Centigrade thus offer a simple and inexpensive way to mitigate adhesion.
Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc
1997-01-01
This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.
2007-01-01
A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.
Code of Federal Regulations, 2014 CFR
2014-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...
NASA Astrophysics Data System (ADS)
Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao
2016-02-01
A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.
Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo
2018-01-01
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620
Thin coatings for protecting titanium aluminides in high-temperature oxidizing environments
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Taylor, P. J.; Clark, R. K.; Wallace, T. A.
1991-01-01
Titanium aluminides have high specific strengths at high temperatures but are susceptible to environmental attack. Their use in many aerospace applications would require that they be protected with coatings that, for structural efficiency, must be thin. It is conceivable that acceptable coatings might be found in several oxide systems, and consequently, oxide coatings of many compositions were prepared from sol-gels for study. Response-surface methodology was used to refine coating compositions and factorial experiments were used to develop coating strategies. Oxygen permeability diagrams of two-layer coatings for several oxide systems, an analysis of multiple-layer coatings on rough and polished surfaces, and modeling of the oxidation weight gain are presented.
Tests of NASA ceramic thermal barrier coating for gas-turbine engines
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1979-01-01
A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spachner, S.A.
1964-10-31
Rokide-process alumina and zirconia coatings and a Udimet 700 superalloy liner were evaluated by extrusion of 31/2-in. billets of Inconel 713C, Udimet 700, SAE 4340, PH15--7Mo, and TZM alloys, using rod extrusion dies of temperatures were in the 1900 to 2250 deg F and 2900 to 3600 deg F ranges. Both alumina and zirconia coatings provided adequate protection to the support tooling at temperatures to 3450 deg F. Alumina coatings showed wear at temperatures over 2900 deg F, but may be serviceable to 3450 deg F. Zirconia coatings showed erratic results. One coating did withstand extrusion at 3450 deg Fmore » without apparent wear. The Udimet 700 liner did not show wear at 2000 deg F, but did react with the TZM billet at 3600 deg F. T-section die design was modified to prevent die cracking during extrusion and reduce coating grinding costs. (auth)« less
Elevated Temperature Corrosion Studies of AlCrN and TiAlN Coatings by PAPVD on T91 Boiler Steel
NASA Astrophysics Data System (ADS)
Goyal, Lucky; Chawla, Vikas; Hundal, Jasbir Singh
2017-11-01
The present investigation discusses the hot corrosion behavior of AlCrN and TiAlN nano-coatings on T91 boiler steel by PAPVD process subjected to molten salt of Na2SO4-60%V2O5 at 900 °C for 50 cycles. Surface and cross-sectional studies were performed by AFM, SEM/EDS and XRD techniques to understand the corrosion kinetics and mechanism. T91 bare boiler steel as well as TiAlN-coated specimen has shown higher internal oxidation as well as weight gain. The better corrosion resistance of AlCrN-coated specimen has been observed by virtue of higher availability of Cr and Al in the oxide scale as well as adherent and dense coating. The betterment of AlCrN coating can be attributed to low internal oxidation as well as movement of Cr and Al toward oxide scale to form protective corrosion barriers.
Coatings for directional eutectics
NASA Technical Reports Server (NTRS)
Rairden, J. R.; Jackson, M. R.
1976-01-01
Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-06-25
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.
Evaluation of commercially supplied silver coated Teflon for spacecraft temperature control usage
NASA Technical Reports Server (NTRS)
Heaney, J. B.
1974-01-01
A series of tests are described which were performed to evaluate the acceptability of a commercially supplied silver backed teflon thermal control coating relative to teflon previously coated at GSFC. Optical measurements made on numerous samples indicate that the commercial material possesses an average solar absorptance of 0.085, an emittance of 0.76 and an average alpha/epsilon equal to 0.112, all of which are equivalent to the GSFC coated teflon. The emittance of the protective inconel backing was found to be 0.037. The coating is shown to have good adhesion at the Ag-teflon interface and exposure to UV irradiation uncovered no coating irregularities. Temperature cycling over the range -135 C to +200 C produced crazing in the evaporated Ag layer as expected but no delamination was observed. The suitability of Mystik no. 7366 and 3M no. 467 adhesives as bonding agents for the metallized polymer is demonstrated. Various problems associated with production reproducibility and selection of a proper bonding process are discussed.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-01-01
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055
Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil
2017-09-19
In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated.
78 FR 41492 - Buy America Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... domestic manufacturing process for any steel or iron products (including protective coatings) that are... industry representatives in ensuring that Federal funds were used to support domestic manufacturing. While... in the manufacturing industry. Also, a bill has been introduced in the House of Representatives (HR...
METHOD OF PROTECTIVELY COATING URANIUM
Eubank, L.D.; Boller, E.R.
1959-02-01
A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.
Assessment of Thermal Control and Protective Coatings
NASA Technical Reports Server (NTRS)
Mell, Richard J.
2000-01-01
This final report is concerned with the tasks performed during the contract period which included spacecraft coating development, testing, and applications. Five marker coatings consisting of a bright yellow handrail coating, protective overcoat for ceramic coatings, and specialized primers for composites (or polymer) surfaces were developed and commercialized by AZ Technology during this program. Most of the coatings have passed space environmental stability requirements via ground tests and/or flight verification. Marker coatings and protective overcoats were successfully flown on the Passive Optical Sample Assembly (POSA) and the Optical Properties Monitor (OPM) experiments flown on the Russian space station MIR. To date, most of the coatings developed and/or modified during this program have been utilized on the International Space Station and other spacecraft. For ISS, AZ Technology manufactured the 'UNITY' emblem now being flown on the NASA UNITY node (Node 1) that is docked to the Russian Zarya (FGB) utilizing the colored marker coatings (white, blue, red) developed by AZ Technology. The UNITY emblem included the US American flag, the Unity logo, and NASA logo on a white background, applied to a Beta cloth substrate.
Outer skin protection of columbium Thermal Protection System (TPS) panels
NASA Technical Reports Server (NTRS)
Culp, J. D.
1973-01-01
A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.
Paper-Thin Coating Offers Maximum Protection
NASA Technical Reports Server (NTRS)
2001-01-01
Wessex Incorporated has recently taken a technology that was originally developed for NASA as a protective coating for ceramic materials used in heatshields for space vehicles, and modified it for use in applications such as building materials, machinery, and transportation. The technology, developed at NASA Ames Research Center as a protective coating for flexible ceramic composites (PCC), is environmentally safe, water-based, and contains no solvents. Many other flame-retardant materials contain petroleum-based components, which can produce toxic smoke under flame. Wessex versions of PCC can be used to shield ceramics, wood, plasterboard, steel, plastics, fiberglass, and other materials from catastrophic fires. They are extraordinarily tough and exhibit excellent resistance to thermal shock, vibration, abrasion, and mechanical damage. One thin layer of coating provides necessary protection and allows for flexibility while avoiding excessive weight disadvantages. The coating essentially reduces the likelihood of the underlying material becoming so hot that it combusts and thus inhibits the "flashover" phenomenon from occurring.
Chemical conversion coating for protecting magnesium alloys from corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh
A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds asmore » self-healing moieties to defect sites, thus providing active corrosion protection.« less
Cathodic Protection Measurement Through Inline Inspection Technology Uses and Observations
NASA Astrophysics Data System (ADS)
Ferguson, Briana Ley
This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit concepts, and attenuation principles in order to match the results of the ILI sample data by varying parameters of the model (i.e., values for over potential and coating resistivity). This research has not been conducted previously in order to determine if the protected potential range can be achieved with respect to the predicted current density from the CP ILI device. Kirchhoff's method was explored, but certain principals could not be used in the model as manual measurements were required. This research was based on circuit concepts which indirectly affected electrochemical processes. Through Ohm's law, the results show that a constant current density is possible in the protected potential range; therefore, indicates polarization of the pipeline, which leads to calcareous deposit development with respect to electrochemistry. Calcareous deposit is desirable in industry since it increases the resistance of the pipeline coating and lowers current, thus slowing the oxygen diffusion process. This research conveys that an alternative method for CP evaluation from inside of the pipeline is possible where the pipe-to-soil potential can be estimated (as required by regulations) from the ILI tool's current density measurement.
Coatings for directional eutectics. [cyclic furnace oxidation tests
NASA Technical Reports Server (NTRS)
Jackson, M. R.; Rairden, J. R.; Hampton, L. V.
1974-01-01
Coating compositions were evaluated for oxidation protection of directionally solidified composite alloy NiTaC-13. These coatings included three NiCrAlY compositions (30-5-1, 25-10-1 and 20-15-1), two FeCrAlY compositions (30-5-1 and 25-10-1), a CoCrAlY composition (25-10-1), and one duplex coating, Ni-35Cr + Al. Duplicate pin samples of each composition were evaluated using two cyclic furnace oxidation tests of 100 hours at 871 C and 500 hours at 1093 C. The two best coatings were Ni-20Cr-15Al-lY and Ni-35Cr + Al. The two preferred coatings were deposited on pins and were evaluated in detail in .05 Mach cyclic burner rig oxidation to 1093 C. The NiCrAlY coating was protective after 830 hours of cycling, while the duplex coating withstood 630 hours. Test bars were coated and cycled for up to 500 hours. Tensile tests indicated no effect of coatings on strength. In 871 C air stress rupture, a degradation was observed for coated relative to bare material. The cycled NiCrAlY coating offered excellent protection with properties superior to the bare cycled NiTaC-13 in 1093 C air stress rupture.
Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir
2018-01-01
Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. PMID:29495339
Ammar, Ameen Uddin; Shahid, Muhammad; Ahmed, Muhammad Khitab; Khan, Munawar; Khalid, Amir; Khan, Zulfiqar Ahmad
2018-02-25
Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the "three electrode system". Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO₂/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and "produce water" of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.
Launch Pad Coatings for Smart Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.
2010-01-01
Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.
Protective coatings for sensitive materials
Egert, Charles M.
1997-01-01
An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.
The development and characterization of advanced broadband mirror coatings for the far-UV
NASA Astrophysics Data System (ADS)
Egan, Arika; Fleming, Brian T.; Wiley, James; Quijada, Manuel; Del Hoyo, Javier; Hennessy, John; Hicks, Brian; France, Kevin; Kruczek, Nicholas; Erickson, Nicholas
2017-08-01
We present a progress report on the development of new broadband mirror coatings that demonstrate > 80% reflectivities from 1020-5000Å. Four different coating recipes are presented as candidates for future far-ultraviolet (FUV) sensitive broadband observatories. Three samples were first coated with aluminum (Al) and lithium fluoride (LiF) at the NASA Goddard Space Flight Center (GSFC) using a new high-temperature physical vapor deposition (PVD) process. Two of these samples then had an ultrathin (10-20 Å) protective coat of either magnesium fluoride (MgF2) or aluminum fluoride (AlF3) applied using atomic later deposition (ALD) at the NASA Jet Propulsion Laboratory (JPL). A fourth sample was coated with Al and a similar high temperature PVD coating of AlF3. Polarized reflectivities into the FUV for each sample were obtained through collaboration with the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. We present a procedure for using these reflectivities as a baseline for calculating the optical constants of each coating recipe. Given these results, we describe plans for improving our measurement methodology and techniques to develop and characterize these coating recipes for future FUV missions.
Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating
Cho, Yu-Jin; Choi, Ju-Young; Kim, Beom-Jun; Jin, Seung-Won; Chung, Chan-Moon
2017-01-01
Low-temperature self-healing capabilities are essential for self-healing materials exposed to cold environments. Although low-temperature self-healing concepts have been proposed, there has been no report of a microcapsule-type low-temperature self-healing system wherein the healing ability was demonstrated at low temperature. In this work, low-temperature self-healing of a microcapsule-type protective coating was demonstrated. This system employed silanol-terminated polydimethylsiloxane (STP) as a healing agent and dibutyltin dilaurate (DD) as a catalyst. STP underwent a condensation reaction at −20 °C in the presence of DD to give a viscoelastic product. The reaction behavior of STP and the viscoelasticity of the reaction product were investigated. STP and DD were separately microencapsulated by in situ polymerization and interfacial polymerization methods, respectively. The STP- and DD-loaded microcapsules were mixed into a commercial enamel paint, and the resulting formulation was applied to glass slides, steel panels, and mortars to prepare self-healing coatings. When the self-healing coatings were damaged at a low temperature (−20 °C), STP and DD were released from broken microcapsules and filled the damaged area. This process was effectively visualized using a fluorescent dye. The self-healing coatings were scratched and subjected to corrosion tests, electrochemical tests, and saline solution permeability tests. The temperature of the self-healing coatings was maintained at −20 °C before and after scratching and during the tests. We successfully demonstrated that the STP/DD-based coating system has good low-temperature self-healing capability. PMID:28906465
Thermal spray coating for corrosion under insulation (CUI) prevention
NASA Astrophysics Data System (ADS)
Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab
2017-12-01
Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.
NASA Astrophysics Data System (ADS)
Masi, G.; Balbo, A.; Esvan, J.; Monticelli, C.; Avila, J.; Robbiola, L.; Bernardi, E.; Bignozzi, M. C.; Asensio, M. C.; Martini, C.; Chiavari, C.
2018-03-01
Application of a protective coating is the most widely used conservation treatment for outdoor bronzes (cast Cu-Sn-Zn-Pb-Sb alloys). However, improving coating protectiveness requires detailed knowledge of the coating/substrate chemical bonding. This is particularly the case for 3-mercapto-propyl-trimethoxy-silane (PropS-SH) applied on bronze, exhibiting a good protective behaviour in outdoor simulated conditions. The present work deals with X-Ray Photoelectron Spectroscopy (XPS) and Electron Microscopy (FEG-SEM + FIB (Focused Ion Beam)) characterization of a thin PropS-SH film on bronze. In particular, in order to better understand the influence of alloying elements on coating performance, PropS-SH was studied first on pure Cu and Sn substrates then on bronzes with increasing alloy additions: Cu8Sn as well as a quinary Cu-Sn-Zn-Pb-Sb bronze. Moreover, considering the real application of this coating on historical bronze substrates, previously artificially aged ("patinated") bronze samples were prepared and a comparison between bare and "patinated" quinary bronzes was performed. In the case of coated quinary bronze, the free surface of samples was analysed by High Resolution Photoelectron Spectroscopy using Synchrotron Radiation (HR-SRPES) at ANTARES (Synchrotron SOLEIL), which offers a higher energy and lateral resolution. By compiling complementary spectroscopic and imaging information, a deeper insight into the interactions between the protective coating and the bronze substrate was achieved.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.
High-performance envelopes for wood
Roger M. Rowell
2007-01-01
Wood can be coated with a clear finish, stained or painted to provide protection from water and ultra violet energy. In this case the coating and wood are two different phases that coexist. Another approach is to provide protection by âcoatingâ in the surface not on the surface. Such an approach is referred to as an envelop rather than a coating. This can be done in...
Method and coating composition for protecting and decontaminating surfaces
Overhold, D C; Peterson, M D
1959-03-10
A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.
METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES
Overhold, D.C.; Peterson, M.D.
1959-03-10
A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.
NASA Astrophysics Data System (ADS)
Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.
2018-05-01
In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.
NASA Astrophysics Data System (ADS)
Cook, David James
The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips the oxide from the aluminum and allows for chemical bonding of the NiAl coating to the aluminum via the formation of intermetallics. By developing processing, structure, property, and performance relationships for the full process, it was possible to design a complete coating process to succeed in this application. The determination of these relationships and the underlying process physics improves reliability and instills confidence in the process.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.
2004-01-01
Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.
Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum
Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui
2018-01-01
Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer. PMID:29438304
Protective coating for alumina-silicon carbide whisker composites
Tiegs, Terry N.
1989-01-01
Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.
Graphene coatings for protection against microbiologically induced corrosion
NASA Astrophysics Data System (ADS)
Krishnamurthy, Ajay
Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of this form of corrosion. Chapter 1 introduces the basics of microbiologically induced corrosion and graphene. A comprehensive review of literature is used to discuss the role of micro-organisms, their impact on corrosion and their eradication. The conflicting results behind the use of graphene as a coating material are evaluated using the available literature and its future as an effective MIC resistant coating is then discussed. Chapter 2 is a study of the effectiveness of graphene based coatings for passivating metal surfaces against microbial induced corrosion. The effectiveness of graphene is evaluated against a bare metal electrode and a regular carbon based electrode using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Spectrophotometry and Scanning Electron Microscopy (SEM). Results indicate 3-orders-of-magnitude lower corrosion currents in the graphene coated electrode and about two orders of magnitude higher impedance to interfacial electrochemical reactions. After establishing the superiority of graphene over bare metal electrode, further studies were conducted to compare its performance over other state of the art polymer coatings such as parylene and polyurethane. This study is discussed in detail in Chapter 3. Quantitatively, graphene outperforms the polymer coated electrodes by offering close to two orders of magnitude higher MIC resistance, while qualitatively, optical images indicate severe oxidation in both the polymer coated metal structures. The chapter is concluded with discussions on the unparalleled corrosion resistance provided by graphene based coatings. The success/failure of coating techniques is not purely dictated by their ability to protect the surface, but also by the ease of coating application onto any given surface. Chapter 4 explains the methods by which high quality graphene can be used to protect surfaces that are not conducive to graphene growth and the problems associated with the current transfer techniques. A Raman Spectroscopy based surface mapping is performed to understand the defect peak intensities across the surface and the reasons for coating failure when using the state-of-the-art transfer techniques is discussed.
Pre-fired, refractory block slag dams for wet bottom furnace floors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vihnicka, R.S.; Meskimen, R.L.
1998-12-31
Slagging (wet bottom), utility boilers count on a refractory coating over the furnace floor tube structure for protection from corrosion damage from both the harsh, hot gas atmosphere from the burning fuel and the acidic coal slag. To protect and extend the life of this protective refractory coating the boiler original equipment manufacturers (OEMs) utilized a water-cooled monkey ring or slag chill ring (typically a 6--8 inch high ring of small diameter tubes) surrounding the slag tap locations on most wet bottom furnace floors (both utility and package boilers). The old water-cooled tube ring was such a high maintenance item,more » however, that it`s use has been discontinued in all but the most extreme environments throughout both utility and industrial applications. Where the use of the ring was discontinued, there has been a corresponding shortening of life on the protective floor refractory coatings (high maintenance cost), further aggravated by recent OSHA restrictions limiting the use of chrome oxide refractory materials in these types of boilers. This paper describes the developmental process and the final resultant product (a non-watercooled, slag dam made from pre-fired refractory shapes), undertaken by the inventors. Derived operational benefits a concept 2 project, with NO{sub x} Title 4 and Title 1 significance (which is currently underway) will also be detailed.« less
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1997-01-01
Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.
Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerry Barnett
2003-03-01
Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience withmore » a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process« less
NASA Astrophysics Data System (ADS)
Kumar, Kundan; Jariwala, C.; Pillai, R.; Chauhan, N.; Raole, P. M.
2015-08-01
Carbon fibres (Cf) are one of the most important reinforced materials for ceramic matrix composites such as Cf - SiC composites and they are generally sought for high temperature applications in as space application, nuclear reactor and automobile industries. But the major problem arise when Cf reinforced composites exposed to high temperature in an oxidizing environment, Cf react with oxygen and burnt away. In present work, we have studied the effect of silica (SiO2) coating as a protective coating on Cf for the Cf / SiC composites. The silica solution prepared by the sol-gel process and coating on Cf is done by dip coating technique with varying the withdrawing speed i.e. 2, 5, 8 mm/s with fixed dipping cycle (3 Nos.). The uniform silica coating on the Cf is shown by the Scanning Electron Microscope (SEM) analysis. The tensile test shows the increase in tensile strength with respect to increase in withdrawing speed. The isothermal oxidation analysis confirmed enhancement of oxidation resistance of silica coated Cf as compared tothe uncoated Cf.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L
2012-08-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L
2012-01-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions. PMID:27877499
Protection of alodine coatings from thermal aging by removable polymer coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Brett R.; Bradshaw, Robert W.; Whinnery, LeRoy L., Jr.
2006-12-01
Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigatedmore » the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.« less
Chromic acid anodizing of aluminum foil
NASA Technical Reports Server (NTRS)
Dursch, H.
1988-01-01
The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.
Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong
2014-12-01
Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.
NASA Technical Reports Server (NTRS)
Bauer, J. L.
1987-01-01
An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.
Atomic oxygen durability of solar concentrator materials for Space Station Freedom
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.
1990-01-01
The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.
Marble protection: An inorganic electrokinetic approach
NASA Astrophysics Data System (ADS)
Meloni, Paola; Manca, Francesco; Carcangiu, Gianfranco
2013-05-01
The influence of an electric potential difference in an aqueous solution was studied as a method for depositing a calcium oxalate coating over a weathered carbonatic stone. Samples of weathered Carrara white marble were treated at 15 and 50 °C for 5 h in an electrokinetic cell, specifically conceived for this study, containing a solution of ammonium oxalate (4% by weight), and were subsequently characterised by scanning electron microscopy, X-ray diffractometry, thermogravimetric analysis and mercury intrusion porosimetry. The electrokinetic treatment proved to be a cost effective and time saving process, able to produce a thick and homogeneous calcium oxalate coating over the stone surface that improves its chemical and physical resistance in low pH environments, and is able to protect the stone from the by-products of urban pollution.
Vatsurina, A V; Esikova, T Z; Kholodenko, V P; Vaĭnshteĭn, M B; Dubkova, V I
2005-01-01
The kinetics of conversion of sulfur compounds by Halothiobacillus neapolitanus DSM 15147 bacteria was studied in the presence of steel samples. It was shown that the presence of steel altered the known pathway of sulfur compound oxidation by thiobacteria. Production of atomic hydrogen via the interaction between biogenic sulfuric acid and steel enhanced secondary production of intermediates and decreased the content of sulfate produced previously. The process was accompanied by pH elevation and continuation of intense growth of the thiobacterium culture. Thiobacteria formed a corrosive medium, which caused metal destruction. The protective properties of anticorrosive coatings 225 LS and 640 mk were tested. It was shown that these coatings protected steel from the destructive effect of biogenic sulfuric acid.
Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A
2015-01-01
Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.
Erosion-resistant coatings for gas turbine engine compressor blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.
2017-06-01
The erosion-resistant ZrN and Cr3C2 coatings intended for the protection of the titanium and steel blades in a GTE compressor are studied. The erosion resistance of the substrate-coating composition is shown to depend on the coating thickness, the deposition conditions, and the coating texture. Ion-assisted deposition changes the structure-phase state of a coating and substantially increases its erosion resistance. It is found that a nanolayer 2D TiN/CrN coating with an average nanolayer thickness of 60 nm is the best erosion- corrosion-resistant coating for titanium alloys and that a (NiCrTiAlHf)C + CrC coating formed by ionassisted deposition is the best coating for steels. The testing of alloy VT8 compressor blades in an engine supported high protective properties of the nanolayer TiN/CrN coating.
Mesoporous silica nanoparticles for active corrosion protection.
Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G
2011-03-22
This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.
Tests Of Protective Coats For Carbon Steel
NASA Technical Reports Server (NTRS)
Macdowell, Louis G., III
1995-01-01
Report describes laboratory and field tests of candidate paints (primers, tie coats, and topcoats) for use in protecting carbon-steel structures against corrosion in seaside environment at Kennedy Space Center. Coating materials selected because of utility in preventing corrosion, also on basis of legal requirements, imposed in several urban areas, for reduction of volatile organic contents.
Double coating protection of Nd-Fe-B magnets: Intergranular phosphating treatment and copper plating
NASA Astrophysics Data System (ADS)
Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu
2014-12-01
In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd-Fe-B magnets. In other words, the intergranular region of sintered Nd-Fe-B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd-Fe-B. The morphology and corrosion resistance of the phosphated sintered Nd-Fe-B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd-Fe-B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd-Fe-B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd-Fe-B is significantly better than that with a single phosphate film or single plating protection.
Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M
2017-05-27
In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.
Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M.
2017-01-01
In this work, we present the electrochemical deposition of manganese dioxide (MnO2) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications. PMID:28555017
Thermal spray for commercial shipbuilding
NASA Astrophysics Data System (ADS)
Rogers, F. S.
1997-09-01
Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.
Protective coatings for sensitive materials
Egert, C.M.
1997-08-05
An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.
Explosion risk evaluation during production of coating powder.
Li, Gang; Yuan, Chunmiao; Chen, Baozhi
2007-10-22
Powder coating is widely used in industry to prevent equipment corrosion. More than 600 companies produce coating powder in China, but most do not understand the explosion hazard of such products. In the present investigation the explosibility parameters of a coating powder were determined. Results showed that the coating powder is explosible, though the ignition energy is higher than those of normal dusts such as coal powder and corn starch. Based on these experimental findings, a systematic explosion protection method is proposed, with explosion isolation and explosion venting being adopted as the main protective methods.
NASA Astrophysics Data System (ADS)
Brylewski, Tomasz; Dabek, Jaroslaw; Przybylski, Kazimierz; Morgiel, Jerzy; Rekas, Mieczyslaw
2012-06-01
In order to protect the cathode from chromium poisoning and improve electrical resistance, a perovskite (La,Sr)CrO3 coating was deposited on the surface of a DIN 50049 ferritic stainless steel by means of the screen-printing method, using a paste composed of an ultra-fine powder prepared via ultrasonic spray pyrolysis. Investigations of the oxidation process of the coated steel in air and the Ar-H2-H2O gas mixture at 1073 K for times up to 820 h showed high compactness of the protective film, good adhesion to the metal substrate, as well as area specific resistance (ASR) at a level acceptable for metallic SOFC interconnect materials. The microstructure, nanostructure, phase composition of the thick film, and in particular the film/substrate interface, were examined via chemical analyses by means of SEM-EDS and TEM-SAD. It was shown that the (La,Sr)CrO3 coating interacts with the steel during long-term thermal oxidation in the afore-mentioned conditions and intermediate, chromia-rich and/or spinel multilayer interfacial zones are formed. Cr-vaporization tests showed that the (La,Sr)CrO3 coating may play the role of barriers that decrease the volatilization rate of chromia species.
Oxidation of Alumina-Forming MAX Phases in Turbine Environments
NASA Technical Reports Server (NTRS)
Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon
2017-01-01
Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.
Thermal barrier coating for alloy systems
Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.
2000-01-01
An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.
NASA Astrophysics Data System (ADS)
Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo
2018-01-01
Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.
Nahorny, Sídnei; Zanin, Hudson; Christino, Vinie Abreu; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares, Luís Eduardo Silva
2017-10-01
To date is emergent the development of novel coatings to protect erosion, especially to preventive dentistry and restorative dentistry. Here, for the first time we report the effectiveness of multi-walled carbon nanotube/graphene oxide hybrid carbon-base material (MWCNTO-GO) combined with nanohydroxyapatite (nHAp) as a protective coating for dentin erosion. Fourier transform Raman spectroscopy (FT-Raman), scanning electron (SEM), and transmission electron (TEM) microscopy were used to investigated the coatings and the effect of acidulated phosphate fluoride gel (APF) treatment on bovine teeth root dentin before and after erosion. The electrochemical corrosion performance of the coating was evaluated. Raman spectra identified that: (i) the phosphate (ν 1 PO 4 3- ) content of dentin was not significantly affected by the treatments and (ii) the carbonate (ν 1 CO 3 2- ) content in dentin increased when nHAp was used. However, the nHAp/MWCNTO-GO composite exposited lower levels of organic matrix (CH bonds) after erosion compared to other treatments. Interesting, SEM micrographs identified that the nHAp/MWCNTO-GO formed layers after erosive cycling when associate with APF treatment, indicating a possible chemical bond among them. Treatments of root dentin with nHAp, MWCNTO-GO, APF_MWCNTO-GO, and APF_nHAp/MWCNTO-GO increased the carbonate content, carbonate/phosphate ratio, and organic matrix band area after erosion. The potentiodynamic polarization curves and Nyquist plot showed that nHAp, MWCNT-GO and nHAp/MWCNT-GO composites acted as protective agents against corrosion process. Clearly, the nHAp/MWCNTO-GO composite was stable after erosive cycling and a thin and acid-resistant film was formed when associated to APF treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Protective Skins for Aerogel Monoliths
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.
2007-01-01
A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).
Thermal insulating coating for spacecrafts
NASA Technical Reports Server (NTRS)
Kaul, Raj K. (Inventor)
2005-01-01
To protect spacecraft and their contents from excessive heat thermal protection systems are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100? F. The coating composition includes a phase change material.
Thermal Insulating Coating for Spacecrafts
NASA Technical Reports Server (NTRS)
Kaul, Raj K. (Inventor)
2005-01-01
To protect spacecraft and their contents from excessive heat thermal protection system are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100 F. The coating composition includes a phase change material.
Advances in edible coatings for fresh fruits and vegetables: a review.
Dhall, R K
2013-01-01
Edible coatings are an environmentally friendly technology that is applied on many products to control moisture transfer, gas exchange or oxidation processes. Edible coatings can provide an additional protective coating to produce and can also give the same effect as modified atmosphere storage in modifying internal gas composition. One major advantage of using edible films and coatings is that several active ingredients can be incorporated into the polymer matrix and consumed with the food, thus enhancing safety or even nutritional and sensory attributes. But, in some cases, edible coatings were not successful. The success of edible coatings for fresh products totally depends on the control of internal gas composition. Quality criteria for fruits and vegetables coated with edible films must be determined carefully and the quality parameters must be monitored throughout the storage period. Color change, firmness loss, ethanol fermentation, decay ratio and weight loss of edible film coated fruits need to be monitored. This review discusses the use of different edible coatings (polysaccharides, proteins, lipids and composite) as carriers of functional ingredients on fresh fruits and vegetables to maximize their quality and shelf life. This also includes the recent advances in the incorporation of antimicrobials, texture enhancers and nutraceuticals to improve quality and functionality of fresh-cut fruits. Sensory implications, regulatory status and future trends are also reviewed.
Semiconductor surface protection material
NASA Technical Reports Server (NTRS)
Packard, R. D. (Inventor)
1973-01-01
A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.
Process for direct conversion of reactive metals to glass
Rajan, John B.; Kumar, Romesh; Vissers, Donald R.
1990-01-01
Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.
Study on the corrosion resistance and anti-infection of modified magnesium alloy.
Bai, Ningning; Tan, Cui; Li, Qing; Xi, Zhongxian
2017-01-01
In this paper, a low-cost and multifunctional hydroxyapatite (HA)/pefloxacin (PFLX) drug eluting layer is coated on magnesium (Mg) alloy through a simple hydrothermal and dip process. The drug PFLX could provide effective prevention for bone infection and inflammation due to its broad-spectrum antibacterial property. And HA would promote the growth of new bone and further improve the biocompatibility of implants. Besides, both PFLX and HA exhibits excellent corrosion protection for Mg alloy substrate. This coating is of great value for improving the application of Mg alloy as biomaterials.
NASA Astrophysics Data System (ADS)
Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.
2017-05-01
Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.
Smart Coatings for Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.
2016-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, Thomas M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.
NASA Astrophysics Data System (ADS)
Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.
2014-04-01
To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.
Atomic Oxygen Durability Evaluation of a UV Curable Ceramer Protective Coating
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Karniotis, Christina A.; Dworak, David; Soucek, Mark
2004-01-01
The exposure of most silicones to atomic oxygen in low Earth orbit (LEO) results in the oxidative loss of methyl groups with a gradual conversion to oxides of silicon. Typically there is surface shrinkage of oxidized silicone protective coatings which leads to cracking of the partially oxidized brittle surface. Such cracks widen and branch crack with continued atomic oxygen exposure ultimately allowing atomic oxygen to reach any hydrocarbon polymers under the silicone coating. A need exists for a paintable silicone coating that is free from such surface cracking and can be effectively used for protection of polymers and composites in LEO. A new type of silicone based protective coating holding such potential was evaluated for atomic oxygen durability in an RF atomic oxygen plasma exposure facility. The coating consisted of a UV curable inorganic/organic hybrid coating, known as a ceramer, which was fabricated using a methyl substituted polysiloxane binder and nanophase silicon-oxo-clusters derived from sol-gel precursors. The polysiloxane was functionalized with a cycloaliphatic epoxide in order to be cured at ambient temperature via a cationic UV induced curing mechanism. Alkoxy silane groups were also grafted onto the polysiloxane chain, through hydrosilation, in order to form a network with the incorporated silicon-oxo-clusters. The prepared polymer was characterized by H-1 and Si-29 NMR, FT-IR, and electrospray ionization mass spectroscopy. The paper will present the results of atomic oxygen protection ability of thin ceramer coatings on Kapton H as evaluated over a range of atomic oxygen fluence levels.
NASA Technical Reports Server (NTRS)
Benoy, Patricia A.
2000-01-01
Contemporary trends in rotating machinery development have produced a continuous evolution towards ever increasing speeds and higher operating temperatures. This process has been particularly evident in aerospace and automotive applications such as turbochargers. The combination of high temperature and high speed has exceeded the capacity of mainstream liquid lubrication technology. The NASA Glenn Research Center has been at the forefront in developing innovative solid lubricants for the oil free protection of rotating machinery under these extreme environmental conditions. The most recent of these is the PS 300 series of plasma sprayed solid lubricant coatings. St Louis University and NASA Glenn Research Center entered into this cooperative agreement to investigate potential thermal processing techniques for the enhancement of the PS 304 solid lubricant.
Cardinale, Gregory F.
2000-01-01
A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.
Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.
Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza
2016-06-01
Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Comments on Cadmium Alternatives and Testing - IHE vs. EHE (Briefing Charts)
2011-11-17
Boeing. All rights reserved. 6 • Provides Corrosion Protection to Steel - No red rust – Corrosion Resistant Coating in Salt Water (Compared to Zinc ...Cd corrosion rate in salt water is lower than zinc • Sacrificially Protects Steel – If Cd coating is scratched Cd coating will corrode first and...prevent steel from corroding • Soft and Ductile – Does Not Reduce the Fatigue Life of High Strength Steel (HSS) – Provides lubricous coating to
NASA Technical Reports Server (NTRS)
Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina
2014-01-01
The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatur, I.R.; Prigul`skii, G.B.; Timokhin, I.A.
Enamel paints MS-17 and KhV-110 are used to protect drill bits during transportation and storage. But this requires the surface to be prepared carefully, which is often difficult under production conditions. Some of the promising anticorrosion agents are film-forming inhibited petroleum compounds (FIPC) - materials derived from high-temperature petroleum products blended with corrosion inhibitors and a solvent. Such compounds are used to protect unpainted and painted surfaces; this shortens the preservation process, and generally dispenses which depreservation. Further, they can be used to protect moist, wet, greasy, and rusted surfaces, and concealed inner areas where paint is difficult to apply.more » The purpose of this work was to obtain a film-forming inhibited petroleum compound that has high protective properties, can be applied on unprepared metal surfaces, and meets the following requirements: drill bit protection time during transportation and storage at least 24 months, coat adhesion to the metal at least of force 2, drop point > 90{degrees}C, the material must be applied by pneumatic spraying, in toxicity and inflammability the compound must be of class three, and coat drying time at 60{degrees}C not more than 12 min. The anticorrosion agents are described.« less
Continuous fiber reinforced mesh bond coat for environmental barrier coating system
Zhang, James; Das, Rupak; Roberts III, Herbert Chidsey; Delvaux, John McConnell
2017-09-26
A gas turbine blade may have a bond coat applied to its surface. A porous substrate may be applied to the bond layer and one or more protective layers may be applied to the bond layer such that the fiber mesh is embedded between the bond layer and the protective layer to prevent creep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxtermann, Mike, E-mail: mike.b@fh-muenster.de; Jüstel, Thomas, E-mail: tj@fh-muenster.de
2016-08-15
Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N{sub 3}{sup −}) leads to a steady pH increase used for precipitation. • A UV induced Al(OH){sub 3} precipitation is used to craft Al{sub 2}O{sub 3} coatings onto YPO{sub 4}:Bi. • The influence of Al{sub 2}O{sub 3} coated onto YPO{sub 4}:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al{sub 2}O{sub 3} coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO{sub 4}:Bi, targeting a stability enhancement of themore » phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al{sub 2}O{sub 3}. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN{sub 3} in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH){sub 3} from an Al{sub 2}(SO{sub 4}){sub 3} {sub ×} 18H{sub 2}O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al{sub 2}O{sub 3} coated YPO{sub 4}:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Kanchan; Koc, Rasit; Fan, Chinbay
The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O 2, water from combustion and SO x from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, firesidemore » corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K 1C ~12 MPam 1/2) and excellent corrosion resistance (kp~1.9X10 -11 g 2/cm 4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB 2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.« less
NASA Astrophysics Data System (ADS)
Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng
2013-12-01
In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.
Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Yoon, Wonseok; Huang, Xinyu; Fazzino, Paul; Reifsnider, Kenneth L.; Akkaoui, Michael A.
Metallic bipolar plates for polymer electrolyte membrane (PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance, good mechanical robustness, low material and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrates by electroplating and physical vapor deposition (PVD) methods. The coatings are screened with an electrochemical polarization test for corrosion resistance; then the contact resistance test was performed on selected coatings. The coating investigated include Gold with various thicknesses (2 nm, 10 nm, and 1 μm), Titanium, Zirconium, Zirconium Nitride (ZrN), Zirconium Niobium (ZrNb), and Zirconium Nitride with a Gold top layer (ZrNAu). The substrates include three types of stainless steel: 304, 310, and 316. The results show that Zr-coated samples satisfy the DOE target for corrosion resistance at both anode and cathode sides in typical PEM fuel cell environments in the short-term, but they do not meet the DOE contact resistance goal. Very thin gold coating (2 nm) can significantly decrease the electrical contact resistance, however a relatively thick gold coating (>10 nm) with our deposition method is necessary for adequate corrosion resistance, particularly for the cathode side of the bipolar plate.
Identifying and Inactivating Bacterial Spores
NASA Technical Reports Server (NTRS)
Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri
2009-01-01
Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.
DNA Repair and Ethnic Differences in Prostate Cancer Risk
2006-03-01
Georgetown University for processing . Each sample is centrifuged and the blood components are separated into serum, clot, buffy coat, and plasma...within 4 hours of reception. The processed , aliquoted, and bar-coded samples are stored in a repository at GUH at -80oC. The slow growth of prostate...completeness. Daily backups are performed to protect data against accidental destruction or corruption. Blood samples are processed within 24 hours of sample
NASA Astrophysics Data System (ADS)
Lakshmi, R. V.; Aruna, S. T.; Sampath, S.
2017-01-01
The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.
Development of composite tube protective coatings
NASA Technical Reports Server (NTRS)
Dursch, H.; Hendricks, C.
1986-01-01
Protective coatings for graphite/epoxy (Gr/Ep) tubular structures proposed for the Space Station are evaluated. The program was divided into four parts; System Definition, Coating Concept Selection and Evaluation, Scale-up and Assembly, and Reporting. System Definition involved defining the structural and environmental properties required of the Gr/Ep tubes. The prepreg and ply sequence selected was a P75S/934 (O2, + or - 20, O2)sub s layup which meets the various structural requirements of the Space Station. Coating Concept and Selection comprised the main emphasis of the effort. Concepts for protectively coating the Gr/Ep tubes included the use of metal foil and electroplating. The program results demonstrated that both phosphoric and chromic acid anodized Al foil provided adequate adhesion to the Gr/Ep tubes and stability of optical properties when subjected to atomic oxygen and thermal cycling representative of the LEO environment. SiO2/Al coatings sputtered onto Al foils also resulted in an excellent protective coating. The electroplated Ni possessed unacceptable adhesion loss to the Gr/Ep tubes during atomic oxygen testing. Scale-Up and Assembly involved fabricating and wrapping 8-ft-long by 2-in-diameter Gr/EP tubes with chromic acid anodized foil and delivering these tubes, along with representative Space Station erectable end fittings, to NASA LaRC.
Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing
NASA Technical Reports Server (NTRS)
Rothgeb, Matthew J; McLaughlin, Russell L.
2008-01-01
Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly. Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program. In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner. The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process. The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.
NASA Astrophysics Data System (ADS)
Jacobs, Stephen D.
2011-10-01
Deterministic final polishing of high precision optics using sub-aperture processing with magnetorheological finishing (MRF) is an accepted practice throughout the world. A wide variety of materials can be successfully worked with aqueous (pH 10), magnetorheological (MR) fluids, using magnetic carbonyl iron (CI) and either ceria or nanodiamond nonmagnetic abrasives. Polycrystalline materials like zinc sulfide (ZnS) and zinc selenide (ZnSe) are difficult to polish at pH 10 with MRF, due to their grain size and the relatively low stiffness of the MR fluid lap. If microns of material are removed, the grain structure of the material begins to appear. In 2005, Kozhinova et al. (Appl. Opt. 44 4671-4677) demonstrated that lowering pH could improve MRF of ZnS. However, magnetic CI particle corrosion rendered their low pH approach unstable and unsuitable for commercial implementation. In 2009, Shafrir et al. described a sol-gel coating process for manufacturing a zirconia-coated CI particle that protects the magnetic core from aqueous corrosion (Appl. Opt .48 6797-6810). The coating process produces free nanozirconia polishing abrasives during the coating procedure, thereby creating an MR polishing powder that is "self-charged" with the polishing abrasive. By simply adding water, it was possible to polish optical glasses and ceramics with good stability at pH 8 for three weeks. The development of a corrosion resistant, MR polishing powder, opens up the possibility for polishing additional materials, wherein the pH may be adjusted to optimize effectiveness. In this paper we describe the CI coating process, the characterization of the coated powder, and procedures for making stable MR fluids with adjustable pH, giving polishing results for a variety of optical glasses and crystalline ceramics.
Germanium detector passivated with hydrogenated amorphous germanium
Hansen, William L.; Haller, Eugene E.
1986-01-01
Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.
Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jie; Liao, Lei; Shi, Feifei
Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less
Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
Zhao, Jie; Liao, Lei; Shi, Feifei; ...
2017-07-26
Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less
Corrosion Embrittlement of Duralumin IV : The Use of Protective Coatings
NASA Technical Reports Server (NTRS)
Rawdon, Henry S
1928-01-01
Although the corrosion resistance of sheet duralumin can be greatly improved by suitable heat treatment, protection of the surface is still necessary if long life under varied service conditions is to be insured. The coatings used for this purpose may be grouped into three classes: the varnish type of coating, the oxide type produced by a chemical treatment of the surface, and metallic coatings, of which aluminum appears to be the most promising. Since the necessary weather exposure tests are not complete, some of the conclusions regarding the value of various surface coatings are necessarily tentative.
Coated columbium thermal protection systems: An assessment of technological readiness
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1973-01-01
Evaluation and development to date show that of the coated columbium alloys FS-85 coated with R512E shows significant promise for a reusable thermal protection system (TPS) as judged by environmental resistance and the retention of mechanical properties and structural integrity of panels upon repeated reentry simulation. Production of the alloy, the coating, and full-sized TPS panels is well within current manufacturing technology. Small defects which arise from impact damage or from local coating breakdown do not appear to have serious immediate consequences in the use environment anticipated for the space shuttle orbiter TPS.
NASA Astrophysics Data System (ADS)
Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.
2012-01-01
High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.
Coating for components requiring hydrogen peroxide compatibility
NASA Technical Reports Server (NTRS)
Yousefiani, Ali (Inventor)
2010-01-01
The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.
NASA Technical Reports Server (NTRS)
Bianco, Robert; Rapp, Robert A.; Smialek, James L.
1993-01-01
The high temperature performance of reactive element (RE)-doped and Cr/RE-modified aluminide diffusion coatings on commercial Ni-base alloy substrates was determined. In isothermal oxidation at 1100 C in air, RE-doped aluminide coatings on IN 713LC substrates formed a continuous slow-growing n-Al2O3 scale after 44 hrs of exposure. The coatings were protected by either an outer ridge Al2O3 scale with an inner compact Al2O3 scale rich in RE or by a continuous compact scale without any noticeable cracks or flaws. The cyclic oxidation behavior of Cr/RE-modified aluminide coatings on Rene 80 and IN 713LC alloys and of RE-doped aluminide coatings on IN 713LC alloys at 1100 C in static air was determined. Pack powder entrapment from the powder contacting (PC) process detracted significantly from the overall cyclic oxidation performance. Type I hot corrosion behavior of Cr/RE-modified aluminide coatings on Rene 80 and Mar-M247 alloy substrates at 900 C in a catalyzed 0.1 percent SO3/O3 gas mixture was determined. The modified coatings produced from the PC arrangement provided significantly better resistance to hot corrosion attack than commercial low-activity aluminide coatings produced by the above pack arrangement.
NASA Astrophysics Data System (ADS)
Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo
2018-02-01
An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.
NASA Astrophysics Data System (ADS)
Zhang, Lashuang; Jiang, Yue; Zai, Wei; Li, Guangyu; Liu, Shaocheng; Lian, Jianshe; Jiang, Zhonghao
2017-12-01
A novel superhydrophobic calcium phosphate coating was prepared on a magnesium alloy substrate by a highly effective chemical conversion process and subsequent chemical modification. Different methods were employed to characterize the surface morphology and chemical composition as well as measure the wettability of the coating. It was demonstrated that the as-prepared superhydrophobic calcium phosphate coating has a typical three-level hierarchical structure consisted of micro-protrusions, submicro-lumps and nano-grains, conferring excellent superhydrophobicity with a water contact angle of 159°. The electrochemical measurements and appropriate equivalent circuit revealed that the corrosion-resistant performance of the superhydrophobic calcium phosphate coating was significantly improved as compared with that of the substrate, the corrosion potential of the superhydrophobic coating increases from -1.56 to -1.36 V, and its corrosion current density decreases from 1.29 × 10-4 to 1.3 × 10-6 A/cm2. The anti-corrosion mechanism of the superhydrophobic coating was also discussed. It can be indicated that the corrosion inhibitive properties of the coating are in accordance with its hydrophobicity, which is owing to the presence of a protective layer of air trapped in the grooves of the coating surface to isolate the underlying materials from the external environment.
NASA Astrophysics Data System (ADS)
Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.
2017-02-01
High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.; Maag, Carl R.
1986-01-01
Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.
The corrosion protection of 6061-T6 aluminum by a polyurethane-sealed anodized coat
NASA Technical Reports Server (NTRS)
Danford, M. D.
1990-01-01
The corrosion protection of 6061-T6 anodized aluminum afforded by a newly patented polyurethane seal was studied using the ac impedance technique. Values of the average corrosion rates over a 27-day exposure period in 3.5 percent NaCl solutions at pH 5.2 and pH 9.5 compared very favorably for Lockheed-prepared polyurethane-sealed and dichromate-sealed coats of the same thickness. Average corrosion rates for both specimens over the first 7 days of exposure compared well with those for a hard anodized, dichromate-sealed coat, but rose well above those for the hard anodized coat over the entire 27-day period. This is attributed both to the greater thickness of the hard anodized coat, and possibly to its inherently better corrosion protective capability.
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil
2018-01-01
Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.
Heat flux instrumentation for Hyflite thermal protection system
NASA Technical Reports Server (NTRS)
Diller, T. E.
1994-01-01
Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.